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Abstract: Model transformations play a significant role in model based software
development, and the correctness of the transformation is crucial to the success of
the development effort. We have previously shown how we can use bisimulation
to verify the preservation of certain behavioral properties across a transformation.
However, transformations are often used to construct structurally different models,
and we might wish to ensure that there is some structural correspondence to the
original model. It may be possible to verify such transformations without having
to explicitly specify the dynamic semantics of the source and target languages. In
this paper, we present a technique to verify such transformations, by first specifying
certain structural correspondence rules between the source and target languages,
and extending the transformation so that these rules can be easily evaluated on the
instance models. This will allow us to conclude if the output model has the expected
structure. The verification is performed at the instance level, meaning that each
execution of the transformation is verified. We will also look at some examples
using this technique.

Keywords: Verification, Model transformations

1 Introduction

Model transformations that translate a source model into an output model are often expressed in
the form of rewriting rules, and can be classified according to a number of categories [MV05].
However, the correctness of a model transformation depends on several factors, such as whether
the transformation terminates, whether the output model complies with the syntactical rules of
the output language, and others. One question crucial to the correctness of a transformation is
whether it achieved the intended result of mapping the semantics of the input model into that of
the output model. For instance, a transformation from a Statechart model to a non-hierarchical
FSM model can be said to be correct if the output model truly reproduces the behavior of the
original Statechart model.

Models can also be seen as attributed and typed graph structures that conform to an abstract
syntax. Model transformations take an input graph and produce a modified output graph. In a
majority of these cases, the transformation matches certain graph structures in the input graph
and creates certain structures in the output graph. In such cases, correctness may be defined as
whether the expected graph structures were produced in the output corresponding to the relevant
structures in the input graph. If we could specify the requirements of such correspondences and
trace the correspondences easily over instance models, a simple model checking process at the
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end of a transformation can be used to verify if those instances were correctly transformed. In this
paper, we explore a technique to specify structural correspondence rules, which can be used to
decide if the transformation resulted in an output model with the expected structure. This will be
specified along with the transformation, and evaluated for each execution of the transformation,
to check whether the output model of that execution satisfies the correspondence rules.

2 Background

2.1 GReAT

GReAT [AKL03] is a language framework for specifying and executing model transformations
using graph transformation. It is a meta-model based transformation tool implemented within
the framework of GME [LBM+01]. One of the key features of GReAT is the ability to define
cross-language elements by composing the source and target meta-models, and introducing new
vertex and edge types that can be temporarily used during the transformation. Such cross-meta-
model associations are called cross-links. Note that a similar idea is present in Triple Graph
Grammars [Sch95]. This ability of GReAT allows us to track relationships between elements of
the source and target models during the course of the transformation, as the target model is being
constructed from the source model. This feature plays a crucial role in our technique to provide
assurances about the correctness of a model transformation.

2.2 Instance Based Verification of Model Transformations

Verifying the correctness of model transformations in general is as difficult as verifying compil-
ers for high-level languages. But for practical purposes, a transformation may be said to have
‘executed correctly’ if a certain instance of its execution produced an output model that pre-
served certain properties of interest. We call that instance ‘certified correct’. This idea is similar
to the work of Denney and Fischer in [DF05], where a program generator is extended to produce
logical annotations necessary for formal verification of certain safety properties. An automated
theorem prover uses these annotations to find proofs for the safety properties for the generated
code. Note that this does not prove the safety of the code generator, but only of a particular
instance of generated code.

In our previous effort [NK06], we have shown that it is both practical and prudent to verify
the correctness of every execution of a model transformation, as opposed to finding a correctness
proof for the transformation specification. This makes the verification tractable, and can also find
errors introduced during the implementation of a transformation that may have been specified
correctly.

This technique was applied to the specific case of preservation of reachability related proper-
ties across a model transformation. Reachability is a fairly well-understood property, and can be
verified easily for a labeled transition system (LTS), for instance by model checking [Hol97]. If
two labeled transition systems are bisimilar, then they will have the same reachability behavior.
In our approach, we treated the source and target models as labeled transition systems, and veri-
fied the transformation by checking if the source and target instances were bisimilar.
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Figure 1: Architecture for Verifying Reachability Preservation in a Transformation

Given an LTS (S, Λ, →), a relation R⊆ S×S is a bisimulation [San04] if:

(p, q) ∈ R and p α
→ p′ implies that there exists a q′ ∈ S,

such that q α
→ q′ and (p′, q′) ∈ R,

and conversely,

q α
→ q′ implies that there exists a p′ ∈ S,

such that p α
→ p′ and (p′, q′) ∈ R.

We used cross-links to relate source and target elements during the construction of the output
model. These relations were then passed to a bisimilarity checker, which determined whether the
source and target instances were bisimilar. If the instances were determined to be bisimilar, we
could conclude that the execution of the transformation was correct. Figure 1 shows an overview
of the architecture for this approach.

Figure 2: Meta-model for UML Activity Diagrams

2.3 UML to CSP Transformation

The UML to CSP transformation was presented as a case study at AGTIVE ’07 [BEH07], to
compare the various graph transformation tools available today. We provide an overview of this
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case study here from a GReAT point of view, and we will use this as an example to explain our
technique for verifying model transformations.

The objective of this transformation is to take a UML Activity Diagram [OMG06] and generate
a Communicating Sequential Process [Hoa78] model with the equivalent behavior. The Activity
Diagram consists of various types of Activity Nodes, which can be connected by directed Activity
Edges. Figure 2 shows the GME meta-model for UML Activity Diagrams. A CSP Process is
defined by a Process Assignment, which assigns a Process Expression to a Process Id. Process
Expressions can be a simple Process, a Prefix operator or a BinaryOperator. Figure 3 shows the
GME meta-model for CSP, highlighting the relevant parts for our example.

Figure 3: Meta-model for CSP

The UML to CSP mapping assigns a Process for each Activity Edge. For each type of Activity
Node, a Process Assignment is created, which assigns the Process corresponding to the incoming
Activity Edge to a Process Expression depending on the type of the Activity Node. Figure 4
shows one such mapping, for the type Action Node. This assigns the incoming Process to a
Prefix expression. The resulting CSP expression can be written as A = action −→ B, which is
shown in Figure 4 as a model instance compliant with the CSP meta-model.

3 Structural Correspondence

As in the UML to CSP case, model transformations can be used to generate a target model of a
certain structure (CSP) from a source model of a different structure (UML). Specific structural
configurations in the source model (such as an Action Node in the UML model) produce specific
structural configurations in the target model (such as a Prefix in the CSP model). The rules to
accomplish the structural transformations may be simple or complicated. However, it is fairly
straightforward to compare and verify that the correct structural transformation was made, if we
already know which parts of the source structure map to which parts of the target structure.

In our technique to verify a transformation by structural correspondence, we will first define
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(a) Activity Diagram (b) CSP

Figure 4: CSP Process Assignment for Action Node

a set of structural correspondence rules specific to a certain transformation. We will then use
cross-links to trace source elements with the corresponding target elements, and finally use these
cross-links to check whether the structural correspondence rules hold.

In essence, we expect that the correspondence conditions are independently specified for a
model transformation, and an independent tool checks if these conditions are satisfied by the
instance models, after the model transformation has been executed. In other words, the corre-
spondence conditions depend purely on the source and target model structures and not on the
rewriting rules necessary to effect the transformation. Since the correspondence conditions are
specified in terms of simple queries on the model around previously chosen context nodes, we
expect that they will be easier to specify, and thus more reliable than the transformation itself.
We also assume that the model transformation builds up a structure for bookkeeping the mapping
between the source and target models.

3.1 Structural Correspondence Rules for UML to CSP Transformation

A structural correspondence rule is similar to a precondition-postcondition style axiom. We will
construct them in such a way that they can be evaluated easily on model instances. We will
use the UML to CSP example to illustrate structural correspondence. Consider the case for the
Action Node, as shown in Figure 4. The Action Node has one incoming edge and one outgoing
edge. It is transformed into a Process Assignment in the CSP. The CSP structure for this instance
consists of a Process Id and a Prefix, with an Event and a target Process. This is the structural
transformation for each occurrence of an Action Node in the Activity Diagram.

We can say that for each Action Node in the Activity Diagram, there is a corresponding
Process Assignment in the CSP, with a Prefix Expression. When our transformation creates this
corresponding Process Assignment, we can use a cross-link to track this correspondence. The
structural correspondence is still not complete, as we have to ensure that the Process Id and
the Prefix Expression are created correctly. We use a kind of path expression to specify the
correctness of corresponding parts of the two structures, and the correspondence is expressed
in the form SourceElement = Out putElement. Let us denote the Action Node by AN, and the
Process Assignment by PA. Then the necessary correspondence rules can be written using path
expressions as shown in Table 1.
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Rule Path expression
The Action Node corresponds to a
Process Assignment with a Prefix PA.procExpr.type = Pre f ix
The incoming edge in the UML
corresponds to the Process Id AN.inEdge.name = PA.procId.name

The outgoing edge corresponds to
the target Process AN.outEdge.name = PA.procExpr.Process.name

The action of the Action Node
corresponds to the Event AN.action = PA.procExpr.event

Table 1: Structural Correspondence Rules for Action Node

These rules together specify the complete structural correspondence for a section of the Ac-
tivity Diagram and a section of its equivalent CSP model. The different types of Activity Nodes
result in different structures in the CSP model, some of which are more complex than the fairly
straightforward case for the Action Node. Next, we look at the structural mapping for some of
the other nodes.

A Fork Node in the Activity Diagram is transformed into a Process Assignment with a Con-
currency Expression. Figure 5 shows a Fork Node with an incoming edge A and three outgoing
edges B, C and D. This is represented by the CSP expression A = B ‖ (C ‖D), where ‖ represents
concurrency (the actual ordering of B, C and D is immaterial). The structural representation of
this expression as an instance of the CSP meta-model is shown in Figure 5. The Fork Node is
transformed into a CSP Process Assignment that consists of a Process Id corresponding to the
incoming Activity Edge of the Fork Node, and a Process Expression of type Concurrency. The
Concurrency Expression consists of Processes and other Concurrency nodes, depending on the
number of outgoing Activity Edges.

If we denote the Fork Node by FN and the Process Assignment by PA, the structural corre-

(a) Activity Diagram (b) CSP

Figure 5: CSP Process Assignment for Fork Node
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Rule Path expression
The Fork Node corresponds to a

Process Assignment with a Concurrency PA.procExpr.type = Concurrency
The incoming edge in the UML
corresponds to the Process Id FN.inEdge.name = PA.procId.name

For each outgoing edge, ∀o ∈ FN.outEdge
there is a corresponding Process ∃p ∈ PA.procExpr..Process : o.name = p.name

in the Process Expression

Table 2: Structural Correspondence Rules for Fork Node

(a) Activity Diagram (b) CSP

Figure 6: CSP Process Assignment for Decision Node

spondence rules can be described using path expressions as shown in Table 2. We will use the
double-dot ‘..’ to denote the descendant operator (similar to ‘//’ in XPath queries), to specify
ancestor-descendant relationships.

By evaluating these rules on the Activity Diagram and the CSP models, we can determine
whether the structural correspondence was satisfied for Fork Nodes. Another type of node in the
Activity Diagram is the Decision Node. The transformation mapping for the Decision Node is
a slight variation of the Fork Node. Figure 6 shows a Decision Node with an incoming edge A,
and three outgoing edges B, C and D, with guards x, y and else respectively (in this case study,
we will assume that the Decision Node always has exactly one ‘else’ edge). This is represented
by the CSP expression A = B 6< x 6> (C 6< y 6> D), where the operator C 6< y 6> D is the condition
operator with the meaning that if y is true, then the process behaves like C, else like D.

The Decision Node is transformed to the CSP model shown in Figure 6 as a model instance
of the CSP meta-model. The Decision Node is transformed into a Process Assignment that
consists of a Process Id corresponding to the incoming Activity Edge of the Decision Node, and
a Process Expression of type Condition. The Condition’s expression attribute is set to the guard
of the corresponding Activity Edge, and a Process corresponding to the Activity Edge is created
as it’s LHS. For the final ‘else’ edge, a Process is created in the last Condition as it’s RHS. The
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Rule Path expression
The Decision Node corresponds to a

Process Assignment with a Condition PA.procExpr.type = Condition
The incoming edge in the UML
corresponds to the Process Id DN.inEdge.name = PA.procId.name

For each outgoing edge, there is
a corresponding Condition in the ∀o ∈ DN.outEdge∧o.guard 6= else

Process Expression and a corresponding ∃c ∈ PA.procExpr..Condition :
Process in the Condition’s LHS c.expression = o.guard∧ c.lhs.name = o.name

For the outgoing ‘else’ edge,
there is a Condition in the ∀o ∈ DN.outEdge∧o.guard = else
Process Expression with a ∃c ∈ PA.procExpr..Condition :

corresponding Process as it’s RHS c.rhs.name = o.name

Table 3: Structural Correspondence Rules for Decision Node

structural correspondence rules for this mapping are shown in Table 3.

3.2 Specifying Structural Correspondence Rules in GReAT

Specifying the structural correspondence for a transformation consists of two parts:

1. Identifying the significant source and target elements of the transformation

2. Specifying the structural correspondence rules for each element using path expressions

The first step is accomplished in GReAT by using cross-links between the source and target
elements. A composite meta-model is added to the transformation, by associating selected source
and target elements using a temporary ‘Structural Correspondence’ class. There will be one
such class for each pair of elements. This class will have a string attribute, which is set to
the path expressions necessary for structural correspondence for that pair. Figure 7 shows a
composite meta-model specifying the structural correspondence for Fork Nodes. The Fork Node
class comes from the Activity Diagram meta-model, and the Process Assignment class comes
from the CSP meta-model.

Figure 7: Composite Meta-model to Specify Structural Correspondence

Once the structural correspondence has been specified for all the relevant items, the transfor-
mation is enhanced to create the cross-link when creating the respective target elements. Figure 8
shows the GReAT rule in which the Process Assignment for a Fork Node is created, enhanced to
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Figure 8: GReAT Rule with Cross-link for Structural Correspondence

create the cross-link for structural correspondence. Note that in incoming Activity Edge is rep-
resented as an Association Class named ActivityEdgeIn. The transformation for the Fork
Node is actually accomplished in a sequence of several rules executed recursively, as shown in
Figure 9. First all the Fork Nodes are collected, and a sequence of rules are executed for each
node. These rules iterate through the out-edges of each Fork node, creating the Concurrency tree.
Though several rules are involved in the transformation for Fork nodes, the cross-link needs to
be added to one rule only.

It must be noted that it is necessary to specify the structural correspondence rules only once in
the composite meta-model. The cross-link must however be added to the transformation rules,
and in most cases will be required only once for each pair of source and target element.

3.3 Evaluating the Structural Correspondence Rules

Once the structural correspondence rules have been specified, and the cross-links added to the
transformation, the correspondence rules are evaluated on the instance models after each execu-
tion of the transformation. These rules can be evaluated by performing a simple depth first search
on the instance models, and checking if the correspondence rules are satisfied at each relevant
stage.

This consists of two phases. The first phase is to generate the code that will traverse the
instance models and evaluate the correspondence rules. Since the meta-models of both the source
and target languages are available with the transformations, and the path expressions are written
in a standard form that can be parsed automatically, the model traverser code can be automatically
generated from the structural correspondence specification. This needs to be done only once each
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Figure 9: Sequence of GReAT Rules for Fork Node Transformation

time the structural correspondence specification changes. The second phase is to call the model
traverser code at the end of each execution of the transformation, supplying to it the source and
target model instances along with the cross-links.

In the case of the UML to CSP transformation, we traverse the input Activity Diagram model
and evaluate the correspondence rules at each activity node. For each Activity Node, the cross-
link is traversed to find the corresponding Process Assignment. If a correspondence rule has
been defined for an Activity Node, and no corresponding Process Assignment is found, then this
signals an error in the transformation. After locating the corresponding Process Assignment, the
path expressions are evaluated. If any of the rules are not satisfied, the error is reported. If all the
rules are satisfied for all the nodes, then we can conclude that the transformation has executed
correctly.

The instance model is traversed in a depth-first manner. The corresponding elements are
located using the cross-links, which will take constant time. The path expressions are evaluated
on the instances, which will take polynomial time in most cases. Thus, the overall verification
process does not incur a significant performance overhead in most cases.

3.4 Remarks

The structural correspondence based verification described here can provide important assur-
ances about the correctness of transformations, while being practically applicable in most com-
mon transformations.

The use of path expressions to specify correspondence rules makes it easy to specify cor-
rectness. The path expressions use a simple query language that can be easily evaluated on the
instance models. Our future research concentrates on the requirements of such a query language.
Most complex transformations may involve multiple rules executing recursively to transform a
particular part of a model. However, it may be possible to specify the correspondence for that
part of the model using a set of simple path expressions. Such a specification would be simpler
and easier to understand than the complex transformation rules.

The structural correspondence is also specified orthogonal to the transformation specification.
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Thus, these rules may be written by someone other than the original transformation writer, or
even supplied along with the requirements document.

4 Related Work

[K0̈4], [KHE03] present ideas on validating model transformations. In [KHE03], the authors
present a concept of rule-based model transformations with control conditions, and provide a
set of criteria to ensure termination and confluence. In [K0̈4], Küster focuses on the syntactic
correctness of rule-based model transformations. This validates whether the source and target
parts of the transformation rule are syntactically correct with respect to the abstract syntax of the
source and target languages. These approaches are concerned with the functional behavior and
syntactic correctness of the model transformation. [LT] also discusses validation of transforma-
tions on these lines, but also introduces ideas of syntactic consistency and behavior preservation.
Our technique addresses semantic correctness of model transformations, addressing errors intro-
duced due to loss or mis-representation of information during a transformation.

In [BH07], Bisztray and Heckel present a rule-level verification approach to verify the seman-
tic properties of business process transformations. CSP is used to capture the behavior of the
processes before and after the transformation. The goal is to ensure that every application of a
transformation rule has a known semantic effect. We use path expressions to capture the relation
between structures before and after a transformation. These path expressions are generic (they
do not make any assumptions about the underlying semantics of the models involved), and can
be applied to a wide variety of transformations.

Ehrig et. al. [EEE+07] study bidirectional transformations as a technique for preserving in-
formation across model transformations. They use triple graph grammars to define bi-directional
model transformations, which can be inverted without specifying a new transformation. Our ap-
proach offers a more relaxed framework, which will allow some loss of information (such as by
abstraction), and concentrates on the crucial properties of interest. We also feel that our approach
is better suited for transformations involving multiple models and attribute manipulations.

In other related work, [VP03] presents a model level technique to verify transformations by
model checking a selected semantic property on the source model, and transforming the property
and validating it in the target domain. The validation requires human expertise. After transform-
ing the property, the target model is model checked. In our approach, since the properties are
specified using cross links that span over both the source and target languages, we do not need to
transform them. [LLMC06] discuss an approach to validate model transformations by applying
OCL constraints to preserve and guarantee certain model properties. [GGL+06] is a language
level verification approach which addresses the problem of verifying semantic equivalence be-
tween a model and a resulting programming language code.

4.1 MOF QVT Relations Language

The MOF 2.0 Query / View / Transformation specification [OMG05] addresses technology per-
taining to manipulation of MOF models. A relations language is prescribed for specifying rela-
tions that must hold between MOF models, which can be used to effect model transformations.
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Relations may be specified over two or more domains, with a pair of when and where predicates.
The when predicate specifies the conditions under which a relation must hold, and the where
predicate specifies the condition that all the participating model elements must satisfy. Addition-
ally, relations can be marked as checkonly or enforced. If it is marked checkonly, the relation is
only checked to see if there exists a valid match that satisfies the relationship. If it is marked
enforced, the target model is modified to satisfy the relationship whenever the check fails.

Our approach can be likened to the checkonly mode of operation described above. However,
in our case, the corresponding instances in the models are already matched using cross links,
and the correspondence conditions are evaluated using their context. The cross links help us
to avoid searching the instances for valid matches. Specifying the correspondence conditions
using context nodes simplifies the model checking necessary to evaluate the conditions, thus
simplifying the verification process. Since we verify the correspondence conditions for each
instance generated by the transformation, these features play an important role.

4.2 Triple Graph Grammars

Triple Graph Grammars [Sch95] are used to describe model transformations as the evolution of
graphs by applying graph rules. The evolving graph complies with a graph schema that consists
of three parts. One graph schema represents the source meta model, and one represents the target
meta-model. The third schema is used to track correspondences between the source and target
meta models. Transformations are specified declaratively using triple graph grammar rules, from
which operational rules are derived to effect model transformations.

The schema to track correspondences between the source and target graphs provides a frame-
work to implement a feature similar to cross links in GReAT. If the correspondence rules can
be encoded into this schema, and the correspondence links persisted in the instance models, our
verification approach can be implemented in this scenario.

5 Conclusions and Future Work

In this paper, we have shown how we can provide an assurance about the correctness of a trans-
formation by using structural correspondence. The main errors that are addressed by this type of
verification is the loss or misrepresentation of information during a model transformation.

We continue to hold to the idea that it is often more practical and useful to verify transfor-
mations on an instance basis. The verification framework must be added to the transformation
only once, and is invoked for each execution of the transformation. The verification process
does not add a significant overhead to the transformation, but provides valuable results about the
correctness of each execution.

The path expressions must use a simple and powerful query language to formulate queries on
the instance models. While existing languages such as OCL may be suitable for simple queries,
we may need additional features, such as querying children to an arbitrary depth. Our future
research concentrates on the requirements of such a language.

While the path expressions can be parsed automatically and evaluated on the instances, the
cross-link for the relevant elements must be manually inserted into the appropriate transformation
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rules. However, in most cases, it may be possible to infer where the cross-links must be placed.
If the cross-links could be inserted into the rules automatically, the transformation can remain
a black box. The main concern with this is that the cross-links are crucial to evaluating the
correspondence rules correctly and also to keep the complexity down.

We have seen simple string comparisons added to the path expressions in this paper. Some
transformations may require more complex attribute comparisons, or structure to attribute com-
parisons such as counting. We wish to explore such situations in further detail in future cases, to
come up with a comprehensive language for specifying the path expressions.
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