
Electronic Communications of the EASST
Volume 15 (2008)

Proceedings of the
8th International Workshop on

OCL Concepts and Tools (OCL 2008)
at MoDELS 2008

An Incremental OCL Compiler for Modeling Environments

Tamás Vajk, Gergely Mezei and Tihamér Levendovszky

16 pages

Guest Editors: Jordi Cabot, Martin Gogolla, Pieter Van Gorp
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

An Incremental OCL Compiler for Modeling Environments

Tamás Vajk1, Gergely Mezei2 and Tihamér Levendovszky3

1 tamas.vajk@aut.bme.hu 2 gmezei@aut.bme.hu 3 tihamer@aut.bme.hu
http://www.aut.bme.hu/

Department of Automation and Applied Informatics
Budapest University of Technology and Economics, Hungary

Abstract: In software engineering, reliability and development time are two of the
most important aspects, therefore, modeling environments, which aide both, are
widely used during software development. UML and OCL became industry stan-
dards, and are supported by many CASE tools. OCL code checking, which has to
be performed by these tools, has a specialty, as not all of the information necessary
for compilation is available from the code, the related model contains the types,
navigations and attributes. The build time of OCL code fragments is increased if
the development tool supports distributed modeling, because in this case, model el-
ement checking has to be performed in a model repository that cannot be held in
memory. In this paper, we introduce a method that enables incremental OCL code
building and therefore reduces the development time. Incremental builds require
higher complexity than simple builds, thus balancing between the two methods is
also considered.

Keywords: OCL, Compiler, Incremental, Modeling

1 Introduction

In the last decade, software design significantly improved with the use of modeling languages,
such as the Unified Modeling Language (UML) [SP99]. Practice has shown that extending
visual modeling languages with textual constraints is more efficient and precise than a pure
graphical modeling language. UML defines the Object Constraint Language (OCL) [WK03] to
facilitate expressing constraints and object queries on models that cannot otherwise be defined
by diagrammatic notations.

Using the Model-Driven Architecture (MDA) [KWB03] methodology, system functionality
may first be defined as a platform-independent model (PIM) through an appropriate modeling
language, such as UML. Then the PIM may be translated into one or more platform-specific
models (PSMs) for the actual implementation. These PSMs are usually domain specific models
(DSMs). The translations between the PIM and PSMs are normally performed using automated
tools such as model transformation systems. The way of translating a model into another is
not trivial. A standard named QVT [OMG07] was proposed by the Object Management Group
(OMG) to handle this task. During a transformation, new model elements may be created, and
their relations to each other must be set. In QVT, these tasks are handled by the Imperative OCL
language, which extends OCL with program control statements and imperative expressions.

1 / 16 Volume 15 (2008)

mailto:tamas.vajk@aut.bme.hu
mailto:gmezei@aut.bme.hu
mailto:tihamer@aut.bme.hu
http://www.aut.bme.hu/

Incremental OCL Compiler

In this paper an incremental OCL compiler is presented which reduces the development time of
large systems using OCL constraints and increases the speed of model transformation systems.
This is accomplished by not compiling every code fragment each time, but only the modified
ones. The background and implementation framework for the discussed compiler is the Visual
Modeling and Transformation System (VMTS) [VMT] developed by our research group.

The main motivation of our work was to enable faster model development in CASE tools,
especially in VMTS. Most of the Integrated Development Environments (IDEs), such as Mi-
crosoft Visual Studio or Eclipse, support partial rebuilds of solutions or packages, however, in
model-based development environments it is rarely available. The processing time of OCL com-
pilers can be greatly reduced by enabling incremental builds, mainly because these compilers
not only have to check the code, but also the corresponding models. If a modeling tool utilizes a
shared model repository, such as a database to enable distributed model development, the speed
of model validation plays a key role in the overall processing time [VMC07]. Also, typical OCL
code fragments check the attribute values of some model elements. Therefore, if one changes
only a constant in the code, the modeling environment should not rebuild the whole code, only
the modified parts, which in this case will not include queries to the model repository. Compared
to other compilers, this dual input of the OCL translators makes a significant difference, as the
compiler needs to acquire information from two sources. Thus, more attention should be paid to
incremental compilation.

As OCL serves as the basis of Imperative OCL, in the future we aim to supporting incremental
builds in transformations as well. In VMTS, model transformations rules are connected together
into a control flow diagram [LLMC05] that can express complex transformation chains. Trans-
formation development tends to be an incremental process; after having the skeleton of the entire
process, developers fine tune the distinct transformation rules. In VMTS, these rules have no
interdependencies with each other; therefore, allowing them to be separately built seems to be a
logical requirement.

In our work, we attempt to find a universal method that enables incremental code building on
different abstraction levels and thus, it decreases the development time of constraints and model
transformations.

2 Background and Related Work

2.1 OCL and Imperative OCL

The Object Constraint Language [WK03] is a declarative language for describing rules that apply
to UML models. OCL was intended to be a formal specification language, extending UML, but
now it can be used with any kind of model type. The Object Constraint Language is a precise
text language that provides constraint and object query expressions that cannot otherwise be
expressed by diagrammatic notation. As OCL was designed to be a declarative query language,
every OCL program construct has a value. This means that even a usual conditional statement
(if then else endif) is an expression with a value. It is important to know that OCL
does not allow for modification of model elements. Also, OCL is a side-effect free language, as
no modification to the model is allowed from the code.

The QVT Operational Mappings [OMG07] is an imperative language that supports the cre-

Proc. OCL 2008 2 / 16

ECEASST

ation of powerful model transformations. QVT extends OCL with all the necessary programming
constructs that are needed to write complex transformations in a comfortable way. The extended
OCL – Imperative OCL – preserves the object-oriented aspect of OCL with all its constructs,
and extends it with program control statements, such as loop and conditional statement. OCL is
a side-effect free programming language but this property does not apply to the Imperative OCL
as this language extension makes model element modification available to the programmer. Fur-
thermore, the instantiation of model elements is also possible. Overall, Imperative OCL makes
the Object Constraint Language a versatile object-oriented language in which transformation
rules can be written in a comfortable and platform-independent way.

2.2 Visual Modeling and Transformation System

The Visual Modeling and Transformation System [VMT] is a metamodel-based modeling envi-
ronment that supports arbitrary levels of metamodels. Models and metamodels are not differen-
tiated, thus a model on one level can be used as a metamodel on another. For example, in case
of the UML class metamodel – class diagram – object diagram, a three step metamodel-model
chain has been defined, in which the class diagram is both a model and a metamodel.

In VMTS, models and transformation rules are formalized as directed, labeled graphs. And as
a basis, a simplified UML class diagram has been defined as the root metamodel. VMTS is also a
UML-based model transformation system, which utilizes graph rewriting techniques. Moreover,
the system supports the validation of constraints defined in the transformation rules. For this
purpose, VMTS utilizes the Object Constraint Language. Precise model transformations can be
expressed in Imperative OCL fragments.

The basic architecture of VMTS can be seen in Figure 1. Models are stored in a model reposi-
tory – a relational database – and can be reached through the Attributed Graph Supporting Inher-
itance (AGSI) layer. The visualization of model elements is handled by the VMTS Presentation
Framework (VPF); VPF plug-ins enable custom graphical appearances for model elements. As
VMTS is a transformation tool as well, a Rewriting Engine is included that utilizes graph match-
ing and rewriting techniques. The OCL module facilitates constraint writing on model elements
and defining precise matching rules. The Imperative OCL module allows model element modifi-
cation from transformation steps. The Adaptive Modeler, which provides an integrated interface
to the underlying layers, is the front-end to the system. With VMTS, generating class hierar-
chies for model traversing and processing is also possible (Traversing Processor module), thus,
external tools can also benefit from VMTS models.

2.3 OCL Compiler in VMTS

A modeling environment that supports constraints written in OCL requires source code parsing.
During the parsing process, a tree representation of the source is produced, which can be further
processed later (e.g. for semantic analysis). In the case of compilers, this tree is traversed to
generate target code, and later the target code can be executed. While in interpreters, the parse
tree is processed during execution, and based on the tree, different code is executed. This means
that compilers are usually faster than interpreters, as the necessary code analysis is performed
before execution.

3 / 16 Volume 15 (2008)

Incremental OCL Compiler

Figure 1: The architecture of VMTS

For source code parsing, several automatic compiler generators exist that require a formal
grammar of the language. Therefore, one only has to develop the grammar to obtain a parser.
In real life however, it is not this simple. Unfortunately, OCL is not specified and documented
well enough for a formal grammar specification. Also, the specification contains several errors,
inconsistencies and in places it can be interpreted ambiguously [HCH+99]. This also applies
to Imperative OCL, but in its specification, even the syntax definition contains inconsistencies.
Despite these troublesome factors, OCL grammars can be found for ANTLR [Par07], which
generates LL(*) parsers, and for Bison [DS03], which is an LALR(1) [ASU86] parser generator.
However, in VMTS, we chose to implement our own grammar, partly because we needed the
imperative extension and partly because the action rules that are executed during the syntax
analysis have to use the VMTS framework. Action rules are executable code, placed next to the
production rules, that should be executed when the given rule is applied by the parser. Usually,
these routines implement semantic analysis, or in more complex cases, these are used for abstract
syntax tree (AST) generation.

In VMTS, Jay [JAY], which is a Bison-like tool, has been used as a parser generator. This
variant can generate a C# syntax analyzer from LALR(1) grammars. During the parsing pro-
cess, the action rules build an AST, which is processed later in several steps. An AST is an
ordered, directed tree. Ordered, because the sequence of the outgoing edges from a vertex is de-
termined. Each inner vertex of this tree represents a non-terminal symbol (the root vertex is the
sentence symbol), while each leaf holds a terminal character (more accurately a token, because
the lexical and syntax analysis is separated). The vertices are attributed with several properties
of the tokens, such as value, vertex type, expression type, token position, etc. These attributes
are evaluated partly during the parsing process, during the semantic analysis, and lastly during
the code generation process. The semantic analysis is the phase of the compilation process in
which semantic information is added to the parse tree and certain checks based on these pieces of
information are performed. Typical examples of semantic information that should be added and
checked is type information (type checking) and the binding of variables and function names to
their definitions (object binding). After semantic processing, the AST is traversed once more for
code generation. In VMTS, the Microsoft CodeDom [NEG+08] technology is used to produce a
CodeDom tree, which can be transformed into C# code.

Figure 2 illustrates a sample input OCL code and the corresponding C# code fragment gen-

Proc. OCL 2008 4 / 16

ECEASST

erated by the VMTS OCL Compiler. The OCL code contains an invariant that iterates through
a collection. In OCL, the return value of an iterate expression is the value of the accumulator
variable after the execution of the loop. The structure of the generated C# code is obvious from
the OCL code, a namespace is generated from the package, a partial class from the context and
a static method from the invariant.

OCL:
package MyPackage

context MyContext
inv MyInvariant:
collection->iterate(iterator;

acc:Boolean=initValue | body-with-iterator-and-acc)
endpackage

C#:
namespace MyPackage {

using ...
public partial class MyContext {

public static OCLBoolean MyInvariant() {
OCLBoolean acc = initValue;
for(int i=0; i < collection.size(); i = i+1){

InnerType iterator = collection[i];
acc = body-with-iterator-and-acc;

}
return acc;

}
}

}

Figure 2: OCL and C# example code fragments

3 Low-Complexity Incremental OCL Compilation

We have examined what can be achieved if an OCL code is compiled and afterwards it is mod-
ified. To allow incremental builds, the basic language units that could be recompiled separately
have to be determined. Obviously, the smaller the units that are handled the larger amount of
overhead comes into our algorithm. In this section, we introduce some simple methods that could
boost the performance of the compiler, but will not increase the complexity substantially.

3.1 Package

The largest segments of OCL code are packages, see Figure 3, thus, this can serve as an obvi-
ous unit for the separation. Considering a piece of source code that contains several packages,
during a rebuild, only the modified packages must be compiled again. With this very simple

5 / 16 Volume 15 (2008)

Incremental OCL Compiler

modification, the performance of our compiler can be immensely improved. Assume an input
with length n that contains k number of units (packages). If the length of the modification
is m, the average number of modified units is d k∗m

n e. With incremental build, we can reduce
the compilation time to its (bm/nc)th. As mentioned before, packages are translated into
C# namespaces. Therefore, the output of the incremental compilation will be valid if the orig-
inal code compiled without errors, as there can be no unexpected interdependencies between
packages.

Figure 3: Main structure of OCL

3.2 Context

The same method can be followed in the case of contexts, which are translated into C# partial
classes. Each package may contain several contexts, which should be placed into the same
C# namespace. The procedure works only because C# has partial classes that permit splitting
the class definition into parts. In this way, the separate contexts that link to the same model
element can be processed separately, although they contain the parts of the same class.

3.3 Invariant

Naturally, if a constant is changed somewhere in the OCL code, the whole unit, package or
context, must be rebuilt, which takes considerable time. Therefore, it is worth trying to find
a solution that can handle smaller segments of OCL. The previously illustrated examples have
not introduced overhead to the compiler, however, if we consider invariants (inv) as separation
units, further analysis and check is needed.

Invariants are compiled into C# functions placed into classes. These functions need to have
unique names in the class. During a full rebuild, this can be checked, as all the generated func-
tion names are available in memory, perhaps in a symbol table, but in case of partial rebuilds,
when only individual invariants are rebuilt, this table might not be available. Obviously, without
checking the names the compilation may not produce semantically correct output, as there could
be name collisions. Thus, the function name table has to be produced somehow. One possible
solution is to parse all of the invariants again, but only to the point where the name becomes
available. In this case, the number of invariants in the source code affects the performance of the
incremental build. Consider Tf ull time for a complete build of an invariant, Tpart time for a parse

Proc. OCL 2008 6 / 16

ECEASST

that produces the name of the invariant. Then, a complete build of the input takes Tf ull ∗ k time,
and in average, the cost of a partial rebuild is T in Equation 1.

T = Tf ull ∗
⌈

k ∗m
n

⌉
+Tpart ∗

(
k−

⌈
k ∗m

n

⌉)
(1)

Overall, this means that the overhead is inversely proportional to the number of modified invari-
ants.

4 High-Complexity Incremental OCL Compilation

In this section, we provide an algorithm that incrementally compiles the modified expressions in
the source OCL code. We give a method that produces complete semantic analysis based not on
the whole source but on the modified expressions. Also the partial code generation process is
illustrated. Finally, we will show that it is not always efficient to use the incremental compiler,
as we introduce overhead that might slow down the incremental builder compared to the original
one.

4.1 Algorithm

In OCL expressions are the smallest programming constructs that are meaningful on their own.
Also, in Figure 4 it is clearly visible that OCL expressions are recursive non-terminals in the
language definition; therefore, it is hard to find a smaller – but still general – OCL fragment that
can be considered a basic compilation unit.

Figure 4: A recursive OCL expression

The two properties mentioned above let us consider an algorithm that can handle OCL expres-
sions as basic compilation units in the incremental builder, and still makes universal handling
of code fragments possible. The data flow diagram of the incremental compiler is depicted in
Figure 5.

Firstly, a normal build is executed, afterwards only incremental builds are performed. This
consists of a normal lexical and syntax analysis, a tree merge with the previously built AST, a
partial semantic analysis and code generation, the latter two processes utilize the outputs of the
previous build.

7 / 16 Volume 15 (2008)

Incremental OCL Compiler

Figure 5: Data flow of the incremental compiler

Let Treeorig be the abstract syntax tree resulting from the previous build and regard Treemodi f
as the AST that is being processed now by the incremental compiler. Algorithm 1, which pro-
vides an implementation, is based on a simple observation: if the lowest vertex that is related to
the modification made in the source code has been found in Treeorig, the incremental compiler
only has to process the corresponding subtree (Treeroot,modi f) in Treemodi f . Figure 6 depicts the
parse trees for the expressions 1+(2∗3) and 1+(2+4+3) are depicted. Consider changing the
∗ sign to +4+, the above mentioned tree node identification results in the root of Treeroot,orig,
which has the order ID 3. Now, as the ID is available, the corresponding node can be identified
in Treemodi f . Moreover, if we consider several distinct modifications in the OCL code, there can
be subtrees that are not modified. Overall, this means that it is enough to find the lowest vertex

Figure 6: Sample modification trees (1+(2∗3) is changed to 1+(2+4+3))

that contains all the changes in Treeorig, and if we locate the subtree which is on the same hierar-
chical position in Treemodi f , we have found Treeroot,modi f . In our method, during a breadth first
traversing of the trees each vertex is numbered. This level order numbering facilitates finding the
root of the change in Treemodi f based on the hierarchical equivalence of nodes.

After finding the root of the subtrees corresponding to the changes in the text the trees could
be merged and analyzed, but this would mean that the unchanged parts of Treeroot,modi f are
processed again. Thus, Algorithm 1 locates the unmodified parts in the trees and merges them
together. With this extension only the modified parts of Treemodi f have to be processed. In

Proc. OCL 2008 8 / 16

ECEASST

Algorithm 1 Incremental compilation algorithm
1: procedure Merge(treeorig, treemodi f ,changeLog)
2: resetOrderIds(treeorig),resetOrderIds(treemodi f)
3:

4: rootId← f indChangedNode(treeorig,changeLog)
5: treeroot,orig, treeroot,modi f ← getSubtreesByOrderId(rootId)
6: treesunmod,orig← f indUnChangedTrees(treeroot,orig,changeLog)
7:

8: for all treeunmod,orig in treesunmod,orig do
9: treesunmod,modi f ← matchTrees(treeroot,modi f , treeunmod,orig)

10: for all treeunmod,modi f in treesunmod,modi f do
11: replaceTrees(treeunmod,modi f , treeunmod,orig)
12:

13: replaceTrees(treeroot,orig, treeroot,modi f)
14:

15: SemanticAnalyser.process(treeroot,modi f)
16: CodeGenerator.process(treeroot,modi f)
17:

18: maintainTokenPositions(treeroot,orig, treeroot,modi f)
19: return treeroot,orig

Figure 6 the factors of the multiplication are not modified, thus, they have to be somewhere in
Treeroot,modi f . Unfortunately, they cannot be located by their ID as the structure of the original
and modified subtrees are not identical, but the merging algorithm can find them.

The complexity of Algorithm 1 cannot be less than O(n), where n is the number of vertices
in the tree, because resetOrderIds() needs to traverse the whole tree to number the vertices.
However, if we consider that the complexity of the normal build is also O(n), we find that smaller
atomic units are required for comparing the two methods. Thus, the required units have to be
determined. Let m be the number of vertices that have been changed in Treemodi f compared to
Treeorig; assuming that during the semantic analysis k number of attributes have to be computed.
Now, the running time of a normal build is

n∗T parse +n∗ k ∗T attrEval +n∗T code = n∗
(
T parse + k ∗T attrEval +T code

)
, (2)

where T x is the time needed by process x to handle one vertex.
In case of the incremental compiler, if we consider the time of an attribute evaluation the same

as the querying time; the resetOrderIds() function takes n ∗T attrEval time. Finding the root of
the changed node takes log(n) ∗T attrEval time as we do not need to visit all the nodes, but only
one branch at each vertex. Thus, the number of traversed vertices is equal to the height of the
tree. Analyzing Algorithm 1 further we find that retrieving a subtree by an Id takes n∗T attrEval
time as the tree vetices are numbered in a breadth first manner, and finding the unchanged nodes
in Treeroot,modi f requires m ∗T attrEval . The matchTrees(T 1,T 2) function, which returns all the
subtrees that are similar to T 2 from T 1 , is a recursive function. Therefore, its complexity can be
easily determined by the Master theorem [CLRS01]. Also by simply considering that to find the

9 / 16 Volume 15 (2008)

Incremental OCL Compiler

matches to the root requires visiting all the nodes in the tree, and at each match it has to check
all the nodes in T 2. Thus, overall, it requires T attrEval ∗ size(T 2)∗ size(T 1) time. In Algorithm 1
it means T attrEval ∗ (m+ l)∗ l, where l is the number of unchanged nodes in Treeroot,modi f .

4.2 Tracking Changes

This section deals with a method that can handle changes in the input code. One might ask if
we need to track the changes in the source code? The answer is obviously not. As the changes
are needed in the AST, it would be natural to find the changes in the trees. Several algorithms,
such as [CRGW96], exist that find the differences between trees. However, these methods work
only with the trees that they have to compare, although more information could be retrieved as
the trees are results from a parsing method. By not considering the texts, but only the trees
during the differentiation, [CRGW96] provides an O(ND) algorithm to find the modifications in
the trees, where N is the sum of the node-count in the input trees and D is the total number of
misaligned nodes.

Programming tools that support incremental compilation keep track of changes in source code
on different levels. For instance, in Microsoft Visual Studio, if a file in a project has been
changed, only the project and its dependencies are rebuilt, the unrelated projects are not recom-
piled. During the development of a large software, this project-based incremental code building
works fine. Compilation of C ++ code with GCC [vH06] is based on object files, which make
file-based incremental target building possible. Smaller compilation units are rarely used in in-
dustrial compilers as implementing the incremental compiler and validating the correctness of
the output would not be possible in reasonable time. Finding differences between inputs based
on lines is possible in O(ND) [Mye86], where N is the sum of the lengths of the two inputs being
compared and D is the size of the required minimum edit script. However, OCL code is rarely
long enough to be handled with line-based differentiators. Therefore, we chose to use character
positions to keep track of changes. This is possible by modifying available line-based compari-
son algorithms. As we have an IDE for modeling, we can utilize methods that gain information
from the user interface.

In the incremental compiler, we handle KeyPressed events of the input textbox and maintain a
change log. This means that if two characters are inserted next to each other, we do not have two
logs, but only one that contains a two character long modification. Also, distinct modifications
are handled separately which allows finding unchanged subtrees in the ASTs. It is important to
notice that maintaining the change log runs parallel to the code writing, thus it will not increase
the build time. Consider the expressions in Figure 6. The change log contains only one entry here
that shows that from character position 4 to 5 there has been a modification to character position
4 to 7. Table1 depicts how the change log is modified during code editing. This information
is enough for the incremental compiler, however, more information could be gained. Character
insertions and deletions could be distinguished. Character modifications could be tracked as a
separate delete and insert log. In the case of Figure 6 this would mean a deletion from position 4
to 5, and a three-long insertion to position 4.

A mapping between the parsed tokens and the change log is needed as the changes in the trees
are used in the algorithm and not in the texts. Providing a mapping is possible if during the
parsing process each token is annotated with its actual character-based position. This extension

Proc. OCL 2008 10 / 16

ECEASST

Table 1: Change log states based on input modifications

Current input Current change log
(original pos → modified
pos)

1+(2∗3) empty
1+(23) 4−5→ 4−4
1+(2+3) 4−5→ 4−5
1+(2+43) 4−5→ 4−6
1+(2+4+3) 4−5→ 4−7

to the compiler can easily be implemented and it does not place a performance burden onto
the parser. Only a counter has to be incremented with each parsed character in the compiler to
implement a mapping between character position and tokens. When a token is emitted by the
lexical analyzer the actual character position can be retrieved from the counter. Moreover, if the
compiler provides error messages that locate the syntax errors, no extension is needed because
the counter has already been implemented.

4.3 Partial Semantic Analysis

After merging the ASTs together for forming a partially analyzed tree, which is syntactically
correct, the rest of the tree has to be processed. From the root of Treemodi f ,part a downwards
going semantic analysis has to be performed, which is equivalent to the one used in the normal
analysis process. This semantic check will leave out the previously analyzed tree nodes, thus,
the unmodified parts of Treemodi f ,part will not be traversed again.

Unfortunately, the AST must be analyzed in an upward manner as well because modifications
might cause changes in the types of the expressions, see Example 1. Therefore, the correctness
of the whole tree has to be checked again.

Example 1 Consider 1+1+1 as the original input, the resulting parse tree is depicted in Fig-
ure 7(a) where each node has the type Integer. Now, if we change the input to 1.2+1+1 – the
parse tree is shown in Figure 7(b) –, meaning that only the first token has been modified, all
of the nodes have to be reanalyzed upwards in the tree from that node, as the types have to be
changed to Real.

Example 1 also shows that no number can be chosen to limit the level of the upwards checking
because the modification can spread to the root of the tree. However, it is clearly visible that
further semantic checking is not necessary if the type of the modified element is the same as the
original type on a given tree level.

In Algorithm 1 m nodes have to be analyzed in Treemodi f ,part which requires m ∗ k ∗T attrEval
time, and upwards check might reach the root. Therefore, a maximum log(n) number of nodes

11 / 16 Volume 15 (2008)

Incremental OCL Compiler

(a) (b)

Figure 7: The parse trees of (a) 1+1+1 (b) 1.2+1+1

have to be rechecked. Overall, the required time is maximum:

T attrEval ∗ k ∗ (m+ log(n)) (3)

4.4 Partial Code Generation

Partial semantic checking produces a fully analyzed and correct tree, thus, code generation can
be started. During a partial code generation, a CodeDom tree is produced from the previous
CodeDom tree and the AST output of the semantic analysis.

To facilitate partial builds AST nodes are annotated with CodeDom expressions that have been
generated previously. Thus, if a node in the AST contains CodeDom expressions, that does not
have to be regenerated. This results in a similar algorithm to the one used during the semantic
analysis where only the modified expression have to be processed in Treemodi f ,part . However, in
this case, upward processing has to reach the root as a single modification affects the output of
the root.

In Algorithm 1 the required time for partial code generation is

T code ∗ (m+ log(n)) (4)

based on the considerations made at partial semantic analysis. Formula (4) assumes that the time
for code generation varies directly with the number of nodes.

5 Performance

Complexity analysis is a widely used technique to study the running times of our algorithms, but
usually we still want to visualize the performance on charts or figures. Benchmarks are efficient
for comparing solutions by their relative performance. Several general purpose benchmarks exist
for hardware and software performance measurements, but only a few for graph transformations,
such as [VSV05], and there is none for OCL compilers. Mainly because no typical OCL code
can be chosen for performance analysis.

In Figure 8 a sample OCL code is shown that is used for comparing the running time of normal
and incremental builds. The code contains an invariant that compares a sum to a constant. The
left side of the expression is the sum of eight almost identical subexpressions. During the test the
running time of incremental compilation has been measured in the function of the length of the

Proc. OCL 2008 12 / 16

ECEASST

OCL:
package MyPackage

context MyContext
inv MyInvariant:

(((1000+2000)+(3000+4000))+((5000+6000)+(7000+8000)))+
(((1001+2001)+(3001+4001))+((5001+6001)+(7001+8001)))+
...
(((1007+2007)+(3007+4007))+((5007+6007)+(7007+8007)))

> 9000
endpackage

Figure 8: Test input OCL code

change log. In Figure 9 the measured running times can be seen. Note that the times displayed
are the sums of the running times of 1000 builds.

In Figure 9 an ascending function is depicted; the larger the modification is the more time is
needed for the compilation, as we have expected. Also, eight steps are clearly visible which are
caused by the recompilation of the modified identical subexpressions. After modifying about 300
characters the normal build is faster than the incremental one, mainly because of the performance
overhead of the algorithm.

Naturally, the results shown in Figure 9 are not representative as no model checking was
needed and only additional operations have been used. Model checking would significantly in-
crease the running times as model repository querying would be needed. This would result in
higher steps in the diagram. Unfortunately, these cases do not facilitate measurement considera-
tions.

6 Conclusion and Future Work

This paper showed an incremental compiler application which translates OCL pieces of code
into their C# equivalents. The introduced method is utilized in a modeling environment as a
constraint and transformation rule translator. The paper discussed several ways of solving the
problem of incremental compilation. The methods have been separated based on the size of
the basic compilation units. Also, for enabling efficient modification tracking, a method that
mapped characters to tokens was introduced and the modeling environment has been extended
to send information containing the positions of the changes to the compiler. These extensions to
the original compiler resulted in an immense performance improvement, which makes seamless
work with the modeling environment possible.

Future work includes extending the current incremental compiler to Imperative OCL code.
Usually, OCL code has very few variables which does not stand for Imperative OCL. Therefore,
variable referencing has to be solved in the incremental compiler. Currently we assume that
a modification in the code is causing changes only in the surroundings of the actual change.
But with variable references, this idea of localization does not work as the references point out

13 / 16 Volume 15 (2008)

Incremental OCL Compiler

Figure 9: Incremental and normal compilation test results

from the subtrees that has been modified. This problem also arises with function declarations.
Another imperfection in the current algorithm is that it does not handle modifications to the
model elements, only changes to the code. This could be handled if the modeler sent notifications
when a model element has been changed on the user interface. Furthermore, in the future we
plan to experiment with switching between full and partial compilation, this balancing process
requires more measurements.

7 Acknowledgement

This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy
of Sciences and by the Mobil Innovation Centre at Budapest University of Technology and Eco-
nomics.

Bibliography

[ASU86] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison Wesley, Pearson Education, 1986.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms.
The MIT Press, 2nd edition, 2001.

Proc. OCL 2008 14 / 16

ECEASST

[CRGW96] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, J. Widom. Change detection in
hierarchically structured information. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data. Pp. 493–504. 1996.
citeseer.ist.psu.edu/chawathe96change.html

[DS03] C. Donnelly, R. M. Stallman. Bison Manual for Version 1.875. Free Software Foun-
dation; 8th edition, September 2003. Using the YACC-Compatible Parser Genera-
tor.

[vH06] W. von Hagen. The Definitive Guide to GCC. Apress, 2006.

[HCH+99] A. Hamie, F. Civello, J. Howse, StuartKent, R. Mitchell. Reflections on the Ob-
ject Constraint Language. In The Unified Modeling Language, UML’98 - Beyond
the Notation. First International Workshop, Mulhouse, France, June 1998, Selected
Papers. LNCS 1618, pp. 162–172. Springer, 1999.

[JAY] Jay (Language Processing). http://www.cs.rit.edu/∼ats/projects/lp/doc/jay/
package-summary.html.

[KWB03] A. Kleppe, J. Warmer, W. Bast. MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison Wesley, 2003.

[LLMC05] L. Lengyel, T. Levendovszky, G. Mezei, H. Charaf. Control Flow Support in
Metamodel-Based Model Transformation Frameworks. In EUROCON 2005 Inter-
national Conference on “Computer as a tool”, Proceedings of the IEEE. Pp. 595–
598. Belgrade, Serbia and Montenegro, November 2005.

[Mye86] E. W. Myers. An O(ND) Difference Algorithm and Its Variations. Algorithmica
1(2):251–266, 1986.
citeseer.ist.psu.edu/myers86ond.html

[NEG+08] C. Nagel, B. Evjen, J. Glynn, K. Watson, M. Skinner. Professional C# 2008. Wrox,
2008.

[OMG07] OMG. Object Management Group Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Object Modeling Group, July 2007.
http://www.omg.org/docs/ptc/07-07-07.pdf

[Par07] T. Parr. The Definitive ANTLR Reference. Pragmatic Bookshelf, May 2007. Building
Domain-Specific Languages.

[SP99] P. Stevens, R. Pooley. Using UML: Software Engineering with Objects and Com-
ponents. Object Technology Series. Addison-Wesley, 1999. Updated edition for
UML1.3: first published 1998 (as Pooley and Stevens).

[VL06] T. Vajk, T. Levendovszky. Imperative OCL Compiler Support for Model Transfor-
mations. In 7th International Symposium of Hungarian Researchers on Computa-
tional Intelligence. Pp. 166–178. Budapest, Hungary, November 2006.

15 / 16 Volume 15 (2008)

citeseer.ist.psu.edu/chawathe96change.html
http://www.cs.rit.edu/~ats/projects/lp/doc/jay/package-summary.html
http://www.cs.rit.edu/~ats/projects/lp/doc/jay/package-summary.html
citeseer.ist.psu.edu/myers86ond.html
http://www.omg.org/docs/ptc/07-07-07.pdf

Incremental OCL Compiler

[VMC07] T. Vajk, G. Mezei, H. Charaf. Architecture of an In-Memory Transformation En-
gine. In 8th International Symposium of Hungarian Researchers on Computational
Intelligence. Pp. 573–581. Budapest, Hungary, November 2007.

[VMT] VMTS Team. Visual Modeling and Transformation System website. http://vmts.aut.
bme.hu/.

[VSV05] G. Varro, A. Schürr, D. Varro. Benchmarking for Graph Transformation. In Amber
and Zhang (eds.), Proc. IEEE Symp. Visual Languages (VL/HCC). IEEE Computer
Society Press, Los Alamitos, 9 2005.

[WK03] J. Warmer, A. Kleppe. Object Constraint Language, The: Getting Your Models
Ready for MDA, Second Edition. Addison Wesley, 2003.

Proc. OCL 2008 16 / 16

http://vmts.aut.bme.hu/
http://vmts.aut.bme.hu/

	Introduction
	Background and Related Work
	OCL and Imperative OCL
	Visual Modeling and Transformation System
	OCL Compiler in VMTS

	Low-Complexity Incremental OCL Compilation
	Package
	Context
	Invariant

	High-Complexity Incremental OCL Compilation
	Algorithm
	Tracking Changes
	Partial Semantic Analysis
	Partial Code Generation

	Performance
	Conclusion and Future Work
	Acknowledgement

