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Abstract: The design of software systems and the models describing it are usually
constrained by the intended software architecture. The intended software architec-
ture defines, for example, how components may be grouped or how they may in-
teract. For the sake of maintenance, evolvability, and smooth operation of software
systems, it is of great importance to check and guarantee the architectural compli-
ance of the design and the implementation. Due to size and complexity of modern
software systems such checks cannot be done manually but require adequate tool
support. Unfortunately, current tool support is not flexible enough to cover easily
different aspects of architectural compliance checking.

This paper outlines an approach to architectural compliance checking in component-
based systems based on logic formalisms. Furthermore, the paper describes a pro-
totypical tool that realizes the approach, and its application in a case study.

Keywords: Architectural compliance, model consistency, component-based devel-
opment

1 Introduction

According to the most broadly accepted and commonly used definitions of software architec-
ture, a software architecture deals with the fundamental organization of a system, manifested in
its components, relationships among them and to the environment ([IEE00]). A software archi-
tecture embodies the earliest and most far-reaching design decisions for the development process
and life-cycle of a software system. Errors and mistakes made during the design of the software
architecture are nearly irreversible and very difficult and costly to repair [BCK05].

Due to the size and complexity of modern software systems and their development processes,
it is always possible that during the detailed design and implementation of the system the in-
tended architecture will be violated. As a consequence, the design decisions manifested by the
architecture are not reflected in the actual system. Model-driven development (MDD)[SVC06]
addresses these compliance issues partially. The software architecture of a system can be speci-
fied as a model which is semi-automatically transformed and refined into a more specific design
model of the system, which again could be transformed into the implementing code. If the trans-
formation rules are correct, compliance between architecture model and design model or the
implementation is ensured.

However, MDD cannot solve the problem completely due to the fundamental characteristics
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of software architectures. Models specifying software architectures normally consist of inten-
sional statements about the system. Simplified, an intensional statement defines a concept by
constraints that hold for the - potentially infinite many - instances of the concept [EHK06]. For
example, from an architecture model containing a logical layer [BMR+96], we could generate
a package representing the layer in the design model, but not which specific components and
functionality are encapsulated by the layer. Only the intensional constraint is known, stating
that components in this layer may not access components from layers above. Thus, a transfor-
mation of an architectural model into a design model will create only one valid refinement of
many possible ones. In practice, it will be edited manually and requires compliance checks after
changes.

However, checking architectural compliance is difficult task, even for highly sophisticated ex-
perts that have to adhere to simple import rules [BBS03]. Unfortunately, current tools are not
flexible enough for this task. They often support only a limited set of artifact kinds that can be
checked for architectural compliance, mostly for a single modeling or programming language.
Furthermore, tools are limited to single architectural aspects like SonarJ1 which checks whether
the logical layers of the intended software architecture are correctly refined in Java code. But
there exist many more aspects like different architectural patterns, reference architectures, archi-
tecture guidelines and policies.

Especially for multi-paradigm modelling those restrictions on flexibility are severe. The com-
bination of modelling techniques and approaches resulting in a large set of different models and
meta models used to describe a system requires compliance checking across model boundaries.

There are two reasons for this lacking flexibility. First, most approaches do not base on an
appropriate abstraction of development artifacts that enables them to easily support different meta
models or kinds of artifacts. Second, approaches that are claimed to describe software systems
at the architectural level, e.g. architecture description languages [MT00] or many component-
based approaches [RRPM08] do not provide a level of abstraction higher than the design level
because they do not reflect the intensional characteristics of software architectures. Thus, they
are not able to cover a broad range of architectural aspects.

In this paper, we will outline an approach to flexible architectural compliance checking. It
is based upon a sound mathematical formalization of component-based systems and models.
Furthermore, this formalization allows us to distinguish clearly between architecture and design
models, and, thus, define a precise compliance criteria. The following section introduces the
approach. In Section 3, a small case study will be described. Section 4 takes a look upon related
work, Section 5 sums up the paper.

2 A Formal Approach to Architectural Compliance Checking

This chapter will explain the conceptual framework developed to support flexible architectural
compliance checking in component-based systems. As mentioned above, two issues are of vital
importance to allow flexible compliance checking tool support. First, a formal representation of
component-based systems and models of component-based systems created in all development
stages, i.e. coarse-grained architecture design, detailed design, and implementation. Second, it

1 http://www.hello2morrow.com/products/sonarj

Proc. MPM 2010 2 / 12



ECEASST

im
p

le
m

e
n

ts

ServiceIF

[Interface]

CustomerServices

[Class]

Customer

[Class]

Persistable

[Interface]

im
p

le
m

e
n

ts

calls

X

[R]

A B
R

RBA ∈),(

RX ∈

Key

)},{(
)},(),,{(

)},(),,{(
},{

},{
},{

},,,,,{ Universe

dressgetEMailAdttersendNewslecalls
dressgetEMailAdCustomerttersendNewslervicesCustomerSedefines

ePersistablCustomererfaceServiceIntrvicesCustomerSeimplements
dressgetEMailAdttersendNewsleMethod

CustomerrvicesCustomerSeClass
ePersistablerfaceServiceIntInterface

ePersistablCustomerdressgetEMailAdttersendNewslervicesCustomerSeerfaceServiceIntU

=

=

=

=

=

=

=

CustomerServices

+sendNewsletter() ),(

)()(

ttersendNewslervicesCustomerSedefines
ttersendNewslemethodrvicesCustomerSeclass ∧∧=φ

Figure 1: Representation of systems and models.

must be possibleto reflect the intensional characteristics of architectural models in that formal
representation and to define and check architectural compliance.

2.1 Overview

The proposed approach is based upon a formalization as structures [HR04]. Structures consist
of a universe of atomic entities and a set of n-ary relations over that universe. Since this is a
rather universal definition, also software systems can be represented by structures. Fig. 1 depicts
a structure representing a software system cut-out. It consists of an entity CustomerService
that is an element of the unary relation Class with the meaning that CustomerService is a
class. This class provides a method to send newsletters to customers, for this purpose it calls
a getEMailAdress method on the Customer class. The call relation between both methods is
represented as a corresponding tuple of the binary relation calls.

The signature of a structure defines which relations are actually available. A signature is a set
of relation symbols that are mapped to relations by a concrete structure. The symbols defined
in a signature can also be used in first-order logic formulae. These can contain predicates that
relate to the relation symbols of the signature and can be evaluated over structures that have
corresponding relations.

Translated to the issue of software system representation, this interrelationship could be used
to represent models of software systems. A signature defines the symbols that can be used
to describe arbitrary systems, for example the relation symbols Classs, Interfaces, Methods,
implementss, definess, and callss. A concrete system, like the system in the upper part of Fig.
1, is represented as a structure. The relation symbols are mapped to the specific relations of the
structure, for example, Methods is mapped to Method. A cut-out of a signature for component-
based systems will be introduced in Sec. 2.2.

If software systems are represented as structures, models could be understood as first-order
logic formulae over structures. A system is conform to a model if the formula representing the
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Figure 2: Formalization of architectural compliance.

model is satisfied by the structure representing the system. The lower part of Fig. 1 shows a
simple UML class diagram and the corresponding first-order logic expression that trivially states
as a conjunction of predicates that the modelled class and its method have to be present in the
software system. Sec. 2.3 will describe how statements are systematically derived from models.

The approach introduced in [EHK06] applies the distinction of intensional and extensional
statements to first-order logic formulae. An extensional statement, in contrast to intensional
statements, is a statement whose set of satisfying structures is closed under adding entities and
relation tuples, and removing entities that are not explicitly mentioned by the statement. For
example, consider again the class diagram and its statement from Fig. 1. Further classes, in-
terfaces, or methods could be added to the depicted structure without losing the property that it
satisfies ϕ. The same for entities that are not referred to explicitly in ϕ, for example Customer.

Eden uses this classification to classify models of the architecture, design, and implementation
level by the degree of abstraction they provide. Eden comes to the conclusion that architectural
statements are in general intensional statements. For example, consider architectural layers that
define an access hierarchy in a system. Of course, entities like components, can be added to
the system in a way that the hierarchy is violated. Design models, on the other hand, as usually
created in component-based software development describing specific system elements such as
components and interfaces, internal structures and behaviour of components, are extensional
models.

Whether a given design model D is compliant to a given architecture model A depends on
the relationship between the sets of structures, M(ϕA) and M(ϕD), respectively, that satisfy the
corresponding statements ϕA and ϕD. The definition of that relationship, depicted as ∼ac in Fig. 2,
is affected by the fact that design models are extensional, as we will see in Sec. 2.4.

2.2 Formal Representation of Component-based Systems

To represent component-based systems as structures, an appropriate signature defining relation
symbols is required. A complete description would be be out of the scope of this paper, as well
as a detailed explanation of all terms of component-based software development. The following
understanding is influenced by the terms used in UML [Obj10] but is definitely not restricted
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Figure 3: Cut-out of a signature for component-based systems and exemplary structures.

to UML models. The examples for the chosen formalization are simplified UML component
diagrams. A more exhaustive description can be found in [Her10].

Fig. 3 depicts some of the relation symbols2 reflecting component-based systems. The left part
of Fig. 3 illustrates the interrelations between components, interfaces, and classes. The main
first-class elements in component-based systems are components and interfaces. Components
(entities that are in the relation Component) provide functionality to the environment by pro-
viding interfaces and describe what they need to realize that functionality by describing which
interfaces are required. Both, components and interfaces, represent types that can be instanti-
ated, and both are structured by packages which provide namespaces. Interfaces can refer to
each other comparable to associations. Furthermore, interfaces can be specialized by subtyping.
Classes (in the object-oriented sense) are component-local types and can only be used there. As
a consequence, inheritance hierarchies are also encapsulated by components. Classes can imple-
ment interfaces provided by the surrounding component. As an example of type formalization,
consider the left example in Fig. 3. The package structure is formalized by the unary relation
Package, the contained elements by the binary relation symbol contains between packages and
the union of interfaces and components. The set of interfaces and components are represented
by unary relations, too. The provides relation contains a single element to reflect that J refers to
I.

The right part of Fig. 3 shows relation symbols required for the specification of the internal
structure of components. The environment interacts with an instance of a component via ports.
ProvidedPorts are similar to reference variables that are accessible from outside the component
to interact with it. ProvidedPorts are typed with a class of the component but to the outside
it appears as an instance of the interface(s) that this class implements. A required port is like
a reference variable that can be used inside of the component (i.e. the definition of classes).
Required ports are typed by interfaces. To specify the inner structure of components, parts and

2 Note that relation symbols in the upper part of the figure and relations in the examples mapped to the symbols are
named equally.
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Figure 4: A simple meta model for layers.

connectors are used. Parts are typed and named elements of which an instance of a component
is composed.

2.3 Formal Representation of Models of Systems

The first-order logics statement ϕM representing a model M is a formula over a signature that
contains the relation symbols defined in the signature for component-based systems. As we will
see, a statement can refer to additional symbols. ϕM is a conjunction of formulae that are defined
for the single elements of a model. For example, consider Fig. 1. The elements of the conjunction
result from the single model elements. i.e. the class, the method, and the fact that the depicted
class defines the depicted method.

Thus, the shape of the statements of model elements can be defined template-like for single
meta model elements. In the example above, such a definition would state that for a method m in
general, a formula Method(m)∧ de f ines(c,m) is created whereas the variable m is replaced by
the unique identifier of the method and c is replaced by the unique identifier representing the class
defining m. Furthermore, we distinguish between the definition of extensional and intensional
formulae for meta model elements. The following sections describe the mapping between two
different meta models and the formal representation as first-order logics statement.

2.3.1 UML Design Models

The mapping is defined for UML Component and Composite Structure Diagrams and is rather
straightforward. Since they are interpreted as design models for component-based systems, the
statements representing them are extensional. For example, components of UML are mapped to
statements simply stating that a corresponding entity e with e ∈ Component has to be present.
The same holds for other UML language elements like interfaces, parts, connector, etc., and
relationships among them.

2.3.2 Models of Architectural Layers

Fig. 4 depicts a simple meta model to model the layer of a system. It consists of layers that can be
explicitly connected by “AllowedDependency” relationships to indicate that a layer is allowed
to access another. Of course, the hierarchy of the layers must be adhered to. The attribute
“pkgName” refers to the name of a package (see Sec. 2.2) that the layer is mapped to.

The following extensional statements are created for instances of this meta model:

• For each layer l with level n and assigned package name s:
Layer(l)∧ level(l,n)∧ pkgName(s)

Proc. MPM 2010 6 / 12
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• For each instance a of “AllowedDependency”: AllowedDependency(l,m) whereas l repre-
sents the layer pointed to by a.src and m the layer pointed to by a.trg.

Intensional statements are created for layers only, expressing that components in a layer can
only access components of different layers if there exists a corresponding allowed dependency
relation. Thus, for every layer l is defined:

¬∃m : Layer(m)∧¬allowedDependency(l,m)∧dependency(l,m)

The definition of dependency uses the pkgName predicate to map the dependencies between
layers to dependencies between packages, and finally, to single elements inside the packages
(see [Her10]). For example, a dependency between two layers exists if they are mapped to two
packages, the first containing a component that provides or requires an interface defined in the
second. This, and other forms of dependencies, are defined as dependi(e, f ) predicates, such as

depend1(e, f )BComponent(e)∧ Inter f ace( f )∧ (provides(e, f )∨ requires(e, f ))

2.4 Architectural Compliance of Design Models

To check whether a design model is compliant to an architecture model, one could assume that
is has to hold that every structure satisfying the statement of the design model also satisfies the
architecture model. In general, this will never be the case, since the design model is extensional,
and a given satisfying structure can be extended and will still satisfy the design model. Thus,
extending a structure satisfying both the intensional architectural model and the extensional de-
sign model, can result in structure violating the architecture although being correct regarding the
design.

Hence, we only take the minimal satisfying structures into account for the definition of com-
pliance. A minimal structure of ϕ cannot be further reduced without losing the property of
satisfying ϕ. In case of extensional statements, the set of minimal structures is finite REF. If ϕ
is simply a conjunction of predicates, like statements of UML design models (see Sec. 2.3.1),
there is a unique minimal structure. Thus, we can informally define for ∼ac from Sec. 2 that
M(ϕA) ∼ac M(ϕD) if and only if every minimal structure m from M(ϕD) is also an element of
M(ϕA).3

Intuitively, this definition distinguishes compliance from refinement, which cannot be ensured
between architecture and design. Refinement implied that every satisfying structure for the de-
sign would also satisfy also the architecture. Hence, the system exactly satisfying the design as
well as system that conform to the design but which are underspecified by it had to conform to
the architecture — this cannot be ensures in general due to the intensional characteristics of the
architecture. For this reason, the definition of compliance does not take systems into account
that are underspecified by the design but only the system represented by the minimal structure.

2.5 Prototype Tool Concept

The approach was evaluated by a tool prototype developed as Eclipse plugin (see Fig. 5). It
uses the logic programming system Powerloom [Inf] to represent structures as factbases and
3 More precisely: m can be extended by tuples of relations that are specific to architecture meta model only, like
“Layer”, to satisfy ϕA.
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first-order logics statements as queries. Instances of arbitrary architecture meta models, such as
the simple layers meta model in Sec. 2.3.2, are read in as Ecore files with help of the Eclipse
Modeling Framework (EMF) [SBPM09].

From the architecture model and the UML design model, a factbase is generated representing
the unique joint structure satisfying the extensional parts of the models. The intensional state-
ments for the elements of the architecture model are annotated in the meta model as Powerloom
queries. The model-specific queries (see Sec. 2.4) are generated from these annotation and are
evaluated by Powerloom and return violations of the intensional constraints of the architecture
model.

3 Case Study – Checking Architectural Layers

The approach and the prototype were applied in an industrial cooperation project as part of a pro-
cess for quality assurance. The industrial partner had planned to introduce a new medium-sized
information system (about 130,000 lines of Java code, 1,600 classes and interfaces). Architec-
tural compliance checks should be executed to investigate whether the design was still compliant
to the intended logical reference architecture. Given were an informal description of the intended
architecture, which was formalized as a model according to the meta model for layers introduced
in Sec. 2.3.2, and a static UML model for the design. Technically, both models are loaded into
the tool as Ecore files and a proprietary annotation file describing which intensional queries have
to be generated for meta model element instances4. Each layer was mapped to a package from
the design model by setting the package name attribute.

The considered system is subdivided into different layers (see Fig. 6). Like a usual information
system, it consists of a layer containing the application logic (application core), a layer handling
the data access (persistence), and layers providing functionality for user interaction (presentation
and client) or interaction with external applications (web services).

The persistence layer and its outgoing dependencies, for example, are transformed into the

4 Since the UML design model is extensional, such annotations were defined for the sample architecture meta model
only
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following facts:

Layer(persistence),

level(persistence,1),

pkgName(persistence, org.x.persistence),

AllowedDependency(persistence,utility)

According to the definition of the intensional statements for layers, the statement for the per-
sistence layer is

(not (exists ($m)(and (Layer $m)

(not (allowedDependency persistence $m))

(dependency persistence $m)))

which is a version of the intensional statement for layers as presented in Sec. 2.3.2 interpretable
by Powerloom.

The right part of Fig. 6 depicts the identified violations. Most of the violations between the
presentation layer and the client result from using objects for the transportation of data between
these layers by data transfer objects [Fow02]. These objects were defined inside the client and
were used by the presentation layer. The violations between application core and client appear
due to a kind of searching functionality that was implemented in the client layer which was
simply not the intended place. The utility layer contains security functionality which accesses the
persistence layer for identification purposes and therefore produces violations. Some violations
(between application core and web services) are caused by imports which are used to realize
callbacks, as needed for the observer pattern.

4 Related Work

This work is strongly influenced by the theoretical framework of Eden, Hirshfeld, and Kazman
as mentioned in Sec. 2.1. They mainly deal with the general categorization of design descriptions
and the application to design patterns. The issue of compliance between two or more models is
not tackled.

There exist tools and approaches in the field of architectural conformance checking. Depen-
dency Structure Matrices (DSM) capture the dependencies between modules of system[Ste81].
Lines and row represent modules of a system, entries indicate dependencies, either binary or
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weighted as numerical value. Tools like Lattix LDM allow software architects to define con-
straints like “can-use” to restrict the value certain entries are allowed to have [SJSJ05]. Since
architectural rules are more general than those dependency constraints, DSM provide only lim-
ited flexibility. Moreover, most approaches support only a limited set of design artefacts to be
checked; furthermore, the integration of a high-level architecture description is not possible nor
is such a description provided by tools themselves.

Reflexion models are another technique to check architectural compliance [MNS01]. The ar-
chitect generated a high-level model manually, containing architectural modules and dependen-
cies between them “as intended”. A source code model is generated automatically, reflecting the
same dependencies between source code elements “as they are”. A manual mapping between
architectural elements and source code elements allows it to compare the overall structures and
to depict differences in the set of relationships as so-called reflexion models. Implementations of
this kind of compliance checking are for example [KLMN06, DHHJ10, RVP06]. Although they
provide high-level models of the software architecture, and can hence potentially be better inte-
grated into model-driven engineering, they reduce architectural rules to dependency constraints
as well, and often support only few artefact types, i.e. meta models.

Most flexible w.r.t different architectural rules are query-language based approaches like CQL,
.QL, or JQuery which are query-language for object-oriented source code [CQL, MVH+07,
Vol06]. Based on first-order logics they provide the most expressive mechanism to define ar-
chitectural rules. Most tools, however, only support a small set of source code but not design
models to be checked, and do not provide a high-level architecture model.

More related work regarding architectural compliance checking can be found in the field of
consistency management for models, an overview for UML models can be found in [EB04].
However, examples mostly do not deal with the consistency or views on the same or a simi-
lar level of abstraction, and not with consistency towards an intensional model. There are also
approaches that deal specifically with the consistency of architecture and design models. For
example, [SB05] deals with checking architectural features in component diagrams by using de-
scription logics. Egyed, for example, outlines an approach in [Egy00] for consistency checking
between C2 ADL architecture descriptions and refining UML high-level designs. For this ap-
proach holds the same limitation as for other Architecture Description Languages: they do not
provide description techniques with intensional character.

5 Conclusion

The contribution of this work is to provide an approach for checking architectural compliance
of different kind of artifacts that are created in the development of component-based systems.
This approach provides a solid formal foundation for a broad range of constraints that a software
architecture may impose on design models of different meta models and, thus, can improve the
situation of current tool support.

The experiences from the case study presented here, the results, and the lessons learned show
that architectural compliance checking is an important task and helps to avoid architectural mis-
matches if it is executed regularly and supported by tools. Future work regarding tool support
will address the automatic transformation of different kinds of artifacts and models of more dif-

Proc. MPM 2010 10 / 12
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ferent meta models. Furthermore, we would like to evaluate the flexibility and usability of this
approach in more industrial case studies with regard to the definition of different architectural
constraints.
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zur statischen Programmanalyse. OBJEKTspektrum 05:22–28, 2003.

[BCK05] L. Bass, P. Clements, R. Kazman. Software architecture in practice. Addison-Wesley,
2005.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns. Wiley, Chichester, UK, 1996.

[CQL] Code Query Language specification. http://www.ndepend.com/CQL.htm.
http://www.ndepend.com/CQL.htm

[DHHJ10] F. Deissenboeck, L. Heinemann, B. Hummel, E. Juergens. Flexible Architecture
Conformance Assessment with ConQAT. In Proc. of the 32nd International Confer-
ence on Software Engineering (ICSE 2010). ICSE ’10, p. 247–250. ACM, New York,
USA, 2010.

[EB04] M. Elaasar, L. C. C. Briand. An Overview of UML Consistency Management. Technical
report, Department of Systems and Computer Engineering, Carleton University, 2004.

[Egy00] A. Egyed. Validating Consistency between Architecture and Design Descriptions. In
Proc. of 1st Workshop on Evaluating Software Architecture Solutions. 2000.

[EHK06] A. H. Eden, Y. Hirshfeld, R. Kazman. Abstraction classes in software design. IEE
Software 153:163–182, 2006.

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man, 2002.

[Her10] S. Herold. Checking architectural compliance in component-based systems. In SAC
’10: Proceedings of the 2010 ACM Symposium on Applied Computing. Pp. 2244–2251.
ACM, New York, USA, 2010.

[HR04] M. Huth, M. Ryan. Logic in Computer Science: Modelling and Reasoning about Sys-
tems. Cambridge University Press, New York, USA, 2004.

[IEE00] IEEE. IEEE Recommended practice for architectural description of software-intensive
systems. Technical report, 2000.

[Inf] Information Science Institute, University of Southern California. Powerloom Knowl-
edge Representation and Reasoning System.
http://www.isi.edu/isd/LOOM/PowerLoom/

11 / 12 Volume 42 (2010)

http://www.ndepend.com/CQL.htm
http://www.isi.edu/isd/LOOM/PowerLoom/


Compliance between Architecture and Design Models

[KLMN06] J. Knodel, M. Lindvall, D. Muthig, M. Naab. Static Evaluation of Software Archi-
tectures. In Proceedings of the 10th European Conference on Software Maintenance
and Reengineering 2006 (CSMR 2006). Pp. 285–294. Mar. 2006.

[MNS01] G. C. Murphy, D. Notkin, K. J. Sullivan. Software reflexion models: bridging the
gap between design and implementation. IEEE Transactions on Software Engineering
27(4):364 –380, Apr. 2001.

[MT00] N. Medvidovic, R. N. Taylor. A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Trans. Softw. Eng. 26(1):70–93, 2000.

[MVH+07] O. de Moor, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ekman, N. Ongkingco,
D. Sereni, J. Tibble. Keynote Address: .QL for Source Code Analysis. In Proc. of the
7th IEEE International Working Conference on Source Code Analysis and Manipula-
tion. P. 3–16. IEEE Computer Society, Washington, USA, 2007.

[Obj10] Object Management Group. UML Superstructure Specification Version 2.3. 2010.

[RRPM08] A. Rausch, R. Reussner, F. Plasil, R. Mirandola (eds.). The Common Component
Modeling Example: Comparing Software Component Models. Lecture Notes in Com-
puter Science 5153. Springer, 2008.
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