
Electronic Communications of the EASST
Volume 61 (2013)

Selected Revised Papers from the
4th International Workshop on

Graph Computation Models
(GCM 2012)

Graph Rewriting with Contextual Refinement

Berthold Hoffmann

20 pages

Guest Editors: Rachid Echahed, Annegret Habel, Mohamed Mosbah
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Communications of the EASST (European Association of Software Science and Technology)

https://core.ac.uk/display/236422156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Graph Rewriting with Contextual Refinement

Berthold Hoffmann

Fachbereich Mathematik und Informatik, Universität Bremen, Germany

Abstract: In the standard theory of graph transformation, a rule modifies only sub-
graphs of constant size and fixed shape. The rules supported by the graph-rewriting
tool GRGEN are far more expressive: they may modify subgraphs of unbounded size
and variable shape. Therefore properties like termination and confluence cannot be
analyzed as for the standard case. In order to lift such results, we formalize the out-
standing feature of GRGEN rules by using plain rules on two levels: schemata are
rules with variables; they are refined with meta-rules, which are based on contextual
hyperedge replacement, before they are used for rewriting. We show that every rule
based on single pushouts, on neighborhood-controlled embedding, or on variable sub-
stitution can be modeled by a schema with appropriate meta-rules. It turns out that
the question whether schemata may have overlapping refinements is not decidable.

Keywords: graph rewriting – two-level rewriting – critical overlap

1 Introduction

Everywhere in computer science and beyond, one finds systems with a structure represented by
graph-like diagrams, and with a behavior described by incremental transformation. Model-driven
software engineering is a prominent example for an area where this way of system description
is very popular. Graph rewriting is a natural formalism, which has been used to specify such
systems in an abstract way, ever since this branch of theoretical computer science emerged in the
seventies of the last century [EPS73]. Graph rewriting has a well developed theory [EEPT06] that
gives a precise meaning to such specifications. It also allows to study fundamental properties,
such as: Does the system terminate? Is it confluent? I.e., does rewriting of some start state lead
to a unique final state?

Over the last decades, various tools have been developed that generate (prototype) implemen-
tations for graph rewriting specifications. Some of them do also support the analysis of specifi-
cations: AGG [ERT99] allows to determine confluence by the analysis of critical pairs [Plu93],
and GROOVE [Ren04] allows to explore the state space. Some years ago, the very efficient graph
rewrite generator GRGEN has been developed in the group of Gerhard Goos at Karlsruhe Insti-
tute of Technology [BGJ06]. This tool supports an object-oriented graph model with subtyping
and attributes, and rewrite rules with negative application conditions. Recently, Edgar Jakumeit
has extended the rules of GRGEN radically, by introducing recursive refinement of sub-patterns,
application conditions, and sub-rules [Jak08, HJG08]. A single rule of this kind can match,
delete, replicate, and transform subgraphs of unbounded size and variable shape. These rules
have motivated the research presented in this paper. Because, the plain theory [EEPT06] cov-
ers only graphs and rules with attributes and subtyping; recently, it has been extended to cover
application conditions, even in nested form [EHL+10, EGH+12]. However, it does not capture

1 / 20 Volume 61 (2013)

Graph Rewriting with Contextual Refinement

recursive refinement, so that such rules cannot be analyzed for properties like termination and
confluence, and no tool support concerning these questions can be provided.

Our ultimate goal is to lift results concerning termination and confluence to rules with recur-
sive refinement. As a first step, we formalize refinement by combining concepts of the existing
theory, on two levels: We define a GRGEN rule to be a schema – a plain rule containing variables.
On the meta-level, a schema is refined by replacing variables, using meta-rules based on contex-
tual hyperedge replacement [HM10, DHM12]. Refined rules then perform the rewriting on the
object level. This mechanism is simple enough for formal investigation. For instance, properties
of refined rules can be studied by using induction over the meta-rules. In this paper, we explore
the expressiveness of rule refinement in comparison to other kinds of rules, which are based on
single pushouts, neighborhood-controlled embedding, and variable substitution. It turns out that
the expressiveness has a price: it can, in general, not be decided whether two schemata can have
refinements that are parallelly dependent.

The examples shown in this paper arise in the area of model-driven software engineering.
Refactoring shall improve the structure of object-oriented software systems (models) without
changing their behavior. Graphs are a straight-forward representation for the syntax and seman-
tic relationships of object-oriented programs (and models). Many of the basic refactoring op-
erations proposed by Fowler [Fow99] do require to match, delete, copy, or restructure program
fragments of unbounded size and variable shape. Several plain rules are needed to specify such
an operation, and they have to be controlled in a rather delicate way in order to perform it cor-
rectly. In contrast, we shall see that it can be specified by a single rule schema with appropriate
contextual meta-rules, in a completely declarative way.

The paper is organized as follows. The next section defines graphs, plain rules for graph
rewriting, and restricted rules – called “contextual” – for deriving sets, or languages, of graphs.
In Sect. 3 we recall related work on substitutive rules, and define schemata, meta-rules, and the
refinement mechanism. Then we relate rule schemata to other kinds of graph rewrite rules, in
Sect. 4. It turns out that a rule defined by single pushouts, by neighborhood-controlled embed-
ding, or by substitution of graph variables can be modeled by a single schema with appropriate
meta-rules. In Sect. 5 we study the existence of overlaps for schemata. We conclude by indicat-
ing future work, in Sect. 6.

2 Graphs, Rewriting, and Derivation

We define graphs wherein edges may not just connect two nodes – a source to a target – but
any number of nodes. Such graphs are known as hypergraphs in the literature [Hab92]. A pair
C = (Ċ , ~C) of finite sets of colors is used to label nodes and edges of a graph, where a subset
X ⊆ ~C with a type function type : X → Ċ ∗ shall be used to name variables, which only appear
in rules.

Definition 1 (Graph) A graph G = (Ġ, ~G,att, `) consists of disjoint finite sets Ġ of nodes and
~G of edges, a function att : ~G→ Ġ∗ that attaches sequences of nodes to edges; and of a pair
` = (˙̀,~̀) of labeling functions ˙̀: Ġ→ Ċ for nodes and ~̀ : ~G→ ~C for edges so that, for every
variable, i.e., every edge x ∈ ~G with `G(x) ∈X , the attached nodes attG(x) are distinct to each

Selected Revised Papers from GCM 2012 2 / 20

ECEASST

other, and labeled so that ˙̀∗
G(attG(x)) = type(`G(x)).1 We will often refer to the component

functions of a graph G by attG and `G.
A (graph) morphism m : G→ H is a pair m = (ṁ,~m) of functions ṁ : Ġ→ Ḣ and ~m : ~G→ ~H

that preserve attachments and labels: attH ◦~m = ṁ∗ ◦ attG, ˙̀H = ˙̀G ◦ ṁ, and ~̀H = ~̀G ◦~m. The
morphism m is injective, surjective, and bijective if its component functions have the respective
property. If m is bijective, we call G and H isomorphic, and write G∼= H. If m maps nodes and
edges of G onto themselves, it defines the inclusion of G as a subgraph in H, written G ↪→ H.

For a graph G, XG = {x ∈ ~G | ~̀G(x) ∈ X } is the set of variables, and its kernel G is the
subgraph without XG; G is called terminal if XG = /0. The subgraph of G consisting of a variable
x ∈ XG and its attached nodes is called a star of x, and denoted by 〈x〉. The kernel of a star is
discrete, it consists of the attached nodes of x, and is denoted as 〈x〉.

Example 1 (Program Graphs) Figure 1 shows a program graph. Circles represent nodes, and
have their labels inscribed. In our examples, terminal edges are always attached to exactly two
nodes, a source and a target, and are drawn as straight or wave-like arrows between these nodes.
Boxes represent variables, to be seen in Fig. 3 to Fig. 6; they have variable names inscribed, and
are connected with their attached nodes by lines and arrows. The order of the attached nodes will
always be clear from the context.

Program graphs have been proposed in [VJ03] to represent object-oriented programs. In the
simplified version of [DHJ+08], nodes labeled with C, V, E, S, and B represent program entities:
classes, variables, expressions, signatures and bodies of methods, respectively. Straight arrows
represent the hierarchical syntactical structure of entities, whereas wave-like arrows represent
semantic relations between them.

We define rewriting of graphs as in [EEPT06], but represent rules in a slightly different way.
We also insist on injective matching of rules. This is not a restriction, see [HMP01].

Definition 2 (Rewriting) A (graph rewrite) rule ρ = (P ↪→ B←↩ R) consists of a body graph B
with subgraphs P and R, which are called pattern and replacement, respectively. Their common
subgraph I = P∩R is called the interface. Nodes and edges in B are called obsolete if they lie in
P\ I, and new if they lie in R\ I. We sometimes refer to graphs of ρ by Pρ , Bρ etc.

An injective morphism m : P→ G is a match of ρ in a terminal graph G if it satisfies the
following gluing condition: Every edge of G that is attached to the match of an obsolete node in
m(P\ I) lies in the match of the pattern m(P). Then the rule ρ rewrites G under m into a graph
H that can be constructed uniquely (up to isomorphism) by (1) removing the match m(P\ I) of
obsolete nodes and edges, giving the kept graph K, and (2) uniting K disjointly with a fresh copy
of R, and gluing the interface I ↪→ R to its match m(I) in K, giving H.2 Then we write G⇒ρ,m H;
K and H can be constructed so that there are inclusions G←↩ K ↪→ H.

In [EEPT06], a rule is represented as a “span” (P←↩ I ↪→ R). Our representation as a “join”

1 A∗ denotes finite sequences over a set A; the empty sequence is denoted by ε , and |w| denotes the length of a sequence
w∈A∗. For a function f : A→B, its extension f ∗ : A∗→B∗ to sequences is defined by f ∗(a1 . . .an) = f (a1) . . . f (an),
for all ai ∈ A, 1 6 i 6 n, n > 0. For functions or morphisms f and g, f ◦g denotes their composition.
2 Only the nodes and edges in the subgraph (P∪R) ↪→ B are relevant for rewriting.

3 / 20 Volume 61 (2013)

Graph Rewriting with Contextual Refinement

C

CS

B

V

E

S

B

E

E

V

B

E E

E E V

V

S B

E

E

Figure 1: A program graph

pum′ =

C

C

S

C B

V

V

SB B

E

E

E

E

E

E

E

E

Figure 2: A rule performing Pull-up Method

(P ↪→ B←↩ R) is equivalent. However, the fact that the body B contains both pattern and replace-
ment makes it easier to define the refinement of a rule (schema), which is a central concept of
this work, see Def. 4 below.

Example 2 (A Refactoring Rule) Figure 2 shows a rule pum′. Blobs painted red and green
designate its pattern and replacement, respectively. Together they designate the body, and their
overlap defines the interface. An edge belongs only to those blobs that contain it entirely; so the
straight arrow connecting the top-most C-node in the interface to a B-node in the replacement
belongs only to the replacement, but not to the pattern (and the interface) of pum′.

The pattern of pum′ specifies a situation where two subclasses of a class contain obsolete
bodies for the same signature. The replacement specifies that one of these bodies is new in
the superclass. If the obsolete bodies are semantically equivalent (which cannot be checked
automatically, in general, but has to be confirmed by verification), pum′ performs a Pull-up
method refactoring. However, pum′ only applies if the class has exactly two subclasses, and if
the method bodies have the particular shape seen in the pattern.

The general Pull-up Method refactoring of Fowler [Fow99], which works for an unbounded
number of subclasses and for method bodies of varying shapes, cannot be specified with a simple
rule like this, but with schema refinement, see Example 7 below.

Graph rewriting can be used for computing by reduction: a set of rules is applied to some input
graph as long as possible. If no rule applies, a graph is a result (called normalform). Reduction
is terminating if every sequence of steps leads to a normalform. The normalform for some graph
will always be unique if the rewriting relation is confluent.

Rules can also be used to derive sets, or languages, of graphs. A simple form of rules, where
the pattern is a variable with its attached nodes, is known as context-free (hyperedge) replacement
[Hab92]. Here we extend these rules so that their pattern may contain isolated nodes. This
increases their generative power considerably.

Definition 3 (Derivation) A rule π = (P ↪→ B←↩ R) is contextual if x is the only edge in P and
R equals B without x.

For a set Π of contextual rules, we write G⇒Π H, and say that Π directly derives G to H
if there is a rewrite G⇒π,m H for some match m of some π ∈ Π. As usual, ⇒+

Π
denotes the

Selected Revised Papers from GCM 2012 4 / 20

ECEASST

Bdy

B

E

Exp

. . .

. . .

E

Exp

Exp

EV

Exp

Exp

EV

E

Exp

Exp

S E

E

Exp

. . .

. . .

E

Exp

Figure 3: Contextual rules M for method bodies

C

V

V

SB

Bdy

+⇒
M

C

V

V

SB

E E

Figure 4: Deriving a method body

transitive closure of this relation. With some start graph G0, Π defines a contextual grammar
(C ,Π,G0) over the labels C , which derives the language of terminal graphs derived from G0:
L (C ,Π,G0) = {H | G0⇒+

Π
H,XH = /0}.

The pattern P of a contextual rules π is the disjoint union of a star 〈x〉 with a discrete context
graph, say C. We call π context-free if C is empty. The (context-free) borrowing rule π̄ = (〈x〉 ↪→
B←↩ R[C]) of π is obtained by removing C from P, and distinguishing the subgraph C ↪→ R as
a debt in R. Π̄ is the set of borrowing rules for Π. We write derivations with Π̄, which we call
endebted, as G⇒+

Π̄
H[D] where D is the debt, i.e., the embeddings of the nodes borrowed in the

rules used in the derivation.
Derivations always extend the kernels of graphs.

Fact 1. (1) For every contextual rule π = (P ↪→ B←↩ R), P ↪→ R.
(2) For every derivation G⇒π H, it holds that G ↪→ H.

Proof. Let x ∈ ~P. (1) Since P = I by definition, I ↪→ R. (2) Thus, by definition of ⇒π , K =
G−m(x). Then K = G, and K ↪→ H implies K ↪→ H.

Example 3 (Method Bodies) When drawing contextual rules like those in Fig. 3, we omit the
blob around the pattern, and paint that of the replacement in grey. The variable outside the
replacement box designates the star of the pattern, and green filling (appearing grey in B/W
print) designates the context nodes.

Figure 3 defines the set M of contextual rules that derive method bodies of program graphs,
or rather their data flow graphs: A body consists of expressions, which in turn either use the
value of a variable, define it as the value of an expression, or call a method signature with actual
parameters. The ellipses “. . . ” in two of the rules abbreviate replicative (context-free) rules
that derive n > 0 copies of Exp-stars. In the rules for Exp, the nodes representing variables and
signatures are context nodes.

Figure 4 shows a derivation of a method body with M. Note that the body can only be derived
from a graph that contains appropriate context nodes. For a start graph G0 = 〈x〉 with `G0(x) =
Bdy, we have L (C ,M,G0) = /0. The grammar for program graphs discussed in [HM10] does
derive appropriate context nodes.

Note that the language of program graphs cannot be derived with context-free rules alone:
in infinitely many program graphs, nodes labeled S, V, or B have an unbounded connectivity
[Hab92, Theorem IV.3.3].

5 / 20 Volume 61 (2013)

Graph Rewriting with Contextual Refinement

3 Schema Refinement with Contextual Meta-Rules

The idea to refine rules with meta-rules before applying them originated in two-level string
grammars [CU77] that have been devised for defining the programming language ALGOL-68.
The idea has been transferred to graphs – with the aim to derive graph languages – rather
early [Hes79, Gö79]. In [PH96], Detlef Plump and Annegret Habel have used the same idea
for graph rewriting. Their definition of a substitutive rule is inspired by term rewriting [Ter03]:
the pattern and replacement may contain graph variables. Before applying the rule, every variable
in the pattern is substituted with some graph; thus the rule may match a subgraph of unbounded
size and arbitrary shape. If a variable does not occur in the replacement, the rule will just delete
its substitution; otherwise the rule will replicate it as many times as the variable occurs in the
replacement. In [PH96], a variable may be substituted with any graph. Then rule matching be-
comes highly non-deterministic, so that reduction may involve a lot of backtracking. This can
be very inefficient. If the substitution of a variable is required to be “shaped”, meaning that it is
a graph derived with some set of contextual rules, matching gets feasible, as the rules guide the
recursive search for a matching substitution. The context-free rules proposed for this purpose in
[Hof01] turned out to be too restrictive in practice: method bodies, for instance, cannot be de-
rived with context-free rules so that they could not be used to define the shape of graph variables.
(In [DHJ+08], adaptive star rules [DHJM10] have been proposed to derive substitutions. This is
powerful enough, but adaptive star rules tend to be complicated.)

The graph rewriting tool GRGEN [BGJ06] supports rules that are even more expressive [Jak08,
HJG08]:

• Substitutions of variables may be defined by rules that are contextual, not just context-free.
Thus we may substitute variables with graphs that cannot be derived by context-free rules,
e.g., with graphs of method bodies as defined in Fig. 3.
• A variable may be attached to both, pattern nodes and replacement nodes. Its substitution

refines the pattern and the replacement of a rule at the same time. This does not only allow
to match, delete, or replicate subgraphs of unbounded size and arbitrary shape: the rules that
derive recursive sub-rules that transform such subgraphs in a single rule application.

This way of rewriting with contextual refinement shall be studied in this paper.

Example 4 (Pull-up Method Revisited) In order to generalize the Pull-up method rule of Fig. 2
so that it applies to classes with a varying number of subclasses, and method bodies of varying
shape, we turn a rule into a schema with variables. Variables are attached to nodes in the pattern
and/or replacement of the schema. Figure 5 shows a schema pum for Pull-up Method. Two
variables named Bdy10 and one variable named Bdy11 indicate spots of refinement. Contextual
meta-rules are used to refine a schema. Their replacement is not just a graph, but a schema
(called the embodied schema), i.e., a body graph with distinguished pattern and replacement,
and with variables for further refinement if necessary. Figure 6 shows some meta-rules for the
variables in pum. The meta-rules for Bdy10 and Exp10 refine the obsolete part of pum according
to the contextual rules M of Fig. 3, whereas the meta-rules for Bdy11 and Exp11 replicate equal
method bodies in the obsolete and new part of the schema. (The superscripts in the variable
names indicate how many copies of a method body are made in its pattern and replacement.)

Selected Revised Papers from GCM 2012 6 / 20

ECEASST

pum =

C

C . . . C S C BC

B . . . B B

Bdy10 Bdy10. . . Bdy11

Figure 5: A schema for Pull-up method

Bdy10

B

E

Exp10

. . .

. . .

E

Exp10

E

E

Bdy11

B

E

Exp11

. . . E

Exp11

B

E . . .

. . .

E

Exp10

E

V

E

E

Exp

Exp11

E

V

E

Exp

Figure 6: Meta-rules for Bdy10, Bdy11, Exp10, and Exp11

The meta-rules for the remaining contextual rules of M are defined analoguously. (In pum, the
dots between the subgraphs containing the variable Bdy10 are a shortcut for any number of these
subgraphs. These can be generated easily by auxuliary meta-rules.)

Refinement of a schema generates rules, called instances, wherein all variables are gone. Re-
fining pum with the meta-rules in Fig. 6 can generate the rule pum′ in Fig. 2 as a particular
instance. It may generate instances for any number of subclasses, and for method bodies of any
shape. So it implements a general Pull-up method refactoring according to [Fow99].

Contextual meta-rules, like those for Exp10 and Exp11, can only be applied to a schema that
contains a node matching its context node (a V-node in this example). This is too restrictive: the
context node could also be generated as an “ordinary” refinement of the rule in order to become
an interface node that is matched when the instance is applied to a source graph. This can be
achieved by using the borrowing version of every “truly” contextual meta-rule. In borrowing
meta-rules for Exp10 and Exp11, the V-nodes would not be context nodes. In rule pum′, three
nodes (painted green) have been derived from pum with borrowing meta-rules for M.

We can now formally define schemata and meta-rules. In that context, variables must be
used in a way that is consistent with this distribution: for all variables carrying the same name,
corresponding attached nodes must belong to the same part of the schema: to the pattern, to the
replacement, or to both.

Definition 4 (Schema, Meta-Rule) We assume that the variable names X come with two func-
tions pat,rep : X → N so that pat(ξ) 6 |type(ξ)| and 1 6 rep(ξ) 6 pat(ξ) for every variable
name ξ ∈X . For every variable x named ξ with attG(x) = v1 . . .vk in a graph G, these functions
designate discrete subgraphs of G: the pattern attachment 〈x] consists of the leading attached
nodes v1 . . .vpat(ξ), and the replacement attachment [x〉 consists of the trailing attached nodes

7 / 20 Volume 61 (2013)

Graph Rewriting with Contextual Refinement

vrep(ξ) . . .vk. 3

A rule σ = (P ↪→ B←↩ R) is a schema if P∪R = B and every variable x ∈ XB is consistently
distributed, which means that 〈x] ↪→ P and [x〉 ↪→ R.

A meta-rule δ = (π,ε) has a contextual rule π = (Pπ ↪→ Bπ ←↩ Rπ) as a spine, with a schema
ε = (Pε ↪→ Bπ ←↩ Rε), called the embodied schema of δ .

A match m : Pπ → B is a meta-match of the spine rule π in the body B of σ if it maps the
context Cπ of π to the interface of σ , i.e., if m(Cπ) ↪→ I.

The following properties are direct consequences of this definition.

Proposition 1 Consider a schema σ = (P ↪→ B←↩ R), a meta-rule δ = (π,ε) with a meta-
match m : Pπ → B so that there is a derivation B⇒π,m B′.

Then there are unique graphs P′ and R′ so that σ ′ = (P′ ↪→ B′←↩ R′) is a schema with P ↪→
P′←↩ m(Pε) and R ↪→ R′←↩ m(Rε).

Proof. The morphisms between components of a meta-rule δ in Fig. 7 are used to prove the
claim. Actually, all of them are inclusions, but we draw them simply as arrows. The solid arrows

Pπ

Iπ

Rεπ

Pε

Rπ

Rε

Bπ

Pεπ

Figure 7: A meta-rule

Pπ

Pεπ

Rεπ

Iπ

Pε

Rπ

Rε

P

B
R

K

P′

B′

R′

m̄

m

Figure 8: Schema refinement

exist by Def. 4. Since Rπ equals Bπ without the single vari-
able x in Pπ , the terminal graphs Pε and Rε are included in Rπ ,
and (Pε ↪→ Rπ ←↩ Rε) is a schema as well. The intersections
Pεπ = Pε ∩Pπ and Rεπ = Pπ ∩Rε are discrete, as Pπ does not
contain terminal edges. Let Cπ be the context graph of π . Then
Pπ = 〈x〉]Cπ and Iπ = 〈x〉]Cπ . Since variable attachments
are consistently distributed, Pεπ = 〈x] ∪Cπ , Rεπ = [x〉 ∪Cπ ,
and (Pεπ ↪→ Pπ ←↩ Rεπ) is a schema as well. As Pπ = Iπ ,
(Pεπ ↪→ Iπ ←↩ Rεπ) is another schema. This gives the dashed
morphisms in Fig. 7.

Thus the derivation B⇒π,m B′ has the solid morphisms shown
in Fig. 8, where m̄ shall denote the embedding Rπ → B′ of m.
Consistent distribution of variable attachments in B implies that
m(Pεπ) ↪→ P and m(Rεπ) ↪→ R. Since K equals B without m(x),
we get inclusions forming the schema P ↪→ K ←↩ R. Now P′ is
the unique subgraph of B′, containing the subgraph P and the
subgraph m̄(Pε); R′ is determined likewise. The resulting inclu-
sions σ ′ = (P′ ↪→ B′←↩ R′) are a schema if P′∪R′ = B′ and all
variables in B′ are consistently distributed. In Rπ and K, all ter-
minal edges are in the pattern or replacement subgraphs (or in
both), and all variables are consistently distributed. So it is easy
to see that so are the terminal edges and variables in B′.

This proposition allows to define the refinement of schemata by meta-rules. Refinement pro-
ceeds until all variables have disappeared, and the resulting rule can be used to rewrite a graph.

3 Thus the nodes vrep(ξ) . . .vpat(ξ) are in the interface. In figures like Fig. 5 and Fig. 9 , the lines between an attached
node v and a variable x get an arrow tip at x if v is obsolete, at v if v is new, and none otherwise.

Selected Revised Papers from GCM 2012 8 / 20

ECEASST

Definition 5 (Schema Refinement and Rewriting) Consider a schema σ = (P ↪→ B←↩ R) and
a meta-rule δ = (π,ε) as above.

For the derivation B⇒π,m B′, Fig. 1 allows to extend B′ to a unique schema σ ′ = (P′→ B′←
R′). Then we write σ ⇓δ ,m σ ′, and say that δ refines σ to σ ′ (at m).

For a contextual meta-rule δ = (π,ε), the borrowing meta-rule is δ̄ = (π̄,ε). Let ∆ be a
finite set of meta-rules so that δ ∈ ∆ implies δ̄ ∈ ∆. Then ⇓∆ denotes refinement steps with one
of its meta-rules, and ⇓+

∆
denotes repeated refinement, its transitive closure. ∆(σ) denotes the

derivates of a schema σ = (P ↪→ B←↩ R), containing its refinements without variables:

∆(σ) = {ρ | σ ⇓+
∆

ρ,XBρ = /0}

We write G⇒∆,σ H and say that σ , refined with ∆, rewrites G to H if G⇒ρ H for some derivate
ρ ∈ ∆(σ).

By lifting Proposition 1 to refinement sequences, we see that derivates do indeed refine a
schemata.

Fact 2. For derivates ρ ∈ ∆(σ), Pσ ↪→ Pρ , Bσ ↪→ Bρ , and Rσ ↪→ Rρ .

It can be checked whether schemata do have refinements, or not.

Theorem 1 For a schema σ , it is decidable whether ∆(σ) = /0, or not.

Proof. A rule ρ is in ∆(σ) if and only if its body Bρ is in the language of the contextual grammar
(C ,Π,Bσ) of spine rules Π = {π | (π,ε) ∈ ∆} of ∆ that has the body of σ as a start graph.
Emptiness of the language is decidable for contextual grammars, by [DHM12, Corollary 1].

Example 5 (Encapsulate-Field) Another refactoring operation, Encapsulate Field, shall replace
using and defining accesses to an attribute (or field) a of a class by invocations of getter or setter
methods, resepctively. Since a program graph may contain an unbounded number of accesses to
a, the operation cannot be specified by a single rule.

However, it can be defined by a schema with meta-rules. The pattern of the schema ef in
Fig. 9 consists of a class node connected to a variable node. To this pattern, the replacement adds
graphs representing signatures and bodies of the setter and getter methods. The variables uses
and defs indicate points of refinement.

Their meta-rules are context-free, and have a similar structure: One using (defining) access
of some expression to a in the pattern is replaced by a call of the getter (setter) method in the
replacement, and the meta-rule is called recursively. The other meta-rules terminate this iteration.

A single rewriting step with some derivate of ef transforms an arbitrary number of using and
defining accesses to a variable into calls to the getter and setter method, respectively. This cannot
be achieved by a plain rewrite rule; it goes even beyond the expressiveness of the substitutive
rules that will be considered in Section 4.2 further below.

Note that the meta-rules derive rules that encapsulate an arbitrary subset of variable accesses,
and leaves the remaining ones direct. In practice, an access to v shall be encapsulated if and only
if it is non-local; this could be specified by extending meta-rules with application conditions, as
proposed in [HM10].

9 / 20 Volume 61 (2013)

Graph Rewriting with Contextual Refinement

ef =

C

uses defs

S B B S

E

V

E E V

uses

uses

SV

E
EE

uses

SV

defs

SV

defs

defs

SV

E
EE

Figure 9: A schema for Encapsulate-Field with four meta-rules

Note that the application of a derivate ρ ∈ ∆(σ), although it is the result of a compound meta-
derivation, is a single rewriting step G⇒ρ H, like a transaction in a data base. Note also that the
refinement process is completely rule-based.

Operationally, we cannot construct the derivates of a schema σ first, and apply one of them
later, because ∆(σ) is infinite in general. Rather, we interleave matching and refinement in a
goal-oriented algorithm.

Algorithm 1 (Applying a Schema to a Graph) Input: A terminal graph G, a schema σ0 =
(P0 ↪→ B0←↩ R0), and a set ∆ of meta-rules.

Output: Either a refinement σi ∈ ∆(σ0) with a match mi : Pi → G, or the answer “no” if no
derivate in ∆(σ0) applies to G.

1. Search for an injective morphism m0 : P0→ G of the original schema σ0, and set i to 1.
2. Search for a context-free meta-rule δi ∈ ∆ with a refinement (Pi−1 ↪→ Bi−1←↩ Ri−1) ⇓+

δi
(Pi ↪→

Bi←↩ Ri) such that the morphism mi−1 can be extended to a morphism mi : Pi→ G. If δi is
the borrowing rule of some contextual meta-rule δ ′ = (π ′,ε ′), m may identify context nodes
of the spine rule π ′ with nodes in the interface Pi−1∩Ri−1; otherwise it must be injective.

3. If no such meta-rule can be found, undo refinements to the closest step j < i where some
meta-rule exists that has not been inspected for σ j previously; if already all meta-rules have
been inspected, for all previous steps, and for all initial matches m0, answer “no”.

4. If σi does contain further variables, increase i by one and goto Step 2.
5. Otherwise, σi is a rule with a morphism mi : Pi→G. If mi violates the gluing condition, goto

Step 3. Otherwise, output mi as a match of the derivate σi in G.

Actually, all matches for all applicable derivates can be enumerated, so that potential nonde-
terminism in the refinement can be handled by backtracking.

GRGEN rules are executed this way. But, the match of a particular pattern Pi is determined
according to an efficient search plan that is pre-computed, taking into account the shape of the
type graph, as well as that of the particular host graph G, and the whole rule is compiled into
sequences of low level C# instructions that do graph matching and construction in an efficient
way [Gei08].

We need a mild condition to show that the algorithm terminates.

Selected Revised Papers from GCM 2012 10 / 20

ECEASST

Definition 6 (Pattern Loops in Meta-Rules) A set ∆ of meta-rules does not loop on patterns if
σ ⇓+

∆
σ ′ implies Pσ � Rσ ′ .

Note that the meta-rules in Fig. 9 of Example 5 do not loop on patterns, nor do those in Fig. 10
and Fig. 11 of Def. 7, nor those in Fig. 6 of Example 7.

Theorem 2 Algorithm 1 is correct, and terminates if ∆ does not loop on patterns.

Proof Sketch. In its course, the algorithm constructs a tree of refinements. This tree is finite: It
has finite breadth, as Step 1 chooses among finitely many initial morphisms m0 in G, and Step 2
chooses among a finite number of morphisms for a finite number of meta-rules. Its depth is
finite as well, because every δi in Step 2 satisfies |Pi−1| 6 |Pi|, and the length of chains with
|Pi−1|= |Pi| is bound by |∆| since ∆ does not loop on patterns.

For correctness, consider the following arguments: The identification condition in Step 2
makes sure that the morphism mi either is an injective morphism for the borrowing meta-rule
δ̄i, or an injective morphism for the original meta-rule δi. Thus Step 5 determines an injective
morphism of a derivate of σ0, and checks whether it is a match. The backtracking in Step 3 and
Step 5 makes sure that every possible candidate for a derivate with a match is considered.

Corollary 1 For a schema σ and meta-rules ∆ as above, it is decidable whether some derivate
ρ ∈ ∆(σ) applies to a graph G, or not.

4 Relation to Other Ways of Graph Rewriting

In this section, we compare schemata to other ways of graph rewriting known in the literature:
graph rewriting by single pushout, by neighborhood-controlled embedding, and by substitutive
rules. In all three cases, a rule can be modeled by a single schema with appropriate meta-rules,
whereas they cannot be modeled by a single plain rule.

4.1 Graph Rewriting with Node [Dis-]Connection

We investigate ways of graph rewriting where a single rule may delete and redirect a variable
number of edges, respectively. First we define generic meta-rules that allow to model such rules.

Definition 7 ([Dis-]Connecting Meta-Rules) Figure 10 shows a disconnecting meta-rule δ
+
d

that extends a schema by a B-node in its interface, which is connected by an obsolete a-edge to
an obsolete A-node. A disconnecting configuration d ∈ Ċ × ~C ×{in,out}× Ċ specifies the la-
bels of the refined nodes and the label and direction of the refined edge. Its borrowing meta-rule
δ̄
+
d is not shown. The (context-free) meta-rule δ 0

d terminates disconnection. A so refined schema
will remove edges that connect nodes in the interface to the obsolete node that is attached to the
variable disconnectd . A set of cooperating disconnecting meta-rules for all possible disconnect-
ing configurations will remove all edges to the indicated obsolete nodes. It is important that the
B-node is contextual: only then several edges connected to such a node can be disconnected.

11 / 20 Volume 61 (2013)

Graph Rewriting with Contextual Refinement

δ 0
d =

A C

disconnectd

δ
+
d =

A C

B

disconnectd

disconnectd

a

Figure 10: Meta-rules for a disconnecting
configuration d = (A,a, in,B)

δ 0
c =

A C

connectc

δ+
c =

A C

B

connectc

connectc

a b

Figure 11: Meta-rules for a connecting configu-
ration c = (A,a, in,B,b, in,C)

Figure 11 shows a connecting meta-rule δ+
c that extends a schema by nodes in its interface,

which are connected to an obsolete node and to a new node. A connecting configuration c ∈
Ċ × ~C ×{in,out}× Ċ × ~C ×{in,out}× Ċ specifies the labels of the refined nodes and the
labels and directions of the refined edges. Again, the borrowing meta-rule δ̄+

c is not shown. The
context-free meta-rule δ 0

c terminates disconnection. A so refined schema will remove, for the
obsolete node v and the new node v′ attached to the variable, edges connecting v to interface
nodes, and insert edges connecting these nodes to v′ instead.4 Again, it is important that the
B-nodes are contextual in order to redirect several edges incident with a node.

∆dc shall denote the set of all disconnecting and connecting meta-rules, for all disconnecting
and connecting configurations over the label alphabet C .

Graph rewriting defined with single pushouts [Löw93] (SPO, for short) is a variation of stan-
dard graph rewriting [EEPT06] as in Def. 2. Apart from technical details of their definition, SPO
rules have the same form as DPO rules. However, rewriting is defined differently: no dangling
condition needs to be checked when matching a rule; the match m(v) of every obsolete node v of
τ is always deleted, together with all its incident edges, including those outside the match m(P)
that would violate the dangling condition in the standard case.

We define how a plain rule according to Def. 2 is turned into a schema that performs SPO
graph rewriting.

Definition 8 (Modeling SPO Rewriting with Schema Refinement) For a rule ρ = (P ↪→ B←↩
R), construct the SPO schema σρ = (P ↪→ B←↩ R) by attaching, to every obsolete node v in P\R,
variables x named disconnectd , for every disconnecting configuration d = (˙̀P(v),a, io,A) where
a ∈ ~C , io ∈ {in,out}, and A ∈ Ċ .

Fact 3. Consider a rule ρ with an injective morphism m : P→ G.
Then the SPO schema σρ has a derivate ρ ′ ∈ ∆dc(σρ) with a rewriting step G⇒ρ ′ H so that all

obsolete nodes of π are deleted, together with their incident (“dangling”) edges in the subgraph
G\m(P).

Proof Sketch. Consider m : P→G. Then P ↪→ P′ by Proposition 1. Now, at every obsolete node
v of ρ , the schema can be refined with disconnecting meta-rules so that it covers every “dangling”

4 The meta-rules for uses and defs in Example 5 are similar to connecting rules; only the node being disconnected,
which is labeled V, is not obsolete, but in the interface.

Selected Revised Papers from GCM 2012 12 / 20

ECEASST

edge e incident in ṁ(v) and its “neighborhood node” – say v′ – that is outside m(P). As the pre-
image of v′ in the schema is in the interface of the refined schema, and the edge is in the obsolete
part of the pattern, the dangling edges are removed while the nodes in the neighborhood are
preserved. The refined rule satisfies the gluing condition, and does exactly what SPO rewriting
does. 5

Graph grammars with neighborhood-controlled embedding are “the other notion” of graph
rewriting. Their definition is set-theoretic, and their most widely investigated subclass has rules
where the pattern consists of a single node [ER97]. Here, we consider the more general case
where the pattern is a graph. More precisely, neighborhood-controlled embedding rewriting
(NCE rewriting, for short) is defined as follows. 6

Definition 9 (NCE Graph Rewriting) An NCE rule η = (M,D, I) consists of terminal graphs
M and D, called mother graph and daughter graph respectively, and of a set of connecting
instructions

I ⊆ Ṁ× ~C ×{in,out}× Ċ × ~C ×{in,out}× Ḋ.

Let Ĩ denote the tuples (v,a, io,A) ∈ Ṁ× ~C ×{in,out}× Ċ without a connecting instruction
c = (v,a, io,A,b, io′,v′) ∈ I (for some (b, io′,v′) ∈ ~C ×{in,out}× Ḋ).

A rule η as above applies to a graph G if there is an injective morphism m : M→ G so that
no edge in G\m(M) is incident with a node in m(M). Then the application of η at m deletes the
subgraph m(M) from G, adds a fresh copy of the daughter graph D, and obtains the graph H by
executing the connecting instructions as follows:

• If c = (v,a, io,A,b, io′,v′) ∈ I, for all A-nodes z in the subgraph G\m(M) where G contains an
a-edge e connecting z with ṁ(v) in direction io, a b-edge e connecting z with the node v′ ∈ Ḋ
in direction io′ is inserted in H.

• For every d = (v,a, io,A) ∈ Ĩ, a-edges between v and A-nodes in direction io are deleted
from G.

Example 6 (An NCE Rule for Encapsulate-Field) The NCE rule ef ′ in Fig. 12 defines a variant
of the Encapsulate Field operation ef shown in Fig. 9. The mother graph is drawn left of the
daughter graph. As the nodes c and v of the mother graph are obsolete, we have to add new
nodes c′ and v′ with the same label to the daughter graph. The connecting instructions Ief ′ are as
follows:

• All wave-like arrows from the node v to E-nodes, which represent direct using accesses to v,
are redirected to the getter method g. (This corresponds to the meta-rules for uses in Fig. 9.)

• All wave-like arrows from E-nodes to the node v, which represent direct defining accesses to v,
are “turned around” and redirected to the setter method s. (This corresponds to the meta-rules
for defs in Fig. 9.)

5 We have ignored the fact that matches of SPO rules need not be injective. However, we can construct the (finite)
set the quotients Q(ρ) by identifying arbitrary isomorphic subgraphs in P. Then for every non-injective match of ρ ,
Q(ρ) contains a quotient with an equivalent injective match.
6 The abbreviation “edNCE” used in [ER97] emphasizes the fact that the directed graphs being rewritten have labeled
edges.

13 / 20 Volume 61 (2013)

Graph Rewriting with Contextual Refinement

ef′ =

Cc

Vv

C c′

S
g

B B S
s

E

V v′

E E V

Ief′ = {(v, ,out,E, ,out,g′)}
∪ {(v, , in,E, ,out,s′)}

∪

(c,a,d, `,a,c′)

∣∣∣∣∣∣
a ∈ ~C ,
d ∈ {in,out},
` ∈ Ċ

Figure 12: An NCE rule for Encapsulate-Field

• All edges incident with the node c are redirected to the node c′ without changing their label
or direction. (These instructions are overhead caused by the fact that the mother graph is
completely obsolete.)

Rule ef ′ will replace all direct accesses to the variable v – local accesses cannot be preserved in
this framework.

Definition 10 (Modeling NCE Rewriting with Schema Refinement) An NCE rule η =(M,D, I)
as above can be transformed into a schema ση = (M → B ← D) where the underlying rule
ση has an empty interface (i.e., B = M]D), and B contains, for every connecting instruc-
tion c = (v,a, io,A,b, io′,v′) ∈ I, a variable x named connectc′ with attB(x) = vv′ and c′ =
(˙̀M(v),a, io,A,b, io′, ˙̀D(v′)), and for every d = (v,a, io,A) ∈ Ĩ, a variable x named disconnectd′
with attB(x) = v, and d′ = (˙̀M(v),a, io,A).

Fact 4. For an NCE rule η as above, there exists an NCE graph rewriting step G⇒η H if and
only if there is a rewriting step G⇒ρ H using some derivate ρ ∈ ∆dc(ση) of its schema ση .

Proof Sketch. As in the case of modeling SPO rewriting, a match m : Mη → G can be taken as
a basis to refine ση so that all connection instructions are “performed”, and all other “dangling”
edges are deleted.

There are other derivates that do not satisfy the dangling condition although the NCE rule
applies. This is the case when the terminating meta-rules are applied before the recursive meta-
rules have been applied exhaustively. If this is done, the NCE rule applies iff the schema applies.
Even then, a refinement of the schema may violate the dangling condition. This is the case
exactly when the match of the refined pattern contains nodes that are connected by edges outside
the match. This, however, violates the application condition for NCE rules as well, where the
match must be the induced subgraph of the matched nodes.

4.2 Substitutive Graph Rewriting

We recall the definition of substitutive rules [Hof01], re-phrase it slighty according to our defini-
tion of plain rules, and extend it to borrowing substitutions:

Definition 11 (Substitutive Rule) Consider a finite set Π of contextual rules.
A substitutive rule γ = (P ↪→ B←↩ R) consists of two graphs P,R with variables so that

Selected Revised Papers from GCM 2012 14 / 20

ECEASST

(1) all variables in B belong to P or to R, but not to both, and
(2) every variable name occurring in R occurs in P as well.

A substitution σ is a mapping from variable names to borrowing rules so that, for every vari-
able name ξ ∈X , σ(ξ) = (〈ξ 〉 ↪→ B←↩ R[D]) with X (R) = /0.

A rule ρ = (P′ ↪→ B′←↩ R′) is a σ -instance of γ if its body B′ is obtained from the (unique)
terminal Graph B∗ with B⇒+

σ B∗ by identifying the debts of all variables carrying the same
names, and by including them both in P′ and in R′. By identifying arbitrary nodes in P∩R with
the debt, one obtains further σ -instances of γ .

A substitutive rewrite step G⇒ρ H applies some σ -instance ρ of γ , for some substitution σ .

Substitutive rules can be modeled as schemata refined by meta-rules as follows.

Definition 12 (Meta-Rules and Schemata for Substitutive Rules) Let γ be a substitutive rule
for contextual rules Π.

Then r = (k,m) is a replication instruction of a variable name ξ ∈X if:

(a) ξ labels, in γ = (P ↪→ B←↩ R), k variables in P and m variables in R, or
(b) (inductively) Π contains a rule (P′ ↪→ B′←↩ R′) where the variable name ξ occurs in R′, and

the variable name ξ ′ in P has a replication instruction r.

We transform γ and Π into a schema σγ and meta-rules ∆γ,Π as follows:

1. Whenever a variable ξ with type(ξ) = l1 . . . ln has a replication instruction r = (k,m), X
shall contain a fresh replication variable name ξ r with type(ξ r) = lk+m

1 . . . lk+m
n and pat(ξ r) =

k ·pat(ξ), rep(ξ r) = m · rep(ξ).
2. We transform every substitutive rule γ = (P ↪→ B←↩ R) into a schema σγ = (P ↪→ B′←↩ R) by

replacing all variables x1, . . . ,xk+m named ξ in B (where we assume that xi is in P iff 16 i6 k)
by a replication variable y named ξ r with attB′(y) = pcat(attB(x1), . . . ,attB(xk+m)).7

3. For every rule π = (P ↪→ B←↩ R) ∈ Π with R = B− x and x named ξ ∈ P, and for every
replication instruction r = (k,m) of ξ , ∆γ,Π shall contain a context-free reproducing meta-
rule δ r

π = (πr,ε) so that

(a) the kernel Bπr
of its spine rule consists of k +m disjoint copies B1, . . . ,Bk+m of B so

that B1, . . . ,Bk are in its embodied pattern Pε and Bk+1, . . . ,Bk+m are in its embodied
replacement Rε ;

(b) for every variable x named ξ in B, where we assume that wi is the copy of the attached
node sequence attB(x) in Bi (for 1 6 i 6 k+m), Bπr

contains a variable y named ξ r with
attBπr (y) = pcat(w1, . . . ,wk+m).7

Note that the replication rule δ r
π̄ of the borrowing rule π̄ of a contextual rule π equals the

borrowing rule of δ r
π so that ∆γ,Π does also contain all borrowing meta-rules.

Thus 〈y〉 ↪→ Pπr
if x is the variable in P, and all other variables belong to Rπr

. In Bπr
, a copy

Bi belongs to Pε if 1 6 i 6 k, and to Rε if k+1 < i 6 k+m. If δ is contextual, its contextual
nodes belong both to Pε and to Rε , are shared by all copies, and are contextual nodes in πr.

7 If, for 1 6 i 6 k, the words wi = ai,1 . . .ai,n have equal length n > 0, their pointwise concatenation is
pcat(w1, . . . ,wk) = a1,1 . . .ak,1 . . .a1,n . . .ak,n.

15 / 20 Volume 61 (2013)

Graph Rewriting with Contextual Refinement

pum∗ =

CM1

C . . . C S C

B

C C

B . . .

. . .

B B

M1 Mn M

M

Figure 13: Pull-up method: substitutive rule

Note that the replications of meta-rules do not loop on patterns if the original meta-rules do
not have looping derivations P⇒+

Π
P.

Example 7 (Pull-Up Method) Figure 13 shows a substitutive rule pum∗ for Pull-up method.
All variables have the shape Bdy defined by the contextual rules M in Fig. 3. The substitutions
of M0, . . . ,Mn,M are obsolete, but the variable named M is also new so that its substitution is
re-inserted in the replacement.8 The rule pum′ in Fig. 2 is an instance of pum∗.

The schema of pum∗, and the meta-rules for M equal those in Fig. 5 and Fig. 6, respectively.

Fact 5. A rule ρ is the instance of a substitutive rule γ if and only if it is a derivate of the schema
ρ of γ .

5 Existence of Critical Overlaps

In this section, we study whether the existence of critical overlaps, a decidable property for plain
rewriting, is decidable for schemata as well.

Definition 13 (Critical Overlap) Two rules ρ =(P ↪→B←↩R) and ρ ′=(P′ ↪→B′←↩R′) overlap
critically if there exists a graph G with matches m : P→ G and m′ : P′ → G that intersect in
deleted nodes or edges, i.e., if m(P)∪m′(P′) 6↪→ m(P∩R)∪m′(P′∩R′).

An overlap is minimal if every node and edge of G is in the image either of P or of P′.

It suffices to check whether the finite number of minimal overlaps are parallel independent
in the sense of [EEPT06, Def. 5.9] or not. In the case of schema refinement, the more interest-
ing question is whether two schemata may have derivates that overlap critically, or not. Since
schemata have infinitely many derivates in general, this question is harder to answer. Unfortu-
nately, we obtain:

Theorem 3 For rule schemata σ1 and σ2 with meta-rules ∆, it is, in general, undecidable
whether or not σ1 and σ2 have derivates ρ1 ∈ ∆(σ1) and ρ2 ∈ ∆(σ2) with critical overlaps.

Proof. (By contradiction.) We reduce this problem to deciding whether context-free languages
are disjoint, which is known to be undecidable [HU79, Thm. 14.3].

8 It is not forseen to have variables like M in the interface of a rule.

Selected Revised Papers from GCM 2012 16 / 20

ECEASST

We define a representation of words as string graphs, and context-free rules as context-free
rules over string graphs.

(1) Let Ċ = {◦} and let all variable names ξ ∈X have arity arity(ξ) = ◦◦, pat(ξ) = 2, and
rep(ξ) = 0.

(2) A graph G with nodes Ġ= {vo,v1, . . . ,vn}, edges ~G= {eo,e1, . . . ,en}where attG(ei) = vi−1vi

for 1 6 i 6 n is a string graph representing the word w = ~̀∗
G(e1 . . .en)∈ ~C ∗. The string graph

representing a word w is unique up to isomorphism, and denoted by w•.
(3) Now a proper context-free rule r = (ξ ,w) ∈X × ~C+ can be represented as a meta-rule δr

with a spine rule π = (Pπ→Bπ←↩Rπ), where P= ξ •, R=w•, and, in B, P and R are disjoint
up to their start and end nodes. It is shown in [Hab92] that these rules perform context-free
derivations on string graphs. In the embodied schema ε = (Pε → Bε ←↩ Rε) of δ , Pε = Bπ

and Rε is empty.

Now consider schemata where the string graphs for ξ and ξ ′ are enclosed in edges labeled
with triangles (as start and end markers):

σ1 =
ξ

B C σ2 =
ξ ′

B C

Then derivates ρ1 = (P′1→ B′1←↩ R′1) ∈ ∆(σ1) and ρ2 = (P′2→ B′2←↩ R′2) ∈ ∆(σ2) have critical
overlaps if P′1 ∼= P′2. By the definition of derivates, and meta-rules, this implies that P′1 ∼= P′2 ∼= w•

for some word w∈ (~C \X)∗, i.e., if w is in the context-free string languages derived from ξ and
from ξ ′, respectively. In other words, σ1 and σ2 have critical overlaps if the languages derived
from ξ and ξ ′ have an empty intersection. (There is no loss of generality if we assume that
the context-free rules are proper, i.e., have non-empty right-hand sides, since every context-free
grammar can be transformed into one where only the start symbol has a rule with an empty
right-hand side. Then the question is still undecidable for the sublanguages without the empty
word.)

This result holds even if the meta-rules are context-free.

6 Conclusions

In this paper we have defined how schemata of plain graph rewriting rules can be refined with
contextual meta-rules. This models the outstanding feature of GRGEN. Until now, we have not
considered attributed graphs and subtyping. As they are included in the foundation [EEPT06],
we expect that this can be added in a straight-forward way. We also restricted ourselves to
unconditional rules. Rules with nested application conditions have been added to the theory
in [EHL+10, EGH+12]; recently, Hendrik Radke has studied recursive refinement of such con-
ditions [HR10]. We plan to add this concept to our definition in the future.

We have shown that several other kinds of graph rewrite rules can be defined with contextual
refinement: rules based on single pushouts, neighborhood-controlled embedding, and variable
substitution. Lack of space hindered us to present the definition of other kinds of rules: Adap-
tive star replacement [DHJM10], a combination of context-free rules with NCE rules, can be

17 / 20 Volume 61 (2013)

Graph Rewriting with Contextual Refinement

modeled along the lines of NCE graph rewriting; rules with variables substituted by adaptive
star replacement [DHJ+08] can be modeled along the lines of the substitutive rules considered
in Def. 11. The rules of [PH96] where variables can be substituted with arbitrary graphs are a
special case of the substitutive rules considered here, as the language of all graphs can be defined
with contextual replacement [DHM12, Ex. 1].

Even if graph rewriting with refinement is not to far from plain rewriting, some properties get
lost since schemata have infinitely many derivates. So it is not decidable whether schemata may
have parallelly (in-) dependent derivates, or not. An advanced property like confluence (based
on the joinability of critical pairs) can probably only be considered in restricted situations. This
will be the major direction of our future work. We want to provide assistance for users of GRGEN

in analyzing the behavior of their specifications.

Acknowledgements: I wish to thank several people: Edgar Jakumeit conceived and imple-
mented recursive refinements for rules in the GRGEN rewriting tool, under the supervision of
Rubino Geiß. Katharina Saemann and Ruth Schönbacher identified an obvious error in Fig. 8,
and Giorgio Busatto, Annegret Habel, and Hendrik Radke have lent their ears (and brains) to
simplify and consolidate early drafts of this paper. Frank Drewes has carefully reviewed two
later versions of the paper.

Bibliography

[BGJ06] J. Blomer, R. Geiß, E. Jakumeit. GRGEN.NET: A Generative System for Graph-
Rewriting, User Manual. www.grgen.net, Universität Karlsruhe, 2006. Version
V3.6ms1b (2012).

[CU77] C. Cleaveland, R. Uzgalis. Grammars for Programming Languages. Elsevier, New
York, 1977.

[DHJ+08] F. Drewes, B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde. Shaped Generic
Graph Transformation. In Schürr et al. (eds.), Applications of Graph Transformation
with Industrial Relevance (AGTIVE’07). Lecture Notes in Computer Science 5088,
pp. 201–216. Springer, 2008.

[DHJM10] F. Drewes, B. Hoffmann, D. Janssens, M. Minas. Adaptive Star Grammars and Their
Languages. Theoretical Computer Science 411:3090–3109, 2010.

[DHM12] F. Drewes, B. Hoffmann, M. Minas. Contextual Hyperedge Replacement. In Schürr
et al. (eds.), Applications of Graph Transformation with Industrial Relevance (AG-
TIVE’11). Lecture Notes in Computer Science 7233, pp. 182–197. Springer, 2012.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs. Springer, 2006.

Selected Revised Papers from GCM 2012 18 / 20

ECEASST

[EGH+12] H. Ehrig, U. Golas, A. Habel, L. Lambers, F. Orejas. Adhesive Transformation Sys-
tems with Nested Application Conditions. Part 2: Embedding, Critical Pairs and
Local Confluence. Fundam. Inform. 118(1-2):35–63, 2012.

[EHL+10] H. Ehrig, A. Habel, L. Lambers, F. Orejas, U. Golas. Local Confluence for Rules
with Nested Application Conditions. In Ehrig et al. (eds.), ICGT. Lecture Notes in
Computer Science 6372, pp. 330–345. Springer, 2010.

[EPS73] H. Ehrig, M. Pfender, H. Schneider. Graph Grammars: An Algebraic Approach. In
IEEE Conf. on Automata and Switching Theory. Pp. 167–180. Iowa City, 1973.

[ER97] J. Engelfriet, G. Rozenberg. Node Replacement Graph Grammars. In Rozenberg
(ed.), Handbook of Graph Grammars and Computing by Graph Transformation.
Vol. I: Foundations. Chapter 1, pp. 1–94. World Scientific, Singapore, 1997.

[ERT99] C. Ermel, M. Rudolf, G. Taentzer. The AGG Approach: Language and Environment.
In Engels et al. (eds.), Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. II: Applications, Languages, and Tools. Chapter 14, pp. 551–
603. World Scientific, Singapore, 1999.

[Fow99] M. Fowler. Refactoring—Improving the Design of Existing Code. Object Technology
Series. Addison-Wesley, Reading, MA, 1999.

[Gei08] R. Geiß. Graphersetzung mit Anwendungen im Übersetzerbau (in German). Disser-
tation, Universität Karlsruhe, 2008.

[Gö79] H. Göttler. Semantical Descriptions by Two-Level Gaph-Grammars for Quasi-
hierarchical Graphs. In Nagl and Schneider (eds.), Graphs, Data Structures, Algo-
rithms (WG’79). Applied Computer Science 13, pp. 207–225. Carl-Hanser Verlag,
München-Wien, 1979.

[Hab92] A. Habel. Hyperedge Replacement: Grammars and Languages. Lecture Notes in
Computer Science 643. Springer, 1992.

[Hes79] W. Hesse. Two-Level Graph Grammars. In Claus et al. (eds.), Graph Grammars and
Their Application to Computer Science and Biology. Lecture Notes in Computer
Science 73, pp. 255–269. Springer, 1979.

[HJG08] B. Hoffmann, E. Jakumeit, R. Geiß. Graph Rewrite Rules with Structural Recursion.
In Mosbah and Habel (eds.), 2nd Intl. Workshop on Graph Computational Models
(GCM 2008). Pp. 5–16. 2008.

[HM10] B. Hoffmann, M. Minas. Defining Models – Meta Models versus Graph Grammars.
Elect. Comm. of the EASST 29, 2010. Proc. 6th Workshop on Graph Transformation
and Visual Modeling Techniques (GT-VMT’10), Paphos, Cyprus.

[HMP01] A. Habel, J. Müller, D. Plump. Double-Pushout Graph Transformation Revisited.
Mathematical Structures in Computer Science 11(5):637–688, 2001.

19 / 20 Volume 61 (2013)

Graph Rewriting with Contextual Refinement

[Hof01] B. Hoffmann. Shapely Hierarchical Graph Transformation. In Proc. IEEE Symposia
on Human-Centric Computing Languages and Environments. Pp. 30–37. IEEE Com-
puter Press, 2001.

[HR10] A. Habel, H. Radke. Expressiveness of graph conditions with variables. Elect.
Comm. of the EASST 30, 2010. International Colloquium on Graph and Model
Transformation (GraMoT’10).

[HU79] J. E. Hopcroft, J. D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading, Massachusetts, 1979.

[Jak08] E. Jakumeit. Mit GRGEN zu den Sternen. Diplomarbeit (in German), Universität
Karlsruhe, 2008.

[Löw93] M. Löwe. Algebraic Approach to Single-Pushout Graph Transformation. Theoretical
Computer Science 109:181–224, 1993.

[PH96] D. Plump, A. Habel. Graph Unification and Matching. In Cuny et al. (eds.), Proc.
Graph Grammars and Their Application to Computer Science. Lecture Notes in
Computer Science 1073, pp. 75–89. Springer, 1996.

[Plu93] D. Plump. Hypergraph Rewriting: Critical Pairs and Undecidability of Confluence.
In Sleep et al. (eds.), Term Graph Rewriting, Theory and Practice. Pp. 201–213.
Wiley & Sons, Chichester, 1993.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Nagl
et al. (eds.), Applications of Graph Transformation with Industrial Relevance (AG-
TIVE’03). Lecture Notes in Computer Science 3062, pp. 479–485. Springer, 2004.

[Ter03] Terese (ed.). Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science 55. Cambridge University Press, Cambridge, UK, 2003.

[VJ03] N. Van Eetvelde, D. Janssens. A Hierarchical Program Representation for Refactor-
ing. Electronic Notes in Theoretical Computer Science 82(7), 2003.

Selected Revised Papers from GCM 2012 20 / 20

	Introduction
	Graphs, Rewriting, and Derivation
	Schema Refinement with Contextual Meta-Rules
	Relation to Other Ways of Graph Rewriting
	Graph Rewriting with Node [Dis-]Connection
	Substitutive Graph Rewriting

	Existence of Critical Overlaps
	Conclusions

