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Abstract: We introduce a new efficient routing algorithm called Prediction-based 
Decentralized Routing algorithm (PDR), which is based on the Ant Colony Optimization 
(ACO) meta-heuristics. In our approach, an ant uses a combination of the link state 
information and the predicted link load instead of the ant’s trip time to determine the 
amount of pheromone to deposit. A Feed Forward Neural Network (FFNN) is used to 
build adaptive traffic predictors which capture the actual traffic behaviour. We study two 
performance parameters: the rejection ratio and the percentage of accepted bandwidth 
under two different network load conditions.  We show that our algorithm reduces the 
rejection ratio of requests and achieves a higher throughput when compared to Shortest 
Path First and Widest Shortest Path algorithms. 
 
Keywords: Self-organization, neural network, Ant algorithms, routing, traffic engineering 

1 Introduction 
With the emergence of applications with tight quality of service (QoS) requirements and the 
reliance of the economy on these applications and the Internet as a whole, network 
management techniques such as Traffic Engineering (TE) are essential. TE deals with the 
evaluation and optimization of the traffic capacity and the QoS of networks. Extensions of 
routing protocols have been proposed to support TE including connectionless routing protocols 
such as Open Shortest Path First (OSPF). The more recently deployed Multiprotocol Label 
Switching (MPLS) standard [RVC01] allows a better control for traffic routing and TE. 
The efficiency of TE schemes mainly depends on route optimization. Routing algorithms 
[MCS03] can be classified as static or dynamic depending on the nature of information used 
for selecting the routes. Static algorithms depend on fixed information which does not change 
with time; dynamic algorithms use the current state of the network. In addition, routing 
algorithms can be executed either online or offline according to the point in time when the 
computation is done. With online routing algorithms, path requests are handled at the time of 
their arrival. This paper focuses on dynamic online routing. 
Dynamic online routing should be decentralized. Therefore, routing decisions should be made 
based on local state information only and by each network node individually. Most 
decentralized routing approaches depend on ant agent approaches [SS03]. These algorithms 
are based on swarm intelligence or Ant Colony Optimization (ACO) [DMC96]. Ant systems 
are self-organizing, applying the principle of indirect communication between agents 
employing changes to their environment [KU01]. Ant routing algorithms are inspired from real 
ants' behaviours which have the ability of discovering the shortest path to a food source and 
their nest without any knowledge of geometry but with a keen sense of smell. By applying 
reinforcement learning techniques, the ant routing model can find the almost optimal path 
between the source and destination through a positive feedback mechanism. 
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In this paper, we introduce a new efficient routing algorithm called Prediction-based 
Decentralized Routing algorithm (PDR). The idea of the PDR algorithm is the combination of 
the link state information and the predicted link load instead of the ant’s trip time to determine 
the amount of pheromone to deposit. A Feed Forward Neural Network (FFNN) is used to 
accurately predict the actual traffic behaviour and the future load on every network link.  The 
remainder of this paper is organized as follows: section 2 provides an overview on related 
work. Section 3 describes our Prediction-based Decentralized Routing algorithm. Section 4 
discusses the performance of our approach. Conclusions are given in section 5. 

2 Related Work 
The Shortest Path First (SPF) algorithm is the most commonly used algorithm within MPLS 
Domains. With SPF, the path that contains the least number of links between the source and 
destination pair is selected. Although SPF is trying to minimize resource utilization, it leads to 
congestions in some network links and may cause unbalanced resource utilization. Guerin 
[GOW97] introduced a modification to the SPF algorithm, called Widest Shortest Path (WSP), 
which is based on the computation of the shortest paths in the first stage and, in case there is 
more than one, chooses the one with maximum bandwidth (BW). 
Boutaba [BSI02] introduced a dynamic online routing algorithm (DORA) that computes the 
Path Potential Value (PPV) array associated with a source-destination pair in the first step. 
PPV is used to avoid routing over links that have a high potential to be part of any other paths. 
Then the algorithm incorporates the PPV value with the residual link BW to form a weight 
value for each link that is used to compute a weight-optimized network path. DORA offers 
better performance than the WSP algorithm. Additionally, computations used in DORA are 
less expensive. Bagula [BBK04] introduced a Least Interference Optimization Algorithm 
(LIOA) which reduces the interference among competing flows by balancing the number and 
BW requirements of flows carried by a link to achieve efficient routing of bandwidth 
guaranteed paths. 
Einhorn and Mitschele-Thiel [EMT08] have applied Reinforcement Learning to a Traffic-
Engineering (RLTE) algorithm supporting distributed and self-organized QoS routing. We 
have applied predictions of the future load to solve the routing problem in [TMT08], 
predicting the available BW and integrating this in the link weight formula. We have 
compared the performance of our algorithm, named Predicting of Future Load-based Routing 
(PFRL) algorithm, with earlier routing approaches like WSP and CSPF algorithms. The PFRL 
algorithm has reduced the rejection ratio of requests and achieves higher throughput. However, 
it enhances the performance f routing approaches which work in a centralized manner only. 
AntNet [CD98] is an ACO algorithm for distributed routing in IP networks. During the 
forward phase, each ant constructs a path by taking a sequence of decisions based on a 
stochastic policy parameterized by local pheromones and heuristic information. Once it arrived 
at the destination, the backward phase starts. The backward ants retrace the route, followed by 
their forward ant, and update the local routing information in all the intermediate nodes. Yun 
and Zincir [YZH04] introduced an adaptive routing algorithm based on the AntNet algorithm. 
This approach uses a new structure of the routing table to overcome the problem of unrealistic 
requirements for global information of the original AntNet algorithm. 
The Trail Blazer (TB) routing algorithm minimizes the network congestion through local 
decisions, based on latency measurements collected by scout packets [GS04]. TB is meant to 
be an extension of existing link-state protocols such as OSPF, which provides shortest-path 
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information to initialize the probability table. Therefore, TB does not require a learning period 
to discover the network topology. TB is also simpler than the AntNet algorithm. The ant agent-
based QoS Multicast Routing Algorithm (QMRA) employs a scheme which uses the 
probability that a link satisfies some QoS requirements and the cost of a path instead of the 
ant’s trip time or age to determine the amount of pheromone to deposit, so that it has a simpler 
process and requires less control parameters [YL06]. 

3 Prediction-based Decentralized Routing Algorithm  
This section provides a detailed description of our Prediction-based Decentralized Routing 
(PDR) algorithm. The algorithm builds on the principles of the TB routing framework. In the 
TB design, each router has two tables: a link probability table Pt and an average transmission 
delay table avg (see Fig. 1). Pt  contains m rows, one for each destination node. Each row has 
K entries, one for each outgoing link of the router. The entry pt[d,i] is the probability of 
sending a packet to destination d on the outgoing link i. The table avg has m entries, one for 
each destination node. The entry avg(d) is the average transmission delay from the current 
node to the destination d, which is computed from the last M scout packets that arrived from d. 
The scout packet is sent from the source to the destination to explore the network. At every 
intermediate node, the scout packet selects the outgoing link randomly. When scout packets 
find their destination, they return to their source on the same path they have arrived on and 
update their accumulated latency td in every intermediate node by td =td + t(i),where t(i) is the 
current latency of the outgoing link i. Then, scout packets use the accumulated latency td to 
update the pt as follows:  
 
           
 
 
 
The average latency avg(td) is used to scale the positive reinforcement value of the scout 
packet. A larger value of f(td) indicates a better (shorter) path. f(td) is limited to the range 
[0.1,10] to prevent wide fluctuations in ∆p, which is the reinforcement value of pt[d,j]. δ 
defines the learning rate of the algorithm. All entries in Pt of the same destination d are scaled 
by 1+∆p to ensure that their sum remains 1. 

 
Fig. 1. The node data structures in TB algorithm [GS04]. 

f(td) =  max(min(avg(d)/td,10),0.1) (1) 
∆p =  δ ×  f(td)                                                              (2) 

pt[d,i] =  (pt[d,i] + ∆p )  / ( 1+ ∆p) (3) 
pt[d,j]j≠i =  (pt[d,j])  / ( 1+ ∆p)                                              (4) 
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In our approach, an ant uses a combination of the link state information and the predicted link 
load instead of the ant’s trip time to determine the amount of pheromone to deposit, so that it 
has a simpler process and less control parameters. The current latency t(i)  of an outgoing link i  
in the TB algorithm is replaced by the Link Weight formula LW(i). LW(i) represents a 
combination of PFRL and LIOA to reduce the interference among competing flows by 
balancing the number and required BW of flows carried by a link to achieve efficient routing.  
The LIOA algorithm represents a cost metric which balances the number and the intensity of 
the flows offered to the routes. In LIOA design, LW(i) = I lc / (Available BW) (1-lc) ,where  I is 
the number of flows carried on the link and lc is the least interference control 
parameter which represents a trade-off between the number and the magnitude of the 
flows traversing a link. On the other hand, the PFRL algorithm proposes to incorporate the 
future link load value in the link weight formula to optimize the performance of routing. 
Therefore, we propose to use the LW(i) formula as follow: 

 
LW(i)= 
 

(1-α) 
I lc ( 

          (Available BW) (1-lc) 

α 
+                                                     ) 

   (Predicted available BW) (1-lc) 

 
(5)

The LW(i) formula is controlled by a parameter called α ,which represents the prediction 
weight. A low α reduces the influence of the predicted value on the BW. A high value of α 
increases the influence and suppresses the current value of the available BW. 
The idea behind the design of PDR is that the consideration of the future link load will 
enhance the routing performance of Ant-based routing algorithms. Therefore, we propose to 
build an accurate traffic predictor that will be able to predict the future traffic behaviour. The 
future load on network links depends on many parameters such as network topology, network 
load condition (inter-arrival rate of requests and holding time of these requests in the network) 
and the behaviour of the used routing algorithm. Artificial Neural networks (ANN) offer 
prediction capabilities for different types of network traffic and have the ability to be adaptive. 
Experimental results show that ANNs can accurately predict a complicated network traffic 
pattern efficiently [ESW06].The predictor expects the available BW on every link after a 
specified period of time, which is named window size (WS). The prediction should be done in 
a decentralized fashion . For example, a specific node is responsible for the prediction 
operations in a part of the network to achieve a fast prediction and to distribute the complexity 
of the prediction.  
The structure of the used FFNN is shown in Fig. 2. It consists of three layers: the input layer 
contains 16 neurons; the hidden layer contains 20 neurons and only one neuron in the output. 
The Levenberg-Marquardt [HDB96] training algorithm is used, because it is the fastest and 
most accurate one in our case. We have tested different FFNN designs and different values of 
training period time to achieve an efficient predictor. In the training mode, a history of the last 
thousand (plus WS) link traffic values are used for training purpose. One training pattern 
contains 16 traffic values from the history in a row as input values and one expected output 
value. The expected output value is a history value WS time after the input values. By shifting, 
one thousand training patterns are generated. In the prediction mode, the last 16 traffic values 
are used as inputs for the FFNN. Then, the FFNN predicts a value for the link load after WS. 
The predictor stays in the prediction mode for one hundred traffic samples and then returns to 
the training mode to adapt itself again. 

Proc. WowKiVS 2009 5 / 11 



 
 
 ECEASST 

6 / 11 Volume 17 (2009) 

 
Fig.  2.  Feed Forward Neural Network architecture [HDB96]. 

3. 1 PDR Algorithm 
 

1. At regular intervals WS, predict the available BW for all links in the network. 
2. At regular intervals N, each node generates and sends an ant to a destination. 
3. When a node receives an ant and, if it is not the destination of the ant, then: 

a. It will forward the ant and selects the next link for the ant´s route randomly.  
b. The ant never selects an outgoing link that leads to a node that has been visited 

earlier in its path (a loop). If there is no such outgoing link, the ant will die. 
4. When the current node is the destination, then, the ant will return to the source on the 

same path on which it has arrived. 
a. Compute LW(i) of outgoing link i on every link in the backward path.   

 
LW(i)= 
 

(1-α) 
I lc ( 
          (Available BW) (1-lc) 

α 
+                                                     ) 

   (Predicted available BW) (1-lc) 

 

                  where lc is the least interference control parameter, I is the number of flows 
                        carried on the link and α is the prediction weight. 

b. Update pt and current avg (d) values in every intermediate node as follows:  
td =  td + LW(i)                                            

f(td) =  max(min(avg(d)/td,10),0.1)  
∆p =  δ ×  f(td)                                                               

pt[d,i] =  (pt[d,i] + ∆p )  / ( 1+ ∆p)  
pt[d,j]j≠i =  (pt[d,j])  / ( 1+ ∆p)                                               

                where δ is the learning rate of the algorithm. 
5. On the other hand, when a node receives a data packet, which needs to be forwarded, 

data packets will be routed according to the probabilities in pt. 
 

4 Performance Evaluation 
In this section, we evaluate the performance of PDR, based on some test scenarios and discuss 
the results. All test scenarios are implemented using Visual Basic and the ANN toolbox of 
MATLAB [NNT07]. We compare PDR with the SPF and WSP algorithms. We also prove the 
efficiency of prediction use when we compare PDR with two other modified version of the TB 
algorithm TB_DORA and TB_LIOA, which were proposed by using only DORA or LIOA 
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link weight formulas (without prediction) instead of the ant’s trip time to determine the amount 
of pheromone to deposit. For the comparison we use two different network load conditions. 
 Two performances parameters are studied: 

• the rejection ratio of paths requests and 
• the percentage of accepted BW. 

Our study is done for the MIRA [KKL00] network that is shown in Fig. 3.The thicker links 
have a capacity of 4800 capacity units while the thinner links have a capacity of 1200 capacity 
unit. Fig. 3 shows the location of four different source–destination pairs that are identified by 
(S1, D1), (S2, D2), (S3, D3), and (S4, D4). The capacities of the requested paths are randomly 
distributed among 10-40 capacity units. We examine the performance for two different 
network load conditions. The first network load condition is a moderate load condition: when 
the arrival of requests follows a Poisson distribution with mean λ = 32.5 requests per time-unit 
and the holding time of a request is based on an Exponential distribution with mean µ = 10 
time-units. The second is a heavy load condition: when the inter arrival of path requests λ is 
equal to 35 requests per time-unit and the holding time of request µ is equal to 10 time-units. 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 3. MIRA network topology [KKL00]. 
 

Table 1 describes the PDR parameters and shows the range and used value in our simulation. 

 Table 1. PDR parameters  

Name Range Value Description 
lc [0,1] 0.1  least interference control parameter 
N [10,50] 20 send a scout packet every so many regular packets 
M  [10,50] 20 keep the average of the last M of td  for every destination 
δ [0,0.1] 0.01 learning rate 
α [0,1] 0.1 prediction weight 

WS [5,10] 8  
time units 

window size 

4.1 Moderate Load Scenario 
In all experiments, the X axis represents the number of requests. Fig. 4 shows the rejection 
ratio of requests for moderate load. Based on the result, PDR rejects the fewest number of 
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requests, followed by TB_DORA, TB_LIOA, WSP, and finally SPF. PDR rejects 
approximately 3.59 % less requests than SPF and 0.44 % less than TB_DORA. 

 
 

Fig. 4. The rejection ratio of requests for moderate load.  
 
Fig. 5 shows the percentage of accepted bandwidth for moderate load. PDR accepts more BW 
compared to the other algorithms, followed by TB_DORA, TB_LIOA, WSP, and finally SPF. 
PDR accepts approximately 4.18 % more bandwidth than SPF and 0.36 % more than 
TB_DORA.  
 

 
 

Fig. 5. The percentage of accepted BW for moderate load. 
 

4.2 Heavy Load Scenario 
Fig. 6 shows the rejection ratio of requests for heavy load. PDR rejects the fewest number of 
requests, followed by TB_LIOA, TB_DORA, WSP, and finally SPF. PDR rejects 
approximately 2.82 % less requests than SPF and 0.30 % less than TB_LIOA. 
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Fig. 6. The rejection ratio of requests for heavy load. 
 
Fig. 7 shows the percentage of accepted bandwidth for heavy load. PDR accepts more BW 
compared to the other algorithms, followed by, TB_LIOA, TB_DORA, WSP, and finally SPF. 
PDR accepts approximately 3.09 % more bandwidth than SPF and 0.49 % more than 
TB_LIOA.  
 

 
 

Fig. 7. The percentage of accepted BW for heavy load. 
 

4.3 Complexity Analysis of Prediction Use  
The PDR algorithm requires additional computational time to achieve enhanced routing 
performance. This time consists of two parts, the training time and the prediction time of the 
predictors. As mentioned before, the predictors are distributed on the nodes. Therefore, every 
node is responsible for (E/V) operation, whereas E is the number of links and V is the number 
of nodes. The training operation happens only one time every retraining period RP. The 
prediction also happens every WS period. Thus, the training requires O((E Tt) / (V RP)) time 
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steps whereas Tt is the training time of one predictor and the prediction requires O((E Pt) / (V 
WS)) whereas Pt is the prediction time of one predictor. In our experiments, the used processor 
speed is 1,8 GHZ and 1 GB RAM. The prediction is computationally inexpensive which is 
equal to 0.006 sec. But the training requires more time which is equal to 0.078 sec. 

5 Conclusion and Future Work  
In this paper, we have proposed a new TE algorithm named PDR that can efficiently enhance 
the dynamic on-line routing performance. This algorithm is a member of a class of traffic-
aware routing algorithms based on the behaviour of ants. We have compared the performance 
of the PDR algorithm with WSP and SPF under two different network load conditions and 
have shown that the PDR algorithm performs considerably better than WSP and SPF with 
respect to two performance comparison criteria: the rejection ratio of paths requests and the 
percentage of accepted BW. 
We have also proved the efficiency of prediction, comparing PDR with two other modified 
versions of the TB algorithm without prediction. 
As future work, we plan to test the PDR performance in a more complex network topology. 
Also we will test the PDR performance in link failure scenarios. In addition, a comparison of 
PDR with other Ant algorithms is planned.   
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