
Electronic Communications of the EASST
Volume 24 (2009)

Proceedings of the Workshop
The Pragmatics of OCL and Other Textual Specification

Languages
at MoDELS 2009

Requirements Analysis for
an Integrated OCL Development Environment

Joanna Chimiak–Opoka, Birgit Demuth,
Darius Silingas, Nicolas F. Rouquette

15 pages

Guest Editors: J. Cabot, J. Chimiak-Opoka, F. Jouault, M. Gogolla, A. Knapp
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

Requirements Analysis for
an Integrated OCL Development Environment

Joanna Chimiak–Opoka1, Birgit Demuth 2,
Darius Silingas3, Nicolas F. Rouquette4

1 Institute of Computer Science, University of Innsbruck, Austriajoanna.opoka@uibk.ac.at
2 Department of Computer Science, Technische Universität Dresden, Germany

birgit.demuth@tu-dresden.de
3 No Magic Europe, Savanoriu av. 363, 49425 Kaunas, Lithuaniadarius.silingas@nomagic.com

4 Jet Propulsion Laboratory, Caltech, M/S 301–270, 4800 Oak Grove Drive Pasadena, CA
91109, USAnicolas.f.rouquette@jpl.nasa.gov

Abstract: An Integrated OCL Development Environment (IDE4OCL) can signifi-
cantly improve the pragmatics and praxis of OCL. We present the domain concepts,
tool–level interactions with OCL and the use cases we identified in a systematic
analysis of requirements for an IDE4OCL. The domain concepts is an important
contribution of our work as it attempts to clarify inconsistencies in the relevantspec-
ifications. Because OCL is not a stand–alone language, the OCL landscape includes
several interacting tools including an IDE4OCL. The use cases describeour vision
of the desired functionality unique to an IDE4OCL. The results of our analysis and
the long term vision of our work should be relevant to developers of OCL tools as
well as to the OMG Request for Information regarding the UML Futures1. Our work
is relevant to the UML Futures Roadmap because providing OCL for the constraints
in the UML specification has been a longstanding problem at the OMG.

Keywords: OCL concepts, OCL development, OCL pragmatics, OCL tool support,
requirement specification

1 Introduction

The specification and implementation of the Object Constraint Language (OCL) involves three
language definition aspects: syntax, semantics and pragmatics. For any languagesyntax must
be specified prior to semantics since meaning can be given only to correctlyformed expressions
in a language; semantics needs to be formulated before considering the issues of pragmatics
since interaction with human users can be considered only for expressions whose meaning is un-
derstood[SK95]. For OCL, the dependencies amongst these aspects are reflected in thechrono-
logical phasing of their maturity with pragmatics lagging behind semantics which is lagging
behind syntax.

For OCL, the broad support for the syntactic and semantic aspects stand insharp contrast with
the dearth of support forpragmatics. Formalisations of OCL syntax and semantics are the basis
for building tool support for automatic checking of syntactical correctness and formal reasoning

1 http://www.omg.org/news/releases/pr2009/06-18-09.htm

1 / 15 Volume 24 (2009)

mailto:joanna.opoka@uibk.ac.at
mailto:birgit.demuth@tu-dresden.de
mailto:darius.silingas@nomagic.com
mailto:nicolas.f.rouquette@jpl.nasa.gov
http://www.omg.org/news/releases/pr2009/06-18-09.htm


Requirements Analysis for IDE4OCL

about properties of OCL specifications. In contrast to syntax and semantics, pragmatics cannot
be formalised [Bjo06]. However, pragmatics entices programmers to use a language. This im-
plies the fact that pragmatics does not need theory, it needs practical solutions. Despite recent
advances in tool support for OCL [B+05], much remains to be done conceptually and technically
to encourage practitioners to work with OCL tools [CPP08] as defining OCL expressions is still
difficult, error–prone and a time–consuming task[Ack01].

As a two–language hybrid artifact, a MOF–based model with OCL constraintsis inherently
moredifficult to understand and evolvethan an equivalent single–language artifact. For hybrid
models, there is ample empirical evidence that the organization of the MOF–based model has
a strong influence on the understandability of OCL constraints for that model [C+07]. This
paper focuses on the pragmatics of OCL in the context of the life cycle of hybrid models. We
consider hereinternal pragmatics, i.e. pragmatics within the OCL development process and
one considering its impact on developers.

In [CPP08], it was mentioned thattools’ constituents (editors, compilers, browsers) must im-
plement the functionalities established by integrated development environments(IDEs). We want
to go one step further with a systematic requirement analysis for an integratedOCL development
environment, which we call IDE4OCL. Instead of targeting the ideal OCL tool, we focus on an
IDE supporting the development of OCL specifications as part of an overall OCL tools landscape.
In terms of an abstracted typical life cycle of an OCL specification to beplan–do–check–act cy-
cle (Fig. 1), we focus on support of the second and the third steps where an OCL specification
is the focus of the development and verification activities. In the life cycle weconsiderexternal
pragmatics, i.e. how the OCL specifications are used outside an IDE4OCL.

Act—use the OCL specifica-
tion to increase the quality of
systems built with the concep-
tual model. It is related to the
(external) pragmatics, as we
consider usage of the specifica-
tion.

Check—assess if the OCL
specification meets the objec-
tives/requirements. It is related
to thesemantics, as semantical
properties of the specification
are tested or verified, and (in-
ternal) pragmatics focusing on
ease of assessment.

Plan—determine objec-
tives/requirements of an OCL
specification for a conceptual
model.

Do—define the OCL specifica-
tion or a part of it to opera-
tionalize the specification ob-
jectives. It is related to thesyn-
tax, as the syntactically correct
specification is defined using
error prevention mechanisms,
and (internal) pragmatics focus-
ing on ease of development.

Figure 1: A life cycle of an OCL specification seen as the Deming cycle [Dem86].

To flesh out the requirements for an IDE4OCL, we start with domain analysisand define the
system context specifying what are the responsibilities of an IDE4OCL. Then we decompose

Proc. OCL 2009 2 / 15



ECEASST

the identified use cases into tool features that are similar to the features implemented in modern
integrated development environments like Eclipse platform. The applied requirements analysis
approach is presented in more detail in [SB08, SB09]. On first approximation, we identified
three classes of requirements: domain analysis, system context, and use case model. Domain
analysis is based on a refined OCL metamodel, which is re–categorized fromthe pragmatical
view and extended with additional concepts from programming, such as the notions of Project
and Library. For defining the system context, we focus on the information flow between tools
that either make use of OCL expressions or can help a developer specifyor evaluate them.

The structure of the paper corresponds to the requirement analysis steps for an IDE4OCL. At
first we analyse the domain of an IDE4OCL (Section2). Next we describe the identified use
cases and features (Section3). The last section provides conclusion, and discusses relevance of
our work and future steps.

2 Domain Specification

In the subsequent subsections we define domain concepts and give a context of an IDE4OCL.

2.1 Domain Concepts

Our proposal is based on our academic teaching and tool development experience [DW09, C+08]
and aims to clarify problems with understanding different concepts of OCL specification by stu-
dents and developers. We also introduce axillary concepts [BD07, CO09] as means to improve
OCL application to different metamodels and OCL development process. Forbetter understand-
ing we introduce domain concepts in three stages. At first we review the latest OCL standard
specification [OMG06] (in the rest of the paper calledthe standardfor short) and introduce our
categorisation of related concepts (Fig.2). Next we relate the OCL concepts with the model-
ing abstractions levels (Fig.3). Finally, we introduce concepts necessary for the context and
requirement specification for an IDE4OCL (Fig.4).

2.1.1 OCL Concepts

We propose a2–layer viewof the domain concept for OCL [OMG06]. It introduces a categori-
sation of these concepts considering a language definition [SK95] with syntax, semantics and
pragmatics. Within the domain description we preserve the original syntax andsemantics given
by the standard and we add the third perspective, namely (external) pragmatics, to express how
the concepts are used at a level of abstraction that matters for the IDE4OCL requirements. This
model leaves out several aspects of pragmatics that are simply out of scope for the purposes of
this paper. In Fig.2 we give an overview of concepts and show separation between syntactical
and pragmatic view.

The top row of thesyntactic context layer(above the dashed line in Fig.2) presents the top
level concepts with their meaning and relations corresponding to [OMG06, Clause 12.12]: Pack-
age(12.12.1), Context Declaration(12.12.2) and Expressions(9.3). The middle row introduces fur-
ther categorisation of context declarations depending on the type of a contextual element(12.12),
i.e. for Classifier, Operation and Attribute or Association. The bottom row corresponds to the

3 / 15 Volume 24 (2009)



Requirements Analysis for IDE4OCL

syntactical categories from [OMG06, Section 12] with their original meaning preserved: Defini-
tion (12.5,12.12.6), Invariant(12.6,12.12.6), Precondition(12.7,12.12.9), Postcondition(12.7.2,12.12.9), Op-
eration Body Expression(12.10,12.12.8), Initial Value Expression(12.8,12.12.4), and Derived Value
Expression(12.9,12.12.4).

Statement

Constraint

Context Declaration

Implicit ConstraintExplicit Constraint

Operation ContextClassifier Context Attribute Or Association 
Context

SYNTACTICAL VIEW

OCL Expression

Definition

PRAGMATIC VIEW

Element 
Definition

Derived
Value

Operation
Body

Invariant PostconditionPrecondition Initial
Value

Package

<<abstraction>>

0..*

<<abstraction>> <<abstraction>><<abstraction>> <<abstraction>> <<abstraction>><<abstraction>>

1..*

Figure 2: OCL concepts from syntactic and pragmatic point of view.

The leaf concepts of the syntactic context layer relate to the concepts of thepragmatic domain
layer (below the dashed line in Fig.2). A description of these concepts from left–to–right in the
figure follows.

Element Definition is a new model element added by the OCL specification. It is a Defini-
tion (12.5,12.12.7) which can introduce an attribute, an association or an operation.

Constraint is any construct used to impose restrictions on a model instance. It can be defined
explicitly or implicitly.

Explicit Constraint groups syntactical categories that are explicitly classified as a constraintin
the standard and which consist of an OCL expression of Boolean type, i.e. invariant, post-
and precondition. The standard explicitly introducesguards(12.11) as a semantic concept.
We skipped guards in our domain concepts because a guard is a precondition from the
syntactical view as well as from the pragmatic view.

Implicit Constraint groups syntactical categories that are not classified as constraints in the
standard and consist of OCL expressions of arbitrary types, i.e. operation body, initial
and derived value. This concept groups elements that areused as constraints, i.e. to
impose restrictions on a model instance. They provide an expected value (e), e.g. as a
derived value for an attribute, which is compared with an actual value obtained from a

Proc. OCL 2009 4 / 15



ECEASST

model instance (a), e.g. of the attribute, and this comparison forms an equation, a Boolean
expression (e=a), which is an implicitly–defined constraint.

Statement is the most general term in the pragmatic view. It is introduced to denote a single
chunk of an OCL specification that can be developed within an IDE4OCL.

2.1.2 Modeling Abstraction Levels

As mentioned before, OCL is a language which always depends on another modeling language.
Without another language used for modeling, it does not make any sense todefine constraints
because OCL is used for constraint specification but not for modeling itself. Thus, besides OCL,
a modeling language is required to define a model on which OCL constraints shall be specified
(Fig. 3). We assume the OMG MOF Four Layer Metadata Architecture which is used toarrange
and structure the metamodel, the model, and its model instances into a layered architecture.
Generally, four layers exist, the meta–metamodel layer (M3), the metamodel layer (M2), the
model layer (M1), and the model instance layer (M0).

Mn

Mn+1

Element DefinitionModel

Metamodel Pivotmodel

Model Instance

EssentialOCL

Element Instance

ConstraintElement

Mn-1

isDefinedFor

isEvaluatedForisEvaluated

<<instanceOf>><<instanceOf>><<instanceOf>>

adaptedTo extends

0..*

0..*

<<instanceOf>>

Figure 3: Generic Three Metadata Layer Architecture for OCL

OCL statements can be defined on both, metamodels or models and be evaluated on models or
model instances, respectively. Thus, the four layer metadata architecture can be generalized to a
Generic Three Metadata Layer Architecture [DW09]. On the Mn+1 layer lies the metamodel
that is used to define the model that shall be constrained. The metamodel defines a modeling
language. It is required that it is a MOF (or EMOF/Ecore)–based model, i.e. MOF/EMOF/Ecore
itself or an instance of MOF/EMOF/Ecore, like UML or a DSL (domain specific language). The
used metamodel has to be adapted to the so–called Pivot model [BD07] .

Pivot Model is an intermediate metamodel that allows the alignment of arbitrary metamodels
with that of OCL. By directly supporting generics in this metamodel, modeling all ofthe
template types and operations in the OCL standard library becomes possible. The pivot
model is designed for any OCL tools and understood as a general concept or pattern.

The Pivot model based architectureprovides therefore a flexible model repository adapta-
tion mechanism and allows using OCL for any modeling languages which is an important feature

5 / 15 Volume 24 (2009)



Requirements Analysis for IDE4OCL

for an IDE4OCL. The Pivot model is designed on base of Essential OCL[OMG06]. Essential
OCL plays the role of the OCL metamodel. However, it should be noted that Essential OCL
is currently not very well–defined. In [RG99], a more founded metamodel was proposed for
the first version of OCL. From a pragmatic point of view, Essential OCL is adequate for the
implementation of the Pivot model, how it is proven in Dresden OCL2 for Eclipse. On the Mn
layer lies the model which is an instance of the metamodel that is enriched by the specification
of OCL constraints. Finally, on the Mn-1 layer lies the model instance on whichthe OCL con-
straints shall be verified. Please note, that in the context of such a generic layer architecture, a
model instance can be both a model (like an UML class diagram) or an object (like a Java object
or relational data).

2.1.3 OCL Development Concepts

In the last stage of the concepts definition we introduce concepts (Fig.4) related to the OCL
development process within an IDE4OCL and information exchange within the OCL tool land-
scape (Fig.5).

Test Unit

Project

Library

Model Model Instance

Package

packages 0..*

userData

0..*

tests

0..*

context

1

testData

1

usedLibraries 0..* libraries0..*

usedLibraries 0..*

Figure 4: OCL Development Concepts and their interrelations.

Project is a collection of packages and libraries that are developed within an IDE4OCL. Li-
braries can be imported (used). A project refers to a contextual model for which OCL
statements are defined and to model instances on which OCL statements are evaluated.

Library is a kind of package with intent to be reusable [CO09]. Libraries as reusable artifacts
can be imported into a library and form a hierarchy of libraries. Additionally,a library
contains test units.

Test Unit is used to test an element definition before it is reused in another library or inan OCL
statement. It is related to a model instance which provides test data and is an instance of
the library contextual model [CO09].

2.2 Context Specification

After a decade of several prototype implementations of OCL based tools andtoolchains for mul-
tiple purposes, the OCL landscape is already manifold. This makes it difficultto classify these
tools. We propose a simplified view on anOCL tool landscape(Fig. 5) required to define the

Proc. OCL 2009 6 / 15



ECEASST

context of an IDE4OCL which is based on possible usage scenarios of OCL [DW09]. Based on
our academic and industrial practice in OCL software development we identified tool–integration
requirements for an IDE4OCL, which is responsible for development of correct OCL statements
(corresponding todo andcheckin Fig. 1), whereas other tools consume OCL statements (cor-
responding toact in Fig. 1). The character of the overall architecture can be considered as a
toolchain or a collection of plug–ins.

From atoolchain perspective, portability of OCL expressions across tools requires all tools
to produce consistent OCL interpretations of the same OCL expressions. This approach requires
a complete OCL specification to be respected by every tool vendor involvedin the toolchain,
including consideration of factors beyond the standard such as [CPP08, Section 3].

From aplug–in architecture perspective, there must be only one component responsible for
OCL interpretation. In this paper we assume possibility of exchanging OCL expressions with
the full preservation of their semantics. This assumption enables us to incorporate a feedback
from usage of an OCL specification and thus impact its further development toenable continuous
improvement in an OCL specification life cycle.

Transform OCL into Tests
<<Realizations>>

Testing Tool

Design Models and Model Instances
Analyse Model Instance with OCL

Verify Model Instances with OCL

<<Realizations>>

Modeling Tool

Evaluate Statement

Specify Statement
Verify Statement

<<Realizations>>

Manage Project

IDE4OCL

Reason on/ Check Project
<<Realizations>>

Formal Verification Tool

Store and manage models/projects
<<Realizations>>

Repository

Use OCL for Model Transformations
Transform OCL into Code
<<Realizations>>

MDE Tool

Project

Evaluation Results Project

Project

Package,
OCL Expression

Model

Model,
Model Instance,

Project

Project

Evaluation Results

Package,
Model Instance

Figure 5: The OCL tools landscape: relations between tools.

Below we will discuss particular tools in the OCL tool landscape andinformation exchange
between them and an IDE4OCL, which itself will be described in the next section. In the context
of an IDE4OCL, the most tightly related tools with bidirectional communication are amodeling
tool, a repository and a formal verification tool. The remaining two tools, namelya MDE tool and
a testing tool, only consume OCL statements developed within an IDE4OCL. However, all tools
in the landscape exchange different artifacts, in the diagram we only focus on communication
with an IDE4OCL.

A modeling tool is typically an UML tool that allows specification of constraints in any lan-
guage, most frequently just as strings. In this case the integration should be tight (e.g. via plug–in
mechanism) as both tools provide services for one another and constitute a symbiosis required by

7 / 15 Volume 24 (2009)



Requirements Analysis for IDE4OCL

the hybrid nature of the models. On one side IDE4OCL provides OCL Expressions/Package for
a given model designed in the modeling tool, next they can be evaluated within IDE4OCL. The
evaluation results can be returned to the modeling tool, where model verification or analysis is
performed. On the other side, model and model instances are required to create OCL statements.
Then they can be designed within the modeling tool.

Another possibility to obtain models and model instances is to fetch them from arepository.
In our architecture we consider a repository which plays a role similar to a version management
system in software development or a data warehouse in a database system.The repository is a
generic one, i.e. it is a kind of MOF repository whose structure is not determined by an under-
lying metamodel, thus it can store any MOF based metamodels, models, model instances, OCL
expressions and projects. The artefacts from the repository can be loaded into an IDE4OCL as
working copies and subsequently modified and archived. Specifying thecomplete functional-
ity of a repository is a complex topic beyond the scope of this paper, thus we consider only it
realizing storage and management of models/projects. Other tools can access the repository to
obtain desired OCL expressions together with related models, but as mentioned before we focus
on communication with an IDE4OCL only.

The last tool which is tightly related to an IDE4OCL is aformal verification tool . This tool
has a producer and consumer role, as it can help to obtain semantically correct OCL specifica-
tions and use them to formally verify model instances. It is crucial to have any kind of formal
reasoning supporting an IDE4OCL to be able, e.g. to determine a specification satisfiability or
to detect contradicting constraints. However, formal verification is a too complex problem to be
considered as an integral part of an IDE4OCL. Instead we consider an integration of existing
approaches, such as HOL–OCL2 [BW08] an interactive proof environment based on a semantic
framework described in [Bru07], an interactive theorem prover [BHS07] (the transformation is
a part of the KeY tool3) based on a translation of UML class diagrams with OCL constraints into
first–order predicate logic described in [BKS02], PVS4 a theorem prover together with a trans-
lation of UML class diagrams and a subset of OCL into its input language described in [Kya06].

Two approaches regarding the OCL evaluation can be considered, interpretation and code
generation. The first one we consider to be in the scope of an IDE4OCL functionality, but the
second one not; we outsource it like the formal verification. We consider acode generation
to several target languages, such as Java and SQL, to be in the scope of an MDE tool (model
driven engineering), which obtains OCL Statements and related information from an IDE4OCL.
In case of acode generator, the execution of the target language code is done by a runtime system
independently of an IDE4OCL. The generative approach includes two steps: (1) The code for
an OCL statement must be generated, most frequently by using templates or transformation
rules defined on the metamodel elements for the model and its constraints (Mn+1and Mn). (2)
The generated code must be woven with the model or application code. Another functionality
of an MDE tool, where input from an IDE4OCL can be used, is atransformationof a model
into another model defined on another metamodel. A model (Mn = M1) is transformed using
transformation rules defined on its metamodel (M2). The OCL constraints specified on the model

2 http://www.brucker.ch/projects/hol-ocl/
3 http://www.key-project.org/
4 http://pvs.csl.sri.com/

Proc. OCL 2009 8 / 15

http://www.brucker.ch/projects/hol-ocl/
http://www.key-project.org/
http://pvs.csl.sri.com/


ECEASST

are transformed as well. Examples for model transformations are UML/OCL toSQL schema
transformation5, or UML/OCL to XML/XQuery transformation.

A similar approach is used for testing. Atesting toolgenerates code based on OCL constraints
to verify constraints for objects during software development. Typically, OCL constraints are
defined on a model (Mn = M1) for which a code implementation shall be tested (M0).

As already mentioned, our view of the OCL tool landscape is simplified, but it can beeasily
extendedwith other tools like model execution tools, e.g. [JZM07] or model simulation tools,
e.g. [KDH07] which would communicate with an IDE4OCL in mono- or bidirectional manner
to complete alternative OCL development or OCL usage scenarios. It is important to precisely
define scope of responsibilities, information flow and later on required interfaces.

3 Requirements

Based on the domain description provided in the previous section and our experience in tool
development, we present the requirements for an IDE4OCL: use cases (Section3.1) and features
(Section3.2). We based our selection on passive observation of improvement in OCL tool and
IDE landscape as well as an active participation in OCL tool development. Toincrease the
completeness of the selected features we discussed our selection with our developer teams.

3.1 Use Cases

We distinguished four main use cases (to be realised by IDE4OCL, compareFig. 5), namely
specification, evaluation and verification of statements and project management.

Specify Statement This is the basic use case of an IDE4OCL, where an OCL developer spec-
ifies an OCL statement. We consider here the creation of a new statement fromthe scratch or
modification of an existing one. Since OCL has a well–defined textual concrete syntax, the re-
quirements for editing OCL expressions are similar to those for editing sourcecode in textual
languages. In this use case we consider also such functionality as refactoring, reuse, and debug-
ging, which are described in the feature subsection.

Evaluate Statement A specified statement can be evaluated by an OCL interpreter, which
parses and executes the statement defined on the model for the model instance, working on the
model and its objects (Mn and Mn-1). This use case can be performed on request from an OCL
developer or from another tool in the OCL tool landscape. As mentioned in Section2.2, we
consider the evaluation in form of code generation as an outsourced functionality.

Verify Statement We can consider formal and empirical attempts to verify an OCL specifi-
cation. The former one, as mentioned in Section2.2, we consider to be outsourced, due to its
complexity. The latter one in form of statement testing, should be supported byan IDE4OCL.
Testing is a complementary means to a formal verification. It enables dynamic analysis as op-
posed to formal verification enabling a statical analysis of hybrid models. However, testing of a

5 http://dresden-ocl.sourceforge.net/

9 / 15 Volume 24 (2009)

http://dresden-ocl.sourceforge.net/


Requirements Analysis for IDE4OCL

OCL statement is crucial [CO09], it is not so well–accepted as testing of programs where it is
used as an evaluation and prevention mechanism [GH88]. There are many reasons for testing.
In the context of OCL the most important ones are the facts that testingreduces bugs in existing
and new features, is good documentation, reduces the cost of change,enables refactoring, de-
fends against other programmers and reduces fear[BC03]. An IDE4OCL should at least support
testing at the unit test level, i.e. testing of single OCL statements [CO09].

Manage Project For an efficient support of OCL development, especially if one has to deal
with big projects, management of all artifacts within a project is required. Thisuse case covers
management issues within an IDE4OCL and related to communication with other tools. In
respect of an IDE4OCL, the current status and dependencies between all artefacts as well as
navigation between them should be supported. Concerning the communicationwith other tools,
fetching and storing artifacts from and to other tools should be supported.

3.2 Features elicitation

In this subsection we list general and specific features of an IDE4OCL focusing on the statement
specification use case. To collectgeneral featureswe use experience with existing successful
tools covering different types of textual languages, namely programming and formal ones. The
general features are applicable to an IDE4OCL as OCL has a manifold character. On the one
hand, regarding textual syntax OCL is similar to programming languages and the long term
experience with tools supporting work of programmers can be inspiration fordevelopment of
OCL tools. On the other hand, as it is more formal than programming languages, usually similar
difficulties appear as in the formal specification domain, therefore this field can be a further
inspiration. To collectspecific features(in italics) we based on experience with OCL tool usage
and development as well as our involvement in the standardisation process. As we do not want to
prioritize features we list them in alphabetical order. The prioritizing of features and completion
of the list should be a further discussion topic to become a reference list for development of new
OCL tools or improvement of existing ones.

Association End NavigabilityOCL implementations should support association end navigabil-
ity independently of the navigability of the underlying association in the model. Although
navigability (as defined in UML) should not matter for OCL, the OCL specification is suf-
ficiently vague on this point6 that it creates significant problems for OCL implementations
that provide such support. Proposed improvements for OCL2.17 are important for the
pragmatics of OCL as long as the MOF metamodels are sufficiently well–formed to avoid
ambiguities even if support for navigating non–navigable association endsis available8.

Autocomplete enables predicting a word or phrase that the user wants to type in without theuser
actually typing it in completely. Not only OCL grammar but also an underlying metamodel
has to be included in the autocomplete mechanism. For example, selection or classifiers

6 http://www.omg.org/issues/ocl2-rtf.open.html#Issue10825
7 See Clause 7.5.3 inhttp://www.omg.org/cgi-bin/doc?ptc/09-05-02
8 e.g., seehttps://bugs.eclipse.org/bugs/showbug.cgi?id=194245

Proc. OCL 2009 10 / 15

http://www.omg.org/issues/ocl2-rtf.open.html#Issue10825
http://www.omg.org/cgi-bin/doc?ptc/09-05-02
https://bugs.eclipse.org/bugs/show_bug.cgi?id=194245


ECEASST

after typing the context keyword or suggestions for dot and arrow navigations. The point
to address accessibility of elements, i.e. developing a well–formed OCL requires a careful
check that the references in an OCL expression resolve to accessible elements from the
context of that OCL expression. This feature can improve efficiency and ease of editing
and additionally provide an error prevention mechanism.

Auto Indentation helps to better convey the structure of code to human readers. In case of
OCL, indentation can be used to show the relationship between nested structures.

Basic Editing is a set of features related to editing any kind of text documents, which can be
useful when editing OCL statements. In this category the following features can be con-
sidered: spell checking, regular expression based find & replace (single or multiple line),
encoding and newline conversion, multiple undo/redo, rectangular block selection. These
features can improve ease of editing.

Code Folding enables user to selectively hide and display sections of an edited file, whichis
especially useful in case of editing large files.

Collaborative Editing allows several people to edit a file using different computers. This fea-
ture could be also realized as a repository functionality. The advantage ofits implemen-
tation within an IDE4OCL is possibility of team/pair work to enable knowledge transfer
(e.g. teacher–student) also in the case of geographically spread developers.

Debugging, especially a systematic debugging [Zel05] is unavoidable and a major economi-
cal factor, especially if a language is perceived as difficult to understand so bugs are not
obvious. It should support developers in understanding a nature andcase of a bug offer-
ing functions such as running a statement step by step, breaking a statementto examine
the current state, and tracking the values of some variables. Additionally, itcould enable
to modify the state of variables while an OCL statement is interpreted and setting state
guards. For traceability, automation and logging of all debugging activities isimportant.
A support of test generation based on debugging activities is an optionalfunctionality.

Document Interface is a set of features supporting editing of multiple documents and it covers
support of: multiple instances, single and multiple document window splitting, multi-
ple document overlappable windows, tabbed document interface. It is especially a useful
feature while working with hybrid models and enables following relationships between
textual and graphical notations.

Hybrid OCL/MOF View should provide an Abstract Syntax Tree and additionally highlight the
context of any OCL expression in the MOF–based metamodel. The problem of hybrid
OCL/MOF metamodel view is new and the recent discussions amongst expertsat the
OMG9 indicates that experts could also benefit from better tool support for thishybrid
view.

Macro mechanism enables short sequences of keystrokes and mouse actions to be transformed
into other, usually more time–consuming, sequences of keystrokes and mouse actions.

9 http://www.omg.org/issues/issue7364.txt

11 / 15 Volume 24 (2009)

http://www.omg.org/issues/issue7364.txt


Requirements Analysis for IDE4OCL

Name ResolutionThe environment of an OCL expression defines what model elements are vis-
ible and can be referred to an expression [OMG06, Clause 8.3]. Such references often take
the form of simple or package–qualified names. However, adequate support for name res-
olution in OCL may require additional operations extending the metamodel of the domain
for name resolution purposes as indicated in the OCL specification for the UMLmeta-
model [OMG06, Clause 8.3.8]. In fact, the OCL specification is unnecessarily specific
regarding the UML as the additional operations would be required of any MOF meta-
model which includes the metaclasses extended in Clause 8.3.8. For example, adequate
name resolution for foundational UML (fUML) models10 would not require the additional
operations for State or Transition since fUML does not merge the BehaviorStateMachines
package of the UML superstructure.

Profiler enables performance analysis using information gathered when an OCL State-
ment/Specification is evaluated. In case of programs, it is typically used to determine
for which sections of a program it is profitable to make optimization. Similarly, it can be
used to determine which OCL statements are most frequently evaluated and focus on their
optimization.

Refactoring Support for renaming and restructuring entities preserving the original semantics.
For full support dependencies between statements must be analyzed to perform series of
renaming activities. Also, extracting a definition or a template from a statement should be
supported to avoid code duplications.

Reuse Support can be realized at different levels. At the same abstraction level OCL code can
be reused by composition of statements, template and library import mechanisms. Aspec-
ification from the upper abstraction level can be reused during development of a specifica-
tion at a lower level to to ensure correctness of metamodel instantiation (compare [CPP08,
Feature 2 in Section 5]).

Statement/Element Browserenables to browse, navigate, or visualize (e.g. as an outline) the
structure of an OCL project, including OCL Statements, Elements and Element Instances
(compare [CPP08, Feature 5 in Section 5]).

Statement Coverageis used to measure the degree to which an OCL specification has been
tested. To implement this feature coverage criteria have to be defined.

Static Statement/Specification Analysisis the analysis conducted without evaluation of a
Statement/Specification and provides highlighting possible coding errors andmetrics in
simple cases or proofs of program properties by applications of formal methods. The
second option we will consider as to be outsourced.

Symbol Databaseenables quick and easy location of Statements, Elements, Element Instances
and so on based on indexing.

10 http://www.omg.org/spec/FUML/, OMG document ptc/2008-11-03

Proc. OCL 2009 12 / 15

http://www.omg.org/spec/FUML/


ECEASST

Syntax Highlighting enables displaying OCL code in different colors and fonts according to
the category of terms. As OCL is not a stand alone language, additionally to theOCL
grammar, an underlying metamodel should be considered.Error Highlighting can
be considered as a special type of this features, where syntactical errors related to OCL or
the metamodel (e.g. unknown classifiers used as a context) are stressed by special type of
highlighting.Brace Matching is also a syntax highlighting feature, which show matching
sets of braces to help to navigate through the code and spot any improper matching. Those
mechanisms can improvereadabilityand is an error prevention mechanism.

Template Support enables definition, usage and management of templates. It is related to refac-
toring and reuse features.

Visibility and Lexical ScopingMOF metamodels have complex visibility rules due to the se-
mantics of Element/PackageImport and PackageMerge11. These rules are particularly
confusing because the same package can have two distinct interpretationsdepending on
its role as a source or as a target of a package merge or import relationship. The context–
sensitive interpretation of a package has subtle implications for the name resolution of
OCL constraints in the context of a package with two distinct interpretations about its
extent.

4 Conclusions

In this paper we presented systematic analysis of requirements for an IDE4OCL, which in our
opinion can significantly improve pragmatics of OCL. We identified domain concepts, interac-
tions within OCL tools, use cases and features of an IDE4OCL from the academic, standardisa-
tion and industrial point of view represented by authors and their collaborators experience.

To improve results of our requirement analysis we want to discuss our proposal with members
of the OCL community (questionnaires12 and interviews). Based on their feedback we plan to
realise future design steps of an IDE4OCL and compare existing tools in respect to the final list
of features. Our work should also be considered as a first step to integrate the heterogeneous
landscape of OCL tools. We hope it to be an inspiration for a cooperation between academic
and industrial tool developers, which enables standardisation of exchange protocols between
tools and in the long term will increase usage of OCL by practitioners.

AcknowledgementWe would like to thank Dan Chiorean for his feedback on our work and inspiring discussions

during his visits in Innsbruck and Dresden. Furthermore, we thanks our colleagues from the Dresden OCL developer

team, especially Michael Thiele, for discussing features for an IDE4OCL.

11 Clause 7.3.15,39,40 ofhttp://www.omg.org/spec/UML/2.2/Superstructure/PDF, OMG document formal/2009-02-
02
12 on–line surveys are accessible athttp://squam.info/ide4ocl/

13 / 15 Volume 24 (2009)

http://www.omg.org/spec/UML/2.2/Superstructure/PDF
http://squam.info/ide4ocl/


Requirements Analysis for IDE4OCL

Bibliography

[Ack01] J. Ackermann. Fallstudie zur Spezifikation von Fachkomponenten. In 2. Workshop
Modellierung und Spezifikation von Fachkomponenten. Pp. 1–66. Bamberg, Deutsch-
land, 2001. (In German).

[B+05] T. Baar et al. Tool Support for OCL and Related Formalisms - Needs and Trends. In
MoDELS Satellite Events. LNCS 3844, pp. 1–9. Springer, 2005.
http://lgl.epfl.ch/members/baar/oclwsAtModels05/reportOCLWSAtModels05.pdf

[BC03] E. Burke, B. Coyner. Top 12 Reasons to Write Unit Tests. 2 2003.
http://www.onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html

[BD07] M. Bräuer, B. Demuth. Model-Level Integration of the OCL Standard Library Using
a Pivot Model with Generics Support. Pp. 182–193 in [mod07].

[BHS07] B. Beckert, R. Ḧahnle, P. H. Schmitt (eds.).Verification of Object-Oriented Software:
The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

[Bjo06] D. Bjorner.Software Engineering 2: Specification of Systems and Languages (Textsin
Theoretical Computer Science. An EATCS Series). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[BKS02] B. Beckert, U. Keller, P. H. Schmitt. Translating the Object Constraint Language
into First–order Predicate Logic. InIn Proceedings, VERIFY, Workshop at Federated
Logic Conferences (FLoC). Pp. 113–123. 2002.

[Bru07] A. D. Brucker.An Interactive Proof Environment for Object-oriented Specifications.
PhD thesis, ETH Zurich, Mar. 2007. ETH Dissertation No. 17097.
http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007

[BW08] A. D. Brucker, B. Wolff. HOL-OCL: A Formal Proof Environment for UML/OCL.
In FASE. LNCS 4961, pp. 97–100. Springer, 2008.

[C+07] A. L. Correa et al. An Empirical Study of the Impact of OCL Smells and Refactorings
on the Understandability of OCL Specifications. Pp. 76–90 in [mod07].

[C+08] J. Chimiak-Opoka et al.Advanced OCL Editorbased on Eclipse OCL.Presentation
in theOCL2008Workshop collocated withMoDELS’2008, 9 2008.

[CO09] J. Chimiak-Opoka.OCLLib, OCLUnit, OCLDoc: Pragmatic Extensions for the Ob-
ject Constraint Language. InModel Driven Engineering Languages and Systems,
MODELS 2009,LNCS 5795. Pp. 665–669. Springer Verlag, 2009.

[CPP08] D. Chiorean, V. Petrascu, D. Petrascu. How my favorite tool supporting OCL must
look like. EC-EASST: OCL Concepts and Tools 200815, 2008.

[Dem86] W. Deming.Out of the Crisis. MIT, Center for Advanced Engineering, Cambridge,
MA, USA, 1986.

Proc. OCL 2009 14 / 15

http://lgl.epfl.ch/members/baar/oclwsAtModels05/reportOCLWSAtModels05.pdf
http://www.onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html
http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007
http://squam.info/ocleditor/
http://squam.info/ocleditor/media/2008-09-30-OCLWorkshopDemo.html
http://www.fots.ua.ac.be/events/ocl2008/?page=Program
http://www.irit.fr/models/index.html
http://http://joanna.opoki.com/papers/Opoka2009OCLLibOCLUnitOCLDoc
http://www.springerlink.com/
http://eceasst.cs.tu-berlin.de/
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/22


ECEASST

[DW09] B. Demuth, C. Wilke. Model and Object Verification by Using Dresden OCL. In
Proceedings of the Russian-German Workshop Innovation InformationTechnologies:
theory and practice. Ufa, Russia, July 2009.

[GH88] D. Gelperin, B. Hetzel. The growth of software testing.Commun. ACM31(6):687–
695, 1988.
doi:http://doi.acm.org/10.1145/62959.62965

[JZM07] K. Jiang, L. Zhang, S. Miyake. OCL4X: An Action Semantics Language for UML
Model Execution.Computer Software and Applications Conference, Annual Interna-
tional 1:633–636, 2007.
doi:http://doi.ieeecomputersociety.org/10.1109/COMPSAC.2007.158

[KDH07] A. Kirshin, D. Dotan, A. Hartman. A UML Simulator Based on a Generic Model
Execution Engine. Pp. 324–326. 2007.
http://dx.doi.org/10.1007/978-3-540-69489-240

[Kya06] M. Kyas.Verifying OCL specifications of UML models : tool support and compo-
sitionality. PhD thesis, Lehmanns Media; Faculty of Mathematics and Natural Sci-
ences, Leiden University, 4 2006.
https://openaccess.leidenuniv.nl/dspace/handle/1887/4362

[mod07] Model Driven Engineering Languages and Systems, 10th Int. Conf., MoDELS 2007,
Nashville, USA, Proceedings. LNCS 4735. Springer, 2007.

[OMG06] OMG. Object Constraint Language. OMG Available Specification. Version 2.0. May
2006.
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

[RG99] M. Richters, M. Gogolla. A Metamodel for OCL. InUML. LNCS 1723, pp. 156–171.
Springer, 1999.

[SB08] UML-Intensive Framework for Modeling Software Requirements. 2008.

[SB09] D. Silingas, R. Butleris. Towards Implementing a Framework for Modeling Software
Requirements in MagicDraw UML.Information Technology And Control38(2):153
– 164, 2009.

[SK95] K. Slonneger, B. Kurtz.Formal Syntax and Semantics of Programming Languages:
A Laboratory Based Approach. Addison-Wesley, 1995.

[Zel05] A. Zeller.Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann,
October 2005.

15 / 15 Volume 24 (2009)

http://dx.doi.org/http://doi.acm.org/10.1145/62959.62965
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/COMPSAC.2007.158
http://dx.doi.org/10.1007/978-3-540-69489-2_40
https://openaccess.leidenuniv.nl/dspace/handle/1887/4362
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

	Introduction
	Domain Specification
	Domain Concepts
	OCL Concepts
	Modeling Abstraction Levels
	OCL Development Concepts

	Context Specification

	Requirements
	Use Cases
	Features elicitation

	Conclusions

