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Abstract: The design of business or production systems frequently necessitates to
simultaneously fulfill severallogical and numerical constraintsas requirements in
order to deliver a functionally correct and optimal system. Such a problem can be
typically formulated as a combined optimization and reachability analysis. In the
current paper, we show how this problem can be formalized when the evolution of
the system is captured by graph transformation systems (GTS) with a cost parameter
attached to each graph transformation rule denoting the cost of firing the rule. Fur-
thermore, we discuss how to solve such problems by combining guided state space
exploration with algebraic techniques of Petri nets .

Keywords: graph transformation, Petri nets, optimization, verification

1 Introduction

As the quality of service delivered by business systems becomes more and more crucial to infor-
mation systems, their correct and efficient operation has to be proved already during the design
phase. This way, we need to analyze whether the system simultaneously fulfills logical and nu-
merical conditions. Verification and validation techniques based on formal methods are known
to assure the correctness of the services. Optimization estimates the quantitative boundaries
and characteristics of a system in order to minimize operation time or costs. However, it is a
challenging question how to combine the best practices of the two fields.

For instance, in workflows, each activity can be constrained by certain budget restrictions,
thus a typical requirement is to find the cost-optimal solution trajectory respecting all budget
and temporal correctness constraints along this path that leads to a desirable (target) system
configuration. This can be interpreted as a reachability problem with quantitative or qualitative
measures.

Graph transformation provides a rule and pattern-based manipulation of graph models to spec-
ify the formal semantics of systems in various application fields. Recent successes of the appli-
cation of graph transformation techniques are related to model-driven development (MDD) and
service oriented architecture (SOA).

The current paper proposes (i) a graph transformation based approach that captures the evo-
lution of the system by rules with a cost parameter attached to each graph transformation rule
denoting the cost of firing that rule, (ii) and a solution to the joint reachability and optimization
problem by combining guided state space exploration with algebraic techniques of Petri nets.
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The rest of the paper is organized as follows. Section2 sketches the outline of our solution.
Section3 provides an overview on graph transformation systems and Place / Transition (P/T)
nets and presents a running example where a service system is specified. Section5 gives a more
detailed definition of the problem and our solution. Finally, Section6 discusses related work,
presents our conclusions and proposals for future work.

2 Outline of the solution

Our proposal for solving joint optimization and reachability analysis for graph transformation
systems is summarized in Fig.1.

Figure 1: Approach

The base of our solution is to explore the state space (also called a graph transition system)
induced by the graph transformation system as in case of model checking. However, this traversal
of the state space is restricted by various logical and numerical constraints.

• If a logical constraint is violated, then the corresponding path is cut off permanently (i.e.
subsequent states are no longer investigated), as this path cannot provide a valid solution.

• If some numerical constraint is violated, we act as before by terminating the search along
this path. In addition to user-defined numerical constraints, we keep track of the best cost
solution (so far). If the cost of a solution along a certain path exceeds this best cost, we
cut again the corresponding path.

• If a target state is reached (i.e. the constraint specifying the designated target state is
satisfied), we terminate our search along the specific path.

While these cuts provide efficient techniques to prune the state space later during the search,
it is usually critical to find a good solution as soon as possible. Generic search strategies used in
model checking like breadth-first search or depth first search are unable to provide efficient help.

Therefore, we introduce temporal numerical cuts to guide the state space exploration by tem-
porally pruning the search tree to postpone the unpromising paths.
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These cuts are based on a Petri net abstraction of graph transformation systems introduced
in [VVE+06]. By formulating the target state configuration as submarking of the P/T net, we
can solve the integer linear programming problem of the derived P/T net using the incidence
matrix to determine a transition occurrence vector which delivers a cost-optimal solution.

Obviously, due to the abstractions, this transition occurrence vector might not be fireable, i.e.
there might not exist a corresponding trajectory in the graph transition system. However, this
vector provides excellent guidance for the state exploration strategy. Those branches which are
not compliant with the optimal transition occurrence vector are temporally cut, i.e. compliant
steps are explored first when traversing the state space.

This means that if this minimal cost is exceeded along a path or a graph transformation (GT)
rule is applied more than it is prescribed in the transition occurrence vector, then the explo-
ration of the branch is postponed. If no solution is found on the level of graph transformation
systems (GTS), then the next optimal transition occurrence vector candidate is derived, and the
exploration of the GTS continues towards this direction.

3 Definitions

In this section the basics of graph transformation, P/T nets and ILP problems are shortly dis-
cussed. Before the definition, an example is introduced in order to motivate the problem (that is
revisited several times through the paper).

3.1 Example

As a motivating example, let us assume a reliable service which is composed of individual ser-
vices. The state of a service can beup, down, activeor standby.

• When a service isactive, clients may issue request to it.

• A standbyservice does not accept requests, but it serves as abackupfor another active
service.

• When a service isup, it is operational, but neitheractivenorstandbyrole is assigned to it.
Typically, a service is in anupstate right after repairs have completed.

• Finally, when a service isdown, it is not operating due to some errors until a restart has
initiated.

A certainquality of service (QoS)is required such as throughput or availability, e.g. at least 3
services have to be up at the same time in order to provide sufficient performance when serving
requests. Such a system is shown in Fig.2.

To satisfy this constraint the service configuration has to be designed in an appropriate way.
We assume that regular healthchecks are issued by some middleware service broker. If the cur-
rent health state of services implies that the required QoS parameters cannot be satisfied by the
actual service configuration, reconfiguration operations are to be initiated which lead the system
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Figure 2: An example system providing reliable service

into a state where all QoS constraints are met. However, these operations have costs that have to
be taken into consideration, i.e. we need to find a reconfiguration plan with minimal cost.

The reconfiguration actions of services will be captured by a graph transformation system that
is defined subsequently. An overview on using graph transformations for software architecture
reconfigurations can be found in [BHTV06].

3.2 Graph transformation

A graphG = (N,E,src, trg) is a 4-tuple with a setN of nodes, a setE of edges, a source and
a target functionsrc, trg : E→ N. A type graphTG is an ordinary graph. An instance graph
G is typed overTG by a typing morphismtype: G→ TG. Let card(G,x) denote the cardi-
nality (i.e. the number of graph objects) of typex ∈ TG in graphG. Formally,card(G,x) =
|{n | n∈ N∪E∧ type(n) = x}|.

An example type graph is shown in Fig.3. The type graph contains only oneService node
designated graphically as a rectangle. The edgesactive, standby, down, andup are used to denote
the state of the service such that the source and the target node of this edge is the same node.
Edgebackup connect two different services: when anactive node goesdown a standby node has
to substitute theactive service.

Figure 3: Type graph

Graph transformation. Graph transformation (GT) [CMR+97] provides a rule-based manip-
ulation of graph models. A graph transformation (GT) rule typed over a type graphTG is given

by r = (L l←− K
r−→ R) whereL (left-hand side),K (context) andR (right-hand side) graphs

are typed overTG and graph morphismsl , r are injective. The negative application conditions
(NAC) of a GT rule is a (potentially empty) set of pairs(N,n) with N being a graph also typed
overTG andn : L→ N an injective graph morphism.
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Application of a rule. Theapplicationof a ruler = (L l←− K
r−→ R) to ahost graph Galters

the model graph by replacing the pattern defined byL with the pattern of theR. This is performed
by

1. finding a matchof theL pattern in modelG;

2. checking the negative application conditions Nwhich may prohibit rule application, i.e. if
there is a match ofN in G (as an extension of the match ofL in G), then the rule is not
applicable;

3. removinga part of the modelM that can be mapped to theL pattern but not theR pattern
yielding an intermediate graphD;

4. addingnew elements to the intermediate graphD which exist in theRbut not inL yielding
the derived graphH.

A GT stepis denoted formally asG
r,o

=⇒ H, whereo : L→ G defines the match of the elements
in L to G.

A graph transformation sequence (GT sequence)is a sequence of GT steps, i.e., a sequence of
rule applications:G0

r1=⇒ G1
r2=⇒ G2

.=⇒ ... A GT sequence starting from graphG yielding G′

is denoted shortly byG
∗=⇒ G′ where∗ denotes that more than one GT step may belong to the

GT sequence. In the paper, we follow theDouble Pushout Approach[CMR+97].

Example1 The ongoing example is captured by a set of graph transformation rules in Fig. 4. In
order to simplify the graphical presentation, we simply write the state active, standby, up, down of
the service on the service node (which is denoted by a server symbol) instead of self-loop edges.
This way, only backup edges remain, we also omit the backup labels from the edges, i.e. all edges
in the graphical representation are backupedges.

Figure 4: Rules

1. on adds a new service to the configuration that is initially up.
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2. off removes an up service from the configuration.

3. repair makes a down service become up.

4. failover assumes that there is a down service connected by a backup edge to a standby service:
the effect of the rule is that the standby service becomes active and the backup edge is
deleted.

5. standby creates a backup edge between an active and an up service such that the up service
becomes standby.

6. detach removes the backup edge between an active and a standby service such that the
standby service will be up.

7. register changes the state of service from up to active.

8. Finally, unregister changes the state of a service from active to up in case there is no standby

service connected to the service.

Graph transformation systems with cost. A graph transformation system GTS= (R,TG)
consists of a type graphTG and a finite set of graph transformation rules typed overTG.

A graph transformation system with cost GTSc = (R,TG,c : R→ R+∪{0}) is a GTS where
a cost parameterc(r i) is added to each GT rule denoting the cost of firing that rule. Graphically,
the cost of a rule is denoted by a circled number over the arrow of the rule. Agraph grammar
with cost GGc = (GTSc,G0) consists of a graph transformation systemGTS= (R,TG,c) and a
so-calledstart (model) graph G0 typed overTG.

The cost of a GT sequence is equal to the sum of the cost of the contained GT steps, i.e. the
sum of the cost of the applied rules.

Example2 The cost of the rules are 10,4,8,1,2,1,3,3 units, respectively, denoted by circled
numbers on the GT rule arrow in Fig. 4.

An example start graph G0 is shown in Fig. 5 on the left: the system configuration contains
two active, two standby, and one down services.

State space of a graph grammar. Thegraph transition system(state space) of a graph gram-
marGG= (GTS,G0) is defined as a graph where nodes are instance graphs, and edges are graph
transformation stepsG

r,c
=⇒H such that the source and target nodes of the edge are graphsG and

H, respectively. Starting fromG0 thestate space(i.e. the reachable instance graphs) of theGG
is represented taking into account all applicable rules from a given host graph.

A path in the graph transition system of a GG is a GT sequence denoted byp = (G0
r1,c1=⇒

G1
r2,c2=⇒ . . .

rn−1,cn−1=⇒ Gn) and it is called also as a trajectory between two graphs. Then we say
that a graphG is reachable fromG0 iff there is a path in the GTS. The cost of the path denoted
by c(p) is equal to the sum of the cost of the rules applied in the trajectory, i.e.c(p = (G0

r1,c1=⇒
G1 =⇒Gn)) = ∑c(r i).
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Example3 In Fig. 5 an extract of the graph transition system of our running example is shown.
On the left the root of the graph transition system is the start graph G0 where the system config-
uration contains two active, two standby, and one down services. Rules failover, on, repair, detach,
and unregister are applicable to G0, here we follow only the application of the first three rules.
The cost of the individual paths (starting from G0 to the current graph) is shown on the right of
the graph.

Figure 5: A part of the graph transition system

3.3 Place/Transition nets

In the current section we give a short introduction into the theory of Place/Transition nets based
on [Mur89].

A Place/Transition net (or shortly P/T net) is a 5-tuplePN = (P,T,E,w,M0) whereP is a set
of places,T is a set of transitions,E⊆ (P×T)∪(T×P) is the set of arcs (where no arc connects
two places or two transitions),M0 : P→ N is the initial marking mapping places to nonnegative
integers, whilew : E→ N+ maps arcs to positive integers.

Furthermore•t = {p | (p, t)∈E} denotes the input places, whilet•= {p | (t, p)∈E} denotes
the output places of transitiont. Finally,•p = {t | (t, p) ∈ E} are the incoming transitions while
p•= {t | (p, t) ∈ E} are the outgoing transitions of placep.

A transition t is enabled if each of its input places contains at least as many tokens as is
specified by the weight function, formally,∀p∈ •t : M(p) ≥ w(p, t). The firing of an enabled
transitiont removes aw(p, t) amount of tokens from the input places (p), andw(t, p) tokens are
produced for the output places, i.e.∀p∈ P : M′(p) = M(p)−w(p, t)+w(t, p).

The incidence matrixW of the net describes the net token flow (of the P/T net) when firing
of a transition. Mathematically,W is a |P|× |T|–dimensional matrix of nonnegative integersN
such thatWi j = w(ti , p j)−w(p j , ti), where 1≤ i ≤ |P|,1≤ j ≤ |T|. After firing a transitiont
from markingM, the result markingM′ can be computed by using the incidence matrix:M′ =
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M +W ·et , whereet is a|T|-dimensional unit vector.
A transition firing sequence(or shortly firing sequence)s = 〈ti1, ti2, . . . , tik〉 is a sequence of

transition firings between statesM0 andMk such that〈M0, ti1,M1, ti2, . . . , tik,Mk〉 where for all
1≤ j ≤ k ti j is enabled inM j−1 andM j is yielded by the firing ofti j in M j−1. The set of the
reachable states from a markingM0 in a Petri netPN is denoted byReach(PN,M0) and can be
represented by the so-calledreachability graph. The transition occurrence vectoror Parikh–
vectorσ of a trajectorys= ti1, . . . , tik counts the occurrence number of the individual transitions
in the firing sequence, i.e.σ(t j) = |i l = j, l = 1..k|.

A markingM is reachablefrom a stateM0 (denoted byM0
s=⇒M) if there is a transition firing

sequences from M0 to M. Then the so–called state equation holds:M = M0 +W ·σ , whereσ is
the transition occurrence vector ofs. A markingMpart is partially reachableor coverablefrom
a stateM0 if there is a transition firing sequences from M0 to a markingM such thatMpart ≤M.
Then the following inequality holds:Mpart ≤M0 +W ·σ , whereσ is thetransition occurrence
vector s.

A Petri net with cost parametersis aPNc = 〈PN,c〉, where the cost functionc : T→R+∪{0}
assigns costs to the firing of the individual transitions. Thus,the cost of the firing sequence
can be interpreted as the sum of the cost values of the transitions in the sequence, formally,
c(s) = ∑t∈T c(t)σs(t), whereσs is the transition occurrence vector of the firing sequences, and
c(s) denotes the cost of the firing sequence.

3.4 Integer linear programming (ILP) problems

The standard form of a linear programming (LP) problem is given as a matrix form as follows.
maximizecT ·x,
subject toA·x≤ b, x≥ 0,
where the first row gives the linear objective function while linear constraints are formulated

as an inequality system. In addition,x is the vector of variables,c is the vector of cost parameters
assigned to the variables, and the elements of matrixA are the paramaters of the constraints.

In the following a simple example is given.

• linear objective function:

maximizec1x1 +c2x2,

• linear constraints:

subject to

a11x1 +a12x2≤ b1,

a21x1 +a22x2≤ b2,

a31x1 +a32x2≤ b3

• nonnegative variables:

x1≥ 0, x2≥ 0.
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Other forms, such as minimization problems, problems involving negative variables, etc. can
always be rewritten into an equivalent problem in standard form. Aninteger linear programming
problemis integerif all variables are restricted to be integer.

4 A Petri net abstraction of GTS

Our optimization approach is based on a Petri net abstraction technique recently introduced for
GTS in [VVE+06]. Our motivation behind such an abstraction is that solving the optimization
problem on the P/T level is of much lower complexity than solving the problem directly on the
GTS-level using algebraic optimization techniques.

The essence of this abstraction technique is to derive a cardinality P/T net which simulates
the original GTS by abstracting from the structure of instance graphs and only counting the
number of elements (nodes or edges) of a certain type by placing tokens to a corresponding
place. These tokens are circulated by transitions derived from each GT rule which simulate the
effect of the rule on the number of elements of certain types by adding and removing tokens from
corresponding places. The original technique is extended now to cope with costs assigned to a
GT rule by simply copying them to the corresponding transition.

This mappingF () is defined as follows.

• Types into places.For each node and edgey∈ NTG∪ETG in the type graphTG, a corre-
sponding placepy = F (y) is defined in the cardinality P/T net.

• Instances into tokens.For each node and edgex ∈ NG∪EG in an instance graphG with
typey = type(x), a token is generated in the corresponding markingMG = F (G) of the
target P/T net. Formally, for all placespy = F (y), the marking of the net is defined as
MG(py) = card(G,y).

• Rules into transitions.For each ruler in the graph transformation systemGTS, a transition
tr = F (r) is generated in the cardinality P/T graph such that

– Left-hand side:If there is a graph objectx of type y = type(x) in the L, then an
incoming arc(py, tr) is generated in the P/T net wherepy = F (y) and the weight
of the arcw(py, tr) is equal to the number of graph objects inL of the same type
y. Formally,∀x,y : x∈ L∧ y = type(x)∧F (y) = py =⇒ (py, tr) ∈ E∧w(py, tr) =
card(L,y).

– Right-hand side:If there is a graph objectx of typey= type(x) in R, then an outgoing
arc (tr , py) is generated in the P/T net wherepy = F (y) and the weight of the arc
w(tr , py) is equal to the number of graph objects inR of the same typey. Formally,
∀x,y : x∈ R∧y = type(x)∧F (y) = py =⇒ (tr , py) ∈ E∧w(tr , py) = card(R,y).

– Cost of a rule.For each ruler the cost of the corresponding transition is equal to the
cost of the rule, i.e.c(F (r)) = c(r).

Example4 In Fig. 6 rule failover of our example in Section 3 is shown on the left with the
corresponding type graph. The P/T net abstraction is shown on the right. According to the type
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graph of the example, the corresponding cardinality P/T net has a place for all node types, namely
for type Service, and edge types, namely backup, standby, down, active, and up.

Figure 6: Rulefailover and the corresponding cardinality P/T net

For instance, the left–hand side L of rule failover contains two services and edges backup,
standby and down. Thus the corresponding transition with the same name has four incoming
arcs starting from the corresponding places, where arc (Service, f ailover) has weight 2 since 2
services are present in L. Similarly, the right–hand side of the rule consists of two services and
edges active, and down thus there are three outgoing arcs to places Service, active, and down with
weights 2,1,1, respectively.

In this way whenever rule failover is applied the number of the tokens at the involved places
changes according to the cardinality of the graph types.

The incidence matrix of the P/T net abstraction of the example GTS is in Fig.7. The places
(columns) refer to the type places corresponding to the type graph of Fig.6, while transitions
(rows) refer to corresponding rules of Fig.4.

Note that it was proved that the mappingF () is a proper abstraction in the sense that the
derived P/T net simulates the original GTS as shown in [VVE+06]. In other terms, whenever a
rewriting step is executed in the GTS on an instance graph, then the corresponding transition can
always be fired in the corresponding marking in the P/T net, furthermore, the result marking is
an abstraction of the result graph. In this respect, for all firing sequence in the GTS there is a
firing sequence in the cardinality P/T net but not the other way around. Moreover, the cost of the
two sequences are equal.

A possible abstraction of NACs into cardinality P/T nets is also discussed in [VVE+06]. How-
ever, that abstraction would deliver an integer non-linear programming problem for the optimal
trajectory problem for which solution techniqes have greater complexity than solution techniqes
for an (I)LP problem. Thus we ignore the abstraction of NACs in the current paper.

Since calculating a cost optimal solution on the P/T net level is relatively cheap, this solution
can then be used as a hint when exploring the state space of the original GTS.

5 Optimization of GTS by Guided State Space Traversal

Now we provide a detailed description how to carry out optimization of graph transformation
systems by using a state space traversal strategy guided by optimal solutions of the P/T net
abstraction of the GTS.

Proc. PNGT 2006 10 / 18



ECEASST

Figure 7: Incidence matrix of the P/T net abstraction

5.1 Optimal Trajectory Problem for GTS

Combined reachability and optimization problems can be defined as follows: (i) decide, whether
a particular state of the system is reachable from the initial state using the available resources,
and (ii) if the state is reachable, an optimal trajectory has to be computed. Hence, the problem of
finding an optimal trajectory between the initial and some desired target states can be translated
into anoptimal trajectory (OT) problem.

Frequently, in engineering problems only a subset of nodes and edges is relevant from practical
point of view. Therefore, in case of graph transformation systems ‘partial reachability’ means
that we should reach a graphG that coversthe desired (partial) graphGpartial, i.e. there is a
subgraph of graphG that is isomorphic toGpartial (denoted byG⊇ Gpartial). Then we also say

thatGpartial is partially reachable fromG0, which is denoted byG0
∗,partial
=⇒ Gpartial.

If additional numerical constraints can be given, e.g., a limited cost budget, the optimal
trajectory problem can be described as follows. Given a graph grammarGG = (GTS,G0),
a graphGpartial, and a set of constraintsConst, find a trajectory (path)tr from graphG0 to

graphG (G0
p

=⇒ G) such thatG⊇ Gpartial, and it is optimal, i.e.∀tr ′ : G0
tr ′,partial

=⇒ Gpartial :
c(tr) ≤ c(tr ′), and it satisfies all the requirements inConst. We denote this problem asOT =
((GTS,G0),Gpartial,Const).

Existing solutions to the OT problem. An obvious way to solve the optimal trajectory prob-
lem for GTS is to traverse the entire state space of the graph grammar, e.g. using DFS or BFS
search strategies. However, there is no guarantee when the best cost solution is found, thus the
size of the explored state space may explode easily. In order to be able to handle the size of the
explored state space, we define additional cuts to drive the state space traversal. These cuts can
be either predefined constraints like limited cost budget or an approximate optimal cost that can
prune the search space during the exploration.

In the domain of Petri nets, the optimal trajectory problem was described in [GP06]. In that
paper linear algebraic algorithms (process network synthesis (PNS) algorithms) are used to gen-
erate a candidate transition occurrence vector. Since these techniques do not guarantee the fire-
ability of the solution the feasibility of the candidate is analyzed by subsequent fireability checks.
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5.2 Overview of our solution

In the current paper we propose the following solution (see Figure1) to the optimal trajectory
problem of GTS.

1. At first, the GTS is abstracted into the cardinality P/T net with the cost parameters as
described in Section4.

2. Then subsequent integer programming problems are formulated based on the state inequal-
ity (see Section3) of the P/T net satisfying the following conditions.

• Numerical and logical constraints are encoded into the ILP problem as inequalities.
The violation of these constraints result in the pruning of the state space along a
certain path.

• The goal state or graphGpartial is translated into a markingMpartial that is encoded
into the ILP problem.

• The objective function of the ILP is given by the minimization of the overall cost of
the trajectory.

3. Since the P/T net abstraction does not guarantee that there is an executable rule application
sequence on the GT level for thiscandidate transition occurrence vector, we will investi-
gate its fireability directly on the GT level. In case of an optimal but not fireable solution,
we iteratively derive the next best cost solution to the ILP problem. This way the cost of
this next solution could be higher than the previous one.

A candidate transition occurrence vector counts the number of rule applications, and thus
provide a guaranteed minimal cost (i.e. an underapproximation) for the OT problem by
solving the ILP programming problem derived according to Section5.2.1.

4. The best cost candidate, and the candidate solution vector is used as a hint to guide the
search strategy during the exploration of the GTS state space (for further details, see Sec-
tion 5.2.2).

• If the current best cost is exceeded or an execution path is incompatible with the cur-
rent solution vector, then this path is considered unpromising, and thus its exploration
is postponed.

• If the traversal of the state space fails on the remaining paths, the next best cost
solution is derived and the state space exploration is continued.

5.2.1 Deriving an ILP problem for the optimal trajectory problem of GTS

Let an optimal trajectory problem of GTSOT = ((GTS,G0),Gpartial,Const) be given and let
the abstraction cardinality P/T net beF (GTS) together withM0 = F (G0), and Mpartial =
F (Gpartial).

Since the abstracted P/T net simulates the underlying GTS, for each path (trajectory)p in
the GTS starting fromG0 and leading to an instance graphG which coversGpartial, there is a
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transition firing sequences in the P/T net such thatMpartial is partially reachable fromM0 by s.
In addition, each component of the transition occurrence vectorσ of s is equal to the number of
corresponding GT rule applications in trajectoryp.

Thus such a transition occurrence vectorσ has to satisfy the state inequalityMpart ≤M0+W ·
σ , whereW is the incidence matrix of the P/T net. In other words, the search for an appropriate
GT sequence can be carried out by finding a transition occurrence vector which search is followed
by a firing check, i.e. the existence of an executable GT trajectory which is compatible with the
transition occurrence vector.

Since the cost of a trajectory is equal to the cost of the corresponding transition occurrence
vectorσ , the minimization of the cost of the GTS trajectory is subsumed by the minimization
of c(σ). Since each rule may be applied finitely many times (i.e.σ ∈ N|T|, whereT is the set
of transitions of the cardinality P/T net), we can generate candidate solutions for the optimal
trajectory problem of GTS by the followingintegerlinear programming problem.

minimize
cT ·σ ,

subject to
W ·σ ≥Mpart−M0,
σ ∈ N|T|,

where vectorc is composed of the cost of the corresponding transitions. If there are numerical
constraints, they are also added as inequalities.

5.2.2 Guiding exploration of the GT state space

The idea to use the solution vector of the ILP problem is to guess the best cost solution in order
to drive the state space traversal. The exploration of the graph grammar state space is driven by
heuristics like constraints and by the solution transition occurrence vector in the form of logical
and numerical cuts.

If there is a candidate solution vector we can perform the following checks on the state space
in order to reduce its size.

1. The traversal of a branch of the graph transition graph is suspended, i.e. the discovery of
the unpromising paths is postponed

(a) if the cost of the path from the initial graph to the current graph exceeds the cost of
the candidate solution transition occurrence vector, or

(b) if a GT rule was applied more times then the corresponding transition was fired in
the candidate transition occurrence vector.

2. If a constraint is violated along a path, then the graph transition system is permanently
pruned along that path.

During the exploration of the state space the newly generated instance graphs are analyzed
whether (i) they satisfy all the constraints, or (ii) the goal state is reached, i.e. the required partial
graph is covered by the current state (graph) in the graph transition system. If the cost of a path
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equals to the algebraic optimum, and it also leeds to a goal state, then the optimal trajectory is
found.

If there are no branches to continue the state space traversal (according to the defined cuts
based on the current candidate solution vector), the next best solution to the ILP problem is
generated by excluding the first solution retrieved by the solver with additional constraints. The
optimal solution of the new ILP problem is taken into account in the search strategy during the
exploration of the previously unpromising paths.

The algorithm terminates when the first feasible solution is found i.e. (i) by enumerating
potential costs in an increasing order using the ILP solver, and (ii) checking the feasibility of the
current solution by the model checker. This way all possible solutions are encountered.

5.3 Example: Solving an optimal trajectory problem

The GT optimal trajectory problem is the following. Let given the GG be given as described in
Section3. Then our aim is to find an optimal trajectory from the given initial graph to a goal
state where at least 4 services are active in order to serve 4 requests simultaneously, i.e. there
are at least 4 services in the instance graph with labelactive. An additional constraint is that our
budget is limited: maximum 20 units of cost is available for the reconfiguration of services. For
instance, the pathon, register , on in Fig. 5 is invalid because its operation cost (23) exceeds our
budget.

The abstracted cardinality P/T net and the corresponding (initial and partial) markings are
generated as defined in Section4. The incidence matrix of the example in Section3 is shown in
Fig. 7. The one constraint can be given in a numerical form added to the core ILP problem as
follows.

minimize
(10,4,8,1,2,1,3,3) ·σ

subject to
(4,4,0,0,0,0)≤ (5,2,2,0,1,2)+W ·σ ,
(10,4,8,1,2,1,3,3) ·σ ≤ 20,σ ∈ N|8|.

The first optimal algebraic solution is(0,0,0,2,0,0,0,0), and its cost is 2 cost units. Now let
us start to construct the graph transition system of the GG. Since only one transition is fired in the
solution transition occurrence vector, in the GG only rulefailover is applied (see Fig.8). However,
rule failover cannot be applied subsequently twice, because the left–hand side of the rule cannot
be matched after the first rule application. Therefore the next best solution is generated (such
that the inequality(10,4,8,1,2,1,3,3) ·σ  2 is added to the ILP).

Figure 8: State space of GG
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The next best solution is(0,0,0,1,0,1,1,0), and its cost is 5 cost units. Thus the search
strategy is that only these three rulesfailover , detach, and register are applied exactly once (if
they are applicable). In this way, we omit the traversal those paths where other rules are applied.
Since there is an appropriate GT sequence〈 f ailover,detach, register〉, we terminate the traversal
of the state space as the optimal trajectory is found, see Figure9.

Figure 9: State space of GG

6 Related work

While we believe that the modeling of optimization problems by graph transformation systems
is quite novel idea in the field, it is not unprecedented in a broader research scope, as described
below.

Analysis of Petri nets. The literature of Petri nets is quite rich in papers that solve reachability,
or scheduling problems using linear algebraic techniques.

The use of integer programming methods in the (reachability) analysis of Petri nets is not a
novel idea. In [MR97] deadlock detectionwas reduced to a mixed integer linear programming
problem. In [KK00] the authors presented a further development of this approach to provedead-
lock detection, mutual exclusion, and marking reachability and coverability. This solution was
based on theunfoldingof the Petri net. Another unfolding-based solution is discussed forsafe
Petri nets in [ES01].

Linear algebraic algorithms were used to solve the Petri net reachability problem without state
space explosion in [Des98, STC98]. These techniques are powerful, and they provide semi–
decision techniques to decide the reachability of a given marking (similarly as our method).

A Petri net based technique was presented to solve reachability problems of GTS recently
in [VL06]. A commonality in this approach and our technique in [VVE+06] is that both abstract
from the graph structure, thus node and edge types are considered instead of the nodes and edges
themselves.
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Optimal trajectory problem. The first author studied the problem of simultaneous optimiza-
tion and reachability analysis in the field of Petri nets in various papers [GP03, GP06]. The
essence of the approach is to use Process Network Synthesis (PNS) algorithms (well-known
techniques in the field of chemical engineering) to derive the optimal solution, and then check
whether the target state is reachable along the optimal path. In case of failure, PNS algorithms
derive the next optimal solution, and the reachability of this trace is checked again. Several
heuristics are used to filter unreachable solutions quickly without the traversal of the state space.

We studied a joint optimization and reachability problem in case of graph transformation with
time in [GSV04] using the model checker SPIN. However, this method required an a priori upper
bound on the number of the graph elements of a certain type.

The use of various model checking techniques for optimization problems were reported in
[Ruy03] where scheduling problems were solved using a direct SPIN encoding. Our technique
presented in the paper can also be regarded as a directed model checking approach as categorized
by [EJL06]. They use (an ad hoc) SPIN encoding for the analysis of graph transition systems.

Model checking tools for GTS. There are several model checking approaches to analyze graph
transformation systems. One can categorize them asinterpreted approacheslike [BK02,Ren04,
KK06], which store system states as graphs and directly apply transformation rules to explore
the state space, andcompiled approachessuch as [SDR04,SV03,EJL06] which translate graphs
and graph transformation rules into off-the-shelf model checkers to carry out verification.

We believe that most of these approaches can potentially be extended in the future to handle
cost attributes as well for optimization and verification (e.g. exposed by temporal constraints)
purposes. In particular, GROOVE [Ren04] can directly be used to implement our approach
(by adapting its search strategies appropriately), and we believe that unfolding based cuts and
optimization is also an interesting direction for the future based on AUGUR [KK06].

7 Conclusions and Future Work

In the paper, we studied the optimal trajectory problem for GTS, a combined optimization and
reachability problem. We proposed to use graph transformation extended with rule costs for
modeling the evolution of systems where the cost of the operation to be performed is crucial.
In this way, we are able to find the optimal transformation sequence leading to a desired system
configuration defined by a reachable (partial) state.

The proposed solution for the optimal trajectory problem for GTS is based on the use of the
P/T net abstraction and algebraic optimization techniques to reduce the traversed state space of
the GTS. The main advantages of the approach are that (i) the GTS based modeling provides
a highly expressive technique for the modeling the evolution of the system, (ii) using P/T net
abstraction and optimization techniques provides good initial candidates to drive state space
exploration (iii) the system structure does not have to be a priori bound (which is an extension to
our own previous work [GSV04]).

Future work. In the future work, we plan to implement this approach by altering search strate-
gies in GROOVE, which provides extensive support for identifying isomorphic graphs and its
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ability the proper handling of symmetries, etc. for state space exploration. Optimization is fore-
seen to be carried out using off–the–shelf optimization tools like GAMS or CPLEX.

A possible performance measure to evaluate our approach could be the comparison of the
number of the traversed graphs in the graph transition system using different search strategies.
In addition, we can also measure the total execution time of optimization runs with the chosen
tool set. This latter can be further accelerated by precomputing the firstn algebraic optimum
before starting the state space exploration itself.
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[SV03] Á. Schmidt, D. Varŕo. CheckVML: A Tool for Model Checking Visual Modeling
Languages. In Stevens et al. (eds.),Proc. UML 2003: 6th International Conference
on the Unified Modeling Language. LNCS 2863, pp. 92–95. Springer, San Fran-
cisco, CA, USA, October 20-24 2003.

[VL06] P. P. P. Velasco, J. de Lara. Petri Nets and Matrix Approach to Graph Transformation:
Reachability. 2006. To appear.

[VVE+06] D. Varró, S. Varŕo-Gyapay, H. Ehrig, U. Prange, G. Taentzer. Termination Analysis
of Model Transformations by Petri Nets. InProc. Third International Conference
on Graph Transformation (ICGT 2006). LNCS 4178, pp. 260–274. Springer, Natal,
Brazil, 2006.

Proc. PNGT 2006 18 / 18


	Introduction
	Outline of the solution
	Definitions
	Example
	Graph transformation
	Place/Transition nets
	Integer linear programming (ILP) problems

	A Petri net abstraction of GTS
	Optimization of GTS by Guided State Space Traversal
	Optimal Trajectory Problem for GTS
	Overview of our solution
	Deriving an ILP problem for the optimal trajectory problem of GTS
	Guiding exploration of the GT state space

	Example: Solving an optimal trajectory problem

	Related work
	Conclusions and Future Work

