
Electronic Communications of the EASST
Volume 57 (2013)

Proceedings of the
Second International Workshop on

Bidirectional Transformations
(BX 2013)

Understanding bidirectional transformations with TGGs and JTL

Alessio Bucaioni, Romina Eramo

20 pages

Guest Editors: Perdita Stevens, James F. Terwilliger
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Understanding bidirectional transformations with TGGs and JTL

Alessio Bucaioni1, Romina Eramo1

1name.surname@univaq.it
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Università degli Studi dell’Aquila, Italy

Abstract: In Model-Driven Engineering bidirectional model transformations emer-
ged as an important ingredient to cope with scenarios such as change propagation,
synchronization and to keep consistent system views whenever changes occurring
on some view have to be propagated over the others. However, bidirectional map-
pings open a number of intricate issues that have been only partially solved by re-
search.

This paper identifies a set of features characterizing bidirectional transformations
and validates them against two existing approaches. In particular, a scenario based
on the UML2RDBMS transformation and consisting of two different configurations
is implemented by means of two different approaches, such as Triple Graph Gram-
mars and the Janus Transformation Language, for understanding bidirectional trans-
formations with respect to the elicited features.

Keywords: TGGs, JTL, bidirectional transformations, MDE

1 Introduction

In Model-Driven Engineering (MDE) [Sch06] model transformations are considered as the
gluing mechanism between the different abstraction layers and viewpoints by which a system
is described [Béz05, SK03]. Given the variety of scenarios in which they can be employed,
each transformation problem can demand for different characteristics making the expectation of
a single approach suitable for all contexts not realistic.

Often it is assumed that during development only the source model of a transformation under-
goes modifications, however in practice it is necessary for developers to modify both the source
and the target models of a transformation. In this context, bidirectional transformations play a
key role in dealing with scenarios such as change propagation, synchronization and consistency
management whenever changes occurring on some model have to be propagated over the others.

A number of approaches and languages have been proposed due to the intrinsic complexity of
bidirectionality. Each one of those languages is characterized by a set of specific properties per-
taining to a particular applicative domain [CH06, Ste08]. Unfortunately, the existing approaches
are affected by the intrinsic characteristics of model transformations, that have been only par-
tially considered by research; in general, transformations are not injective [Wit05], in fact, each
time a change occurs there is no guarantee to obtain a unique reverse result. Furthermore, trans-
formations are not total, i.e. only the relevant concepts of the source models are mapped toward
the corresponding target elements [HLR08].

1 / 20 Volume 57 (2013)

Understanding bidirectional transformations with TGGs and JTL

The contribution of this work is: (i) to identify a set of pragmatic features characterizing bidi-
rectional model transformations and (ii) to validate them against two bidirectional approaches,
such as the Triple Graph Grammars (TGGs) [Sch95], a bidirectional approaches based on graph
grammars and the Janus Transformation Language (JTL) [CDEP11], a constraint-based bidirec-
tional language.

The UML2RDBMS transformation scenario consisting of two different configurations is im-
plemented by means of the selected approaches for understanding the practicality of bidirectional
transformations with respect to the elicited features. At the same time an evaluation of the imple-
mentations is provided highlighting differences and similarity between the approaches and giving
a cue to identify their possible applications. We take into account a different version as the trans-
formation is proposed in the literature, i.e., with the non isomorphic source (UML) and target
(RDBMS) modeling languages. In order to apply the approaches to specific contexts concerning
bidirectionality and change propagation, we implement the transformation by means of selected
tools: in particular, we consider the EMorF and the eMoflon tools (both implementing TGGs)
and the JTL framework. On the one hand, TGGs are a formally founded bidirectional language
relying on multiple implementations, while JTL is a promising approach actively researched. On
the other hand, they both consider intrinsic characteristics affecting bidirectionality.

The structure of the paper is as follows: Section 2 presents the UML2RDBMS scenario, while
Section 3 introduces our set of features for bidirectional approaches. Section 4 describes the
TGGs and JTL approaches and shows how the transformations are specified, while Section 5
execute them on the considered transformation and discusses the selected features of the consid-
ered bidirectional approaches. Furthermore, Section 6 provides an overview of related works in
the area. Finally, Section 7 draws the conclusions and presents future works.

2 Scenario

Bidirectional model transformations brings some not obvious issues mainly addressable to the
non-injectivity and the non-totality of transformations as well as its own expressivity [HLR08].
To better illustrate such difficulties, hereafter we will consider a non-bijective class diagram to
relational data base (UML2RDBMS) benchmark scenario [CFH+09, HLR08]. A simplified ver-
sion of the UML and RDBMS metamodels are depicted in Figure 1a and Figure 1b, respectively.
Only persistent classes are mapped to correspondent tables and their attributes to columns in the
tables, including inherited attributes. In order to preserve all the information of the source dia-
gram attributes of non-persistent classes have to be distributed over those tables stemming from
persistent classes which access non-persistent ones.

Although trivial, the scenario shows how intrinsic characteristics of bidirectional transforma-
tions may cause side effects when transforming models in forward and backward directions and,
especially, when propagating changes in a round-trip process. This is illustrated by means of the
following scenario configurations.

Proc. BX 2013 2 / 20

ECEASST

2.1 Scenario configuration 1

Dealing with bidirectional transformations the invertibility of the function may be frustrating
when the transformation is not bijective, which causes ambiguities when trying to map back
corresponding target.

(a) (b)

Figure 1: Simplified UML (a) and RDBMS (b) metamodels

(a)

Person

 name {is_primary}

Worker
working_address department

Employer
{persistent}

University

PK name

working_address

University

Employer

department

PK name

working_address

Professor

department
number_of_publications

number_of_publications

Professor
{persistent}

(b)

Person

 name {is_primary}

Worker
working_address department

Employer
{persistent}

University

PK name

working_address

University

Employer

department

PK name

working_address

Professor

department
number_of_publications

number_of_publications

Professor
{persistent}

Figure 2: The UML model (a) and the correspondent RDBMS model (b)

In order to illustrate the difficulties which may occur, Figure 2a shows a UML model. In par-
ticular, the package university is composed of an inheritance hierarchy of classes. The persis-
tent class professor, with attribute number of publications, inherits from the persistent
class employer, with attribute department. The parent class worker is not persistent and
contains the attribute working address. Finally, the top parent non-persistent class person
has the attribute name.

3 / 20 Volume 57 (2013)

Understanding bidirectional transformations with TGGs and JTL

Applying the UML2RDBMS transformation to the class diagrams depicted in Figure 2a, the
schema in Figure 2b is obtained. In particular, the inheritance hierarchy of non-persistent classes
person and worker and persistent class employer is flattened as a single table employer that
has columns for all the fields of the various classes. In general, attributes of the parent classes
induce the corresponding columns in both the parent and child classes, then the table professor
inherits all the attributes of the table employer. It gives rise to non-injective mappings.

Furthermore, in order to obtain the original source model from the target, the transformation
should be able to preserve all the information of the UML model: i.e., non-persistent classes
have to be generated again and attributes have to be restored in the original classes.

2.2 Scenario configuration 2

It is common that manual changes might be performed by designers on the generated models in
order to resolve unforeseen requirements or limited expressiveness of the involved metamodels.

For example, let us suppose that the generated model is manually modified as depicted in
Figure 3a. The first change involves a new column email which has been added in the table
employer. This gives place to an interesting situation since such modifications can be reflected
to the source model in Figure 2a in three alternative ways: the attribute (corresponding to the
manually added column) can be associated with the class employer or with each of parent
classes worker and person, as in Figure 3b. Consequently, more than one source model cor-
rectly propagating the changes exist.

(a)

(b)

Figure 3: The modified RDBMS model (a) and the correspondent UML model (b)

Intuitively, each time a UML model is mapped to the correspondent RDBMS model a loss
of information may cause ambiguities when trying to map back corresponding target revisions.
For instance, if the designer of the RDBMS model in Figure 3a wants to specify the location of
the tables (that is whether the data of a given table is retrieved from remote or local resources)
the considered model has to be improved and the isLocal attribute of the metaclass Table

Proc. BX 2013 4 / 20

ECEASST

has to be considered as shown in the new version of the RDBMS model in Figure 3a. Because
of the limited expressive power of the considered UML metamodel which does not support this
annotation, such a revision does not have counterparts in the UML model in Figure 3b.

3 Evaluation features

In this section we identify and describe a set of pragmatic features which we use to characterize
the considered bidirectional model transformation approaches. The relevance to address bidi-
rectional requirements has been acknowledged in the literature. In particular, by relying on the
classification of model transformation approaches in [CH06], the definitions given in [HLR08]
and the requirements and issues provided in [Ste09], we have selected a number of features,
which are considered relevant for evaluating bidirectional approaches, preserving the opportu-
nity to extend this set. In this work we focus mainly only on those features which are differently
supported by the considered approaches.

3.1 Reverse

There are two main approaches for realizing bidirectional transformations: (i) by programming
forward and backward transformations in any convenient unidirectional language, i.e., the back-
ward transformation is given by user (we refer this case with given) or (ii) by using a bidirec-
tional transformation language where each program describes both a forward and a backward
transformation simultaneously (we refer this case with computed). A major advantage of the
latter approach is that the consistency of the transformations can be guaranteed by construction.
Contrariwise, an approach requiring the reverse transformation to be given by the user is cum-
bersome and error-prone; in fact, the designer needs to manually ensure the consistency. The
user has to guarantee also that the given reverse behaves like the mathematical inversion, i.e., it
has to be guaranteed that f = f ◦ f−1 ◦ f . If this property cannot be guaranteed, synchronization
possibilities are reduced [HLR08].

3.2 Non-injective source/target relationship

The difficulty faced with bidirectional transformation is the often neglected fact that transforma-
tions are non-injective in general.

The ability to specify non-injective transformations is a not obvious characteristic. Consid-
ering the correctness property as defined in [Ste09], given two models the bidirectional trans-
formation must ensure the consistency relation between them when applying the transformation
both in forward and backward directions. However, the correctness of a transformation may fail
whenever more than one source model (not exactly the original one) may be obtained from the
generated target. In case of changes, when applying a transformation to a pair of models which
are inconsistent, there can be more than one way in which consistency could be restored (like the
addition of the column email in Figure 3). In this case, in order to guarantee correctness, each
source model propagating the changes may be transformed into the original target model via the
forward transformation without additional side effects [CDEP11].

5 / 20 Volume 57 (2013)

Understanding bidirectional transformations with TGGs and JTL

To deal with this kind of situations there are at least two kinds of techniques. In particular,
additional constraints can be added during the implementation of the transformation in order
to avoid ambiguities. In other words, the mappings are made injective, in the sense that there
can be only one way (encoded in the transformation code) to restore the consistency relation
(programmatic solution). Alternatively, depending on the adopted tool, the transformation is
able to generate all the feasible solutions according to the consistency relation embodied in the
specified transformation (multiple solutions).

3.3 Partial domain coverage

Transformations in general are partial, i.e. there are concepts in the source model that do not
have a correspondence in the target model and vice-versa. Considering a transformation as a
function, the partiality correspond to a not surjective function (i.e., the image does not fill the
whole co-domain of the function). By running the transformation in the backward direction,
elements which do not have a counterpart may be lost (e.g., see the non-persistent classes in
Figure 2, and the added property isLocal in Figure 3). A bidirectional approach can be able
to deal with a partial coverage of the transformation domains in two different way: by modify-
ing the transformation with mappings involving the neglected elements (forced mapping) or by
implementing a dedicated support to maintain and re-generate elements which are outside the
transformation domain.

3.4 Tracing

Some of the difficulties arising from the forward and backward executions of transformations
can be addressed by means of a dedicated management of tracing information [PDK+11] which
collect different aspects of transformation executions.

In particular, trace links between source and target model elements may be created and main-
tained to contribute to the resolution of some ambiguities (for example, when restoring back the
attributes in the original parent classes in Figure 2). Furthermore, links between source and target
elements should also consider elements discarded by the mapping for recording the information
lost in the current execution of the transformation, which need to be stored and regenerated
during the backward transformation (for example, the added property isLocal in Figure 3).

The relevance of these features emerges in those applications demanding the preservation of
a coherent description of the whole system, when asynchronous changes occur on source or
target model and need to be propagated in the opposite direction (e.g., consistency management,
synchronization, change propagation, round-trip engineering).

Model synchronization (as intended in [HLR08]) can be considered a functional transforma-
tion: two models are synchronised with respect to a transformation if applying it to the source
model yields the relevant version of the target model (i.e., the source model is mapped to the
subset of target elements involved in the transformation). In contrast, the relevance to neglect
functionality considering non-injective and non-surjective mappings arises when models have to
be synchronized again if the target model changes. In this context, each particular applicative
domain demands for different properties. For example, there exist scenarios in which having
multiple solutions to a model transformation problem is a desired outcome. In other cases, de-

Proc. BX 2013 6 / 20

ECEASST

velopers may restrict transformations using programmatic solutions for efficiency reasons.

3.5 Incrementality

Incrementality refers to the ability to update existing target models based on changes in the
source models, and vice versa [CH06]. In particular, incremental transformations synchronize
two models by propagating modifications such that information not covered by the transforma-
tion can be preserved and the computational effort can be minimized. In contrast, a classical
batch transformation synchronizes two models taking a source model as input and computes the
resulting target model from scratch, and vice versa [GW09].

Incrementality is used in change propagation scenario in order to update existing target models
based on changes in the source models. A subsequent execution with the same source models
as in the previous execution has to detect that the needed target elements already exist. This
detection can be achieved, for example, by using traceability links. When any of the source
models are modified and the transformation is executed again, the necessary changes to the
target are determined and applied. At the same time, the target elements may be preserved. In
general, incremental transformations are able to avoid information loss (for example, elements
discarded by the mapping as depicted in the previous Section).

Incrementality is an important feature in model transformation that deserves a more extensive
discussion. However, for the purposes of this work, technical details will not be processed and
incrementality is discussed focusing on the benefits gained with regard to the considered issues .

In the following sections, we present how the considered scenario is specified and executed by
means of TGGs and JTL and discuss the evaluation of the approaches using the features defined
in this section.

4 Specifying the transformation with TGGs and JTL

This section introduces the TGGs and the JTL approaches and how the UML2RDBMS transfor-
mation is specified by means of them1. The TGGs transformation specification is given with
the EMorF notation, which can be considered as a general abstract syntax for the approach.
Whereas, the JTL transformation is specified by means of its own textual syntax.

4.1 TGGs

TGGs as introduced by Schürr [Sch95, KS06] belong to the class of graph transformations, and
it is considered as a natural framework for specifying bidirectional model transformations.

Formally, a triple graph grammar T GG := (T G,R) consists of a type graph triple T G and a
finite set R of rules, where T G is a triple of connected type graphs denoted as T G = T GS ←
T GC → T GT , while a rule r = (LHS,RHS) can be considered as a graph rewriting rule com-
posed by a left-hand side LHS and a right-side RHS. Exploiting the similarities between graph

1 In this paper the details about the whole implementation are not described due to space restrictions. The interested
reader can access the full implementation of all the approaches at http://jtl.di.univaq.it/download.php

7 / 20 Volume 57 (2013)

Understanding bidirectional transformations with TGGs and JTL

schemata and metamodels, graph and models, in TGGs the three graph schemata represent the
source and the target metamodels, and the correspondence metamodel, which keeps track of the
links between the source and the target elements. TGG specifies consistent mappings between
elements of the source and the target metamodels. A TGG rule is applied whenever a match of
LHS occurs in a model m, yielding to a new model m′ where the elements of m bound to LHS
are replaced by RHS.

TGG rules are used to generate the related TGG language, thus the class of consistent triple
graphs (i.e. source, correspondence and target). Moreover, starting from their specification,
operational forward and backward rules for implementing bidirectional model transformations
are automatically derived.

Figure 4: TGGs rule in EMorF notation

Within the available tools for TGGs, eMoflon 2 has been widely considered as the reference
one. It is able to deal with both batch and incremental model transformation [LAVS12] and it is
realised as a set of two plug-ins: one add-in for the Enterprise Architect (EA) tool 3 and one plug-
in for EMF. The usage of eMoflon is basically a two-steps-chain: the rule specification inside
EA, and the transformation execution inside EMF. Another emerging TGGs tool, developed
from the FUJABA creators, is EMorF 4 which is an Eclipse Modelling Framework (EMF) tool
and offers, perhaps, an easier way to manage TGGs avoiding tools chains. It allows the modeller
to graphically specify a model transformation between a source and target models conforming to
some EMF metamodels. The TGG rules within a transformation scenario are specified by a set of
.emorf diagram files and grouped in a single .emorf file: this file is actually a metamodel with the
.emorf diagram files as elements. Once the rules are successfully specified, the transformation
can be launched in forward, reverse or mapping mode.

Figure 4 depicts a TGG rule in EMorF notation; it represents one of the rules specifying
the mapping between Attribute and Column described in Section 2. Intuitively, a TGG rule

2 www.moflon.org
3 www.sparxsystems.com
4 www.emorf.org

Proc. BX 2013 8 / 20

ECEASST

specifies consistent mapping between elements of the source and target metamodels, e.g. in
Figure 4 the metaclass Attribute of the source domain is mapped in the metaclass Column
of the target domain. The separation of the metamodels is given by vertically splitting the rule
in three areas. The top-part of the rule represents the pre-condition, whose elements are marked
with the modifier <<bind>>; all the other elements marked with the modifier <<create>>
compose the body of the rule. In the bottom part four OCL expressions are visible: they are used
to constraint the rule behaviour, i.e. <<constraint>>, or to specify the value of some model
element properties, i.e. <<assignment>>.

According to the transformation, the rule generates two columns for each primary attribute
of a parent persistent class: one in the table generated from the parent class and one in the
table generated from the child class. Additionally the columns are marked as primary key of the
respective tables. Being more precise, the body of the rule is executed whenever the precondition
is satisfied, thus each time two classes, c1 and c2, related by a parent relation parent, map the
corresponding tables, t1 and t2; consequently, each primary attribute a1 of the parent class,
is transformed in two columns, c1 and c2, one for each table considered in the precondition;
moreover the name of the columns is specified according to the OCL assignments on the target-
domain side of the rule. The whole specification of the transformation is a set of nine rules.

4.2 JTL

JTL is a constraint-based model transformation language specifically tailored to support bidirec-
tionality. The implementation relies on the Answer Set Programming (ASP) [GL88], which is a
form of declarative programming oriented towards difficult (primarily NP-hard) search problems
and based on the stable model (answer set) semantics of logic programming.

1transformation uml2rdbms(uml:UML, rdbms:RDBMS) {
2 ...
3 relation AttributeToColumn {
4 an, at : String;
5 enforce domain uml c:Class {
6 attrs = attr: Attribute { name = an, parent = c, is_primary = false }
7 };
8 enforce domain rdbms t:Table {
9 cols = col: Column { name = an, parent = t }

10 };
11 }
12 top relation SuperAttributeToColumn{
13 enforce domain uml c: Class {
14 parent = sc: Class { }
15 };
16 enforce domain rdbms t: Table {
17 };
18 when {{ ClassToTable(c, t); } or { SuperAttributeToColumn(cc, t); cc = c.parentOf; }}
19 where { AttributeToColumn(sc, t); }
20 }
21}

Listing 1: Fragment of the UML2RDBMS transformation in JTL

JTL adopts a QVT-R like syntax and allows a declarative specification of relationships be-
tween MOF models. The language supports object pattern matching, and implicitly creates trace
instances to record what occurred during a transformation execution. A transformation between

9 / 20 Volume 57 (2013)

Understanding bidirectional transformations with TGGs and JTL

candidate models is specified as a set of relations that must hold for the transformation to be
successful: in particular, it is defined by two domains and includes a pair of when and where
predicates which specify the pre- and post- conditions that must be satisfied by the elements of
the candidate models. A transformation can be invoked for enforcement or as checkonly. When
invoked for enforcement, it is executed in a particular direction by selecting one of the candidate
models as the target. A transformation can also be invoked in bidirectional mode by marking as
enforcement both domain directions.

The semantics is given in terms of ASP. The transformation engine is written in the ASP lan-
guage and consisting of bidirectional rules able to interpret the correspondences among elements
and execute the transformation. Then the ASP solver finds and generates, in a single execution,
all the possible models which are consistent with the transformation rules by a deductive pro-
cess. A JTL program (as well as models and metamodels) is automatically translated into an
ASP program. In order to understand how a model transformation is derived in ASP, we define a
transformation TASP := (Σ,R,C) which consists of a signature Σ specifying the input and output
types of the transformation, a set of relations R, which describe correspondences among element
types of the source and target metamodels, and a set of constraints C, which specify restrictions
on the given relations. Relations between element types are derived from the relations of the JTL
transformation, whereas constraints translate: (i) the model patterns that must be matched by the
model elements of the domain and (ii) pre- and post-conditions that must be respected.

The overall architecture of the JTL framework has been implemented as a set of plug-ins of
the Eclipse framework and mainly exploits the Eclipse Modelling Framework (EMF)5.It makes
use of the DLV solver 6 (which has been wrapped and integrated in the overall environment) to
execute transformations in both forward and backward directions.

Listing 1 depicts a fragment of the UML2RDBMS transformation, which is expressed in the
textual concrete syntax of JTL and applied on models given by means of their Ecore repre-
sentation within the EMF framework. In particular, the following relations are defined: a) At-
tribute2Column, which relates attibutes and columns in the two different metamodels and b) Su-
perAttribute2Column, which relates attributes of the parent class to columns of the corresponding
child table. The when and where clause specify conditions on the relation. In particular, the when
clause in Line 18 allow to navigate the parent classes of each attribute, then the where clause in
Line 19 generates the correspondent columns. These relations are bidirectional, in fact both the
contained domains are specified with the construct enforce.

According to the proposed approach, the designer task is limited to specifying relational model
transformations in JTL syntax and to applying them on models and metamodels defined as EMF
entities within the Eclipse framework.

5 Executing transformations in dedicated operational environments

In this Section we discuss the execution of the UML2RDBMS transformation specified by means
of TGGs and JTL. To this end, the corresponding execution environments are considered and
characterized with respect to highlighted features. In particular, we consider EMorF and eMoflon

5 http://www.eclipse.org/modeling/emf/
6 http://www.dlvsystem.com/

Proc. BX 2013 10 / 20

ECEASST

for TGGs, and the JTL framework for the JTL language.

5.1 Scenario configuration 1

In this Section the UML2RDBMS transformation specified in the previous Section is executed
in configuration 1 by means of EMorF, eMoflon and JTL framework.

5.1.1 Scenario configuration 1: EMorF

The models involved in the first scenario configuration are those in Figure 2: the source UML
model is basically a hierarchy of four classes: employer and professor are non-persistent
in contrast with person and worker that are persistent. The forward execution of the trans-
formation has unexpectedly generated the RDBMS1 model in Figure 5 slightly different from
the one depicted in Figure 2: the tables employer and professor instead of containing all
the attributes inherited from all the parent classes, contain the column representing the owned
attributes, and the working address and number of publications attributes, derived from
the person and worker parent classes. From the best of our knowledge, this issue is due to the
EMorF implementation, which is not strictly aligned with the TGGs theory and does not support
transitive-closures. Theoretically, in TGGs, it could be possible to navigate a model for obtaining
all the necessary bindings, by means of OCL constraints. An example of such a constraint might
be: c1→ closure(parent)→ includes(c2),where c1 represents the child class and c2 the parent
one. However, the current implementation of EMorF does not support the multiple bindings for
the elements marked as <<bind>> in the rule specification. An improvement of the EMorF
engine could overcome this lack of expressiveness.

Figure 5: Scenario configuration 1 - execution within EMorF

It is important to note that the RDBMS1 model in Figure 5 also differs from the expected one
in Figure 2.b for the name of some columns, which end with the own suffix; such a naming con-
vention has been needed in order not to loose the inheritance information on the attributes during
the execution of the backward transformation. The backward transformation has been launched
on the generated RDBMS1 model, which has been assumed to be correct. Thanks to the adopted
naming convention the transformation is able to properly restore the package university, the
classes employer and professor, and the department and number of publications at-
tributes, while it is not able to restore any information about the parent relations. Moreover, the
non-persistent classes person and worker, since not existing in the RDBMS model, are not
considered in the transformation and thus not re-generated in the backward execution (UML′1

11 / 20 Volume 57 (2013)

Understanding bidirectional transformations with TGGs and JTL

model in Figure 7). Conceptually, this is caused by the loss of information due to the non-
surjectivity of the transformation that, being partial, does not involve all the source/target model
concepts in the transformation itself. The naming convention, as other techniques, try to over-
come this issue forcing the surjectivity of the transformation. It is important to note that, we
presume a correct target UML model could be obtained introducing other naming conventions.
Nevertheless such techniques, even if theoretically feasible, can be time consuming and error
prone. Tracing mechanisms [PDK+11] might be employed to overcome all those issues due to
non-bijectivity of the transformation: in such a case an improvement of the TGGs paradigm is re-
quired in order to manage the tracing instances used to record also elements which are discarded
during the transformation execution.

5.1.2 Scenario configuration 1: eMoflon

The considered scenario configuration has been realized as a batch transformation and its result
is depicted in Figure 6. Despite both EMorF and eMoflon rely on the same model transformation
approach, thus TGGs, the result of the execution maintain some differences due to the maturity of
the tools. More precisely, the forward transformation within eMoflon has produced the expected
RDBMS model, i.e. the model in which the two persistent classes employer, professor are
correctly transformed along with all the attributes in the hierarchy. This was possible thanks to
the usage of so called auxiliary rules and a runtime configuration mechanism. The former are
normal unidirectional graph transformation rules which increase the expressiveness of the trans-
formation (in our example they are used in order to perform the transitive closure). The latter is
a mechanism which helps eMoflon to handle the non-determinism of a transformation, detecting
any potential rule overlappings and asking to the user, i.e. at run-time, to solve ambiguities.
Considering the backward execution, the generated UML model, i.e. UML′1 in Figure 6, still dif-
fers from the expected one depicted in Figure 2 since it does not contain the two non-persistent
classes person and worker. It is important to note that the kind of information loss deriving
from the different expressiveness of the two metamodels remain untreated.

Figure 6: Scenario configuration 1 - execution within eMoflon

5.1.3 Scenario configuration 1: JTL

The implementation of the scenario has started from the same pair of models shown in Figure 2.
Starting from the UML1 model in Figure 7, the forward execution of the JTL transformation

Proc. BX 2013 12 / 20

ECEASST

given in Listing 1 is able to produce exactly the expected target model (RDBMS1 model in
Figure 7), thus the tool is able to navigate all the parent hierarchy in the UML source model and
to correctly generate all the columns in the RDBMS target model. In fact, JTL, by means of a
series of recursive calls (e.g., in Line 18 of Listing 1), is able to perform the transitive closure.

Even though the backward transformation is non-injective, the execution of the reverse trans-
formation produces exactly the same UML1 model from which we started the transformation
chain. In this case the correctness of the transformation is ensured by the usage of the JTL trace
mechanism, which also keeps track of the non-transformed elements (in the considered example,
they are classes the person and worker together with the parents relations).

Figure 7: Scenario configuration 1 - execution within JTL framework

5.2 Scenario configuration 2

In this Section the UML2RDBMS transformation specified in the previous Section is executed
in configuration 2 by means of EMorF, eMoflon and JTL framework.

5.2.1 Scenario configuration 2: EMorF

In this scenario configuration the models in Figure 3 are taken into account. Essentially, they
represent an evolution of the original models, and they have been defined in order to evaluate the
change propagation facilities of the considered transformation tools. The changes operated on
the model in Figure 2b give place to additional difficulties related to the adopted naming conven-
tion. In fact, a modeler might not be aware of all the modeling techniques used in the previous
implementations and consequently could not be obvious that a column email without the suffix
" own" should belong to the parent classes. It is interesting to note how the non-determinism
introduced by the modifications is solved by considering the fixed solution encoded in the trans-
formation rules. Being more precise, let us suppose that the modeler has introduced the column
with the suffix " own"; according to the transformation, EMorF will generate a source model in
which the column is transformed in the attribute of the class employer. Nevertheless there are
still situations in which the non-determinism is not solved: let us consider the opposite case in
which the column email is introduced without any suffix (RDBMS2 model in Figure 8), mean-
ing that the column comes from a previous transformed hierarchy relation on the classes; in this
case, no attribute will be generated for that class. Unfortunately, this situation will bring to a
non-determinism case in which the column could be transformed at least in two different ways,

13 / 20 Volume 57 (2013)

Understanding bidirectional transformations with TGGs and JTL

depending on which class will be considered to be the owner. In our implementation, EMorF
would not transform the column email meaning that it has been considered to belong to one
of the two non-persistent classes (UML2 model in Figure 8). But again, which one of the two?
The naming convention, as well as any forcing mechanism, practically introduces further and not
obvious issues, generally increasing the complexity of the transformation itself.

Figure 8: Scenario configuration 2 - execution within EMorF

Figure 9: Scenario configuration 2 - execution within eMoflon

5.2.2 Scenario configuration 2: eMoflon

As aforesaid eMoflon is able to realize both batch and incremental transformations. The consid-
ered scenario configuration has been realized as an incremental transformation and the resulting
models are those depicted in Figure 9. Within eMoflon, the changes introduced in this sce-
nario configuration, i.e. the addition of the column email and the involvement of the property
isLocal, can be overcome by exploiting the incrementality feature of the tool; nevertheless, the
incremental algorithm requires the changes to be expressed as a set of supported deltas. This
is not only problematic for the end user, without appropriate tool support to create such deltas,
but is also limited as, e.g., some deltas such as attribute changes are not yet directly supported.
Changing the isLocal property, for instance, must be represented as a node deletion and cre-
ation delta. Although eMoflon was able to correctly propagate back the change regarding the
addition of the column email, it was not able to produce all the three possible models consistent

Proc. BX 2013 14 / 20

ECEASST

with that modification. Theoretically, it could be possible to exploit the configuration mechanism
to handle this non-functional choice with a set of dedicated rules, supporting the possibility to
chose at run-time, which model the user wants to be generated. Nevertheless, even with help
from the eMoflon developers, it was not possible to model this freedom of choice in the TGG as
required for the scenario configuration due to limited expressiveness.

5.2.3 Scenario configuration 2: JTL

As previously mentioned, JTL is able to deal with non-injective situations by exploiting tracing
information. However, considering the RDBMS2 model in Figure 10, no trace information are
available concerning the newly added element email, thus the non-injectity has to be solved
generating all the feasible solutions consistent with the target models and with the changes.
Being more precise, the transformation execution produces a set of three models: each one rep-
resents a different solution where the column email is thought to come from each of the three
different classes of the hierarchy. The ability to generate multiple solutions as result of a trans-
formation come straight from the underlying ASP engine. Please note that, even if the property
is local (see the RDBMS2 model in Figure 10) is not directly involved in the transformation
(thus not mapped in the UML metamodel/model), its correctness is ensured by means of tracing
mechanism.

Figure 10: Scenario configuration 2 - execution within JTL framework

5.3 Summary of the evaluation

As shown in Table 1, all the considered implementations (EMorF, Moflon, and JTL framework)
do not require the explicit definition of the backward transformation. In fact, the reverse function
is automatically computed by the tools themselves.

EMorF and eMoflon are able to consider one solution at a time. In particular, in case of non-
injective transformations, the corresponding TGGs rules define an injective relation, by selecting
and explicitly considering one solution among all the possible ones. Within EMorf, the transfor-
mation writer is forced to solve the non-determinism at design time, e.g., by exploiting naming
conventions as done in the TGGs specification given in Figure 4. Whereas, eMoflon allows non-

15 / 20 Volume 57 (2013)

Understanding bidirectional transformations with TGGs and JTL

functional transformations and resolves multiple choices at runtime, perhaps demanding an hu-
man interaction. Contrariwise, in these cases the JTL framework, by relying on the ASP theory,
is able to generate all the possible models. In this way developers can focus on the implemen-
tation of the transformation behaviour and can neglect the explicit management of non-injective
cases (e.g., as done in the transformation given in Listing 1).

The JTL framework offers a dedicated support, implemented by means of tracing mechanism,
which permits to record all the information required to ensure the correctness of the transfor-
mation when an information loss occurs. This is shown, in the backward transformation imple-
mentation of (i) the first scenario configuration in Figure 7, when the JTL framework is able to
re-generate the class hierarchy, including the two non-persistent classes person and worker,
and (ii) the second scenario configuration in Figure 10, when the new property isLocal is re-
generated. EMorF constrains the transformation with forced mappings which can be further
added within the rule set: in such way the transformation is made total on the elements consid-
ered in the transformation. This aspect emerges, for example, in the first scenario within EMorF,
when we had to develop further rules for the missing elements. As aforesaid, eMoflon can be
used for batch transformations, typically with information loss, or for incremental transforma-
tions, where the old triple of models is incrementally modified to avoid information loss.

Reverse Source-target re-
lationship

Domain cover-
age

Tracing Incrementality

EMorF Computed Non-injective
relationships with
programmatic
solution at design
time

Partial domain
coverage with
forced mapping

Explicit trace
links consid-
ering mapped
source/target
elements

Batch transfor-
mations

eMoflon Computed Non-injective
relationships
with program-
matic solution at
runtime

Partial domain
coverage with
dedicated support

Explicit trace
links consid-
ering mapped
source/target
elements

Batch and
incremental
transformations

JTL framework Computed Non-injective
relationships with
multiple solutions

Partial domain
coverage with
dedicated support

Explicit trace
links consid-
ering mapped
and discarded
elements

Batch transfor-
mations

Table 1: Summary of the evaluation

EMorF, as eMoflon as well, creates trace links between the transformed elements. In particu-
lar, they only keep track of the elements involved in the transformation rules, but unfortunately
this information is not used in further executions to solve ambiguities. EMorF is simply not
incremental and only supports batch transformations. In this case one has to somehow resort to
encoding the information (e.g., naming convention). Within eMoflon, incremental transforma-
tions are used to avoid information loss.

JTL framework records trace links between source and target elements and trace elements
which are not transformed or directly invoked by the rules. In particular, it is used when restoring
back the attributes in the original parent classes and the added property isLocal. Actually, the

Proc. BX 2013 16 / 20

ECEASST

JTL framework does not support incremental transformations.
This study reveals that the characteristics an approach is able to provide do not only de-

pend on the transformation language, but some aspects are related on the operational environ-
ments and their implementations. In fact, characteristics as reversibility or the ability to specify
non-bijective transformations strictly depend on the transformation languages (in particular, we
showed that both the theory of TGGs and the JTL languages provide them). On the other hand,
the highlighted issues in dealing with critical aspects (i.e., loss of information, partiality, non-
injectivity) are not limitations of the languages, but often depend from some precise implemen-
tation choices as well as the maturity of the tools.

6 Related Work

As already mentioned, model transformation is intrinsically difficult, and its nature poses a num-
ber of obstacles in providing adequate support for bidirectionality and change propagation. As
a consequence a large number of proposals impose relevant restrictions of the characteristics of
the involved transformations, i.e. mappings are required to be bijective. Such comparison is
discussed in [HLR08]. [Ste08] organizes the existing bidirectional transformation solutions in
different categories by distinguishing approaches based on QVT-R, graph transformation tech-
niques, and XML-based options, to mention a few. Characterizations of model transformation
languages based on the features they satisfy are presented in [CH06, MG06]. The taxonomy
proposed in the latter aims to help developers in deciding which model transformation approach
is best suited to deal with a particular scenario.

Stevens, in [Ste09], discusses bidirectional transformation focusing on basic properties which
such transformations should satisfy: the paper considers QVT-R as applied to the specification
of bidirectional transformation and analyse requirements and open issues. Furthermore, it points
out some ambiguity about whether the language is supposed to be able to specify and support
non-bijective transformations. Despite the potentiality of the language, its tool support remains
limited. Currently Medini QVT 7 and ModelMorf 8 are two of the most used tools.

A number of different approaches based on TGGs have been proposed. Remarkable is the
PROGRES approach [BHLW07] a TGG solution to create integration tools also taking care of
non-deterministic cases. PROGRES demands users intervention to rule execution, meaning that
users will have to foresee the effects of each rule application and choose the desired behaviour.
Furthermore, a series of works dealing with correctness and functional behaviour of model trans-
formations and model synchronizations based on TGGs exists. In particular, [HEGO10] shows
how to increase the efficiency of TGGs without losing correctness and completeness and how the
so-called filter NACs can be used to reduce the non-determinism of TGGs. [HEO+11] proposes
a formal framework for model synchronisation where TGGs are used to generate bidirectional
update propagation operations. Furthermore, the authors prove the correctness and completeness
of the framework.

Some interesting solutions have been proposed as based on lenses [FGM+07], where lenses
define a state-based framework for asymmetric synchronization. Lately the works on lenses shift

7 http://projects.ikv.de/qvt
8 http://www.tcs-trddc.com/trddc website/ModelMorf/ModelMorf.htm

17 / 20 Volume 57 (2013)

Understanding bidirectional transformations with TGGs and JTL

the focus on the delta-based framework for considering the symmetric synchronization [XCE+11].
Unfortunately, the management of non-bijective problems is not clearly addressed, even though
it could be theoretically supported by means of delta merging and conflict resolution. Moreover,
at now there exist no available implementations relying on such theories.

A number of interesting applications is available, varying from incremental techniques [HLR06,
GW09] to the automation of transformation specifications by means of the inductive construction
of first-order clausal theories from examples and background knowledge [BV09].

7 Conclusion and Future Work

Bidirectional transformations are a mechanism for establishing, and re-establishing, relationships
among related models, in particular, when they are edited independently. In the last decades, bidi-
rectionality has been acknowledged as a common denominator for a set of different applications
as consistency management, synchronization, change propagation, and round-trip engineering.

In this paper, we have identified a set of features which characterize the bidirectional transfor-
mation approaches and their implementations. Additionally, we have studied two of the existing
approaches, namely TGGs and JTL, to validate the elicited features and to understand differences
and similarities between them.

From this analysis arise how each one of these languages is characterized by a set of spe-
cific properties pertaining to a particular application. In our opinion, the study of bidirectional
transformations cannot neglect non-determinism and its management. There exist scenarios in
which having multiple solutions to a model transformation problem is a desired outcome: in
this respect, JTL is a promising approach for all the application involving change propagation
where mappings can be non-injective and the transformation can be partial. Even though in our
experience the time required to execute JTL model transformations is more than acceptable, the
generation of a number of models may cause efficiency problems due to the models manage-
ment. For this reason, a bidirectional language may choose to force the mappings to be bijective
through additional constraints especially in those applications, which do not demand for multiple
choices. TGGs are an effective mechanism in dealing with model synchronization as intended
in [HLR08]: relying on bijective mappings, synchronisation does not expose TGGs to the issues
related to the naming convention and the other described techniques.

Since the aforesaid applications seem require different combination of the highlighted fea-
tures, as future work, we plan to investigate these exact configurations. Moreover, we propose to
extend this analysis to further bidirectional model transformation approaches.

Acknowledgements
We would like to thank Anthony Anjorin for his precious contribution in this work. Furthermore,
we would like to thank Alfonso Pierantonio, Davide Di Ruscio, Antonio Cicchetti and Lilija
Klassen for their help and their comments.

Bibliography

[Béz05] J. Bézivin. On the Unification Power of Models. Jour. on Software and Systems
Modeling (SoSyM) 4(2):171–188, 2005.

Proc. BX 2013 18 / 20

ECEASST

[BHLW07] S. M. Becker, S. Herold, S. Lohmann, B. Westfechtel. A graph-based algorithm for
consistency maintenance in incremental and interactive integration tools. Software
and System Modeling 6(3):287–315, 2007.

[BV09] Z. Balogh, D. Varró. Model transformation by example using inductive logic pro-
gramming. Software and System Modeling 8(3):347–364, 2009.

[CDEP11] A. Cicchetti, D. Di Ruscio, R. Eramo, A. Pierantonio. JTL: a bidirectional and
change propagating transformation language. In Procs. of SLE 2010. LNCS 6563,
pp. 183–202. Springer, 2011.

[CFH+09] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, J. F. Terwilliger. Bidirec-
tional Transformations: A Cross-Discipline Perspective - GRACE meeting notes,
state of the art, and outlook. In ICMT2009. LNCS 5563, pp. 260–283. Springer,
2009.

[CH06] K. Czarnecki, S. Helsen. Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems J. 45(3), June 2006.

[FGM+07] J. Foster, M. Greenwald, J. Moore, B. Pierce, A. Schmitt. Combinators for bidirec-
tional tree transformations: A linguistic approach to the view-update problem. ACM
Trans. Program. Lang. Syst. 29(3), 2007.

[GL88] M. Gelfond, V. Lifschitz. The Stable Model Semantics for Logic Programming.
In Procs. of the ICLP 1988. Pp. 1070–1080. The MIT Press, Cambridge, Mas-
sachusetts, 1988.

[GW09] H. Giese, R. Wagner. From model transformation to incremental bidirectional model
synchronization. Software and Systems Modeling 8(1):21–43–43, 2009.

[HEGO10] F. Hermann, H. Ehrig, U. Golas, F. Orejas. Efficient analysis and execution of correct
and complete model transformations based on triple graph grammars. In Proceed-
ings of the First International Workshop on Model-Driven Interoperability. MDI
’10, pp. 22–31. ACM, 2010.

[HEO+11] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, Y. Xiong. Correctness of
Model Synchronization Based on Triple Graph Grammars. In MoDELS. Pp. 668–
682. 2011.

[HLR06] D. Hearnden, M. Lawley, K. Raymond. Incremental Model Transformation for the
Evolution of Model-Driven Systems. In Procs. of MoDELS 2006. LNCS 4199,
pp. 321–335. Springer-Verlag, 2006.

[HLR08] T. Hettel, M. Lawley, K. Raymond. Model Synchronisation: Definitions for Round-
Trip Engineering. In Procs. of ICMT 2008. 2008.

[KS06] A. Königs, A. Schürr. Tool Integration with Triple Graph Grammars - A Survey.
Electronic Notes in Theoretical Computer Science 148:113–150, 2006.

[LAVS12] M. Lauder, A. Anjorin, G. Varró, A. Schürr. Efficient Model Synchronization with
Precedence Triple Graph Grammars. In ICGT. Pp. 401–415. 2012.

[MG06] T. Mens, P. V. Gorp. A Taxonomy of Model Transformation. Electr. Notes Theor.
Comput. Sci. 152:125–142, 2006.

19 / 20 Volume 57 (2013)

Understanding bidirectional transformations with TGGs and JTL

[PDK+11] R. F. Paige, N. Drivalos, D. S. Kolovos, K. J. Fernandes, C. Power, G. K. Olsen,
S. Zschaler. Rigorous identification and encoding of trace-links in model-driven en-
gineering. Software and System Modeling 10(4):469–487, 2011.

[Sch95] A. Schürr. Graph-Theoretic Concepts in Computer Science. Chapter Specification
of graph translators with triple graph grammars, pp. 151–163. Springer, 1995.

[Sch06] D. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer
39(2):25–31, 2006.

[SK03] S. Sendall, W. Kozaczynski. Model Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Software 20(5):42–45, 2003.

[Ste08] P. Stevens. A Landscape of Bidirectional Model Transformations. In GTTSE 2007.
LNCS 5235, pp. 408–424. Springer, 2008.

[Ste09] P. Stevens. Bidirectional model transformations in QVT: semantic issues and open
questions. Software and Systems Modeling 8, 2009.

[Wit05] S. Witkop. MDA users’ requirements for QVT transformations. 2005. OMG docu-
ment 05-02-04.

[XCE+11] Z. D. Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, F. Orejas. From State- to Delta-
Based Bidirectional Model Transformations: The Symmetric Case. In MODELS
2011. LNCS 6981, pp. 304–318. 2011.

Proc. BX 2013 20 / 20

	Introduction
	Scenario
	Scenario configuration 1
	Scenario configuration 2

	Evaluation features
	Reverse
	Non-injective source/target relationship
	Partial domain coverage
	Tracing
	Incrementality

	Specifying the transformation with TGGs and JTL
	TGGs
	JTL

	Executing transformations in dedicated operational environments
	Scenario configuration 1
	Scenario configuration 1: EMorF
	Scenario configuration 1: eMoflon
	Scenario configuration 1: JTL

	Scenario configuration 2
	Scenario configuration 2: EMorF
	Scenario configuration 2: eMoflon
	Scenario configuration 2: JTL

	Summary of the evaluation

	Related Work
	Conclusion and Future Work

