
Electronic Communications of the EASST
Volume 63 (2014)

Proceedings of the
Eighth International Workshop on

Software Clones
(IWSC 2014)

Active Clones: Source Code Clones at Runtime

Mohammad Asif A. Khan, Chanchal K. Roy and Kevin A. Schneider

18 pages

Guest Editors: Nils Göde, Yoshiki Higo, Rainer Koschke
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

Active Clones: Source Code Clones at Runtime
Mohammad Asif A. Khan1, Chanchal K. Roy2 and Kevin A. Schneider3

1 m.khan@usask.ca, http://mdakhan.weebly.com/index.html
2 croy@cs.usask.ca, http://www.cs.usask.ca/∼croy/

3 kevin.schneider@usask.ca, http://www.cs.usask.ca/∼kas/Welcome.html
University of Saskatchewan, Canada

Abstract: Code cloning is a common programming practice, and there have been a
considerable amount of research that investigated the implications of code clones on
software maintenance using static analysis. However, little has been done to inves-
tigate the runtime implications of code cloning. In this paper we investigate source
code clones at runtime, referring to clones as ‘active clones’ if they are invoked
when a software system is in use. For example, if a particular use u of a system
results in a clone c being invoked, we say that clone c is active with respect to use
u. From this definition and given a set of uses {u1,u2, ...} and clones {c1,c2, ...}
we are able to identify the extent clones are active at runtime and analyze active
clone resource use (e.g., CPU time) and define and calculate a set of active clone
metrics to provide insights into source code cloning implications at runtime. We de-
veloped a hybrid static and dynamic analysis technique for detecting and analysing
active clones, and conducted an empirical study on five software systems (HSQLDB,
JHotDraw, RText, jEdit and UniCentaoPOS) to validate our approach. We found a
small portion of clones are active during a typical use of a software system, and that
active clones have the potential for guiding a software developer’s code inspection
activity during a software maintenance task.

Keywords: clone detection, active clones, dynamic analysis

1 Introduction

Code duplication is a common programming practice. Programmers use code duplication to
increase the speed of the software development process by using similar code to implement
common functionality. Although cloning is an inexpensive and often productive practice, it
introduces complications during software maintenance [JDHW09, KG08]. A code fragment
may contain a bug, and when copied elsewhere, the bug is also propagated. As well, a bug may
emerge when a clone is used in a new context. Fixing a bug in one clone may require reviewing
and perhaps applying a similar fix to its clones. Any inconsistency in making a change to a set of
clones may introduce new bugs. For large software systems and depending on the extent of the
cloning, such maintenance effort may be expensive. Despite the ongoing debate as to whether
code clones are harmful or not [JDHW09, KG08, LW08, Roy09, RC07], it is believed that clones
are unavoidable, and not all clones can or should be removed [KG08, KSNM05], which calls for
software clone management.

Clone management is an active reverse engineering research area and there have been several
attempts to aid in the management and maintenance of software [XXJ11, YCY+13, HKKI05,

1 / 18 Volume 63 (2014)

mailto:m.khan@usask.ca
http://mdakhan.weebly.com/index.html
mailto:croy@cs.usask.ca
http://www.cs.usask.ca/~croy/
mailto:kevin.schneider@usask.ca
http://www.cs.usask.ca/~kas/Welcome.html


Active Clones: Source Code Clones at Runtime

TG12, MLPB13]. In this paper, we also aim to aid towards clone management. However, unlike
the previous approaches, we exploit the runtime implications of source code cloning for clone
management. In particular, we investigate source code clones at runtime, referring to clones as
‘active clones’ if they are invoked when a software system is in use. For example, if a particular
use u of a system results in a clone c being invoked, we say that clone c is active with respect
to use u. From this definition and given a set of uses {u1,u2, ...} and clones {c1,c2, ...} we are
able to identify the extent clones are active at runtime, analyze active clone resource use (e.g.,
CPU time) and define and calculate a set of active clone metrics. Associated with a particular
use u of a system, is an execution trace, which we denote as tu. An execution trace tu is a
sequence of method calls {< 1,m1 >,< 2,m2 >,...} and so codomain(tu) is the set of method
calls invoked during the use (i.e., codomain(tu) = {m1,m2, ...}). Our focus is on method clones,
and so if method clone c∈ codomain(tu), then c is an active clone with respect to use u. Execution
traces may be collected in the field, however for our study we used a set of tests to collect
execution traces. We consider a test to represent a typical use of a software system by an end-
user, or a typical use of a software system by a developer in support of a software development
or maintenance task. Software developers often use testing to execute a software system with
the intent of locating errors, detecting faults and verifying or validating a system’s qualities and
functionality. If a developer runs the system or designs a test suite for the task at hand, they
can use our approach to identify active clones related to the tests and consequently to the task at
hand.

It is clear that the choice of tests effects the extent active clones are discovered. For example,
a test suite may be specifically designed for full coverage and so in such a situation one would
expect all clones to be active. Our interest, however, is in tests that correspond to a particular
use of the system. For example, tests that are specifically designed to exercise a single feature,
requirement or use case scenario. Although a test suite may exercise the entire system, a single
test typically is designed to exercise a subset of the system. A clone, then, is active with respect
to a use, a set of uses, a set of tests, or a test suite. It is determining the method clones that are
active when a single test or a small set of tests are run that we focus on in this paper. As a result,
we are interested in addressing the following three research questions:

RQ1: To what extent are clones active during runtime?

RQ2: How active are the active clones?

RQ3: Does active clone identification support software maintenance activities?

To address these questions we developed a hybrid dynamic and static analysis technique for
detecting active clones and conducted an empirical study of five open source software systems
downloaded from Sourceforge [Sou]. Our study provides insights into the software systems
by showing detailed information concerning active clones, their coverage in the codebase, the
frequency of their use and resource utilization.

The remainder of the paper is organized as follows. Section 2 explains the testing framework.
Section 3 describes the active clone detection framework. Section 4 presents the defined metrics.
Section 5 describes the study approach while Section 6 presents the findings. Threats to validity
and related work is discussed in Section 7 and Section 8 with conclusion and future work in
Section 9.

Proc. IWSC 2014 2 / 18



ECEASST

Figure 1: Testing Framework

2 Testing Framework

Each of the systems in our study are interactive systems with graphical user interfaces (GUIs),
and so we developed a testing framework Figure 1 that accommodates tests corresponding to a
user interacting with a system. Four layers are identified in the framework: the test layer, the
user interface layer, the functional layer and the source code layer. The framework connects user
activities defined in test suites and tests to the source code. In a drawing application, creating a
rectangle, circle, or triangle may be three individual tests in a single drawing test suite. Mouse
actions, keyboard actions, display updates and so on are categorized as user interface (UI) events.
Such UI events are provided by the software user interface and are denoted in Figure 1 as Event i
where i = 1,2, ..,n. Each individual event in turn corresponds to sub-programs that handle the
event, denoted in Figure 1 as Si. A sub-program may be executed by more than one tests.

A trace is a sequence of method invocations executed during a particular test. The methods are
invoked in response to the user interaction. An execution trace can be further processed to mine
meaningful resource information, such as CPU and memory usage. We are also able to segment
the execution trace by user interface event to help manage the size and complexity of the trace
data.

In our study we consider only method clones. If a method in an execution trace is a clone, then
the clone is an active clone. A clone class that includes at least one active clone is referred to as
an active clone class. For example, in Figure 1, there are three clone classes: CC1 = {a,b,c};
CC2 = {d,e}; and, CC3 = { f ,g,h}. Let us assume that using our approach, we found that only
g is an active clone (i.e., the corresponding method was invoked in the trace). Because g ∈CC3,
clone class CC3 with clones { f ,g,h} will be the only active clone class. For a particular clone
related maintenance task, this knowledge may help guide a developer’s focus.

3 / 18 Volume 63 (2014)



Active Clones: Source Code Clones at Runtime

Figure 2: Active Clone Detection Framework

3 Active Clone Detection Framework

Our overall goal is to determine whether software maintenance could be more efficient or effec-
tive by identifying the active clones and active clone classes that correspond to a maintenance
task by using runtime information. The maintenance effort of a system containing large amounts
of code clones may be reduced if test suites specific to the maintenance task can be used to
identify just those clones that are relevant.

We developed a hybrid approach, incorporating both static and dynamic analysis techniques.
We use dynamic analysis (using aspect-oriented programming to instrument the software) to
capture execution trace information and static analysis to capture clone information. To conduct
a study a series of steps is required, from obtaining the software to mapping clones to execution
traces. For this we designed and developed a framework for the experiment, which is depicted in
Figure 2. The framework consists of three major phases: a) static analysis, b) dynamic analysis,
and c) finding active clones.

3.1 Static Analysis

Static analysis is useful for mining specific information from a codebase without executing the
software and is commonly used for detecting clones. An advantage of using a static technique is
that we can often obtain information from the source code even if there is incomplete code. Fur-
thermore, it is neither necessary to run the software nor does the software need to be executable.

Proc. IWSC 2014 4 / 18



ECEASST

We use a static analysis tool, the NiCad clone detector [CR11, RC08], to detect clones in the
codebase. NiCad has been shown to be highly accurate with respect to both precision and recall
[RC09, RC10] in the detection of copy-and-pasted near-miss clones. We used a dissimilarity
threshold of 30% with blind renaming option of identifiers of NiCad.

3.2 Dynamic Analysis

Dynamic analysis [CZD+09] is the technique of analysing the data collected from a running pro-
gram. The advantage of using dynamic analysis is that it exposes the system’s actual behaviour.
However, the drawback of it is that only a partial picture of a system is revealed and the obtained
information is dependent on the inputs used to exercise the system’s functionality. Dynamic
analysis is used in a variety of applications such as software testing, performance analysis, and
program comprehension via reverse engineering. We are interested in collecting profile informa-
tion in the form of execution traces. This can be done by instrumenting the code, monitoring the
execution environment, or as is the case in our approach, by dynamically weaving aspects to log
runtime information. A challenge is to have an adequate set of tests or recorded user interaction
to collect relevant behavioural information.

The first part of our dynamic analysis approach is to instrument the code for collecting the
execution traces. We use aspect-oriented programming [KLM+97] and dynamic loading to log
method calls. This allows us to generate a sequence of execution traces that will later enable
us to identify active clones and their behaviour. To capture the execution traces, the system is
run using a test suite corresponding to the activity we wish to analyze. By focusing on a single
maintenance task, the test corresponds directly to the user interaction that is being investigated.
If the entire system and clone execution frequency analysis is to be performed, a comprehensive
test suite with adequate coverage is warranted which is out of the scope of this study.

As part of the code instrumentation step of the dynamic analysis phase, we use an AspectJ
[KHH+01] implementation to describe and capture the interface actions that occur in a target
application. We have written a tracing aspect that weaves with the program and records when any
method in the target application is invoked. The advantage of using an AspectJ implementation is
that it does not turn off the just-in-time compiler, and enables access to any component (method,
parameter, constructor, etc.) in a software system.

To aid in program comprehension we also segmented the execution trace into meaningful
segments called user interface (UI) traces [SS09]. An execution contains UI traces for program
initialization, display updates, mouse events and so on which are often pertinent to the tasks
at hand. This segmentation process allows a developer to associate the cloning concentration
with the semantics of code. In this way, they can also learn in which part of the system cloning
happens most often (e.g., UI or business logic code).

3.3 Finding Active Clones

The final step maps the trace information to the codebase. For each method in the trace, if
it contains a clone in the codebase, the corresponding clone and its clone class are marked as
‘active’. This step determines which clone classes are active for that particular test case. First,
using dynamic analysis we record execution traces for each individual test case. Each trace

5 / 18 Volume 63 (2014)



Active Clones: Source Code Clones at Runtime

Table 1: Subject Software Systems

Domain System No. of Java Files Total Size Version
Text Editor RText 319 5.76M 2.0.0
Graphics JHotDraw 309 20M 7.0.6

Database Server HSQLDB 513 14M 2.2.6
Point of Sale UnicentaoPOS 486 30.4M 2.5.0
Text Editor jEdit 571 25.5M 4.4.2

record in a trace file consists of the full class name, the class type, the method name, and the
parameter types. Second, we obtain all the clones of the subject system detected by the NiCad
clone detector (Section 3.1). Third, we determine whether the trace related code contains any
clones. For clone mapping, we created a script to extract all the method names from the NiCad
XML output file. The clones for which we get a match in the trace are called active clones, and
then we retrieve the corresponding clone classes to which the active clones belong. These clone
classes are treated as active clone classes.

4 Metrics

To explore the nature of traces and the impact of clones for test based execution of a system we
use a number of metrics as defined in this section. We use metrics to quantify aspects of both
static and dynamic analyses. Some of the metrics we introduce in this paper (e.g., the active
clone metrics) and some are adapted from relevant empirical studies [HL05]. We group the
metrics into four major categories: system, clone, trace and active clone metrics.

4.1 System Metrics

• LTOTAL: total number of lines of code in a system.

• FTOTAL: total number of files in a system.

• MTOTAL: total number of methods in a system.

4.2 Clone Metrics

• NCLONE : number of clones in a system.

• CC: number of clone classes in a system.

• %MCLONE : percent of methods that contain a clone.

• FCLONE : number of files that contain a clone.

• %FCLONE : percent of files that contain a clone.

Proc. IWSC 2014 6 / 18



ECEASST

• LCLONE : lines of code that are part of a clone.

• %LCLONE : percent of lines that are part of a clone.

4.3 Trace Metrics

• Np: number of packages invoked in a trace. When a method from a package is invoked the
package is considered to be invoked.

• Nm: number of distinct methods invoked in a trace.

• %FT RACE : Percent of files containing methods invoked in a trace.

4.4 Active Clone Metrics

• NACLONE : number of active clones.

• CCACLONE : number of clone classes that contain at least one active clone.

• %MACLONE : percent of invoked methods that contain at least one active clone.

• FACLONE : number of files that contain at least one active clone.

• %FACLONE = FACLONE/FTOTAL ∗100

• LACLONE : lines that are part of an active clone.

• %LACLONE = LACLONE/LTOTAL ∗100

5 Study Approach

In this section, we provide a brief description of the subject systems being studied, our approach
and the tests used. All the tests were run on an Intel(R) Core (TM) i7 CPU @2.93 GHz with
4GB RAM. Tables 1 and 2 provide a summary of the systems and the tests that were part of our
experiment respectively. To bring variation to our study we considered systems from four dif-
ferent domains: text editing, graphics, database management and point of sale. We also selected
systems that differed in size, ranging from 5.76M to 30.4M bytes of code.

To help ease the exploration and analysis of active clones and their associated traces, we devel-
oped a prototype tool [Kha13] that provides us with trace analysis and management capabilities.
The prototype incorporates various features such as filtering, searching and grouping (i.e., cate-
gorization), that allows us to investigate the behaviour of active clones.

7 / 18 Volume 63 (2014)



Active Clones: Source Code Clones at Runtime

Table 2: Sample Tests

System Test User Interaction

HSQLDB

Select select * from testtable;
Insert insert into testtable values (‘Current’, 22, ‘2003-11-10’, 18, 3,

‘my name goes here’), (‘Popular’, 23, ‘2003-11-10’, 18, 3, ‘my
name goes here’), (‘New’, 5, ‘2003-11-10’, 18, 3, ‘my name goes
here’), (‘Old’, 5, ‘2003-11-10’, 18, 3, ‘my name goes here’);

Update update testtable set (astring, firstnum, adate, secondnum, third-
num, aname) = (‘Older’, 5, ‘2003-11-10’, 18, 3, ‘my name goes
’here) where astring = ‘Old’

Delete delete from testtable;
Create table create cached table testtable (aString varchar(256) not null, first-

Num integer not null, aDate date not null, secondNum integer not
null, thirdNum integer not null, aName varchar(32) not null );

JHotDraw
Circle User selects Circle and draws the object.

Rectangle User selects Rectangle and draws the object.
Triangle User selects Triangle and draws the object.

RText Edit Text Write in editor, Save a file, Edit text, Replace text and Find text
in files

jEdit Edit Text Write in editor, Save a file, Edit text, Replace text, Find text in
files, Print File, Close Application

uniCentaoPOS

insert Adding customer data
update updating customer data
delete delete customer data
report generate customer report

6 Findings

In this section, we present the results of our experiment identifying active clones in five different
subject systems of varying sizes. The research questions are discussed based on the experimental
results shown in Tables 3 to 8.

Table 3 provides metrics for clones, clone classes, files associated with clones, and lines of
code for methods. Table 4 provides statistics for each system in terms of active clones and
their classes while Table 6 lists the percentage of active clones for each type of user interface
event by test and also provides CPU usage for each type of user interface event along with the
percentage of time associated with the active clones. Table 5 shows the percentage of active
clones for each test, indicating that clones are involved in each test. It also provides lines of code
metrics for each system, comparing the percentage of clone lines with the percentage of active
clone lines. This helps illustrate that fewer clones need to be considered when only considering
active clones. Table 5 also shows file metrics for each system, comparing the percentage of files
containing clones with the percentage of files invoked in the traces and the percentage of files

Proc. IWSC 2014 8 / 18



ECEASST

Table 3: Method Clone Metrics

Systems Files Lines of Code CC NCLONE MTOTAL%MCLONEFTOTALFCLONE %FCLONE LTOTAL LCLONE %LCLONE

RText 319 81 25.3 95036 3019 3 80 189 3698 5.5
JHotDraw 309 183 59.22 56420 7565 13.4 231 656 3260 20.1
HSQLDB 513 293 57.11 227545 20467 8.9 503 1323 9825 13.5

jEdit 571 161 28.2 115246 7320 6.4 212 419 7428 5.6
uniCentaoPOS 486 174 35.8 43032 4578 10.6 163 285 4260 6.9

containing active clones. Again, this shows that fewer files need to be considered when focusing
on clones that are active during runtime. Table 7 provides the statistics of the frequently executed
active clones and their CPU time consumptions while Table 8 shows the breakdown of the active
clones’ activeness in terms of genealogy based on types. This explains which active clones types
change more frequently and which ones not.

Clones are considered harmful for a number of reasons, including: there is the potential for bug
propagation during cloning, cloning increases the size of the codebase, and changes in one clone
may require changes to other clones during maintenance. These issues increase the potential
for a higher maintenance effort as well as may burden the software developer with an additional
cognitive load. Dynamic analysis provides a way to aid in our comprehension of clones. Sys-
tems containing clones could be segmented based on testing to make the maintenance task more
modular. As well, runtime information allows us to consider other clone properties. Knowing
which clones are the most CPU intensive during a particular set of system uses, could help iden-
tify places where optimizing one clone could be an important improvement to the system as a
whole if we make similar changes to the clones in its clone class.

From Tables 3 and 4 we see that for HSQLDB out of 9,825 methods in the system of which
1,323 are clones, we have only 35–40 active clones for each test. For JHotDraw, out of a 3,260
methods in the system of which 656 are clones, we have only 56–60 for each test, for RText, out
of 3,698 methods in the system of which 189 are clones, we have only 11 active clones for the
tests, for jEdit, out of 7,428 methods of which 419 are clones, we have 220 active clones for the
test, and for uniCentaoPOS, out of 4,260 methodds of which 285 are clones, we have 4–17 active
clones in the tests. For HSQLDB, the active clones represent 492–545 lines code, out of 20,467
lines of clone code and a system that is 227,545 lines in size. For JHotDraw, the active clones
represent 639–654 lines of code, out of 7,565 lines of clone code and a system size of 6,420. For
RText, the active clones represent 265 lines of code, out of 3,019 lines of clone code and a 95,036
line system. For jEdit, the active clones represent 400 lines of code, out of 7,320 lines of clone
code and system line of code of 115246. For uniCentaoPOS, the active clones represent 55–141
lines of code, out of 4578 lines of code and a system size of 4,3032. With respect to number
of files, HSQLDB has 513 files, 293 with method clones and between 22–25 with active clones
for the uses represented by the use sets. The system JHotDraw has 309 files in the system, 183
with clones and between 26–28 files with active clones, and RText has 319 files, 81 with clones
and 7 with active clones. The system jEdit contains 571 files in the system, 161 with clones and

9 / 18 Volume 63 (2014)



Active Clones: Source Code Clones at Runtime

Table 4: Test Based Metrics for Active Clones

System Use Set Test Nint Np
Method Clones

NACLONE LACLONE FACLONE %MACLONE %CCACLONE

HSQLDB

Search Select 461 89 40 545 22 8.6 6.8
Data Entry Insert 441 87 35 492 22 7.9 6.2

Admin
Update 441 89 35 492 22 7.9 6.6
Delete 441 87 35 506 25 7.9 6.6
Create 442 90 35 492 22 7.9 8.0

JHotDraw Draw
Circle 798 189 58 654 27 7.2 19.9

Rectangle 797 189 56 639 26 7 19.5
Triangle 819 195 60 645 28 7.3 19.5

RText Compose Edit text 591 153 11 265 7 1.8 11.25
jEdit Compose Edit Text 3220 310 220 400 44 5.2 37.7

uniCentaoPOS

Search Select 101 37 5 43 5 4.9 3.2
Data Entry Insert 373 85 17 141 15 14.9 9.2

Admin
Update 76 32 4 55 4 5.2 0.8
Delete 68 28 4 30 4 5.9 0.6

Table 5: Lines of Code and Number of Files Associated With Traces, Clones and Active Clones

Metrics System
HSQLDB JHotDraw RText jEdit uniCentaoPOS

%LCLONE 3 13.4 8.9 6.4 10.6
%LACLONE 0.24 1.2 0.31 0.71 0.31
%FCLONE 57.11 59.22 25.3 28.2 35.8
%FT RACE 17.3 61.2 47.9 51.9 17.5
%FACLONE 4.2 9.1 2.3 7.4 3.1

44 with active clones while uniCentaoPOS contains 486 files, 174 with clones, and 4–15 files
with active clones. Also if we compare the percentage coverage of active clones, lines of code,
files and clone classes (Table 5) we find that a fewer percentage of clones are active for each
individual test.

We can see that although the systems have a high concentration of clones, relatively few of
them are executed. Only those clones that are test specific are active and are shown to be used
more often. For example, if we consider the results in Table 5 then in the case of JHotDraw
the lines of code for method clones is 13.4% (denoted by %LCLONE)) but only 1.2% (denoted
by %LACLONE) of code are containing active clones and likely requiring attention during main-
tenance. A similar picture can be seen for HSQLDB, RText, jEdit and uniCentaoPOS as well.
On the other hand, from Table 5 we can also associate the coverage of clones over files. For
instance, in HSQLDB 57% of files are associated with clones where only 17.3% on average are
found in the trace (denoted by %FT RACE) while only 4.2% of file have active clones (denoted by

Proc. IWSC 2014 10 / 18



ECEASST

Table 6: Active Clones by Type of User Interface Event for Each Test

System Test UI Event Type UI Traces MI %AC CPU Time (ns)
Total %AC

HSQLDB

Select mouseClick (JButton) 3 191 6.8% 8.31E+10 14.8
threadSignal 50 1555 5.2% 2.86E+12 47.6

Insert mouseClick (JButton) 2 203 6.4% 7.31E+11 14.8
threadSignal 36 1076 7.2% 1.86E+12 51.26

Update mouseClick (JButton) 2 192 6.8% 3.16E+11 3.12
threadSignal 28 1160 7.2% 2.93E+12 44.44

Delete mouseClick (JButton) 2 204 6.4% 3.76E+11 3.79
threadSignal 28 885 7.9% 1.93E+10 42.5

Create mouseClick (JButton) 3 196 11.6% 2.05E+11 4.86
threadSignal 51 1164 7% 1.02E+12 3.12

JHotDraw

Circle
mouseClick (mouse event) 17 397 6.8% 1.66E+12 25.8

mouseClick (Button) 12 89 3.3% 1.34E+10 0.47
threadSignal 1 490 6.1% 9.60E+11 33.8

Triangle
mouseClick (mouse event) 13 375 6.9% 6.03E+11 17.02

mouseClick (Button) 12 89 3.3% 8.60E+10 3.79
threadSignal 1 490 6.1% 1.29E+12 57.09

Rectangle
mouseClick (mouse event) 13 399 6.0% 1.73E+11 7.7

mouseClick (Button) 12 89 3.3% 6.03E+10 3.92
threadSignal 1 490 6.3% 1.00E+12 67.18

RText Edit text

mouseClick (JButton) 1 18 2.2% 8.00E-3 0.001
mouseClick (JMenuItem) 5 18 1.6% 2.50E+6 0.005

displayUpdate 30 124 3.2% 3.65E+7 0.080
threadSignal 11 79 2.5% 4.49E+10 15.5

jEdit Edit text
mouseClick (Timer) 5 18 1.6% 2.39E+12 9.9

displayUpdate 30 124 0% 4.83E+11 0
threadSignal 11 79 2.5% 2.22E+13 85.2

uniCentaoPOS

Select mouseClick (JButton) 2 71 7.0% 7.43E+10 44.8
mouseClick (Timer) 50 1555 0% 2.86E+12 0

Insert mouseClick (JButton) 4 203 6.4% 1.61E+11 43.8
mouseClick (Timer) 36 1076 7.2% 1.86E+12 11.9

Update mouseClick (JButton) 1 51 7.8% 6.50 +9 64.1
mouseClick (Timer) 23 206 12.2% 2.93E+12 44.44

Delete mouseClick (JButton) 1 29 0 1.15E+10 0
mouseClick (Timer) 53 208 13.9% 1.93E+10 66.2

UI: User Interface MI: Method Invocation AC: Active Clone

%FACLONE). For JHotDraw and RText the percentage of files in the trace denoted by %FT RACE are
61.2% and 47.9% while the percentage of files containing active clones denoted by %FACLONE

are 9.1% and 2.3% respectively. Similarly, in case of jEdit and uniCentaoPOS %FT RACE is 51.9%
and 17.5% while %FACLONE is 7.4% and 3.1% respectively.

In summary, active clone detection has the following three characteristics if we just consider
line, file and method metrics. First, tests can be used to identify active clones. Second, identify-
ing active clone classes allows us to identify not only the clones that are active as a result of the
test, but also (using static analysis) the clones that are related to the active clones through clone
classes and by seeing which clones are involved with which kind of system uses. It is important
to consider all the related clones when performing maintenance to help ensure we consistently
change them. We note that for the systems and uses we studied, the active clone classes are
between 2 and 6 in size. Third, there is evidence that active clones are present in each test case

11 / 18 Volume 63 (2014)



Active Clones: Source Code Clones at Runtime

we exercised. If we observe closely the statistics and comparison of active clones in terms of
lines of code, files, and clone classes with active clones we can clearly see that active clones are
very few in number involving less lines of code and less file coverage. For instance, in the case
of HSQLDB a reduced number of lines of code, files and classes are found active per test. This
may help guide a software developer in prioritizing which clones to look at by giving inspec-
tion priorities to active clones and their corresponding active clone classes instead of looking for
every clone in the system.

RQ1: To what extent are clones active during runtime? Analysing our subject systems we
see that clones are active even for simple tests and that with typical modest uses of a system that
they are at least an order of magnitude fewer in number than the number of clones in a system.
Active clones could be used to prioritize clone inspection during maintenance tasks by allowing
us to focus on those clones related to the task at hand.

We can analyze active clone runtime properties related to the traces, such as frequency of invo-
cation, order of invocation, relation of invocation to typical system uses, and resource utilization
(i.e., CPU usage). Table 6 shows the active clone characteristic and the CPU usage of all the
systems over each test case based on user interface (UI) events. The column CPU time denotes
the total time consumed by events within the test and the column %Active CPU Time signifies the
percent of CPU time consumed by the active clones executed by the corresponding event within
the test. The system implementation under test is divided into two groups: GUI (Graphical User
Interface) logic code and business logic code identified by the type of UI event. Thread events
correspond to business logic functionality, and mouse clicks, keyboard presses and similar events
correspond to GUI code. In the case for hsqldb, where mouse clicks on buttons and so on are
grouped as GUI code while thread signals comprising the execution of the system’s functional-
ity/features are grouped as business logic code. For jhotdraw, the test case includes drawing a
figure in an editor and therefore mouse events such as mouse press, mouse drag, mouse release
and so on fall into the GUI section while the thread signal indicates business logic execution, as
is the case for hsqldb. Similarly, for rtext a new event displayUpdate occurs and indicates GUI
code being executed, and events such as mouse click and thread signal are analogous to that of
hsqldb and jhotdraw.

From Table 6, we see that concentration of active clones in feature implementation denoted
by threadSignal is higher than GUI code with over 7% for hsqldb for three of the tests and
around 6.1% for jhotdraw which is less than GUI code and 2.5% for rtext which is higher than
mouseClick but less than displayUpdate. Interestingly, if we compare the two mouse click events
(buttons and mouse event) in jhotdraw we notice that there are a greater number of active clones
associated with creating figures in the editor than clicking a button in the system. From Table 6,
we can also observe that clones do execute and occupy a significant amount of CPU time. Thus,
CPU time information of the active clones can also be an important parameter to consider during
maintenance activity such as code optimization or determining inconsistent changes in clone.
For instance, lets consider a class containing three clone fragments and all gets executed during
a certain use. It is apparent that all the active clones should spend the same amount of time
during execution. Therefore, any discrepancy in the timing value of the active methods could be
an indication of certain method spending more time for execution. Possible reason could be a
bug that have never been fixed here which made the methods inconsistent with other methods in
the same class. In this way CPU time can be utilised to understand the behaviour of the methods

Proc. IWSC 2014 12 / 18



ECEASST

Figure 3: Change Patterns of Active Clones

and be used an an indicator of tracking abnormal behaviour of them in the clone class.
At the same time a segmented active clones can help developers identify which section of the

system’s code to inspect as a part of the maintenance task. Thus, there is a possibility that effort
may be reduced by providing the developer with more detailed, fine grained data on active clones.
For instance, if new features in the GUI are being added or modified as part of the maintenance
task then the corresponding UI events and the associated active clones can help them in program
comprehension. Code inspection may be reduced and the segmented active clones can further
provide a way for effective clone management. As an example, we notice that for a number of
uses, active clones are taking up a significant portion of the CPU time. For example, 33%–67% of
the CPU time is involved with active clones for a small set of traces. When we look at the active
clones in more detail we see that clones from an active clone class are involved in multiple trace.
If we look at Table 7 we can find that active clone methods gets executed in all the tests with
higher number of frequencies and CPU time consumption in all the five systems. Interestingly,
we can also observe in case of HSQLDB, RText and uniCentaoPOS that the fragments in the
same clone class gets executed with a higher number of invocations. For instance, in HSQLDB
methods readByte() and readBoolean() belong to the same clone class 398 and is invoked 2509
and 320 times which is a significant amount. For RText, methods windowGainedFocus() and
windowLostFocus() belonging to the same clone class and gets executed six times each while
for uniCentaoPOS methods fireDataContentsChanged() and fireDataIntervalAdded() are invoked
once.

RQ2: How active are the active clones The research question RQ1 addressed the dynamic
behaviour of the active clones involved during the runtime of the systems. It signified that clones
do exercise when a system is used and each feature contains active clones. Since maintenance
of a system is a continuous process, changes in the code is done to meet customer requirements,
fix bugs or optimize to make the system more efficient. Therefore software evolves with time
and during which changes are made to the systems. In our study we are interested to look at how
the active clones participate in the maintenance phase when the developers modify the source
code. More specifically we wanted to study how the active clones evolve. We have adapted the
genealogy extractor, called gCAD [SRS11] to extract the genealogy of the systems over a number
of versions. We then post processed the genealogy of the systems to map the active clones and

13 / 18 Volume 63 (2014)



Active Clones: Source Code Clones at Runtime

Table 7: Frequently Executed Active Clones by System

System Active Clone Times CPU Use Clone Class
Invoked (nanosec) Id Size

HSQLDB

readByte() 2509 1.02E+7 398 3
getOrAddInteger() 421 2.48E+6 30 2
writeShort() 43 1.07E+5 464 2
readBoolean() 320 3.20E+4 398 3
getInt() 5 4.09E+5 496 4

JHotDraw

basicGetBounds() 8 2.31E+6 207 6
ensureSorted() 7 1.77E+6 186 2
updateEnabledState() 6 8.05E+5 140 3
fireToolDone() 1 9.56E+6 103 3

RText

getRTextScrollPaneAt() 33 5.10E+5 71 2
createCheckBox() 6 1.51E+6 55 2
windowGainedFocus() 6 1.04E+3 79 2
windowLostFocus() 6 6.90E+3 79 2
setSearchParameters() 1 1.29E+7 25 2

jEdit

getScreenLineStartOffset(int) 911 8.21+E9 196 2
jj 3R 129() 234 3.12E+10 14 4
jj 3R 216() 226 3.92E+9 31 4
EqualityExpression() 90 9.71E+10 8 6
jj 3R 37() 639 7.58E+10 129 6

uniCentaoPOS

readValues(int) 3 8.21+E9 67 2
fireDataContentsChanged 1 2.7E+8 28 3
activate() 1 8.14E+9 97 7
fireDataIntervalAdded () 1 7.57E+6 28 3
getDialog(Component) 1 5.04E+8 69 3

identified their patterns. In our study we have considered two significant types of change patterns,
a) consistent, and b) inconsistent change patterns. We then compared the activeness of clones
against the active and the non-active code clones. Figure 3 shows the change patterns of the
active clones and non-active clones for each systems.

If we look closely at Figure 3 for the consistent change, we can see that for the systems
JHotDraw, HSQLDB, jEdit and uniCentaoPOS both the active and the non-active clones change
at the same time and the difference in activeness between them is less than 6% with an exception
of RText where no active clones participate in the change pattern. Therefore, active clones do
play a vital role and have significant impact on the maintenance activity.

Although practice of code cloning speeds up the development process, it also poses threat of
bug propagation due to inconsistently changing the clone fragments. If we observe Figure 3
we can also see that active clones are more active than the non-active clones and surpasses the
non-active ones. In case of JHotDraw, HSQLDB, RText and uniCentaoPOS the active clones
have changed more inconsistently than the non-active clones. In case of JHotDraw almost 80%
of the active clones are changed inconsistently compared to non-active clones which is around
15%. Similarly for HSQLDB, RText and uniCentaoPOS the percentage of inconsistent changes
of active and non-active clones are around 15%, 35%, 22% and 10%, 29% and 8% respectively.
However in case of jEdit even though the non-active clones have changed more inconsistently
than the active clones we still get some active clones that have changed inconsistently.

RQ3: Does active clone identification support software maintenance activities? From our

Proc. IWSC 2014 14 / 18



ECEASST

Table 8: Number of Genealogies of Active and Non-Acitve Clones by Type

System Type Active Clones Non-Active Clones
Static CC IC Static CC IC

JHotDraw
Type-1 7 2 6 60 43 60
Type-2 1 2 9 53 47 64
Type-3 3 6 31 158 66 193

HSQLDB
Type-1 2 0 0 76 3 5
Type-2 2 1 0 75 6 6
Type-3 25 0 2 283 15 42

RText
Type-1 0 0 1 9 3 2
Type-2 3 0 0 37 2 6
Type-3 4 0 3 75 4 45

jEdit
Type-1 1 0 0 3 0 2
Type-2 25 0 0 41 2 3
Type-3 45 3 2 82 1 21

uniCentaoPOS
Type-1 0 0 0 15 2 1
Type-2 4 0 0 30 12 1
Type-3 6 2 3 76 30 14

CC: Consistent Change, IC: Inconsistent Change

study we see that awareness of active clones and their runtime behaviour may help support main-
tenance by allowing developer’s to focus on similar code fragments whose improvement could
benefit the use of the system as a whole and on clone classes that are involved in system uses
related to the task at hand. This is well supported by the research questions RQ1 and RQ2. The
dynamic properties of active clones such as times of invocations, CPU time, and active clone
genealogies can be used to prioritize clone inspection during maintenance activities. Clones that
are invoked a greater number of times and that occupy higher percentage of CPU time can be put
at the highest priority in the list of clone inspection during clone management.

Previous study [SRSP13] on the change patterns on the genealogies of clones show that Type-
3 clones are more inconsistent than the Type-1 and Type-2 clones which require more careful
attention during maintenance. With regards to this, we also tried to conduct a similar study
based on our framework to reveal the change pattern of the active clone types. Table 8 shows
the comparison of activeness of Type-1, Type-2 and Type-3 clones between the active and non-
active clones. If we observe closely, we can see that the Type-3 clones have a greater tendency
to change when compared to Type-1 and Type-2 clones. In all the change patterns, the Type-
3 active clones surpasses that of Type-1 and Type-2 clones. More interestingly, on an average
31.7% of Type-3 active clones change inconsistently while Type-1 changes slightly less than
29%. Similarly, for consistent change pattern 4.2% of active clones are Type-3 with no change
for Type-1 and Type-2. On an average for static change, 60.4% of Type-3 clones are static
in nature followed by Type-1 which is 49.2% with Type-2 clones standing at 74.6%. We also
noticed that Type-3 clones are significantly less stable than the Type-2 clones with an exception
of Type-1 clones. This is because of the absence of Type-1 active clone fragments in RText
and uniCentaoPOS. In case of non-active clones for all the three change patterns we can see
that Type-3 clones possess inconsistent changes with over 50% followed by Type-2 and Type-1.
Therefore, the study conducted in the activeness of active clones based on types can also add

15 / 18 Volume 63 (2014)



Active Clones: Source Code Clones at Runtime

benefits to software maintenance, especially when clones need to be managed. We can conclude
that further enhancement in clone management activity can be done by prioritizing the clone
inspection based on types.

7 Threats to Validity

There are a number of threats to the validity of our analysis. Execution traces are based on
the tests we provided. Additional testing would reasonably result in additional methods being
executed with the possibility of additional active clones being identified and thus the reduction in
clones to be considered may not be as significant. However, our intention of this study is to only
focus on test specific clones during the maintenance of that related functionality, and it is obvious
that there will be a reduction of active clones (hence the reduction of active clone classes) for
maintenance as evident by our results.

8 Related Work

Code clone research traditionally focused on clone detection. Recently, managing code clones
has become of interest to the research community. A number of tools supporting management of
clones have already been proposed. Tools such as CLONEBOARD [WZD08] tracks changes by
dynamically monitoring clipboard activity. CloneTracker [DR08] maintains a model of all clones
in the codebase and handles clone changes using linked resolution. There are also a great many
efforts towards analyzing and managing clones [XXJ11, YCY+13, HKKI05, TG12, MLPB13,
PTK13]. Overall, our work significantly differs from all others in the sense that we use dynamic
analysis to get a subset of clones related to a particular maintenance task and thus can prioritize
clones of the systems based on the maintenance task at hand. To the best of our knowledge this
is the first study to investigate runtime implications of source code clones.

Zibran and Roy [ZR13] proposed a method of ranking the important candidate clones for
refactoring. Our work differs from these, as we focused on detecting and tracking only a subset
of clones related to the maintenance tasks at hand.

9 Conclusion And Future Work

We presented an approach for assisting a software developer in the maintenance of systems
containing clones by focusing on those clones that are active during runtime. We used a hybrid
approach to mine a system’s source code and capture execution traces to identify active clones
using four different categories of metrics. We also used the concept of user interface traces
to partition execution traces based on a user’s interaction with the system. In this way, we
identified active clones, that is, those clones that are part of the methods invoked during a test.
We believe that this approach can help focus maintenance effort in an informative way (active
clones based on events such as thread signals, display updates and so on) when a maintenance
effort is required or where previously documented active clone information can be searched for
fixing bugs or other maintenance related updates. Our technique provides guidance to developers

Proc. IWSC 2014 16 / 18



ECEASST

by helping to prioritize their efforts and providing clone awareness.
As future work we plan to further support clone management using the approach and explore

the relationships between active clones with more complete and different kinds of testing. We
also plan to make the technique available for more general use by integrating it into the Eclipse
IDE as a plugin.

Bibliography

[CR11] J. R. Cordy, C. K. Roy. The NiCad Clone Detector. In Proc. ICPC Tool Demo Track,
pp. 219–220. 2011.

[CZD+09] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, R. Koschke. A Systematic
Survey of Program Comprehension through Dynamic Analysis. IEEE Transactions
on Software Engineering 35(5), pp. 684–702. 2009.

[DR08] E. Duala-Ekoko, M. Robillard. Clonetracker: Tool support for code clone manage-
ment. In Proc. ICSE, pp. 843–846. 2008.

[HKKI05] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue. ARIES: refactoring support tool for
code clone. SIGSOFT Software Engineering Notes 30(4), pp. 1–4. 2005.

[HL05] A. Hamou-Lhadj, T. Lethbridge. Measuring Various Properties of Execution Traces
to Help Build Better Trace Analysis Tools. In Proc. ICECCS, pp. 559 – 568. 2005.

[JDHW09] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner. Do code clones matter? In
Proc. ICSE’, pp. 485–495. 2009.

[KG08] C. J. Kapser, M. W. Godfrey. Cloning considered harmful” considered harmful: pat-
terns of cloning in software. In Proc. ICSE 13(6), pp. 645–692. 2008.

[Kha13] M. A. Khan. Supporting Source Code Feature Analysis Using Execution Trace Min-
ing. M.Sc. thesis, University of Saskatchewan, p. 113. 2013.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold. An
overview of AspectJ. Lecture Notes in Computer Science, pp. 327–353. 2001.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M. Loingtier, J. Ir-
win. Aspect-Oriented Programming. In Proc. ECOOP 1241, pp. 220–242. 1997.

[KSNM05] M. Kim, V. Sazawal, D. Notkin, G. C. Murphy. An empirical study of code clone
genealogies. In Proc. ESEC-FSE, pp. 187–196. 2005.

[LW08] A. Lozano, M. Wermelinger. Assessing the effect of clones on changeability. In
Proc. ICSM, pp. 227–236. 2008.

[MLPB13] E. Merlo, T. Lavoie, P. Potvin, P. Busnel. Large scale multi-language clone analysis
in a telecommunication industrial setting. In Proc. IWSC, pp. 69–75. 2013.

17 / 18 Volume 63 (2014)



Active Clones: Source Code Clones at Runtime

[PTK13] J. R. Pate, R. Tairas, N. A. Kraft. Clone evolution: a systematic review. Journal of
Software: Evolution and Process 25(3), pp. 261–283. 2013.

[RC07] C. K. Roy, J. R. Cordy. A survey on software clone detection research. School of
Computing Tech Report 2007-541, Queens University, Canada, p. 115. 2007.

[RC08] C. K. Roy, J. R. Cordy. NICAD: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization. In Proc. ICPC, pp. 172–181.
2008.

[RC09] C. K. Roy, J. R. Cordy. A mutation/injection-based automatic framework for evalu-
ating code clone detection tools. In Proc. ICST Workshop, pp. 172–181. 2009.

[RC10] C. K. Roy, J. R. Cordy. Near-miss function clones in open source software: an
empirical study. Journal of Software: Evolution and Process 22(3):165–189, 2010.

[Roy09] C. K. Roy. Detection and analysis of near-miss software clones. In Proc. ICSM,
pp. 447–450. 2009.

[Sou] Sourceforge. SourceForge: www.sourceforge.net.

[SRS11] R. K. Saha, C. K. Roy, K. A. Schneiderl. An Automatic Framework for Extracting
and Classifying Near-Miss Clone Genealogies. In Proc. ICSM, pp. 293–302. 2011.

[SRSP13] R. K. Saha, C. K. Roy, K. A. Schneider, D. E. Perry. Understanding the Evolution
of Type-3 Clones: An Exploratory Study. In Proc. MSR, pp. 139–148. 2013.

[SS09] A. Sutherland, K. Schneider. UI Traces: Supporting the Maintenance of Interactive
Software. In Proc. ICSM, pp. 563–566. 2009.

[TG12] R. Tairas, J. Gray. Increasing clone maintenance support by unifying clone detection
and refactoring activities. Information & Software Technology 54(12), pp. 1297–
1307. 2012.

[WZD08] M. de Wit, A. Zaidman, A. van Deursen. Managing Code Clones Using Dynamic
Change Tracking and Resolution. In Proc. ICSM, pp. 169–178. 2008.

[XXJ11] Y. Xue, Z. Xing, S. Jarzabek. CloneDiff: semantic differencing of clones. In Proc.
IWSC, pp. 83–84. 2011.

[YCY+13] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, T. Sano. Applying clone change noti-
fication system into an industrial development process. In Proc. ICPC, pp. 199–206.
2013.

[ZR13] M. F. Zibran, C. K. Roy. Conflict-aware Optimal Scheduling of Code Clone Refac-
toring. IET Software 7(3), pp. 167 – 186. 2013.

Proc. IWSC 2014 18 / 18


	Introduction
	Testing Framework
	Active Clone Detection Framework
	Static Analysis
	Dynamic Analysis
	Finding Active Clones

	Metrics
	System Metrics
	Clone Metrics
	Trace Metrics
	Active Clone Metrics

	Study Approach
	Findings
	Threats to Validity
	Related Work
	Conclusion And Future Work

