
Electronic Communications of the EASST
Volume 30 (2010)

International Colloquium on Graph and Model
Transformation On the occasion of the 65th birthday of

Hartmut Ehrig
(GraMoT 2010)

Test-driven Language Derivation with Graph Transformation-Based
Dynamic Meta Modeling

Gregor Engels and Christian Soltenborn

18 pages

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Test-driven Language Derivation with Graph Transformation-Based
Dynamic Meta Modeling

Gregor Engels and Christian Soltenborn

University of Paderborn
{engels,christian}@uni-paderborn.de

Abstract: Deriving a new language LB from an already existing one LA is a typical
task in domain-specific language engineering. Here, besides adjusting LA’s syntax,
the language engineer has to modify the semantics of LA to derive LB’s semantics.
Particularly, in case of behavioral modeling languages, this is a difficult and error-
prone task, as changing the behavior of language elements or adding behavior for
new elements might have undesired side effects.

Therefore, we propose a test-driven language derivation process. In a first step, the
language engineer creates example models containing the changed or newly added
elements in different contexts. For each of these models, the language engineer also
precisely describes the expected behavior. In a second step, each example model
and its description of behavior is transformed into an executable test case. Finally,
these test cases are used when deriving the actual semantics of LB - at any time, the
language engineer can run the tests to verify whether the changes he performed on
LA’s semantics indeed produce the desired behavior.

In this paper, we illustrate the approach using our graph transformation-based se-
mantics specification technique Dynamic Meta Modeling. This is once more an
example where the graph transformation approach shows its strengths and appro-
priateness to support software engineering tasks as, e.g., model transformations,
software specifications, or tool development.

Keywords: language engineering, semantics, testing, DMM, graph transformation

1 Introduction

In today’s world of software engineering, domain-specific modeling languages (DSLs) have be-
come an important tool. A DSL is a language which has been created for the sake of being used
in a certain, usually narrow domain. The language elements are abstractions of the domain’s im-
portant concepts. As a result, DSLs are usually intuitive to understand and therefore well-suited
as a base for the communication with the stakeholder’s domain experts.

Moreover, the intuitive understandability of well-designed DSLs also results in models of a
higher quality: Abstraction is always a difficult task, also for modelers. In case of DSLs, a (hope-
fully large) part of the necessary abstraction process has been performed at language creation
time and therefore does not need to be performed by the modeler again, who can concentrate on
modeling the actual business logic.

1 / 18 Volume 30 (2010)

Test-driven Language Derivation with Dynamic Meta Modeling

However, defining a DSL from scratch is not an easy task. The language engineer does not
only need to specify the abstract and concrete syntax of the language, but also its semantics. The
latter can be quite difficult, especially for languages describing behavior.

As a result, in case a language exists which has similar properties as the envisioned one, it
would be desirable to reuse that language as a starting base. In this way, the language engineer
can rely on an existing, proven language core, and can concentrate on performing the modifica-
tions needed for the target DSL.

In this paper, we describe a scenario of language derivation in the context of Dynamic Meta
Modeling (DMM), a graph transformation-based semantics specification technique developed at
our research group [EHS99, Hau05]. The idea is to enhance an existing language with domain-
specific concepts, and to add the semantics of the new concepts to the already existing DMM
semantics specification.

DMM aims at two seemingly contrary goals: DMM specifications shall be easily understand-
able and formal. The only prerequisite for the usage of DMM is that the language’s abstract
syntax is defined by means of a metamodel. DMM rules are (annotated) UML object diagrams,
i.e., instances of the language’s metamodel. As a result, due to the visual, familiar notion of
DMM rules, language engineers familiar with that metamodel can easily read DMM specifica-
tions.

Behind the hoods, DMM rules are graph transformation rules [Roz97]. In a nutshell, this
means that a DMM rule manipulates graphs. The idea is that graphs as well as rules are typed
over the language’s metamodel, and that DMM rules are used to describe changes on instances
of that metamodel (and therefore behavior).

Finally, given a certain language’s instance (i.e., a model) and a DMM specification, a transi-
tion system can be computed, where states are states of execution of the model, and transitions
are applications of DMM rules. The transition system reflects the complete behavior of the
model; it can then e.g. be analyzed with model checking techniques [ESW07]. A more detailed
introduction to DMM will be given in Sect. 2.

Now, given a language equipped with a DMM specification, and provided that that language
is suited as base for deriving a new language by enhancement, the language engineer has to add
DMM rules to the existing DMM ruleset which define the new language element’s semantics.
An often occuring problem in object-oriented scenarios is that some behavior defined in the
context of a certain type shall not be applied in the context of a subtype, i.e., behavior has to be
overridden by new behavior. In [EFS09], we have introduced a notion of rule overriding exactly
suited for this situation, which we will use to cope with that problem.

Finally, the goal must be to perform all language changes such that the semantics of the source
language is not hampered, and that the new parts of the semantics correctly reflect the intentions
of the language engineer.

Since a DMM specification is formal, the first and obvious idea is to formalize that notion of
correctness by means of requirements the specification shall fulfill, and then to prove that this
is indeed the case. However, the experiences from software development seem to imply that
proving the correctness of a reasonable complex system is often just not feasible; therefore, the
most important technique in software quality assurance is testing.

In [SE09] we have suggested a pragmatic approach to help creating high-quality semantics,
which is inspired by the well-known approach of Test-Driven Development [Bec02]. It is moti-

Proc. GraMoT 2010 2 / 18

ECEASST

Test

=?

Test

Executable
DMM

Specification

conforms to?

Executable
Software
System

Input

Output

Expected
result

Example
model

Expected
behavior

Transition
system

Executable
DMM

Specification

Executable
Software
System

Figure 1: Comparison of testing of software systems (left) and semantics specifications (right);
the test subject is depicted in an oval.

vated by the fact that a semantics specification basically follows the Input-Process-Output (IPO)
model, where a certain model can be seen as the input, and the semantics of that model is the
output (e.g., represented as a transition system).

Figure 1 shows our approach and its relation to the testing of software systems. In case of
testing software systems, a test case consists of some input for the system and the system’s
expected result. The test succeeds if the actual output of the system is equal to the expected
result.

In contrast to that, we want to test a DMM specification. Therefore, a test consists of an exam-
ple model and its expected behavior. From that model and the DMM specification, a transition
system can be computed which represents the model’s behavior. The test succeeds if the actual
behavior conforms to the expected behavior, i.e., if the expected behavior (and only the expected
behavior) is contained in the transition system.

In this paper, we show how to apply the approach of test-driven semantics specification within
the scenario of language derivation. For this, we will discuss a small example of language
enhancement: We will enhance the language of UML Activities. While doing this, we will
point out some problems, and we will show how DMM rule overriding can help to solve these
problems, and how a test-driven approach can be used that the new language’s semantics has a
certain quality.

Structure of Paper In the next section, we will give an introduction to our semantics specifi-
cation technique Dynamic Meta Modeling. Based on that, in Sect. 3 we will introduce a small
example of language modification, discuss side effects of that modification, introduce our ap-
proach of test-driven semantics specification, and discuss how that approach can be used as a
“safety net” against such side effects when performing language derivation. Section 4 will point
out some work related to ours, and Sect. 5 will conclude and discuss our future plans.

2 Dynamic Meta Modeling

We have argued in Sect. 1 that DMM specifications are formal, but also easily understandable.
This is an advantage to many other formalisms, which can only be used by experts of that formal-

3 / 18 Volume 30 (2010)

Test-driven Language Derivation with Dynamic Meta Modeling

Semantics Definition

Syntax
Definition

Transition System

States

Expression

Model

Operational rules

conforms to

Semantic
metamodeling

conforms to

Metamodel Graph
transformation rules

semantic
 mapping Runtime metamodel

Language

Model (Instance)

conforms to
conforms to

typed
over

Figure 2: Overview of the DMM approach

ism. For instance, the π-calculus [MPW92] is a powerful formalism for semantics specification,
but the average language user can not be expected to understand a π-calculus specification, let
alone use it to specify the semantics of a language.

DMM aims at delivering semantics specifications which indeed can be understood by such
users. It does that by providing a visual language for semantics specification. Additionally, a
DMM specification is based on the metamodel of the according language, allowing users who
are familiar with that metamodel to easily read a DMM specification.

In a nutshell, a DMM specification is created by first extending the language’s metamodel
with concepts needed to express states of execution; the enhanced metamodel is called runtime
metamodel. Then, the behavior is defined by creating operational rules which modify instances
of that runtime metamodel. An overview of DMM is provided as Fig. 2.

Since our goal will be to enhance the language of UML Activities, let us investigate the lan-
guage’s semantics specification as an example: the metamodel provided by the OMG [Obj09]
only contains syntactic information, i.e., it describes the set of valid UML Activities. The lan-
guage’s dynamic semantics is specified using natural language: for instance, the UML specifi-
cation document states that “the semantics of Activities is based on token flow”. However, the
language’s metamodel does not contain the concept of token.

Therefore, the runtime metamodel adds that concept: A class Token is introduced such
that instances of that class are associated to the language elements they are located at (e.g.,
Actions). As a consequence, an instance of the runtime metamodel describes a state of exe-
cution of an Activity by having Token objects sitting at particular elements. Figure 3 shows
an excerpt of the runtime metamodel for UML Activities. The runtime class representing the
concept of tokens is depicted in bold. Its location associations to the ActivityNode and
ActivityEdge classes allow to model a concrete state of execution of an Activity: If a token

Proc. GraMoT 2010 4 / 18

ECEASST

Activ ityNode Activ ityEdge

Activ ityFinalNode Token

Activ ityGroup

GroupFinalNode

target

1

containedEdge

0..*

containedNode

0..*

location

0..1

location

0..1

source

1

Figure 3: DMM runtime metamodel for UML Activities.

:Token

:Activ ityFinalNode:Activ ityEdge

:Token :Token

target

location

{destroy} {destroy}

activityFinalNode.accept()

Figure 4: The original DMM rule describing the ActivityFinalNode’s semantics.

is sitting on a particular Action, the model contains a location link from the token to the
object representing that Action.

Now, the operational rules come into play; a DMM rule is depicted in Fig. 4. Its semantics is as
follows: The rule can be applied if an incoming ActivityEdge of an ActivityFinalNode
carries at least one token. If this is the case, the rule is applied: all tokens flowing through the
Activity are deleted (no matter where they are located), bringing the execution of the whole
Activity to an immediate end.

The underlying formalism of DMM are graph transformations. Using the GROOVE toolset
[Ren04], DMM specifications give rise to transition systems which describe the complete behav-
ior of the according models. The start state of such a transition system is a model (in our case,
an instance of the runtime metamodel, where e.g. InitialNodes are already equipped with
a token). Now, every rule of the DMM specification is checked for applicability; if a rule can be
applied, the application will lead to a new (and different) state (where e.g. the location of tokens
has changed); the resulting transition is labeled with the applied rule. For every newly derived
state, the process starts over again until no new states are found.1

1 DMM specifications might give rise to an infinite transition system; in this case, standard techniques from model
checking such as bounded model checking can be applied.

5 / 18 Volume 30 (2010)

Test-driven Language Derivation with Dynamic Meta Modeling

A transition system computed in that way can then be analyzed using model checking tech-
niques. The properties to be verified need to be formulated over the applications of rules. For
instance, if we want to know if a certain Action can ever be executed, we need to check if
the transition system contains a transition which is labeled with the rule corresponding to the
Action’s execution.

More concretely, as there is only one generic, parameterized rule defining the semantics of
Actions, the rule’s parameter has to be the name of this Action. For example, if we want to know
whether the Action with name “A” is ever executed, we have to check whether the transition
system representing the model’s behavior contains a transition labeled action.start(“A”).

Now that we have gotten a precise idea of DMM, we are ready to perform our language
enhancement in the next section.

3 Test-driven Language Derivation

In the last section, we have seen how DMM semantics specifications work in general, and we
have investigated a small part of a semantics specification for UML Activities. Our next step will
be to enhance the Activity language by adding a language element, and to define that element’s
semantics by means of an additional DMM rule in Sect. 3.1. We will discuss possible problems
caused by that language modification.

To cope with such problems, we will then introduce the reader to our approach of test-driven
semantics specification [SE09] in Sect. 3.2. Based on that, we will show in Sect. 3.3 how to reuse
the concepts of that approach when deriving a new language from an existing one: In Sect. 3.4,
we will fix the semantics specification (partly) by using rule overriding, and we will use test
cases as guidance. Finally, Sect. 3.5 shows the tooling involved in the whole process.

3.1 Example: Enhancing UML Activities

UML Activities are a powerful behavioral language which can be used in all kinds of domains,
from specifying low-level algorithms to defining high-level business processes. However, no
language can contain all elements used within all kinds of contexts. As a result, the need for
domain-specific languages arises.

For instance, consider the usage of UML Activities for business process modeling. The Activ-
ity language contains two language elements dedicated for the termination of (parts of) an Ac-
tivity: The ActivityFinalNode terminates the execution of the complete Activity, whereas
the FlowFinalNode can be used to terminate single flows of execution (e.g., in the case of
concurrency).

However, the need might arise for more flexible ways to terminate flows of execution. As
an example, we want to add a GroupFinalNode which—if it consumes a token—brings all
execution within the node’s ActivityGroup to an immediate end (but does not affect flows
of execution outside the ActivityGroup).

The first step is to enhance the language’s syntax, i.e., to add the GroupFinalNode to
the language’s metamodel. The integration of the new metaclass can be performed in differ-
ent ways. Since the GroupFinalNode’s behavior is pretty similar to the behavior of the

Proc. GraMoT 2010 6 / 18

ECEASST

:Token
:Token

:Activ ityNode

:GroupFinalNode:Activ ityEdge

:Activ ityNode

:Token

:Token
:Token

:Activ ityEdge
:Activ ityEdge

:Activ ityGroup

location
location

containedNodecontainedEdge

containedNode

target

location

{destroy}

{destroy}
{destroy}

groupFinalNode.accept()

Figure 5: The modified DMM rule describing the ActivityFinalNode’s new behavior.

ActivityFinalNode (which consumes all tokens flowing in the Activity as soon as it re-
ceives a token; it has been depicted in Fig. 4 on page 5), and since the language engineer wants
to reuse the concrete syntax of that node, he decides to add the element as a subclass of the
ActivityFinalNode’s metaclass (which had been depicted in Fig. 3).

The language engineer also has a definition of the GroupFinalNode’s behavior in mind.
An according DMM rule is depicted in Fig. 5. However, the performed language modification
causes a couple of problems lying in the coordination of the old and new rules’ behavior (since
that behavior is heavily related). We will explain these problems in more detail below.

Now, we suggest to deal with such problems by performing modifications of semantics specifi-
cations in a test-driven way. In a nutshell, the language engineer will first create example models
of the modified language. Such an example model contains one or more of the modified language
elements in a certain context which should be related to the modifications which have been per-
formed. For instance, the modification we have described above implies that the language engi-
neer creates an example model which shows the new behavior of the GroupFinalNode.

Additionally, the language engineer will describe the expected behavior of that model in a
precise, semi-formal way (more on that in the next section). Finally, executable test cases are
generated from the example models and their behavior descriptions. The language engineer can
now perform the modifications of the semantics specification against these test cases: If the
tests all pass, he can take this as a sign that the modifications have been performed correctly.
Otherwise, the failing test cases will hopefully point him to the problematic modifications he
performed.

Since the idea to perform test-driven language derivation is based on our idea of test-driven
semantics specification [SE09], we want to shed light on that approach in the next section.

7 / 18 Volume 30 (2010)

Test-driven Language Derivation with Dynamic Meta Modeling

Create example models

Create example
model

Discuss
semantics

Describe
semantics

(traces)

Identify
execution

events[else]

[all language elements covered]

Figure 6: Create example models

3.2 Test-driven Semantics Specification

We have already seen in the introduction that a semantics specification follows the Input-Process-
Output model in some sense: a model serves as input, and the semantics of that particular model
is the output. In this section, we want to explain this idea in more detail.

“Test-driven semantics specification” means that the semantics of a language is developed
against existing test cases: As soon as all test cases succeed, the semantics specification is fin-
ished (and we have some hope that it indeed has an appropriate quality). In our scenario of
test-driven semantics specification, the input specified by a test case is an example model, i.e., a
model which demonstrates certain behavioral properties of some language elements. Sect. 3.2.1
will deal with the creation of example models and the description of their expected behavior.

Section 3.2.2 will then show how to automatically transform each example model and its
description of behavior into an executable test case. Finally, Sect. 3.2.3 will point out how to
perform the actual semantics specification against the test cases.

3.2.1 Creating Example Models

The starting point is the abstract syntax of the language under consideration. It defines all lan-
guage elements and their relations with each other. In the case of DMM, the abstract syntax must
be given as a metamodel. Based on the abstract syntax, the example models should be created
step by step, systematically going from the most basic to more complex language constructs2.

Then, for each example model the expected behavior needs to be identified, and to be described
in a semiformal way. This is done using so-called traces of execution events. An execution event
in our sense is some interesting event happening during the execution of a model. For instance,
in the example below (which is in the context of UML Activities), we will use execution events
corresponding to the execution of a particular Action.

Such execution events can then be composed to traces. A trace is a sequence of execution
events which occur when a particular model is being executed. It describes one possible way of
executing a particular model. The process of creating example models is depicted in Fig. 6.

Let us illustrate the above with a simple example, which is depicted in Fig. 7. Its purpose
is to demonstrate the semantics of the DecisionNode and MergeNode. This example is
interesting because of the fact that it allows for more than one possible execution: a token flowing

2 The example models can of course be created using the language’s concrete syntax

Proc. GraMoT 2010 8 / 18

ECEASST

Decision and Merge

A

B

C

Figure 7: Example Activity containing a simple DecisionNode/MergeNode structure

through the Activity will—as soon as it has passed Action “A”—be routed either to Action
“B” or to Action “C”.

Obviously, the interesting execution events which occur when that model is executed are the
executions of the contained Actions. As a result, we identify the event ActionExecutes(Name)
which refers to the execution of an Action with name Name.

We have already seen above that due to the involved DecisionNode, there are two ways to
execute the model. Therefore, we will describe the model’s behavior by two traces of execution
events:

ActionExecutes(“A”) ActionExecutes(“B”)

and

ActionExecutes(“A”) ActionExecutes(“C”)

We decided to reduce the semantics of Activities to the possible orders of execution of Actions,
since the Actions are the places where the actual work will be performed. However, it would
also be possible to use more fine-grained traces like InitialNode() ActionExecutes(“A”) DecisionN-
ode() ActionExecutes(“B”) MergeNode() ActivityFinalNode().

With these traces, we have already finished the description of our example model’s behavior.
We can now turn to the transformation into an executable test case in the next section.

3.2.2 Deriving Test Cases

In this section, we want to investigate how to automatically verify that an example model indeed
behaves as we expect it to. This is done in two steps: First, we formalize the traces of execution
events of our example model by translating them into a notion of temporal logic. Second, we
use a model checker to verify whether the transition system raising from the example model and
our semantics specification contains exactly the expected behavior (and nothing else). To make
our test cases executable, the described process is triggered by a small Java framework we have
implemented on top of JUnit [GB].

Let us start with translating the traces of execution events into temporal logic. The idea of the
translation is as follows: We want to express that the transition system contains a path starting
from the start state such that all execution events occur on that path in the desired order, and that
no other execution events occur in between.

We have seen in Sect. 2 that DMM specifications give rise to a transition system where each
transition is labeled with the DMM rule creating that transition. As a result, we have to map

9 / 18 Volume 30 (2010)

Test-driven Language Derivation with Dynamic Meta Modeling

our execution events to the according DMM rules. Having done that, the translation is pretty
straight-forward: From each execution event e, an expression EF(re) is generated, where re is
the DMM rule corresponding to event e. Such an expression is true iff there Exists a path such
that Finally, rule re occurs as a label of one of the transitions.

These expressions are then nested to express the sequence of events to occur: For instance, the
sequence e1e2 is translated into the CTL formula EF(re1 ∧EF(re2)), expressing that there must
be some occurence of re1 , and from that point on, there must be an occurence of re2 .

The fact that there must not be any events in between e1 and e2 is represented by using a CTL
Until expression which makes sure that no unexpected rules occur until the next desired rule
occurs. We do not show this construction here; the interested reader is pointed to [SE09].

Having computed our CTL formulas f1, . . . , fn (one for each trace of execution of the example
model’s behavior), we can check whether all these traces are indeed contained in the resulting
transition system. This is done by using a model checker to verify whether the formulas hold on
our transition system; if this is the case, the behavior is contained as expected.

Finally, we need to make sure that the transition system only contains the expected behavior.
This is verified by a final CTL formula which reads as follows: AF(f1∨ ·· ·∨ fn). It makes sure
that on All paths, one of the expected sequences of events takes places.

If all CTL formulas as described above hold for our transition system, we can be sure that
for our example model, the semantics specification produces exactly the desired behavior. If the
model checker finds out that one of the expressions does not hold, the resulting counter example
will be helpful when fixing the errors of our specification.

3.2.3 Specifying the Semantics

The actual semantics specification can then be performed against the test cases we got from the
last step. We start with specifying the semantics of the most simple language elements of our
language. As soon as our specification contains the semantics description of all elements con-
tained in one of our example models, that model and its description of behavior are transformed
into an executable test case, which can then be verified against the current state of the semantics
specification as described in the last section.

Now, if the derived test case succeeds, we can continue with specifying the more complex
elements’ semantics, until finally all language elements are covered. Otherwise, we need to fix
the specification until the test case succeeds.

Note that all test cases are executed within every iteration of the process described above; this
is to prevent regression errors (i.e., destroying the behavior of an already specified element by
specifying the semantics of a still unspecified element). The whole process is depicted in Fig. 8.
Now that we have seen how to create a semantics specification in a test-driven way, we can
transfer the concepts used into our scenario of deriving a new language from an existing one.

3.3 Test-driven Derivation Process

Recall the language modifications we have in mind: we want to add a language element Group-
FinalNode with the purpose of terminating the execution of a particular ActivityGroup.
To reach this goal, we have added the according metaclass to the metamodel by subclassing an

Proc. GraMoT 2010 10 / 18

ECEASST

Specify semantics, derive test cases

Specify
semantics for

element

Formalize traces
of example

Create test
case

Execute all
test cases

Fix semantics

[all tests passed]

[else]

[else]

[all elements of example covered]

[else]

[all language elements covered]

Figure 8: Specify semantics, create test cases from example models

existing one.
Now, in a test-driven setting, our next step consists of defining a test case against which we

can then specify the language element’s behavior, i.e., an example model.3 How does such an
example model for our language extension look like?

There is one major requirement: The example model needs to demonstrate the behavior of in-
terest. In our case, this means that we need a UML Activity containing our GroupFinalNode,
and the Activity’s structure should be such that the GroupFinalNode’s existence indeed has
an impact.

Despite that, the example model should be as simple as possible. This has one major advan-
tage: In case the test case derived from our example model fails at a later stage, it will be easier
to figure out the cause of the failure, since less language elements are involved.

Figure 9 shows an example model which suits our needs. Obviously, it is very simple.
Additionally, it demonstrates the behavior of our new language element. To explain this, as-
sume for the moment that the Activity does not contain the ActivityGroup, and that the
GroupFinalNode is a simple ActivityFinalNode as the one above. Then, the seman-
tics would be as follows: since the whole Activity’s execution is terminated as soon as a token
arrives at one of the ActivityFinalNodes, a possible behavior would be that just the ex-
ecution of A (or B) takes place. In this case, one of the tokens has flown all the way down to
the upper (lower) ActivityFinalNode before the execution of B (A) has even started (i.e.,
the other token is still sitting on the ActivityEdge in front of that Action). The situation
is different in the case of our real example model containing the ActivityGroup and the
GroupFinalNode: Since the group “encapsulates” the effect of the GroupFinalNode, it
will always be the case that A is executed (however, B might not be executed as discussed above).
We will appreciate this fact by creating our traces of execution events accordingly: There will be
no trace where A is not executed.

3 Of course, there should usually be more than one example model. For instance, in our case the example model
demonstrates that the GroupFinalNode deletes a token within its ActivityGroup only, but does it really de-
stroy all tokens within that group?

11 / 18 Volume 30 (2010)

Test-driven Language Derivation with Dynamic Meta Modeling

Example model

A

B
G

Figure 9: Example model demonstrating the behavior of the GroupFinalNode

Now, being equipped with an example model (or a set of example models) and its expected
behavior, we can continue with specifying the according behavior. This is done by adding the
rule we have seen as Fig. 5 to the DMM ruleset.

We are now ready to execute our test case. As it turns out, the test fails. This is due to an
error we made: We did not take into account that the left-hand’s graph of the rule activityFinalN-
ode.accept() (see Fig. 4 on page 4) basically4 is a subgraph of the new rule’s left-hand graph. As
a result, that rule matches whenever the new rule matches. The consequence is that the transition
system resulting from the example model still contains traces where A is not executed.

This is a problem as described earlier: In our situation, it does not suffice to just add the DMM
rule describing the new element’s behavior. In addition, the modeler has to make sure that the old
behavior does not take place in the context of the new language element GroupFinalNode.
The next section will show how to cope with this problem using DMM rule overriding.

3.4 Using DMM Rule Overriding

We have seen above that the enhancement of our semantics specification is not finished yet: We
need to prevent the ActivityFinalNode’s behavior from being applied in the context of
the new element GroupFinalNode. One way to do this would be to change rule activityFi-
nalNode.accept() such that it only matches if the ActivityFinalNode is not contained in
an ActivityGroup (by adding an according negative application condition to that rule). This
would indeed fix our failing test, since the ActivityFinalNode’s behavior would not take
place any more in that situation.

Fortunately, the language’s semantics has been developed in a test-driven way. In this case, our
already existing test cases will hopefully tell us whether we have broken any existing behavior
with our changes. And this is indeed the case: Obviously, rule activityFinalNode.accept() does
not match any more in case its ActivityFinalNode belongs to an ActivityGroup (this
is exactly the change we have performed above). However, the semantics of the Activity-
FinalNode stays the same, no matter whether it belongs to an ActivityGroup or not. In
other words: An ActivityFinalNode which does belong to an ActivityGroup shall
still delete all tokens flowing through the Activity, no matter where they are located. This
does not happen, since rule activityFinalNode.accept() does not match any more in such a sit-

4 The only difference is the typing of the FinalNodes, but that doesn’t affect the matching here.

Proc. GraMoT 2010 12 / 18

ECEASST

uation. As a consequence, every test case in which an ActivityFinalNode belongs to an
ActivityGroup will now fail, pointing us to the fact that our language modification has had
some side effects.

However, the problem is easily fixable using a more sophisticated DMM construct: Rule
overriding [EFS09]. Before we start to explain that construct, let us first look into DMM rules
more deeply.

Every DMM rule has a so-called context node, and a rule is defined in the context of that node.
Since every node in a DMM rule has a type, the context node implies a type for the rule itself:
the context node’s type can be seen to own the behavior described by the rule (just as a method is
owned by the class it is defined in). Note that this concept strengthens the similarity of DMM and
object-oriented programming languages and therefore increases the understandability of DMM
specifications.

In the rule activityFinalNode.accept(), the context node is the node typed ActivityFinal-
Node; as expected, the context node of the new rule groupFinalNode.accept() is the node typed
GroupFinalNode. As a result, the new rule has two interesting properties: first, as we have
seen above, the rule’s left-hand graph is a subgraph of the left-hand graph of rule activityFinalN-
ode.accept() (this caused our problem at the beginning), and second, the context node’s type
of rule groupFinalNode.accept() is a subtype of the context node’s type of rule activityFinalN-
ode.accept().

The described situation is exactly the prerequisite for using DMM rule overriding. The idea
is as follows: Given two rules r1, r2 such that the two properties mentioned above hold, rule r2
can override rule r1 (in our example, activityFinalNode.accept() would be r1, and groupFinalN-
ode.accept() would be r2).

If a rule is overridden, its matching is affected: An overridden rule r1 only matches a host
graph if there is a morphism from the rule’s left-hand graph into the host graph and if there is
no overriding rule r2.5 It is easy to see that this indeed fixes our problem from above: Letting
groupFinalNode.accept() override rule activityFinalNode.accept() prevents the former rule from
matching in the context of our new type GroupFinalNode, therefore leading to the desired
behavior.

3.5 The Tool Chain

It remains to shed some light on the tools involved in the process of modifying an existing
language (which are depicted in Fig. 10). In Sect. 2, we have already mentioned that the Groove
toolset [Ren04] is used to compute the transition system used for analysis of a model’s behavior.
However, DMM supports quite sophisticated language features which are not directly supported
by the notion of graph transformation rules Groove supports. For instance, DMM rules can
explicitly invoke other DMM rules, which is not supported by common graph transformation
tools.

Therefore, an own visual language for DMM specifications has been developed using Eclipse-
based frameworks such as EMF [SBPM08], GMF [Ecl09a], and UML2 [Ecl09b] – part of the
latter project is an EMF implementation of the UML metamodel. As expected, the syntax of

5 Note that in [EFS09], we have in fact defined two notions of rule overriding; in [EFS09], the notion used within this
paper is called complete overriding.

13 / 18 Volume 30 (2010)

Test-driven Language Derivation with Dynamic Meta Modeling

DMM
Specification

Test Case

Trace of Exe-
cution Events

DMM2Groove

EMF2Groove

Trace2CTL

Example
Model

Groove
Grammar

Groove
Start Graph

Groove
Generator

Trace of Exe-
cution Events

CTL
Formula

Groove
Modelchecker

Graph
Transition
System

Verification result
(ok or counter
example)

Figure 10: The DMM tool chain

the DMM language is defined by means of a metamodel. The DMM component DMM2Groove
is responsible for translating an instance of the DMM metamodel into a valid Groove grammar
ready to be executed on a proper graph state.

Additionally, the DMM tooling is capable of handling arbitrary EMF models. The according
DMM component EMF2Groove takes such an EMF model (e.g., a concrete UML Activity as
instance of the UML2 metamodel mentioned above) and transforms it into a Groove graph. In
the next step, both the Groove grammar and the start graph are fed into the Groove Generator,
which is then used to compute a transition system representing the complete model’s behavior.

We have seen earlier in this section that a DMM test case not only consists of an example
model, but also of a set of traces of execution events, each describing one possible execution
of the example model. The DMM component Trace2CTL is responsible for generating CTL
formulas from these traces (please refer to [SE09] for the details of the generation).

Finally, the transition system and the generated CTL formulas serve as input for the Groove
model checker, which checks whether the formulas hold for the transition system (and therefore
for the model from which the start graph had been generated). The model checker will either
report that a formula holds, or it will provide a counter example showing under which circum-
stances the CTL property is violated; that counter example can then be used to understand why
the CTL property is violated, and should therefore be very helpful when fixing the semantics
specification.

4 Related Work

The work most closely related to ours probably is the work by Sadilek et al. [Sad08]. His goal
is to quickly prototype DSLs. The comparable scenario is as follows: A language’s semantics
might first be specified using a formal language, e.g. Abstract State Machines, for the sake of
proving properties of the DSL’s semantics. Later on, a second, more efficient semantics spec-

Proc. GraMoT 2010 14 / 18

ECEASST

ification might be created which shall be semantically equivalent to the first one. Since both
semantics specifications allow for DSL instances to be executed, the language engineer can
now create test models of the DSL, execute them and compare the resulting execution traces.
The main difference to our approach is that Sadilek uses tests to compare two semantics spec-
ifications, whereas we use them to convince ourselves that the semantics specification indeed
produces the behavior the language engineer had in mind.

In the area of language engineering, several approaches for defining DSLs exist. For instance,
MetaCase provides MetaEdit [SLTM91], Microsoft provides the DSL Tools as part of MS Vi-
sual Studio [CJKW07], and the Eclipse foundation provides the Graphical Modeling Framework
[Ecl09a]; all these approaches aim at an easy creation of visual languages. openArchitecture-
Ware [HVEK07] provides a set of tools which allow for the easy creation of textual languages,
including powerful editor support.

To our knowledge, all the above approaches focus on defining DSLs from scratch. Addition-
ally, they do not focus at all on the definition of behavioral semantics: the approaches provide
support for code generation, but they do not provide a means to systematically create high-quality
code generators; the generation is pretty much done ad-hoc.

Quite some work exists on typed graph transformations, on which we defined our notion of
rule overriding. For instance, in [LBE+07], de Lara et al. show how to integrate attributed graph
transformations with node type inheritance, therefore allowing for the formulation of abstract
graph transformation rules (i.e., rules which contain abstract nodes). The resulting specifications
tend to be more compact, since a rule containing abstract nodes might replace several rules
which would otherwise have to be defined for each of the concrete subtypes. The resulting
formalism does not provide support for refinement of rules (and is therefore comparable with the
expressiveness of the current state of DMM).

In [TR05], Taentzer et al. show how to formulate structural properties of type graphs with in-
heritance using graph constraints, and they provide a translation into standard graphs. In contrast
to our work, they concentrate on structure, whereas our approach modifies the behavior of rules
participating in an overrides relation.

5 Conclusion

In this paper, we have shown how test-driven approaches from software engineering can be
reused in the field of language derivation. For this, we have first introduced our semantics speci-
fication technique Dynamic Meta Modeling, and we have explained how graph transformations
serve as the backing formalism of DMM. Based on that, we have introduced a simple example
of language enhancement in Sect. 3, and we have discussed the problem of overriding existing
behavior.

We have then shown how to perform language derivation in a test-driven way, following the
approach of test-driven semantics specification. We have also shown how rule overriding can be
used to override already existing DMM graph transformation rules, and we have demonstrated all
that by fixing the flaws we (intentionally) introduced within our language modification example.

Overall, we have presented an example of applying the well-established formalism of graph
transformations [EEKR99] in a typical software engineering scenario. Currently, we are in-

15 / 18 Volume 30 (2010)

Test-driven Language Derivation with Dynamic Meta Modeling

vestigating different notions from software engineering for the sake of using them within our
test-driven semantics specification approach, the most important one being test coverage crite-
ria: for instance, a minimum such criterion is that over all test cases, every DMM rule has been
applied at least once, but more complex coverage criteria are worth investigating.

Additionally, our focus is on developing tool support for test-driven language engineering.
Our tool support has the following goals:

• Easy specification and execution of test cases.

• Back-propagation of the model checker’s counter example in case a test case failed.

• Visual debugging and execution of test cases.

Finally, two of our students are working on complex semantics specifications for behavioral
diagrams of the UML, using test-driven semantics specification. In the course of their work, they
will also have to modify the DMM specification of an existing language. While performing their
work, the students will make use of the existing DMM tooling; we plan to learn from their efforts
about further needed tooling.

Bibliography

[Bec02] K. Beck. Test-Driven Development by Example. Addison-Wesley Longman, Ams-
terdam, The Netherlands, 2002.

[CJKW07] S. Cook, G. Jones, S. Kent, A. Wills. Domain-Specific Development with Visual
Studio DSL Tools. Addison-Wesley Professional, 2007.

[Ecl09a] Eclipse Foundation. Graphical Modeling Framework. http://www.eclipse.org/
modeling/gmf/, 2009. online, accessed 5-5-2009.

[Ecl09b] Eclipse Foundation. UML2 Project. http://www.eclipse.org/uml2/, 2009. online, ac-
cessed 5-5-2009.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.). Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages, and Tools. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
1999.

[EFS09] G. Engels, D. Fisseler, C. Soltenborn. Improving Reusability of Dynamic Meta
Modeling Specifications with Rule Overriding. In R. DeLine (ed.), Proceedings of
the 2009 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC 2009), Corvallis, Oregon (USA). Pp. 39–46. IEEE Computer Society, Pis-
cataway, NJ (USA), 2009.

[EHS99] G. Engels, R. Heckel, S. Sauer. Dynamic Meta Modelling: A Graphical Approach
to Operational Semantics. In Proceedings of the workshop on Rigorous Modeling

Proc. GraMoT 2010 16 / 18

http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/uml2/

ECEASST

and Analysis with the UML: Challenges and Limitations (satellite event of the Con-
ference on Onject-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 1999)), Denver, CO (USA). 1999.

[ESW07] G. Engels, C. Soltenborn, H. Wehrheim. Analysis of UML Activities using Dynamic
Meta Modeling. In Bosangue and Johnsen (eds.), Proceedings of the FMOODS 2007
Conference. LNCS 4468, pp. 76–90. Springer, 2007.

[GB] E. Gamma, K. Beck. JUnit Homepage. http://www.junit.org/. online, accessed 1-2-
2010.

[Hau05] J. H. Hausmann. Dynamic Meta Modeling. PhD thesis, University of Paderborn,
2005.

[HVEK07] A. Haase, M. Völter, S. Efftinge, B. Kolb. Introduction to openArchitectureWare
4.1.2. MDD Tool Implementers Forum (Part of the TOOLS 2007 conference,
Zürich), 2007.

[LBE+07] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Attributed
Graph Transformation with Node Type Inheritance. Theoretical Computer Science
376(3):139–163, 2007.

[MPW92] R. Milner, J. Parrow, D. Walker. A Calculus of Mobile Processes, I. Information and
Computation 100(1):1–40, 1992.

[Obj09] Object Management Group. OMG Unified Modeling Language (OMG UML) – Su-
perstructure, Version 2.2. http://www.omg.org/docs/formal/09-02-02.pdf, 2 2009.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Pfaltz
et al. (eds.), AGTIVE 2003 – Revised Selected and Invited Papers. LNCS 3062,
pp. 479–485. Springer, 2004.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formation, Vol. 1: Foundations. World Scientific Publishing Co., Inc., River Edge,
NJ, USA, 1997.

[Sad08] D. A. Sadilek. Prototyping Domain-Specific Language Semantics. In Companion
to the 23rd ACM SIGPLAN conference on Object-oriented Programming Systems
Languages and Applications. ACM, New York, 2008.

[SBPM08] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse Modeling
Framework, Second Edition. Addison-Wesley Professional, 2008.

[SE09] C. Soltenborn, G. Engels. Towards Test-Driven Semantics Specification. In
A. Schürr (ed.), Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2009), Denver, Colorado (USA).
Pp. 378–392. Springer, Berlin/Heidelberg, 2009.

17 / 18 Volume 30 (2010)

http://www.junit.org/
http://www.omg.org/docs/formal/09-02-02.pdf

Test-driven Language Derivation with Dynamic Meta Modeling

[SLTM91] K. Smolander, K. Lyytinen, V.-P. Tahvanainen, P. Marttiin. MetaEdit: a Flexible
Graphical Environment for Methodology Modelling. In Proceedings of the third in-
ternational conference on Advanced information systems engineering (CAiSE 91).
Pp. 168–193. Springer-Verlag New York, Inc., New York, NY, USA, 1991.

[TR05] G. Taentzer, A. Rensink. Ensuring Structural Constraints in Graph-Based Models
with Type Inheritance. In Cerioli (ed.), FASE. LNCS 3442, pp. 64–79. Springer,
2005.

Proc. GraMoT 2010 18 / 18

	Introduction
	Dynamic Meta Modeling
	Test-driven Language Derivation
	Example: Enhancing UML Activities
	Test-driven Semantics Specification
	Creating Example Models
	Deriving Test Cases
	Specifying the Semantics

	Test-driven Derivation Process
	Using DMM Rule Overriding
	The Tool Chain

	Related Work
	Conclusion

