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Abstract: Executing formal operation contracts is an important technique for re-
quirements validation and rapid prototyping. Current approaches require additional
guidance from the user or exhibit poor performance for underspecified contracts
that describe the operation results non-constructively. We present an efficient and
fully automatic approach to executing OCL operation contracts which uses a satis-
fiability (SAT) solver. The operation contract is translated to an arithmetic formula
with bounded quantifiers and later to a satisfiability problem. Based on the system
state in which the operation is called and the arguments to the operation, an off-
the-shelf SAT solver computes a new state that satisfies the postconditions of the
operation. An effort is made to keep the changes to the system state as small as pos-
sible. We present a tool for generating Java method bodies for operations specified
with OCL. The efficiency of our method is confirmed by a comparison with existing
approaches.

Keywords: OCL, Model execution, Animation, SAT solvers

1 Introduction

The Object Constraint Language (OCL [Obj06]) has established itself as a textual notation for
describing behavior that cannot be expressed adequately through UML diagrams. OCL allows
the modeler to specify class invariants and to define operation contracts through pre- and postcon-
ditions. Tool support is essential for OCL to gain widespread acceptance among modelers, but is
at the moment basically restricted to constraint evaluation. The Dresden OCL Toolkit [HDF02]
for example provides runtime constraint checking, while USE [GBR07] is an integrated OCL
evaluation environment. OCL would be much more useful if OCL operation contracts could be
executed directly and compiled to code. Executing an operation contract means determining a
valid system state in which an invocation of the operation can return. Based on the system state
in which the operation is called and the arguments to the operation, a new state is to be computed
that satisfies the postconditions of the operation and all invariants. Specification execution can
help the developer gain confidence in the specification and find errors early in the design process.

In this paper we present tool support for executing OCL operation contracts and generating
code from them. The task of executing specifications, also called animation [DKC89], is a long
standing research problem (see Leuschel and Butler [LB08] for a recent overview). Several
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animation tools have been implemented (see e.g. [Gri00, BDLU05, KW06, Ser07, LB08]). Ex-
ecuting operation contracts is challenging since postconditions and invariants only state which
conditions must hold in the new system state. The constraints often do not indicate how a valid
system state can be found. In particular underspecified contracts often describe the operation
results non-constructively. A contract is underspecified if it allows multiple behaviors for the
same input.

Animators need constraint solving algorithms to handle underspecified contracts. The algo-
rithms used by existing animators, although often sophisticated, scale poorly for many simple
contracts. In order to allow for more efficient animation, we propose to use a so-called Satisfia-
bility (SAT) solver as the underlying constraint solver. A SAT solver decides whether a Boolean
formula is satisfiable, i.e. if there is an assignment to the variables in the formula for which the
formula is true. By translating OCL constraints to Boolean formulas, SAT solvers can be used
to determine valid system states for the purpose of animation. A large variety of SAT solvers
have been implemented. It is our intention to make use of the intense research on satisfiability
solving [BZ08] for executing specifications. We have implemented our SAT-based animation
approach in OCLexec1, a tool that generates Java method bodies from OCL operation contracts.

1.1 Related Work

A lot of effort has been put into animation tools, in particular for the specification languages
Z [DN91, Utt00, Gri00] and B [BLP04, Ser07, LB08]. Animators for the Java Modeling Lan-
guage (JML) have been implemented too [BDLU05, KW06]. There has also been work on
animating UML/OCL [OK99, GS00]. None of these tools uses SAT solvers.

There are many tools that translate languages with a richer semantics than Boolean formulas
to a satisfiability problem. Several so-called model finders [KZ94, McC01, CS03] analyze first-
order formulas with a SAT solver. The formulas processed by these tools are similar to the
arithmetic formulas we introduce in the sequel.

The Alloy Analyzer [Jac06] processes a language that is similar to UML/OCL models. This
tool constructs system states that meet constraints specified in a first-order language. The anal-
ysis is performed with the SAT-based model finder Kodkod [TJ07], a software package that our
tool uses as well. Alloy reads no input other than the Alloy language, no kind of code is gener-
ated. The user needs to give bounds to clarify what kind of output she expects. In particular, the
integer values considered by Alloy have to be restricted to a small user-defined range.

The tool UML2Alloy [ABGR07] translates UML/OCL constructs to their counterparts in the
Alloy language. The output is a text file that the user can open with Alloy in order to analyze the
constraints. The user needs to specify the same kinds of bounds as for any other analysis with
Alloy. UML2Alloy focuses on invariant constraints, support for translating UML operations to
Alloy is quite restricted. Operations cannot have parameters or return a value, and the @pre
construct of OCL is not taken into account by the translation.

1 http://www.pst.ifi.lmu.de/Research/current-projects/oclexec
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1.2 Organization of the Paper

In Section 2 we present code generation from OCL contracts and discuss its benefits. Section 3
explains how the part of the system state that needs to be modified by animation is approxi-
mated. Section 4 introduces arithmetic formulas with bounded quantifiers as an intermediate
representation of constraints that is amenable to analysis with a SAT solver. We outline how
OCL constraints can be translated to arithmetic formulas. Section 5 describes our code genera-
tion tool OCLexec in more detail. In Section 6 we give experimental results for OCLexec and
existing tools.

2 Code Generation from Operation Contracts

In this section we present code generation from operation contracts and discuss its benefits. Fig-
ure 1 shows a simplified OCL specification of a parking guidance system which will serve as
example. The parking guidance system monitors the remaining capacity of a list of connected
parking garages. There are tickets for entering and parking in a parking garage associated with
the ticket. An operation newTicket of the parking guidance system creates and returns a

(a) Simplified UML model of a parking guidance system

context ParkingGuidanceSystem::newTicket(): Ticket
post: if not result.oclIsUndefined() then

result.parkingGarage.remainingCapacity@pre > 0
and result.oclIsNew()
and not result.parkingGarage.oclIsNew()

else
parkingGarages@pre->forAll(remainingCapacity@pre = 0)

endif
post: numberOfRequests = numberOfRequests@pre + 1

(b) Operation contract for returning a ticket for a parking garage that is not full

Figure 1: Example OCL specification
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(a) State before animation (b) State after animation

Figure 2: Effect of animating a call to newTicket on a system state

Ticket associated to a ParkingGarage which is not full. If all monitored parking garages
are full, null is returned. For statistical purposes the counter numberOfRequests is incre-
mented each time the operation is called. This behavior of the operation is specified with the OCL
contract in Figure 1. Since the operation can choose any ParkingGarage that is not full, the
contract is underspecified. The expression result.oclIsUndefined() is true when the
operation returns null. The condition result.oclIsNew() ensures that a Ticket ob-
ject returned by the operation is new and did not already exist before the operation was called.
In order to prevent that a Ticket returned refers to a new ParkingGarage created by the
operation, the condition not result.parkingGarage.oclIsNew() is added.

The tool we present in this paper generates Java method bodies. It inserts Java code that
enforces the postconditions of the operation and all class invariants. If no valid new system state
exists, an exception is thrown2. Objects can be created by the generated method body. However,
objects are not explicitly destroyed. An object can be regarded as deleted if it is inaccessible
from other parts of the object graph.

If the tool is run on the contract in Figure 1, code will be generated that behaves as required.
In particular, all postconditions listed in the contract always hold after the code is executed. The
values of the properties remainingCapacity and parkingGarages are not changed by
the generated code since these properties are only referenced by the contract at precondition
time. The code generator observes that modifying values of these properties cannot help satisfy
the postconditions. Only the association between the classes ParkingGarage and Ticket
is modified by a call of this operation.

Figure 2(a) depicts a possible system state in which the operation newTicket can be
called. The parking guidance system monitors three parking garages, only one of them is

2 Since we restrict all integer values and numbers of class instances to 32-bit numbers, the number of system states
is finite and thus the existence of a valid new state is decidable. However, due to the large number of possible states,
the code will appear to be non-terminating for difficult constraints.

Proc. OCL 2008 4 / 17



ECEASST

full. Figure 2(b) shows a possible outcome of animating a call of newTicket in this sys-
tem state. Animation creates and returns Ticket t4 that is linked to ParkingGarage p3.
Since ParkingGarage p2 is not full either, animation could have linked Ticket t4 to
ParkingGarage p2 as well.

Code generation from operation contracts has several benefits. Execution of a specification
can be a significant contribution to its validation. Execution scenarios that are generated auto-
matically without additional guidance from the modeler can be surprising. It may become clear
that additional constraints are necessary. For example, it may turn out that it is not desired that a
ParkingGaragewith very little remaining capacity is selected if there is a ParkingGarage
with plenty of empty space available. Such unforeseen behavior can not be discovered if the con-
straints are only tested on system states that the modeler has designed to be correct or incorrect.

It may be possible that an improved version of our tool allows the implementation of oper-
ations for which sufficiently efficient code is generated to be skipped or postponed. This may
well apply to a large part of the system since most of the execution time tends to be used for
executing only a small fraction of the code. The operation newTicket performs an unsophisti-
cated computation that is unlikely to have a significant impact on the overall performance of the
whole system. Relatively efficient code can easily be generated from the contract of this opera-
tion. Such an opportunity saves implementation effort and helps avoid coding errors. Moreover,
a larger part of the development can be carried out on a higher and platform independent level
of a abstraction. In this sense, code generation from operation contracts can be regarded as a
contribution to Model-Driven Development.

In addition to these benefits, OCL contracts can be used for other purposes that are not directly
related to our tool. For example, constraints can serve as test oracles. The contract in Figure 1 can
be used to test any implementation of the operation. It does not matter whether the implemen-
tation selects the first suitable ParkingGarage on the list or a different ParkingGarage
which is not full — every correct implementation complies with the contract.

3 Preliminary Constraint Analysis

As a first step of animation, we need to determine which parts of the system state may change
during animation. We seek to avoid changes to the system state as much as possible. This is
important since the current OCL standard does not provide a mechanism for specifying which
parts of the system state an operation may modify. Instead, the modeler has to list the parts of the
system state that the operation should not change. For example, in order to prevent the operation
newTicket specified in Figure 1 from changing the attribute remainingCapacity of the
class ParkingGarage, the further postcondition

parkingGarages@pre

->forAll(remainingCapacity = remainingCapacity@pre)

needs to be added. Systematically adding constraints like this one is usually infeasible except for
very simple specifications. Since animation would be useless if it modifies parts of the system
state that are completely unrelated to the animated operation, we only allow animation to perform
changes that may be necessary for satisfying the operation contract.
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Restricting changes of the system state is also important for the efficiency of animation. The
more of the old system state can be reused, the less search is necessary to find a new system state
satisfying the operation contract. Moreover, if certain class invariants only depend on constant
parts of the system state, we do not need to consider these constraints during animation.

We only allow animation to modify parts of the object graph that are connected to the objects
passed to the animated operation. The objects passed to the operation are the self instance
and the objects contained in the arguments of the operation call and in the values of any static
attributes. In fact, these are the only parts of the object graph that are accessible to a Java method
body implementing the operation.3 We denote the modifiable parts of the system state by giving
a set P of properties that may be altered and a set C of classes for which new instances may be
created. Recall that we do not give animation any opportunity to delete class instances except by
making them inaccessible from other parts of the object graph. Hence, we do not give a set of
classes for which instances may be deleted.

We can write an OCL class invariant as ∀x .F(x), where x is the self variable and F(x) is an
OCL constraint depending on x. The variable x ranges over all instances of the class for which
the invariant is specified. Note that a new system state can only violate the invariant if properties
that are referenced in F(x) were altered, or if new instances of the class were created. We define
I to be the set of invariants that reference a property in P or are specified for a class in C.

For animating a query operation, which is not supposed to modify the system state, we set
P = /0 and C = /0. For non-query operations the following conditions on P and C guarantee that
the modifiable portions of the system state are sufficient for animation.4

1. If a property p is referenced at postcondition time by a postcondition of the operation to
be animated, then p ∈ P.

2. If an invariant in I references a property p, then p ∈ P.

3. If a property p ∈ P is an association end, then the opposite association end must be in P as
well.

4. For every property p ∈ P, if a class c is the type of p or a subtype of the type of p, then
c ∈C.

5. If a class c is the type of an out-parameter of the operation or a subtype of the parameter’s
type, then c ∈C.

6. For every property p of a class in C, if a class c is the type of p or a subtype of the type of
p, then c ∈C.

The smallest sets P and C that satisfy these conditions can easily be found by a closure com-
putation. We initialize P and C to empty sets and augment the sets according to the conditions
until a fixed point is reached.

3 Since Java does not provide convenient means for accessing all instances of a class, we do not support the
allInstances operation of OCL.
4 It is necessary that the constraints do not use the allInstances operation.
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Example 1 When applied to the operation contract in Figure 1, preliminary constraint anal-
ysis sets P to {parkingGarage,numberOfRequests} according to Condition 1. The
association end opposite to parkingGarage, tickets, is added to P according to Con-
dition 3. The set C is set to {ParkingGarage,Ticket} by Condition 4. The class
ParkingGuidanceSystem is added to C according to Condition 6, and the procedure termi-
nates with

P = {parkingGarage,numberOfRequests,tickets} ,

C = {Ticket,ParkingGarage,ParkingGuidanceSystem} .

Since the attribute remainingCapacity does not belong to P, we do not need any addi-
tional constraint in order to prevent animation from changing it. However, since the association
end parkingGarage belongs to P, animation of the operation newTicket may change the
parking garages that existing tickets are linked to. Adding the postcondition

parkingGarages@pre

->forAll(tickets->excluding(result) = tickets@pre)

prevents this.

4 An Intermediate Representation for Constraints

OCL constraints have a complex structure. In order to facilitate analysis, we translate constraints
to a simpler intermediate representation. The translation must preserve the semantics of the
constraints as far as needed for animation.

4.1 Arithmetic Formulas with Bounded Quantifiers and Uninterpreted Functions

As intermediate representation we choose arithmetic formulas with bounded quantifiers and un-
interpreted functions. These formulas have the following form.

1. Function symbols represent uninterpreted functions mapping Zn to Z.

2. We assume the availability of additional function symbols which represent arithmetic op-
erations occurring in OCL expressions such as addition, subtraction and multiplication.
The functions min(t1, t2) and max(t1, t2) return the minimum and the maximum of their
arguments, respectively. Integer constants are available as well.

3. Variables are terms. Variables can assume values in Z.

4. A function symbol applied to terms is a term.

5. Terms applied to the binary predicates =, <, ≤, > and ≥ are formulas.

6. Formulas can be connected using the usual boolean operations.
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7. If A is a formula and t1, t2 are terms, then ∀t1 ≤ x ≤ t2 .A is a formula. Here t1 is the lower
bound and t2 is the upper bound of the quantifier. Similarly, ∃t1 ≤ x ≤ t2 .A is a formula.

Given an assignment of specific functions to the function symbols, the truth of such a formula
without free variables is decidable since all quantifiers are bounded. Such an assignment for
which the formula is true is called a model. Moreover, if we know that the ranges of the unin-
terpreted functions are restricted to certain finite intervals, then we can derive upper and lower
bounds for every term. This means that the quantifier bounds are bounded themselves. As a
result, it is decidable whether a model with restricted function ranges exists.

It turns out that OCL constraints can be translated to semantically equivalent arithmetic for-
mulas with bounded quantifiers. This may seem surprising, since expressions in the specification
languages Z, B or JML cannot be mapped to formulas with bounded quantifiers. Note that these
languages allow stating number theoretic propositions as constraints such that the constraints are
satisfied iff the propositions are true. These propositions include statements like Fermat’s Last
Theorem that clearly are difficult to verify. However, OCL was designed to facilitate runtime
constraint checking and does not support such constraints.

4.2 Translation of OCL Constraints to Arithmetic Formulas

We now sketch how OCL constraints can be translated to arithmetic formulas. OCL expressions
of type Integer can be translated almost literally to terms. Recall that we assume that any
necessary arithmetic operations are available as function symbols. Similarly, OCL expressions
of type Boolean can be translated directly to formulas.

Expressions whose type is a class are mapped to a pair (t1, t2) of arithmetic terms. The first
term t1 describes the type of the object which is the expression value. For this purpose, we
assign an integer to every non-abstract class in the model. The second term t2 gives the precise
identity of the object. For every non-abstract class c, we introduce a constant f ′c that gives the
number of instances of c at postcondition time. The term t2 identifies the object by denoting
an integer between 0 and f ′c − 1. We introduce another function symbol fc to give the number
of class instances at precondition time. Since we do not allow animation to delete objects, and
we use the same integers for identifying objects at precondition time as we do at postcondition
time, the object was created by animation iff t2 ≥ fc. This relationship is used for translating the
oclIsNew operation. If the procedure described in Section 3 determines that animation is not
supposed to create new instances of the class, we set f ′c equal to fc.

Now we turn to expressions whose type is a collection type. We describe the translation for
the type OrderedSet, other collection types can be handled similarly. An expression of type
OrderedSet is mapped to a triple (s,x,E(x)), where s is an arithmetic term, x is a variable
and E(x) is itself a translation of an OCL expression whose type is the element type of the
collection. As indicated by the notation, x may occur in E(x). The term s gives the size of the
OrderedSet. For every integer i between 0 and s− 1, the i-th element of the OrderedSet
is described by E(i), i.e. the translation E(x) with i substituted for x. OCL iterator expressions
like forAll and exists expressions can be translated by using E(x) as the translation of the
iterator variable. The translation of the iterator expression can then be obtained by applying the
corresponding bounded quantifier to x with lower bound 0 and upper bound s−1.
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Example 2 We show how the translation is derived for the the postconditions of the operation
contract in Figure 1. We assign the integer 0 to the class Ticket and introduce the function
symbols fTicket and f ′Ticket as described above. The function symbol fresult indicates the
identity of the object returned by the operation. Recall that the integer identifying an object of
class c must be between 0 and f ′c−1. We achieve this by applying the functions min and max to
the value returned by fresult. Thus, the identity of the result object corresponds to the value
of the term

tresult := min
(
max( fresult,0) , f ′Ticket−1

)
,

and the translation of the OCL expression result is the term pair (0, tresult) . The expression
result.oclIsNew() is translated to tresult ≥ fTicket. We use the function symbol fdef for
expressing that result assumes an undefined value as fdef = 0. This is the translation of the
expression result.oclIsUndefined().

We assign the integer 1 to the class ParkingGarage and use the function symbols
fParkingGarage and f ′ParkingGarage for holding the numbers of instances. For the attribute
remainingCapacity we introduce the function symbol fremainingCapacity with arity two
for representing a function which maps ParkingGarage instances to their attribute values at
precondition time. Since the postconditions of the operation contract only access this attribute
at precondition time, we do not need an additional function symbol for the attribute values at
postcondition time.

The function symbol f ′parkingGarage with arity two represents a function which maps
Ticket instances to integers identifying the objects at the association end parkingGarage
at postcondition time. The identity of the object result.parkingGarage corresponds to
the value of the term

tresult.parkingGarage :=
min

(
max

(
f ′parkingGarage (0, tresult) ,0

)
, f ′ParkingGarage−1

)
,

and the translation of the expression result.parkingGarage becomes
(1, tresult.parkingGarage). The translation of the expression

result.parkingGarage.remainingCapacity@pre > 0 is

fremainingCapacity (1, tresult.parkingGarage) > 0 .

We assign the integer 2 to the class ParkingGuidanceSystem and introduce the constant
fself in order to translate the self variable to the term pair (2, fself). The identity of the
self object is already determined prior to animation, so we can fix a value for fself which is
passed separately to the formula analyzer. Hence, we do not need to use min and max operations
for restricting the range of the second term like we did above. We use the function symbols
fnumberOfRequests and f ′numberOfRequests for holding the values of the numberOfRequests
attribute at pre- and postcondition time, respectively. The translation of the expression

numberOfRequests = numberOfRequests@pre + 1 becomes

f ′numberOfRequests (2, fself) = fnumberOfRequests (2, fself)+1 .
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The function symbol fsize represents the number of objects at the association end
parkingGarages, and we introduce the function symbol fparkingGarages for giving the ob-
jects at the association end (both for precondition time). Thus, the translation of the expression
parkingGarages@pre is

( fsize (2, fself) ,x,(1, fparkingGarages (2, fself,x))) .

We obtain the translation of

parkingGarages@pre->forAll(remainingCapacity@pre = 0) as

∀0 ≤ x ≤ fsize (2, fself)−1 .

fremainingCapacity (1, fparkingGarages (2, fself,x)) = 0 .

The arithmetic formulas we derived here can be connected by standard Boolean operations in
order to obtain translations of the complete postconditions in Figure 1.

4.3 Finding Models for Arithmetic Formulas

For animating an operation, we translate the postconditions of the operation and all relevant
invariants5 as outlined above. We then attempt to find a model for the conjunction of the resulting
formulas. The system state in which the operation is called is used to specify a partial solution,
i.e. we only search for models that comply with the respective system state at precondition time.
Since our translation preserves the semantics of the operation contract, a model found yields a
new system state conforming with the contract. The new system state can be directly constructed
from the model.

There are a number of software packages available for finding models. These model finders
accept classes of formulas that are similar to our arithmetic formulas. We use the model finder
Kodkod [TJ07] in the back-end of our animator. The arithmetic formulas are translated to for-
mulas that Kodkod accepts. Like many other model finders for first-order formulas, Kodkod
encodes the problem in propositional logic and solves the resulting propositional problem using
a satisfiability (SAT) solver. Integer expressions are encoded as vectors of Boolean expressions.
An integer variable can be modelled by a vector of Boolean variables. An integer function is
represented as an array of such variable vectors. Arithmetic operations like addition and multi-
plication are dealt with by constructing a Boolean circuit for the operation, as would be done for
computing the operation in hardware.

In order to generate a propositional formula from a first-order formula, model finders need to
eliminate the quantifiers occurring in the first-order formula. Some quantifiers can be removed
by skolemization. For the remaining quantifiers, the quantified variable has to be substituted
for every value within the range of the quantifier. Thus, the quantifier ranges need to be small
enough in order to make this quantifier elimination feasible. Some model finders cope with this
difficulty by generating SAT problems that do not cover all potential models. If no model is
found, they generate a larger SAT problem to cover more models, and so on. Kodkod instead
requires the user to give bounds that imply restricted quantifier ranges.

5 These are the invariants in the set I defined in Section 3.
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We obtain sufficiently bounded quantifiers by restricting the ranges of certain function sym-
bols occurring in our formulas. We determine the function symbols that could be relevant for
quantifier bounds and restrict their ranges. If no model is found for these restricted ranges, a
more expensive attempt with larger ranges is made, and so on. Function symbols which are not
relevant for quantifier bounds are only restricted to ranges which are certainly sufficient, e.g. an
integer value may be restricted to a 32-bit number.

This means that we search for models using different bounds for the integer values in the sys-
tem state. These integer values can be values of integer attributes, numbers of instances of a class
or collection sizes. The bounds for these values are chosen depending on the contexts in which
the values are used in the constraints. In the formulas resulting from the example translation in
Subsection 4.2, the only function symbol which is relevant for quantifier bounds is fsize. This
function symbol represents the number of objects at the association end parkingGarages
at precondition time. Since this value is already fixed at precondition time, optimal quantifier
bounds can be used for the translation in this case. If the association end was referenced by
the constraint at postcondition time, increasing upper bounds for the function symbol would be
tried when searching for models. On the other hand, the function symbol for the integer attribute
numberOfRequests is not relevant for quantifier bounds, so we consider all possible values
of this attribute already in the first attempt to find a new system state. Thus, even system states
with very large values for this attribute are not necessarily problematic for animation.

5 Implementation

We describe our code generation tool OCLexec in more detail. The input to the tool is an XMI
file containing a UML model and a separate text file with OCL constraints6. We use the Eclipse
Model Development Tools library for handling the UML model and the constraints. At the time
of writing, our tool merely exists as a first prototype, hence only restricted subsets of UML and
OCL are supported. However, our approach to specification execution can cope with almost all
language features of OCL. We have already implemented all four collection types of OCL, but
currently only a subset of the collection operations is provided. Properties can have arbitrary
multiplicities. The operation oclIsNew for testing whether an object has been created by an
operation call is supported. We have implemented the undefined values null and invalid,
which are propagated during expression evaluation as prescribed by the OCL standard.

For every class defined in the model, the tool looks for corresponding Java source code. If
a declaration of a method is found for which a postcondition is defined in the OCL file, the
constraints that are relevant for this operation are processed. An intermediate representation
(see Section 4) of these constraints is serialized to a file which can be accessed as a resource.
A method body is inserted into the source code that only consists of a call to a library routine
responsible for executing the operation. The name of the resource with the serialized constraints
and the arguments to the method are the arguments to the library routine. The Java source
code modifications are performed using Java abstract syntax trees provided by the Eclipse Java
Development Tools library.

6 OCL constraints can also be stored with the model in an XMI file. We read a separate file with constraints since
many modeling tools do not support editing of OCL constraints.
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The tool also adds a private no-argument constructor with empty body to every class in the
model whose source code is found. The new constructor is only added if the class does not
already provide a no-argument constructor. This constructor is needed by the library routine to
create new class instances via Java reflection. Actually, it is likely that not all classes need new
instances for executing a certain set of operations (see Section 3), so a no-argument constructor
does not have to be provided by every class.

Note that inserting code in method bodies and adding constructors should not interfere with
other code that may have been generated for the model, such as code for state charts. Thus, the
modeler can use her favorite tool for the overall code generation and then use our tool only for
selected method bodies.

The library routine responsible for executing the operation reads the serialized constraints. It
traverses the parts of the object graph that are accessible through the object references it received.
This is done using Java reflection. During the traversal the library routine collects instances of
classes that are relevant for executing the operation. Values of properties of these classes are
recorded. This information about class instances and property values at the time of the operation
call is passed together with the constraints to the back-end of the tool (see Subsection 4.3). If
a valid new system state exists, the back-end returns the description of a valid state. Property
values that have changed in the new system state are written, and new class instances are created
if needed. These modifications of the system state are also performed using reflection.

6 Experimental Results

We show that existing tools scale very poorly for some simple constraints, while our method
remains robust due to the high maturity of SAT solvers. OCLexec is compared to the following
tools:

• The jmle tool [KW06], which is included in the Common JML Tools distribution and
generates Java bytecode from JML contracts.

• Brama [Ser07], a commercial animation tool for the B language that is integrated in the
Rodin IDE. Brama animates a B specification and displays the results graphically.

Table 1: Experimental results (execution times in seconds)

OCLexec jmle Brama ProB JML-TT Alloy
newTicket (Figure 2(a)) 1.1 —a —b 0 —b 0.3
solve (c = 500) 0.8 —a >500 15 0 16
fill12 (size = 10) 0.8 16 —b 0 —b 0.2
fill12 (size = 15) 1.0 57 —b 0 —b 0.3
makeDescending (size = 15) 1.1 —a —b 10 —b 1.2
makeDescending (size = 20) 0.6 —a —b 340 —b 2.0
a An exception is thrown at runtime.
b Animation was not possible due to unsupported language features.
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context Linear::solve(c : Integer) :
post: (-500 <= a and a <= 500) and (-500 <= b and b <= 500)
post: b > -200 and a > b + c

(a) In OCL

MACHINE Linear
VARIABLES a, b
INVARIANT a : (-500..500) & b : (-500..500)
INITIALISATION a, b := 1, 1
OPERATIONS

solve(c) =
PRE c: (1..1000) THEN

ANY x1, x2
WHERE x1 : (-500..500) & x2 : (-500..500)

& x2 > -200 & x1 > x2 + c
THEN a, b := x1, x2
END

END
END

(b) In B

public class Linear {
public int a, b;

/*@ assignable a, b;
ensures -500 <= a && a <= 500 && -500 <= b && b <= 500

&& b > -200 && a > b + c; */
public void solve(int c);

}
(c) In JML

module linear
pred solve(a: Int, b: Int)
{

-500 <= a and a <= 500 and -500 <= b and b <= 500
b > -200 and a > b + 500

}
run solve for 11 int

(d) In Alloy

Figure 3: A contract with linear integer constraints
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context IntList::fill12(size: Integer):
post: list->size() = size
post: list->forAll(x | x = 1 or x = 2)
post: Sequence{1..size-1}

->forAll(i | list->at(i) <= list->at(i+1))

Figure 4: An OCL operation contract for creating a sorted list of ones and twos

context IntList::makeDescending(size: Integer):
pre: size >= 0 and size <= 30
post: list->size() = size
post: list->forAll(x | x >= 1 and x <= 30)
post: Sequence{1..size-1}

->forAll(i | list->at(i) > list->at(i+1))

Figure 5: An OCL operation contract for creating a strictly descending list of integers between 1
and 30

• ProB [LB08], a development tool for the B language that provides interactive animation
among other functionality.

• The JML-Testing-Tools (JML-TT) animator [BDLU05], an interactive animation tool for
JML.

• The Alloy Analyzer [Jac06]. Although Alloy focuses more on specification validation than
prototyping, we include it in the comparison because it is a popular tool for object-oriented
analysis.

We evaluate these tools on the following operation contracts:

• The operation contract in Figure 1 is executed using the system state in Figure 2(a).

• The operation solve (Figure 3) solves a linear constraint on integers.

• The operation fill12 (Figure 4) creates a list that consists of ones and twos such that
any one appears before any two on the list. The size of the list is passed as argument.

• The operation makeDescending (Figure 5) constructs a strictly descending list of inte-
gers between 1 and 30 whose size is passed as an argument.

The results of the evaluation are listed in Table 1. The execution times were measured on a
machine with 256 MB RAM and a 1.4 GHz Intel celeron CPU. The SAT solver used was MiniSat
[ES04], a well-known state-of-the-art SAT solver.

OCLexec scales well for all operation contracts. The JML-Testing-Tools animator can solve
the quantifier-free constraint in Figure 3 fast, but could not process quantifiers in the version
available to the authors7, so it could not be applied to the other operation contracts. ProB scales

7 We used a binary obtained in 2005.
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well for some operations like fill12, but scales poorly for similar contracts like
makeDescending and solves the quantifier-free constraint relatively slowly. Alloy gener-
ally scales well. Recall that Alloy uses a SAT solver as does our tool. However, Alloy handles
large integers inefficiently. This is why Alloy performs relatively poorly for the quantifier-free
constraint.

7 Conclusions and Future Work

We presented an approach to executing underspecified OCL operation contracts with a SAT
solver. OCL postconditions and class invariants are translated via arithmetic formulas to a sat-
isfiability problem. A SAT solver is used to compute the operation results. The approach has
been implemented in a prototype tool that generates Java method bodies from OCL operation
contracts. Experimental results show that our SAT-based technique can be more efficient than
existing approaches.

Not all features of UML/OCL are supported by the current prototype. Some language features
of OCL will require a bit of thought to implement, such as calls to query operations which are
themselves specified by postconditions. It is likely that the efficiency of the generated code can
still be improved. The external software that our constraint solving back-end uses is not tailored
for integer constraints. Since our approach is based on integer arithmetic, it appears promising
to redesign the back-end. Maybe an efficiency improvement can also be achieved by using
Satisfiability Modulo Theories (SMT) solvers instead of conventional SAT solvers. Finally, we
would like to refine the rules for determining the parts of the system state that can be modified
during operation execution. This could free the modeler from writing many postconditions that
preserve parts of the system state.
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