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Abstract: Drawing on the projected increase in computing power, solid-state storage and 
network communication capacity to be available on personal mobile devices, we propose 
to build and maintain without prior knowledge a fully distributed decentralized large-scale 
model of the physical world around us using probabilistic methods. We envisage that, by 
using the multimodal sensing capabilities of modern personal devices, such a probabilistic 
world model can be constructed as a collaborative effort of a community of participants, 
where the model data is redundantly stored on individual devices and updated and refined 
through short-range wireless peer-to-peer communication. Every device holds model data 
describing its current surroundings, and obtains model data from others when moving into 
unknown territory. The model represents common spatio-temporal patterns as observed by 
multiple participants, so that rogue participants can not easily insert false data and only 
patterns of general applicability dominate. This paper aims to describe – at a conceptual 
level – an approach for building such a distributed world model. As one possible world 
modeling approach, it discusses compositional hierarchies, to fuse the data from multiple 
sensors available on mobile devices in a bottom-up way. Furthermore, it focuses on the 
intertwining between building a decentralized cooperative world model and the 
opportunistic communication between participants. 
 
Keywords: probabilistic modeling, cooperative sensing, opportunistic communication, 
compositional hierarchy, mobility modeling, social networks 

1 Introduction 
More and more people carry with them powerful computing devices on a nearly continuous 
time basis, mostly in the form of personal devices such as advanced mobile phones. Indeed, on 
a world-wide scale, the number of mobile phones now exceeds the number of more traditional 
computing devices such as PCs. These personal computing devices often contain a rich set of 
different sensors that can be used to almost continuously perceive the surroundings of the 
owner. Although very distinctive from the physiological senses, they certainly are able to 
capture relevant features such as owner mobility, network location, and social interaction as 
well as – with more recently deployed sensors – light, acceleration, device touch, geographical 
location and limited audio and video. The true revolution of this development lies in the fact 
that, for the first time in history, we have a computing platform capable of sensing the direct 
environment of a substantial part of the world population. This platform is not only capable of 
enhancing the perception of individuals by sensing beyond what is possible with the human 
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senses, but also facilitates the easy sharing of these perceptions by means of ubiquitous data 
network technologies. 
In this paper we seek to explore at a conceptual level the possibilities to deliver an accurate 
world model to personal computing devices based on the perception of this world by a large 
cooperating group of devices. Such a world model is important to many applications, as a 
primary input or as a source for enhancement of existing functionality. For instance, it may 
reliably tie stationary objects to geographical locations (a spatial feature) and it may reflect 
that a main road has been blocked in a certain direction because the associating frequently 
traveled pattern, represented by a common sequence of observations in time, suddenly is not 
used anymore (a temporal feature). By sharing the perception of the world between peers in 
the group, we aim to 1) increase the accuracy of the perception as taking place on a single 
device – by taking into account what is perceived as common between devices – as well as 2) 
to provide a model of environments that are new to an owner and have not been observed in 
the past, drawing solely on what has been sensed by others.  
A fundamental question is how to represent the perception as data that can be stored on, used 
by, and exchanged between computing devices. The data representation must accommodate 
the different kinds of data coming from the sensors and the fused data from multiple sensors. 
Also, it must be capable to capture spatio-temporal aspects as well as capture uncertainty. We 
require a model building process that captures elementary patterns directly derived from 
simple sensor information such as the concurrent occurrence of sensor values (spatial) or the 
strong correlation between occurrences of sensor events in time (temporal), and that is capable 
of generating knowledge at higher levels of abstraction. Another fundamental question is the 
impact of the distribution of perception data between mobile peers on the timeliness and 
accuracy of shared data available on individual mobile devices. A primary aspect is the 
safeguarding of the privacy of individuals in a group of participants and the protection against 
the insertion of corrupt or false data by an – intentionally or unintentionally – rogue 
participant. As a consequence, we focus on peer-to-peer (P2P) distribution mechanisms, also 
applied in various forms in internet file sharing, because a fully distributed P2P mechanism 
lacks a centralized role which may easily compromise privacy. We aim for a completely 
decentralized infrastructure, which only relies for its world model building on what is sensed 
on the devices and shared between devices. 
This paper is organized as follows. Section 2 discusses modeling frequent patterns in a 
probabilistic way, and provides a more in-depth overview of ‘compositional hierarchies’ as a 
possible way to extract a model structure from observed sensor data on a single device. When 
capable of structuring frequent patterns on a single device, we focus in section 3 on the 
exchange of model data using opportunistic communication. Section 4 provides an example 
application, putting sections 2/3 in context. Section 5 discusses some of the open issues and we 
wrap up with a summary. 

2 Bottom-up probabilistic modeling with compositional hierarchies 
When modeling the physical world in a generic and probabilistic way, we are interested in 
finding frequent patterns in the stream of data coming from the sensors that perceive our 
surroundings. One way to tackle this is by starting from a predefined structure of the world and 
then learn our surroundings using primitives from this structure – primitives like roads, 
buildings, people, cars. etc. This approach has a number of disadvantages: it is a very large 
endeavor to manually construct a sufficiently detailed set of primitives and their 

Proc. WowKiVS 2009 3 / 9 



 
 
 ECEASST 

interrelationships and we may not always have knowledge about environments where we want 
to apply our technology. Furthermore, perhaps most importantly, imposing a predefined 
structure makes it hard to identify unanticipated but important relationships between 
occurrences and objects around us. Therefore, we prefer a model that has no such predefined 
structure. 
Assuming no a priori structure in the world around us, it is necessary to learn these patterns 
from the data only. A specific example of building a dynamic world model is [3], where 3D 
objects are sensed using ultrasonic ray tracing. More close to the mobile device platform, the 
work in [7] predicts wireless network visibility events based on the detection of other recent 
events. Also, the area of probabilistic robotics [10] is closely related to this problem. One 
possible way to achieve this is by means of compositional hierarchies [11][8]. We describe 
this approach here and use it later to illustrate the interaction between local model building (on 
a single device) and distributed global model building by means of opportunistic 
communication between devices.  
A compositional hierarchy represents part-whole relationships. It can be used to group 
together sensor values that frequently occur together, in the spatial as well as the time domain. 
When grouped together as a primitive, a primitive itself can subsequently be used to form new, 
higher level primitives, building in this way a whole hierarchy of primitives.  
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Figure 1: primitive building for a spatial and spatio-temporal compositional hierarchy 
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The figure above depicts an example of the learning over time of a purely spatial (top) and a 
mixed spatio-temporal compositional hierarchy (bottom). The spatial hierarchy captures 
frequent patterns that link persons and a group to a specific location as observed from a single 
device. Initially, the observer identifies simple patterns such as being in close range of person 
A and B and being in room R (left hand side). Then, it identifies that these simple patterns 
sometimes occur concurrently, resulting in new primitives at a higher level (middle), followed 
by the identification of an even higher level primitive that describes group meetings in room R 
(right). Note that for reasons of clarity we have labeled the simple patterns and primitives with 
a meaningful description: the construction of the hierarchy, however, in no way relies on 
manually generated labels and only identifies frequent patterns and assigns probabilities to 
them. Note also that being in or close to a room and being in company with somebody else 
may be sensed with network interfaces available on many current mobile phones, such as 
Bluetooth and 802.11 wireless LAN.  
The spatio-temporal hierarchy in the example above is constructed in a similar manner, 
showing not only sensing data available concurrently, but also spread out in time – for the 
higher level primitives. Again, it starts with identifying simple frequent patterns such as being 
at location A and B and having a high speed (left). Speed and location are joined in spatial 
primitives (middle) and these are again joined in a primitive that indicates being on a highway 
in between ramps X and Y (right). This top level primitive represents a temporal pattern: it 
registers the probability of observing high speed at location B some time after observing high 
speed at location A. So, when observing that ‘being at location A with high speed’ is true, it 
provides the probability of ‘being at location B with high speed’ a little later. And, when 
‘being at location A with high speed’ and ‘being at location B with high speed’ have occurred 
after each other, it gives the probability of ‘being at location C with high speed’ some time 
later. Obviously, speed and location may be provided by a single sensor (GPS-based) but may 
also be derived from data from separate sensors, such as cellular network location and the 
typical sound associated with a car driving fast. 
A compositional hierarchy can be used to predict missing or future data. If, for example, the 
above observer almost exclusively meets person A in room R, sensing the company of A also 
assigns high probability to being in room R, even without the need to sense the current 
location in the building. Or, as explained above, when consecutively observing high speed at 
location A and then at B, it is likely to later observe high speed at location C, or – one step 
down – being later at location C. This has benefits when it is expensive to sense or when, on a 
particular device, not all sensors are available, or simply to anticipate upcoming events (see 
also section 4). 
Hierarchical compositional structures play an important role in existing work such as 
hierarchical hidden Markov models, certain data compression algorithms, and hierarchical 
reinforcement learning. When building compositional hierarchies, the pruning of infrequent 
patterns is essential to keep the necessary amount of memory within limits. The approach in 
[8] focuses on the on-line aspects of building hierarchies – using, amongst others, hierarchical 
n-grams – taking efficient infrequent pattern removal into account. However, even when 
pruning aggressively, it is likely that world model hierarchies need substantial storage. Also, 
the amount of hierarchical data depends strongly on the amount of event data coming from the 
sensors. If, for instance, location and speed are indicated with a high granularity, it may be 
possible to find hierarchy entities for every location and speed level combination.  
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3 World model creation using opportunistic communication 
Once a device has collected sufficient amounts of data from its sensors to build an initial 
compositional hierarchy of frequent patterns, it may start to engage with others in the 
community in a P2P fashion to share model data, using means of short range communication. 
The incentive of sharing data with others comes from the potential improvements of the model 
data, for refining patterns that are self-observed or for obtaining patterns in new surrounding 
[6]. Data exchange may happen among community members or spontaneous neighborhood 
nodes. In this section we address potential communication mechanisms and open issues we see 
as important for such an exchange mechanism to work. 
Every device has its own local view of the model, representing frequent patterns inferred from 
its direct surroundings. When comparing primitives with similar ones from others, the 
primitive probabilities must be updated to incorporate the perception of both devices (and 
increase accuracy). Exactly how this process takes place depends on how the compositional 
hierarchy is represented, where the choice of representation must take into account the 
possibility for cross hierarchy updates. It is likely to involve exchanging recent raw sensory 
data. A fundamental problem is that the raw sensor data may have substantial influence on 
how the hierarchy is build over time: the same frequent patterns may be captured by equally 
performing but very different hierarchy primitives, as shown in [11]. This means that 
individual participants may form different hierarchies simply by the order in which they have 
observed their surroundings, even when these surroundings are exactly the same.  
The spread of model data depends on the possibilities of opportunistic communication between 
peers. Obviously, if the number of participants is small and dispersed over a larger 
geographical area, the possibilities for data exchange are minimal. An open question is how 
fast observed changes in the model can be communicated to other nearby participants. In the 
Haggle project [4][1], we introduced a new communication paradigm using dynamic 
interconnectedness via wireless enabled devices, called a Pocket Switched Network (PSN). 
People carry devices in their pockets, which communicate directly with other devices within 
their range or with the infrastructure. As people move around they can exchange messages 
with nearby devices, carrying a message for someone until it is close to another device. We 
explore epidemic/gossip mechanisms to achieve fully decentralized communication, combined 
with infrastructure networks where possible. Messages are spread via epidemic mechanisms, 
which are robust against disconnection, mobility and node failures, and are simple and 
decentralized. The experiments show a great potential of efficient data spread through 
proximity communication. Because the communication is human-to-human, we integrate 
social networks for improving communication efficiency. Our approach uses the centrality and 
community structures of social networks to deploy various types of communication 
mechanisms [4]. We have also shown how to uncover social structures in a distributed manner 
[5], where we discover cliques or tightly connected clusters, i.e. communities. To bootstrap a 
hierarchy quickly for someone who starts participating, it may be possible to copy a full tree 
from another trusted person (when both agree). 
When exchanging information between nodes, a participant may disclose information that is 
privacy sensitive, even though no semantics are coupled with these patterns because the 
semantics can be added later. For instance, a frequently observed pattern is seeing a Bluetooth 
node in combination with a geographical location, which may link the observing participant to 
another person at that location because the Bluetooth node corresponds with that person’s 
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mobile device. This not only exposes personal information of the observing participant, but 
also the personal information of others, even when not participating in the community. Privacy 
breaches are somewhat limited because model data is only dispersed locally and every 
participant only keeps track of the locally relevant patterns. Nevertheless, a privacy protecting 
mechanism must be part of the overall mechanism of cooperative model building. One 
possible approach to protect a participant’s privacy is to not disclose, when exchanging model 
data with others, whether this data comes from personal observations or from the observations 
of somebody else. This requires that participants relay a fraction of the model data that is not 
observed by them. 
A known problem of ad hoc data distribution in large communities is the possible insertion of 
false data into the network. A participant may benefit from giving wrong information to others 
when this leads to different behavior of these others. By checking the integrity of a part of the 
data received from others, it is possible to prevent flooding the whole community with false 
data, as shown in [2]. This solution, however, depends on signing the original content with a 
digital signature, which conflicts with our approach because we do not want to disclose the 
identity of the participant inserting the pattern into the network and, furthermore, we want to 
update patterns depending on the perception of others (which changes the original content). 
Another problem is free loader behavior of a part of the participants, resulting in a reduced 
community effect. This, however, can most likely be efficiently tackled with a ‘tit-for-tat’ 
mechanism when exchanging model data between peers. 

4 Application examples 
Having a probabilistic model of a person’s surroundings (spatial) and the changes in these 
surroundings (temporal) can be useful for a wide range of applications. It provides information 
about, for example, locations where resources are likely to be available or where and when this 
person is likely to meet with other people. The example we describe here employs such a 
generic model to determine whether a person is in an unusual situation, or is likely to be at a 
location with an unusual situation in the future: it is a case of metering the level of disorder we 
observe in a person’s surroundings. We take two cases to illustrate this ‘uncommon state’ 
example: a case where we detect unusual inter-person meeting and a case where we detect 
uncommon traffic jams. 
Suppose we have a community consisting of individual nodes building up a hierarchy of 
locally perceived frequent patterns. These patterns are exchanged in a P2P fashion within the 
community, resulting in a model per node that captures common community knowledge. Some 
of these primitives in the hierarchy correspond with very stable observations: the nodes have 
high confidence that when observing one part of the primitive, the other part(s) are also 
observed. When a person meets another person always in the same location, the primitive 
joining the other person and the meeting location assigns high probability to being in the 
meeting room when the other person is detected. Or, on a stretch of high way with almost no 
traffic jams, being at location A with high speed assigns high probability to being at location B 
with high speed a little later (as in the spatio-temporal part of Figure 1) – higher than at 
stretches with frequent traffic jams. 
Now, at a certain point in time, observations are made that contradict the high probability of a 
pattern seen in the past. These observations mark an uncommon situation. When you meet 
another person in a location not the same as where you always meet this person, this marks an 
uncommon situation. A contradiction can also be made by others participating in the 
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community: when they detect that a roadblock breaks the high confidence pattern described 
above (having high speed at location A does no longer imply having high speed at location B a 
little later), this information is spread in a P2P fashion amongst nearby nodes, also reaching 
those nodes that are interested in this information but have not observed this contradiction 
themselves. This information then can be used to predict that a person will enter an uncommon 
state in the future, possibly far ahead in time, if it is clear that this person will be at location B 
in the future. 
Although we have taken unusual inter-person meetings and unexpected traffic jams as cases, 
measuring the level of disorder can also be useful for detecting unusual crowds, alarm levels of 
noise, and natural disasters.  

5 Discussion 
We realize that there are many open ends in our approach to build a distributed probabilistic 
world model as a community effort. Some of these are discussed below. 
One thing we need to consider is the difference in sensor quality and calibration, which may 
interfere with building a common model. Because of the slight differences in perception, the 
hierarchies build by individuals will be slightly different and therefore not shared easily. In 
particular the lower levels in the hierarchy may be affected by this. 
We have to deal with the fact that different temporal patterns evolve at widely varying rates. 
This is nicely illustrated in [9]. The hierarchical modeling is likely to provide this feature, as 
low level features happen on a short time scale and high level features on a longer time scale, 
but this needs to be further investigated. 
We propose to build a bottom-up model, without predefined structure. This means that 
semantics are not automatically assigned to hierarchy primitives. The label ‘driving on 
highway between ramp X and Y’ for a certain primitive is just that: a label we put on it to 
illustrate an example. If this entity is active, it does not automatically have meaning to an 
application. This can be considered an impedance mismatch between the probabilistic world 
and the world of application logic. One mode of usage could be that we associate application 
actions – again using probabilistic techniques – with hierarchy primitives, so that, when 
primitive activation is imminent, we can already initiate the application action. 
It is likely that building the model hierarchy is costly in terms of computing resources, which 
are limited on mobile devices. A possible solution is to offload the calculation to a back end 
machine, but even then computational complexity remains an issue. Another restriction on 
mobile devices is battery power, which may limit the time that sensors can be active.  

6 Summary 
We have provided an outline for building a fully decentralized probabilistic world model using 
the sensors available on the personal mobile devices of a community of participants. We 
discussed open issues in building, maintaining and the opportunistic distribution of such a 
model, using the principle of compositional hierarchies as an example. 
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