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Abstract 

This paper experimentally controls a flexible joint via explicit model predictive control (Explicit 

MPC) method. The scheme divides the state space into different partitions, then solves the associated 

multi parametric optimization in off-line computations. The result stores in a look-up table to be used 

in on-line algorithm. First, the state space equations of the flexible joint are derived and linearized 

around the working point. Then, in order to meet the plant’s specifications, desired performance and 

the limitation of processor/memory, the constraints, weights, sampling time and prediction horizon 

are determined for the system. Finally, the algorithm is applied on the experimental plant. Numerous 

simulations, the result of the experiment and comparison with other methods confirmed that the 

method was able to control the vibrations of the constrained flexible joint. 
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1- Introduction 

One of the important issues of industrial arms is backlash phenomenon in the joints and gearboxes and the associated 

nonlinear effects. One method of dealing with this problem is to use flexible joints. On the other hand, the flexibility 

produces some demerits, including the accuracy reduction in joint positioning and unwanted vibrations. To solve this 

problem and accurately position the robot arm, many control algorithms are proposed [1, 2].    

Model predictive control uses a model of the plant to predict the future behavior of it through the prediction horizon 

time-span. The method employs the model to provide a control law that stabilize the system while the constraints are 

satisfied. At the beginning of the scheme, it was used exclusively to control stable and slow processes with large 

sampling times [3, 4]. Thanks to the state space approach and fast constrained optimization algorithms the method 

extended to different applications. Since then, many researches have done to further decrease the computations. Fast 

algorithms [5], tailored for the system with respect to its characteristics, parameterization of the input vector to decrease 

the number of decision variables [6, 7] are two successful of these attempts to decrease the computation times. Explicit 

model predictive control solves a multi parametric optimization problem and divide the state space into different 

partitions with respect to the active constraints. In addition to suits the benefits of model predictive control, advantages 

such as no need for an on-line optimization, easily implementation on industrial controllers with limited memory and 

processor and high reliability have made Explicit MPC a well-known method in industrial communities as well as in 

research groups. 

This paper used Explicit MPC to experimentally control a flexible joint system. Weights, constraints, prediction 

horizon and sampling time selection as well as their effect on the system’s performance were studied here exhaustively. 

Step-by-step design procedure and the explanation of the implementation on the hardware device were other objects of 
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this paper. The remainder of the paper is organized as follows. Section 2 is devoted to the derivation of the governing 

equations for the model and extracting constraints on the input and its incremental value and the state. In section 3, the 

theory of Explicit MPC is explained and the controller is designed for the system. Implementation of the designed 

controller and the evaluation of the performance in simulations and experiments are expressed in section 4. Finally, 

conclusion and final remarks are expressed in section 5. 

2- Modeling of the Flexible Joint  

Because MPC method uses a model to predict the future of the system, one needs to know the dynamics of the system 

to design the controller, in the first part of this section we drive the system’s equations of motion in state space. In the 

second part, input, rate of input and state constraints are determined for the system. To design a proper stabilizing 

controller, we have to have a relative knowledge of the values of the constraints because they represent practical 

restrictions of the system and violating them may lead to instability.  

2-1- Dynamical Modeling of the System 

Figure 1 depicts the flexible joint system used in this paper. In this section we employ Euler-Lagrange equations to 

derive equations of motions of the system in state space. 

According to Figure 1 the connection between the springs and the base is in such a way that we can substitute that 

with an equivalent torque. Then, this torque is used to determine the torsional stiffness of the joint. In other words, the 

applied torque M is 𝑀 = 𝐾𝑠(𝛼)𝛼  where α is the detection angle and 𝐾𝑠(𝛼) denotes the torsional stiffness which is also 

a function of the deflection angle. 

 

(a) 

 
 

(b)  
(c)

 

Figure 1. (a) Overview of the experimental setup, (b) the flexible joint and, (c) its schematic. 

By assuming linear behavior of the springs, the rotational stiffness coefficient 𝐾𝑠(𝛼) is related to linear stiffness of the 

springs as is described in Figure 1 (c). The change in springs’ length for the deflection angle 𝛼 are: 
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(1) 

𝐿1𝑥 = 𝑟 − 𝑅𝑠𝑖𝑛(𝛼), 𝐿1 𝑦 = 𝑅 cos(𝛼) − 𝑑 , 𝐿1 = √𝐿1𝑥
2 + 𝐿1𝑦

2  

𝐿2𝑥 = 𝑟 + 𝑅𝑠𝑖𝑛(𝛼), 𝐿2 𝑦 = 𝑅 cos(𝛼) − 𝑑, 𝐿2 = √𝐿2𝑥
2 + 𝐿2𝑦

2  

Which produce the following forces; 

(2) 

𝐹1 = 𝐹1𝑥𝑖̂ + 𝐹1𝑦𝑗̂ = 𝐾𝐿(𝐿1 − 𝐿) + 𝐹𝑟 ,   𝐹1𝑥 =
𝐹1𝐿1𝑥
𝐿1

 , 𝐹1𝑦 =
𝐹1𝐿1𝑦

𝐿1
 

𝐹2 = 𝐹2𝑥𝑖̂ + 𝐹2𝑦𝑗̂ = 𝐾𝐿(𝐿2 − 𝐿) + 𝐹𝑟 ,    𝐹2𝑥 =
𝐹2𝐿2𝑥
𝐿2

 , 𝐹2𝑦 =
𝐹2𝐿2𝑦

𝐿2
. 

Where 𝐹𝑟 is tension force in springs when 𝛼 = 0, and 𝐾𝐿  is the stiffness coefficient of the linear springs. The resultant 

torque at the joint is; 

(3) 𝑀 = 𝑅 × (𝐹𝑥𝑖̂ + 𝐹𝑦𝑗̂) = 𝑅 cos 𝛼 (𝐹2𝑥 − 𝐹1𝑥) − 𝑅 sin 𝛼 (𝐹2𝑦 + 𝐹1𝑦). 

The left hand side of (3) is equal to 𝑀 = 𝐾𝑠(𝛼)𝛼, so we can readily find the torsional stiffness of the joint. Since (3) 

is a nonlinear equation, the torsional stiffness is a nonlinear function of 𝛼. For small values of 𝛼 linearization around 

𝛼 = 0 gives us 

(4) 𝐾𝑠 =
𝜕𝑀

𝜕𝛼
|
𝛼=0

=
2𝑅 ((𝑅𝑟2𝐿 − 𝑑𝐷𝐿 + 𝑑𝐷3/2)𝑘 + (𝐷𝑑 − 𝑅𝑟2)𝐹𝑟)

𝐷3/2
, 𝐷 = 𝑟2 − (𝑅 − 𝑟)2. 

The kinetic and potential energy and the equations of motion of the system are given as; 

(5) 

𝑈 =
1

2
𝐾𝑠𝛼

2 

𝑇 =
1

2
𝐽ℎ𝑢𝑏�̇�

2 +
1

2
𝐽𝑎𝑟𝑚(�̇� + �̇�)

2
 

(𝐽ℎ𝑢𝑏 + 𝐽𝑎𝑟𝑚)�̈� + 𝐽𝑎𝑟𝑚�̈� = 𝜏 − 𝐵𝑒𝑞�̇� 

𝐽𝑎𝑟𝑚�̈� + 𝐽𝑎𝑟𝑚�̈� + 𝐾𝑠𝛼 = 0 

Where 𝜃, 𝛼, 𝐽ℎ𝑢𝑏  and 𝐽𝑎𝑟𝑚 denote rotational angle of the hub, rotational angle of the arm, rotational inertia of the hub 

at the joint and rotational inertia of the arm around the joint respectively. 𝐵𝑒𝑞  is the viscus damping coefficient between 

the hub and the arm and 𝜏 is the applied torque from the actuator to the system. The relationship between 𝜏 and the 

controller output 𝑢 is given as [11]: 

(6) 𝜏 =
𝜂𝑚𝜂𝑔𝐾𝑡𝐾𝑔

𝑅𝑚
𝑢 − 

𝜂𝑚𝜂𝑔𝐾𝑡𝐾𝑚𝐾𝑔
2

𝑅𝑚
�̇�. 

Numerical values of parameters and constants in (5) and (6) are 𝐽ℎ𝑢𝑏 = 0.0021, 𝐽𝑎𝑟𝑚 = 0.0019, 𝐾𝑠 = 2.24, 𝐵𝑒𝑞 =

0.004, 𝐾𝑡 = 𝐾𝑚 = 0.0077, 𝐾𝑔 = 70, 𝑅𝑚 = 2.6, 𝜂𝑔 = 0.9, 𝜂𝑚 = 0.69  [11]. The state space vector is defined as 𝑥 =

[𝑥1 = 𝜃, 𝑥2 = 𝛼, 𝑥3 = �̇�, 𝑥4 = �̇�]
𝑇
; hence the linearized equations of motions in state space form are given as.  

(7)  

[

�̇�1
�̇�2
�̇�3
�̇�4

] = [

0 0 1 0
0 0 0 1
0 982.8149 −1.7517 0
0 −2163.85 1.7518 0

]

⏟                    
𝐴

[

𝑥1
𝑥2
𝑥3
𝑥4

] + [

0
0

437.9316
−437.9316

]

⏟        
𝐵

𝑢 ,  

𝑦 = [
𝜃
𝛼
] = [

1 0 0 0
0 1 0 0

]
⏟        

𝐶

[

𝑥1
𝑥2
𝑥3
𝑥4

] ,   𝐷 = 0 
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2.2. Modeling of the Constraints  

One of the main benefits of MPC is its ability to provide a control law that satisfies constraints. State and output 

constraints are usually defined for the system’s performance, so they are usually considered as soft constraints. 

Constraints on the input and rate of the input are related to actuators/systems characteristics and violation of them may 

leads to instability. Therefore, these constraints must be considered as hard constraints. In this section we employ some 

experiments to extract constraints on input, input rate and states of the system. In order to determine the constraint on 

the input and rate of the input, we used pole placement method to design a controller. Then, we set the poles of the 

closed-loop system to the far left of the 𝑗𝜔 axis till the closed-loop response of the system became unstable due to the 

uncertainties such as friction in gears, and un-modelled dynamics. This type of instability produced chattering behavior 

of the system under which the control signal was become saturated with the highest possible frequency. The saturation 

level was around 1.65 [𝑣]. Since the controller was working in the highest possible frequency, the constraint on rate 

could be obtained from Δ𝑢 = 𝑢𝑘 − 𝑢𝑘−1. Figure 2 shows the valuse of constraints on the input and on the rate of the 

input. The mean value of the maximums of Δ𝑢, according to Figure 2 (b), is 0.9 [𝑣].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 2. (a) input signal at its peak value, and (b) its rate 𝚫𝒖. 

 

(b) 

(a) 



Emerging Science Journal | Vol. 3, No. 3 

Page | 150 

It is worthwhile to note that the required performance and physical restrictions of the system determine the state and 

output constraints. The required performance includes maximum velocity and error and the allowable value of the 

overshoot. These values are not very strict and can be modelled as soft constraints. However, there are another group of 

state/output constraints that deals with physical limitations of the structure, such as restriction of rotation of 𝛼 in Figure 

1, and must be considered as hard constraints. According to our direct measurement and Figure 1, the constraints of 𝛼 

and 𝜃 are determined as ±350, ±500 respectively. Therefore, system’s constraints are summarized as; 

(8) |𝑢| ≤ 1.65 [𝑣],      |Δ𝑢| ≤ 1.2 [𝑣] , |𝜃| ≤ 0.87 [𝑟𝑎𝑑] , |𝛼| ≤ 0.61 [𝑟𝑎𝑑]  

3. Designing of the Controller  

In this section, we first briefly introduce the theory of Explicit MPC and then we employ the theory to design a 

controller for the system. 

3.1. Explicit Model Predictive Controller  

Consider the discrete linear time invariant system 

(9) 
𝑥(𝑖 + 1) = 𝐴𝑥(𝑖) + 𝐵𝑢(𝑖), 𝑦(𝑖) = 𝐶𝑥(𝑖),  

𝑦min  ≤ 𝑦(𝑖) ≤ 𝑦max  ,    𝑢min  ≤ 𝑢(𝑖) ≤ 𝑢max  , 

For this system, model predictive control solves the following optimization problem with respect to the initial 

condition 𝑥(0) = 𝑥0. 

(10) 

𝐽∗(𝑥0) = min
𝑢0,𝑢1,⋯,𝑢𝑁−1

𝑥𝑁
𝑇𝑃𝑥𝑁 +∑𝑥𝑖

𝑇𝑄𝑥𝑖 + 𝑢𝑖
𝑇𝑅𝑢𝑖

𝑁−1

𝑖=0

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 , 𝑖 = 0,1,⋯ ,𝑁 

𝑥0 = 𝑥(0), 

 𝑦min  ≤ 𝑦(𝑖) ≤ 𝑦max  ,   𝑖 = 0,1,⋯ ,𝑁 

𝑢min  ≤ 𝑢(𝑖) ≤ 𝑢max  ,   𝑖 = 0,1,⋯ ,𝑁 − 1 

In which N denotes prediction horizon and Q, P, R are positive-definite matrices denoting weights on states, terminal 

states and the input. With some calculations, Equation 10 reduces to  

(11) 
𝐽∗(𝑥0) = min

𝑈
𝑈𝑇𝐻𝑈 + 𝑥0

𝑇𝐹𝑈  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝐺𝑈 ≤ 𝑊 + 𝑆𝑥 

Where U = [u0
T, ⋯ , uN−1

T ]
T

 and matrices F, H, G,W, S are calculated from Equation 10- see [12] for the details.  

The quadratic programming Equation 11 meets KKT conditions [13], so we can solve it as a multi-parametric 

optimization and reduce the solution to [8]; 

(12) 
𝑈∗(𝑥0) = 𝐶1,𝑗𝑥0 + 𝐶2,𝑗 = −𝐻

−1(𝐹𝑥0 + 𝐺𝑎𝑐𝑡
𝑇 𝜆𝑎𝑐𝑡),  

𝜆𝑎𝑐𝑡 = −(𝐺𝑎𝑐𝑡𝐻
−1𝐺𝑎𝑐𝑡

𝑇 )−1(𝐺𝑎𝑐𝑡𝐻
−1𝑆𝑎𝑐𝑡𝑥0 +𝑊𝑎𝑐𝑡) 

Where 𝑊𝑎𝑐𝑡 , 𝐺𝑎𝑐𝑡 , 𝑆𝑎𝑐𝑡 are rows of matrices 𝑊 , 𝐺 , 𝑆 in [11] that determine the active constraints with respect to the 

given initial condition. It is shown in [8] that Equation 12 is a bounded piece-wise continuous function. Therefore, it 

divides the state space to limited number of partitions where each partition has its own exclusive control law. Next, the 

partitions and control laws are stored in a look-up table to be used on-line to control the plant [10]. 

3.2. Controller Design 

Here we explain the process of determining the controller’s parameters and coefficients. First, we discretize Equation 

7 with an appropriate sampling time Δ𝑡. Then, we design a series of DLQR controllers with different weights to 

determine the appropriate matrix weights 𝑄, 𝑃, 𝑅 for the required performance. After selecting the appropriate weights, 

we compare the results of unconstraints MPC with different 𝑁 with the result of DLQR to determine the appropriate 

horizon 𝑁. Finally, we impose the constraints on the MPC solution and tune once more the parameters, and then design 

the Explicit MPC algorithm. 
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Based on the experimental setup’s characteristics we set the sampling time to Δ𝑡 = 0.002 = 2 𝑚𝑠 where is the 

smallest possible value of the data acquisition board. We start the simulations with 𝑄 = 𝐶𝑇𝐶, 𝑅 = 1 and then change Q 

as 𝑄 = 𝐶𝑇𝑄∗𝐶 to reach to the desired performance. Figure 3 shows the simulation result for 𝑄 = 𝐶𝑇𝐶, 𝑅 = 1 that has 

%10 overshoot and 1 sec setteling time. Flexibility of the joint is the main reason of overshoot.  

 

Figure 3. Time response of the closed-loop system with DLQR controller. 𝑹 = 𝟏,𝑸 = 𝒅𝒊𝒂𝒈([𝟏, 𝟏, 𝟎, 𝟎]). 
 

As it is displayed in Figure 4, we can adjust the overshoot by changing the relative value of the elements of  𝑄 with 

eachother. Any increase in the first element, which is respect to 𝜃, decreases the raise time and increases the overshoot, 

control effort and transient error value of 𝛼. Figures 3 and 4 suggest us to choose 𝑄 and 𝑅 as 

(13) 𝑄 = [

10 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] , 𝑅 = 1 

 

 

Figure 4. Time response of the closed-loop system with DLQR controller and different weights. 
 

The terminal weight 𝑃 of Equation 10 is selected as the solution of Algebraic Ricaati Equation to imitate the infinite 

horizon behavior [14]. The value of 𝑃 is 

(14) 𝑃 = 𝐴𝑇𝑃𝐴 + 𝑄 − 𝐴𝑇𝑃𝐵(𝐵𝑇𝑃𝐵 + 𝑅)−1𝐵𝑇𝑃𝐴. 

In order to determine the appropriate 𝑁 and Δ 𝑡, we have to keep in mind that as sampling time decreases, the time 

for on-line calculations also decreases. To prepare the control effort in-time, the on-line calculations must be done during 

the time span of the sampling time, otherwise the system’s stability could not be assured. Therefore, the sampling time 

should be large enough for on-line calculations to be done. On the other hand, a large sampling time produces delay for 

the system that deteriorates the stability significantly. Another important parameter is the horizon. A large horizon is 

desirable in the sense that it increases stability; however, as the horizon increases the on-line computation load increases 

which means the sampling time has to increase too. To keep a balance between computation load, sampling time and 

horizon, we have to find the smallest horizon in which closed-loop stability is guaranteed in the simulations. 

Figure 5 shows the sensitivity of the closed-loop solution to the prediction horizon. It shows that the quality of 

response is poor for 𝑁 = 1,2 and it improves significantly as 𝑁 increases (Note the difference between 𝑁 = 2 and 𝑁 =
3). For 𝑁 > 10 the response does not experience a noticeable change. In addition, the horizon does not have any 

influence on rise time for 𝑁 ≥ 3. The horizon in Explicit MPC must be kept as small as possible to prevent time-taking 

computation loads and large look-up tables [9], so a small 𝑁 is desirable here.   
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Figure 5. Time response of the unconstrained system with different horizons and 𝚫𝒕 = 𝟐𝟎 𝒎𝒔. 
 

 

Figure 6. effect of sampling time in system’s response. 
Figure 6 shows the system’s response for two different sampling times. In order to have the same overall prediction 

horizon in time domain, the prediction horizon in each case is specified in such a way that 𝑁Δ𝑡 does not change in each 

case. It can be seen from the figure that the delay decreases as the sampling time decreases. The next noticeable item in 

the figure is the change in qualitative behavior of the response for 𝑁 = 3, Δ𝑡 = 0.02 with other cases. The first graph 

shows that the phase of the red curve is different from the phase of the other curves. This suggests that the value of 

sampling times is important for small prediction horizons. From figures 4 and 5 we chose  𝑁 = 4, 5 , Δ𝑡 = 20 𝑚𝑠 for 

the Explicit MPC.  
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The effects of applying constraints on the controller are shown in Figure 7. It depicts that the rise time in MPC is 

larger than the rise time in DLQR, but the settling time is the same for two controllers. In MPC solution, the selling time 

is equal to the rise time, while these values are considerably different in DLQR. Moreover, while the solution of DLQR 

produces overshoot, the MPC removes any overshoot from the closed-loop solution which is significantly important in 

industrial situations where the overshoot could be damaging.  

 

Figure 7. Closed-loop performance after imposing constraints on input, rate of input and states. 
 
 

4. Implementation of the Controller   

In designing Explicit MPC, we should keep in mind that the main concern is to keep the on-line computations as 

small as possible. The on-line algorithm duty is to find the partition in which the measured initial condition is belong to, 

and then to apply the corresponding control law. Numerous research has shown that the most time-consuming part of 

the on-line algorithm is the determination of the partition [15, 16, 17]. Therefore, in order to keep the computation time 

minimum, we must decrease the number of partitions.  

As it was mentioned before, the element is to keep the number of partitions as small as possible. We employed 

Yalmip [18] and mpt-toolbox [19] to extract Explicit MPC algorithm. In the first try, we designed the controller for 𝑁 =
5 that results to 4766 partitions. During the implementation, it was observed that the on-line search algorithm was not 

able to determine the partition of the given initial condition within the sampling time of 20 [𝑚𝑠]. Therefore, we used 

𝑁 = 4 for the prediction horizon which results in 1283 partitions. Then, we used the look-up table in Simulink to control 

the setup in Real Time Workshop. Figure 8 depicts an overview of the Simulink model where the explicit MPC is 

integrated through an embedded function. The joint rotations are measured with 1024-bit resolution encoders and 

𝐺(𝑠) = 275
𝑠

𝑠+275
 is employed as the velocity observer.  
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Figure 8. Simulation file for simulations and experiments.  
The response of the closed-loop system with explicit MPC controller for step, ramp and sine inputs are shown in 

Figures 9 to 11. In Figure 9, the constraints are set in such a way that the closed-loop solution is free from any overshoot. 

The result for step input is compared with the closed-loop result of DLQR controller. Both controller have the same 

settling time, but the rise time in DLQR is much less than the rise time in explicit MPC. Unlike DLQR, the closed-loop 

solution of explicit MPC shows no overshoot in the implementation. The discrepancy between the simulation and the 

implementation is a result of uncertainties, modeling inaccuracies and un-modelled dynamics. Figure 10 and 11 show 

the closed-loop response of simulation and implementation for ramp and sine inputs. Again, we can see some 

discrepancy between the simulations and the experiments, but the overall performance of the controller is satisfactory.  

 

Figure 9. Controller response for step. 

Plant’s dynamics 

Constraints 

Explicit MPC Controller 
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Figure 10. Controller response for ramp. 

 

Figure 11. Controller response for sine. 
5- Conclusion   

In this article, the implementation of explicit model predictive control on a flexible joint was studied. The designing 

process such as weight selection, horizon selection and constraints values was explained step-by-step via a practical 

approach. The experiments showed the unwanted vibrations of the flexible joint can be reduced significantly with the 

explicit MPC approach. The ability to accommodate constraints is the main advantage of explicit MPC over DLQR. It 

was shown that the number of partitions is a major concern in this scheme and the designed should keep the it down as 

much as it can be. 
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