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Abstract 

 The Minkowski diagram, by which the concept of spacetime has been 

graphically represented and interpreted, is shown to have a pre-relativistic 

flaw: It depicts the relative motion of a body moving in time as-if it is 

moving along with the observer’s clock, not as it is actually observed, 

according to its own proper time. An alternative diagram provides an 

accurate representation of relativistic relationships and enables heuristic 

insights into the nature of relativistic effects, and of time, light, and 

gravitation. 
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Introduction 

 The concept of four-dimensional spacetime pre-dates relativity 

theory, but with relativity there is a revolutionary understanding of the 

covariance of space and time. The prevailing understanding of the 

relativistic, covariant, spacetime continuum is due primarily to H. 

Minkowski’s geometrical contribution (1908) to Einstein’s Special Theory. 

Minkowski saw in the relativistic interpretation of the Lorentz 

transformations1 the possibility for a two-dimensional representation of the 

peculiar interrelationships between bodies having large relative velocities. 

Assuming the validity of the tenets of Relativity, and assuming the 

correctness of the geometric representation, it was expected that the graphic 

would express and corroborate relativity in its mathematical form, that 

“physical laws might find their most perfect expression” (Minkowski, 1908, 

76), and facilitate further insights into the nature of what Minkowski called 

the spacetime continuum.  

 

Diagramming spacetime 

 Figure 1 is a typical Minkowski diagram, with the vertical or nearly 

vertical axes of two reference frames representing time and the horizontal or 

nearly horizontal axes representing their spatial dimensions. A defining 
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characteristic of the diagram is a diagonal vector or vectors projecting the 

motion of light relative to the motion of an observer who is moving in time 

on the vertical axis while “at rest” in space. 

 
A typical Minkowski diagram. The world-line of the observer is moving in time 

perpendicular to the space axis. The world-line of a ray of light is depicted as a diagonal in 

the observer’s coordinate system, moving in equal parts of space and time. Point p 

illustrates how an event can be located differently in different coordinate systems according 

to their relative motion. 

  

 The world-lines in the Minkowski diagram are supposed to project 

the relativistic motions of bodies in spacetime. The observer’s world-line 

moves vertically, because she is considered to be at rest in space, rather than 

in uniform motion – a seemingly arbitrary choice, but the clearest and 

simplest way of depicting relativistic relationships. The world-lines of bodies 

moving at great speeds relative to the observer are usually projected as 

moving away from the observer’s initial location, again because it is the 

clearest way of representing relativistic relationships.  

 The primary interests in the diagram have generally focused on 

relative location of events in spacetime, as with point p in figure 1, and on 

the “light-cones” formed by the relative motion of light-rays. But with 

attention to world-lines, there can be seen a remarkable, pre-relativistic flaw 

in the Minkowskian projection: The world-line of a body moving relative to 

the observer is shown to be moving in space as observed, but moving in time 

as-if it is moving in synchronicity with the observer’s clock, not dilated 

(slowed) according to theory. In other words, it isn’t projected as it should 
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be, compared to the observer’s clock, but rather along with the observer’s 

clock. 

 There is no more important precept in relativity theory than that in 

describing the relative motion of a body we must specify the frame of 

reference from which the observation is being made, and we must distinguish 

the observed body’s metrics of space and time from the observer’s. If for 

example it is said that a body is observed to travel 8 light-seconds (ls) in 10 

seconds (sec), unless we are to return to the absolutes of classical physics we 

must specify and distinguish according to whose measures of distance and 

time. To fully describe the observed motion relativistically is to report that 

the body travels 8 ls in space relative to an observer’s uniform or stationary 

spatial reference, and a number of sec in time (t') that is relative to the 

observer’s corresponding temporal reference of 10 sec (t), at a relative 

velocity of v (expressed as .8, proportional to c) 2. The relationship can be 

expressed by t' = t √(1-v2) per a Lorentz transformation, or alternately by t' = 

√(t2-x2), with x as the relative distance traveled in space, calibrated in light-

seconds, which in the above example yields either 10(√(1-.82)) or √(102-82) = 

6.  Strictly speaking, therefore, the body under consideration travels a 

relative 8 ls and 6 sec (its clock is observed to tick 6 seconds), and we 

measure its travel from a reference frame at 0 ls and 10 sec. 

 The significance of the distinction between the pre-relativistic and 

relativistic accounts is most striking in the description of light: When it is 

said in a Newtonian perspective that light travels (approximately) 300,000 

km (1 ls) in 1 sec, we make a relativistic correction and say, as in the above 

example, it actually travels 10 ls relative to the observer’s uniform motion or 

state of rest in space and 0 sec (t' = 10(√(1-12) or  √(102-102)) relative to the 

observer’s duration of 10 sec in time. 

 To neglect the relativistic correction is to invite a serious error in 

one’s understanding of spacetime, and yet it is an oversight built-in to the 

Minkowski diagram. The diagonal light-vectors (the “light-cones”) in the 

diagram makes this conclusion unavoidable: To project the world-line of 

light as moving 10 ls in space and 10 sec in time (a spacetime diagonal, one 

side of a “light cone” in the Minkowski diagram) is to describe the relative 

motion of light in space, but in terms of the observer’s own reference in time, 

treated as an independent, absolute measure. This is a critical 

misrepresentation of a most fundamental precept of relativity theory -- that 

time is relative and referential.  

 The Minkowski diagram has prevailed so long, the point cannot be 

overstressed: It is the clock of the moving body that indicates how it is 

moving in time, not the clock of the observer. Hence the two-dimensional 

representation of the world-line of the observed body must express its own 

clock as measured by the observer, as well as its relative distance traveled. 
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 An alternative diagram (figure 2) conforming to Special Relativity 

and the Lorentz transformations, and treating both space and time as relative, 

provides a heuristic representation by means of which, as Minkowski 

originally envisioned, “physical laws might find their most perfect 

expression.”  

 
An alternative spacetime diagram. The world-line of the observed body B is projected as 

moving in time according to its own clock as measured by the observer A. 

 

 The x-axis in figure 2 represents space calibrated in light-seconds, 

while its perpendicular, the y-axis, represents time calibrated in seconds -- 

both according to observer A, who is considered to be at rest and moving in 

time along the y-axis. Vector B represents a body in motion relative to A.  

 A travels 10 sec in time in the scope of the diagram while “at rest” 

(i.e., moving perpendicular) to space in time.  Body B, which as a matter of 

convenience is located initially with A at the origin o, moves from the 

vicinity of A at a velocity, according to A, which takes it 8 ls in 10 sec. The 

final spacetime coordinates of B according to A (8,6) can be derived from the 

Lorentz transformations, or geometrically by measurement of the lengths in 

the diagram. By locating B at 6 seconds in time it is represented that the 

clock of B has moved 6 sec in the coordinate system of A. (Note that at a 

velocity of .8c the world-line of B has already transgressed the diagonal of 

the Minkowskian light-cone.) 

 



European Scientific Journal March  2015 edition vol.11, No.9 ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

5 

The Utility of a relativistic diagram 

 The so-called “invariant interval” -- a magnitude ascribed to changes 

in B’s location between two events from any coordinate system -- usually 

given by s = √(x2 - t2) (again, with x proportional to c and calibrated with t), 

yields a negative square root for relative velocities less than c -- an 

imaginary number. But the relationship can be just as well transformed to  

s = √(t2 - x2)        (1) 

and expressed in the example by 

s = √(102 - 82)  = 6      (2) 

 Thereby s, the interval is revealed in the relativistic spacetime 

diagram not as an abstract imaginary, graphically inexpressible, but as a 

physical quantity, the proper time, the observed speed of the clock of body 

B. 

 A significant implication profiled by figure 2 is that there are actually 

two invariants involved in a relativistic relationship: 1) the conventionally 

recognized interval, reinterpreted here as the proper time of B between two 

events along its world-line, which is invariant when measured from any 

reference frame, and 2) the equality of spacetime intervals of the world-lines 

of A and B. In the Minkowski diagram the world-line of an observer is not 

recognized as being equivalent in length to the world-line of a body being 

observed; the latter is treated as a function of the observer’s time and the 

observer’s measure of distance traveled by the observed, so a ray of light 

would supposedly terminate at coordinates (10,10) after 10 seconds 

according to the observer, giving the light a world-line 14.14 in length. But 

in the relationship shown in figure 2 between an observer and a body in 

relative motion (now, for the sake of comprehension, substituting s (proper 

time) for t’, letting t and t’ represent the lengths of the world-lines of A and 

B, and setting x = v so that t’ = √(s2 + x2)), the spacetime interval of the 

observer (t) can be shown as necessarily equivalent to any observed world-

line:  

 From the equation (1) for the invariant interval, which was 

reformulated as  

s = √(t2 - x2) we can derive  

t = √(s2 + x2)        (3) 

which equates t with the hypotenuse of the triangle formed of s and x, and 

therefore also equal to t’, which is the hypotenuse. The world-line of B is 

therefore necessarily equal in length with the world-line of A. We can 

extrapolate and declare that all world-lines (assuming inertial reference 

frames3) must be equal in length with all others for any given period, 

regardless of coordinate system.  

 It is important to note that both the Lorentz Transformations and the 

equation for the invariant interval indicate a Euclidean relationship between 
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space and time, and between bodies in relative motion.  For although the 

relationship between clocks in relative motion given by t' = √(t2 -x2) is 

indeed parabolic, as is generally stressed in connection with the Minkowski 

diagram, the fact that a hypotenuse relates to the sides of a Euclidean triangle 

by a parabolic function presupposes the right-angle.  And as figure 2 shows, 

the temporal component of any body’s relative motion in spacetime is at a 

right-angle to the observer’s space axis, and parallel with the observer’s own 

motion in time.  

 The spacetime diagram works to represent the relationship 

determined by the Lorentz transformation only if a body moving uniformly 

in time is actually moving perpendicular to space. Given that another body in 

relative motion is also moving perpendicular to space along the time-axis of 

its own coordinate system, its space axis must be different than that of the 

body taken to be at rest. Accordingly, figure 3 shows two reference frames at 

once, with A and B each moving in time perpendicular to space according to 

their own coordinate system. It depicts, as the Minkowski diagram cannot, 

the curious phenomenon wherein each observer measures the other’s clock 

as moving more slowly than her own.  

 
Two coordinate systems are shown to mirror their mutual relativistic effects. By rotating 

the diagram either reference frame can be represented as at rest in space, and the other 

projected as being in relative motion. 

 

 Figure 3 is a fully accurate depiction of the relativistic relationship. It 

expresses the duality that students of relativity often have difficulty 

comprehending: Each body has its own orientation in spacetime, each moves 
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in time perpendicular to space, and each mirrors the relativistic effects of the 

other.  

 Both the Lorentz Transformations and the (modified) equation for 

the invariant interval indicate a perpendicular relationship between space and 

time for any body (except light) at-rest or moving uniformly. The motion in 

time of a body A is perpendicular to its orientation in space, and the relative 

motion of a body B, although proceeding in a relative orientation that is 

partly temporal, partly spatial according to A, is moving uniformly in time 

perpendicular to space in its own coordinate system.   

 The relative motion of light as represented in these terms is especially 

noteworthy. Whereas the speed of light is commonly expressed as ~300,000 

km per second, to fully describe its observed motion relativistically is to 

report that it travels 1 ls in space relative to an observer’s spatial reference, 

and zero seconds in time relative to the observer’s temporal reference of 1 

sec, as is given both by the Lorentz transformations and the equation for the 

invariant interval. A world-line representing a ray of light in figure 4 

therefore has a spacetime interval of 10 but a proper time of zero, and lies 

directly along the x-axis of observer A. (The interval in this case is s = √(102 

- 102).) 

 
The world-line of a ray of light is projected as moving along the observer’s space-axis, 

conforming to its absence of clock speed according to the observer. 
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 The world-line of light doesn’t move in time relative to the observer, 

therefore it is a misrepresentation to place in on a diagonal, which in effect 

treats the observer’s clock as absolute. 

 The relativistic representation at once provides a visual explanation 

for c as a limiting velocity (given the invariance of world-lines described 

above, a vector along the x-axis will have the maximum possible relative 

extension in space, equal to the observer’s extension in time) and an 

explanation for the invariant measure of c (again by the invariance of world-

lines, an observer will always measure light as moving as far along the space 

axis as she moves along the time axis). These aspects of light have remained 

inexplicable by adherence to the Minkowski diagram, and have prevented 

the realization of Minkowski’s original vision -- that “physical laws might 

find their most perfect expression” in a two-dimensional spacetime 

projection.  

 The relationships projected in the relativistic diagram can be 

expressed in terms of three corollaries thus far: 

 

The speed of light is a limit  
 If the world-lines of bodies in relative motion are taken as having the 

same spacetime interval but with varying spatial and temporal components 

according to their relative spacetime trajectories, the limiting spatial velocity 

is the interval of a world-line along the space axis measured in terms of the 

same interval along the corresponding time axis. (A vector drawn along the 

x-axis in figure 4 to represent a ray of light extends as far along the x-axis as 

time elapses for the observer in the duration of the diagram. There is no 

vector that can extend further (i.e., move faster) in space than one that has a 

temporal component of zero.) 

 

The speed of light is invariant 

 Due to the equivalence of the observer’s and the observed world-

lines, each observer will measure light as traveling the same distance in 

space as time elapses in that observer's reference frame, and though the 

measure of the spatial distance traveled by a beam of light between events 

will vary between reference frames, the rate will always be agreed upon.   

 

The speed of light and the speed of time are equivalent  
 Given the equivalence of world-lines, given the perpendicular 

relationship between space and time expressed by the Lorentz 

transformations, and given the world-line of light as lying along the x-axis, 

distance in time must be equal to distance in space: one second in time is the 

same distance, but in a perpendicular direction, as ~300,000 km in space. 

  



European Scientific Journal March  2015 edition vol.11, No.9 ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

9 

Time as motion in space 

 As the relativistic diagram shows, and as the Lorentz transformations 

express, each body has its own clock and moves in time with its own 

orientation in space; to move in time in one coordinate system is to move 

partly in time, partly in space according to another; the time of a body 

considered to be in motion relative to another moves across the space of the 

other. 

 It is difficult, perhaps impossible to conceive how our everyday 

experience could involve “moving”, space-wise, in time -- especially when 

our experience is of “maintaining” or “enduring” (rather than “moving”) 

more-or-less parallel in time with everything we commonly observe. But the 

difficulty is to be expected, considering that temporal motion is in a fourth 

dimension, and we are creatures attuned to a three-dimensional experience 

distinct from our sense of duration. It is even more incomprehensible that to 

move in time is to move 300,000 km across space -- and in just one second. 

 We don’t seem to be moving at any great speed even relative to the 

stars; how could the whole universe of mass be moving at c in time although 

even on a galactic scale we seem to be moving as-if in a common-sense, 

three-dimensional order. It is a question ripe for investigation and 

speculation, but the phenomenon itself has immediate, informative 

implications. 

 

Unlike space, which is pervasive, time is a property intrinsic to bodies 

 Time is the orientation and motion of bodies in, or rather, across 

space. 

 

Time and Momentum 

 The notion of a spacetime continuum, and of time as moving across 

space, indicates a dynamic aspect of time than is not fully appreciated even 

in relativity theory, due in part perhaps to a residue of the pre-relativistic and 

common-sense regard for space and time as being independent and 

fundamentally different. But if spacetime is a continuum, if time moves in 

space, or rather, if a body moves in space by moving in time, then temporal 

motion must be dynamic, and possessing of momentum and kinetic energy. 

 The component of relative time in momentum is obscured even in the 

relativistic formulation p = m0v / √(1-v2/c2). 

 If for the sake of isolating considerations of space and time in 

momentum we set m0 to unity, and for simplicity, as before, set v 

proportional to c, we have 

pst = v / √(1-v2)      (4) 
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 Projecting this on a spacetime diagram in figure 5 with body B 

impinging on A, we set t to unity, x = vt, and t’ = √(1-x2) and thereby arrive 

at 

pst = x/t’       (5) 

(Note: Having established that s, the “invariant interval” is just the proper 

time of an observed body, and given the invariance of the length of world-

lines, we can henceforth dispense with s, and return to using t’ as the relative 

time of the observed, as in figure 2.) 

 
In an event that transpires at 1 second on A’s clock, body B impinges on A at a velocity of 

.6c, with momentum of m0x/(√t2-x2), or m0x/t’, or m0vt/t’, which express the temporal 

dynamic of B’s motion in A’s coordinate system. (Note that the diagram could be rotated to 

treat A as impinging on B with the same momentum, given equal masses.) 

 

 In a more general expression of t’, with t allowed to vary,  

t' = √(t2-(vt)2)        (10) 

t' = t√(1-v2)        (11) 

(which identifies the geometric source and significance of the Lorentz term 

1-v2). 

 Now allowing m0 to vary, and substituting tr (“relative time”) for t’, 

p = m0vt/tr       (12) 

thus obtaining a more revealing expression than that with the standard use of 

the Lorentz term, profiling the dynamic role of time. We can thereby 

recognize momentum as a function of the relative motion of time in space. In 

other words, momentum is not just the product of the motion of a mass in 

time and space, it is directly related to the motion in time by one body in the 

spatial aspect of the coordinate system of another. 
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 Two more corollaries of the principle of the continuum, the 

covariance of space and time, follow: 

 

Motion in time is dynamic, and possessing of kinetic energy and 

momentum  

 Furthermore, it may be inferred that the motion of mass in time is 

absolute as-such (i.e., motion in time is incessant), and as motion across 

space, it is the actual basis of kinetic energy. 

 

Uniform motion is both relative and absolute 

 A body that moves in time moves in space, and absolutely; it can 

only be considered “at rest” as a matter of convenience. Uniform motion in 

spacetime is, however, relative between bodies, varying in their spatial and 

temporal components. 

 

Time and Gravitation 

 Perhaps the most significant benefit of this conception of time is that 

it can finally account for the energy associated with gravitation in General 

Relativity. To think of gravitation as a deformation of the geometry of 

spacetime in the presence of mass has always entailed the problematic of 

resolving the essentially static principle of geometry with the force-like 

interactions and sustained pressures between the surfaces of gravitating 

bodies. But if time is dynamic, and time is relentless, then the evident force 

between bodies interacting gravitationally can be attributed to the “force” of 

motion in time: If two bodies are moving freely, divergent in time due to 

their relative motion, and at least one of them is massive enough to produce a 

significant curvature of spacetime in its vicinity, the other will veer toward it, 

and if direct contact is made, there will be a continuous pressure as each 

continues to seek a vector in time perpendicular to its own orientation in 

space. This is a precise description of what we observe and experience, it 

supplies the explanation for the energy that cannot be attributed by the 

general-relativistic geometric description of gravitation, and it renders the 

search for a quantum theory of gravity unnecessary and inappropriate. 

 I’ve written elsewhere: “The source of the energy usually identified 

as gravitational can… be attributed to an intrinsic and ceaseless dynamic of 

mass-energy moving in time, independent of gravitation, and obscured by the 

conflation of gravitation and inertial acceleration in circumstances when they 

happen to coincide (as at a gravitational surface) but revealed by a 

recognition of their fundamental distinction.” (Arnold, 2013) 
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“Gravitational energy” is temporal energy 

 If gravitation is the geometric warping of spacetime in the presence 

of mass, as geometry it bears no similarity to force, and cannot account for 

the persistence of weight. The kinetic energy of motion in time across space 

is entirely adequate to account for motion that is warped by gravitation, and 

for the continuous pressure (weight) induced at a gravitational surface. 

 

Conclusion 

 The unique characteristic of time as the dynamic aspect of the 

spacetime continuum has been largely unexplored, I believe due in large part 

to Minkowski’s original graphic graphic misrepresentation.  

 By means of a relativistic correction to the Minkowski diagram a 

number of clarifications and corollaries have been illustrated and 

propounded:  The invariant length of world-lines; uniform motion in time as 

perpendicular to space, and relative motion in spacetime as a different 

orientation of time to space; the misidentification of the “invariant interval”; 

the reason c is absolute and invariable; how two reference frames can each 

regard the other’s clock as moving more slowly; that motion in time is 

absolute and dynamic, and not just the condition but the source of relative 

motion in space; and that the energy mis-identified with gravitation is due to 

bodies’ continuous motion in time.  

 

End Notes 

 The Lorentz Transformations are t' = √((t-v)/(1-v2)) and x' = √((x-

vt)/(1-v2)), with t as time, x as distance, and v as velocity proportional to c. 

 As a matter of convenience t is generally multiplied by c so that 

space and time can be expressed in distances of the same scale.  I prefer 

instead to calibrate them by giving time in seconds (sec) and space in light-

seconds (ls).  

Inertial acceleration and local gravitational influences are incidental, 

and need not be considered here. 

 

References: 

Arnold J: Gravitation, force, and time, Eur. Sci. Journal 9, 24, (2013)  

Minkowski H: Space and time, in The Principle of Relativity, H.A. Lorentz, 

A. Einstein, H. Minkowski, and H. Weyl, trans: W. Perrett and G.B. Jeffery, 

1923 (1908) 

 

  


