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Abstract: 
 In this paper our purpose is to answer questions like: Why casting out nines works? 

Why it fails? Why casting out nines and not, for example, ―casting out elevens‖?  

The casting out nines method was used to ―check‖ the results of operations on positive 

integers. Although not currently taught in elementary school it hides mathematical concepts 

that will help to understand important current applications such as internet security. 

We present the mathematical concepts behind the casting out nines method: some tests for 

computing remainders and the congruence relation modulo n and its properties. 
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Introduction 

 Casting out nines method was a well known process since elementary school, used to 

―check‖ the results of operations on positive integers. Currently it is not used, but it hides 

many mathematical concepts such as divisibility, decimal decomposition of an integer 

number and congruences, used in important current applications such as internet security. 

 In this paper our purpose is to answer questions like: Why casting out nines works? 

Why it fails? Why casting out nines and not, for example, ―casting out elevens‖?  

 In section 2 we present the mathematical concepts behind the casting out nines 

method: the congruence relation modulo n and its properties and some tests of divisibility. 

 The casting out nines method is a particular case of casting out n method, 𝑛 ∈ ℕ,  
described in section 3. In section 4 we try to answer why, traditionally, the preferred is n=9 

(casting out nines).    

 

2. Remainder in integer division  

Tests for the correctness of operations on integers, as casting out nines, are based in 

finding the remainder in integer division. In this section we present the mathematical ideas 

behind those processes. 

Proposition 2.1Let a and n be integer numbers, with 𝑛 ≠ 0. Then exists two integers q 

(quotient) and r (remainder), uniquely determined, such that 

𝑎 = 𝑛𝑞 + 𝑟,   with   0 ≤ 𝑟 < |𝑛|. 
 Notice that in integer division of one number a by n, one can get the remainder 

removing from a  the largest multiple of the n lower than a.  

 An integer number a is said to be divisible by an integer number 𝑛 ≠ 0 (or that n 

dividesa), and we denote this by 𝑛|𝑎, if the remainder, r, of the division of a by n is zero.  

 The following properties are the mathematical justification of the technique used in 

casting out n. 
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Proposition 2.2 Let 𝑛 ≠ 0  be an integer number and 𝜌:ℤ →  0,1,… , 𝑛 − 1  the map 

where 𝜌(𝑥) is the remainder of the division of x by n. Then: 

(i) 𝜌 𝑥 = 𝜌 𝑦  if and only if 𝑛|(𝑥 − 𝑦); 

(ii) 𝜌 𝑥 ± 𝑦 = 𝜌 𝜌 𝑥 ± 𝜌 𝑦  ; 

(iii) 𝜌 𝑥𝑦 = 𝜌 𝜌 𝑥 𝜌 𝑦  . 

Proof: Let 𝑥,𝑦 ∈ ℤ. By the division algorithm, we have  

𝑥 = 𝑛𝑞1 + 𝜌(𝑥) and 𝑦 = 𝑛𝑞2 + 𝜌(𝑦), with 𝑞1, 𝑞2 ∈ ℤ.  

(i) Then    𝑥 − 𝑦 = 𝑛 𝑞1 − 𝑞2 + 𝜌 𝑥 − 𝜌 𝑦     (1) . 

If 𝜌 𝑥 = 𝜌 𝑦  from (1) we have 𝑛|(𝑥 − 𝑦). 

If 𝑛|(𝑥 − 𝑦), in (1) 𝜌 𝑥 − 𝜌 𝑦 = 0, thus 𝜌 𝑥 = 𝜌 𝑦 . 
(ii) Then    𝑥 ± 𝑦 = 𝑛 𝑞1 ± 𝑞2 + 𝜌 𝑥 ± 𝜌 𝑦     (2) . 

If    𝜌 𝑥 ± 𝜌 𝑦 ≥ 𝑛  or  𝜌 𝑥 ± 𝜌 𝑦 < 0  then exists 𝑞3 ∈ ℤ  such that 

𝜌 𝑥 ± 𝜌 𝑦 = 𝑛𝑞3 + 𝜌(𝜌 𝑥 ± 𝜌 𝑦 ). So we have from (2)  

𝑥 ± 𝑦 = 𝑛 𝑞1 ± 𝑞2 + 𝑞3 +   𝜌(𝜌 𝑥 ± 𝜌 𝑦 )  . Thus 𝜌 𝑥 ± 𝑦 = 𝜌 𝜌 𝑥 ± 𝜌 𝑦  . 

(iii) Then    𝑥𝑦 = 𝑛𝑞′ + 𝜌 𝑥 𝜌 𝑦 with𝑞′ =  𝑛𝑞1𝑞2 + 𝑞1𝜌 𝑦 + 𝑞2𝜌 𝑥 . (3) 

If    𝜌 𝑥 𝜌 𝑦 ≥ 𝑛  then exists 𝑞3 ∈ ℤ  such that 

𝜌 𝑥 𝜌 𝑦 = 𝑛𝑞3 + 𝜌(𝜌 𝑥 𝜌 𝑦 ). So we have from (3)  

𝑥𝑦 = 𝑛 𝑞′ + 𝑞3 +   𝜌(𝜌 𝑥 𝜌 𝑦 )  . Thus 𝜌 𝑥𝑦 = 𝜌 𝜌 𝑥 𝜌 𝑦  .    

 

Example 2.3 

Let x=15 and y=23.  

1. If n=6 then  𝜌 𝑥 = 3 , 𝜌 𝑦 = 5. 

We have  𝜌 𝑥 + 𝑦 = 𝜌 38 = 2 and   𝜌 𝜌 𝑥 + 𝜌 𝑦  = 𝜌 8 = 2. 

𝜌 𝑥 − 𝑦 = 𝜌 −8 = 4   and   𝜌 𝜌 𝑥 − 𝜌 𝑦  = 𝜌 −2 = 4 . 

𝜌 𝑥𝑦 = 𝜌 345 = 3   and   𝜌 𝜌 𝑥 𝜌 𝑦  = 𝜌 15 = 3 . 

2. If   n=9  then   𝜌 𝑥 = 6 , 𝜌 𝑦 = 5. 

We have  𝜌 𝑥 + 𝑦 = 𝜌 38 = 2 and   𝜌 𝜌 𝑥 + 𝜌 𝑦  = 𝜌 11 = 2. 

𝜌 𝑥 − 𝑦 = 𝜌 −8 = 1   and   𝜌 𝜌 𝑥 − 𝜌 𝑦  = 𝜌 1 = 1 . 

𝜌 𝑥𝑦 = 𝜌 345 = 3   and   𝜌 𝜌 𝑥 𝜌 𝑦  = 𝜌 30 = 3 . 

 

 The operation of finding the remainder of the division between integer numbers can 

be referred as the modulo operation. In this case the remainder of the division of a by a fixed 

positive integer number n, is denoted by 𝑎(𝑚𝑜𝑑 𝑛). 

 Furthermore if  𝑎 𝑚𝑜𝑑 𝑛 = 𝑏(𝑚𝑜𝑑 𝑛) we say that a is congruenttobmodulon, and it 

is denoted by 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛). 

 For example, we have 24 ≡ 51 (𝑚𝑜𝑑 9)  since, with n=9 ,  𝜌 24 = 𝜌 51 = 6. 
 Thus Proposition 2.2 can be expressed in terms of the congruence relation modulo n. 

 In fact the congruence relation modulo n identifies two integers if and only if their 

difference is a multiple of n  , thus it may be regarded as an ―equality‖ up to multiples of n . 

The items (ii) and (iii) can be expressed as:the modulo of a sum is the modulo of the sum of 

the modulos, as well as, the modulo of a product is the modulo of the product of modulos.  

 The congruence relation modulo n is an equivalence relation compatible with the 

operations of addition and multiplication. This congruence relation and its properties allow us 

to find the remainder in integer division without having to explicitly carry out the division.  

Proposition 2.4Let 𝑧 = 𝑎𝑛𝑎𝑛−1 …𝑎1𝑎0, be an integer number written in base 10. The 

remainder of the division of z:  

(i) by 9 (or by 3, respectively) is the remainder of the division of the sum of its digits 

by 9 (or by 3, respectively); 



European Scientific Journal  September 2014  /SPECIAL/ edition Vol.3   ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

400 

(ii) by 2 (or by 5, respectively) is the remainder of the division of its rightmost digit by 

2 (or by 5, respectively); 

(iii) by 4 (or by 25, respectively) is the remainder of the division of the number formed 

by its last two digits by 4 (or by 25, respectively); 

(iv) by 11 is the remainder of the division of the sum of its digits taken with alternating 

signs,   𝑎0 − 𝑎1 + 𝑎2 −⋯+ (−1)𝑛𝑎𝑛  , by 11. 

 Proof:  

(i) Let 𝑧 = 𝑎𝑛𝑎𝑛−1 …𝑎1𝑎0, be an integer number written in base 10. 

Then    𝑧 = 𝑎𝑛 . 10𝑛+𝑎𝑛−1. 10𝑛−1 + ⋯+ 𝑎1. 10 + 𝑎0  . Since 10𝑖 ≡ 1 (𝑚𝑜𝑑 9)  , for all 

𝑖 ∈ ℕ0 , we have 𝑧 ≡ 𝑎𝑛+𝑎𝑛−1 + ⋯+ 𝑎1 + 𝑎0 (𝑚𝑜𝑑 9). That is the remainder of the 

division of z by 9 is the remainder of the division of the sum of its digits by 9. 

Analogously, since 10𝑖 ≡ 1 (𝑚𝑜𝑑 3) , 𝑖 ∈ ℕ0,  the remainder of the division of z by 3 is 

the remainder of the division of the sum of its digits by 3. 

(ii) Let  𝑧 = 𝑎𝑛𝑎𝑛−1 …𝑎1𝑎0, be an integer number written in base 10. 

Then  𝑧 = 𝑎𝑛 . 10𝑛+𝑎𝑛−1. 10𝑛−1 + ⋯+ 𝑎1. 10 + 𝑎0  . Since 10𝑖 ≡ 0 (𝑚𝑜𝑑 2)  , for all 

𝑖 ∈ ℕ, we have 𝑧 ≡ 𝑎0 (𝑚𝑜𝑑 2). That is the remainder of the division of z by 2 is the 

remainder of the division of its rightmost digit by 2.  

Analogously, since 10𝑖 ≡ 0 (𝑚𝑜𝑑 5) , 𝑖 ∈ ℕ, the remainder of the division of z by 5 is the 

remainder of the division of its rightmost digit by 5 . 

(iii) Let 𝑧 = 𝑎𝑛𝑎𝑛−1 …𝑎1𝑎0, be an integer number written in base 10. 

Then   𝑧 = 𝑎𝑛 . 10𝑛+𝑎𝑛−1. 10𝑛−1 + ⋯+ 𝑎2. 102 + 𝑎1. 10 + 𝑎0  . Since 10𝑖 ≡ 0 (𝑚𝑜𝑑 4), 

for all  𝑖 ∈ ℕ,  with  𝑖 ≥ 2, we have 𝑧 ≡ 𝑎1. 10 + 𝑎0 (𝑚𝑜𝑑 4). That is the remainder of the 

division of z by 4 is the remainder of the division of the number formed by its last two 

digits by 4. 

Analogously, since 10𝑖 ≡ 0 (𝑚𝑜𝑑 25), for all  𝑖 ∈ ℕ,  with  𝑖 ≥ 2,  the remainder of the 

division of z by 25 is the remainder of the division of the number formed by its last two 

digits by 25. 

(iv) Let 𝑧 = 𝑎𝑛𝑎𝑛−1 …𝑎1𝑎0, be an integer number written in base 10. 

Then    𝑧 = 𝑎𝑛 . 10𝑛+𝑎𝑛−1. 10𝑛−1 + ⋯+ 𝑎1. 10 + 𝑎0  . Since 10 ≡ −1 (𝑚𝑜𝑑 11)  , we 

have  102𝑖 ≡ 1 (𝑚𝑜𝑑 11) and 102𝑖+1 ≡ −1 (𝑚𝑜𝑑 11) , for all 𝑖 ∈ ℕ. Therefore  

𝑧 ≡ 𝑎0 − 𝑎1 + 𝑎2 −⋯+ (−1)𝑛𝑎𝑛 𝑚𝑜𝑑 11 . 
That is the remainder of the division of z by 11 is the remainder of the division ofthe sum 

of its digits taken with alternating signs. 

 The digital sum of a positive integer number 𝑧 = 𝑎𝑛𝑎𝑛−1 …𝑎1𝑎0, written in base 10 is 

the sum of its digits, 𝑎𝑛+𝑎𝑛−1 + ⋯+ 𝑎1 + 𝑎0. The digital root (or repeated digital sum) of a 

positive integer number z, denoted by dr(z),  is obtained by an iterative process of summing 

digits, using, on each iteration, the result from the previous iteration. The process continues 

until a single-digit number is reached.  For example, dr(1598)=5, because 1+5+9+8=23 and 

2+3=5. 

 Extract the digital root of z is, essentially, get the remainder of the division of z by 

nine, with an exception when the number z is a multiple of nine, because the digital root of z 

is nine, but the remainder of the division for z by nine is zero. 

 When getting the remainder of the division of a positive integerby nine we might 

remove (―cast out‖) any nines that appear as digits in the original number and also can 

remove together any digits that sum to 9, since 9 ≡ 0 mod 9  and the congruence relation 

modulo n is compatible with addition. This procedure can save time in the case of very large 

numbers. 
 

Example 2.5 
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As we mentioned above, the digital root of 1598 is 5. It can be obtained removing the 

digit 9 and the digits 8 and 1. 

In fact 1598 ≡ 1 + 5 + 9 + 8 (𝑚𝑜𝑑 9) by Proposition 2.4 (i). Since 9 ≡ 0(mod 9)and 

the congruence relation is compatible with addition we obtain  1598 ≡ 5 (𝑚𝑜𝑑 9). 

 

Casting out n method  

 We now give the steps of casting out n method, with  𝑛 ∈ ℕ, used to ―check‖ the 

results of operations addition and multiplication, that relies on Proposition 2.2. 

 Let 𝑛 be a positive integer number and 𝜌:ℕ →  0,1,… ,𝑛 − 1  the map where 𝜌(𝑥) is 

the remainder of the division of x by n. 

 

Addition: Suppose we add two positive integers 𝑥,𝑦, and find the result S. We want to 

―check‖ its correctness.  

We act as follows:  

1. Calculate   𝑥 +  𝑦 = 𝑆. 

2. Determine 𝜌 𝑥  and 𝜌 𝑦 . 

3. Calculate  𝜌 𝜌 𝑥 + 𝜌 𝑦  . 
4. Calculate   𝜌 𝑆 . 
The following scheme is a practical way to present the steps described above. 

𝜌 𝑥  𝜌 𝜌 𝑥 + 𝜌 𝑦   

𝜌 𝑦  𝜌 𝑆  

 

Multiplication: Suppose we multiply two positive integers 𝑥, 𝑦, and find the result P. We 

want to ―check‖ its correctness.  

We act as follows:  

1. Calculate 𝑥 𝑦 = 𝑃 

2. Determine 𝜌 𝑥  and 𝜌 𝑦 . 

3. Calculate  𝜌 𝜌 𝑥 𝜌 𝑦  . 
4. Calculate   𝜌 𝑃 . 
The following scheme is a practical way to present the steps described above. 

𝜌 𝑥  𝜌 𝜌 𝑥 𝜌 𝑦   

𝜌 𝑦  𝜌 𝑃  
 

 In both cases, if we get different numbers in steps 3 and 4, by Proposition 2.2, we are 

sure to have made a mistake. 

 If we get the same number in steps 3 and 4, the result found passed the test, but we are 

not certain the operation was carried out correctly, we only deduce that the correct result and 

the one we found are congruent modulo n. This is the reason why casting out n sometimes 

fails since it doesn‘t detect all errors.  

 

Example 3.1:  Suppose we add two positive integers, say 𝑥 = 149 ,𝑦 = 232, and find 

the result 149+232=381. We want to ―check‖ its correctness. We can use any value for n. 

Using 𝑛 = 9, we have the following scheme: 
5 3 

7 3 

 Using 𝑛 = 4, we have the following scheme: 
1 1 

0 1 

In both cases, we are not certain the operation was carried out correctly. We only deduce 

that the correct result and the one we found are congruent modulo n.  
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If in this example we find the wrong result 371, we have 

 

Using 𝑛 = 9 
5 3 

7 1 

We are sure to have made a mistake.  

Note that, using, for example n=6, we also are sure to have made a mistake: 
5 3 

4 5 

But, using, for example n=2, we would not notice the mistake: 

1 1 

0 1 

In the first two cases the error is detected because 371(wrong result) and 381(right result) 

are not congruent modulo 9 neither modulo 6.  

In the last case the error is not detected because 371 and 381 are congruent modulo 2. 

 

Example 3.2: Suppose we multiply two positive integers, say 𝑥 = 15 ,𝑦 = 23, and find 

the result 15 × 23 = 345. We want to ―check‖ its correctness. We can use any value for n. 

 

Using 𝑛 = 9, we have the following scheme: 

6 3 

5 3 

 Using 𝑛 = 4, we have the following scheme: 

3 1 

3 1 

In both cases, we are not certain the operation was carried out correctly. 

 

If in this example we find the wrong result 75, using 𝑛 = 9 

6 3 

5 3 

we would not notice the mistake, because 345 and 75 are congruent modulo 9. 

 

However using 𝑛 = 4 

3 1 

3 3 

we are sure to have made a mistake. In this case we detect the mistake since 345 and 75 

are not congruent modulo 4. 

 

Casting out nines versus casting out n  
 As we saw this procedure to ―check‖ if the operation was carried out correctly can be 

used with any n>0. Let us now answer why, traditionally, the preferred is n=9 (casting out 

nines).    

 The method to compute the remainder of the division of a positive integer number by 

three is similar to that of nine (Proposition 2.4 (i)), why don‘t we use casting out threes?  

Because a random answer to an arithmetic operation has probability 1 9   of passing the test 

of casting out nines while the corresponding probability is  1 3  for casting out threes. 

 Casting out nines method doesn‘t detect all errors. One of them is when, accidentally, 

we write two adjacent digits in the wrong order. If we use casting out elevens, this kind of 

error is detected. In fact to compute the remainder of the division of a positive integer number 

by 11 we alternately add and subtract digits, starting from the right (Proposition 2.4 (iv)). For 



European Scientific Journal  September 2014  /SPECIAL/ edition Vol.3   ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

403 

instance, to calculate the remainder of the division of 1537 by 11, we do 7-3+5-1 which is 8. 

If we change the adjacent digits 5 and 3 we get 1357 and we do 7-5+3-1 which is 4.  When 

we obtain a negative number we add 11. For example, to calculate the remainder of the 

division of  6213 by 11, we do 3-1+2-6 which is -2 ≡-2+11≡9 (mod 11), so the remainder is 

9. 

 However compute the remainder of the division of one number by nine is more 

accessible and fast, reason why was preferred casting out nines. 

 On using casting out n method, the only difference is in the "shortcut" to compute the 

remainder in the integer division by n.  

 Once the test to compute the remainder in integer division by nine is the most 

accessible, and some way amusing, the casting out nines method is the preferred.  

 

Conclusion 

 The question ―Why casting out nines?‖ can be completed this way:  Why casting out 

nines works? Why casting out nines fails? Why casting out nines and not, for example, 

casting out elevens? Those questions were answered throughout the text. 

 But the original question can be seen in another sense: Why discuss casting out nines 

nowadays? 

 Indeed currently the casting out nines method is not used. One reason is the 

generalized use of electronic calculators and another is because it is not really a method to 

check the results of operations on integers. 

 In our opinion the richness of the mathematical ideas behind this method justifies its 

approach nowadays. In fact mathematical concepts such as divisibility and arithmetic 

modular are used in important current applications such as internet security. 
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