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Abstract 
Although the use of asynchronous sequential machines is confined to 

solving specific problems where synchronous machines are non-applicable 
or perform poorly, we can encounter many situations where we definitely 
wish to exploit their benefits (high speed, low resolution time,…, etc.). 
However considering the fact that these asynchronous sequential machines 
are integrated with synchronous machines, a minimal output signal width 
must be provided in order to obtain the needed control capability. A control 
method for the output signal width is presented and experimental results 
confirm its validity. This method represents in fact a hybrid asynchronous 
model. 
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Foreword 

There are situations when synchronous sequential systems are non-
applicable. Those situations include: 

• input variables may change at any moment of time and they cannot 
be synchronized with respect to the system’s clock; 

• the sequential system is implemented using very fast logic gates. In 
this case the propagation delays along the connection lines became 
significant inducing clock skewing; 

• in case of synchronous sequential systems, the response time in the 
system’s evolution, with respect to the clock signal, is one clock 
period (fixed response time). However when using asynchronous 
sequential systems the evolution towards the next state as a response 
to a change in the input vector is very fast offering very low delays. 
This is why asynchronous sequential systems are used when 
designing and implementing high speed structures. 
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The output of an asynchronous system is active (with respect to time) 

for a length that is of the same rank with the transition time (Mealy machine) 
or the response time (Moore machine) - situation that has been presented by 
Valachi &  Bârsan (1984)  and Valachi & Hoza (1993), and we have already 
seen that the output signal’s length in time (Z) is proportional with the 
propagation time through an elementary gate. Onofrei & Valachi (2000) 
present a method for controlling the output signal’s length has been 
suggested, by using a controlled delay circuit (presetable/programmable 
delay generator) to generate a signal later used as output when the actual 
output signal of the asynchronous circuit becomes active (M). The structure 
suggested is presented in fig.1 (Moore machine). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Fig.1 
 
Obviously the system’s equations are: 

Yn+1=F[Xn, Mn, Yn];                 (1.1.) 
Zn=G[Yn];                                (1.2.) 

where:   
Xn={xp-1, xp-2, …, x0}n is the input vector; 
Yn={yN-1, yN-2, …, y0}n is the state vector; 
Zn={zq-1, zq-2, …, z0}n is the output vector; 
Mn–supplementary output vector with components triggered by the 
components of Zn 
Let’s consider an individual state from the system’s transition graph, 

state where at least one element of the output vector is active (Zn≠0 – fig 
2.a),. 
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Fig.2.a. 
 
 

 
As stated before we cannot guarantee a minimal length in time for the 

output signal as the transition towards the next state may occur after a time 
dependent of the technology used (in general very short time – same 
magnitude level as the propagation time through the gates used). So the 
solution to certify a minimal length for the output signal would be to replace 
the state with its equivalent two states as shown in fig. 2.a. Please observe 
that in this case we are using the M variable that is triggered by the specific 
output signal we want to enhance. 
 
 
 
Fig.2.b. 
 
 
 
 
 

 
 
So we shall double the number of states when we activate au output 

signal. Also as presented by Onofrei & Valachi (2000), after deactivating the 
supplementary signal M (1↓0) we cannot instantly reactivate it. A small 
delay of minimum 10% of the length of M is requested before reactivating 
this signal. This request is complicating furthermore the structure because we 
have to use once again a supplementary variable marked by M1 in this 
situation. Variable M1 is activated (M1 - 0 ↑1) by the negative edge of M 
(1↓0), and has a constant length in time. During the period of time when M1 
is active the output vector Z is invalidated. The structure that complies with 
these requests is presented in fig 3. 
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Fig.3. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Please notice that this method becomes more and more complicated 
and difficult to use, as one state that has an active output will be replaced – 
in this case – by four equivalent states that operate with the supplementary 
signals M and M1. 
 
Hazard vs. Output signal relationship 

There are situations when the previously presented method for output 
signal control in an asynchronous circuit is inapplicable because the presence 
of hazards (Static) at the output of the circuit implementing the asynchronous 
system. We mean by this that there are situations when the output according 
to the states transitions graph should not change it’s value but during the 
transition process we experience a short glitch at the output of the circuit, 
glitch that will trigger the pulse generators if connected as presented in fig 1 
or fig 3. We shall make our point by aid of an example. 

Let there be the asynchronous sequential system described by the 
transition graph depicted in fig.4. We have noted by x1x0 the components of 
the input vector and we marked in each state the ratio Qn/Zn where Q is the 
state number and z is the output variable. 
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Fig.4. 
 
 
 
 
 
 

 
 
Assuming the following state encoding (Q0→00, Q1→01, Q2→11, 

Q3→10) and by using the synthesis methods presented in [1], [2] we find: 
x1x0 y1y0 n+1  x1x0 y1 n+1  x1x0 y0 n+1  x1x0 zn 
y1y0 00 01 11 10  y1y0 00 01 11 10  y1y0 00 01 11 10  y1y0 00 01 11 10 
00 00 01 11 00  00 0 0 1 0  00 0 1 1 0  00 0 0 0 0 
01 10 01 11 00  01 1 0 1 0  01 0 1 1 0  01 0 0 0 0 
11 10 00 11 00  11 1 0 1 0  11 0 0 1 0  11 1 1 1 1 
10 00 00 00 00  10 0 0 0 0  10 0 0 0 0  10 1 1 1 1 

 
And the equations describing the system will be:  
 

y1,n+1=(y0x1x0 y1y0x1x0)n;   y0,n+1=(x0 y1y0x1)n;   zn=y1,n

   (2.1.) 
or 

y1,n+1=(y0x1⊕x0 y1x1x0)n;   y0,n+1=(x0 y1y0x1)n;   zn=y1,n

   (2.2.) 
A possible implementation of the circuit is presented in fig. 5 

 
 
 
 
Fig.5.a. 
(Eq.2.1. implementation) 
 
 
 
 
 
 
 



European Scientific Journal   February 2014  edition vol.10, No.6  ISSN: 1857 – 7881 (Print)  e - ISSN 1857- 7431 

394 

 
 
 
 
 
 
 
 
Fig.5.b. 
(Eq.2.2. 
implementation) 
 
 
 
 
 
 

 
Let’s assume that the system is characterized by  x1x0=01 and Q=1 

(y1y0=01). Please notice that, according to the transition graph, the system is 
in a stable state. For presentation purposes we shall assume that all gates 
used are characterized by the some propagation time (tp).  

Now suppose that in this situation the input vector changes as follows 
x1x0=01 → x1x0=00. According to the transition graph the system should 
evolve towards state 3 with the output signal z=1. However if we consider 
the origin of the time axis to be the moment when the input vector changes, 
after tp (through gate 7) y0 will switch from “1” to “0” and that will lock gate 
1 so y1 will not change to “1” but rather remain stuck on “0”. In this situation 
the system will evolve directly towards state 0 (y1y0=01) and the output will 
not be triggered.  
 Observe that both circuits (different implementation of the same 
asynchronous sequential system) will respond identically to this specific 
change on its inputs. 

In this case, concerning this specific implementation of the 
asynchronous sequential machine, we encounter a timing fault that prevents 
us from using a preprogrammed delay to implement the system’s output 
signal – we need another solution that would not be so sensitive. 
 
Output time length control using a synchronizing input 

The input vector of the system is extended by adding a new variable 
S, which in fact is a synchronizing input. We shall use this new input 
variable as follows – the output signal (when necessary) should be forced 
active for the time length when S is “high”. It is preferably (and we assume 
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that this is the case) that the new synchronizing input S should have a duty 
factor of 50% and the time length between two consecutive positive edges is 
at least one magnitude level higher than the propagation time through the 
asynchronous structure. By using S the transition graph presented in fig 4 
will be equivalently transformed to the transition graph presented in fig 6.a. 
(input vector x1x0S)  
 
 
 
 
  
 
 
 
Fig.6.a. 
 
 
 
 
 

 
 
 
If the output vector is not active (z=0) than the value of S is 

indifferent to us. However S’s value is coherent only when we have at least 
one output signal active. In the transition graph presented in fig 6.a. we 
distinguish two interesting situations: 
 From state 1 we evolve state 3 only on the negative edge of S and we 

stay in this state for as long as S is “0”. When we reach the positive 
edge of S the system shall evolve towards state 4 where the output is 
activated (z=1) and we maintain this situation for as long as S is “1”. 
When the negative edge of S occurs the system will evolve towards 
the initial state (according to initial transition graph). Now we can see 
how the output signal has been controlled in length by aid of S when 
crossing states 1-3-4-0. 

 State 2 - length of the output signal is determined by the period of 
time when both input variables are “1” (x1x0=11). In this situation, 
once again, the S’s value is indifferent to us (remember the main 
reason for using an additional input variable is to certify a minimum 
length with respect to time for the system’s outputs and assuming that 
the input variables are changing value at a normal rate - larger than tp 
- then this condition is fulfilled). However should both input 
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variables switch to “0” synchronously (meaning the system should 
evolve to state 3 according to the graph in fig. 4 then we wait for the 
negative edge of S then apply the same procedure as presented above. 
Please observe the fact that S is not synchronous with the state 
transitions that characterize the asynchronous sequential system so 
when approaching the transition in this manner (Q=2 → Q=3) the 
output will exhibit z=”0” for an unpredictable period of time between 
the two z=”1” situations that are associated with states 2 and 4. If we 
wish a continuous transition (Q=2 → Q=3) with respect to the output 
– meaning we don’t want an unpredictable length z=”0” to show on 
the output, then the equivalent graph is the one presented in fig.6.b. 

 
 
 
 
 
 
 
 Fig.6.b. 
 
 
 
 
 
 
 
 

Please observe that the transition graph has been completed with all 
the transitions and states possible even if indifferent to us (dotted lines). All 
these states will evolve towards the initial state 0 regardless of the input 
vector value. 

Implementation of such structures with SSI circuits is difficult and 
not optimal. This is why we strongly suggest the system’s implementation to 
be done using memory circuits as presented by Valachi & Hoza (1993). Such 
an implementation is presented in fig. 7 
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Fig.7. 
 
 
 
 
 
 
 

We have used a 32 bytes PROM (64x4). It’s address lines are 
controlled by the input vector and the state vector. The data outputs of the 
circuit implement the next state vector (the state vector towards which the 
system evolves) and the output signal. Because in this situation the 
propagation time from present state towards the next state is defined only by 
the propagation time through the PROM circuit additional delays are 
requested. Those delays can be implemented by aid of see through buffers 
(or even by aid of R-C integrators although this is a solution we do not 
recommend). The memory contents are defined by the states transition graph 
of the system. For the system described by fig.6.a. and fig.6.b. the state  
encoding is:  
(Q0→000, Q1→001, Q2→010, Q3→011, Q4→100, Q5→101, Q6→110, 
Q7→111) 

Case 1–(graph in fig.6.a.) → memory content  Case 2–(graph in fig.6.b.)→memory content 
Binary Address 
A5 A4 A3 A2 A1 A0 

(y2 y1 y0)n (x1 x0)n Sn 

Hex 
Address 

Binary Data 
D3 D2 D1 D0 
(y2 y1 
y0)n+1zn 

 Binary Address 
A5 A4 A3 A2 A1 A0 

(y2 y1 y0)n (x1 x0)n Sn 

Hex 
Address 

Binary Data 
D3 D2 D1 D0 
(y2 y1 
y0)n+1zn 

0 0 0 0 0 Φ 00 – 01 0 0 0 0  0 0 0 0 0 Φ 00 – 01 0 0 0 0 
0 0 0 0 1 Φ 02 – 03 0 0 1 0  0 0 0 0 1 Φ 02 – 03 0 0 1 0 
0 0 0 1 0 Φ 04 – 05 0 0 0 0  0 0 0 1 0 Φ 04 – 05 0 0 0 0 
0 0 0 1 1 Φ 06 – 07 0 1 0 0  0 0 0 1 1 Φ 06 – 07 0 1 0 0 
0 0 1 0 0 0 08 0 1 1 0  0 0 1 0 0 0 08 0 1 1 0 
0 0 1 0 0 1 09 0 0 1 0  0 0 1 0 0 1 09 0 0 1 0 
0 0 1 0 1 Φ 0A – 0B 0 0 1 0  0 0 1 0 1 Φ 0A – 0B 0 0 1 0 
0 0 1 1 0 Φ 0C – 0D 0 0 0 0  0 0 1 1 0 Φ 0C – 0D 0 0 0 0 
0 0 1 1 1 Φ 0E – 0F 0 1 0 0  0 0 1 1 1 Φ 0E – 0F 0 1 0 0 
0 1 0 0 0 0 10 0 1 1 1  0 1 0 0 0 0 10 * 0 1 0 1 
0 1 0 0 0 1 11 0 1 0 1  0 1 0 0 0 1 11 * 1 0 0 1 
0 1 0 0 1 Φ 12 - 13 0 0 0 1  0 1 0 0 1 Φ 12 - 13 0 0 0 1 
0 1 0 1 0 Φ 14 – 15 0 0 0 1  0 1 0 1 0 Φ 14 – 15 0 0 0 1 
0 1 0 1 1 Φ 16 – 17 0 1 0 1  0 1 0 1 1 Φ 16 – 17 0 1 0 1 
0 1 1 Φ Φ 0 18,1A,1C,

1E 
0 1 1 0  0 1 1 Φ Φ 0 18,1A,1C,1E 0 1 1 0 
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0 1 1 Φ Φ 1 19,1B,1D,
1F 

1 0 0 0  0 1 1 Φ Φ 1 19,1B,1D,1F 1 0 0 0 

1 0 0 Φ Φ 0 20,22,24,2
6 

0 0 0 1  1 0 0 Φ Φ 0 20,22,24,26 0 0 0 1 

1 0 0 Φ Φ 1 21,23,25,2
7 

1 0 0 1  1 0 0 Φ Φ 1 21,23,25,27 1 0 0 1 

1 0 1 Φ Φ Φ 28 – 2F 0 0 0 0  1 0 1 Φ Φ Φ 28 – 2F 0 0 0 0 
1 1 Φ Φ Φ Φ 30 – 3F 0 0 0 0  1 1 Φ Φ Φ Φ 30 – 3F 0 0 0 0 

 
Conclusion: 
- The present paper suggests an asynchronous sequential system design 

methodology that uses an extra synchronizing input variable that will 
certify minimal dynamic parameters for the output signals of the systems 
(whenever active). 

 
- We prove the output signal control using presetable length pulse 

generators is not efficient because it complicates the design and it induces 
a larger number of states to deal with. 

 
- By inserting an extra input variable for synchronizing purposes we notice 

that we can eliminate the propagation hazards caused by the regular input 
variables. 

 
- If the number of states when the output variables are active is small the 

overall speed of such a system is close to the speed of a totally 
asynchronous sequential system 
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