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ABSTRACT
The purpose of this work is to provide physics students and teachers with 
a simple experiment in modern physics, which utilizes modern spectro-
scopic methods and provides computational modeling of incandescent 
lamp spectra. Captured spectra are modeled with Planck’s radiation 
distribution, so that a temperature can be extracted. Voltage across and 
current through the lamp are recorded at the time of spectra capture, 
and the power and temperature data are fit with the Stefan-Boltzmann 
law. This experiment is further expanded by investigating the lamp’s re-
sistance as a function of temperature. It is seen that typical incandescent 
lamps obtained at local retail stores are great examples of blackbody 
radiators, while the common energy efficient fluorescent lamps are not. 

Key Words: Blackbody radiation, spectrometer, MATLAB, incandes-
cent lamp, Planck’s radiation law, spectrum

INTRODUCTION
In general, modern physics starts with phenomena and unsolved questions 

posed as far back as the year of 1895 (1). A fundamental issue was black-
body radiation which was treated classically, yet unsatisfactorily explained. In the 
experimental physics class, one can’t easily find a simple experiment to study 
blackbody radiation while it is taught in the modern physics course, or to gener-
ate significant data that can be analyzed in a computational physics class. These 
simple experiments proposed here provide hands on experience in experimental 
physics, and the measurements of the blackbody spectra provide large amounts 
of data which can be used in a computational physics class. This paper covers 
these areas by focusing on blackbody radiation as the main topic.

The problem of determining filament temperatures has been seen before (2-
4), but rather than focus on using the resistivity (2) or the irradiance over a range 
(3) or only at a few well defined wavelengths (4) to determine temperatures, we 
measure a wide wavelength range of the spectrum and use regression analysis to 
find the filament temperature. This process is unique in that it does not rely on a 
known resistance and temperature relationship (2-4); the temperature can be ex-
trapolated without knowing any details of the incandescent lamp. This provides 
an avenue to investigate that relationship, rather than rely on it. Furthermore, 
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this process has only recently become feasible as an undergraduate experiment 
because of the low cost, modern spectrometers available today.

THEORY
Objects radiate electromagnetic waves in a distribution which depends on 

the object’s temperature (5). This distribution is the Planck radiation law. The 
Planck radiation law is given by Eq. [1]: 

 , (1)

Where λ is wavelength (m), T is temperature (K), and α is a dimensionless scale 
factor known as the emissivity, that depends on the atomic structure, which can 
be a function of wavelength. For an ideal blackbody, α = 1. the power spectral 
density, Sλ, as measured at some distance, r, from the source, falls off as an in-
verse square for a spherically symmetric emission source. Assuming our filament 
to be a spherical source of radius r, we write the spectral irradiance at some 
distance r’ to be given by

 , (2)

Additionally, the Stefan-Boltzmann law is related to the Planck distribution by 
solving the following for P;

 . (3)

If we take Sλ to be given by Eq. (2), then solving Eq. (3) yields te Stefan-Boltz-
mann law,

 , (4)

where P is power, A is the effective surface area and σ is the Stefan-Boltzmann 
constant. We could estimate the total power radiated based on the distance 
from the source and the irradiance, I = ∫Sλdλ, but since we record the current 
i through and voltage V across the lamp at the time of spectra capture, we can 
assume that P=iV. We can then see how well the Stefan-Boltzmann law fits the 
collected data. Furthermore, according to Ohm’s law, the resistance, R, is given 
by the ratio V/i, so we can show how the resistance varies with temperature, 
which reveals the non-Ohmic behavior of incandescent lamps.

EXPERIMENTAL APPROACH
To show that the incandescent lamp is described well by the Planck distri-

bution, it is enough to record the lamp’s spectrum at a single input power and 
perform regression. To gain more accurate results, a dark spectrum (lamp off) 
can be recorded and subtracted from the measurement. However, in order to in-
vestigate the Stefan-Boltzmann law, the circuit shown in Figure 1 should be con-
structed to carry out the experiment. The circuit uses a variable AC transformer, 
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yielding a sinusoidal output with 60 Hz frequency of variable amplitude. We per-
formed this experiment with incandescent lamps (typical light bulbs) purchased 
at a local retail store of varying wattages (–7.5W, 15W, 40W, 60W, and 75W), 
and the lamps were successfully used. The voltage was varied between 15V and 
130V for each lamp, each spectra recorded and temperature extrapolated.

Figure 1. Schematic of the circuit required to measure voltage and current 
while capturing the spectra. The resistor, labeled R, represents the incandescent 
lamp. The voltage source (circled sine wave) should be a variable AC transform-
er, in order to regulate the output power to observe how the filament tempera-
ture varies. The circled A represents an ammeter, and the circled V represents 
a voltmeter. 

After the circuit has been assembled, spectra can then be recorded along 
with the voltage and current. The process of logging voltage and current data 
can be done manually by using standard multimeters, or automated with voltage 
and current sensors in combination with some software, such as Logger Pro (6). 
After changing the voltage, the system should be allowed to stabilize. This can be 
seen by a change in the current during the experiment, as it will continue to rise 
or fall for a few moments after the voltage has been changed. We recommend 
waiting until the current stops fluctuating to capture the spectrum. 

MODELING WITH MATLAB
The first goal is to import the data into MATLAB. If the data has been saved 

into a Microsoft Excel file, it can be imported into MATLAB through the method 
xlsread(‘filename’). Before we can perform the regression, we need to define 
a function which accepts the parameters and data, referenced here and in the 
appendix as Sfunction. Notice that the parameters to be found are stored in a 
single matrix, O.

  (5)

In order to perform regression, the method nlinfit(λ, Sλ, Sfunction, initial-
guess) returns the best fitting values for the parameters of the model. Note that 
we have chosen O(2) to be T-1. The following four arguments must be provided: 
λ, a matrix of λ values; Sλ, a matrix containing values of the spectral irradiance 
corresponding to λ; Sfunction, the function defined above in Eq. (5); and initial-
guess, a matrix containing an initial guess for each of the O parameters. Initial 
guesses for the temperature may be found by using the Stefan-Boltzmann law, 
solving for T yields
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 , (6)

where A is an approximate value for the effective surface area of the filament. 
We successfully used the value A = 3x10-5 m2. Initial guesses for the O(1) pa-
rameter will most easily be found through trial and error. For our spectrometer 
roughly half a meter from the filament, we successfully used an initial guess 
of 3x10-12 for O(1). MATLAB can also be used to produce plots of the results 
through the method plot(X,Y). See the appendix for a complete MATLAB script 
which imports a spectral data set, performs the regression, plots the data and 
model, and shows the determined temperature. Note that the excel data files 
used with the script have a two column, header-less format with λ values in the 
first column and Sλ values in the second.

RESULTS
Lamp wattage did not have a significant impact on our results. However, 

we did choose to only use clear lamps; the effects of frosted glass lamps are 
unknown to us. We present here our results for a 60W lamp.

Spectra were recorded at various voltages and currents, and fit with Planck’s 
blackbody radiation distribution, as shown in Figure 2. The resulting models fit 
the spectra exceptionally well, with a lowest coefficient of determination (i.e. 
goodness of fit), r2 = 0.9509. The goodness of fit can be calculated through the 
following equation,  

 , (7 )

where yi is a collected data point, fi is the corresponding model point (in our 
case, both yi and fi have the same λ value), and y is the mean of y. 

 
Figure 2. Spectra and models of a typical 120V/60W incandescent lamp at 
various voltages and currents. See Table I for corresponding values. Regression 
performed with Eq. (2) for the models.
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Values for the regression parameters, voltages, currents, and temperatures 
corresponding to these spectra are given in Table I. 

Table I: Values of voltage, current, power, resistance, temperature, O(1) and 
goodness of fit for the spectra and models shown in Figure 2. Power is found via 
P=iV. Resistance is found via R=V/i. Temperature (O(2)-1), and O(1) values are 
found by regression.

Voltage
(V)

Current
(A)

Power
(W)

Resistance 
(Ω)

Temperature 
(K)

O(1)cx1012 
(unitless)

r2

14.7 0.174 2.56 84.48 1287 1.884 0.9509

20.4 0.200 4.08 102.00 1497 1.979 0.9961

26.1 0.225 5.87 116.00 1663 2.075 0.9981

32.5 0.250 8.13 130.00 1806 2.353 0.9988

39.3 0.275 10.81 142.91 1955 2.351 0.9983

46.3 0.300 13.89 154.33 2074 2.537 0.9985

53.8 0.325 17.49 165.54 2199 2.614 0.9984

61.8 0.350 21.63 176.57 2313 2.744 0.9986

70.6 0.375 26.48 188.27 2433 2.789 0.9985

79.3 0.400 31.72 198.25 2544 2.852 0.9986

89.0 0.425 37.83 209.41 2659 2.904 0.9984

99.0 0.450 44.55 220.00 2769 2.950 0.9980

109.3 0.475 51.92 230.11 2870 3.046 0.9979

120.4 0.500 60.20 240.80 2981 3.044 0.9967

131.4 0.525 68.99 250.29 3078 3.138 0.9965

143.3 0.550 78.82 260.55 3176 3.170 0.9953

To investigate the Stefan-Boltzmann law, we let P = BσT4, where B is our 
fitting parameter (see Eq. 4). B represents the product of the effective surface 

area, A, emissivity of the filament, α, and the distance factor, . As shown in 

Figure 3, the Stefan-Boltzmann law provides excellent agreement for the rela-
tionship between P and T, with an r2 = 0.9997.
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Figure 3. Power vs temperature fit with Stefan-Boltzmann law. We found B = 
1.35x10-5 m2, and r2 = 0.9997.

Additionally, Ohm’s law states that the resistance, R, is a constant that is 
independent of current. We can easily show that the incandescent lamp is a 
non-Ohmic conductor by looking at the relationship between V and i, or R and 
T, as shown in Figure 4. Because the filament temperature is proportional to 
some power of the current (through Stefan-Boltzmann law), it follows that for R 
to be independent of i (Ohmic), R must also be independent of T. 

Figure 4. A plot of resistance vs temperature, revealing the non-Ohmic nature 
of incandescent lamps.

CONCLUSION
It can be seen that incandescent lamp spectra are described well by Planck’s 

radiation distribution. Furthermore, these lamps were shown to obey the 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                         % 
% @Author: Austin Kerlin, J.E. Hasbun, Ajith DeSilva                      % 
% University of West Georgia                                              % 
% Fall 2015                                                               % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Stefan-Boltzmann law. The processes involved with these experiments provide 
valuable experiences for students. Students who complete these experiments 
will have gained first-hand experience in applied modern physics, computational 
physics, and modern spectrometry. Building the circuit, using the spectrometer 
properly, recording the data and writing scripts to model the data develops many 
desirable skills for physics students. For the physics teacher, allowing students to 
observe the spectra of incandescent lamps and fluorescent lamps during these 
experiments reveals their fundamental differences; a subject for the modern 
physics lecture.
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APPENDIX
Example Script for MATLAB

@Author: Austin Kerlin, J.E. Hasbun, Ajith DeSilva %
University of West Georgia %
Fall 2015 %

clc; %these three lines clear the MATLAB IDE and give a fresh workspace
close all;
clear all;

c = 2.998e8; % speed of light in m/s
h = 6.62606957e-34; % Planck’s constant eV*s
k = 1.3806488e-23; % Boltzmann’s constant eV/K
sigma = 5.670373e-8; % Stefan boltzman constant J/m^2sK^4
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titleFontSize = 16;
axisFontSize = 18;

filename = ‘60W.xls’; % File name of data to import
Data = xlsread(filename); % Imports data file
Offfilename = ‘60W_OFF.xls’;
OffData = xlsread(Offfilename);

xdata=Data(:,1)./1e9; %converts xdata to meters (for regression)
ydata=Data(:,2)-OffData(:,2); %subtracts background signal from measurement
%Recorded data already in uW/cm^2/nm no need to convert

Amps=.50; %current 
Voltage = 120.4; %voltage 

initialguess=(3.1e-12, 1./( (Amps.*Voltage./(sigma*1.37e-5)).^(1/4) )); 
%initial guess for regression

Sfunction = @(o,xdata) o(1).*c^2.*h./( xdata.^5.*...
 (exp(o(2).*h*c./(xdata.*k))-1)); 
%spectral density function declared as anonymous function 

Xaxis = (100:1500)’./1e9; 
%specifies x axis points for model

fit = nlinfit(xdata,ydata,Sfunction,initialguess); 
% calls nonlinear regression function to evaluate fit 
%coefficients

modelY = Sfunction(fit,Xaxis); 
% evaluates the fitted function at the Xaxis points

temp = 1/fit(2); 
% declares temp from fit coefficient 1/fit(2)

figure(‘Position’,(100,50,1000,500)); 
plot(xdata.*1e9,ydata,’kd’,’MarkerSize’,2)
%plots measurement, xdata converted to nm
hold on
plot(Xaxis.*1e9,modelY,’r-’,’LineWidth’,2)
%plots model, Xaxis converted to nm

text(max(Xaxis.*1e9)*.3,max(ydata)*.9,(‘T = ‘,num2str(temp,’%4.0f’),’K’)...
 ,’FontSize’,12); 
%adds text showing temperature to plot
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                         % 
% @Author: Austin Kerlin, J.E. Hasbun, Ajith DeSilva                      % 
% University of West Georgia                                              % 
% Fall 2015                                                               % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%below title and axis labels in TeX
titleString = (‘\bf{60W lamp spectra and model}’);
title(titleString, ‘FontSize’,16,’Interpreter’,’latex’);
TeXString1 = ‘\bf{Wavelength (nm)}’; 
TeXString2 = ‘\bf{Spectral Irradiance} ($\mu W/cm^2/nm$)’;
xlabel(TeXString1,’FontSize’,16,’Interpreter’,’latex’);
ylabel(TeXString2,’FontSize’,16,’Interpreter’,’latex’);

End program
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