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ABSTRACT
The principles of electrostatics are applied to dimensions both lower 
and higher than 3. Specifically, Laplace’s equations are solved in n 
dimensions subject to hyper-spherical symmetry in order to obtain the 
electric potential and hence the electric field. The physical problems 
associated with these solutions in 3-dimensional space are identi-
fied. The radial dependences of the potential and electric field are 
scrutinized. The successively lower radial dependences of the multi-
pole fields are obtained by differentiating those of the multi-poles of 
the immediately lower order. The same results are also obtained by 
considering the hyper-surfaces of hyper-spheres in n dimensions. 
This study reaffirms the principles of electrostatics and provides a 
glimpse of the notion of higher dimensions. 

Key Words: Electrostatics, Dimensions, Laplace’s Equation

INTRODUCTION
The physical space as we know is three-dimensional. This is evidenced 

by the fact that, in reality, one can draw at most three mutually perpendicular 
straight lines through a point. However, that has not stopped the human mind 
from envisaging the hyper-space (space having dimensions of greater than 
three.) In fact the geometry of hyper-space has already been worked out [e.g., 
(1-3)]. The metaphysical aspects of this arcane subject were debated during 
the end of the nineteenth and beginning of the twentieth centuries (4).

In modern physics, time is regarded as the fourth dimension. But we 
are concerned with only spatial dimensions here. In the Kaluza-Klein and 
modern super-string theories, spatial dimensions higher than the third are 
assumed [e.g., (5)]. However, such dimensions are said to be “compactified” 
into tiny circles smaller than the size of atoms (6). Multi-variate analysis and 
statistical mechanics are also conceptually based on higher dimensions. In this 
article, we venture into the higher dimensions via electrostatics. Specifically, 
Laplace’s equations are written down and solved in n dimensions subject to 
hyper-spherical symmetry. The corresponding physical problems in three 
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dimensions are identified. This will illustrate the relationship between elec-
trostatics and dimensions of space and also provide us with a rare glimpse 
of the higher dimensions.

ELEMENTS OF ELECTROSTATICS
At the heart of electrostatics lies Coulomb’s law. In accordance with 

this law, the electric field  due to a point charge q placed at the origin of 
a spherical coordinate system (r, θ, ϕ) [0 ≤ r < ∞; 0 ≤ θ ≤ π; 0 ≤ ϕ ≤ 2π] is 
expressed in Gaussian units by:

	 	 (1)

The electric field is a conservative force field, and according to the po-
tential theory, is obtained from the scalar potential Ψ:

	 	 (2)

For the point charge,

	 , 	 (3)

In a region devoid of charges, the electric potential satisfies Laplace’s 
equation:

	 ,     	 (4)

In order for the divergence theorem to hold to hold everywhere, including 
at the origin (r = 0), one must have

	 ,	 (5)

where  is the 3-dimensional Dirac’s delta function at the origin. 
The delta function gives a mathematical expression for the concept of the 
point charge at the origin. From Eqs. (3) and (4), one can now write for all 
space:

	 ,   	 (6)

which is equivalent to Poisson’s equation in electrostatics [cf. (7)].
The point electric dipole consists of two equal and opposite charges 

+q and –q separated by an infinitesimal distance d apart. For a point dipole 
located at the origin, the potential is given by

	 ,                 	 (7)

where   is the dipole moment vector,  being the displacement vector 
from +q to -q. The complete expression for the electric field as calculated from 
Eq. (2), by taking into account Eq. (5), is found in recent literature (8, 9):
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	 	 (8)

This expression is valid everywhere in space, the last term on the right hand 
side giving the electric field at the origin. Eqs. (7) and (8) indicate that the 
angular dependences of the potential and electric field of the dipole depend 
upon the orientation of the dipole. However, away from the origin, the 
radial dependences are independent of the orientation, and are, therefore, 
characteristics of the electric dipole. The potential and the electric field of the 
dipole are inversely proportional to the square and cube of the radial distance, 
respectively. Thus, they fall off faster with the radial distance than those of 
the point charge. In this paper, we are concerned with radial dependences 
of the potentials and electric fields of point charge distributions outside the 
origin, only.

The electric quadrupole consists of two equal and opposite dipoles dis-
placed from each other by another infinitesimal distance [e.g., (10, 11)]. The 
linear and the square quadrupoles are two among many possible configurations 
of the quadrupole [e.g., (11)]. However, the radial dependences of the potential 
and electric field of the quadrupole are independent of the construction of 
the quadrupole and are therefore characteristic features of the quadrupole. 
They fall off faster with distance than those of the dipole. By continuing this 
pattern, one can construct higher order multi-poles by displacing two equal 
and opposite multi-poles of the immediately lower order. Each time, the radial 
dependences of the potential and electric field fall off faster with the radial 
distance. The multi-poles are generally designated as 2l-poles, where l is the 
order of the multi-pole: l = 0 represents the monopole (point charge); l = 1 
gives the dipole; l = 2 the quadrupole; l = 3 the octupole; and so on.

LAPLACE’S EQUATION IN n DIMENSIONS
In this article, we investigate the radial part of Laplace’s equations in 

dimensions both lower and higher than three and interpret what their solu-
tions represent in 3-dimensional space. Consider an n-dimensional Euclidean 
space given by the linear coordinates x
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Laplace’s equation in n dimensions can be written in the form (13, 14)
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	 	 (10)

where Λ
n
 is a second-order partial differential operator involving differen-

tiations with respect to the angular coordinates only. For problems having 
“hyper-spherical symmetry”, Ψ is independent of the angular coordinates, 
when we must have (13)

	 	 (11)

By separation of variables, Eq. (11) integrates to

	 	 (12)

whence, by Eq. (2)

	          	 (13)

We can now examine the physical examples which the solutions to 
Laplace’s equations represent in our familiar 3-dimensional space. First, for 
n = 1, Eqs. (12) and (13) give the radial dependences of the potential and 
electric field, respectively:

	 	 	  (14) 

Obviously, this represents the case of an infinite plane charge, where the 
electric field remains constant throughout space.

For n = 2, the integration of Eq. (11) leads to

	
	

	 (15)

Clearly, this case belongs to an infinite line charge distribution in 3-dimensional 
space, where the electric field diminishes inversely as the radial distance from 
the line charge.

For the familiar 3-dimensional space (n = 3), Eqs. (12) and (13) give

	
	

	 (16)

These represent the potential and electric field, respectively, of a point charge 
located at the origin.

 For n = 4, Eqs. (12) and (13) give

	
	

	 (17)
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These are identified as the potential and electric field, respectively, of the 
electric dipole in 3-dimensional space.

One can now extrapolate the results to the higher dimensions. For ex-
amples, n = 5 represents the quadrupole in 3-dimensional space; n = 6 the 
octupole; and so forth. The relationship between the order of the multi-pole 
and the dimensionality of space is thus established: n = l + 3.

Table I summarizes the solutions of the Laplace’s equations in n dimen-
sions and the physical examples they represent in 3-dimensional space. The 
radial dependences of the potential and electric field are shown for each case. 
They fall off faster with the radial distance in each successively higher dimen-
sion. Physical explanations are provided in the following sections.

Table I. Laplace's Equation in n Dimensions with Associated Examples

5
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INTERPRETATION OF SOLUTIONS BY 
DIFFERENTIATION AND INTEGRATION

It may be noted that the dipole has only one configuration, since it is 
produced by a single displacement of two equal and opposite charges. But 
multi-poles of higher order can have an infinite number of configurations. 
The most interesting and insightful configurations are produced when all the 
successive displacements are equal and perpendicular to each of the previous 
ones. Fig. 1 shows the first 4 such displacements and the multi-poles result-
ing from them. The quadrupole is then a square, the octupole is a cube, and 
the 16-pole is a tesseract (4-dimensional cube) and so on. This demonstrates 
the inter-relation between electric multi-poles and the dimensionalities of 
space. It also allows one to open the doors to the hyper-space beyond the 
third dimension.

Figure 1.  Multipole formation from point charge (monopole) to 16-pole by 
orthogonal displacements of equal and opposite multipoles of the immediately 
lower order. Each corner has opposite charge from adjacent corners. Arrows 
indicate the directions of the differentiation.

6

Georgia Journal of Science, Vol. 68 [2010], Art. 8

https://digitalcommons.gaacademy.org/gjs/vol68/iss2/8



178

It has been shown in the literature that a displacement of two equal 
and opposite multi-poles of the lower order in the formation of a higher 
order multi-pole is equivalent to a differentiation when the potential of 
the resulting multi-pole is calculated (10, 11). Consider a displacement 

 in spherical polar coordinates. Then

	            	 (18) 

For a fixed , the radial dependence of Ψ
l
 is obtained by setting dθ and 

dϕ equal to zero:

	                                   	 (19)

Thus, the radial dependence of the potential of a multi-pole is obtained by 
differentiating that of the multi-pole of the immediately lower order. The 
potentials and the resulting electric fields of all the multi-pole entries of Table 
I are easily accounted for by Eq. (19).

We can next investigate the remaining two entries of Table I. Going from 
n = 3 backwards, one is reminded that the inverse process of differentia-
tion is taking the anti-derivative or indefinite integral. Thus the point charge 
integrates to the infinite line charge, and the latter in turn, integrates to the 
infinite plane charge distribution (Fig. 2). The relation n = l + 3 can be ex-
tended for n < 3 if we assign l values of -1 and -2 to the infinite line charge 
and the infinite plane charge distributions, respectively.

Figure 2. Infinite line charge and infinite plane charge distributions by 
integrations from a point charge. Arrows indicate the directions of the in-
tegration.
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GEOMETRICAL INTERPRETATION OF SOLUTIONS
We next offer an alternative explanation of our results from a geometrical 

perspective. The solution of Laplace’s equation in n dimensions with hyper-
spherical symmetry belongs to that of the monopole in n dimensions, whose 
electric field is radial from the monopole at origin right up to infinity and is 
therefore independent of the angular coordinates. Examples given earlier are 
in compliance with this. Thus if we consider a hyper-sphere of radius r at 
origin, the electric field must be inversely proportional to the hyper-surface 
of the hyper-sphere. Expressions of the hyper-surface in n dimensions are 
readily found in the literature [e.g., (1, 2)]:

	
                  
	 (20) 

The electric field of the monopole in n dimensions is thus inversely propor-
tional to rn-1:

	                         	 (21)

The hyper-sphere corresponds to two points at a distance of r from the origin 
in 1-dimensional space, whereas it constitutes a circle of radius r in 2-dimen-
sional plane, and of course, the familiar sphere in 3-dimensional space. S

n
 

has values of 2 in 1 dimension, 2πr  in 2 dimensions, 4πr2 in 3 dimensions; 
2π2r3 in 4 dimensions; and so on. Thus, according to Eq. (21), the electric 
field is constant in 1 dimension; inversely proportional to r in 2 dimensions; 
inversely proportional to r2 in 3 dimensions; inversely proportional to r3 in 
4 dimensions; and so on. In general

	
        
	 (22)

The radial dependences of the electric fields are thus accounted for all the 
entries in Table I.

An interesting observation gleaned from this study is that a monopole 
in the 4-dimensional space corresponds to a dipole in the 3-dimensional 
space. This is only a special case of the general fact that a monopole in the 
n-dimensional hyper-space is equivalent to a dipole in the hyper-space of n-1 
dimensions. This can be viewed as follows. The electric field of the monopole 
is directed radially outward from the origin up to infinity. As one dimension 
collapses, it diverts the electric field from infinity back to the origin, thus 
creating a dipolar field in the lower dimension. The same process produces a 
multi-pole of a higher order in the space of the lower dimension. This process 
is not unlike the compactification of the extra dimensions in the Kaluza-Klein 
and super-string theories.
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CONCLUDING SUMMARY
The relationship between familiar charge distributions of electrostatics 

and dimensionality of space has been demonstrated. The electric fields due to 
these charge distributions correspond to the solution of Laplace’s equations 
in the appropriate dimensions. From the point charge in three dimensions, 
successively higher-order multi-poles are generated by differentiating the 
potential with respect to the radial coordinate, or equivalently, displacing 
equal and opposite charge distributions in a higher dimension. Finally, all 
multi-poles in three dimensions are generated from a single monopole in a 
hyper-space of a higher dimension through successive collapse of the extra 
dimensions. Thus even though dimensions higher than 3 may not exist in 
reality, the physical principles applied to these higher dimensions do yield 
results which are real in our 3-dimensional universe. 
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