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ABSTRACT

We provide an easily implemented procedure to help data analysts sys-
tematically diagnose which quality characteristics may be driving the disper-
sion of a multivariate process out of control. Multivariate statistical process
control (MSPC) commonly uses Hotelling’s T* statistic to indicate when a
multivariate observation goes out-of-control. Several techniques currently exist
that accurately diagnose which specific variables are driving the T? statistic
out-of-control. For subgroups of independently and identically distributed mul-
tivariate normal observations, we advocate decomposing the overall T# into
independent T? statistics for separate monitoring of location and dispersion.
We propose a procedure based on principal components to diagnose the
specific variables responsible for driving subgroup dispersion out-of-control.
The procedure is demonstrated on a publicly available data-set.

Keywords: multivariate, statistical process control, principal compo-
nents, diagnosis of dispersion

INTRODUCTION

It is increasingly clear that new methods of diagnosing the dispersion of
multivariate processes are needed. (1) The purpose of this article is to present a
principal component based procedure for diagnosing which specific variable(s)
in multivariate statistical process control (MSPC) are driving the process dis-
persion out of control. Well regarded sources in the literature that summarize
the state of MSPC (2, 3, 4, 5) indicate that one of the test statistics most
commonly used to monitor a multivariate process is Hotelling’s T? statistic.
Although principal components have been used in the past to diagnose which
variables are driving the T? statistic out of control (2, 3, 4, 5) , the efficacy of
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how well these components approximate a physically interpretable latent
factor. Kourti and MacGregor (6) show that under multivariate normality the
normalized scores of the principal components can accurately diagnose the
causal variables regardless of their physical meaning. In contrast, Mason and
Young (5) diagnose the responsible variables by an orthogonal decomposition
of the T? statistic not based on principal components.

Data analysts are increasingly monitoring multivariate processes that
are subject to shifts in scale as well as location. When monitoring rational
subgroups of multivariate observations, the techniques of Mason and Young
(5) and Kourti-and MacGregor (6) have limited diagnostic capability because
they can’t discern between these two different kinds of shifts, i.e. scale and
location. Mason and Young (5) state that their decomposition procedure does
not discretely identify the specific variables responsible for shifting location
versus those responsible for driving dispersion out-of-control. Kourti and
MacGregor (6) did not demonstrate how their procedure might be applied
to diagnosis of multivariate dispersion.

Our contribution is to show how the procedure of Kourti and MacGregor
(6) can be extended to systematically identify variables driving the T? statistic
for subgroup dispersion out-of-control. We demonstrate the diagnostic po-
tential of our procedure on a data-set from Fuchs and Kenett (4) containing
subgroups of data whose significant T values are directly attributable to out-
of-control subgroup dispersion. To our knowledge there is no such procedure
based on a simply implemented decomposition of Hotelling’s T? statistic. We
hope this procedure will be useful to data analysts who monitor multivariate
processes by providing a systematic method of investigating which variables
may be driving process variance out of control.

The paper is organized as follows. In Materials and Methods we show
how the PC-based procedure of Kourti and MacGregor (6) can be directly
applied to diagnose shifts in subgroup location and extended to diagnose shifts
in subgroup dispersion. In Results we demonstrate the diagnostic procedure
for subgroup dispersion on data from Fuchs and Kenett (4). In Discussion we
present concluding remarks.

MATERIALS AND METHODS
Diagnosis of Shifts in Hotelling’s T?

In the practice of statistical process control, it is preferable to collect ra-
tional subgroups of multivariate observations whenever possible. Subgroups
yield more reliable process information than individual vectors as well as an
estimate of the correlation structure within the subgroup. Research including
that of Hawkins (7), Kourti and MacGregor (6) and Mason and Young (5) can
be used to diagnose the variables which drive the subgroup’s overall T? out
of control. However these do not typically differentiate between the variables
shifting location versus those driving higher dispersion. In order to distinguish
which variables cause which type of shift, we first decompose this statistic into
two independent parts representing subgroup location and dispersion.

https://digitalcommons.gaacademy.org/gjs/vole7/iss2/1
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Decomposition of Hotelling’s T? into Location and Dispersion
Consider a rational subgroup k consisting of the n individual multivariate

data-points Y, where i = 1 ... n and each Y is of dimension r. The overall

subgroup T? for subgroup k ie., T?,,, is thie surm of the T? ofthei=1.

n individual multivariate data- pomts that make up subgroup k. T? is also

known as the Lawley- Hotellmg trace statistic (Lawley (8) and Hotelling (9))

and asymptotically has a %?  distribution (Jackson (10)).

Jackson (11) discussed the following decomposition of Hotelling’s T2

TQOk = TZMk # T2 (equation 1)

Dk
where T2 can be used to test whether the sample mean of this subgroup
has shifted away from the estimated population mean and is defined as:

T;{k = n(\_(k -3 (S_{k —ﬁ)7 (equation 2)
where 3_( is the vector whose components are the subgroup averages

of the n multlvarlate observations in subgroup k. The distribution of TQ
asymptotically x> o the same as that of an individual observation, i.e. TQk[
(Jackson (11)).
In contrast T2 can be used to test whether the variance within this
subgroup is significantly greater than historical variance and is defined as:
TP =3 (Y - Y) 27 (Y, -Y)), (equation 3)
where Y, the are the i = 1 ... n multivariate observations making up

subgroup k. The distribution of T2 , is asymptotically X " where r is the
number of quality characteristics in each multivariate observatlon and n the

number of observations in the subgroup (Jackson (11)).

Whereas T?,, contains all the information in the subgroup, Jackson (12)
argues that it is of little diagnostic value since when significant, the analyst
must immediately ascertain whether it is Tsz, the multivariate analog of the
X chart, or TZDk, the multivariate analog of the r chart, that is responsible.
Applying the Diagnostic Procedure of Kourti and MacGregor

In this section we show how the PC-based procedure of Kourti and
MacGregor (6) diagnoses the specific quality characteristics shifting subgroup
location and extend it to do the same for increased dispersion. As in their
procedure, we assume that the multivariate observations are independently
and identically distributed as multivariate normal. Since the PC’s are derived
from decomposition of the estimated covariance matrix Z we first re-express
37 in terms of the eigenvectors and eigenvalues of 3.

Since 3 is positive definite, it can be expressed as 3 = uAu’ , where u is
an r by r orthogonal matrix whose columns are the eigenvectors of S and A
is an r by r diagonal matrix containing the pertinent eigenvalues. The inverse
of 2 can be expressed in similar manner as

$7= uAu’ = [uA ] [uA ) (equation 4)

Published by Digital Commons @ the Georgia Academy of Science, 2009 3
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A

The covariance matrix of subgroup mean Y, is 7, . Its inverse can be
expressed as

(;) =vAZV =

n

1
2
VA

1 T
[VA,—{Z] , (equation 5)

A

where the columns of v are the eigenvectors of 5, and the diagonal ele-
ments of A‘—( are the corresponding eigenvalues.

Diagnosing Shifts in Subgroup Location

Mason et al (3) state that due to its use of principal components, the
approach of Kourti and MacGregor (6) is particularly useful for large and
ill-conditioned data sets. Although their procedure was demonstrated for a
single observation, it is easily shown that the procedure works equally well
to diagnose which specific variables are driving a subgroup average out of

control. Plugging (equation 5) into the decomposition of subgroup Tsz in

equation 2 vields
1 r 1
2 _ | yTA 2V _§ TA 2V _§
TMk [v Ay (Y[c I ) [v Ay (Yk n )]

(equation 6)

e ~ 2
R
= 2 pat | T 2
p
which we recognize as the sum of squares of normalized scores based
on the vector of differences between the subgroup mean vector Y, and the

estimated population mean vector p, where the individual columns of v, i.e.

" . 1/2 .
the eigenvectors v, and eigenvalues 7,° for p = 1 ... r, are derived from

A

the covariance matrix of Y,, i.c —.

For a specific subgroup k, we define the p™ normalized score of location
(NSLk p) as

W (%)
NSL, , =

kp g (equation 7)

p
where the indices k and p respectively index the specific subgroup and
score being considered. The NSL, ,are approximately standard normal so any
value greater than or equal to three is statistically different from its population
mean at an a = 0.0027. A simple bar-chart of the NSL, ~ quickly identifies
which are out of control. Variable contributions to the I\?SLkp (chSLkp. :)
are defined as follows,

https://digitalcommons.gaacademy.org/gjs/vole7/iss2/1
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vP:j(Yk,j _ﬂl )
veNSL =

k,p.J 1/2 ’
T

where v is the element of eigenvector p corresponding to the individual

(equation 8)

variable j and 7){ ; is the average of the values of the individual variable j from
the i = 1 ... n observations in subgroup k. We can now write out TZMk as

2
e~

o ) |
o = 2p=1 172 (equation 9)

7

2
r r vp’j (Yk'j —ﬂj )
= 2 p=l z Jj=1 ”;/2
which shows its relation between the individual variable contributions and
the squared NSL kp For n > 1, the procedure of Kourti and MacGregor (6)
diagnoses the variables responsible for driving subgroup mean out-of-control
by following these steps:

1. A subgroup with an out-of-control value of TZMk is detected at some
level of a.

2. Plot a bar-chart of the NSLkp.

3. For each significant NSkap, plot a bar-chart of the (veNSL )

k.p.
4. Investigate those variables making a large contribution of the same
sign as the statistically significant NSL, p

Extending Kourti and MacGregor to Diagnose Shifts in Subgroup
Dispersion

Plugging (equation 4) into the decomposition of subgroup TZDk in (equa-
tion 3) yields

7% =3 ([0 A0 =0 [, A (Y, - %0 ]) (equation 10)
o — 92
v, Y= Y,)

=L
= i=1l £y p=1 1/2
/117

which we recognize as the sum of squares of normalized scores calculated
from the vector of differences between each individual observationY, and the
subgroup mean vector Y,. We define scores of dispersion (ScD, ) ) as

i
2

SCDk.p,i = u, (Y, -Y,) (equation 11)

where k denotes the subgroup, p the principal component, and i the
individual observation within the subgroup. Within any subgroup the average

Publishe@by¥pigi N kA BEC IO OE 42580 80 Gr aSSHG fhiat the ScD, | are approxi-

mately normal as follows,
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ScD, .~ N(O,kp).
Because the ScD . are normalized by dividing by the square root of the

associated elgenvalue we define normalized scores of dispersion (NScD, ,-)
as follows,

u, (Y, -Y,)
ﬂ;/Z
which are approximately standard normal, i.e.,

NScD, ot N(0,1)
We can now re-write (equation 10) as the sum of the squares of the

NSch‘p.i from the n observations in subgroup k as follows,

NScD, =

Pl

(equation 12)

k]

Yk)
11/2

Sy, [NSchp,]
2 p—lz =l [NSCDk », i]

Based on the approximate standard normality of the NScD, Lo We can
show that within subgroup k, the sum of the squares of the n observatlons
of NSCD , are approximately distributed as x2 i 18

(equation 13)

—1 p*l

x 1 [NS k,p, 1] ~Zz(n—1) ¢ (equation 14)

An outline of the proof of (equation 14) is provided elsewhere (13).
Within that proof it is shown that the sum of squared NSCD . Is a constant
multiple of the sample variance of the NScD

This means that simply plotting the sums of squared NScD, o reveals
which of the NSch have large sample variance. We proceed to decompose
those NScD » with farge sample variance into contributions from individual
variables. For each observation Y, in subgroup k, individual variable contri-
butions to the normalized scores of subgroup dlsper51or1 (chScD iy ) are

defined as follows:

u, \Y .—)_”.
VCNSCDk,p,' = M (equation 15)

where the subscript k indicates the subgroup, p the specific score, i the
specific observation and j the individual variable. Y, | i the value of variable

j in observation Y, and Y _the average of the values of variable j within

subgroup k. This deﬁmtlon of chScD enab es the following expression
of (equation 10):

https://digitalcommons.gaacademy.org/gjs/vole7/iss2/1



10

Murphy et al.: Principle Components for Diagnosing Dispersion

ZP-IZII [NS kpl]
— ) 2
Y -Y.
_ZpIle 211—(]“/—1” (equation 16)

/1;/2

which shows the relation between individual variable contributions and
the values of the NScD, . In our procedure, for each specific value of p
where the sum of squared NScD, eopy 1S statistically significant, we will plot
the standard deviations of the variable contributions to the NSchp For
subgroups of n > 1, we propose the following extension of Kourti and
MacGregor (6) to dlagnose the variables responsible for driving subgroup
dispersion out-of-control:

1. A subgroup with an out-of-control value of T2 . is detected at some
level of a.

2. Plot a bar-chart of all the Y7, [Nsc " ]

3. Look for values of Z, " [NSc p, ,] exceeding the critical value of
2

X o at a.
4. For each NScD, - whose value of z o |NScD, , ,]2 is statistically
significant, calculate the standard deviations of the chScD from
the n observations of NScD o in subgroup k.
5. Plot a bar chart of the standard deviations computed in the previous
step.
6. Investigate those variables with the largest standard deviations of
veNSeD, .
D,i,j
RESULTS
Demonstration and Comparison of the Proposed Procedure
To demonstrate and contrast techniques in MSPC, Fuchs and Kenett
(4) employ a data-set they call Case 1 consisting of seventy observations
of six dimensions each. This data-set is divided into thirty five subgroups of
two apiece where the first fifteen subgroups are used to generate historical
(Phase 1) estimates of the mean vector and the covariance matrix. The last
twenty are used as the Phase II data-set for comparison against the histori-
cal Phase I values. Figures 1, 2 and 3 respectively plot T?, T?,, and T?
values for the first seventeen of the twenty distinct subgroups m Phase II
where critical values at o = 0.01 for the three statistics are indicated by the
horizontal lines of asterisks. The upper control limits (UCL) are calculated
as follows (14, 15):
UCL for TQOk : X2(30 w001 = 20.89 based on 30 datapoints from
Phase | ¢ ' 1 .
UCL for T?,,, (14): Ml‘;ﬁ”‘ =(9.6)*(5.39)=51.74
Published by Digital Commons @ the Geolrg(l Acgaemé -frf]Saence 2009 7
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UCL for TZDk (15): (2-1) Xz( = 16.81 for subgroups of n = 2

6, «=0.01

Figures 1, 2, and 3 emphasize the point made by Jackson (12) that a
significant value of T? o typically requires further inquiry as to whether loca-
tion, dispersion or both are driving the subgroup out-of-control.

Figure 1: To2 for Phase Il Subgroups of Fuchs-Kenett Case 1

100 T T 3 T T T T
T:_,SO—*** N\ o * *
(1] { | 1 1 ! 1 | 1

0 2 4 6 8 10 12 14 16 18
100
o
501 4
E
0
(1] 2 4 6 8 10 12 14 16 18
Figure 3: Td? for Phase Il Subgroups of Fuchs-Kenett Case 1
40 . . T . ; T ; :
N 201 p
ol S T S 3 * o+ o+ * * ok H [\
0 1 1 1 1 1 1 1 1
1] 2 4 6 8 10 12 14 16 18

Phase Il Subgroup

We will focus on subgroups 11 and 16 whose T*? o are significant at o =
0.01. Subgroup 11 has a significant T?,, and non-significant T?, while the
converse is true for subgroup 16.

Demonstration of the Diagnostic Procedure of Kourti and
MacGregor

Figures 4 and 5 are the results of applying the procedure of Kourti and
MacGregor (6) for diagnosing which variables are causing a shift in location
of subgroup 11, where the critical value at a. = 0.0027 is 3.00.

https://digitalcommons.gaacademy.org/gjs/vole7/iss2/1
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Fgure 4: Nomalized Scores of Location (NSL) from Subgroup 11

T T

Value of NSL

Var. Contr. to NSL(3)
N

-2 1 1 ! 1
1 2 3 4

Variable

In Figure 4 the third score from subgroup 11, i.e. NSL , ,, is most sig-
nificant followed by NSL,, .. Because the NSL, ,are approximately standard
normal, any value greater than or equal to 3 is highly significant. Figure 5
shows that variable 6 makes the largest same sign contribution to NSL | ,.
By adjusting the value of variable 6 in one of the data points from subgroup
11 closer to its Phase I mean, the value of T2M11 decreased from 89.09 to
40.87, well below the critical value of 51.74.

Figures 6 and 7 are the results of applying our procedure for diagnos-
ing dispersion to subgroup 16. In Figure 6 the critical value at a = 0.01 is
6.63. Note that because in this example, where n = 2, the sum of squared
NScD, opi 1S simply the sample variance of the NScD, bt

Figure 6: Sample Variances of Normalized Scores of Dispersion (NScD) from Subgroup 16
15

g 10}
S
2 s
5

0

1 2 3 4 5 6
NScD(16,p) forp=1...6
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Fgure 7: Std Dev (SD) of Variable Contr. to NScD(1) from Subgroup 16
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Variable

Figure 6 shows that for p = . 6, i.e. the six different NScD, |, the

sum of squared values correspondmg to NScD, | is of highest 51gmfl'lcance
Figure 7 shows that the contributions of variables 5 and 6 have the larg-
est variance in decreasing order. By adjusting the values of variables 5 and
6 closer to their subgroup averages in one of the observations making up
subgroup 16, the value of T2 ¢ decreased from 27.19 to 11.92, well below
the critical value of 16.81.

Comparing Techniques for Diagnosis of Subgroup Dispersion

Of the works referenced in this paper, only Fuchs and Kenett (4) demon-
strate a technique for identifying the individual variables that drive a particular
subgroup’s variance out of control. They employ a graphical diagnostic tool
called the multivariate profile (MP) chart which can be constructed for separate
diagnosis of shifts in location and variation. MP charts were introduced by
Fuchs and Benyamini (16) and position the baseline of a miniature bar-chart
of scaled deviations at the vertical magnitude of the respective T?,, or T%,,
statistic. The miniature bar-chart for location, which is vertically positioned at
the magnitude of the subgroup’s T2 , value, displays the scaled deviation of
each individual variable’s subgroup mean with respect to standard values of
location. The miniature bar-chart for dispersion, which is vertically positioned
at the magnitude of the subgroup’s T2 . value, displays the scaled deviation
of each individual variable’s subgroup dxspersmn with respect to standard
values of dispersion.

The miniature bar-charts are essentially individual variable charts of mea-
sures of location and dispersion which do not consider correlation and are
not directly related to the decomposition of the relevant T# statistic. The MP
chart’s simultaneous presentation of the multivariate T statistic and bar-charts
of univariate scaled deviation provide an informative snapshot of subgroup
behavior which often facilitates quick identification of the suspect variables.

Figure 8 is a reproduction of page 130 of Fuchs and Kenett (4) which
plots the MP charts for dispersion for the last twenty subgroups of the Case
1 data-set. Notice that a curve formed by connecting the baselines of each
subgroup’s MP dispersion chart mimics the shape of the TZDk chart in Figure
3.

https://digitalcommons.gaacademy.org/gjs/vole7/iss2/1
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Figure 8: MP Dispersion Charts for Last 20 Subgroups of Case 1 from
Fuchs-Kenett
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In Figure 8 subgroups 16 and 18 are out of control at an o of 0.0027
and subgroups 7, 8, 10, 12 and 13 are out of control at an a of 0.05. The
MP dispersion chart suggests that individual variables with scaled deviation
of greater magnitude be investigated first. The degree of darkness of the
individual bars denotes increasing levels of significance. Notice that the min-
iature bar-charts of subgroups 10, 16 and 18 each have individual variables
whose deviations are very dark and tower above the others. This means
that those individual variables, namely variables 5 and 6 in subgroups 10
and 16 and variables 1 through 4 in subgroup 18, are clearly indicated as
responsible for driving the subgroup dispersion out of control. For these three
subgroups, where the subgroup dispersion of individual variables is much
higher than standard values, our procedure diagnoses the same variables as-
the MP chart for dispersion. We verified that for subgroups 10, 16, and 18,
the same causal variables identified by both procedures were responsible by
adjusting one or more of their values closer to the subgroup mean before
re-calculating T?_,. This resulted in Tsz values well below the critical values
for all reasonable o levels.

For subgroups 7, 8, 12 and 13 there are no individual variables in the
MP chart for dispersion whose scaled deviations differ extremely from stan-
dard values. Nonetheless the miniature bar-charts suggest first investigating
those variables with scaled deviation of greater magnitude. To contrast our

Published by Digital Commons @ the Georgia Academy of Science, 2009 11
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PC-based diagnostic procedure for subgroup dispersion with the MP disper-
sion charts, we restrict our discussion to subgroup 8. The value of subgroup
8 is significant at a = 0.05 with a critical value of 12.59. The MP dispersion
chart of subgroup 8 draws attention to variables 2 and 6 due to their larger
magnitudes of scaled deviation from standard values of dispersion. In Figures
9 and 10 we present the diagnosis from our procedure.

Figure 9: Sample Variances of Nom. Scores of Dispersion from Subgroup 8

15 T T : 3 T T T
8 ol |
8
o
E. 51 .
7]
0 . ) L ;
1 2 3 4 5
NScD(8,p) forp=1...6
Fgure 10: Std Dev (SD) of Variable Contributions to NScD(6) from Subgroup 8
@ 2 T T T T T T
a
[4]
2
f<]
3
<
a
77}

Variable

In Figure 9 the critical value at a = 0.01 is 6.63. Notice that of the six
different NScD8 for p = 1...6 within subgroup 8, only the sum of squared
values of NScD, . is significant at a = 0.01. Figure 10 shows that the con-
tributions of vanables 1,3 and 4 to NScD8 " have the largest variation in de-
creasing order. To evaluate the diagnostic accuracy of the proposed PC-based
procedure, we modify the original subgroup 8 data to reduce the differences
between the identified variables and their subgroup means. Since variables 1
and 3 are diagnosed by our procedure, we halve the distance between them
and their subgroup means in one of subgroup 8’s observations. This reduces
the T? __ value from 13.67 to 4.69, well below the critical value of 12.59.

For this same subgroup the MP chart for dispersion points us toward
variables 2 and 6. From Figure 10 we see that the standard deviation of
variable 2 in subgroup 8 is zero, which explains why in the MP chart for
dispersion the scaled deviation for this variable is a large negative value. The
large negative value means that in this subgroup the second variable’s devia-
tion is much lower than its standard value. Although this makes variable 2

https://digitalcommons.gaacademy.org/gjs/vole7/iss2/1
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a non-factor in driving T2 ¢ out of control, it may indicate another problem
since a sample variance of zero is suspicious. Halving the distance between
the values of variable 6 and their subgroup mean reduces the T* pg Value from
13.67 to 13.25, still above the critical value of 12.59. The comparison of
diagnoses between the principal components based procedure and the MP
chart indicates that for this specific subgroup, the PC-based procedure for
diagnosing subgroup dispersion is more informative.

DISCUSSION

There are several reliable techniques for identifying the individual variables
responsible for driving the T? value of a multivariate observation out-of-control.
Less research has been published regarding the diagnosis of subgroups of
multivariate observations, which are prone to shifts of scale as well as location.
The MP charts of Fuchs and Benyamini (16) are a helpful graphical instrument
for investigating the potentially causal variables of rational subgroups whose
location and or dispersion have shifted away from standard values. In their
discussion, Fuchs and Kenett (4) indicate that the scaled deviations of the MP
dispersion chart must be interpreted in concert with the correlation structure
of the variables for accurate diagnosis. In contrast, the PC-based procedure
introduced here is directly related to the decomposition of the portion of
Hotelling’s T? corresponding to dispersion, thereby explicitly integrating the
correlation structure of the individual variables.

We have extended the PC-based technique described in Kourti and
MacGregor (6) to diagnose the causal variables of a particular subgroup’s
shift in dispersion. This technique is simply implemented and, owing to its
incorporation of the correlation structure of the quality characteristics being
monitored, is more informative than the corresponding MP chart in some
cases.

Because the procedure is examining a large number of relationships,
there is an obvious concern for multiple comparisons. This procedure does
not easily adjust for multiple comparisons. Kourti and MacGregor (6) address
this by stating that once the T? statistic has gone out of control, a deviation
at the chosen level of significance has already been detected. They posit that
because the univariate charts of the normalized scores serve primarily as
guides for pinpointing the errant variables, a precise adjustment of p-values
for multiple comparisons is not warranted. We support this reasoning and
assert that if T2 or T?, go out of statistical control, the data analyst is most
concerned with identifying the probable cause as soon as possible. Even in
the case of many observed factors, the procedure described here provides
data analysts with a directed approach to help them more quickly identify
variables potentially linked to shifts in scale.

The need for new methods of diagnosing the dispersion of multivariate
observations has recently been noted in the quality engineering literature (1).
Given the dearth of user friendly techniques available for diagnosing statisti-
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cal processes whose dispersion has shifted out of control, we feel the utility
of this approach more than offsets its difficulty in rigorously accounting for
multiple comparisons.
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