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ABSTRACT 
 

An approximate analytic solution to the damped pendulum is derived using 

the method of successive approximations to obtain a nonlinear approximation 

for the system. We take the approximate solution to the undamped pendulum 

using the method of successive approximations and compare it to the damped 

pendulum solution when a linear approximation is used. By looking at these 

two solutions, we can make an educated guess about the form of the general, 

approximate solution to the nonlinear damped pendulum. By adjusting the 

initial guesses and the initial conditions, we derive approximate solutions in 

three ways. Using MATLAB, the approximate solutions are compared to the 

full numerical solution through the Euler-Cromer method. To determine how 

accurate the approximations are, the errors of the approximations are 

calculated relative to the full numerical Euler-Cromer solution. Each new 

approximation came with a significant decrease in error, with the final error 

being 0.0099. This resulted in an improvement to the method of successive 

approximations. Finally, our best approximation is compared to an available 

and previously published work. 

 

Keywords: pendulum, nonlinearity, successive approximation, damped 
pendulum, analytic solution, numerical solution,  matlab, octave 

 

INTRODUCTION 
 

The undamped pendulum system differential equation involves a nonlinear term 

(sin(θ)), as discussed further below, and when sin(θ) is approximately θ, there is a 

simple analytic solution. However, when the sin(θ) term is kept, there is not a closed 

form solution, albeit there is a well-known infinite series solution (Boas 2006). We are 

interested in pursuing a damped version of the pendulum whose general solution is 

unknown, yet an approximate solution can be found through the method of successive 

approximations (Chow 1995). The method of successive approximations is very useful 

for obtaining accurate solutions to oscillatory systems. In this paper, we apply the 

method of successive approximations to the damped pendulum. By doing so, a very 
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accurate analytic approximate solution for the system can be derived from Newton’s 

second law. Throughout this process, three different but similar solutions are found by 

adjusting the initial forms of the solutions and the initial conditions. The mathematics 

for both initial guesses are identical until the initial conditions are to be considered. For 

this reason, the following derivation will be done for the more accurate solution until the 

initial conditions, at which point, they will all be dealt with separately. We start by 

drawing a force diagram to visualize the system. Figure 1 shows the forces acting on a 

mass at the end of a pendulum. Here, T is the tension on the string, m is the mass, g is 

the acceleration due to gravity, and cv is the damping force component that is 

proportional to the velocity in the x direction with c being the coefficient of friction. The 

string, of length L, is assumed not to stretch in the work that follows. 

 
 

Figure 1. The different forces acting on a mass at the end of a pendulum. The orientation of the 
coordinate grid used to describe the forces is also shown. 

 

From Figure 1, Newton’s second law can be written as a second order differential 

equation. 
 

  (1) 
 

Since there is no stretching, the y-component of the gravitational force will cancel the 

tension force, thus there will be no motion in the y-direction, and Equation (1) becomes 
 

, (2) 
 

or 
 

θ0 

-mg 

-mgsinθ 

mgcosθ 

-cv 

x y 

L 
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. (3) 
 

To write this equation in terms of the angle θ, let 

 

 (4) 
 

and substitute it into Equation (3) t0 get     
 

, (5) 
 

where . Equation (5) is the general form of the differential equation for a 

damped pendulum. There is no exact analytic solution that we are aware of. However, 

when c = 0, Boas (2006) shows an approximate solution for its period. As mentioned 

above, in this work we obtain an approximate solution to this equation. Notice this 

equation includes a sin(θ) term, and a Taylor-series expansion to third order gives 
 

, (6) 
 

which when substituted into Equation 5 gives the approximation (Hasbun 2009), 
 

. (7) 
 

Before moving ahead, it is important to discuss briefly what is known about Equation 

(7). If, for example, we ignore the third order term on the right of Equation (7), we get 
 

. (8) 
 

This equation is that of the damped simple harmonic oscillator for small oscillations and 

a possible analytic solution is of the form 
 

, (9) 
 

where ω = , γ = , and  (Marion, 1988). In this solution, we have 

assumed that at t = 0,  and by default this assumes that . 

However, we are interested in going beyond Equation (8) and obtaining an approximate 

solution to Equation (7), which, of course, is an approximate solution to Equation (5). 

With this in mind, we use Equation (9) as a guide and assume two possible initial 

guesses, 
 

, (10) 
 

and      
 

. (11) 
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Equation (11) contains six unknowns that will need to be solved for: B, A1, ω1, A2, ω2, and 

δ. Later, there will be two more unknowns included in this list. To determine these 

unknowns, the initial guess must be substituted into the differential equation. Presently, 

we derive the solution involving Equation 11 because it is the more accurate solution due 

to including the δ term, where the δ represents the phase shift of the system and allows 

us to have more freedom as regards the initial boundary conditions for  and . 

The first and second derivative are found to be the following 
 

 
 

, (12)     
 

 
 

. (13) 
 

It is also necessary to cube Equation 11 so that it can be substituted into the right-hand 
side of Equation (7). When doing this, it is important to neglect all cross terms. We get 
the following 
 

. (14) 
 

Now Equations (12), (13), and (14) can be substituted into Equation (7). Once that is 

done and all the same terms containing the time variable have been grouped together, 

we get 
 

 
 

 
 

. (15) 
 

By assuming small damping or small B, the remaining exponential term can be 
approximated as 
 

. (16) 
 

To simplify the cubed cosine terms the following identity is used 
 

. (17) 
 

Substituting Equation (17) into the right-hand side of Equation (15) gives 
 

. (18) 
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The idea here is that it is convenient to disregard harmonics greater than the first. Thus, 
not forgetting Equation (16), Equation (18) can be simplified to become 
 

 (19) 
 

which can be substituted back into the right-hand side of Equation (15) to get 
 

 
 

 
 

.

 (20) 
Regrouping the terms, we get 
 

 
 

 
 

. (21) 
 

For this equation to hold, the coefficients of the terms containing the variable for time 
must vanish, to obtain  
 

, (22) 
 

, (23) 
 

. (24) 
 

Some of the coefficients are trivially zero or are repeated expressions and are ignored. 

From Equation (23), we can determine B, 
 

. (25) 
 

From Equation (22), ω1 can be solved for in terms of ω0, A1, and B. Using Equation (24) 
and following the same algebra, ω2 can be solved for as well to obtain 
 

, (26) 

. (27) 

 

5

Hill and Hasbun: Approximate Solution to the Damped Pendulum

Published by Digital Commons @ the Georgia Academy of Science, 2018



It turns out that all the above steps are similar if δ had been neglected, but this is the 

point where the δ, as well as the initial conditions, will make a difference. Each of the 

initial guesses will be treated separately to obtain the final solutions. 

 

INITIAL CONDITIONS 
 

The Method of Successive Approximations (MSA) 

Recalling the solution without the delta, Equation (10), 
 

, (28) 
 

where Equations (25), (26), and (27) still hold, and A1 and A2 have still yet to be defined, 

we let 
 

, (29) 
 

so that  
 

A1 + A2 = θ0. (30) 
 

This, along with Equations (25–27), for B, ω1, and ω2, allow us to obtain the first 

approximate solution, which we call the MSA. 

 

The Modified Method of Successive Approximations (MMSA) 

As can be seen in Equations (29) and (30), A1 and A2 are fixed at a set value. In 

our next approximation, we modify the definitions of A1 and A2. Rather than locking in 

their values, we introduced a new variable, x. The general form of the solution is the 

same as for the MSA, Equation (28), but we let 
 

A1 = x1θ0, (31)  
 

and 
 

A2 = x2θ0, (32) 
 

such that  
 

x1 + x2 = 1. (33) 
 

Here the values of A1 and A2 can be varied based on the chosen values of x1 and x2. It is 

done this way in order to find the values of A1 and A2 that give the most accurate 

approximation, based on the error formula defined later below. We refer to this 

approximation as the MMSA. 

 

The Improved Modified Method of Successive Approximations (IMMSA) 

Introduced earlier in Equation (11), the final solution involves the additional 

parameter, δ. As mentioned before, the δ represents the phase shift of the system, but it 

also has another important use. When using the method of successive approximations, 

there is a restriction imposed on the initial value of the velocity. To improve on that 
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restriction, the phase shift is included in the initial guess as well as redefining A1 and A2 

once more. Recall the form of the solution for this method, Equation (11), 
 

. (34) 
 

In this approximation, we let 
 

, (35) 
 

, (36) 
 

such that  
 

. (37) 
 

Notice that now, the unknown, y, must also be solved for in addition to the parameter δ. 

Applying the initial conditions, 
 

 and , 
 

which, with the help of Equation (34), gives 
 

, (38) 
 

or, 
 

. (39) 
 

The second initial condition gives 
 

. (40) 
 

Substituting Equation (39) into the above equation gives 
 

, (41) 
 

from which we find that, 
 

. (42) 
 

Equations (39) and (42) can be combined to obtain 
 

. (43) 
 

Now that we have obtained δ, the last unknown that needs to be solved for is y. This is 

done by using the trigonometric identity, 
 

, (44) 
 

so that using Equations (39) and (42) with the above equation gives, 

, (45) 
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which with the values of A1, Equation (35), and A2, Equation (36), give the following, 
 

 (46) 
 

which can be simplified to solve for y to obtain 

. (47) 

This is the final unknown that needs to be solved for, with the help of Equations (25), 

(26), and (27). Because this equation involves ω1 and ω2, which, in turn, involve A1 and 

A2, which depend on y, then it must be solved numerically in a self-consistent way 

depending on the value of x chosen that makes the approximations most accurate. This 

approximation is referred to as the IMMSA. At this point, all three of the theoretical 

approximate solutions are ready to be computed. One of last steps in this process is to 

come up with the numerical solution to Equation (5), against which the above three 

approximate solutions (MSA, MMSA, and IMMSA) will be compared. 

 

The Euler-Cromer Method 

To determine the accuracy of the above approximate solutions, we need a full 
numerical solution to compare them to. This numerical solution is the Euler-Cromer 
solution (Cromer 1981). The Euler-Cromer method is a simple way to numerically 
obtain the motion of a system for all time, given the initial values of the force, position, 
velocity, and acceleration. This method turns the acceleration into two first order 
derivatives, 
 

 and . (48) 
 

However, the two derivatives are expressed as forward difference equations, that is, 
 

 and . 
 

Here, the values with “i+1” are the values one time-step, Δt, after the values with “i”.  
The above equations allow us to solve for those “i+1” values, or 
 

, (49) 
 

and 
 

, (50) 
 

where  is used according to the Euler-Cromer rule (Cromer 1981). We also know that 

the force is given by 
 

, (51) 
 

which can be rewritten, using the above relationships, as 
 

. (52) 
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Newton’s second law tells us 
 

 , (53) 
 

which is rewritten as 
 

. (54) 
 

The time variable starts from its initial value and increases by Δt at each step as 
 

. (55) 
 

Equations (48–55) are incorporated into a program that can determine the 
system’s motion numerically, given the initial conditions. This full numerical solution to 
the damped pendulum will be used to determine how accurate the approximate 
solutions (MSA, MMSA, and IMMSA) are. A measure of accuracy in each approximation 
is determined according to 
 

, (56) 

 

where ythi refers to an approximate solution and yei is the numerical Euler-Cromer 
solution at time ti. 
 

SIMULATION AND RESULTS 
 

Program 1 – Successive_Approx_MSA_MMSA.m 

Here, we use MATLAB (Mathworks) to perform the computations. In the first 
program, the two simplest methods, the MSA and the MMSA, are solved and plotted 
along with the numerical Euler-Cromer solution and MATLAB’s ODE solver. Figure 2 

shows the four different 
solutions plotted 
together. The values of 
the constants and the 
ones we chose for the 
initial conditions can be 
found in the program’s 
code in appendix A.  
 
 
 
Figure 2. Four different 
solutions to Equation (5), 
two numerical (Euler-
Cromer and ODE solver) 
and two approximations 
(MSA and MMSA). The 
initial displacement of the 
pendulum is θ = 50° and the 
damping coefficient, c = 1. 
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In this program, after choosing the initial conditions, we needed to determine the best 
value of x1, between zero and one, that produced the lowest error. This was done by trial 
and error and it was found that the value x1 = 0.6 gave the lowest error. The errors, 
Equation (56), computed by the program came out to be Error1 (MSA) = 0.0408 and 
Error2 (MMSA) = 0.0313. This tells us that the method of successive approximations 
was less accurate than the modified method of successive approximations. Note also 
that the reason we included MATLAB’s ODE solver here is that we needed to show that 
the Euler-Cromer method is accurate enough in the present problem that we do not 
have to perform numerical computations with more sophisticated approaches. 
 

Program 1 – Successive_Approx_MMSA_IMMSA.m 

The second program no longer includes MATLAB’s ODE solver or the simplest 
MSA solution. Like the first program, this one again plots the numerical Euler-Cromer 
solution and the MMSA, but now also includes the improved modified method of 
successive approximations (IMMSA). Looking back at the final solution to the IMMSA, 
notice there is a cycle of dependencies between the variables. Equations (35) and (36), 
for A1 and A2, are dependent on the value of y. But Equation (47), for y, depends on the 
value of ω1 and ω2. The problem is that the values of ω1 and ω2 are dependent on the 
values of A1 and A2. This creates a loop that must be taken care of computationally. For 
this reason, a function is used in the code that determines the zero of the y-function 
(LHS of [47] – RHS of [47]) based on the different values of ω1 and ω2 and all the 
possible values of y. The results are shown in Figure 3. 

The IMMSA and the MMSA depend on the value of x = x1 (with x2 = 1 - x1) that 

gives the lowest error and the value found is x1 = 0.6. It can be seen in the graph that the 

solutions are extremely close, but the actual error values obtained are the following, 

Error1 (MMSA) = 0.0313 and Error2 (IMMSA) = 0.0099. This shows how much closer 

the IMMSA is to the full numerical Euler-Cromer solution to Equation (5) than is the 

MMSA. 

 
 
 
 
 
 
 
 
 
Figure 3. Results 
produced by the second 
program. The three 
solutions (numerical: 
Euler-Cromer, 
approximate: MMSA and 
IMMSA) are shown, as well 
as the initial displacement 
of the pendulum, θ = 50°, 
and the value of the 
damping coefficient, c = 1. 
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The IMMSA Compared to Johannessen’s Approximation 

In a previous work (Johannessen 2014) the author developed an approximation 

for the nonlinear damped pendulum given in the form 
 

 , (57) 

where  with , , ; including 

initial conditions: , , and where ,  are Jacobi elliptic 

functions. In Equation (57) the function  is given by 
 

 (58) 

with being the condition of maximum amplitude. We can compare the above result 

of Equation (57) with our best approximation, the IMMSA of Equation (34) along with 

Equations (25–27, 35, 36, 43, and 47), if we let ,  with 

 in our equations as shown in Figure 4. We also rewrite 

Equation (34) as 
 

. (59) 
 

To effect the comparison, we solve for , such that 

 at t = 0 as Equation (57) also requires 

(Johannessen 2014). This comparison is carried out in Figure 4 with the parameters 

previously employed (Johannessen 2014). We also perform an error comparison of each 

approximation against the MATLAB solver, as in Equation (56), rather than the Euler-

Cromer method. For our IMMSA, the error is 0.2617 and for Equation (57) the error is 

0.5397, indicating that our approximation does very well in this regime. Appendix C 

contains the script used to carry out the comparison shown in Figure 4. 

 

DISCUSSION 
 

The purpose behind this paper is to find a theoretical approximate solution to the 
damped pendulum using the method of successive approximations. While this has been 
achieved using the simplest solution, we wanted to find solutions that are more accurate 
than our first try. By including the phase shift and redefining the amplitudes A1 and A2 
in the method of successive approximations, the error produced is much smaller. The 
most accurate approximation is that of the improved modified method of successive 
approximations, (IMMSA), which had an error of 0.0099. This is a much better error 
than the MSA, which had an error of 0.0408, and the MMSA, which had an error of 
0.0313. Finally, the IMMSA has been compared to the Johannessen’s approximation 
(Johannessen 2014) with very good results. We think that the IMMSA is a significantly 
important result because it leads to an advancement in the method of successive 
approximations as well as providing insight into the ways that different approximations 
are used and how they can affect the outcome. 
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Figure 4. Results of the script of Appendic C. Data were generated by the IMMSA, Equations (25–27, 35, 
36, 43, and 47), Equations (57–58) of Johannessen’s approximation, and MATLAB’s numerical solution. 

The parameters used here are as follows: m = 1,  = 0.1, c = 2m, ’(0) = 2sin(max/2), max = π/2,  

(0) = 0 (Johannessen 2014). 
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APPENDIX A 
 

This is the code from the first program that was used to plot the two approximate 
theoretical solutions, the MSA and the MMSA, and the two full numerical solutions, the 
Euler-Cromer and MATLAB’s ODE solver. The values of the constants and the values we 
chose for the initial conditions are as follows: m = 1.0; c = 1.0; t0 = 0; g = 9.8; L = 0.5; 
θ0 = 50°; θ0’ = 0; x1 = 0.6. 
---------------- Script Listing --------------- 
% Successive_Approx_MSA_MMSA.m (7/2018) By Justin Hill and J. Hasbun 

% This solves the full pendulum with damping numerically by The Euler method 

% and the ODE solver as well as solving the approximate form through the 

% method of successive approximations (MSA). The method of successive 

% approximation is further improved to become the modified method of     % 

successive approximations (MMSA). 

 

 

function Successive_Approx_MSA_MMSA 

global w0 m c 

c=1; 

m=1.0; 

t0=0.0; 

g=9.8; 

L=.5; 

B=c/(2*m); 

  

cf=2*pi/360;          %conversion factor from degrees to radians 

w0=sqrt(g/L);             

tau0=2*pi/w0;         %period for the SHO 

tmax=5*tau0;          %maximum time 

th=50;                %initial amplitude in degrees 

thd=0;                %initial speed in degrees 

thr=th*cf;            %initial angle in radians 

dtheta0=thd*cf;       %initial speed in radians 

NPTS=500; 

dt=tmax/(NPTS-1); 

t=[0:dt:tmax]; 

   

          %The Method of Successive Approximations 

  

omA=sqrt((w0^2)*(1-(thr^2)/8)-(B^2)); 

A1=thr; 

A3=((w0^2)*(A1^3))/(24*(w0^2)-24*(B^2)-216*(omA^2)); 

thMSA=exp(-B.*t).*(thr*cos(omA.*t)+A3*cos(3*omA.*t)); 

                        

        %The Modified Method of Successive Approximations 

             

x1=0.6; 

x2=1-x1; 

A1=x1*thr; 

A2=x2*thr; 

om1=sqrt((w0^2)*(1-A1^2/8)-(B^2)); 

om2=sqrt((w0^2)*(1-A2^2/8)-(B^2)); 

thMMSA=exp(-B.*t).*(A1*cos(om1.*t)+A2*cos(om2.*t)); 

  

           %The Numerical Solution (Euler Method) 
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F0=-c*L*dtheta0-m*g*sin(thr);  %initial force 

a0=F0/m/L;                     %initial acceleration 

theta(1)=thr; 

dtheta(1)=dtheta0; 

t(1)=t0; 

F(1)=F0; 

a(1)=a0; 

  

for i=1:NPTS-1 

   

  dtheta(i+1)=dtheta(i)+a(i)*dt;               %new theta 

  theta(i+1)=theta(i)+dtheta(i+1)*dt;          %new theta dot 

  F(i+1)=-c*L*dtheta(i+1)-m*g*sin(theta(i+1)); %new force 

  a(i+1)=F(i+1)/m/L;                           %new acceleration 

   

end; 

  

Error1=sqrt(sum((thMSA(:)-theta(:)).^2)/NPTS) 

Error2=sqrt(sum((thMMSA(:)-theta(:)).^2)/NPTS) 

  

  

  

          %The Numerical Solution (MATLAB SOLVER) 

ic1=[thr;dtheta0]; 

[tm,th2m]=ode45(@fderivs,[t0:dt:tmax],ic1);% matlab numerical solution 

  

plot(t,theta/cf,'rd'); 

hold on 

plot(tm,th2m(:,1)/cf,'bd'); %The MATLAB solver solution 

plot(t,thMSA/cf,'b--'); 

plot(t,thMMSA/cf,'k.'); 

legend('Euler-Cromer Solution','ODE-solver','MSA','MMSA'); 

str=cat(2,'\theta_0=',num2str(th,3),', c=',num2str(c,3)); 

text(2,th*(1-0.2),str); 

xlabel('Time (sec)'); 

ylabel('Amplitude (degrees)'); 

title('Comparison of Solutions'); 

  

function derivs = fderivs(t,z) 

global w0 m c 

% pend2_der: returns the derivatives for the pendulum's full solution 

% The function pen2_der describes the equations of motion for a  

% pendulum. The parameter w0, is part of the input 

% Entries in the vector of dependent variables are: 

% x(1)-position, x(2)-angular velocity 

derivs = [z(2); -w0^2*sin(z(1))-c*z(2)/m]; %the damping case is included now 
 

APPENDIX B 
 

This is the code from the second program that plotted the numerical Euler-
Cromer solution as well as the modified method of successive approximations and the 
improved modified method of successive approximations. Both were compared using 
the error formula written into the program. You can see below that a zero function was 
used to calculate the zero of the y-function. The constants and chosen initial values are 
as follows: m = 1.0; c = 1.0; t0 = 0; g = 9.8; L = 0.5; θ0 = 50°; θ0’ = 0; x1 = 0.6. 

---------------- Script Listing --------------- 
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% Successive_Approx_MMSA_IMMSA.m (7/2018) By Justin Hill and J. Hasbun 

% This solves the full pendulum with damping numerically by The Euler method 

% as well as solving the approximate form through the 

% The modified method of successive approximations (MMSA) and further by 

% the improved modified method of successive approximation (IMMSA). 

  

function Successive_Approx_MMSA_IMMSA 

global w0 m c 

c=1; 

m=1.0; 

t0=0.0; 

g=9.8; 

L=.5; 

B=c/(2*m); 

  

cf=2*pi/360;             %conversion factor from degrees to radians 

w0=sqrt(g/L);             

tau0=2*pi/w0;            %period for the SHO 

tmax=5*tau0;             %maximum time 

th=50;                   %initial amplitude in degrees 

thd=0;                   %initial theta_dot in degrees/sec 

thr=th*cf;               %initial angle in radians 

dtheta0=thd*cf;          %initial theta_dot in radians 

NPTS=500; 

dt=tmax/(NPTS-1); 

t=[0:dt:tmax]; 

                        

       %The Modified Method of Successive Approximations 

             

x1=0.6; 

x2=1-x1; 

A1=x1*thr; 

A2=x2*thr; 

om1=sqrt((w0^2)*(1-A1^2/8)-(B^2)); 

om2=sqrt((w0^2)*(1-A2^2/8)-(B^2)); 

thMMSA=exp(-B.*t).*(A1*cos(om1.*t)+A2*cos(om2.*t)); 

  

     %The Improved Modified Method of Successive Approximations 

  

y = fzero(@(y) y_iter(y,x1,thr,dtheta0),0.5) 

A12=y*x1*thr; 

A22=y*(1-x1)*thr; 

om12=sqrt(w0^2*(1-A12^2/8)-B^2); 

om22=sqrt(w0^2*(1-A22^2/8)-B^2); 

del=atan(-(dtheta0+B*thr)*(A12+A22)/(thr*(om12*A12+om22*A22))); 

thIMMSA=exp(-B*t).*(A12*cos(om12*t+del)+A22*cos(om22*t+del)); 

  

         %The Numerical Solution (Euler Method) 

             

F0=-c*L*dtheta0-m*g*sin(thr);  %initial force 

a0=F0/m/L;                     %initial acceleration 

theta(1)=thr; 

dtheta(1)=dtheta0; 

t(1)=t0; 

F(1)=F0; 

a(1)=a0; 
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for i=1:NPTS-1 

   

  dtheta(i+1)=dtheta(i)+a(i)*dt;               %new theta 

  theta(i+1)=theta(i)+dtheta(i+1)*dt;          %new theta dot 

  F(i+1)=-c*L*dtheta(i+1)-m*g*sin(theta(i+1)); %new force 

  a(i+1)=F(i+1)/m/L;                           %new acceleration 

   

end; 

  

Error1=sqrt(sum((thMMSA(:)-theta(:)).^2)/NPTS) 

Error2=sqrt(sum((thIMMSA(:)-theta(:)).^2)/NPTS) 

plot(t,theta/cf,'rd','MarkerSize',3); 

hold on 

plot(t,thMMSA/cf,'k.'); 

plot(t,thIMMSA/cf,'bo','MarkerSize',3); 

legend('Euler-Cromer Solution','MMSA','IMMSA'); 

str=cat(2,'\theta_0=',num2str(th,3),', c=',num2str(c,3)); 

text(2,th*(1-0.2),str); 

xlabel('Time (sec)'); 

ylabel('Amplitude (degrees)'); 

title('Comparison of Solutions'); 

  

function fyzero=y_iter(y,x,thr,thrd) 

global w0 m c 

A1=y*x*thr; 

A2=y*(1-x)*thr; 

B=c/2/m; 

om1=sqrt(w0^2*(1-A1^2/8)-B^2); 

om2=sqrt(w0^2*(1-A2^2/8)-B^2); 

fyzero=y-sqrt(1+((thrd+B*thr)/(om1*x+om2*(1-x))/thr)^2); 

 
 

APPENDIX C 
 

This is the code from the first program that was used to plot the two approximate 
theoretical solutions, the IMMSA and the Johannessen’s (our Equations [57–58]). Both 
solutions are compared to the result of the MATLAB’s ODE solver in Figure 4. The 
parameters used are as follows: m = 1.0, gamma = 0.1, c = 2*m*gamma, g = 9.8, L = 0.5, 
psi0 = 0.0, psi0’ = 2*sin(psi_max/2), psi_max = pi/2, and x = 0.6. 
 

---------------- Script Listing --------------- 
% IMMSA_and_Johannessen.m by J. E. Hasbun (9/2018) 

% This compares the IMMSA, the MATLAB solver, and Johannessen's 

% solutions. 

% This solves the full pendulum with damping numerically using a MATLAB 

% solver as well as solving the approximate form through the 

% by the improved modified method of successive approximation (IMMSA) which 

% is compared to the work of Johannessen (Eur. J. Phys, V38, 035014 

% (2014)). 

  

function IMMSA_and_Johannessen 

clear 

global w0 m c 

 

m=1.0; 
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t0=0.0; 

g=9.8; 

L=.5; 

gam=0.1;             %as used by Johannessen 

c=2*m*gam; 

B=c/(2*m); 

cf=2*pi/360;         %conversion factor from degrees to radians 

w0=sqrt(g/L);             

tau0=2*pi/w0;        %period for the SHO 

tmax=5*tau0;         %maximum time 

 

%Here are the conditions when psi_max and psi0 are provided 

psi_max=pi/2;              %maximum angle needed - radians 

psi0=0.0;                  %initial angle psi=thr - radians 

psi0_p=2*sin(psi_max/2);   %initial psi prime=dtheta0/w0 - radians/sec 

thr=psi0;                  %radians 

dtheta0=w0*psi0_p;         %rad/sec 

th=thr/cf;                 %theta_0 in degrees 

NPTS=500; 

dt=tmax/(NPTS-1); 

t=[0:dt:tmax]; 

                        

           %The IMMSA solution 

x=0.6; %as used here 

 

thr0=-1.4; %For the amplitude of the IMMSA, for this comparison 

y = fzero(@(y) y_iter(y,x,thr0,dtheta0),1.0); %solve for y 

A12=y*x*thr0; 

A22=y*(1-x)*thr0; 

om12=sqrt(w0^2*(1-A12^2/8)-B^2); 

om22=sqrt(w0^2*(1-A22^2/8)-B^2); 

del=atan(-(dtheta0+B*thr0)*(A12+A22)/(thr0*(om12*A12+om22*A22))); 

 

%solve for t00 so that theta passes through zero at t=0 in this comparison 

ff=@(tt) A12*cos(-om12*tt+del)+A22*cos(-om22*tt+del);  

t00=fzero(@(tt) ff(tt),-1.5); 

fprintf('thr0=%4.5f, y=%4.5f, t00=%4.5f\n',thr0,y,t00) 

thIMMSA=exp(-B*abs(t-t00)).*(A12*cos(om12*(t-t00)+del)+A22*cos(om22*(t-

t00)+del)); 

 

           %The Numerical Solution (MATLAB SOLVER) 

ic1=[thr;dtheta0]; 

[tm,th2m]=ode45(@fderivs,[t0:dt:tmax],ic1);% matlab numerical solution 

Error_thIMMSA=sqrt(sum((thIMMSA(:)-th2m(:,1)).^2)/NPTS); 

 

           %Johannessen's solution 

sc1=w0/sqrt(1+gam^2); 

u=sc1*t; 

mu0=(sin(psi_max/2))^2; 

mu=mu0*exp(-2*gam*u); 

xi=(1+mu/4+9*mu.^2/64).*u+(mu-mu0)/gam/8+9*(mu.^2-mu0^2)/gam/256; 

[sn,cn,dn]=ellipj(xi,mu); 

thJohann=2*atan(sqrt(mu).*sn./dn); 

Error_thJohann=sqrt(sum((thJohann(:)-th2m(:,1)).^2)/NPTS); 

 

fprintf('Error_thIMMSA=%4.5f, 

Error_thJohann=%4.5f\n',Error_thIMMSA,Error_thJohann) 
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plot(tm,th2m(:,1)/cf,'bd'); %The MATLAB solver solution 

hold on 

plot(t,thIMMSA/cf,'ko-','MarkerSize',3); 

plot(t,thJohann/cf,'r.') 

 

legend('MATLAB Solution','IMMSA','Johannessen'); 

str=cat(2,'\psi_0=',num2str(psi0,3),', \psi_0\prime=',num2str(psi0_p,3),... 

  ', \gamma=',num2str(gam,3),', \psi_{max}=',num2str(psi_max,3)); 

text(0.5,max(thIMMSA/cf)*(1+0.1),str); 

axis([0 tmax min(thIMMSA/cf)*(1+0.2) max(thIMMSA/cf)*(1+0.3)]) 

xlabel('Time (sec)'); 

ylabel('Amplitude (degrees)'); 

title('Comparison of Solutions'); 

  

function fyzero=y_iter(y,x,thr,thrd) 

global w0 m c 

A1=y*x*thr; 

A2=y*(1-x)*thr; 

B=c/2/m; 

om1=sqrt(w0^2*(1-A1^2/8)-B^2); 

om2=sqrt(w0^2*(1-A2^2/8)-B^2); 

fyzero=y-sqrt(1+((thrd+B*thr)/(om1*x+om2*(1-x))/thr)^2); 

 

function derivs = fderivs(t,z) 

global w0 m c 

% pend2_der: returns the derivatives for the pendulum's full solution 

% The function pen2_der describes the equations of motion for a  

% pendulum. The parameter w0, is part of the input 

% Entries in the vector of dependent variables are: 

% x(1)-position, x(2)-angular velocity 

derivs = [z(2); -w0^2*sin(z(1))-c*z(2)/m]; %the damping case is included now 
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