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ABSTRACT 
The elementary problem of a block sliding down an inclined plane is examined 
in detail with respect to different oriented coordinate systems that are typically 
not used due to the complexity of the problem.  After solving for the equation 
of motion in these different coordinate systems group theory is applied and 
shown to yield the same results. 

 
INTRODUCTION 

This problem is directly influenced by Galileo Galilei (Galileo, 1941) who in the 17th 
century designed and carried out experiments to confirm that the earth's acceleration is 
constant by using the inclined plane.  Accurate timing methods were an issue in the 17th 
century and, if Galileo could slow down the acceleration of an object, it would be easier to 
measure.  Galileo observed that the acceleration of an object was constant at different 
inclination angles. He concluded that in the limit where the inclination angle is at ninety 
degrees, the acceleration due to gravity was indeed a constant. 

It is the experience of one of the authors that students have several issues 
associated with this canonical problem.  The issue that this paper focuses on is that of the 
standard technique of rotating the coordinate system with respect to the inclined plane.  
Since there is no absolute coordinate system, one is free to choose any of an infinite 
number of coordinate systems.  In this paper we will confine ourselves to two-dimensional 
Cartesian coordinate systems that are rotated with respect to one another but all share a 
common origin. Of course these are all isomorphic situations when considering rotational 
transformations, but most introductory physics students will not have the linear algebra 
skills to use a two-dimensional rotation matrix. To understand the application of 
rotational transformations, one must note that the magnitude of the acceleration vector 
will remain the same for any given rotated coordinate system. The components of the 
acceleration vector will adjust accordingly to the respective coordinate system used to 
solve the system. 

This is the familiar situation one finds in the traditional texts (Halliday et al. 2013).  
The coordinate system is rotated (or as some texts say tilted) such that the x-axis is 
parallel with the surface of the inclined plane and the y-axis is perpendicular to the surface 
of the inclined plane (see Figure 1).  This judicious choice (or tricky insight as some 
students may retort) of coordinate systems allows the acceleration and the normal vectors 
to be parallel to the x- and y-axes respectively.  This means that only the force due to 
gravity will have to be broken into its x- and y-components.  Once this is done, it is easily 
seen that the motion occurs in one dimension. 
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For completeness, Newton's Second Law (for an object of constant mass) in this  
situation is found to be 
 ∑ 𝐹𝑥 = 𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚𝑎                                 

 ∑ 𝐹𝑦 = 𝑁 − 𝑚𝑔𝑐𝑜𝑠𝜃 = 0  
 

where 𝐹𝑥 and 𝐹𝑦 are the x and y components of the forces, 𝑚 is the mass of the point 

particle, 𝑔 is the magnitude of the earth's gravity,  is the normal force, and 𝜃 is the angle 
of the inclined plane.  This choice of coordinate system allows the x-component of the 
acceleration to be the only component one needs (hence dropping any subscript of 
direction for the acceleration).  The block is in equilibrium in the y-direction and thus this 
is a static component resulting in zero on the right hand side of Newton's Second Law.  
This leads to the famous result 
                                                                                 𝑎 = 𝑔𝑠𝑖𝑛𝜃.                                                 
 

 This unrotated coordinate system (see Figure 2) is the one many students will 
naturally choose left to their own devices without input from a text or instructor.  Many 
times it seems as though students are frustrated trying to solve the problem in this more 
complicated situation.  Upon being shown that a rotated coordinate system makes the 
problem much easier to solve, the students reason that the result might be dependent on 
the orientation of the coordinate system which is simply not the case.   
 Once again, writing down Newton's Second Law, but this time the acceleration and 
normal force will have to be broken up into individual components, leads to 
 

 ∑ 𝐹𝑥 = 𝑁𝑥 = 𝑚𝑎𝑥  

 ∑ 𝐹𝑦 = 𝑁𝑦 − 𝑊 = 𝑚𝑎𝑦 
 

Figure 1. Above is the typically rotated coordinate system and free body diagram used in solving for 
the acceleration of a block (modeled as a point particle) sliding down an inclined plane with inclination 
angle θ. 
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where 𝑎𝑥 and 𝑎𝑦 are the x- and y-components of the acceleration and 𝑁𝑥 and 𝑁𝑦 are the x- 
and y-components of the normal force. The components can be written in trigonometric 
terms, 
 ∑ 𝐹𝑥 = 𝑁𝑠𝑖𝑛𝜃 = 𝑚𝑎𝑐𝑜𝑠𝜃           (1) 

 ∑ 𝐹𝑦 = 𝑁𝑐𝑜𝑠𝜃 − 𝑚𝑔 = −𝑚𝑎𝑠𝑖𝑛𝜃. (2) 
 

Solving Eqn. 1 for the normal force in order to remove it from the system of equations 
 

 𝑁 = 𝑚𝑎
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
, (3) 

 

taking Eqn. 3 and substituting into Eqn. 2 to obtain an equation all in terms of mass, 
acceleration, gravity, and the inclination angle 
 

 𝑚𝑎
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃 − 𝑚𝑔 = −𝑚𝑎𝑠𝑖𝑛𝜃,  

 

multiplying through by 𝑠𝑖𝑛𝜃 and rearranging to get the mass and acceleration on one side 
 

 𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚𝑎𝑠𝑖𝑛2𝜃 + 𝑚𝑎𝑐𝑜𝑠2𝜃, 
 

and using the identity that 𝑠𝑖𝑛2𝜑 + 𝑐𝑜𝑠2𝜑 = 1 leads to 
 

 𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚𝑎  
where one finds the familiar result, 
 𝑎 = 𝑔𝑠𝑖𝑛𝜃.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In this section, an arbitrarily rotated coordinate system is considered (see Figure 3).  The 
coordinate system is rotated at a positive angle α with respect to the weight vector. 

Figure 2. A block (modeled as a point particle) sliding down an inclined plane of inclination angle θ with 
the free body diagram. An unrotated coordinate system that many students initially choose for this 
problem is shown. 
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Rewriting the force and acceleration in terms of x- and y-components leads to 
 

 ∑ 𝐹𝑥 = 𝑁𝑥 − 𝑊𝑥 = 𝑚𝑎𝑥  

 ∑ 𝐹𝑦 = 𝑁𝑦 − 𝑊𝑦 = 𝑚𝑎𝑦.  
 

The components can all be written in trigonometric terms of the angle of the incline and 
the coordinate system.  This leads to 
 

 ∑ 𝐹𝑥 = 𝑁𝑠𝑖𝑛(𝜃 + 𝛼) − 𝑚𝑔𝑠𝑖𝑛𝛼 = 𝑚𝑎𝑐𝑜𝑠(𝜃 + 𝛼) (4) 

 ∑ 𝐹𝑦 = 𝑁𝑐𝑜𝑠(𝜃 + 𝛼) − 𝑚𝑔𝑐𝑜𝑠𝛼 = −𝑚𝑎𝑠𝑖𝑛(𝜃 + 𝛼). (5) 
 

Solving Eqn. 4 for the normal force leads to 
 

 𝑁 = 𝑚𝑔
𝑠𝑖𝑛𝛼

sin(𝜃+𝛼)
+ 𝑚𝑎

cos (𝜃+𝛼)

sin (𝜃+𝛼)
. (6) 

 

Plugging Eqn. 6 into Eqn. 5, one finds, 
 

 (𝑚𝑔
𝑠𝑖𝑛𝛼

sin(𝜃+𝛼)
+ 𝑚𝑎

cos (𝜃+𝛼)

sin (𝜃+𝛼)
) cos(𝜃 + 𝛼) − 𝑚𝑔𝑐𝑜𝑠𝛼 = −𝑚𝑎𝑠𝑖𝑛(𝜃 + 𝛼). (7) 

 

Multiplying through to get rid of the denominator in Eqn. 7 leads to 
 

 𝑚𝑔𝑠𝑖𝑛𝛼 cos(𝜃 + 𝛼) = 𝑚𝑎𝑐𝑜𝑠2(𝜃 + 𝛼) − −𝑚𝑔𝑐𝑜𝑠𝛼 sin(𝜃 + 𝛼) = −𝑚𝑎𝑠𝑖𝑛2(𝜃 + 𝛼).  
 

Once again using 𝑠𝑖𝑛2𝜗 + 𝑐𝑜𝑠2𝜗 = 1, one determines that 
 

 𝑚𝑔𝑠𝑖𝑛𝛼 cos(𝜃 + 𝛼) − 𝑚𝑔𝑐𝑜𝑠𝛼 sin(𝜃 + 𝛼) = −𝑚𝑎.  
 

Using the angle addition formulas for sine and cosine on the right hand side of the 
equation leads to 
 

                            𝑚𝑔𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛼 − 𝑚𝑔𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛼 − 𝑚𝑔𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛼                 
+𝑚𝑔𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛼 = −𝑚𝑎. 

 

Figure 3. A block of mass m sliding down an inclined plane of inclination angle θ with the free body 
diagram.  An arbitrarily counter clockwise rotated coordinate system of angle α with respect to the weight 
vector is shown. 
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Simplifying and combining terms leads to 
 

 −𝑚𝑔𝑠𝑖𝑛𝜃(𝑠𝑖𝑛2𝛼 + 𝑐𝑜𝑠2𝛼) = −𝑚𝑎.  
 

Once again using 𝑠𝑖𝑛2𝜗 + 𝑐𝑜𝑠2𝜗 = 1 , one finds the celebrated result, 
 

 𝑎 = 𝑔𝑠𝑖𝑛𝜃. 
 

 Examining the situation of a point mass 𝑚 sliding down an inclined plane of 
inclination angle 𝜃, it has been explicitly demonstrated in the rotated, unrotated, and 
arbitrarily rotated coordinate systems, that the magnitude of the acceleration is the same.  
It is the hope of these authors that this work will bring a deeper insight to future 
introductory physics students with respect to Newton's Second Law and rotated 
coordinate systems. 
 

FURTHER DISCUSSION 
 In the preceding section, the rotation matrix was actually employed even though it 
was not explicitly stated.  This is an opportunity for instructors in introductory physics 
courses to introduce this ubiquitous device.  This matrix 
 

 (
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

) (8) 
 

rotates the coordinate system about the origin through a counter clockwise angle 𝛼 with 
respect to the original positive x-axis.  It is the fact that this rotation matrix preserves the 
lengths that allows one to find the accelerations in the previous sections to all be the same. 
 Besides introducing this rotation matrix, instructors can introduce the idea of a 
group to students.  A group (Gallian 1974), denoted as G, is a set of elements {e,f,g,h,k,…} 
together with a binary operator denoted by ◦.  The result of the binary operations is subject 
to the following four requirements: 

• Closure: if f,g are elements of the group G, then f◦g is an element of the group G, 

• Identity elements: there exists an identity element e in the group G such that  
e◦f = f◦e = f for any element f that is a member of the group G, 

• Inverses: for every f that is a member element of G there exists an inverse element 
f-1 that is a member element of G such that f◦ f-1 = f-1◦f = e and where e is the identity 
element described in preceding requirement, 

• And Associative Law: the law that f◦(g◦h) = (f◦g)◦h. 
Examples of groups are the integers under addition, the real numbers under 
multiplication, and rotations and reflections of an equilateral triangle that leaves the 
triangle invariant. 
 The rotation matrix is one representation of the SO(2) group.  The SO(2) group is 
the group of 2 × 2 matrices with determinant equal to one and whose inverse is the 
matrix’s transpose.  The determinant being equal to one ensures that only proper 
rotations can occur and thus chirality (or handedness is preserved).  One representation 
of SO(2) is that as shown in Eqn. 8, 

R = (
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

). 
 

Note that RR-1 = RRT = (
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

) (
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼

−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝑎
) = (

1 0
0 1

) as required by the 
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orthogonality requirement and the determinant of R = |
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

| = cos2α + sin2α = 

1 as required by the special requirement. 

 The matrix operation between v = (
𝑥
𝑦) and the rotation matrix R through some 

angle α is 

Rv=(
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

) (
𝑥
𝑦) = (

𝑥𝑐𝑜𝑠𝛼 − 𝑦𝑠𝑖𝑛𝛼
𝑥𝑠𝑖𝑛𝛼 + 𝑦𝑐𝑜𝑠𝛼

). 
 

 The application of the rotation matrix to our incline problem is to look at Figure 2 
where the coordinate system is nonrotated.  In this coordinate system the weight W is 

aligned with the negative y-axis thus one can write the weight vector as W = (
0

−𝑚𝑔
) and 

the normal vector N is broken up along the x- and y-axes such as N = (
𝑁𝑥

𝑁𝑦
).  Now apply a 

rotation of the coordinate system through an angle θ as shown in Figure 1.  This leads to 
a new weight vector W′ and new normal vector N′ as shown explicitly below, 
 

W′ = RW = (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) (
0

−𝑚𝑔
) = (

𝑚𝑔𝑠𝑖𝑛𝜃
−𝑚𝑔𝑐𝑜𝑠𝜃

) 

and 

N′ = RN = (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) (
𝑁𝑥

𝑁𝑦
) = (

𝑁𝑥𝑐𝑜𝑠𝜃 − 𝑁𝑦𝑠𝑖𝑛𝜃

𝑁𝑥𝑠𝑖𝑛𝜃 + 𝑁𝑦𝑐𝑜𝑠𝜃
) 

= (
𝑁(−𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝜃 − 𝑁(−𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃
𝑁(−𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃 + 𝑁(𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃

) = (
0
𝑁

). 

 

These are the same results as shown in the first section of this paper. 
 
 This elementary example of a block modeled as a point particle sliding down an 
inclined plane can be used to demonstrate a host of physical phenomena.  The importance 
of the mass not appearing in the equation of motion is often discussed.  It is the authors 
hope that this example may also be used to show that the physics results are independent 
of the coordinate systems as well as an early example of group theory in the survey of 
physics course. 
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