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INTRODUCING ABSTRACT MATHEMATICS THROUGH DIGIT 
SUMS AND CYCLIC PATTERNS 

 
Sudhir Goel 

Shaun V. Ault 
Valdosta State University 
Valdosta, Georgia, 31698 

sgoel@valdosta.edu, svault@valdosta.edu  
 

ABSTRACT 
Using simple concepts that middle and high school students should be able to 
grasp, including “clock face arithmetic,” the standard multiplication table, and 
adding the digits of a number together, more abstract concepts such as modular 
arithmetic and cyclic groups may be introduced at an early stage in the 
students’ mathematical career. We find this approach to be organic and 
appealing to most students, encouraging them to think in different ways about 
familiar objects, and we encourage educators to test the concepts in their own 
classrooms. 
 
Keywords: modular arithmetic, digit sum, cyclic patterns, middle school 
math education, secondary math education. 
 

INTRODUCTION 
 Teaching an abstract algebra course in college to math majors or even to graduate 
students is often rather difficult.  Students may get lost in unmotivated axioms, unfamiliar 
notations, and unconnected topics presented throughout the course.  Of course, we as 
teachers have already internalized the motivation for the axioms; are familiar with the 
notation; and see the big picture connecting all of the topics, but it is difficult to convey 
all of this to the students.  At least in a real analysis, linear algebra, or basic topology 
course, students’ reasoning may be aided by pictures, but what pictures can be used in an 
abstract algebra course?  How can we motivate our students to learn abstract concepts 
that may be hard to visualize? 

We propose that the clarifying “images” of abstract algebra could be number 
patterns (Laughbaum 2014; Stump 2011).  In this paper, we present many examples of 
patterns that could help introduce undergraduate students to the theory of cyclic groups 
in particular, but the authors believe that similar ideas may be replicated in some other 
abstract algebra topics, which may be a further research topic that the authors explore in 
subsequent work.  Moreover we believe, in line with Kiernan (2004), that exposing a 
younger audience of primary or middle school students to “algebraic thinking” by way of 
patterns and functions in particular is a worthwhile goal in primary mathematics 
education. 

This paper is organized loosely as an exposition of some methods for teaching an 
introductory lesson in the cyclic groups in a practical and computational way.  What 
follows may be regarded as sample lecture notes.  While the material may be used for 
teaching college students, the intended audience is actually high school or middle school 
teachers who may use this material for introducing abstract concepts as early as possible 
in the mathematics curriculum. 
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The Cyclic Groups and DIGITSUM Function 
We first introduce the finite cyclic groups in an informal, nonaxiomatic way.  If 

more rigor is needed, then the definitions found in any abstract algebra textbook, such as 
Dummit and Foote (2003), may be presented.  For our purposes, the finite cyclic group 
of order 𝑛 is a set 𝐺 of 𝑛 elements with a commutative operation called addition, denoted 
by +, and distinguished identity element, often denoted by 𝑒 (but also denoted 0 in 
practice), which is generated by a single element 𝑔.  In other words, 𝐺 =
{𝑒, 𝑔, 𝑔 + 𝑔 = 2𝑔, 𝑔 + 𝑔 + 𝑔 = 3𝑔, … } such that 𝑛𝑔 = 𝑒.  We often use the notation 𝐶𝑛 to 
stand for a cyclic group of order 𝑛.  The addition operation in a finite cyclic group is 
equivalent to modular addition, and so cyclic groups find use in various important 
fields of study, including cryptography and cryptanalysis (Bard 2009; Swenson 2008). 
 For example, the cyclic group 𝐶5 has 5 elements, 0, 1, 2, 3, and 4, with the relation 
1+1+1+1+1 = 0 (that is, 5 is equivalent to 0).  In this group, we have 3 + 4 = 2, since when 
3 + 4 = 7 is divided by 5, the remainder is equal to 2 (this is an example of modular 
addition).  Moreover, each cyclic group 𝐶𝑛 also admits a well-defined multiplication 
operation (which gives 𝐶𝑛 the structure of a ring).  For example, in 𝐶5, we have 2 × 3 = 1, 
because the usual product of 2 and 3 is equal to 6, which has remainder 1 when divided 
by 5 (this is modular multiplication).  Modular arithmetic can be used to reinforce 
number sense and give practice for division with remainders in primary and secondary 
students, helping students to master related Common Core Standards for Mathematics, 
NBT.B.6 and NS.B.2 (cf. NCTM 2012). 

Cyclic means repetition or recurring; students may infer that the word cyclic might 
be related to the cycle in bicycle, and indeed the bicycle wheel is an excellent visual clue 
that cyclic groups must involve repetition of a pattern (as the wheel spins around, it 
returns to its starting position at some point).  One of the best concrete examples of how 
cyclic groups work is a wall clock.  Every number on a wall clock repeats after twelve 
hours, so counting by 1, we obtain the repeating pattern, (1, 2, 3, … , 10, 11, 12, 1, 2, 3, … ).  
Note, by relabeling 12 = 0, we have a model for 𝐶12, the cyclic group of 12 elements).  But 
interesting patterns are found by counting by different amounts or using different starting 
points.  For example, starting at 3, and increasing by 3, the student obtains 
(3, 6, 9, 12, 3, 6, 9, 12, 3, … ).  This could plant the seeds for groups and subgroups in the 
student's mind.  More practically, these concepts may help to address Common Core 
Standard OA.B.3. 

As another “real world” example, the teacher tells the student, “A doctor asked you 
to take four pills of a medication daily, at 6 hour intervals.  If the first pill is taken at 8:00 
am, then find the times for the other pills to be taken.”  Of course, we get a sequence of 
times, 8:00 am, 2:00 pm, 8:00 pm, which extends to the next day starting at 2:00 am, 
and the pattern continues thereafter.  This simple pattern may be recalled when students 
are first exposed to cosets and quotient groups much later in their academic career, 
as the set {2, 8} is one of six cosets in the quotient group 𝐶12/{0, 6}. 

In what follows, the digit sum of a positive integer is found by adding the digits 
of the number, then adding the digits of the result until we obtain a single digit number.  
For example, the digit sum of 7965 is found by adding: 7 + 9 + 6 + 5 = 27, and then 2 + 7 
= 9.  This rule defines a function, which we call DIGITSUM, from the set of positive 
integers to the set of nonzero digits, {1, 2, 3, … , 8, 9}.  For example, DIGITSUM(7965) = 
9.  This is an easy way to introduce or reinforce the idea of a function as a rule that 
associates output to any given input (cf. Common Core Standards IF.A). 
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Mathematicians and students throughout the ages have been fascinated by digit 
sums.  An interesting nontrivial use of digit sums was found by Tartaglia (1506-1559) in 
the claim (later rediscovered and proven by various mathematicians) that DIGITSUM(𝑝) 
= 1 for all perfect numbers 𝑝, except for 6 (Dickson 1999).  We note that DIGITSUM is 
essentially the same thing as reduction modulo 9, however we find that students are 
quicker at understanding adding digits repeatedly than finding remainders after long 
division. 

The domain of DIGITSUM is the set of all positive integers (or natural numbers).  
If we write an array of the first 150 natural numbers as shown in Table I, then it is a good 
exercise to observe the patterns as one applies DIGITSUM to each number (see Table II).  
Each column displays a cyclic permutation of the numbers (1, 2, 3, 4, 5, 6, 7, 8, 9).  The 
range 𝑅 = {1, 2, 3, … , 8, 9} of DIGITSUM may be identified with the cyclic group 𝐶9.  It is 
not difficult to prove that DIGITSUM respects the addition operation in the sense that 
DIGITSUM(𝑎 + 𝑏) = DIGITSUM(DIGITSUM(𝑎) + DIGITSUM(𝑏)).  However, the 𝐶9 
group structure is only apparent if one relabels “9” as “0.”  In fact, simply identifying the 
element 9 as the identity of the group suffices, leading to equations such as 5 + 9 = 5, and 
9 + 9 = 9, which may be strange to students at first.  Regardless of how we label the 
identity, the range of DIGITSUM is isomorphic to the cyclic group 𝐶9.  It is a useful 
exercise for students to write out the entire 9 × 9 addition table for the group.  We note in 
passing that DIGITSUM is a monoid homomorphism from the set of positive integers to 
𝐶9, however we cannot call DIGITSUM a group homomorphism because the domain set 
is not a group. 

 
Table I. An array of natural numbers from 1 to 150 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

101 102 103 104 105 106 107 108 109 110 

111 112 113 114 115 116 117 118 119 120 

121 122 123 124 125 126 127 128 129 130 

131 132 133 134 135 136 137 138 139 140 

141 142 143 144 145 146 147 148 149 150 
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Let us now use DIGITSUM to explore 
patterns in the table of numbers from 1 to 150.  
We organize the domain and range into tables of 
size 10 by 15.  The cyclical pattern is more evident 
in the digit sums of the numbers in columns 
rather than in rows, but of course the pattern 
exists in both. For example, in the sixth column, 
we find the cyclic pattern, (6, 7, 8, 9, 1, 2, 3, 4, 5, 
6, 7, 8, 9, 1, 2).  Teachers could show this to a 
student on a wall clock that ranges from 1 to 9 
instead of 1 to 12.  On the “nine-hour” clock, 
numbers complete one cycle in nine hours 
instead of twelve hours, and then start over, as 
suggested by Figure 1. 

 
 
 

 
 

Table II. DIGITSUM applied to the numbers in Table I 

1 2 3 4 5 6 7 8 9 1 

2 3 4 5 6 7 8 9 1 2 

3 4 5 6 7 8 9 1 2 3 

4 5 6 7 8 9 1 2 3 4 

5 6 7 8 9 1 2 3 4 5 

6 7 8 9 1 2 3 4 5 6 

7 8 9 1 2 3 4 5 6 7 

8 9 1 2 3 4 5 6 7 8 

9 1 2 3 4 5 6 7 8 9 

1 2 3 4 5 6 7 8 9 1 

2 3 4 5 6 7 8 9 1 2 

3 4 5 6 7 8 9 1 2 3 

4 5 6 7 8 9 1 2 3 4 

5 6 7 8 9 1 2 3 4 5 

6 7 8 9 1 2 3 4 5 6 

 
Arithmetic Sequences 

Consider an arithmetic sequence, (𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, 𝑎 + 3𝑑, … ), in which 𝑎 and 
𝑑 are whole numbers.  It is well known (and an interesting exercise for middle school 
students) to show that when each number in the sequence is divided by 𝑎 then the 
sequence of remainders forms a cyclical pattern.  What we are really doing is reducing 
each number modulo 𝑎.  For example, the sequence with 𝑎 = 5, 𝑑 = 7, namely (5, 12, 19, 
26, 33, 40, 47, 54, 61, 68…), when reduced modulo 5 results in: (0, 2, 4, 1, 3; 0, 2, 4, 1, 
3…).  When the same sequence is reduced modulo 6, we obtain: (5, 0, 1, 2, 3, 4; 5, 0, 1, 
2…).  We observe that for the first sequence, the cyclical pattern of the remainders is 0, 2, 
4, 1, 3, and for the second sequence, the cyclical pattern of the remainders is 5, 0, 1, 2, 3, 

Figure 1. A clock face illustrating modular 
arithmetic with the numbers 1–9. Image 
courtesy of Pixabay.com. 
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4.  Students may observe that the same initial sequence resulted in patterns that repeated 
after different numbers of terms (5 in the first case, and 6 in the second).  Next, we might 
ask students to consider the following arithmetic sequence (𝑎 = 5, 𝑑 = 3): (5, 8, 11, 14, 17, 
20, 23, 26, 29, 32…).  When reduced modulo 6, this sequence results in the following: (5, 
2; 5, 2; 5, 2; 5, 2; 5, 2; 5, 2…), a cyclical pattern that repeats blocks of 2 as opposed to 6, 
even though we reduced modulo 6.  Ask students why the repeated blocks might be 
different in size, and lead them toward examining the GCD (greatest common divisor) of 
the modulus and common difference of the sequence (cf. Common Core Standard 
NS.B.4). 

As a follow-up exercise, consider the effect of reducing each column of Table I by 
its first element, that is, reduce column 1 modulo 1, column 2 modulo 2, column 3 modulo 
3, etc., as shown in Table III.  By doing this, students practice division and discover cyclic 
patterns.  Remind the students that the only possible remainders under division by 𝑛 are 
 

Table III. Reduction of each column of Table I modulo its  
first element 

Column 1 2 3 4 5 6 7 8 9 10 

  0 0 0 0 0 0 0 0 0 0 

  0 0 1 2 0 4 3 2 1 0 

  0 0 2 0 0 2 6 4 2 0 

  0 0 0 2 0 0 2 6 3 0 

  0 0 1 0 0 4 5 0 4 0 

  0 0 2 2 0 2 1 2 5 0 

  0 0 0 0 0 0 4 4 6 0 

  0 0 1 2 0 4 0 6 7 0 

  0 0 2 0 0 2 3 0 8 0 

  0 0 0 2 0 0 6 2 0 0 

  0 0 1 0 0 4 2 4 1 0 

  0 0 2 2 0 2 5 6 2 0 

  0 0 0 0 0 0 1 0 3 0 

  0 0 1 2 0 4 4 2 4 0 

  0 0 2 0 0 2 0 4 5 0 

 
the whole numbers less than 𝑛, however the columns headed by 𝑎 = 2, 4, 5, 6, 8, and 10 
do not contain all possible remainders.  Students may reflect (and teachers will reinforce) 
that each of these numbers have nontrivial GCD with 10.  Column 1 is fairly uninteresting 
because there is only one possible remainder: 0.  Columns 2, 5, and 10 display only 0 
because these three numbers are divisors of 10 (indeed, so is the number 1).  Only columns 
3, 7, and 9 display all possible remainders in cyclic sequence: (0, 1, 2) for 𝑎 = 3; (0, 3, 6, 
2, 5, 1, 4) for 𝑎 = 7; and (0, 1, 2, 3, 4, 5, 6, 7, 8) for 𝑎 = 9.  More advanced students may 
discover that the pattern of numbers in each column is directly related to 10 mod 𝑎.  For 
example, 10 mod 7 = 3, so this is why column 7 of Table III shows increase by 3 (modulo 
7) from one term to the next. 
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DIGITSUM and the Multiplication Table 
We now consider the multiplication table, up to 15 as shown in Table IV. It is obvious that 
the rows and columns of the table represent arithmetic sequences with the common 
difference 𝑑 in each row or column being the same as the first term, that is, 𝑑 = 𝑎.  There 
are many wonderful patterns in the table that can spark the interest of younger students 
(see, e.g., Charlesworth 2012; Frye et al. 2013), but our purpose is to connect some of 
these patterns to more abstract ideas, including the cyclic groups.  For example, students 
can see that multiplication (×) is a binary operation, taking two numbers, say 7 and 4, 
and producing a single output, 28.  Moreover, the operation is commutative: 4 × 7 =
7 × 4 = 28. 
 

Table IV. The 15 x 15 multiplication table 

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

3 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

4 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

6 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 

7 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 

8 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 

9 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 

10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

11 11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 

12 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 

13 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 

14 14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 

15 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 
We point out that the digit sums of numbers in any column or row also form 

cyclical patterns.  For example, the digit sums of the numbers in column 3 are (3, 6, 9; 3, 
6, 9; …) – in fact columns 6, 12, and 15 also exhibit cyclic patterns of order 3 after applying 
DIGITSUM.  All numbers that are not multiples of 3 show digit sum patterns containing 
all nine numbers 1, 2, … 9 in some order.  This is easily checked by hand and makes for 
an engaging student activity.  It is also fun to see students work on the nines column, as 
they quickly realize all of the digit sums will be 9; this is a wonderful opportunity to 
remind them that this gives a test for divisibility by 9. 

Recall, if (𝑎1, 𝑎2, 𝑎3, 𝑎4, … ) is any sequence, then the sequence of first differences 
is: (𝑎2 − 𝑎1, 𝑎3 − 𝑎2, 𝑎4 − 𝑎3, … ).  By examining first differences of certain diagonals of the 
multiplication table, another interesting pattern emerges.  For example, starting at 1 ×
14 = 14 and moving diagonally up and right in Table IV, we find the sequence (14, 26, 36, 
44, 50, 54, 56, 56, 54, 50, 44, 36, 26, 14), whose first differences are: (12, 10, 8, 6, 4, 2, 0, 
−2, −4, −6, −8, −10, −12); the latter is an arithmetic sequence starting at 𝑎 = 12 with 
common difference 𝑑 = −2.  Every up-right diagonal exhibits a sequence of first 
differences which is arithmetic with the same common difference.  More advanced middle 
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school or high school students should verify this claim, the proof of which is presented 
below: 

Consider any three consecutive entries in an up-right diagonal on the 
multiplication table, say 𝑛𝑘, (𝑛 + 1)(𝑘 − 1), (𝑛 + 2)(𝑘 − 2).  The first 
differences are as follows:  (𝑛 + 1)(𝑘 − 1) − 𝑛𝑘 = 𝑘 − 𝑛 − 1 and (𝑛 + 2)(𝑘 −
2) − (𝑛 + 1)(𝑘 − 1) = 𝑘 − 𝑛 − 3.  Note that the difference between these two 
is as follows:  (𝑘 − 𝑛 − 3) − (𝑘 − 𝑛 − 1) =  −2.  Thus, the sequence of first 
differences is arithmetic with common difference 𝑑 = −2, regardless of 
which diagonal is chosen. 

 
DIGITSUM and Sequences of Powers 

After considering the multiplication tables, we look for cyclical patterns in the powers of 
numbers, 𝑎𝑛. There are patterns, however these do not become apparent until after we 
apply DIGITSUM.  Once again except for multiples of three: 3, 6, 9, etc., the digit sums of 
powers of other numbers do exhibit cyclical patterns as shown in Table V.  Students may 
observe that the patterns for 4 and 13 are identical.  This is because 13 = 4 + 9, and 9 acts 
as an identity under DIGITSUM, but it is worthwhile asking students why they believe the 
two patterns match. 
 

Table V. Powers of whole numbers, 𝑎𝑛, and their digit sums 

n a = 2 a = 4 a = 5 a = 7 a = 8 a = 13 

1 2 2 4 4 5 5 7 7 8 8 13 4 

2 4 4 16 7 25 7 49 4 64 1 169 7 

3 8 8 64 1 125 8 343 1 512 8 2197 1 

4 16 7 256 4 625 4 2401 7 4096 1 28561 4 

5 32 5 1024 7 3125 2 … 4 … 8 … 7 

6 64 1 4096 1 15625 1  1  1  1 

7 128 2 … 4 … 5  7  8  4 

8 256 4  7  7  4  1  7 

9 512 8  1  8  1  8  1 

10 1024 7  4  4  7  1  4 

 
Finally, students may be shown a cyclic group in another form: with operation 

given by multiplication (and reduced via DIGITSUM).  Each column of Table V exhibits a 
cyclic group structure: (𝐶6,×) for 𝑎 = 2; (𝐶3,×) for 𝑎 = 5, 7, 13; and (𝐶2,×) for 𝑎 = 8.  
Mathematically, we are seeing the fact that DIGITSUM respects multiplication, a fact that 
may be proven in a college-level course.  For completeness, a sketch of the proof follows. 

Let 𝑎, 𝑏 be whole numbers and write each in expanded form, 𝑎 = 𝑎0 +
𝑎110 + 𝑎2102 + ⋯ + 𝑎𝑛10𝑛, and 𝑏 = 𝑏0 + 𝑏110 + 𝑏2102 + ⋯ + 𝑏𝑚10𝑚.  As a 
first step in finding the digit sum of either number, we sum the coefficients 
to obtain 𝑎′ =  𝑎0 + 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛, and 𝑏′ =  𝑏0 + 𝑏1 + 𝑏2 + ⋯ + 𝑏𝑚, 
respectively.  If the result of either sum is greater than 9, then further 
reduction is necessary, however we first consider the case when both 𝑎′, 𝑏′ 
are less than 10, so that DIGITSUM(a) = 𝑎′, and DIGITSUM(b) = 𝑏′.  
Elementary algebra then implies that DIGITSUM(a)×DIGITSUM(b) is 
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equal to the sum of all terms of the form 𝑎𝑖𝑏𝑗 for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚.  Now 

consider DIGITSUM(ab). Since 𝑎𝑏 =  ∑ (𝑎0𝑏𝑘 + 𝑎1𝑏𝑘−1 + ⋯ +𝑛+𝑚
𝑘≥0

𝑎𝑘𝑏0) 10𝑘, we find that the first reduction step to compute the digit sum of 
ab is again equal to the sum of all terms of the same form.  By induction on 
the number of reduction steps required to find DIGITSUM, the general 
result follows. 
 

CONCLUSION 
We strongly believe that experimenting with the patterns in numbers with the help 

of DIGITSUM as outlined in this paper could help young students discover important 
mathematical concepts in a delightful and recreational way, while providing alternative, 
engaging methods for teachers to address certain Common Core standards.  Moreover, 
early exposure to modular arithmetic may improve students’ number sense and pave the 
way for eventual understanding of higher mathematics such as group theory.   

Unfortunately, this paper is incomplete in the sense that we have not had the 
opportunity to test the methods described here in the classroom. The reason is that we, 
being a small university, do not have the desired resources to test the concepts in our 
paper. We strongly recommend the reader to test the concepts in this paper against the 
more conventional methods. 
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