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ABSTRACT 

 

In 1949, Hubbs and Lagler described morphological variation among pearl dace 
(Margariscus margarita) of inland lakes on Isle Royale, Michigan. For Harvey 
Lake, Hubbs and Lagler proposed that pearl dace were sufficiently 
morphologically distinct to warrant subspecific status. They argued that 
divergence of the Harvey Lake pearl dace was due to allopatric differentiation in 
isolation from lower elevation lakes. Harvey Lake has been isolated by elevation 
from lower elevation lakes for approximately 10 to 15 thousand years. No genetic 
studies have been done on Isle Royale pearl dace to evaluate this hypothesis to 
date. Here we report the analysis of Margariscus margarita populations using a 
limited battery of microsatellite loci to assess the extent of and genetic 
divergence among the Harvey Lake and other Isle Royale lowland lake 
populations. Microsatellite loci were analyzed using PCR primers developed for 
the non-congener, longnose dace (Rhinichthys cataractae). Statistical analyses 
of allele frequency data indicate genetic differentiation among all Isle Royale 
pearl dace populations inclusive of both Harvey Lake and lowland populations 
concurring with Hubbs and Lagler’s hypothesis that the Harvey Lake population 
is genetically divergent. Results also indicate that the lowland Isle Royale 
populations are apparently equally divergent from one another. 
 
Keywords: pearl dace, microsatellites, population divergence, Isle Royale, 
Margarita margariscus 

 
INTRODUCTION 

In 1946, during one of the very few formal comprehensive surveys of 
ichthyofauna of Isle Royale, Michigan, Hubbs and Lagler (1949) identified a population 
of pearl dace, (Margariscus margarita) in the elevationally isolated Harvey Lake. They 
described unique morphological differences (such as in head shape and fin ray counts) 
for the population that distinguished them from populations of other lowland lakes on 
Isle Royale and the mainland. Hubbs and Lagler (1949) further hypothesized that 
morphological differentiation of Harvey Lake pearl dace was sufficiently distinct to 
warrant designation of the Harvey Lake pearl dace as a unique subspecies.  Other than a 
small sample collected during a brief and partial faunal survey of the island in the early 
1960s (Hubbs and Lagler 1964), no further work was done on the Harvey Lake pearl 
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dace population. Its designation as a subspecies depended solely on Hubbs and Lagler’s 
initial 1949 description.  Bailey and Smith (1981) argued that there is not enough data to 
appoint subspecific status to the Harvey Lake pearl dace. The taxonomic status of the 
Harvey Lake pearl dace population has remained questionable since that time 
(Kallemeyn 2000).  Until now no genetic analyses have been done to determine if the 
degree of genetic differentiation of Harvey Lake from other Isle Royale populations 
might support Hubbs and Lagler’s subspecies hypothesis largely due to the 
inaccessibility of the island lakes and the difficult logistics of ichtyofaunal survey on Isle 
Royale. 

This study used polymerase chain reaction (PCR) based DNA analysis of highly 
polymorphic microsatellite loci markers to assay genetic variation to estimate gene flow 
and population genetic differentiation among Isle Royale populations as well as to 
estimate the degree of  isolation of the Harvey Lake population from other Isle Royale 
and mainland populations.  This study took advantage of the fortuitous sampling of Isle 
Royale fishes done during the first systematic faunal survey since the 1940s conducted 
in 1995 by the U.S. Biological Service.  Pearl dace samples were collected from Harvey 
Lake and other Isle Royale lowland lakes for genetic analyses.  Margariscus margarita 
samples were frozen and archived tissue samples held at -80 oC for future analysis. 
 
Isle Royale 
 Isle Royale National Park was created by President Franklin Roosevelt in 1940.  
Due to its unique location and characteristics Isle Royale National Park was later 
inducted into the National Wilderness Preservation System under the Wilderness Act of 
1976.  In 1981, Isle Royale was identified as a United Nations International Biosphere 
Reserve in recognition of its global significance for scientific research and education. 
Isle Royale is perhaps most famous ecologically for being the site of the longest ongoing 
wildlife research project into predator/prey dynamics of the grey wolf (Canis lupus) and 
the moose (Alces alces) ever conducted  (Micheal et al. 2008; Peterson et al. 1998). 

Isle Royale National Park and Wilderness Area lies roughly 25 miles (40.2 km) 
offshore of Minnesota in Lake Superior.  The island is approximately 40 miles (64.4 km) 
long by 9 miles (14.5 km) wide at its broadest point and is characterized by about 35 
small inland, low elevation lakes.  Isle Royale is 98% wilderness and has a total acreage 
of about 571,000 (231,076 ha), 133,000 of which is considered land-based.  Isle Royale’s 
wilderness ecosystem and fauna are of special interest to scientific research because the 
area is considered to be only minimally disturbed by anthropomorphic activity even 
though the island is heavily visited by fishermen from Lake Superior and primitive 
campers during the summer months (Michael et al. 2008; Peterson et al. 1998). 
 Isle Royale lies approximately halfway between the North Pole and the equator in 
Lake Superior and as a result has a temperate climate with a high diversity of habitats, 
ranging across streams, the bog ponds, small lakes, and deep shore waters (Hubbs and 
Lagler 1964). As a result the fish fauna of Isle Royale is relatively diverse as is that of the 
whole Great Lakes region (Hubbs and Lagler 1964). 

Modern day Lake Superior and Isle Royale were heavily influenced by recession 
of the Pleistocene Wisconsin Ice Age glaciers in North America. As the glaciers melted 
and Lake Superior water levels dropped, new opportunities for fish dispersal developed 
in the Great Lakes region.  As Isle Royale emerged many small, inland lakes formed due 
to a decreasing water level in Lake Superior (Hubbs and Lagler 1964).  Those inland 
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lakes with higher elevations (Harvey Lake) were formed before those of lower 
elevations.  Harvey Lake appears to be unique among Isle Royale lakes in that its 168 ft 
(51.2 m) elevation has resulted in its presumed relative biological isolation from lower 
surrounding waters for approximately the last 15,000 years. The end of the last ice age is 
the last time Lake Superior experienced a high water event of a magnitude reaching 
Harvey Lake.  Although Harvey Lake does, and historically has, drained into Lake 
Superior, the drainage consists of a 168 ft (51.2 m) waterfall presumed to prevent any 
upstream migration by fishes from Lake Superior proper or from nearby Isle Royale 
lowland lakes (Hubbs and Lagle 1964).  

The island fish fauna is known to consist of some 41 species from 31 genera 
representing 14 families (Hubbs and Lagler 1949).  The Harvey Lake population of pearl 
dace (Margariscus margarita) is of especial interest because it is presumed to have 
descended from a relic population left behind by the last recession of the Pleistocene 
Lake Superior (Hubbs and Lagler 1949). Harvey Lake pearl dace were assumed to have 
diverged as a result of limited or no gene flow since isolation to the extent that Hubbs 
and Lagler declared this population to warrant the assignation of unique subspecific 
status (Hubbs and Lagler 1949).  However, due to the relative inaccessibility of Isle 
Royale inland lakes, as demonstrated by the lack of faunal surveys in the park for the 
last 70 years, Harvey Lake minnows have remained virtually unstudied since the limited 
survey conducted in 1964 by Hubbs and Lagler.  The most comprehensive survey of the 
Isle Royale fish fauna was done by Koelz in 1925 (Koelz 1929) followed by partial 
surveys of  only a few Isle Royale lakes since that time (Hubbs and Lagler 1964; 
Kallemeyn 1995).   

To date no attempts have been made to use genetic techniques to assess the 
degree of gene flow and genetic divergence among the Harvey Lake population and 
those of adjacent Isle Royale lakes in order to evaluate Hubbs and Lagler’s hypothesis.  
 
Genetic and Statistical Analysis 

This study assayed microsatellite loci which are one class of variable number 
tandem repeats (VNTR) sequence variation.  These particular sequences exist at many 
different loci, distributed throughout eukaryotic genomes, as strings of repeated simple 
DNA sequences (for example: dinucleotide repeats ATATATAT… and trinucleotide 
repeats ATCATCATC…) and most of the allelic variation is in the form of repeat number 
differences at any given locus.  The development of PCR based techniques that allow the 
scoring of allelic variation for single individual microsatellite loci has made 
microsatellites the VNTRs of current preference used to detect gene flow and population 
differentiation.  The sequences have a high mutation rate (10-3 per locus per generation 
[Edwards et al. 1992; Jeffreys et al. 1988; Kelly et al. 1991]) which makes them highly 
variable and therefore providing sufficient genetic variation for the discrimination of 
population level questions.  High levels of Mendelian allelic differences usually provide 
dozens of alleles at each locus (Rico et al. 1993).  This translates into the presence of 
large amounts of relatively easily assayed population genetic variation.  Since allelic 
differences are easily scored, frequency data gathered using these markers are readily 
analyzed for population structuring and interconnectedness using accepted population 
genetic methods such as Hardy-Weinberg exact tests (Guo and Thompson 1992; 
Haldane 1954; Raymond and Rousset 1995b; Rousset and Raymond 1995; Rousset 
2008; Weir 1996), genotypic differentiation (Fisher 1935; Goudet et al. 1996; Raymond 
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and Rousset 1995a; Raymond and Rousset 1995b; Rousset 2008), and Fst and Rhost 
statistics (Cockerham 1973; Michalakis and Excoffier 1996; Raymond and Rousset 
1995b; Rousset 2008; Rousset 1996; Weir and Cockerham 1984; Wright 1978).   

 
MATERIALS AND METHODS 

Sampling 
 Population samples were collected by National Park Service and U.S Geological 
Survey personnel, under the supervision of Larry Kallemeyn (2000), during the faunal 
survey of Isle Royale fishes conducted in the summer of 1995.  Specimens were collected 
by seine and funnel traps and transported frozen to the Department of Biology at the 
University of North Dakota.  Archived frozen tissue samples were shipped on dry ice to 
Valdosta State University for genetic analysis.  Since several loci were used, each having 
large amounts of allelic variation, population samples of individual fish need not have 
been prohibitively large to have generated some confidence in findings.  Since our 
samples were irreplaceable samples of convenience taken during the 1995 survey we 
were forced to settle on sample sizes of 20 individual specimens from each population in 
order to achieve equal sample sizes among populations. While these numbers are low 
per location they proved sufficient to achieve some level of confidence in our analyses.  
Populations were collected from Harvey Lake, Hatchet Lake, and Forbes Lake on Isle 
Royale.  The mainland population was collected from Scabbard Lake and Marsh Lake, in 
Northern Minnesota. 
 
DNA Isolation/Extraction   

Fish tissues were stored in a -80 oC freezer until DNA extraction was performed. 
Standard guanidinium isothiocyanate (GIT) extraction of nucleic acids was performed 
on all samples (Turner et al. 1989).  Individual specimens were processed on ice to 
prevent DNA decomposition during the procedure.  Approximately 0.5 g of muscle 
tissue was dissected away, skinned, and minced with a razor blade.  Samples were 
suspended in 1.5 mL microfuge tubes with approximately 600-700 μL of GIT and 
incubated for 24-48 hours.  Samples were gently homogenized by hand pestle in the 
microfuge tube and allowed to stand for another 24-48 hours to ensure complete tissue 
lysis.  After incubation lysed homogenates were extracted twice with equal volume of 1:1 
phenol/chloroform mixture to remove protein and purify nucleic acids.  Samples were 
centrifuged for 20 min at 5000 rpm in a Hermle (Wehingen, Germany) Z180M table top 
centrifuge to separate organics, proteins, and cell debris from the aqueous supernatant 
containing nucleic acids. Supernatants were subsequently extracted three times with 
equal volumes of 1:1 chloroform:isoamyl alcohol. DNA was recovered using standard 
precipitation with two volumes of cold 95% ethanol in the presence of 0.2 volumes of 10 
M ammonium acetate. Samples were precipitated overnight at -20 oC.  After 
centrifugation for 15 min at 5000 rpm at 4 oC pellets were washed in cold 70% 
ethanol/ddH2O.  Pelleted DNA was air dried at room temperature and subsequently 
dissolved in 1 mL of 1 X TE buffer at 37 oC overnight. 
 
Microsatellite Primer Development 
 Microsatellite primers from non-conspecifics longnose dace (Rhinichthys 
cataractae) were obtained from Integrated DNA Technologies® (IDT) (Waltham, 
Massachusetts) based on sequences derived from Girard and Angers (2006).  These 
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microsatellite primers were previously shown to cross-amplify loci from the genomes of 
five other cyprinid minnow species; Rhinichthys atratullus (blacknose dace), 
Margariscus margarita (pearl dace), Exoglossum maxillingua (cutlips minnow), 
Phoxinus eos (northern redbelly dace), and Pimephales promelas (fathead minnow).  Of 
10 microsatellite loci developed for the longnose dace, nine of them were reported to 
cross amplify loci for the pearl dace.  Only five of these primer pairs proved to cross 
amplify informative polymorphic loci in our samples. PCR primers were commercially 
prepared at 100 μM by Integrated DNA Technologies and labeled with IR 700 
fluorescent dye for use in the LiCOR® (Lincoln, Nebraska) 4300 infrared genotyping 
system. Primer pair and locus specifics for M. margariscus are given in Table I. 
 
Table I. Longnose dace primer pairs derived from Girard and Angers (2006) that 
reliably amplified informative loci in M. margariscus. Locus designations are those 
given by Girard and Angers. Rhca designates forward and DQ designates reverse.  Ann. 
= Annealing, T = Temperature, All. = Alleles, No. = number. 

Locus / 
primers Primer sequence 

Repeat 
Motif 

Ann. 
T CO 

No.  
all. 

bp range 
of All. He 

Rhca 7 GTCCACCTCATACAAATTCC 
 

64 20 86-164 0.81(0.50) 

DQ106911 ATGAGGCAACCACTGGAGC (CA)n 
    Rhca 15b CTCACAGACTACCTGCCC 

 
64 16 108-324 0.87(0.55) 

DQ106913 CAGAGGTCAAACAGTAGTAGG (CTAT)n 
    Rcha 20 CTACATCTGCAAGAAAGGC 

 
64 5 94-130 0.85(0.59) 

DQ106915 CAGTGAGGTATAAAGCAAGG (GA)n 
    Rhca 24 GTGGTGTTAGCAGAAACCG 

 
54 14 229-453 0.94(0.76) 

DQ106917 CTGCTGTTAATATGTCAC (GA)n 
    Rhca 52 TTAATGCGAATCTTTGGG 

 
59 12 128-310 0.75(0.10) 

DQ106921 CAATGAGACAGATTCGATTC (CT)n 
     

Polymerase Chain Reaction  
 PCR was conducted using a Bio-Rad (Hercules, California) MyCycler™ thermal 
cycler.  The PCR protocols were similar to those of Girard and Angers’ (2006).  PCR was 
done in 25 μL reactions using New England BioLabs® (Ipswich, Massachusetts) 
reagents. Reaction components were as follows: NEB’s 1X standard Taq reaction buffer, 
200 µM dNTPs, 0.5 units of Taq polymerase, and 1 µM each forward and reverse 
microsatellite primers.  Final reaction volumes were adjusted to 25 µL by adding 17.9 μL 
of PCR grade H2O.  Thermal gradient PCR was performed to optimize annealing 
temperatures for each of the microsatellite primer pairs ranging between 54 oC and 64 
oC (see Table I).  Thermal cycles included an initial denaturation at 95 oC for 2:00 min 
followed by 30 cycles of 92 oC; 30 s, annealing temperature (as per Table I) for 30 s and 
72 oC for 30 s. Samples were held at 4 oC after thermocycling. 
 
Gel Electrophoresis 
 Gel electrophoresis and microsatellite allele scoring was conducted using 
standard protocols for the LiCOR® (Lincoln, Nebraska) 4300 sequence 
analyzer/genotyping system.  Twenty-five centimeter long, 0.25 mm thick, 4.5% 
polyacrylamide gels in 1 X TBE buffer were used to differentiate microsatellite allele 
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fragment lengths fluorescently labeled with IR 700 primers. Samples were 
electrophoresed at 2000 V for 2 hours or until standard markers indicated completion. 
Three different standard LiCOR® fluorescent labeled sizing standards were used to 
calibrate allele size scoring for each gel. 
 
Statistical Analysis 

Allele fragments were identified and scored using the SagaGT™ software 
developed for microsatellite analysis provided with the LiCOR® 4300 DNA analyzer.  
SagaGT™ digitalizes electrophoresis results, finds lanes, locates standards, calibrates 
band sizes, and scores alleles (LiCOR® Biosciences 2011b). All allele fragments detected 
by the LiCOR system were also visually checked and confirmed before inclusion in the 
data set. 

Allele frequency data analysis was conducted using the web based software 
Genepop (Raymond and Rousset 1995b; Rousset 2008).  Allelic sizes and frequencies at 
each locus were scored for all populations.  Standard population genetic statistics were 
calculated using the web-based software Genepop (Raymond and Rousset 1995b; 
Rousset 2008).  The analyses include the following: Rho (Valdes et al. 1993; Michalakis 
and Excoffier 1996; Raymond and Rousset 1995b; Rousset 2008; Rousset 1996) and F-
statistics (Wright 1978) for all populations, genotypic differentiation P-values for exact 
G tests (Fisher 1929) between pairs of populations, and Hardy Weinberg heterozygote 
deficiency and excess tests (Chakraborty and Jin 1992) for each locus in each 
population.   
 

RESULTS 
The F statistics (Table II) were calculated to estimate the level of heterozygosity 

(Table III) within and among individuals, and, within and among populations (Wright 
1978). 
The maximum likelihood exact G-test was used among population pairs to see if any two 
populations have the same distribution of genotypes.  The exact G-test uses the log-
likelihood of how well an observed pair of genotypic distributions fits the expected 
genotypic distributions.  The sum of all the loci probabilities within the contingency 
tables was used to generate a rejection zone.  An impartially estimated P-value of the 
exact G-test is produced for each population pair based on the best fit of the observed 
genotype to the contingency table (Goudet et al. 1996; Raymond and Rousset 1995a; 
Raymond and Rousset 1995b; Rousset 2008).  The null hypothesis in this test is that 
“genotypes are drawn from the same distribution in all populations” (Raymond and 
Rousset 1995b; Rousset 2008).  A low P-value will result in a rejection of this Ho.  The 
estimated P-values are shown in Table III. S. E. is the standard error which is the 
standard deviation between the observed and expected distributions (Larson and Farber 
2006).  
 
Table II. Tabulated estimated F and Rho Statistics.  Fis compares the genetic variability 
of an individual to the subpopulation or the chance of inbreeding in a population.  Fst 

compares the genetic variability of a subpopulation to the total population.  Fit compares 
the genetic variability of the individual against the total population (Wright 1978).  Rho 
(R-statistics) is a less conservative measure that estimates the relatedness of alleles by 
their size assuming microsatellites evolve in the stepwise mutation model (SSM) (Valdes 
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et al. 1993).  Under SSM models individuals with alleles close in size are more related to 
one another (Michalakis and Excoffier 1996; Raymond and Rousset 1995b; Rousset 
2008; Rousset 1996). 

 
F-Statistics   Rho-Statistics 

Locus Fis˄ Fst˄ Fit˄ Rhois˄ Rhost˄ Rhoit˄ 

Rhca7 -0.171388 0.157509 0.013116 0.376497 0.235838 -0.05187 

Rhca15b 0.350877 0.603463 0.742599 0.065527 0.854639 0.864164 

Rhca20 -0.108504 0.277192 0.198764 0.005059 0.432304 0.435176 

Rhca24 -0.151589 0.364778 0.268485 -0.4044 0.577789 0.407046 

Rhca52 -0.054132 0.268485 0.030448 0.162827 0.104696 0.250476 

Multi Loci -0.0800 0.2714 0.2131 -0.1816 0.6678 0.6075 

 
Table IIIa and b. Exact G-test. The maximum likelihood results testing the 
hypothesis that alleles are drawn from the same distribution for all population pairs. 

Table IIIa    

Exact G Test Rhca7 Rhca15b Rhca20 

Population Pair P-value S.E. P-value S.E. P-value S.E. 

Harvey/Forbes 0.000000 0.000000 0.000010 0.000010 0.755950 0.002130 

Hatchet/Forbes 0.000000 0.000000 0.000000 0.000000 0.007150 0.000800 

Hatchet/Harvey 0.000000 0.000000 0.000610 0.000250 0.030400 0.001500 

Scabbard/Forbes 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Scabbard/Harvey 0.000000 0.000000 0.292850 0.001980 0.000000 0.000000 

Scabbard/Hatchet 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Table IIIb       

Exact G Test Rhca24 Rhca52   

Population Pair P-value S.E. P-value S.E.   

Harvey/Forbes 0.000000 0.000000 0.001690 0.000410   

Hatchet/Forbes 0.000000 0.000000 0.000000 0.000000   

Hatchet/Harvey 0.016910 0.002010 0.111570 0.005560   

Scabbard/Forbes 0.000000 0.000000 0.000250 0.000230   

Scabbard/Harvey 0.000000 0.000000 0.000070 0.000070   

Scabbard/Hatchet 0.000000 0.000000 0.000000 0.000000   

 
Hardy-Weinberg (HW) exact tests were performed to analyze deviations from 

HW equilibrium within and among populations.  HW deficiency and excess tests 
determine if there is a deficiency or an excess of heterozygosity (Guo and Thompson 
1992; Haldane 1954; Weir 1996; Raymond and Rousset 1995b; Rousset 2008; Rousset 
and Raymond 1995).  The HW deficiency and excess data for each population is shown 
in Table IV along with a global U-test for multi-locus Hardy-Weinberg expectation over 
all populations combined (Raymond and Rousset 1995a; Raymond and Rousset 1995b; 
Rousset 2008). 

The Hardy- Weinberg exact tests use Fisher’s (1935) method to calculate a P-

value for a 2 for each population across all loci (Table IV) (Fisher 1935; Raymond and 
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Rousset 1995a; Raymond and Rousset 1995b; Rousset 2008). Fisher’s (1925) method 

was used to acquire a P-value from 2 value for each population pair across all of the 
loci (Table IV). 

The maximum likelihood exact G-test (Table V) was used among population pairs 
to determine if any two populations had the same distribution of genotypes.  The exact 
G-test uses the log-likelihood of how well an observed pair of genotypic distributions fits 
to the expected genotypic distributions.  The sum of all the loci contingency tables’ 
probabilities was used to generate a rejection zone.  An impartially estimated P-value of 
the exact G-test is produced (Raymond and Rousset 1995; Rousset 2008).  The null 
hypothesis in this test is that “genotypes are drawn from the same distribution in all 
populations” (Raymond and Rousset 1995; Rousset 2008).  A low P-value will result in a 

 
Table IV.  Hardy-Weinberg exact tests. 

Harvey Lake Hardy-Weinberg Exact Test 

Locus 
Probability   
P - value Probability SE Deficiency /Excess P value SE 

Rhca 7 0.0165 0.0048 
Deficiency 0.3598 0.0202 

Excess 0.6553 0.0200 

Rhca 15b 0.1142 0.0017 
Deficiency 0.1142 0.0017 

Excess 1.0000 0.0000 

Rhca 20 1.0000 0.0000 
Deficiency 1.0000 0.0000 

Excess 0.5398 0.0021 

Rhca 24 0.0321 0.0088 
Deficiency 0.0575 0.0109 

Excess 0.9755 0.0063 

Rhca 52 0.0000 0.0000 
Deficiency 0.0000 0.0000 

Excess 1.0000 0.0000 

Overall Chi2 = ∞,  DF = 10,  Probability = Highly significant 

Forbes Lake Hardy-Weinberg Exact Test 

Locus 
Probability   
P - value Probability SE Deficiency /Excess P value SE 

Rhca 7 0.052 0.007 
Deficiency 1.0000 0.0000 

Excess 0.0017 0.0007 

Rhca 15b 1.000 0.000 
Deficiency 1.0000 0.0000 

Excess 0.9735 0.0008 

Rhca 20 0.273 0.002 
Deficiency 0.2725 0.0020 

Excess 0.9880 0.0006 

Rhca 24 0.020 0.001 
Deficiency 0.0290 0.0016 

Excess 0.9791 0.0014 

Rhca 52 0.016 0.003 
Deficiency 0.3916 0.0161 

Excess 0.6090 0.0161 

Overall Chi2 = 24.62, DF = 10,  Probability = 0.0061 
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Table IV.  Hardy-Weinberg exact tests. Continued.  

 Hatchet Lake Hardy-Weinberg Exact Test 

Locus 
Probability   
P - value Probability SE Deficiency /Excess P value SE 

Rhca 7 0.0018 0.0090 
Deficiency 0.9478 0.0103 

Excess 0.0599 0.0110 

Rhca 15b 0.0000 0.0000 
Deficiency 0.0000 0.0000 

Excess 1.0000 0.0000 

Rhca 20 0.0358 0.0032 
Deficiency 0.9886 0.0022 

Excess 0.0267 0.0033 

Rhca 24 0.0000 0.0000 
Deficiency 0.3734 0.0188 

Excess 0.6266 0.0188 

Rhca 52 0.0041 0.0038 
Deficiency 0.3351 0.0357 

Excess 0.6940 0.0348 

Overall Chi2 = ∞,  DF = 10 ,  Probability = Highly Significant 

Scabbard Lake Hardy-Weinberg Exact Test 

Locus 
Probability   
P - value Probability SE Deficiency /Excess P value SE 

Rhca 7 0.2838 0.0356 

Deficiency 0.0423 0.0147 

Excess 0.9577 0.0145 

Rhca 15b 0.0000 0.0000 

Deficiency 0.0000 0.0000 

Excess 0.0000 0.0000 

Rhca 20 0.3817 0.0049 

Deficiency 0.3143 0.0042 

Excess 0.9013 0.0025 

Rhca 24 0.0000 0.0000 

Deficiency 1.0000 0.0000 

Excess 0.0000 0.0000 

Rhca 52 0.0000 0.0000 

Deficiency 1.0000 0.0000 

Excess 0.0003 0.0002 

Overall Chi = 45.08, DF = 10,  Probability = 0.0000 

Global U-Test.  

Population Deficiency /Excess P value SE 

Forbes Lake 
Deficiency 0.360 0.011 

Excess 0.640 0.011 

Harvey Lake 
Deficiency 0.000 0.000 

Excess 1.000 0.000 

Hatchet Lake 
Deficiency 0.026 0.007 

Excess 0.974 0.007 

Scabbard lake 
Deficiency 0.718 0.018 

Excess 0.282 0.018 

All loci for all populations combined 
Deficiency 0.002 0.001 

Excess 0.998 0.001 

Overall Chi2 = ∞,  DF = 10 ,  Probability = Highly Significant 
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rejection of this Ho.  The estimated P-values are shown in Table Va and Vb.  S. E. is the 
standard error which is the standard deviation between the observed and expected 
distributions (Larson and Farber 2006). 
 
Table Va. The maximum likelihood (exact G-test) among population pairs. Polulation 
pairs are lakes sampled. A value of 0.0 means four digits following the value 0.0 are all 
zeros (0). 

Genetic differentiation of population pairs based on Exact G-Tests 

Locus Rhca 7 Rhca 15b Rhca 20 

Population Pairs   P Value S.E. P Value S.E. P Value S.E. 

Harvey -Forbes 0.0 0.0 0.00001 0.00001 0.75595 0.00213 

Hatchet - Forbes 0.0 0.0 0.0 0.0 0.00715 0.0008 

Hatchet - Harvey 0.0 0.0 0.00061 0.00025 0.0304 0.0015 

Scabbard - Forbes 0.0 0.0 0.0 0.0 0.0 0.0 

Scabbard - Harvey 0.0 0.0 0.29285 0.00198 0.0 0.0 

Scabbard - Harvey 0.0 0.0 0.0 0.0 0.0 0.0 

 
Table Vb. The maximum likelihood (exact G-test) among population pairs. Continued.  

Genetic differentiation of population pairs based on Exact G-Tests 

Locus Rhca 24 Rhca 52 

Population Pair  P Value S.E. P Value S.E. 

Harvey -Forbes 0.0 0.0 0.00169 0.00041 

Hatchet - Forbes 0.0 0.0 0.0 0.0 

Hatchet - Harvey 0.01691 0.00201 0.11157 0.00556 

Scabbard - Forbes 0.0 0.0 0.00025 0.00023 

Scabbard - Harvey 0.0 0.0 0.00007 0.00007 

Scabbard - Harvey 0.0 0.0 0.0 0.0 

 
CONCLUSION & DISCUSSION 

 For the purpose of discussing the results of F-statistics the populations Forbes 
Lake, Harvey Lake, Hatchet Lake, and Scabbard Lake are referred to as subpopulations 
of a total population.  Wright’s 1978 proposed guidelines were used to interpret 
resulting F statistics. Under these guidelines F values of 0.0-0.05 indicate little genetic 
differentiation, 0.05-0.15 indicates moderate genetic differentiation, 0.15-0.25 indicates 
great differentiation, and F values above 0.25 indicate very great genetic differentiation.  
High Fst values for each locus among all populations reveal great genetic differentiation 
for loci Rhca 7, Rhca 15b, Rhca 20, and Rhca 24 (Fst=0.16, Fst=0.60, Fst=0.27, and 
Fst=0.36 respectively) among populations (Table I).  Locus Rhca 52 shows moderate 
genetic differentiation (Fst=0.08) among the populations. Overall, the F values for each 
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locus within populations reveal reduced heterozygosities relative to Hardy-Weinberg 
expectations. While Rho values tend to be numerically higher than Fst values the overall 
pattern of differentiation revealed by Rho values is essentially the same as that revealed 
by F statistic counterparts.  Rho values fell within the same Wright’s interpretive 
guidelines as their F statistic counterparts. These Rho values imply that average lengths 
of the microsatellite alleles per locus differ among populations suggesting weak 
mutational relationships between alleles among populations.  
 The pair wise exact G-test also revealed divergence among populations (Table V).  

A pair wise 2 was calculated for use in the exact G test to examine relationships over all 
loci among populations. The Ho for this particular test was that genotypes were drawn 
from a single distribution in all population samples (Raymond and Rousset 1995b; 
Rousset 2008).  When all loci are considered, resulting P-values (Table V) reject the Ho 
implying that individual population distributions over all loci were not subsamples 
drawn from one overall distribution but rather represented genetically divergent, 
distinct populations. Not unexpectedly some single loci frequencies considered 
individually were not different for all populations. For example, locus Rhca 15b, 
Scabbard Lake and Harvey Lake fail to reject the Ho (P-value = 0.29285).  For locus 
Rhca 20, Harvey Lake and Forbes Lake fail to reject the Ho (P-value = 0.75595).  For 
Rhca 52, Harvey Lake and Hatchet Lake fail to reject the Ho (P-value = 0.11157). 

Hardy-Weinberg exact tests were performed to evaluate heterozygote deficiency 
or excess for individual loci within populations and over all loci within populations 
(Table IV) (Raymond and Rousset 1995b; Rousset 2008).  The overall probability was 
highly significant rejecting the null hypothesis of Hardy-Weinberg equilibrium over all 
populations and all loci.  Table IV shows that there is an overall excess of heterozygote 
genotypes across all populations for loci.   
 These results indicate that inland lake populations of M. margariscus on Isle 
Royale, as well as those on the mainland, have diverged from the Harvey Lake 
population as well as from each other.  These data indicate a large amount of genetic 
variability within and among all Isle Royale populations. It is interesting to note the 
sharing of genotypic distributions for only some loci between Harvey Lake and other 
populations.  There may be some limited, unidirectional gene flow from Harvey Lake to 
the other lowland lakes.  The 168 ft waterfall that is Harvey Lake’s sole outlet might well 
serve as a unidirectional barrier to dispersal for a species of limited vagility such as M. 
margariscus. Any such migration out of Harvey Lake would necessarily be extremely 
limited since migrants would be exposed to large numbers of predators in lowland lake 
drainages and Lake Superior proper which provides the only connectivity among lakes.   

Our limited findings are consistent with Hubbs and Lagler’s (1949) hypothesis 
that the M. margariscus population in Harvey Lake is divergent.  It is evident, however, 
that microsatellite loci indicate that all other populations on Isle Royale are also 
significantly divergent from one another.  Limited sampling of mainland populations 
would seem to imply that the degree of differentiation among Isle Royale populations is 
relatively no greater than that found among mainland populations.   This study makes 
no attempt to correlate the degree of microsatellite distribution divergence with degree 
of morphological divergence as proposed by Hubbs and Lagler (1949). Bailey and 
Smith’s (1981) claim of insufficient data to support Hubbs and Lagler’s proposed 
morphological divergence of Harvey Lake pearl dace is not directly addressed by our 
findings.  However, our findings do indicate that Harvey Lake and other Isle Royale lake 
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populations of M. margariscus are genetically distinct gene pools that, given the 
National Wilderness Area status of Isle Royale, may warrant special consideration and 
management. 
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