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Abstract

Collagen and glycosaminoglycans, such as hyaluronan and chondroitin sulfate, are the major 

components of bone extracellular matrix, and extracellular matrix composites are being evaluated 

for a wide range of clinical applications. The molecular and cellular effects of native and sulfate-

modified glycosaminoglycans on osteocytes were investigated as critical regulators of bone 

remodeling. The effects of glycosaminoglycans on viability, necrosis, apoptosis, and regulation 

of gene expression were tested in two osteocyte-like cell lines, the murine MLO-Y4 and the rat 

UMR 106-01 cells. Glycosaminoglycans were non-toxic and incorporated by osteocytic cells. In 

MLO-Y4 cells, sulfation of glycosaminoglycans led to a significant inhibition of osteocyte apoptosis, 

42% inhibition for highly sulfated chondroitin sulfate and 58% for highly sulfated hyaluronan, 

respectively. Cell proliferation was not affected. While treatment with highly sulfated chondroitin 

sulfate increased cell viability by 20% compared to the native chondroitin sulfate. In UMR 106-

01 cells, treatment with highly sulfated hyaluronan reduced the receptor activator of nuclear 

factor-κB ligand/osteoprotegerin ratio by 58% compared to the non-sulfated form, whereas highly 
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sulfated chondroitin sulfate led to 60% reduction in the receptor activator of nuclear factor-κB 

ligand/osteoprotegerin ratio in comparison to the native chondroitin sulfate. The expression of 

SOST, the gene encoding sclerostin, was reduced by 50% and 45% by highly sulfated hyaluronan 

and chondroitin sulfate, respectively, compared to their native forms. The expression of BMP-

2, a marker of osteoblast differentiation, was doubled after treatment with the highly sulfated 

hyaluronan in comparison to its native form. In conclusion, highly sulfated glycosaminoglycans 

inhibit osteocyte apoptosis in vitro and promote an osteoblast-supporting gene expression profile.

Keywords

Extracellular matrix, bone remodeling, chondroitin sulfate, hyaluronan, osteocyte, gene delivery, 

gene encoding sclerostin, sulfated glycosaminoglycans, apoptosis, osteoprotegerin

Introduction

In populations where aging is associated with increased obesity and low physical activity, there is 

a growing need for biomaterials to replace bone tissue that has been destroyed by degeneration, 

trauma, tumors, or inflammation, ranging from autologous bone to conventional bone grafts and 

engineered bone tissue.1 Because bone implants are characterized by a large variety of their struc-

tural composition, their curative potential is also wide.2,3 It is thus of great significance to define 

the optimal structural composition of the applied graft material and characterize the cellular 

response of the host tissue.4–6 The most promising approach may be to utilize and modify compo-

nents of the native extracellular matrix (ECM) in order to generate artificial functional matrices 

(artificial extracellular matrix (aECM)) for the use as bone implants.7

The majority of bone is made of the ECM, which can be divided into an inorganic part of 

hydroxyapatite and an organic part that mainly consists of type I collagen (Coll) with embedded 

proteoglycans (PGs). PGs consist of a central protein core and peripheral glycosaminoglycan 

(GAG) chains that have repetitive disaccharide units.8 The most abundant GAG in bone is chon-

droitin sulfate (CS), with smaller amounts of hyaluronan (HA) and dermatan sulfate.9 Because the 

properties of the GAGs tend to dominate the properties of the entire PG molecule, research has 

focused on the development of GAG composites to increase implant bioactivity.10

Until recently, osteocyte functions were poorly defined, but recent discoveries have underlined 

the multifactorial profile of these cells in orchestrating bone remodeling by regulating both osteo-

blast and osteoclast functions.11 Furthermore, the regulatory role of osteocytes in calcium and 

phosphate metabolism mainly through the production of fibroblast growth factor 23 (FGF-23)12 

and its mechanosensory role13 have been highlighted. Taking into account these newly discovered 

roles as well as the fact that osteocytes make up over 95% of the bone cells in the adult skeleton, 

the interactions between osteocytes and GAG composites are of key importance. We have recently 

investigated the effects of the degree of sulfation of GAGs on osteoclast and osteoblast function 

and signaling pathways and found that highly sulfated GAGs significantly inhibit various func-

tions of bone-resorbing osteoclasts, while stimulating matrix formation in osteoblastic cells.14–16 

However, to our knowledge, there are no studies describing the effects of native or sulfated GAGs 

on osteocytes.

Here, we synthesized soluble GAG derivatives containing well-defined properties with respect 

to chain length and sulfation degree and analyzed their effects on osteocyte viability, proliferation, 

apoptosis, and expression of osteocyte-specific markers. We found that highly sulfated GAGs con-

tributed to the phenotype of healthy, viable, and functional osteocytes as they inhibited ostocyte 

apoptosis in vitro and promoted an osteoblast-supporting gene expression profile.
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Materials and methods

Preparation and characterization of GAGs

Native, high-molecular-weight HA was obtained from Aqua Biochem (Dessau, Germany). CS (a 

mixture of 70% chondroitin-4-sulfate and 30% chondroitin-6-sulfate) from porcine trachea was 

purchased from Kraeber (Ellerbek, Germany).

GAG modification and synthesis of derivatives

GAGs were prepared and characterized as previously described.17–21 In brief, HA sulfates and 

oversulfated CS derivatives were prepared by sulfation reactions using the tetrabutylammonium 

salts of native HA and CS. Both highly sulfated hyaluronan (sHA) and highly sulfated chondroitin 

sulfate (sCS) containing approximately 13 wt% sulfur, corresponding to an average degree of sul-

fate groups per disaccharide repeating unit (DSS) of 3.1, were sulfated using the SO3–

dimethylformamide (DMF) complex.

Low-molecular-weight HA (HALMW) was prepared by a controlled thermal degradation of the 

native high-molecular-weight HA as reported.17–21 The prepared GAG derivatives were character-

ized spectroscopically by 13C-nuclear magnetic resonance spectroscopy, Fourier transform infrared 

spectroscopy, and estimation of the sulfur content using a conventional automatic elemental ana-

lyzer.22 The GAG molecular weights were determined by gel-permeation chromatography analysis 

as described earlier.17,18

Cell culture of murine and rat osteocytes

The murine osteocyte-like cell line MLO-Y4 (kindly provided by Dr Lynda Bonewald, Kansas 

City, MO, USA) was cultured as previously described.23,24 Briefly, cells were cultured on collagen-

coated cell culture flasks (Greiner Bio-One, Frickenhausen, Germany) in alpha-modified essential 

medium (Biochrom, Berlin, Germany) with 10% fetal calf serum (FCS) (Biochrom), 1% penicil-

lin/streptomycin (Gibco, Darmstadt, Germany), and 2 mM glutamine (Biochrom). Before treat-

ment, cells were placed into serum-free media overnight.

The rat osteocyte-like cell line UMR-106 was kindly provided by Dr Ute Hempel (TU 

Dresden) and was cultured as previously described.25 Briefly, cells were cultured on cell culture 

flasks (Greiner Bio-One) in alpha-modified essential medium (Gibco) with 10% FCS (Biochrom) 

and 1% penicillin/streptomycin (Gibco). Before treatment, cells were placed into serum-free 

media overnight.

Susceptibility to GAGs

UMR-106 cells were seeded on glass slides and incubated with fluorescent GAGs for up to 24 h to 

determine (1) whether osteocytes are susceptible to both the native and the highly sulfated GAGs, 

(2) where these GAGs localize in the cells, and (3) whether there are kinetic differences. After the 

incubation period, slides were stained for F-actin and cell nuclei as previously described.14 Cells 

cultured without GAGs served as control.

Coculture of UMR-106 with RAW264.7 cells

The murine RAW264.7 cell line is a monocyte cell line with a differentiation potential toward 

mature osteoclasts. Murine RAW264.7 cells were purchased from American Type Culture 
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Collection (ATCC) (Wesel, Germany) and cultured on cell culture flasks (Greiner Bio-One) in 

alpha-modified essential medium (Biochrom) with 10% FCS (PAA), 1% penicillin/streptomycin 

(Gibco), and 2 mM glutamine (Biochrom). Cells were cultivated up to 85% confluency before 

being passaged.

UMR-106 cells were plated at 2000 cells/well in 96-well plates and kept for 48 h. Before treat-

ment, cells were placed into serum-free media overnight. Cells were treated with 200 µg/mL 

HALMW, HA, sHA, CS, and sCS for 24 h, at which point the medium was removed and RAW264.7 

cells were plated at 4000 cells/well. To initiate osteoclastogenesis, receptor activator of nuclear 

factor-κB ligand (RANKL) (50 ng/mL, R&D Systems, Minneapolis, MN, USA) was added. 

Medium was replaced every 2 days, and at the end of culturing, the cells were fixed and stained for 

tartrate-resistant acid phosphatase (TRAP) using a leukocyte acid phosphatase kit (Sigma Chemical 

Co., Seelze, Germany) as described previously.26 Three or more nuclei containing TRAP-positive 

cells were considered osteoclasts and counted under a microscope.

Cell viability

Cell viability was assessed using a commercial assay (CellTiter-Blue; Promega, Mannheim, 

Germany) according to the manufacturer’s instructions. MLO-Y4 cells were plated at 50,000 cells/

well in 96-well plates and kept for 48 h. Before treatment, cells were placed into starving media 

(0% FCS) overnight. Cells were treated with 200 µg/mL HALMW, HA, sHA, CS, and sCS for 24 h, 

at which point the medium was removed and changed to fresh medium containing the resazurin 

dye. Viability was determined by the ability of living cells to convert resazurin dye into a fluores-

cent product within 2–4 h. Fluorescence intensity was quantified using FLUOstar Omega 

(560Ex/590Em nm, BMG Labtech).

Cell proliferation

Cell proliferation was assessed using a commercial assay (BrdU; Roche, Grenzach-Wyhlen, 

Germany) according to the manufacturer’s instructions. MLO-Y4 cells were plated at 50,000 cells/

well in 96-well plates and kept for 48 h. Before treatment, cells were placed into starving media 

(0% FCS) overnight. Cells were treated with 200 µg/mL HALMW, HA, sHA, CS, and sCS for 24 h 

while BrdU was added. During this labeling period, the pyrimidine analogue BrdU was incorpo-

rated in place of thymidine into the DNA of proliferating cells. After 24 h, the culture medium was 

removed, and the assay was resumed according to protocol. The reaction product was quantified 

by measuring the absorbance at 450 nm using FLUOStar Omega (BMG Labtech, Ortenberg, 

Germany).

Cell apoptosis

Cell apoptosis was assessed using a commercial assay (Caspase-Glo; Promega) according to the 

manufacturer’s instructions. MLO-Y4 cells were plated at 20,000 cells/well in 96-well plates and 

kept for 48 h. Before treatment, cells were placed into starving media (0% FCS) overnight. Cells 

were treated with 200 µg/mL HALMW, HA, sHA, CS, and sCS for 24 h at which point the medium 

was removed and the Caspase-Glo reagent was added, resulting in cell lysis, followed by caspase 

cleavage of the substrate and generation of a glow-type luminescent signal, produced by luciferase. 

Luminescence was proportional to the amount of caspase activity present and was measured after 

60 min using the FLUOStar Omega luminometer.
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RNA isolation, reverse transcriptase and quantitative real-time polymerase chain 

reaction

For the detection of messenger RNA (mRNA) expression levels, UMR-106 cells were cultured as 

described above with or without (control) the addition of 200 µg/mL GAGs, respectively. RNA was 

extracted using a High Pure RNA Isolation Kit from Roche. Then, 500 ng RNA was reverse tran-

scribed using SuperScript® II (Invitrogen), and a SYBR® Green-based real-time polymerase chain 

reaction (PCR) under standard conditions was performed. PCR primers were generated with 

Primer3 and OligoAnalyzer 3.0 software. All applied primer sequences are given in Table 1. The 

abundance of mRNA levels was calculated using the ∆∆CT method27 and is presented as increases 

relative to an untreated or undifferentiated control.

Statistical analyses

All experiments were performed at least in triplicates and evaluated using one-way analysis of 

variance (ANOVA). Student’s t-test was performed to compare native GAGs with modified GAGs. 

All results are presented as the mean ± standard deviation (SD); p values <0.05 were considered 

statistically significant.

Results and discussion

Osteocyte susceptibility to differentially sulfated GAGs

UMR-106 and MLO-Y4 cells ingested both native and sulfated HA (Figure 1(a)—data for MLO-

Y4 and data for UMR-106 are not shown). After 24 h, GAGs were detected in vesicles in the peri-

nuclear region. This localization was observed earlier for the shorter, highly sulfated HA, where 

the first vesicles were found after 1 h, whereas vesicles of native HA did not appear before 6 h. This 

effect has been corroborated by the interactions between human mesenchymal stromal cells (MSC) 

and sulfated HA-containing collagen matrices where an upregulation of endocytic proteins was 

noted.28 The fact that both forms of HA appeared intracellularly excludes the possibility that GAG 

Table 1. Primer sequences used for real-time PCR.

Primer Sequence 5′-3′
Rat β-actin s 5′-GCTACAGCTTCACCACCACA-3′
Rat β-actin as 5′-AGGGCAACATAGCACAGCTT-3′
Rat RANKL s 5′-ACCAGCATCAAAATCCCAAG-3′
Rat RANKL as 5′-GGACGCTAATTTCCTCACCA-3′
Rat OPG s 5′-ACGGTTTGCAAAAGATGTCC-3′
Rat OPG as 5′-GTGAGCTGCAGTTGGTGTGT-3′
Rat BMP-2 s 5′-ACATCCACTCCACAAACGAG-3′
Rat BMP-2 as 5′-GTCATTCCACCCCACATCAC-3′
Rat GAJ-1 s 5′-GCTCCACTCTCGCCTATGTC-3′
Rat GAJ-1 as 5′-TAGTTCGCCCAGTTTTGCTC-3′
Rat SOST s 5′-CAGCTCTCACTAGCCCCTTG-3′
Rat SOST as 5′-GGGATGATTTCTGTGGCATC-3′
BMP-2: bone morphogenetic protein 2; PCR: polymerase chain reaction; SOST: sclerostin; GAJ-1: gap junction mem-
brane channel protein alpha 1 or connexin 43; RANKL: receptor activator of nuclear factor-κB ligand.
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sulfation results in impaired uptake that could affect all subsequent effects. A potential limitation 

of our study was the fact that the immunofluorescence experiments were conducted using only 

native and highly sulfated HA and not CS.

Sulfation of GAGs reduces osteocyte apoptosis

After establishing GAG localization in the perinuclear region of osteocytes, we examined the effect 

of GAG treatment on osteocyte apoptosis. Treatment for 24 h with highly sulfated GAGs at a con-

centration of 200 µg/mL led to a significant reduction in osteocyte apoptosis in MLO-Y4 cells. 

Treatment with sHA led to a 58% decrease in apoptosis when compared to HA (p < 0.001) (Figure 

1(b)), whereas sCS reduced apoptosis by 42% when compared to its native product (p < 0.01) (Figure 

2). Native HA and CS tended to increase osteocyte apoptosis, but these results were not statistically 

significant. HALMW had no significant effects on osteocyte apoptosis (data not shown).

Figure 1. (a) Osteocytes are susceptible to native and sulfated fluorescent GAGs. MLO-Y4 and UMR-
106 cells seeded on glass slides were exposed to red-fluorescent native hyaluronan (HA) or sulfated HA 
(sHA) for 1, 6, or 24 h. Untreated cells served as controls (Ctrl). Subsequently, slides were stained for 
F-actin (green) and cell nuclei (blue) and analyzed using digital microscopy. A representative image of three 
replicates is shown (magnification 400×), data shown for MLO-Y4. (b) Sulfated HA modulates apoptosis of 
osteocytes. Cell apoptosis was assessed on MLO-Y4 cells by a luminescence assay after 1 h. Luminescence 
was proportional to the amount of caspase activity. (c) Sulfated HA has no significant effect on viability 
of osteocytes. Cell viability was assessed on MLO-Y4 cells using a fluorescence assay after 2–4 h using 
resazurin dye. Values represent the mean ± standard deviation (SD) of n = 6–10 measurements.
*p < 0.05, **p < 0.01, and ***p < 0.001; Student’s t-test versus treatment with native GAG.
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Sulfation of GAGs differentially regulate osteocyte viability, but not proliferation

The effects of highly sulfated GAGs on osteocyte viability and proliferation were assessed next. 

Neither native nor highly sulfated HA had any significant effect on osteocyte viability (Figure 1(c)) 

and HALMW had also no significant effect on osteocyte apoptosis (data not shown). Treatment with 

sCS increased cell viability by 20% compared to its native product (p < 0.001) (Figure 2). Treatment 

with sHA did not significantly affect cell viability. Our data also indicate that treatment with GAGs 

both in their native and their highly sulfated form had a neutral effect on osteocyte proliferation 

(Figure 2(c), data for CS shown).

In summary, we observed an anti-apoptotic effect of highly sulfated HA and CS on osteocytes. 

Furthermore, treatment of osteocytes with sulfated CS, but not native GAGs, led to an enhancement 

of cell viability, whereas all GAGs had no significant effect on cell proliferation. Of note, treatment 

with HALMW had no significant effect on osteocyte apoptosis and viability. It can thus be concluded 

that the degree of sulfation, rather than the monosaccharide composition of GAGs, determines bio-

logical functions. GAG sulfation inhibited apoptosis and enhanced viability. Thus, highly sulfated 

GAGs would represent suitable candidates for preclinical testing in appropriate animal models. We 

have already shown that GAG sulfation led to a significant inhibition of osteoclast differentiation 

and resorption14 and supported osteoblast functions.16 Extrapolation of our findings from in vitro to 

the in vivo situation suggests that sulfated GAGs could contribute to the phenotype of healthy, via-

ble, and functional osteocytes, thus supporting our previous results on osteoclasts and osteoblasts. 

However, this needs to be formally tested in appropriate in vivo models.

GAG sulfation affects the expression of osteocytic genes

Since UMR-106 cells express genes such as sclerostin, RANKL, and connexin-43, we used these 

cells as a model to assess the effects of GAGs on the regulation of osteocytic gene expression. 

Exposure of UMR-106 cells to native GAGs resulted in a consistent downregulation of RANKL, 

which promotes osteoclastogenesis. Using a concentration of 200 µg/mL, we found that sHA 

Figure 2. Sulfated CS modulates apoptosis and viability of osteocytes but has a neutral effect on 
osteocyte proliferation. (a) Cell apoptosis was assessed on MLO-Y4 cells by a luminescence assay after 
1 h. Luminescence was proportional to the amount of caspase activity. (b) Cell viability was assessed on 
MLO-Y4 cells using a fluorescence assay after 2–4 h using resazurin dye. (c) Cell proliferation was assessed 
on MLO-Y4 cells using an absorbance assay measuring the incorporation of the pyrimidine analogue into 
the DNA of proliferating cells after 24 h. Values represent the mean ± SD of n = 6–10 measurements.
Ctrl: control; CS: native chondroitin sulfate; sCS: highly sulfated chondroitin sulfate; SD: standard deviation.
*p < 0.05, **p < 0.01, and ***p < 0.001; Student’s t-test versus treatment with native GAG.
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downregulated the expression of RANKL by 50% in comparison with its native form (p < 0.05) 

(Figure 3(a)), whereas treatment with sCS did not significantly influence RANKL expression 

(Figure 4(a)). Treatment with GAGs had a neutral effect on the expression of osteoprotegerin 

(OPG) (Figures 3(b) and 4(b)), but led to a significant downregulation of the RANKL/OPG 

ratio. In particular, sHA reduced the RANKL/OPG ratio by 58% in comparison with its native 

form (Figure 3(c)) (p < 0.05), an effect also seen for sCS (Figure 4(c)). Furthermore, the expres-

sion of SOST, the gene encoding sclerostin, was reduced by both highly sulfated GAGs when 

compared to their native forms (−50%, p = 0.06 for HA and −45%, p < 0.05 for CS, respectively) 

(Figure 4(c) and (d)).

By contrast, the expression of genes enhancing osteoblast and osteocyte differentiation, such as 

BMP-2, was found to be upregulated twofold by highly sulfated HA as compared to its native form 

(p < 0.05) (Figure 3(e)). Treatment with sCS did not lead to a significant increase in BMP-2 expres-

sion (Figure 4(e)). The expression of GAJ-1, the gene encoding connexin 43, an important gap 

junction protein in osteocytes, was downregulated by sHA as compared to its native form (p < 0.05) 

Figure 3. Regulation of osteocyte-specific markers through HA and sHA. (a)–(f) Quantitative real-time 
PCR analysis of RANKL, OPG, SOST, BMP-2, and GAJ-1 expression levels of UMR-106 cells exposed to 
200 µg/mL of HA and sHA. All values represent the normalized mean ± SD of n = 6.
Ctrl: control; HA: native hyaluronan; sHA: highly sulfated hyaluronan; RANKL: receptor activator of nuclear factor-κB 
ligand; OPG: osteoprotegerin; SOST: sclerostin; BMP-2: bone morphogenetic protein 2; GAJ-1: gap junction membrane 
channel protein alpha 1 or connexin 43; SD: standard deviation; PCR: polymerase chain reaction.
*p < 0.05, **p < 0.01, and ***p < 0.001; Student’s t-test versus treatment with native GAG.
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(Figure 3(f)). Neither CS nor its sulfated form influenced GAJ-1 expression (Figure 4(f)). HALMW 

had no significant effects on the expression of osteocyte markers (data not shown).

When considering osteocyte gene expression, our data indicated that sHA significantly reduces 

the expression of RANKL and both highly sulfated HA and CS downregulate the RANKL/OPG 

ratio. In bone homeostasis, the expression of RANKL and OPG is balanced resulting in physiolog-

ical bone remodeling. An overexpression of RANKL is observed in estrogen deficiency,29 sys-

temic glucocorticoid exposure, and active inflammatory processes in rheumatoid arthritis,30 

skeletal malignancies such as multiple myeloma,31 and bone metastases.32 All these conditions are 

characterized by excessive bone loss, implying that the upregualtion of the RANKL/OPG ratio 

promotes excessive bone resorption. Thus, it may be envisaged that treatment of osteocytes with 

highly sulfated GAGs suppresses their paracrine ability to support osteoclast differentiation and 

resorption.

Furthermore, treatment with highly sulfated GAGs led to a significant reduction in SOST and 

regulated BMP-2 as well as GAJ-1, the gene encoding connexin 43. To this end, inhibition of 

Figure 4. Regulation of osteocyte-specific markers through CS and sCS. (a)–(f) Quantitative real-time 
PCR analysis of RANKL, OPG, SOST, BMP-2, and GAJ-1 expression levels of UMR-106 cells exposed to 
200 µg/mL of CS and sCS. All values represent the normalized mean ± SD of n = 6.
Ctrl: control; CS: native chondroitin sulfate; sCS: highly sulfated chondroitin sulfate; RANKL: receptor activator of 
nuclear factor-κB ligand; OPG: osteoprotegerin; SOST: sclerostin; BMP-2: bone morphogenetic protein 2; GAJ-1: gap 
junction membrane channel protein alpha 1 or connexin 43; SD: standard deviation; PCR: polymerase chain reaction.
*p < 0.05, **p < 0.01, and ***p < 0.001; Student’s t-test versus treatment with native GAG.



Tsourdi et al. 483

sclerostin and upregulation of connexin 43 and BMP-2 through GAGs could contribute to the 

phenotype of viable and functional osteocytes and osteoblasts.

Coculture of UMR-106 with RAW264.7 cells

After having found a considerable regulation of the RANKL/OPG ratio by highly sulfated GAGs, we 

performed cocultures of osteocytes/osteoclasts. Treatment with native HA and HALMW led to an inhibi-

tion of osteoclastogenesis by 40%, whereas highly sulfated HA and both forms of CS tended to enhance 

osteoclastogenesis; nevertheless, these results did not reach a level of statistical significance.

Despite its strength, our study has potential limitations. We observed a regulation of RANKL but 

not OPG through GAGs, and in contrast to our expectations, it was the native and not the sulfated form 

of HA that led to an inhibition of osteoclastogenesis. We hypothesize that the addition of RANKL in a 

concentration of 50 ng/mL in a latter phase of the coculture might have dominated the effect of GAGs 

on osteocytes or alternatively that RANKL directly bound to OPG influencing the results. Another 

limitation is the fact that both cell lines used possess at the most an osteocyte-like phenotype, in that 

the MLO-Y4 cells represent the osteocyte morphology and the UMR-106 cells represent the osteocyte 

gene expression, while neither cell line combines both characteristics as primary human osteocytes 

would. In this context, one can only hypothesize as to whether the results gained by experiments using 

osteocyte-like cell lines can be extrapolated to the in vivo environment.

Conclusion

Based on our data, GAGs inhibit osteocyte apoptosis and promote osteocyte viability while 

maintaining a physiological RANKL/OPG ratio. These results are in accordance with the pro-

osteoblastic and anti-osteoclastic effects of sulfated GAGs that we previously reported. The 

present data confirm these functions on osteocytes, which represent the most abundant cell type 

and indicate a promising potential as a component of diverse biomaterials. However, our conclu-

sions at this time are based only on in vitro data and require in vivo validation.
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