
Quantitative Variants of Language Equations
and their Applications to Description Logics

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Pavlos Marantidis, M.Sc.

geboren am 29. Dezember 1990 in Thessaloniki, Griechenland

verteidigt am 25. Juli 2019

Gutachter:
Prof. Dr.-Ing. Franz Baader

Technische Universität Dresden

Prof. Paliath Narendran
University at Albany – SUNY

Dresden, im September 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236379346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Unification in description logics (DLs) has been introduced as a novel inference service that
can be used to detect redundancies in ontologies, by finding different concepts that may
potentially stand for the same intuitive notion. Together with the special case of matching,
they were first investigated in detail for the DL FL0, where these problems can be reduced
to solving certain language equations. In this thesis, we extend this service in two directions.
In order to increase the recall of this method for finding redundancies, we introduce and
investigate the notion of approximate unification, which basically finds pairs of concepts
that “almost” unify, in order to account for potential small modelling errors. The meaning of
“almost” is formalized using distance measures between concepts. We show that approximate
unification in FL0 can be reduced to approximately solving language equations, and devise
algorithms for solving the latter problem for particular distance measures. Furthermore,
we make a first step towards integrating background knowledge, formulated in so-called
TBoxes, by investigating the special case of matching in the presence of TBoxes of different
forms. We acquire a tight complexity bound for the general case, while we prove that the
problem becomes easier in a restricted setting. To achieve these bounds, we take advantage
of an equivalence characterization of FL0 concepts that is based on formal languages. In
addition, we incorporate TBoxes in computing concept distances. Even though our results on
the approximate setting cannot deal with TBoxes yet, we prepare the framework that future
research can build on. Before we journey to the technical details of the above investigations,
we showcase our program in the simpler setting of the equational theory ACUI, where we
are able to also combine the two extensions. In the course of studying the above problems,
we make heavy use of automata theory, where we also derive novel results that could be of
independent interest.

iii

iv

Acknowledgements

A great lot of people have played a significant role during my time as a PhD student. The
present dissertation is the result of all these interactions. They are too many to enumerate,
but I really want to distinguish some of them.

First and foremost, my supervisor Franz Baader. I am deeply grateful for everything he
has done for me these past 4 years, from helping me with my research, to being patient and
always relieving my stress when I had trouble getting results, and to finding me extra funding
for as long as I needed to finish this thesis. One of the top researchers I have encountered,
and a really interesting person to be around. I am really glad and proud to be counted as one
of his (former) PhD students. Together with him, I would also like to thank all my coauthors
for the opportunity to work together.

The research training group QuantLA. Even more important than the financing part,
was the environment provided. I greatly benefitted from the interaction between different
scientific communities, as well as the fact that whenever I needed an expert on some topic
I could always find one around. A special bond is created when you put people to work
alognside with the common goal of pursuing a PhD; the program felt very much like a family,
and I am thankful for the opportunity they gave me. Furthermore, the final strecth of my
PhD time was funded by HAEC.

George Rahonis, the single person responsible for me applying to come to Dresden, a
mentor and a valuable friend.

The colleagues/friends from the Chair for Automata Theory, both current and old, who
made the working environment a pleasant place: Oliver, Jakub, Willi, Filippo, Patrick,
Christian, Anni, Julian, Marcel, Andreas, Ismail. Special thanks to Daniel Borchmann, who
greatly helped me from the first day I arrived in Dresden with bureaucracy, research, and
advice of every kind. He was a very important member of the Chair and his departure from
the university left an unfillable gap. Furthermore, to our secretaries, Kerstin, Sandy, and Kati
for always being there to deal with the intricate bureaucracy, and often going the extra mile
to help me.

My best buddies in Dresden, Max and Antoine. We were brought together by necessity
due to QuantLA, but we connected very fast and became inseparable. They have always
been there to hear me complain and help me go on. I am not sure if I would be able to pull
through without their support and friendship. I hope this relation will survive the test of
time and distance.

All my friends that stood by me (from a greater distance) during this time: My buddies
from Thessaloniki, Giannis, Christos, Iro, and especially Souvas, whose contribution during
the final stretch of writing this thesis was invaluable. Fellow doctoral students around the
globe, Vangelis, Madeline, Vassiliki. The numerous great friends I have made in Berlin.
Instead of naming them individually, I will only refer to most prominent among them, the
one who brought all of us together, my spiritual advisor, p.Emmanuel. His guidance and
friendship always helped me to push through.

v

vi

Finally, my oversized family: my parents Fotis and Athanasia, and my siblings Maria (and
her family), Grammatiki (and her family), Angeliki, Christina, Danae, Georgia, Loida, Stavros
and Titos. Their support all this time has been invaluable. They are my compass, and I
cannot express my love and gratitude to them.

Contents

1 Introduction 1
1.1 Description Logics . 2
1.2 Unification . 3
1.3 Approximate services . 5
1.4 From concepts to languages and automata . 6
1.5 Structure of the Thesis . 7

2 Extending unification modulo ACUI 11
2.1 Introduction . 11
2.2 Unification modulo ACUI . 13
2.3 Approximate unification modulo ACUI . 15

2.3.1 Minimizing the number of violated equations 17
2.3.2 Minimizing the number of violating elements 21
2.3.3 Minimizing the number of violations . 23

2.4 Unification modulo ACUIG . 24
2.4.1 The word problem for ACUIG . 24
2.4.2 ACUIG-unification with constant restriction 27
2.4.3 General ACUIG-unification . 31

2.5 Approximate Unification Modulo ACUIG . 32
2.5.1 The problems MinVEq-ACUIG and MinV-ACUIG 33
2.5.2 The problem MinVEl-ACUIG . 34

2.6 Outlook . 40

3 Languages and Automata 41
3.1 Basic Definitions . 41
3.2 Finitely representing languages: finite automata and regular expressions . . . 43
3.3 Language Distances . 46
3.4 Finitely representing tuples of languages . 49
3.5 Towards computing language distances . 55

3.5.1 Weighted looping tree automata . 56
3.5.2 Expressing language distances . 60
3.5.3 Further considerations . 62

3.6 Computing the behavior of wLTAs on regular trees 63
3.7 Computing the behavior on the unlabeled tree in Rinf 64

3.7.1 Behavior for nondecreasing discounting 66
3.7.2 Behavior for contracting discounting . 70

3.8 More results on tree automata . 73
3.9 Outlook . 74

vii

viii Contents

4 Unification in the Description Logic FL0 75
4.1 The Description Logic FL0 . 75
4.2 Unification . 79
4.3 Reducing unfication to language equations . 81
4.4 Solving language equations . 82

5 Concept Distances 85
5.1 Formal definitions . 86
5.2 Using tuples of languages to define CDMs . 87
5.3 Some instances of CDMs . 89
5.4 Further properties for CDMs . 89
5.5 Computability of CDMs . 91

6 Approximate Unification in the Description Logic FL0 93
6.1 Definition . 93
6.2 Reducing to language equations . 94
6.3 Approximately solving language equations . 97
6.4 On computing unifiers and a variation of the decision problem 109

7 Approximate matching 111
7.1 Classic and approximate matching . 111
7.2 Containment in NP . 113
7.3 Approximate Matching w.r.t. d1 . 115
7.4 Hardness for d0 and d2 . 116
7.5 Max-±Pos-(n)SAT . 118
7.6 Outlook . 120

8 Matching in FL0 w.r.t. TBoxes 121
8.1 The description logic FLreg . 121
8.2 Subsumption in FLreg w.r.t. an FL0 TBox . 124
8.3 The complexity of matching in FL0 w.r.t. TBoxes 127
8.4 Subsumption and matching w.r.t. forward TBoxes 131
8.5 Outlook . 139

9 Conclusion 141
9.1 Contributions of the thesis and future work . 141

Bibliography 145

Appendix: Metric Topology 155

List of Symbols 157

Chapter 1

Introduction

Description Logics (DLs) [BCM+03] are a family of knowledge representation languages
that can be used to represent knowledge of an application domain in a structured and
well-undestood way. They allow to define the relevant concepts of the domain by introducing
concept names and then use these names to specify properties of objects occuring in the
domain by providing concept descriptions, forming a knowledge base. As the name indicates,
one of the characteristics of DLs is that they are equipped with a formal, logic-based semantics.
Therefore, they allow for reasoning, i.e., inferring implicitly represented knowledge from
the information that is explicitly contained in the knowledge base. In particular, one can,
for example, check for subconcept-superconcept relation or equivalence between two given
concept descriptions.

If a knowledge base is maintained by different knowledge engineers, one needs other
inference services in order to support and maintain the knowledge base. In particular,
it is useful to be able to detect multiple definitions of the same intuitive concept. Since
different knowledge engineers might use different names for the “same” primitive concept,
the standard equivalence test may not be adequate to check whether different descriptions
refer to the same notion. Unification in DLs tackles this problem by allowing concept names
to be replaced by appropriate concept descriptions before testing for equivalence. If such a
replacement that makes the two concept descriptions equivalent exists, it is called a unifier,
and potentially provides a definition for the concept name it replaced. Matching is a special
case of unification, where one of the concept descriptions is considered to be fixed, i.e., the
concept names appearing in it cannot be replaced by other concept descriptions.

However, this procedure might not work if there are small modelling errors, or even slight
discrepancies in the concept descriptions under examination. In particular, it might not be
possible to make the concept descriptions equivalent, but there might still be a replacement
that makes them quite similar. Such an approximate approach can increase the recall of
the service.1 Furthermore, whereas two concepts might not be unifiable, the presence of
background terminological knowledge might reveal connections between the constituents of
the concepts that will allow for a replacement that renders the concepts equivalent. Even
though background terminological knowledge plays an important role in standard inference
services, its integration in unification is rather limited.

The aim of this thesis is to extend unification in the DL FL0 in the two aforementioned
ways. On the one hand, we introduce and investigate the notion of approximate unification.
Basically, to formalize approximate unification, we first need to fix the notion of a distance

1Recall is a measure of performance of an information retrieval system. Often called sensitivity, it is the fraction
of relevant instances that have been retrieved over the total amount of relevant instances [PKB55].

1

2 Chapter 1. Introduction

between concept descriptions. An approximate unifier is then supposed to make this distance
as small as possible, instead of trying to make the concepts equivalent.

On the other hand, we try to incorporate TBoxes, i.e., the background knowledge, in this
inference service. Decidability of unification in FL0 in the presence of TBoxes has been open
for almost two decades now, and it still seems to be a quite difficult problem. Therefore,
our goal will be less ambitious: we will prove decidability and derive complexity bounds for
matching with TBoxes.

In order to obtain some initial results and gain some intuition, we will start with investigat-
ing these problems in a simpler setting. There, we are not only able to study these extensions
in depth, but also to combine them.

There is a well-documented relation between FL0 concept descriptions and formal lan-
guages, a link that has been profoundly utilized in the past [Baa96; BN01; Pen15; BFP18]. In
particular, Baader and Narendran [BN01] proved that FL0 unification reduces to solvability
of certain language equations, using tree automata to tackle the latter problem. Our ap-
proach follows the same pattern, considering variations of these language equations, and our
techniques involve employing and developing notions from automata theory. Even though we
obtain technical results to tackle the problem at hand, these contributions are of independent
interest in their area.

1.1 Description Logics

Knowledge Representation (KR) [HLP08] is the field of artificial intelligence dedicated to
representing information about the world in a form that a machine can utilize to solve complex
tasks. In particular, it often incorporates findings from logic to automate various kinds of
reasoning. Description Logics is a family of KR logic-based formalisms that are descended
from so-called “structured inheritance networks” [Bra77; Bra78], and were introduced to
overcome the ambiguities of the previous approaches of semantic networks and frames.

The basic vocabulary of DLs consists of concepts, which denote sets of individuals, and
roles, which denote binary relationships between individuals. In addition to these, all DLs
allow their users to construct complex descriptions of concepts and roles. The language for
building such descriptions is characteristic for each DL. For example, given the concept names
Woman, Rich, Smart and the role name child, the expression Womanu∀child.(RichuSmart)
denotes the concept of a woman all the children of whom are both rich and smart.

A DL system offers services to reason about concept descriptions. A typical reasoning task
is to determine whether a description is more general than another one, that is, whether
the first subsumes the second. In our previous example, every individual that belongs to
the stated concept is also an instance of the concept Womanu∀child.Rich, and even more
generally, of the concept Woman.

DLs provide their users with ways of stating terminological axioms in so-called TBoxes.
The simplest kind of TBoxes are called acyclic TBoxes, which consist of concept definitions
without cyclic dependencies among the defined concepts. Basically, such a TBox introduces
abbreviations for complex concept descriptions. When the dependency restriction is lifted,
we obtain cyclic TBoxes. General TBoxes use so-called general concept inclusions (GCIs) to
state subconcept-superconcept constraints between concepts. One could for example express
that every Woman is also a Human by introducing the GCI WomanvHuman. Reasoning

1.2 Unification 3

services become even more meaningful when paired with a TBox. In our running example,
using the above GCI we could further infer that every instance of the original concept is also
a Human.

Investigating the computational complexity of reasoning for different sets of constructors
has been a guiding theme in DL research. In the paper "The tractability of subsumption in
Frame-Based Description Languages" [BL84], which is regarded as the origin of research
on Description Logics, Brachman and Levesque argued that there is a tradeoff between
the expressiveness of the representation language and the difficulty of reasoning over the
representations built using that language. In other words, the more expressive the language,
the more expensive reasoning becomes. They also provided a first example of this tradeoff by
analyzing the language FL (Frame Language), which included conjunction of concepts, value
restrictions, a simple form of existential restriction, and a construct called role restriction.
They showed that for this language subsumption is a coNP-hard problem, while removing
role restrictions, obtaining a language they called FL−, the problem becomes tractable.

Later, Nebel in [Neb90] investigated an even smaller fragment of FL−, which he called
T L and contained only conjunction and value restrictions. He proved that the addition
of background terminological knowledge, in particular what he calls acyclic terminologies,
which nowadays comes by the name acyclic TBoxes, causes the complexity of subsumption to
increase to coNP-complete. In fact, he describes this language as “a minimal terminological
representation language that is a subset of every useful terminological language”. The
same fragment was later used by Baader [Baa96] to show that cyclic terminologies (cyclic
TBoxes) cause the complexity of subsumption reasoning to increase even more, as the
problem becomes PSPACE-complete. He did not reuse the same name, but rather called this
description language FL0, since it is the least possible fragment of FL that still makes sense
to investigate. This has been the name that stuck and is being used until the current date.
In the passing of time, though, the language has come to contain the top concept as well.
Even though this constructor does not significantly increase the expressivity of the DL, this
addition most probably happened in order to ensure that the corresponding equational theory
is monoidal [BN96], and hence be able to make use of the relevant results. Furthermore,
this way FL0 better matches the dual basic DL EL, which allows for conjunction, existential
restrictions, and the top concept. In this thesis, we will predominantly deal with this (current)
version of FL0.

As DLs became increasingly used, researchers investigated a multitude of additional
reasoning tasks that are intended to make DLs more usable in various applications. This
resulted in the development of several new procedures, including, among many others,
computing least common subsumers and concept difference, and also the engagement
of techniques from other areas, like conservative extensions, forgetting, unification and
matching. These last two are the main focus of this thesis.

1.2 Unification

Unification theory [BS94] is a field of its own interest, predating Description Logics. Unifica-
tion is a fundamental process upon which many methods for automated deduction are based.
Very generally speaking, it deals with solving equations. Given two symbolic expressions,
unification tries to identify them by replacing certain sub-expressions by other expressions.

4 Chapter 1. Introduction

To be more concrete, consider the terms s = f (a, x) and t = f (y, b), where f is a binary
function symbol, a, b are constant symbols, and x , y are variable symbols. The unification
problem for s and t asks whether it is possible to replace the variables x , y occurring in s
and t by other terms such that the two terms obtained this way are equal. In this example, if
we substitute x with b and y with a, we say that the two terms are unified, since they both
become f (a, b). The substitution that made this happen is called a unifier.

Note that different occurences of the same variable in a unification problem must always
be replaced by the same term. For this reason, s cannot be unified with t ′ = f (x , b), since
this would require the occurence of x in s to be substituted with b, while the occurence of x
in t ′ should be substituted with a.

Instead of requiring that the terms are made syntactically equal, one can try to make them
equivalent modulo a given equational theory E. This type of unification is called E-unification
or equational unification. Consider, for example, the theory E = { f (a, c)≈ f (c, b)}, where c
is also a constant, and the terms s and t ′ we examined above, which we noted that are not
unifiable. By replacing x by c, we obtain the terms f (a, c) and f (c, b), which are not the
same, but they are equivalent modulo E, and the substitution is an E-unifier.

In fact, one of the major topics in unification theory is to investigate the properties of
equational theories in a systematic way [BS01; BS94; Sie89]. More concretely, one can
consider the decision problem, i.e., the question whether a given E-unification problem has
an E-unifier or not. For decidable problems one can then research their complexity. Instead
of just deciding unifiability, one often also wants to compute E-unifiers in case they exist. In
fact, it is interesting for some applications, like automated deduction and term rewriting, to
compute a minimal complete set of E-unifiers, in the sense that every unifier of the problem
is an instance of a unifier in the set (completeness), and two different unifiers in the set are
incomparable (minimality). Of particular interest is the unification type of an equational
theory, which counts how large such sets can get. However, we will not deal with these
notions in the currect thesis.

As we will discuss later, unification in Description Logics can be viewed as a unifica-
tion problem modulo an appropriate equational theory. The notion of unification was in-
troduced in description logics as a tool for recognizing redundant concept descriptions.
Basically, the idea is the following. Assume that we have two concept descriptions C
and D that we suspect to be different formalizations of the same intuitive concept. One
might think that it is enough to test whether C and D are equivalent, i.e., describe the
same set of objects in every interpretation. This is sometimes indeed sufficient, since, for
example our running concept Womanu∀child.(RichuSmart) is equivalent to the concept
Womanu∀child.Richu∀child.Smart, even though the corresponding terms are not (syntactic-
ally) the same. This approach, however, disregards the possibility that the two descriptions
may employ different names for primitive concepts or be modeled on different levels of
granularity, where a concept name in one description actually corresponds to a complex sub-
description in the other one. Take for example the concepts Womanu∀child.(RichuSmart)
and HumanuFemaleu∀child.Prosperous, where Propsperous is a concept name; even though
the human eye would probably recognize these as describing the same notion, a test for
equivalence would return back negative. This problem might be overcome by testing the
descriptions for unifiability modulo equivalence rather than equivalence itself. In the pre-
vious example, if we regard Prosperous as a variable, and replace it by RichuSmart, we
obtain two equivalent concept descriptions. In this application, the existence of a finite

1.3 Approximate services 5

minimal complete set of unifiers does not appear to be relevant. Instead, one is interested in
computing ground unifiers, i.e., unifiers that replace all variables by concept descriptions
not containing variables. If σ is a ground unifier of the concept descriptions C and D, we
essentially obtain that, if we were to add concept definitions X ≡ σ(X) for all the concept
names X that were viewed as variables in the unification problem, then we would make the
two descriptions equivalent w.r.t. these definitions. Of course, the knowledge engineer needs
to check whether these definitions really make sense within the application domain that is
modeled with these concepts.

In this setting, unification was first introduced and investigated for the description lo-
gic FL0 by Baader and Narendran [BN01]. In fact, they showed that unification in FL0
corresponds to unification modulo the equational theory ACUIh, i.e., that of a binary as-
sociative, commutative, and idempotent function symbol with a unit and several unary
function symbols that behave like homomorphisms2. Later, Baader and Morawska [BM10]
investigated unification in the dual logic EL, to which corresponds the equational theory
ACUIm, which differs from ACUIh in that instead of homomorphisms, the unary function
symbols are monotone operators3.

The common subtheory of the two, ACUI, that is, the above theories without the unary
function symbols, is one of the first equational theories for which the complexity of testing
solvability of unification problems was investigated in detail [KN92]. In particular, terms
modulo ACUI correspond to subsets of a base set of elements,4 which makes reasoning and
analysis in this setting rather simple and intuitive. Before we extend unification in FL0 by
investigating approximate unification and the addition of TBoxes, we believe that ACUI is a
good testing ground for obtaining and demonstrating some initial intuitive results. In fact,
the corresponding description logic has appeared in the DL literature under the name L0 in
[LT12] and A in [BWH05]5 with the same purpose: to preliminarily test some ideas before
extending them to more expressive languages.

1.3 Approximate services

DLs allow the same thing to be described in different ways. Two concepts can be syntactically
different, yet semantically equivalent as long as they satisfy the same properties. Recall
for example the concept descriptions we provided earlier. However, since the semantics
of traditional DLs is based on classical first-order logic, this interpretation of equivalence
is rather strict. Either two concepts satisfy the exact same set of properties and they are
equivalent, or not; there is no in-between. Nevertheless, we might often be interested in not
only whether two concepts are equivalent, but also if they are “close enough”.

2In [BM10] this is refered to as the equational theory of idempotent Abelian monoids with several homomorph-
isms, which is essentially a different name for the same notion.

3The name provided in [BM10] is the equational theory of semilattices with monotone operators SLmO, which
again is the same equational theory.

4Recall that, given their connection with FL0 concept descriptions, terms modulo ACUIh correspond to formal
languages, i.e., more structured objects, and are hence of a more complex nature.

5To be exact, this DL only allows for conjunction of concept names, while the language corresponding to ACUI
would also allow for the top concept. The inclusion of the latter, however, would not have any serious
repercussions.

6 Chapter 1. Introduction

The term approximation first appeared in Description Logics in a paper by Baader, Küsters,
and Molitor [BKM00], and investigated by Brandt, Küesters, and Turhan [BKT02], where
it described the inference problem of rewriting a concept description C from one DL into
a concept description D from another, usually not equally expressive DL. Most often, it is
not possible to obtain a concept description that is equivalent to the original one. In this
case, the goal is to obtain a concept description that is semantically “as close as possible”
to the original one. To achieve this, the resulting concept D should either be a minimal
(w.r.t. subsumption) concept that subsumes C , or a maximal concept that is subsumed by
C . Intuitively, this is a primitive way to obtain a concept that has the least distance from C .
However, if there is no such minimal (resp. maximal in the latter case) concept, it might
suffice to obtain a concept that is “not too far away”, i.e., closer than a given threshold. To
formally define this notion, one should first employ a mechanism capable of assessing how
far apart two concepts are.

The idea of measuring distance between concepts has received considerable attention in
several domains, including psychology, cognitive science, and computational linguistics. In
the context of DLs, research into such measures has been started in [BWH05], where the
authors originally translate approaches in other formalisms onto the inexpressive logic A6

before they discuss ways to extend these ideas to more expressive logics.
Since then, there have been several investigations on how to define measures of distance

between concepts in DLs [Jan06; LT12; Eck17; RS15; Sun13; Bra04], which paved the way
for the exploration of approximate versions of existing reasoning problems, like relaxed
instance queries [EPT15], prototypical definitions [BE16], and threshold concepts. [BBF15]
In this spirit, we investigate approximate unification and matching.

Note that the term approximation is often used to describe approaches that try to speed
up reasoning by employing inference techniques that might not be complete [PRZ16]. Our
use of the term, however, describes the attempt to extend the range of admissible answers to
queries or admissible elements of concept descriptions or admissible solutions to a unification
problem, and it is inherently connected to the notion of distance between concepts.

Before we start investigating approximate unification we will talk about such measures
in more depth. A major concern in some of the aforementioned papers is how the avail-
able background knowledge (TBoxes) can be taken into consideration. Our approach will
demonstrate how this is possible for the DL FL0.

1.4 From concepts to languages and automata

Concepts are essentially sets of attributes that individuals should satisfy. For FL0, due to the
particular semantics, these attributes admit a more structured representation: every attribute
can be viewed as a word over the alphabet of role names. As demonstrated throughout
the literature, every FL0 concept description can be reduced to a tuple of formal languages
over the alphabet of role names. This reduction is equivalence preserving, in the sense that
equivalent descriptions correspond to the same tuple and vice versa. One can find traces
of this idea already in the subsumption algorithm for FL− in [BL87], and this correlation
has been a guiding theme in research for FL0 (to name but a few, consider the publications

6Recall that this is the DL corresponding to the equational theory ACUI.

1.5 Structure of the Thesis 7

[Neb90; Baa96; BFP18]). This thesis is no exception to the aforementioned rule. Virtually
every result about FL0 is derived by taking advantage of the reduction to formal languages.

Utilizing this connection, Baader and Narendran in [BN01] were able to reduce unification
in FL0 to solving certain language equations. In particular, these are equations where both
the constants occurring in the equations and the solutions are finite formal languages, and
the only allowed operations are union and one-sided concatenation. In turn, solving these
equations was reduced to testing certain tree automata for emptiness. We will extend this
approach to deal with approximate unification. In fact, by linking distance functions on
concept descriptions with distance functions on languages, we can reduce approximate
unification in FL0 to approximately solving language equations. In order to reduce this
problem to a problem for tree automata, we do not employ the original construction of [BN01],
but the more sophisticated one from the more language-equation-centered [BO13].

The presence of general TBoxes may lead the set of attributes a concept satisfies to
become infinite. Hence TBoxes can result into the languages corresponding to an FL0
concept description to be infinite. Nevertheless, these languages can be used to characterize
equivalence in this setting as well. In fact, recently published [Pen15] and [BFP18] provide
an effective representation of these tuples, and these results will in fact play an important
role when we consider TBoxes in our investigation.

1.5 Structure of the Thesis

In the following we will give a short outline for the remainder of this thesis. At the end of
this section, we also provide a list of the publications that most of the results in this thesis
are based on.

Chapter 2 serves as a warm-up and a demonstration of our program for extending unifica-
tion. In particular, it focuses on unification modulo the equational theory of an associative,
commutative, and idempotent binary function symbol with unit ACUI, which is a subtheory
of (the equational theory corresponding to) FL0. Initially, we formally introduce unification
in this simple setting and describe the approach of [KN92] that proved the problem to be
decidable in polynomial time. Next, we consider approximate unification in ACUI w.r.t.
three different measures. We prove that the complexity increases from P to NP-complete
when going from exact ACUI-unification to the approximate case for two of the measures,
whereas it stays in P for the third one. We proceed to investigate how the complexity of
unification is affected by adding finite sets of ground identities G. We are able to show that
the problem remains solvable in P, while we also derive NP-completeness for the problem
of general unification. In the last part of this chapter, we combine the two extensions by
considering approximate unification modulo ACUIG, i.e., ACUI extended with a finite set of
ground identities G. For two of the measures, the NP-completeness results transfer from
ACUI to ACUIG. For the third measure, the problem can either remain in P or become
NP-complete, depending on the ground theory G. The results of this chapter are based and
extend [BMO16b] and [BMM18]. The first paper introduces approximate ACUI-unification,
while the second investigates unification modulo ACUIG.

Chapter 3 deals with technical details from formal language and automata theory. It
presents the basic relevant notions, starting from words, languages and language operations,
and describing ways to specify languages, in particular deterministic and nondeterministic

8 Chapter 1. Introduction

finite automata and regular expressions, and how we can transit from one model to the
other. We then study language distances reviewing existing results. We distinguish three
distances in particular, d0, d1 and d2, that will be of special interest in the rest of the thesis.
Next, we transit from words to trees. We introduce infinite trees and describe how we can
utilize them to describe tuples of (word) languages. Looking for a finite representation of
such trees, we will restrict to regular trees, and present tree automata models, in particular
Büchi and looping tree automata that can be used to specify trees. After we extensively study
how LTAs can represent infinite trees and we present how we can transform a tuple of word
automata into a tree automaton, we describe how trees can be used to define languages.
Afterwards, we introduce weighted looping tree automata (wLTAs) with discounting that
assign weights from a semiring to trees, and we study how they can be used (together with
the representation of tuples of languages as trees) to express language distances. Finally,
we investigate computation of the behavior of a weighted tree automaton, that is, given an
input tree, what value (weight) the automaton assigns to the tree. We prove that for regular
trees and wLTA over the semiring Rinf with nondecreasing or contracting discounting, it is
possible to compute this value in time polynomial in the size of the input. The novel results
in this chapter, in particular representation of languages by trees and computability of wLTAs
are based on [BFM17].

Chapter 4 is the first chapter that actually deals with Description Logics. We first present the
syntax and semantics of the Description Logic FL0 and we describe TBoxes and the problem
of subsumption between concepts. We next present how subsumption is characterized by
inclusion between languages that are finite for the empty TBox, but may become infinite
otherwise. Afterwards we give the formal definition of unification in FL0 and describe the
approach from [BN01] that reduces this problem to solving language equations of a certain
kind. Finally, we describe how these equations can be solved in EXPTIME, by describing the
approach from [BO13].

Chapter 5 focuses on distance measures between FL0 concepts (CDMs) in the presence of
a TBox. In particular, utilizing the connection between FL0 concepts and (tuples of) formal
languages we provide a modular framework that shows how a language distance can be
properly combined with a function to define a CDM. After we instantiate this framework
with the language distances d0, d1 and d2, we review what further properties that have been
investigated in the literature our framework satisfies. We conclude the chapter by invest-
igating computability of CDMs obtained in this way. The modular setup of the framework
allows for a transparent composition of the ingredients, which are a way to derive from a
given concept the corresponding tuple of languages, and how to compute the given language
distance. We prove that, under certain assumptions, w.r.t. a CDM obtained by our framework,
given a TBox, the distance between two FL0 concepts can be computed in exponential time.
The results of this chapter are based on [BFM17].

Chapter 6 investigates approximate unification. After we formally define the problem using
CDMs, we prove that the decision version of the problem can be reduced to the computational
version of it. Next, we define the problem of approximately solving language equations
based on language distances. We proceed to prove that for CDMs that are defined by the
framework we introduced in Chapter 5, approximate FL0 unification can be reduced to
approximately solving language equations, replicating the approach for exact unification. In
order to approximately solve language equations, we consider language distances that can
be expressed by a wLTA, and provide a reduction to problems on tree automata. Overall, we

1.5 Structure of the Thesis 9

obtain that approximate unfication w.r.t. such distances can be decided in EXPTIME. Finally,
we focus on the cases of d1 and d2 to provide a matching lower bound. The results of this
chapter are mainly based on [BMO16a].

Chapter 7 restricts to the special case of approximate matching in FL0. Initially, we review
the approach of [BN01] on how the classical version can be solved in polynomial time since
it reduces to language equations that are easier to solve. We then prove that for a wide
variety of distances the problem is in NP. We proceed to compute exact complexity bounds
for certain distances. In particular, for d1 we prove that the problem is still solvable in
polynomial time, while for d0 and d2 it is NP-complete. To obtain the latter hardness result
we introduce a version of a satisfiability problem, that we call Max-±Pos-SAT, which we also
prove to be an NP-complete problem. Some of the results from this chapter have appeared
in [BM17].

Chapter 8 deals with matching in FL0 in the presence of general TBoxes. The main result
is EXPTIME-completeness of the problem. Since EXPTIME-hardness of this problem is clear,
the first main contribution of this chapter is thus to show the EXPTIME upper bound. We do
this by first showing an EXPTIME upper bound for the problem of testing whether an FL0
matching problem has a matcher in the extended logic FLreg. Our proof of the EXPTIME upper
bound depends on a fine-grained analysis of the complexity of subsumption of FLreg concept
descriptions w.r.t. an FL0 TBox. The second step is then to show that an FL0 matching
problem has an FL0 matcher iff it has an FLreg matcher. The second main contribution of
this chapter is to show that the complexity of the matching problem can be lowered from
EXPTIME to PSPACE if one considers TBoxes of a restricted form where the role depth on the
left-hand side of a GCI is not larger than the role depth on the right-hand side. The results
of this chapter appeared in [BFM18].

Chapter 9 summarizes the contributions of this thesis and discusses directions for future
work.

Throughout this thesis we deal with several notions from metric topology and calculus.
After the bibliographic references we provide an appendix with the relevant basic definitions
and results.

[BFM17] Franz Baader, Oliver Fernández Gil, and Pavlos Marantidis: ‘Approximation
in Description Logics: How Weighted Tree Automata Can Help to Define the
Required Concept Comparison Measures in FL0’. In Proceedings of the 11th
International Conference on Language and Automata Theory and Applications
(LATA 2017), Umeå, Sweden. Edited by Frank Drewes, Carlos Martín-Vide, and
Bianca Truthe. Volume 10168. Lecture Notes in Computer Science. Springer,
2017, pages 3–26 (cited on page 8).

[BFM18] Franz Baader, Oliver Fernández Gil, and Pavlos Marantidis: ‘Matching in the
Description Logic FL0 with respect to General TBoxes’. In Proc. of the 22nd Int.
Conf. on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’18).
Edited by Gilles Barthe, Geoff Sutcliffe, and Margus Veanes. Volume 57. EPiC
Series in Computing. EasyChair, 2018, pages 76–94 (cited on page 9).

[BM17] Franz Baader and Pavlos Marantidis: ‘Language equations for approximate
matching in the Description Logic FL0’. In Proceedings of the 31st International
Workshop on Unification (UNIF’17). Edited by Adrià Gascón and Christopher
Lynch. Oxford, UK, 2017 (cited on page 9).

10 Chapter 1. Introduction

[BMM18] Franz Baader, Pavlos Marantidis, and Antoine Mottet: ‘ACUI Unification modulo
Ground Theories’. In Proceedings of the 32th International Workshop on Uni-
fication (UNIF 2018). Edited by Mauricio Ayala-Rincón and Philippe Balbiani.
Oxford, UK, 2018, pages 37–41 (cited on page 7).

[BMO16a] Franz Baader, Pavlos Marantidis, and Alexander Okhotin: ‘Approximate Uni-
fication in the Description Logic FL0’. In Proc. of the 15th Eur. Conf. on Logics
in Artificial Intelligence (JELIA 2016). Edited by Loizos Michael and Antonis C.
Kakas. Volume 10021. Lecture Notes in Artificial Intelligence. Springer-Verlag,
2016, pages 49–63 (cited on page 9).

[BMO16b] Franz Baader, Pavlos Marantidis, and Alexander Okhotin: ‘Approximately Solv-
ing Set Equations’. In Proceedings of the 30th International Workshop on Unifica-
tion (UNIF’16). Edited by Silvio Ghilardi and Manfred Schmidt-Schauß. Porto,
Portugal, 2016, pages 37–41 (cited on page 7).

Chapter 2

Extending unification modulo ACUI

In this warm-up chapter we demonstrate our program by extending unification in the
equational theory ACUI by first investigating approximate unification, then by considering
identities between ground terms, and finally by combining the two approaches.

2.1 Introduction

An important topic in unification theory [Sie89; BS94; BS01] is investigating the complexity
of deciding solvability of unification problems Γ w.r.t. an equational theory E, i.e., for a
fixed equational theory E one considers as input a set of equations between terms of the
form Γ = {s1 =? t1, . . . , sk =? tk}, and asks whether there exists a substitution σ such that
σ(si) =E σ(t i) holds for i = 1, . . . , k. The complexity is then measured in the size of the
unification problem Γ . The theory ACUI of an associative, commutative, and idempotent
binary function symbol + with unit 0 was one of the first equational theories for which the
complexity of testing solvability of unification problems was investigated in detail [KN92].
Interestingly, it turned out that this complexity depends on which symbols are allowed to
occur in Γ . In elementary E-unification, the terms in Γ may only contain variables and the
constant and function symbols occurring in E, i.e., for E = ACUI these terms are built using
variables and +,0. In E-unification with constants, additional free constants (i.e., constants
not occurring in E) may be used, whereas in general E-unification both free constants and
free function symbols may occur in Γ . Kapur and Narendran [KN92] have shown that
elementary ACUI-unification and ACUI-unification with constants are polynomial, whereas
general ACUI-unification is NP-complete.

As discussed in the Introduction of this thesis, our interest in ACUI-unification stems from
the fact that the theory ACUI is a common subtheory of the equational theories correspond-
ing to the Description Logics FL0 [Baa96] and EL [BKM99]: for FL0, ACUI is extended
with unary function symbols that behave like homomorphisms and for EL the additional
unary function symbols behave like monotone operators. Unification with constants in (the
equational theory corresponding to) FL0 is known to be ExpTime-complete [BN01] and
NP-complete in (the equational theory corresponding to) EL [BM09]. We believe that ACUI
is thus a good testing ground before trying to extend these results to more general settings.
Here, we consider extensions of ACUI-unification in two orthogonal directions, which we
then bring together: generalizing unification to approximate unification and adding a finite
ground theory to ACUI.

In approximate E-unification, one does not require that the left- and right-hand sides
of the equations become equal modulo E, but only almost equal. The formal meaning of
when a substitution approximately (i.e., “almost”) solves a unification problem is formalized

11

12 Chapter 2. Extending unification modulo ACUI

using distance measures between terms that are tailored towards the equational theory E in
question. In the present chapter, we consider approximate unification with constants in ACUI
w.r.t. three different measures: the first considers the number of equations that are violated,
the second the number of constants violating at least one equation, and the third counts
the overall number of violations (see Section 2.3 for exact definitions of these measures). It
turns out that in the first and the third case, the complexity increases from P to NP-complete
when going from exact ACUI-unification with constants to the approximate case, whereas
it stays in P for the second case. The main reason why we only consider unification with
constants in this approximate setting is to align with the motivation from DL. Since concept
names correspond to (free) constants, unification problems without the latter are of little
interest. Furthemore, free function symbols would have no interpretation in the DL context,
not to mention that there is no intuitive notion of how to define distance measures between
terms that contain such symbols.

The results for unification in the Description Logics FL0 and EL respectively shown in
[BN01] and [BM09] are restricted to the case where equivalence of concept descriptions
(corresponding to equality modulo the respective equational theories mentioned above) is
considered without a background knowledge base. It is not known how to extend these
decidability and complexity results to unification in the presence of so-called general TBoxes,
though for EL there are some positive results for unification with respect to a restricted form
of TBoxes [BBM12], and also for matching with general TBoxes [BM14].1 Since, from an
equational theory point of view, general TBoxes correspond to finite sets of ground identities,
we are interested in how the complexity of unification is affected by adding finite sets of
ground identities. This will be the main focus of Section 2.4.

For the word problem, Marché proved in [Mar96] that ACUI remains decidable if it is
extended with a finite set of ground identities, but no complexity bounds are given. This
result actually holds for a signature possibly containing several ACUI symbols and free
function symbols. In Section 2.4 we consider a restricted setting where the ground theory G
is built using only one ACUI symbol and free constants.2 In this case we can show that both
the word problem and unification with constants remain solvable in P. Actually, the result
for unification holds for unification problems with so-called constant restrictions, which
allows us to employ the combination results from [BS96] to show that general unification in
ACUI∪ G is NP-complete for any finite set of ground identities G satisfying the restrictions
mentioned above. As opposed to the classical case, general unification in this setting is
of particular interest for description logics in the following sense. Extending unification
modulo ACUI∪ G by adding free function symbols is a first step towards unification modulo
ACUIh∪ G (ACUIm∪ G), i.e., unification in FL0 (EL) in the presence of TBoxes, which adds
unary function symbols that satisfy certain identities. Recall that unification in FL0 and EL
in the presence of TBoxes is a long-standing open problem. The complexity upper bounds
shown in Section 2.4 (in P for unification with constant restrictions and in NP for general
unification) are actually somewhat stronger: these upper bounds hold even if we view G to

1In Chapter 8 we will show an analogous result by investigating matching in FL0 in the presence of (general)
TBoxes.

2This is in line with the motivation from description logics: in FL0, EL, and L0 we have conjunction as the sole
binary operator, hence one ACUI symbol is enough.

2.2 Unification modulo ACUI 13

be part of the input, i.e., measure the complexity in the size of Γ and G. NP-hardness already
holds for any fixed finite set of ground identities G.3

In the last part of this chapter, we are combining the two extensions, by considering
approximate unification modulo ACUIG, i.e., ACUI extended with a finite set of ground
identities G. For the cases where one considers the number of violated equations or the
overall number of violations, the NP-completeness results transfer from ACUI to ACUIG.
For the remaining case where one considers the number of constants violating at least one
equation, things become more interesting: we will show that there is a finite set of ground
identities G such that approximate ACUIG-unification becomes NP-complete, but we will also
exhibit a class of ground identities G for which this problem remains in P.

For the purposes of this chapter, we will only provide some basic definitions regarding the
equational theory ACUI and ACUI-unification. The interested reader can find more details
on equational theories and unification modulo equational theories in the relevant literature,
e.g., in [BN98; BS01].

2.2 Unification modulo ACUI

In this section, we introduce the equational theory ACUI, characterize the word problem
in ACUI using sets of constants, and recall the polynomial-time decision procedure for
ACUI-unification by Kapur and Narendran [KN92], which is based on a translation of ACUI-
unification problems into propositional Horn formulae. This translation will then be extended
in the next section to deal with approximate unification.

Let Σ= {+,0} be the signature consisting of a binary function symbol + and a constant
symbol 0. We denote the equational theory that states that + is an associative, commutative,
and idempotent symbol with unit 0 by ACUI:

ACUI := {(x + y) + z ≈ x + (y + z), x + y ≈ y + x , x + 0≈ x , x + x ≈ x}.

Furthermore, let F be a countably infinite set of constants and V a countably infinite set of
variables, where we assume that F , V , and Σ are pairwise disjoint. We call the elements of
F free constants since they are not constrained by the identities of ACUI. We denote the set
of terms built from Σ, F and V as TΣ(F, V), and the subset of ground terms, i.e., terms in
TΣ(F, V) that do not contain variables, as TΣ(F). For example, if a, b ∈ F and x , y ∈ V , then
x + y and a+ x belong to TΣ(F, V), and a+ b+ b and b+ a+ a are elements of TΣ(F). The
latter two terms are actually equivalent modulo ACUI. More generally, two ground terms
are equivalent modulo ACUI iff they contain the same free constants. To be more precise,
given a ground term t ∈ TΣ(F), we denote the set of free constants occurring in t with S(t).
For example, S(a+ b+ b) = {a, b} = S(b+ a+ a), and S(a+ 0) = {a} = S(a+ a). The
following result is well-known and also easy to see.

Lemma 2.1. Let s, t ∈ TΣ(F). Then s ≈ACUI t iff S(s) = S(t).

Before we can define ACUI-unification, we need to introduce the notion of a substitution.
A substitution is a mapping σ : V → TΣ(F, V) that is the identity for all but finitely many

3Recall that G corresponds to the TBox in the DL setting; in DL terminology when the TBox is considered part
of the input we are talking about combined complexity, while when it is considered fixed we refer to data
complexity.

14 Chapter 2. Extending unification modulo ACUI

variables. It can be homomorphically extended to a mapping from TΣ(F, V) to TΣ(F, V) in
the obvious way, that is, σ(c) = c for every c ∈ F ∪ {0}, and σ(t1 + t2) = σ(t1) +σ(t2) for
every t1, t2 ∈ TΣ(F, V).

Definition 2.2 (ACUI-unification problem with constants).

Input: A finite system Γ = {s1 ≈? t1, . . . , sk ≈? tk} of equations between terms of TΣ(F, V).

Question: Is there a substitution σ such that σ(si)≈ACUI σ(t i) for every i = 1, . . . , k?

Such a substitution is called an ACUI-unifier of Γ . ♦

The ACUI-unification problems introduced in the above definition are called unification
problems with constants since they may contain additional free constants (i.e., the elements
of F , which do not belong to Σ), but no additional free function symbols of arity > 0. Now,
let Γ be such an ACUI-unification problem with constants and C and X be the finite sets
of constants and variables respectively occurring in Γ . In order to check whether Γ has an
ACUI-unifier or not, it is sufficient to consider substitutions that are the identity on V \ X
and replace every x ∈ X by a term in TΣ(C), i.e., a ground term containing (in addition to 0)
only constants from C . In fact, any ACUI-unifier of Γ can be turned into one satisfying these
properties by making it the identity on V \ X and replacing variables and constants in F \ C
occurring in σ(x) for x ∈ X with 0. If we apply such a substitution σ to the terms occurring
in Γ , then we obtain terms in TΣ(C). According to Lemma 2.1, σ is an ACUI-unifier of Γ iff
S(σ(s)) = S(σ(t)) for every equation s ≈? t ∈ Γ , i.e., every constant c ∈ C occurring on the
left-hand side σ(s) also occurs on the right-hand side σ(t) and vice versa.

Example 2.3. Consider the following ACUI-unification problem with constants:

Γ = {x1 + x2 ≈? a+ b+ c,

a+ x2 ≈? b+ x3,

x1 + x3 ≈? a+ c}

We have C = {a, b, c} and X = {x1, x2, x3}. If we define σ(x1) := a+ c and σ(x2) := b, then
σ solves the first equation, since then all the constants in C occur on both sides. In order to solve
the second equation as well, we then must define σ(x3) such that a occurs in it, and c does not
occcur in it. This is satisfied by setting σ(x3) := a, which then also satisfies the third equation.
Note that setting σ(x3) := a+ b would have satisfied the second equation, but not the third.♦

We will now recall Kapur and Narendran’s [KN92] reduction of solvability of ACUI-
unification problems to satisfiability of propositional Horn formulae. Each equation in
the unification problem Γ is translated into several Horn clauses and the overall Horn for-
mula is the conjunction of all clauses for all equations. In this reduction, we use propositional
variables p(a, x) for every a ∈ C and x ∈ X . The intuitive semantics of these variables is that
p(a, x) is true iff a is not in S(σ(x)) for the given substitution σ.

It is easy to see that each equation s ≈? t ∈ Γ can be written in the form

s0 + x1 + . . .+ xm ≈? t0 + y1 + . . .+ yn, (2.1)

where s0, t0 ∈ TΣ(F), m, n≥ 0, x1, . . . , xm ∈ X are distinct variables, and y1, . . . , yn ∈ X are
distinct variables.

2.3 Approximate unification modulo ACUI 15

Now, for each equation of the form (2.1) and each a ∈ S(s0) \ S(t0) we generate the Horn
clause

p(a, y1)∧ . . .∧ p(a, yn)→⊥.

Indeed, whenever an element a ∈ C is in S(s0) but not in S(t0), for the equation to hold true,
a must occur in the image of some y j . The symmetric Horn clauses are also produced, i.e.,
for each a ∈ S(t0) \ S(s0)

p(a, x1)∧ . . .∧ p(a, xm)→⊥.

Constants a ∈ S(s0)∩ S(t0) are obviously harmless since they automatically occur on both
sides of the equation. Thus, it remains to deal with the constants a ∈ C that are not in
S(s0)∪ S(t0). First, if such a constant a does not occur in the image of any of the variables
on the right-hand side, then it should not occur in the image of any of the variables on the
left-hand side, which is expressed by the Horn clauses

p(a, y1)∧ . . .∧ p(a, yn)→ p(a, x j) for all j = 1, . . . , m.

Again, we also need the symmetric clauses, i.e., for each a 6∈ C \ (S(s0)∪ S(t0)) we produce

p(a, x1)∧ . . .∧ p(a, xm)→ p(a, y j) for all j = 1, . . . , n.

It is easy to see that the Horn formula obtained by conjoining all the Horn clauses derived
from the unification problem Γ is satisfiable iff Γ has a solution (see [KN92] for details). The
number of derived Horn clauses and their sizes are obviously polynomial in the size of the
given ACUI-unification problem Γ . Since satisfiability of propositional Horn formulae can be
tested in linear time [DG84], this yields the following upper bound for deciding solvability
of ACUI-unification problems with constants.

Proposition 2.4 ([KN92]). ACUI-unification with constants is decidable in polynomial time.♦

2.3 Approximate unification modulo ACUI

Intuitively, in approximate unification we consider the case where a given unification problem
is not solvable, and we ask what is the “best we can do” towards solving it. De facto, we
will also consider solvable unification problems as input for approximate unification, but
then producing an exact unifier should be the best we can do. Before introducing formal
approaches for how to rank the quality of approximate unifiers, we illustrate the underlying
ideas using an example.

Example 2.5. Consider the following ACUI-unification problem with constants:

Γ = {x1 + x2 =
? a,

x1 + x3 =
? c,

b+ c + x2 =
? b+ x3,

b+ x2 + x3 =
? c + x1}.

Trying to solve the first two equations already fully determines the substitution
σ = {x1 7→ 0, x2 7→ a, x3 7→ c}. Even though σ solves the first two equations, it does not

16 Chapter 2. Extending unification modulo ACUI

solve the remaining two. Under σ, the set of free constants occurring in the left-hand side of the
third equation becomes {a, b, c}, while the right-hand side yields the set {b, c}. Likewise for the
fourth equation we obtain {a, b, c} on the left- and {c} on the right-hand side.

How far away is this substitution from being an exact solution? One idea is to count the
number of equations that are not satisfied by it. In our example, this would yield the number 2
since σ does not solve the third and fourth equation. It is easy to see that, w.r.t. this measure, σ
is actually the best we can do. In fact, in any solution of the fourth equation, b must occur in the
image of x1, and thus this substitution violates at least the first two equations. In addition, we
have already seen that a solution of the first two equations cannot satisfy the third and fourth
equations. Thus, it is not possible to satisfy more than two of the four equations.

The above measure fails, however, to assess how far from being solved are the violated equations.
Another possibility is to count how many of the elements of C take part in at least one violation,
i.e., occur on one side but not on the other when the substitution has been applied. In our
example, there are two such constants, namely a and b. In fact, after applying σ, both a and b
occur on the left-hand side of the fourth equation, but not on the right-hand side. In contrast, c
does not take part in any violation. Again, it is not hard to show that this is the best we can do
w.r.t. this measure.

Still, this new measure ignores for how many equations a given element of C takes part
in a violation. To take this aspect into account, we will also consider a measure that counts
the overall number of violations, i.e., sums up the number of equations each element of C
violates. Returning to our example, this would be 3 violations for the substitution σ: 2 for a,
1 for b, and 0 for c. For this measure, we can actually do better than σ. In fact, if we define
θ (x1) := θ (x2) := 0 and θ (x3) := c, then a violates only the first equation, b violates only the
fourth equation, and c violates no equation. Consequently, θ gets assigned the value 2, which is
better than 3, which was the value for σ. ♦

In this example, and also in our general definitions, we consider only substitutions that
are the identity on V \ X and assign terms in TΣ(C) to the variables in X . The reason is
that the assignment to variables in V \ X has no influence on the images of the left- and
right-hand sides of equations in Γ , and that free constants and variables in the images may
only introduce additional violations, but cannot remove violations caused by constants in C .

In the following, we will investigate all three of the measures sketched in the example,
and determine the computational complexity of the corresponding decision problems, i.e.,
given a unification problem Γ and a natural number `, is there a substitution whose value
w.r.t. the given measure is ≤ `. It should be clear that these decision problems are in NP. Any
substitution basically assigns subsets of C to the variables, and thus all such substitutions can
be guessed in nondeterministic polynomial time. For a given substitution, the value assigned
to it by the respective measure can obviously be computed in polynomial time. However, for
the cases that actually are NP-complete, we also provide a reduction to Max-HSAT [JS87],
which is known to be NP-complete. This allows us to use existing optimized solvers for
Max-HSAT (see for example [MIM17]) to solve approximate ACUI-unification problems.
NP-hardness will be shown by a reduction from Max-HSAT.

For later reference, we now define this problem formally.

Definition 2.6 (Max-HSAT).
Input: a nonnegative integer ` and a formula ϕ =

∧n
i=1 Ci over a finite set of propositional

variables P, where Ci is a Horn clause, i.e., of the form p1∧· · ·∧ pm→ q, with p1, . . . , pm

2.3 Approximate unification modulo ACUI 17

being propositional variables, and q either a propositional variable or ⊥. Note that m = 0
is possible, where the empty conjunction is interpreted as >.

Question: does there exist a set of indices I ⊆ {1, . . . , n} of cardinality at least `, and a valuation
v : P → {0, 1} such that v(Ci) = 1 for all i ∈ I .

We call this decision problem Max-HSAT. For a given `, Max-HSAT(`) consists of all Horn
formulae ϕ =

∧n
i=1 Ci for which there is a valuation that satisfies at least ` clauses Ci . ♦

2.3.1 Minimizing the number of violated equations

As mentioned above, we consider only substitutions that are the identity on V \ X and assign
terms in TΣ(C) to the variables in X . We say that such a substitution σ violates an equation
of the form (2.1) if

S(s0 +σ(x1) + . . .+σ(xm)) 6= S(t0 +σ(y1) + . . .+σ(yn)).

Definition 2.7 (MinVEq-ACUI). Given an ACUI-unification problem with constants Γ and a
nonnegative integer `, we now ask whether there exists a substitution σ such that at most ` of
the equations of the system are violated by σ. We call this decision problem MinVEq-ACUI. For
a given `, MinVEq-ACUI (`) consists of all ACUI-unification problems with constants for which
there is a substitution that violates at most ` equations of the system. ♦

We will show that MinVEq-ACUI is NP-complete using reductions to and from Max-HSAT.

Reducing MinVEq-ACUI to Max-HSAT

For this purpose, we introduce new propositional variables good(i), whose rôle is to determine
whether the ith equation is to be satisfied or not. We conjoin good(i) to the left-hand side
of each of the Horn clauses derived from the ith equation, i.e., if the ith equation is of the
form (2.1), then we generate the following Horn clauses:

• For each a ∈ S(s0) \ S(t0): good(i)∧ p(a, y1)∧ . . .∧ p(a, yn)→⊥;

• For each a ∈ S(t0) \ S(s0): good(i)∧ p(a, x1)∧ . . .∧ p(a, xm)→⊥;

• For each a 6∈ S(s0)∪ S(t0):

good(i)∧ p(a, y1)∧ . . .∧ p(a, yn)→ p(a, x j) for all j = 1, . . . , m;

good(i)∧ p(a, x1)∧ . . .∧ p(a, xm)→ p(a, y j) for all j = 1, . . . , n.

• Furthermore, we add the Horn clause >→ good(i).

If k′ is the number of clauses generated by the original reduction (see Section 2.2) and k is
the number of equations in the unification problem Γ , then we obtain k′ + k Horn clauses
in this modified reduction. Let ϕΓ = C1 ∧ · · · ∧ Ck′+k denote the Horn formula obtained by
conjoining these Horn clauses.

Before proving soundness and completeness of this reduction, we illustrate the above
construction with an example.

18 Chapter 2. Extending unification modulo ACUI

Example 2.8. Consider the following ACUI-unification problem with constants, which is not
solvable:

Γ = {x1 + x2 =
? a,

b+ c + x2 =
? b+ x3,

x1 + x3 =
? c}.

Then the reduction yields the following the Horn clauses:

good(1)∧ p(a, x1)∧ p(a, x2)→⊥ good(3)→ p(a, x1)

good(1)→ p(b, x1) good(3)→ p(a, x3)

good(1)→ p(b, x2) good(3)→ p(b, x1)

good(1)→ p(c, x1) good(3)→ p(b, x3)

good(1)→ p(c, x2) good(3)∧ p(c, x1)∧ p(c, x3)→⊥
good(2)∧ p(a, x2)→ p(a, x3) >→ good(1)

good(2)∧ p(a, x3)→ p(a, x2) >→ good(2)

good(2)∧ p(c, x3)→⊥ >→ good(3)

The system contains k = 3 equations and the original reduction would produce k′ = 13 clauses.
Thus, ϕΓ contains k′ + k = 16 Horn clauses.

The valuation that sets p(a, x1), p(a, x2), p(a, x3), p(c, x3) and good(3) to false and all other
variables to true satisfies all but the last clause. This corresponds to the substitution σ with
σ(x1) = σ(x2) = a and σ(x3) = a+ c, which satisfies the first two equations and violates the
third one. ♦

Intuitively, setting the propositional variable good(i) to false “switches off” the Horn
clauses induced by the ith equation in the original reduction. Consequently, the satisfaction
of these clauses is no longer enforced, which means that the ith equation may be violated.
By maximizing satisfaction of the clauses > → good(i), we thus minimize the number of
violated equations from Γ . More precisely, we can show the following lemma.

Lemma 2.9. Let Γ be an ACUI-unification problem with constants consisting of k equations
and generating k′ clauses in the reduction introduced in Section 2.2. Then we have, for all
0≤ `≤ k:

Γ ∈MinVEq-ACUI(`) iff ϕΓ ∈Max-HSAT((k′ + k)− `).

Proof. Let Γ ∈ MinVEq-ACUI(`). This means that there exists a substitution σ such that
at most ` of the equations in Γ are violated by σ. We use σ to define a valuation of the
propositional variables occurring in ϕΓ . For every a ∈ C and every variable x ∈ X we set
p(a, x) to true iff a /∈ S(σ(x)). In addition, we set good(i) to true iff σ does not violate the
ith equation of Γ .

Now, suppose that the ith equation of Γ is not violated by σ. Then our valuation makes all
clauses corresponding to the ith equation evaluate to true, and in addition it also satisfies
> → good(i). If the jth equation of Γ is violated, then good(j) is false. Consequently, all
clauses of ϕΓ corresponding to the jth equation evaluate to true, but >→ good(j) evaluates

2.3 Approximate unification modulo ACUI 19

to false. Summing up, the valuation induced by σ satisfies all the clauses of ϕΓ , with the
exception of the clauses >→ good(j) if the jth equation is violated by σ. Since σ violates
≤ ` equations and there are k′+ k clauses in ϕΓ , the valuation satisfies ≥ (k′+ k)− ` clauses,
which shows that ϕΓ ∈Max-HSAT((k′ + k)− `).

For the opposite direction, let ϕΓ ∈ Max-HSAT((k′ + k)− `). This means that there is a
valuation v and a set of indices I ⊆ {1, . . . , k′+ k} with |I |¾ k′+ k−` such that v(Ci) = 1 for
all i ∈ I . Since k ≥ `, we know that ≥ k−` of the clauses >→ good(i) must evaluate to true,
i.e. ≥ k− ` of the propositional variables good(i) evaluate to true. If i is an index for which
v(good(i)) = 1, then all the clauses produced by the reduction of Kapur and Narendran (see
Section 2.2) for the ith equation evaluate to true. By the correctness of that reduction, the
ACUI-unification problem consisting of the equations for which v(good(i)) = 1 has a solution.
Thus, there is a substitution that solves ≥ k− ` equations of Γ , i.e., violates ≤ ` equations.
This shows that Γ ∈MinVEq-ACUI(`). �

Since Max-HSAT is in NP, this lemma implies that MinVEq-ACUI also belongs to NP.

Reducing Max-HSAT to MinVEq-ACUI

Consider the Horn formula ϕ = C1 ∧ . . . ∧ Ck, where Ci is a Horn clause for i = 1, . . . , k.
To construct a corresponding ACUI-unification problem with constants Γϕ, it is sufficient to
use a single free constant a, i.e., we will have C = {a}. For every propositional variable p
appearing in ϕ, we introduce a variable xp. Intuitively, a occurs in xp iff p is set to false.
Now, each Horn clause in ϕ yields the following equations:

• If Ci is of the form p1 ∧ . . .∧ pn→ p, then the corresponding equation is

xp1
+ . . .+ xpn

+ xp =
? xp1

+ . . .+ xpn
.

Obviously, this equation enforces that a cannot occur in xp if it does not occur in any
of the variables xpi

.

• If Ci is of the form p1 ∧ . . .∧ pn→⊥, then the corresponding equation is

xp1
+ . . .+ xpn

=? a.

This equation enforces that a must occur in one of the variables xpi
.

• If Ci is of the form >→ p, then the corresponding equation is

xp =
? 0.

This equation ensures that a cannot occur in xp.

The following example illustrates the construction of Γϕ.

Example 2.10. Consider the Horn formula

ϕ = (p1 ∧ p2→ p3)∧ (p1 ∧ p3→⊥)∧ (p2 ∧ p3→⊥)∧ (>→ p1)∧ (>→ p2).

20 Chapter 2. Extending unification modulo ACUI

The corresponding ACUI unification problem consists of the following equations:

xp1
+ xp2

+ xp3
=? xp1

+ xp2
,

xp1
+ xp3

=? a, xp2
+ xp3

=? a,

xp1
=? 0, xp2

=? 0.

It is easy to see that ϕ is not satisfiable. The valuation v that makes p1 and p2 true, and p3
false satisfies all clauses except for the first one. Given the intuition that a occurs in xpi

iff pi is
set to false, this valuation induces the following substitution σ:

σ := {xp1
7→ 0, xp2

7→ 0, xp3
7→ a},

which solves all equations in the ACUI-unification problem except for the first one. ♦

More generally, we will show that there is a 1–1-relationship between valuations satisfying
certain clauses and substitutions satisfying the corresponding equations. However, note that
in Max-HSAT the number of satisfied clauses is maximized whereas in MinVEq-ACUI the
number of violated equations is minimized.

Lemma 2.11. Let ϕ = C1 ∧ . . . ∧ Ck be a Horn formula and Γϕ the corresponding ACUI
unification problem. Then we have, for all 0≤ `≤ k:

ϕ ∈Max-HSAT(`) iff Γϕ ∈MinVEq-ACUI(k− `).

Proof. Suppose that ϕ ∈Max-HSAT(`). This means that there exists a valuation v and a set
of indices I ⊆ {1, . . . , k}, |I | ≥ ` such that v(Ci) = 1 for every i ∈ I . Given such a valuation v,
we define the substitution σ as follows:

σ(xpi
) := a if v(pi) = 0 and σ(xpi

) := 0 if v(pi) = 1.

We show that, for every i ∈ I , the ith equation is solved by this substitution. Indeed, if the
ith equation is of the form:

• xp1
+ . . .+ xpn

+ xp =? xp1
+ . . .+ xpn

, then Ci = p1 ∧ · · · ∧ pn → p evaluates to true
under v. This means that either v(p j) = 0 for some j ∈ I or v(p) = 1. In the first case,
a then occurs on both sides of the equation, and thus the equation is solved. In the
second case, σ(xp) = 0, and again the equation is solved by σ.

• xp1
+ · · ·+ xpn

=? a, then Ci = p1∧ · · · ∧ pn→⊥ evaluates to true under v. This means
that v(p j) = 0 for some j ∈ I , and thus σ(xp j

) = a for some j ∈ I . Consequently,
σ(xp1

+ · · ·+ xpn
) is a sum of as and 0s, which implies that the ith equation is solved

by σ.

• xp =? 0, then Ci = >→ p evaluates to true under v. This means that v(p) = 1, and
thus σ(xp) = 0. This shows that the ith equation is solved by σ.

Consequently, the substitution σ solves at least ` equations of Γϕ, and thus violates at most
k− ` equations, which implies Γϕ ∈MinVEq-ACUI(k− `).

For the opposite direction, if Γϕ ∈MinVEq-ACUI(k− `), then there is a substitution σ such
that at least ` equations of Γϕ are not violated. We can assume without loss of generality

2.3 Approximate unification modulo ACUI 21

that σ uses a as the only free constant. If we define v(p) = 0 iff a occurs in σ(xp), then we
can show (in the same way as above) that v satisfies at least ` clauses of ϕ, which implies
ϕ ∈Max-HSAT(`). �

Since Max-HSAT is NP-hard, this lemma implies that MinVEq-ACUI is also NP-hard. Put
together, the two lemmas yield the exact complexity of MinVEq-ACUI.

Theorem 2.12. MinVEq-ACUI is NP-complete. The NP-hardness result holds even for ACUI-
unification problems with only one free constant.

2.3.2 Minimizing the number of violating elements

For the second measure, instead of minimizing the number of violated equations, we will
minimize the number of violating elements of C , where as before C is the set of free constants
occurring in the unification problem.

Given a substitution σ, we say that a ∈ C violates an equation of the form (2.1) w.r.t. σ if

a ∈ S(s0 +σ(x1) + . . .+σ(xm))∆S(t0 +σ(y1) + . . .+σ(yn)),

where ∆ denotes the symmetric difference of two sets. We say that a ∈ C violates Γ w.r.t. σ
if it violates at least one equation in Γ w.r.t. σ.

Definition 2.13 (MinVEl-ACUI). Given an ACUI-unification problem with constants Γ and
a nonnegative integer `, we now ask whether there exists a substitution σ such that at most
` constants violate Γ w.r.t. σ. We call this decision problem MinVEl-ACUI. For a given `,
MinVEl-ACUI (`) consists of all ACUI-unification problems Γ with constants for which there is a
substitution w.r.t. which at most ` constants violate Γ . ♦

In contrast to the problem MinVEq-ACUI considered in the previous section, MinVEl-
ACUI can be solved in polynomial time. In order to show this, we use projections of
equations to free constants. As noted earlier, any term t ∈ TΣ(F, V) can be written in
the form t = t0 + x1 + . . . + xn, where t0 ∈ TΣ(F) is a ground term and x1, . . . , xn are
variables in V . Given a constant a ∈ F the projection of such a term onto a is defined to
be ta = πa(t0) + x1 + . . .+ xn, where for a ground term t0 ∈ TΣ(F) we set πa(t0) = a if a
occurs in t0, and 0 otherwise. Then the projection of an equation s =? t to a is sa =? ta,
and the projection of an ACUI-unification problem with constants Γ to a, denoted by Γ a, is
the system of the projections of the equations in Γ to a. Finally, the projection of a ground
substitution σ to a is the substitution σa : V → TΣ({a}) defined as σa(x) := σ(x)a.

Consider the unification problem Γ and the substitution σ introduced in Example 2.8. The
constant a violates Γ w.r.t. σ, while b, c do not. For the elements of C = {a, b, c}, we obtain
the following projections of Γ :

Γ a Γ b Γ c

x1 + x2 =? a
x2 =? x3

x1 + x3 =? 0

x1 + x2 =? 0
b+ x2 =? b+ x3

x1 + x3 =? 0

x1 + x2 =? 0
c + x2 =? x3

x1 + x3 =? c

Likewise, for the substitution σ we obtain the projections:

22 Chapter 2. Extending unification modulo ACUI

σa σb σc

σa(x1) = a
σa(x2) = a
σa(x3) = a

σb(x1) = 0
σb(x2) = 0
σb(x3) = 0

σc(x1) = 0
σc(x2) = 0
σc(x3) = c

One can easily check that σb and σc solve Γ b and Γ c , respectively, whereas σa does not solve
Γ a. This is closely related to the fact that a violates Γ w.r.t. σ, but b and c do not.

Lemma 2.14. Let Γ be an ACUI-unification problem with constants. Then the following holds:

1. The constant a ∈ C violates Γ w.r.t. σ iff σa does not solve Γ a.

2. Given substitutionsσa : V → TΣ({a}) for all a ∈ C, define the substitutionσ : V → TΣ(C)
as

σ(x) =
∑

a∈C

σa(x) for all x ∈ V.

Then we have σa = σa for all a ∈ C.

3. There is a substitution σ : V → TΣ(C) such that at most ` of the elements of C violate Γ
w.r.t. σ iff at most ` of the ACUI-unification problems Γ a (a ∈ C) are not solvable.

Proof. We will show the first two facts stated in the lemma, and then use them to prove the
third.

1. This is an easy consequence of the following equivalences. The constant a violates
the equation s =? t ∈ Γ w.r.t. σ iff a ∈ S(σ(s))∆S(σ(t)) iff a ∈ S(σ(s)a)∆S(σ(t)a)
iff a ∈ S(σa(sa))∆S(σa(ta)) iff σa does not solve sa =? ta ∈ Γ a.

2. σa(x) = (
∑

a′∈C σ
′
a(x))

a =
∑

a′∈C(σ
′
a(x)

a) = σa(x)a = σa(x).

3. Suppose that there is a substitution σ : V → TΣ(C) such that at most ` elements of C
violate Γ w.r.t. σ. Because of the first fact this implies that at least k−` of the projected
unification problems Γ a are solved by the projected substitutions σa. Consequently, at
most ` of the projected problems Γ a are not solvable.
For the opposite direction, suppose that at most ` of the systems Γ a are not solvable.
For every a ∈ C , if Γ a is solvable, let σa : V → TΣ({a}) be a substitution that solves
it, and an arbitrary substitution V → TΣ({a}) otherwise. Define the substitution
σ : V → TΣ(C) as σ(x) :=

∑

a∈C σa(x) for all x ∈ V . Then the constant a ∈ C violates
Γ w.r.t. σ iff σa = σa solves Γ a iff Γ a is solvable. Consequently, at most ` of the
elements of C violate Γ w.r.t. σ.

This completes the proof of the lemma. �

Due to the third fact stated the above lemma, to check whether Γ ∈ MinVEl-ACUI(`), it is
sufficient to check which of the ACUI-unification problems Γ a for a ∈ C are solvable. This
can obviously be done in polynomial time.

Theorem 2.15. The problem MinVEl-ACUI is in P.

2.3 Approximate unification modulo ACUI 23

2.3.3 Minimizing the number of violations

A disadvantage of the measure used in the previous section is that it does not distinguish
between constants that violate only one equation and those violating many equations. To
overcome this problem, we count for each violating constant how many equations it actually
violates. We say that a ∈ C violates Γ p times w.r.t. σ if it violates p equations in Γ w.r.t. σ.
Further, we say that σ violates Γ q times if q =

∑

a∈C pa where, for each a ∈ C , the element a
violates Γ pa times w.r.t. σ.

Definition 2.16 (MinV-ACUI). Given an ACUI-unification problem with constants Γ and a
nonnegative integer `, we now ask whether there exists a substitution σ that violates Γ at most
` times. We call this decision problem MinV-ACUI. For a given threshold value `, MinV-ACUI (`)
consists of those ACUI-unification problems with constants Γ for which there is a substitution
that violates Γ at most ` times. ♦

The approach used in Section 2.3.1 to solve MinVEq-ACUI can easily be adapted to solve
this new problem. Basically, we now introduce propositional variables good(i, a) (instead
of simply good(i)) to characterize whether the element a ∈ C violates the ith equation. We
conjoin good(i, a) to the left-hand side of each of the Horn clauses derived from the ith
equation for a. Furthermore, we add the Horn clauses>→ good(i, a) instead of>→ good(i).
Following the earlier notation, we obtain k′ + k|C | Horn clauses in this modified reduction,
and again use ϕΓ to denote the Horn formula obtained this way.

If we apply this modified reduction to the ACUI-unification problems of Example 2.8,
then we obtain the Horn clauses depicted in Fig. 2.17. Consider the substitution θ with
θ (x1) = θ (x2) = a and θ (x3) = c. Then a violates the second and the third equation, whereas
b and c do not violate any equation w.r.t. θ . We can use θ to define a valuation v, which
sets p(a, x1), p(a, x2), p(c, x3), good(2, a), good(3, a) to false and all other propositional
variables to true. This valuation satisfies all clauses in Fig. 2.17, except for >→ good(2, a)
and >→ good(3, a).

The following lemma states correctness of the modified reduction. Since its proof is very
similar to the proof of Lemma 2.9, we leave it to the reader.

Lemma 2.18. Let Γ be an ACUI-unification problem consisting of k equations, and generating
k′ clauses in the reduction introduced in Section 2.2, and let C be the set of free constants
occurring in Γ . Denote with ϕΓ = C1 ∧ · · · ∧ Ck′+k|C | the Horn formula obtained by applying the
the modified reduction to Γ . Then we have

Γ ∈MinV-ACUI(`) iff ϕΓ ∈Max-HSAT((k′ + k|C |)− `).

Since Max-HSAT is in NP, this lemma implies that MinV-ACUI is also in NP. NP-hardness of
MinV-ACUI actually follows directly from Lemma 2.11. In fact, the reduction considered in
this lemma requires only a single constant a. In this setting, counting the number of violated
equations is the same as counting the number of all violations, and thus MinV-ACUI coincides
with MinVEq-ACUI. This shows that MinV-ACUI is NP-hard.

Theorem 2.19. The problem MinV-ACUI is NP-complete.

24 Chapter 2. Extending unification modulo ACUI

good(1, a)∧ p(a, x1)∧ p(a, x2)→⊥
good(1, b)→ p(b, x1) good(3, a)→ p(a, x1)

good(1, b)→ p(b, x2) good(3, a)→ p(a, x3)

good(1, c)→ p(c, x1) good(3, b)→ p(b, x1)

good(1, c)→ p(c, x2) good(3, b)→ p(b, x3)

good(2, a)∧ p(a, x2)→ p(a, x3) good(3, c)∧ p(c, x1)∧ p(c, x3)→⊥
good(2, a)∧ p(a, x3)→ p(a, x2)

good(2, c)∧ p(c, x3)→⊥

>→ good(1, a) >→ good(2, a) >→ good(3, a)

>→ good(1, b) >→ good(2, b) >→ good(3, b)

>→ good(1, c) >→ good(2, c) >→ good(3, c)

Figure 2.17: The Horn clauses obtained by applying the modified reduction to Γ from Ex-
ample 2.8.

2.4 Unification modulo ACUIG

In this section, we consider unification modulo ACUIG, i.e., ACUI extended with a finite set of
ground identities G. We will prove that, in this setting, we obtain the same complexity bounds
as for ACUI-unification. Initially, we will demonstrate that the word problem in ACUIG is
decidable in polynomial time. Subsequently, we will use this result to prove that ACUIG-
unification with constant restrictions, a notion that generalizes unification with constants, is
decidable in P. Finally, using previous combination results from Baader and Schulz [BS93]
and the hardness result for general ACUI-unification by Kapur and Narendran [KN92], we
will conclude that general ACUIG-unification is NP-complete.

2.4.1 The word problem for ACUIG

Just as in Section 2.2, we consider the signature Σ = {+,0} and the equational theory ACUI
that states that + is an associative, commutative, and idempotent binary function symbol
with unit 0. But now we extend ACUI with a finite set of ground identities G ⊆ TΣ(F)×TΣ(F),
and denote the equational theory obtained this way by ACUIG. The word problem for ACUIG
asks whether two given terms s, t ∈ TΣ(F) are equivalent modulo ACUIG, i.e., whether
s =ACUIG t holds or not. As already mentioned in the introduction, we can measure the
complexity of this problem in two different ways. On the one hand, we can assume that
G is fixed beforehand, and then consider the word problem for the fixed equational theory
ACUIG = ACUI ∪ G. The complexity of the word problem is then measured in the size of
the input terms s, t. On the other hand, we can view G to be part of the input and then
measure the complexity in the combined size of s, t, and G. If the complexity is measured in

2.4 Unification modulo ACUIG 25

terms of s, t only, we will call this term complexity, and otherwise combined complexity.4 We
will actually show that the word problem for ACUIG is in P for combined complexity, which
obviously implies that it is also in P for term complexity.

Recall that modulo ACUI, two ground terms s, t ∈ TΣ(F) are equivalent iff they contain
the same constants. However, in the presence of ground identities G, the latter condition
is sufficient, but not necessary for two terms to be equivalent. In fact, ACUI ⊆ ACUIG
obviously yields that S(s) = S(t) implies s ≈ACUIG t. However, the opposite direction need
no longer hold, as shown by the following example. Consider the terms s = b+ a+ a and
t = a + b + c, with corresponding sets S(s) = {a, b} and S(t) = {a, b, c}, and the ground
theory G = {a + b ≈ c}. We have s = b + a + a ≈ACUI a + b + a + b ≈G a + b + c = t, and
thus s ≈ACUIG t, even though S(s) 6= S(t). Intuitively, the identity in G can be used to add c
to the set {a, b}.

We will now show how to decide whether two terms are equivalent modulo ACUIG. For
this purpose we saturate the sets of constants occurring in the terms using the identities in G
to add constants, as we have done with c in our example.

Definition 2.20. Given a finite set of constants A⊆ F, its saturation AG is obtained by iteratively
applying the identities of G as follows:

• begin with setting AG := A;

• as long as there is an identity gi ≈ hi in G such that S(gi) ⊆ AG and S(hi) 6⊆ AG (or
S(hi) ⊆ AG and S(gi) 6⊆ AG), extend AG by setting AG := AG ∪ S(hi) (respectively, by
setting AG := AG ∪ S(gi)). ♦

This saturation process terminates after a number of iterations that is bounded by the
cardinality of G. In fact, once an identity gi ≈ hi is applied in the saturation process, it is no
longer applicable since the set AG then contains S(gi)∪ S(hi). It is also easy to see that the
result of the saturation does not depend on the order in which rules are applied. Thus, each
finite set A⊆ F has a unique saturation AG, which can be computed in time polynomial in
the cardinality of A and the size of G.

Example 2.21. Consider the set of ground identities

G = {a+ b+ c ≈ d, b+ c + e ≈ f }

and the term s = a + f , which yields the start set A = {a, f }. The saturation process for A
starts with setting AG := {a, f }. For the second identity, we have that S(f) = { f } ⊆ AG, but
S(b+ c + e) = {b, c, e} 6⊆ AG. Hence, we can extend AG to the new set
AG := AG ∪ S(b+ c + e) = {a, b, c, e, f }. Now, for the first identity, we have that
S(a+ b+ c) = {a, b, c} ⊆ AG, but S(d) = {d} 6⊆ AG, and thus we obtain
AG := AG ∪ S(d) = {a, b, c, d, e, f }. This is the final saturated set since it cannot be further
extended using the identities in G. ♦

The following lemma is an easy consequence of the definition of saturation.

4Note that the word problem when the equational theory is part of the input is usually called the uniform word
problem [BHS87].

26 Chapter 2. Extending unification modulo ACUI

Lemma 2.22. Let A, B be finite subsets of F. Then the following holds:

A⊆ AG , (AG)G = AG , A⊆ B⇒ AG ⊆ BG , AG ∪ BG ⊆ (A∪ B)G .

Proposition 2.23. Let s, t ∈ TΣ(F). Then s ≈ACUIG t iff S(s)G = S(t)G. In particular, the
combined and thus also the term complexity for the word problem for ACUIG is in P. ♦

Proof. Decidability in polynomial time obviously follows from the equivalence in the first
statement since the saturation AG of a finite set A⊆ F can be computed in polynomial time,
and the cardinality of S(s), S(t) is bounded by the size of s, t.

To show the equivalence, first assume that S(s)G = S(t)G. To conclude from this that
s ≈ACUIG t, it is sufficient to show that saturation steps correspond to rewrite steps in ACUIG.
Thus, assume that l ∈ TΣ(F), and that gi ≈ hi is an identity in G such that S(gi) ⊆ S(l). Then
l is of the form l ≈ACUI gi+ l ′. We now have l ≈ACUI gi+ l ′ ≈ACUI gi+ gi+ l ′ ≈ACUIG hi+ l, and
S(hi + l) = S(l)∪S(hi). This shows that there are terms sG , tG ∈ TΣ(F) such that u≈ACUIG uG

and S(uG) = S(u)G for u ∈ {s, t}. By Lemma 2.1 we thus know that S(s)G = S(t)G implies
sG =ACUI tG , and thus we have s ≈ACUIG sG ≈ACUI tG ≈ACUIG t.

Second, assume that S(s)G 6= S(t)G. To show that this implies s 6≈ACUIG t, we construct a
model A of ACUIG in which the identity s ≈ t does not hold. As interpretation domain, we
use all saturated sets over the constants occurring in s, t, G, i.e., ∆ := {AG | A⊆ C} where C
consists of the elements of F that occur in s, t, or G. Since saturation adds only constants
occurring in G, we know that A⊆ C implies AG ⊆ C . The binary symbol + is interpreted as
union followed by saturation, i.e., AG + BG := (AG ∪ BG)G , 0 as ;G , and c ∈ C as {c}G . Given
a term u ∈ TΣ(C), its interpretation in this algebra is S(u)G. This can easily be shown by
induction on the structure of u, where the induction step uses the fact that

(AG ∪ BG)G = (A∪ B)G , (2.2)

which is an easy consequence of Lemma 2.22. Thus, S(s)G 6= S(t)G implies that the terms
s, t have different interpretations in A. To show s 6≈ACUIG t, it is thus sufficient to show that
A satisfies all identities of ACUIG. For the identities in ACUI this is an easy consequence of
(2.2) and the fact that set union is associative, commutative and idempotent and has ; as
unit. Now consider an identity gi ≈ hi ∈ G. When saturating the corresponding sets S(gi)
and S(hi), one can in a first step go both from S(gi) and from S(hi) to S(gi)∪ S(hi) (unless
this step is void due to an inclusion). Saturating further, one thus obtains identical saturated
sets, which shows that gi and hi are interpreted in A by the same saturated set. �

Continuing Example 2.21, recall that the term s = a + f has the saturated set
S(s)G = {a, b, c, d, e, f }. It is easy to see that, for t = b + d + e, saturation produces
the sequence of sets

S(t) = {b, d, e} → {a, b, c, d, e} → {a, b, c, d, e, f }= S(t)G ,

where in the first step the identity d ≈ a+ b+ c is applied, and in the second the identity
b+ c+ e ≈ f . Thus, we have S(s)G = S(t)G , which shows that s = a+ f ≈ACUIG b+ d + e = t.

2.4 Unification modulo ACUIG 27

2.4.2 ACUIG-unification with constant restriction

As in the previous subsection, let Σ = {+,0}, F a countably infinite set of constants, and V a
countably infinite set of variables. Given a finite set of ground identities G ⊆ TΣ(F)× TΣ(F),
we now consider unification modulo ACUIG = ACUI∪G. Note that in this setting the constants
occurring in G are no longer free constants, but theory constants. Thus, an ACUIG-unification
problem with constants may contain the constant 0, the constants from G, and additional
free constants, i.e., elements of F that do not occur in G. For a given unification problem, a
constant restriction prohibits the occurrence of certain free constants in the image of certain
variables.

Definition 2.24 (ACUIG-unification problem with constant restriction).

Input: A finite system Γ = {s1 ≈? t1, . . . , sk ≈? tk} of equations between terms in TΣ(V, F), a
finite set of ground identities G = {g1 ≈ h1, . . . , gm ≈ hm} between terms in TΣ(F), and
a mapping r : D→ 2X where X ⊆ V is the set of variables occurring in Γ and D ⊆ F is the
set of free constants occurring in Γ .

Question: Is there a substitution σ such that σ(si) ≈ACUIG σ(t i) for every i = 1, . . . , k and
for every x ∈ X and d ∈ D we have that d does not occur in σ(x) if x ∈ r(d). Such a
substitution is called an ACUIG-unifier of Γ w.r.t. r. ♦

Note that we consider the set of ground identities G to be part of the input. Thus, the
complexity upper bound of P shown below for deciding ACUIG-unification with constant
restriction holds for combined complexity, which implies the same upper bound also for term
complexity.

In the following, we assume that C ⊆ F is the set of constants occurring in Γ or G, and
X ⊆ V is the set of variables occurring in Γ . As before, in order to check whether Γ has a
unifier w.r.t. r, it is sufficient to consider substitutions that are the identity on V \ X and
replace every x ∈ X by a term in TΣ(C). In fact, any ACUIG-unifier of Γ w.r.t. r can be turned
into one satisfying these properties by making it the identity on V \X and replacing variables
and constants in F \ C occurring in σ(x) for x ∈ X with 0.

Intuitively, our algorithm for solving ACUIG-unification with constant restriction starts
with a maximal substitution σ that respects the constant restriction, in the sense that σ(x)
for x ∈ X contains as many of the constants from C as admitted by the restriction. Next,
whenever an equation is not satisfied, that is, when a constant appears on one side but not
on the other after saturation, we trim the substitution, so that it no longer introduces this
violation. Upon termination, the algorithm provides a solution if one exists, and outputs Fail
otherwise. In the algorithm we will use the following notation for turning a set of constants
into the term that sums up theses constants: given A⊆ C , we denote with

∑

(A) the term
∑

a∈A a. Note that S(
∑

(A)) = A and
∑

(S(s))≈ACUI s for all s ∈ TΣ(C).
Before proving correctness of this algorithm, we illustrate how it works on two examples,

one where the input is a solvable unification problem, and one where the input problem is
not solvable.

Example 2.25. Consider the system of equations

Γ = {g + x2 ≈? a+ x1, b+ x1 ≈? c + f + g, c + x2 ≈? a+ c + e},

28 Chapter 2. Extending unification modulo ACUI

Algorithm 1: ACUIG-unification with constant restriction

Input: An ACUIG-unification problem with constant restriction r, as introduced in
Definition 2.24.

Output: A unifier σ w.r.t. r or Fail.
1 Set σ(x) :=

∑

({c ∈ C | x 6∈ r(c) for c ∈ D or c occurs in G}) for all x ∈ X
2 while some equation s ≈? t in Γ is not satisfied by σ do
3 if there is a variable x in s such that S(σ(x)) 6⊆ S(σ(t))G or y in t such that

S(σ(y)) 6⊆ S(σ(s))G then
4 Set σ(x) :=

∑

(S(σ(x))∩ S(σ(t))G) for all variables x in s
5 Set σ(y) :=

∑

(S(σ(y))∩ S(σ(s))G) for all variables y in t
6 else
7 return Fail
8 end
9 end

10 return σ

the set of ground identities G = {a + b + c ≈ d, b + c + e ≈ f } from Example 2.21, and the
constant restriction

r(g) = {x2}.

Note that g is the only free constant occurring in Γ , and thus it is the only constant occurring
in this constant restriction. Also note that, if we had x1 ∈ r(g), then the second equation of Γ
would not be solvable. In addition, without G, this second equation would not be solvable either:
b belongs to the left-hand side, but could never belong to the right-hand side without additional
ground identities.

The algorithm begins by setting

σ(x1) := a+ b+ c + d + e+ f + g and σ(x2) := a+ b+ c + d + e+ f .

Next, the algorithm enters the while loop and picks in each iteration an equation that is not
satisfied:

• The second equation is not satisfied by σ. In fact, S(σ(c + f + g))G = {b, c, e, f , g}, and
hence S(σ(x1)) 6⊆ S(σ(c + f + g))G. The algorithm then proceeds to set
σ(x1) :=

∑

({a, b, c, d, e, f , g} ∩ {b, c, e, f , g}) = b+ c + e+ f + g.

• The third equation is not satisfied by σ. In fact, S(σ(a+ c + e))G = {a, c, e}, and hence
S(σ(x2)) 6⊆ S(σ(a+ c + e))G. The algorithm then proceeds to set
σ(x2) :=

∑

({a, b, c, d, e, f } ∩ {a, c, e}) = a+ c + e.

• The first equation is not satisfied by σ. In fact, we have that
S(σ(x1)) = {b, c, e, f , g} 6⊆ S(σ(g + x2))G = {a, c, e, g}. The algorithm proceeds to set
σ(x1) :=

∑

({b, c, e, f , g} ∩ {a, c, e, g}) = c + e+ g.

The algorithm then terminates since all equations are satisfied, and yields the substitution
σ = {x1 7→ c + e+ g, x2 7→ a+ c + e} as output, which is indeed an ACUIG-unifier of Γ that
respects the constant restriction r. ♦

2.4 Unification modulo ACUIG 29

Next, we provide an instance that admits no solution, and demonstrate how the algorithm
reaches this conclusion.

Example 2.26. Consider the system of equations

Γ = {a+ x2 ≈? x1, b+ x1 ≈? c + f + g, c + x2 ≈? c + e},

the set of ground identities G = {a + b + c ≈ d, b + c + e ≈ f } considered in the previous
example, and the constant restriction

r(g) = ;.

Note that g is the only free constant occurring in Γ , and that r(g) = ; means that, in effect, there
is no constant restriction, i.e., all substitutions are admissible w.r.t. this constant restriction.

The algorithm begins by setting

σ(x1) := a+ b+ c + d + e+ f + g and σ(x2) := a+ b+ c + d + e+ f + g.

Next, the algorithm enters the while loop and picks in each iteration an equation that is not
satisfied:

• The second equation is not satisfied by σ. In fact, S(σ(c + f + g))G = {b, c, e, f , g}, and
hence σ(x1) 6⊆ S(σ(c + f + g))G. The algorithm then proceeds to set
σ(x1) :=

∑

({a, b, c, d, e, f , g} ∩ {b, c, e, f , g}) = b+ c + e+ f + g.

• The third equation is not satisfied by σ. In fact, we have that S(σ(c + e))G = {c, e}, and
hence σ(x2) 6⊆ S(σ(c + e))G. The algorithm then proceeds to set
σ(x2) :=

∑

({a, b, c, d, e, f , g} ∩ {c, e}) = c + e.

• The first equation is not satisfied by σ. In fact, we have
S(σ(x1)) = {b, c, e, f , g} 6⊆ S(σ(a+ x2))G = {a, c, e}. The algorithm proceeds to set
σ(x1) :=

∑

({b, c, e, f , g}∩{a, c, e}) = c+e andσ(x2) :=
∑

({c, e}∩{b, c, e, f , g}) = c+e.

• The first equation is still not satisfied byσ. However, the if condition of the algorithm is not
satisfied: we have S(σ(x1)) = {c, e} ⊆ S(σ(a+ x2))G = {a, c, e} and
S(σ(x2)) = {c, e} ⊆ S(σ(x1))G = {c, e}. Hence the if condition is not satisfied and
the algorithm returns Fail.

It is not hard to see that the problem indeed does not have an ACUIG-unifier. Basically, the first
equation implies that, for any unifier σ, a or d must occur in σ(x1) since otherwise a cannot
be produced on the right-hand side of the first equation. However, any such σ then violates the
second equation. ♦

Proposition 2.27. Algorithm 1 terminates in time polynomial in the size of G and Γ . If Γ has
an ACUIG-unifier w.r.t. r, then it provides such a unifier as output, and otherwise it fails. ♦

Proof. Termination in polynomial time is an easy consequence of the facts that (i) in each
iteration of the while-loop, at least one constant is removed from the image of a variable, or
the loop is exited; and that (ii) saturation can be done in polynomial time.

Since the algorithm only returns a substitution if the while-loop is exited regularly, this
substitution satisfies all the equations of Γ . It satisfies the constant restriction due to the

30 Chapter 2. Extending unification modulo ACUI

fact that the original substitution satisfies it and that constants are only removed from, but
never added to, the image of variables during the run of the algorithm. Consequently, if the
algorithm returns a substitution, then this substitution is an ACUIG-unifier of Γ w.r.t. r. This
shows that the algorithm must return Fail in case Γ has no unifier w.r.t. r.

To prove the completeness of the algorithm, assume that bσ is a ACUIG-unifier of Γ w.r.t. r,
and that the algorithm terminates during the rth iteration of the while-loop. Let σ(0) be the
substitution σ before the first iteration of the while-loop. For i ∈ {1, . . . , r − 1}, let σ(i) be
the substitution obtained at the end of the ith iteration of the while-loop.

We extend ⊆ to substitutions in a natural way, by using point-wise comparison of constant
sets, that is, τ ⊆ τ′ iff S(τ(x)) ⊆ S(τ′(x)) for all x ∈ X . We prove by induction on i that
bσ ⊆ σ(i), for all i ∈ {0, . . . , r − 1}. The base case i = 0 is obvious: since bσ satisfies the
constant restriction, we clearly have bσ ⊆ σ(0). Let now i ∈ {0, . . . , r − 2}, and assume that
we already know that bσ ⊆ σ(i). We must prove bσ ⊆ σ(i+1).

Since the algorithm does not exit the while-loop at this iteration, there is an equation
s ≈? t in Γ that is not satisfied by σ(i). In addition, since the algorithm does not fail at
iteration i, there exists a variable x in s such that S(σ(x)) 6⊆ S(σ(t))G or y in t such that
S(σ(y)) 6⊆ S(σ(s))G . Clearly, for every x ∈ X that does not appear in this equation, we have
S(bσ(x)) ⊆ S(σ(i)(x)) = S(σ(i+1)(x)). Let now x be a variable occurring in s (variables in
t can be treated analogously). To prove that S(bσ(x)) ⊆ S(σ(i+1)(x)), it suffices to prove
that S(bσ(x)) ⊆ S(σ(i)(x)) and that S(bσ(x)) ⊆ S(σ(i)(t))G . The first statement is true by the
induction hypothesis. Now, we have

S(bσ(x))
(1)
⊆ S(bσ(s))

(2)
⊆ S(bσ(s))G

(3)
= S(bσ(t))G

(4)
⊆ S(σ(i)(t))G ,

where (1) holds because x occurs in s, (2) by Lemma 2.22, (3) because bσ is a unifier of Γ ,
and (4) by Lemma 2.22 since bσ ⊆ σ(i). This finishes the induction proof.

Therefore, we now know that bσ ⊆ σ(r−1). There are two possible reasons for the algorithm
terminating in the rth iteration. Either the while-loop is exited regularly or the algorithm
returns Fail. In the first case, σ(r−1) is a unifier and the algorithm returns this substitution.

It remains to show that the second case cannot occur. In this case, we have that
S(σ(r−1)(s))G 6= S(σ(r−1)(t))G for some equation s ≈? t in Γ , but S(σ(r−1)(x)) ⊆ S(σ(r−1)(t))G

for all variables x in s and S(σ(r−1)(y)) ⊆ S(σ(r−1)(s))G for all variables y in t. This can
only be the case if there is a constant c ∈ C such that c occurs in s, but c 6∈ S(σ(r−1)(t))G; or
c occurs in t, but c 6∈ S(σ(r−1)(s))G . We show that this is impossible.

Thus assume that c occurs in s (the case where c occurs in t can be treated symmetrically).
We have

c
(1)
∈ S(bσ(s))

(2)
⊆ S(bσ(s))G

(3)
= S(bσ(t))G

(4)
⊆ S(σ(r−1)(t))G ,

where (1) holds since c occurs in s, (2) by Lemma 2.22, (3) since bσ is a unifier of Γ , and (4)
by Lemma 2.22 since bσ ⊆ σ(r−1). �

The following theorem is an immediate consequence of Proposition 2.27.

Theorem 2.28. The combined and thus also the term complexity of ACUIG-unification with
constant restriction is in P.

2.4 Unification modulo ACUIG 31

Note that this implies that elementary ACUIG-unification and ACUIG-unification with
constants are also decidable in polynomial time. The next section deals with general ACUIG-
unification.

2.4.3 General ACUIG-unification

General ACUIG-unification problems Γ differ from the ones we have considered until now
in that the terms used in Γ may contain free function symbols, i.e., function symbols not
occurring in the identities of ACUIG. For example, { f (x + a, a+ b)≈? f (b+ y, x)} is such
a general ACUIG-unification problem since it contains the additional function symbol f ,
which does not occur in the identities of ACUIG. Using techniques for the combination of
unification algorithms, one can transfer complexity results for unification with constant
restrictions to general unification. In fact, the following was proved by Baader and Schulz
[BS96] for arbitrary equational theories E, where linear constant restrictions are a special
form of constant restrictions.

Theorem 2.29 ([BS96]). If solvability of E-unification problems with linear constant restric-
tion is decidable in NP, then solvability of general E-unification problems is also decidable in
NP.

Together with our result from the previous subsection, this provides us with an NP-upper
bound for general ACUIG-unification. The corresponding lower bound can be obtained by
adapting the proof of NP-hardness for general ACUI-unification by Kapur and Narendran
[KN92].

Theorem 2.30. General ACUIG-unification is NP-complete, both w.r.t. combined complexity
and w.r.t. term complexity.

Proof. Membership in NP (for combined complexity, and thus also for term complexity) is an
immediate consequence of Theorem 2.28 together with Theorem 2.29 since P⊆NP and any
linear constant restriction is a constant restriction.

We show that NP-hardness (w.r.t. term complexity) holds for any fixed finite set of ground
identities G. This obviously implies NP-hardness also for combined complexity. This NP-
hardness result can be shown by the same reduction from the set-matching problem used in
[KN86] to show that general ACI-unification is NP-hard. To be more precise, this reduction
yields ACI-unification problems of the form

Γ = {g(s1) + . . .+ g(sm)≈? g(t1) + . . .+ g(tn)},

where + is an associative, commutative, and idempotent function symbol, g is a unary free
function symbol and the terms s1, . . . , sm, t1, . . . , tn contain only free function symbols and
variables. The presence of a unit and of ground identities in ACUIG do not change solvability
of such problems compared to ACI since

• in the top-level sum the additional identities cannot be used due to the fact that all
terms on this level start with the free function symbol g;

• while the variables occurring in the terms g(s1), . . . , g(sm), g(t1), . . . , g(tn) may be
replaced by terms containing + and constant symbols from G, these “alien” subterms
can be abstracted away by free constants.

32 Chapter 2. Extending unification modulo ACUI

This shows that such a problem Γ is solvable modulo ACI iff it is solvable modulo ACUIG for
an arbitrary finite set of ground identities G, which completes our proof of NP-hardness of
general ACUIG-unification w.r.t. term complexity. �

2.5 Approximate Unification Modulo ACUIG

In this section we investigate how the addition of a ground theory to ACUI affects the
complexity of approximate unification. Basically, we will investigate the same three measures
that we treated in Section 2.3, but must adapt their definition to the extended setting.

First, one needs to decide which are the constants that can lead to violations. In Section 2.3,
these were the free constants occurring in the problem since presence or absence of the
theory constant 0 cannot contribute to the violation of an equation. For example, given
the equation x + a ≈? a, the substitution σ = {x 7→ 0} solves this equation, although
syntactically, after applying this substitution, the left-hand side 0+ a contains 0 whereas
the right-hand side a does not. This is the reason why we did not consider 0 when defining
the set of constants S(t) contained in a term t. In contrast, constants occurring in G
may lead to a violation. For instance, consider the equation from above and the ground
theory G = {b + c ≈ b}. The substitution θ = {x 7→ b} does not solve the equation since
θ (x + a) = b + a 6≈ACUIG a = θ (a). Here, the constant b, which is a theory constant for
ACUIG, violates the equation. This motivates to consider both the free constants occurring
in Γ and the theory constants different from 0 occurring in G when counting violations.
However, when defining under what conditions such a constant violates an equation, one
cannot just consider the constants explicitly occurring on the left- and the right-hand side
after applying the substitution. In fact, if we consider the equation x + c ≈? b, then the
substitution θ from above solves this equation, although c occurs in θ (x + c) = b+ c, but
not in θ (b) = b. To see whether a theory constant from G really violates an equation, we
first need to apply saturation to the sets of constants occurring on each side of the equation.

In the following, let G be a ground theory, i.e., a finite set of ground identities between
terms of TΣ(F), and Γ = {s1 ≈? t1, . . . , sk ≈? tk} an ACUIG-unification problem with constants.
We denote the set of constants appearing in Γ or G with C and the set of variables appearing
in Γ with X . As before, it is sufficient to consider only substitutions that are the identity on
V \ X and assign terms in TΣ(C) to variables in X .

Definition 2.31. The substitution σ violates the equation s ≈? t ∈ Γ modulo G if

S(σ(s))G 6= S(σ(t))G .

Furthermore, the constant a ∈ C violates s ≈? t ∈ Γ modulo G w.r.t. σ if

a ∈ S(σ(s))G∆S(σ(t))G , ♦

and it violates Γ modulo G w.r.t. σ if it violates at least one equation in Γ modulo G w.r.t. σ.
Moreover, a ∈ C violates Γ modulo G p times w.r.t. σ if it violates p equations in Γ modulo

G w.r.t. σ. Finally, we say that σ violates Γ q times modulo G if q =
∑

a∈C pa where, for each
a ∈ C, the element a violates Γ modulo G pa times w.r.t. σ.

2.5 Approximate Unification Modulo ACUIG 33

Given these redefined notions of violation, we can now formalize the three different
decision problems for approximate ACUIG-unification analogously to how this was done in
Section 2.3 for ACUI.

Definition 2.32. Let G be a ground theory, i.e., a finite set of ground identities between terms
of TΣ(F). Given an ACUIG-unification problem with constants Γ and a nonnegative integer `,
we ask whether there exists a substitution σ such that:

• at most ` of the equations of the system are violated modulo G by σ. We call this decision
problem MinVEq-ACUIG.

• at most ` constants violate Γ modulo G w.r.t. σ. We call this decision problem MinVEl-
ACUIG.

• σ violates Γ modulo G at most ` times. We call this decision problem MinV-ACUIG. ♦

It is easy to see that all three problems belong to NP w.r.t. combined complexity, and
thus also w.r.t. term complexity. In fact, as mentioned before, we can restrict the attention
to substitutions that assign terms in TΣ(C) to the variables in X . For every x ∈ X , the
assigned term σ(x) is determined modulo ACUI by the set of constants S(σ(x)) occurring
in it. Consequently, any such substitution can be guessed in nondeterministic polynomial
time. For a given substitution, the saturations of the constant sets on the left- and right-hand
sides of the equations can be computed in polynomial time due to Proposition 2.23, and thus
the violations modulo G can be counted also in polynomial time. The only place where the
ground theory plays a role in this straightforward NP-procedure is during the computation of
the saturations. Since this computation is polynomial w.r.t. combined complexity, the NP
upper bound also holds for combined complexity.

Proposition 2.33. The problems MinVEq-ACUIG, MinVEl-ACUIG, and MinV-ACUIG are in NP
w.r.t. combined complexity, and thus also w.r.t. term complexity. ♦

In the next subsection, we will show that, for MinVEq-ACUIG and MinV-ACUIG, this NP
upper bound is optimal, by showing NP-hardness w.r.t. term complexity for any fixed finite
set of ground identities G. Note that the corresponding two problems are also NP-hard for
ACUI, and actually MinVEq-ACUI and MinV-ACUI are used in the reduction that establishes
these hardness results.

Analyzing the complexity of MinVEl-ACUIG turns out to be more subtle. Recall that the
corresponding problem is in P for ACUI. We will show that this upper bound in general
does not transfer from ACUI to ACUIG. In fact, we will exhibit a fixed finite ground theory
G for which the problem MinVEl-ACUIG is NP-hard w.r.t. term complexity. Obviously, this
implies that MinVEl-ACUIG is NP-hard w.r.t. combined complexity. However, there are fixed
finite ground theories G for which MinVEl-ACUIG is in P w.r.t. term complexity. An obvious
example is G = ; since we know that MinVEl-ACUI is in P, but we will also give some other
examples of such theories.

2.5.1 The problems MinVEq-ACUIG and MinV-ACUIG

We show NP-hardness of MinVEq-ACUIG and MinV-ACUIG by reduction from MinVEq-ACUI
and MinV-ACUI, respectively.

34 Chapter 2. Extending unification modulo ACUI

Lemma 2.34. Let G be a finite ground theory. Then MinVEq-ACUIG and MinV-ACUIG are
NP-hard w.r.t. term complexity.

Proof. We restrict the attention to MinVEq-ACUIG (since MinV-ACUIG can be treated simil-
arly), and reduce MinVEq-ACUI to MinVEq-ACUIG. Thus, let G be a fixed finite set of ground
identities. Given an ACUI-unification problem Γ , we can assume without loss of generality
that Γ contains none of the constants occurring in G (otherwise, we just rename the free
constants in Γ). We now view Γ as ACUIG-unification problem.

To show correctness of the reduction, first assume that σ is a substitution that uses only
constants occurring in Γ , and which violates at most ` equations of Γ . Equations s ≈? t ∈ Γ that
are not violated satisfy σ(s)≈ACUI σ(t), and thus also σ(s)≈ACUIG σ(t). By Proposition 2.23,
this implies that these equations are also not violated modulo G by σ. Thus, if we view Γ as
ACUIG-unification problem, then σ violates at most ` equations of Γ modulo G.

Second, assume that σ is a substitution that uses only constants occurring in Γ and G,
and which violates at most ` equations of Γ modulo G. Consider the substitution σ′ that is
obtained from σ by replacing every constant from G by 0. We claim that all equations not
violated modulo G by σ are not violated by σ′. Thus, assume that s ≈? t ∈ Γ is an equation
not violated by σ, which means that

S(σ(s))G = S(σ(t))G . (2.3)

To show that this implies S(σ′(s)) = S(σ′(t)), assume that c ∈ S(σ′(s)). By our construction
of σ′ and the fact that theory constants from G do not occur in Γ , we know that c does not
occur in G. In addition, c ∈ S(σ′(s)) implies c ∈ S(σ(s))G , and thus (2.3) yields c ∈ S(σ(t))G .
Since saturation w.r.t. G can only add theory constants from G, we obtain c ∈ S(σ(t)). Thus,
c is contained in s or introduced by σ. The latter implies that c is also introduced by σ′ since
only theory constants are removed when going from σ to σ′. Thus, we have shown that
S(σ′(s)) ⊆ S(σ′(t)). Since the other inclusion can be shown analogously, this shows that
s ≈? t is not violated by σ′. Consequently, σ′ violates at most ` equations of Γ . �

Together with Proposition 2.33, this lemma yields the following complexity results.

Theorem 2.35. The problems MinVEq-ACUIG and MinV-ACUIG are NP-complete both w.r.t.
term complexity and w.r.t. combined complexity.

2.5.2 The problem MinVEl-ACUIG

For the setting where the number of violating elements is minimized, the situation is less
clear. Proposition 2.33 yields an NP upper bound for combined complexity. However, since
MinVEl-ACUI is in P, a reduction from it would not yield a matching NP lower bound for
MinVEl-ACUIG. One could try to adapt the polynomial-time algorithm for MinVEl-ACUI to
MinVEl-ACUIG. Recall that this algorithm is based on considering projections of the equations
in Γ to the free constants, and then solving the projected equations separately. While this
would still work for the free constants in an ACUIG-unification problem, we now also need
to consider the theory constants from G. For these, the separation into different equations
does not work since the addition of constants by saturation could not be taken into account.
This problem is illustrated in the next example.

2.5 Approximate Unification Modulo ACUIG 35

Example 2.36. Consider the system of equations

Γ = {a+ x2 ≈? x1, b+ x1 ≈? c + f + g, c + x2 ≈? c + e},

and the set of ground identities

G = {a+ b+ c ≈ d, b+ c + e ≈ f }

from Example 2.26. As shown in that example, Γ does not have an ACUIG-unifier. Thus, it
makes sense to look for approximate unifiers.

If we tried to solve the projected systems of equations (as described in Section 2.3.2) inde-
pendently for each constant modulo ACUIG, then we would see that 5 out of the 7 systems are
not solvable: the systems for a, b, e, f , g are not solvable, whereas the ones for c, d are. This
yields the substitution θ = {x1 7→ c, x2 7→ c}, w.r.t. which 5 constants violate Γ (see the proof of
Lemma 2.14), and it also happens that only these 5 constants violate Γ modulo G.

However, by looking at the projections separately, we partially lose the possibility to prevent a
violation by using G to add the violating constant to the side where it does not occur syntactically.
For this, other constants than the violating one may need to be present. Conversely, constants
added by saturation may increase the number of violating constants, and their addition may
depend on the presence of several constants.

In our example, we can actually find a substitution w.r.t. which only 2 constants violate
Γ . If we set σ(x1) := σ(x2) := c + e, then the first equation is violated by a, and the
second by g, while the third is not violated at all. Thus, w.r.t. σ there are only two violat-
ing constants. The reason is that b, e, f do not violate the second equation due to satura-
tion w.r.t. G: σ(b + x1) = b + c + e and σ(c + f + g) = c + f + g, but saturation yields
S(σ(b+ x1))G = {b, c, e, f } and S(σ(c + f + g))G = {b, c, e, f , g}, and thus only g violates
this equation modulo G. ♦

As illustrated by this example, the approach used for MinVEl-ACUI to get a polynomial-time
decision procedure in general does not work if we add ground identities. We will now show
that, in fact, there is a fixed finite set of ground identities for which MinVEl-ACUIG is NP-hard
w.r.t. term complexity. This obviously implies that the problem is also NP-hard for combined
complexity. We will use a reduction from the NP-complete problem of 3-colorability [GJ90]
to prove the hardness result.

Definition 2.37 (3-colorability).

Given: a finite graph H = (X , E), where X is the set of vertices and E ⊆ X ×X is the set of edges
of H.

Question: does there exist a proper coloring of H with three colors (say a, b, c), i.e., an
assignment σ : X → {a, b, c} such that σ(x) 6= σ(y) for every (x , y) ∈ E? ♦

The fixed ground theory G3c used to encode the “nature” of 3-colorability uses, as constants,
the colors a, b, c and additionally d, e, f and ki j with i, j ∈ {a, b, c}, i 6= j. Let C be the set
of these 12 constants. The theory G3c then consists of the following identities:

• for every i ∈ {a, b, c}
i + d ≈ f , (2.4)

36 Chapter 2. Extending unification modulo ACUI

• for every i, j ∈ {a, b, c}, i 6= j

i + j + ki j ≈ f , (2.5)

i + j + e ≈ f . (2.6)

We will explain the intuition underlying these identities once we have introduced the ACUIG3c-
unification problem. For the moment, just note that G3c in fact does not depend on the input
graph, i.e., it is fixed in the sense that the same theory G3c is used for every input graph. The
input graph H = (X , E) is represented by the unification problem, where the vertices from X
are used as variables.

To be more precise, given an the input graph H = (X , E), the corresponding ACUIG3c-
unification problem ΓH consists of the following equations:

• for every x ∈ X
x + d ≈? f , (2.7)

• for every x ∈ X and i, j ∈ {a, b, c}, i 6= j

x + ki j ≈? 0, (2.8)

• for every (x , y) ∈ E
x + y + e ≈? f , (2.9)

• finally, ΓH also contains the equations

a+ b+ c ≈? 0, (2.10)

d + e ≈? 0, (2.11)
∑

i, j∈{a,b,c},i 6= j

ki j ≈? 0. (2.12)

At first sight, it may seem strange to have ground equations as part of a unification problem
since they either hold modulo the given equational theory or are violated, independently of
what substitution is used. However, in the context of MinVEl-ACUIG3c , such equations can
have a relevant effect. In fact, the equations (2.10)-(2.12) force all elements except for f to
be violating. Intuitively, the question is then whether we can keep f from being violating. If
this is the case, for every x ∈ X , the identities of G3c together with equation (2.7) ensure that
x is assigned at least one of a, b, c. Conversely, identities (2.5) together with equations (2.8)
ensure that x is assigned at most one of a, b, c. Consequently, every variable (i.e., vertex) is
assigned a unique color. Furthermore, identities (2.6) together with equation (2.9) ensure
that x and y are assigned different colors, if (x , y) ∈ E.

Lemma 2.38. The graph H = (X , E) has a proper coloring iff there is a substitution σ such
that at most 11 constants violate the ACUIG3c-unification problem ΓH modulo G3c w.r.t. σ.

Proof. First, note that there is a substitution σ such that at most 11 constants violate the
ACUIG3c-unification problem ΓH modulo G3c w.r.t. σ iff the constant f does not violate ΓH
modulo G3c .

2.5 Approximate Unification Modulo ACUIG 37

Now, assume that H = (X , E) has a proper coloring, that is an assignment σ : X → {a, b, c}
such that σ(x) 6= σ(y) for every (x , y) ∈ E. Note that σ can also be viewed as a substitution.
We claim that f does not violate ΓH modulo G3c w.r.t. this substitution. To see this, let us go
through the equations of ΓH :

• Equations of the form (2.7): for every x ∈ X , we have σ(x) ∈ {a, b, c}, and hence one
of the identities (2.4) ensures that f is not violating the equation x + d ≈? f modulo
G3c w.r.t. σ.

• Equations of the form (2.8): such an equation x + ki, j ≈? 0 could only be violated by
f modulo G3c w.r.t. σ if an identity of the form (2.5) produced f on the left-hand side;
this is not possible since σ(x) contains only one of the constants from {a, b, c} and not
two different ones.

• Equations of the form (2.9): for every (x , y) ∈ E, since σ(x),σ(y) ∈ {a, b, c} and
σ(x) 6= σ(y), one of the identities (2.6) ensures that f does not violate the equation
x + y + e ≈? f modulo G3c w.r.t. σ.

• f clearly does not violate equations (2.10)-(2.12) modulo G3c .

Conversely, assume that σ : X → TΣ(C) is a substitution such that f does not violate ΓH
modulo G3c w.r.t. σ. Since, for every x ∈ X , f does not violate equation (2.8), we know
that f does not appear in σ(x). Furthermore, σ(x) contains no more than one of a, b, c;
otherwise, an identity of the form (2.5) would cause f to be violating. Moreover, since
f does not violate equation (2.7) either, this implies that one of the identities (2.4) was
activated, and hence σ(x) contains exactly one of a, b, c. Overall, we can thus define the
coloring τ by setting τ(x) to be the unique element of {a, b, c} that appears in σ(x). It
remains to show that τ is a proper coloring of H: since for every (x , y) ∈ E, f does not
violate equation (2.9), we know that one of the identities (2.6) was activated, and hence
τ(x) 6= τ(y). This completes the proof of the lemma. �

This lemma shows that MinVEl-ACUIG3c is NP-hard w.r.t. term complexity. Together with
Proposition 2.33, we thus obtain the following theorem.

Theorem 2.39. There exists a ground theory G3c for which MinVEl-ACUIG3c is NP-complete
w.r.t. term complexity. This implies that MinVEl-ACUIG is NP-complete w.r.t. combined complex-
ity.

Note, however, that there are finite ground theories G for which MinVEl-ACUIG is in P
w.r.t. term complexity. In fact, our results in Section 2.3.2 show that the empty ground theory
G = ; is such a theory.

Similarly, if we consider a theory G containing only identities of the form a ≈ b for a, b ∈ C
for a finite set of constants C , then MinVEl-ACUIG is in P w.r.t. term complexity. Basically, the
idea is to reduce MinVEl-ACUIG to MinVEl-ACUI by replacing all occurrences of equivalent
constants by a single representative of the class. In the resulting system of equations there is
no interaction between the different constants occurring in it, and hence it can be treated
as a MinVEl-ACUI problem. An optimal substitution for this instance is also optimal for the
original one, although the actual number of violating elements modulo G may be higher
in the original problem. In fact, if b is the chosen representative of an equivalence class of

38 Chapter 2. Extending unification modulo ACUI

constants, and b violates an equation in the MinVEl-ACUI instance, than all then elements of
the class violate this equation modulo G.

In order to provide less trivial examples of ground theories G for which MinVEl-ACUIG
can be decided in polynomial time, we restrict the syntactic form of the ground identities
that may occur in G.

Definition 2.40. The finite set of ground identities is called unary if every identity in G is of
the form a ≈ a+ t for a constant a and a ground term t. ♦

Note that unary theories actually also cover the case of identities of the form a ≈ b.
In fact, it is easy to see that the theory Gi = {a ≈ b} is equivalent to the unary theory
Gu = {a ≈ a+ b, b ≈ b+ a} in the presence of ACUI:

• we have a ≈ACUIGu
a+ b ≈ACUIGu

b+ a ≈ACUIGu
b,

• and a ≈ACUIGi
a+ a ≈ACUIGi

a+ b as well as b ≈ACUIGi
b+ b ≈ACUIGi

b+ a.

The name “unary” for theories satisfying the above definition stems from the fact that, for
such theories, the saturation rules are unary in the sense that their applicability depends on
the presence of only a single constant. Indeed, an identity of the form a ≈ a+ t induces a
rule that is applicable whenever a occurs in a given set of constants, and its effect is to add
the constants occurring in t to this set (unless they are already there). Since a occurs also
on the right-hand side, there is no saturation rule that is triggered by the right-hand side of
such an identity.

Lemma 2.41. Let G be a unary ground theory and s, t ∈ TΣ(F). Then S(s+ t)G = S(s)G∪S(t)G .
In particular, this implies that S(s)G =

⋃

a∈S(s){a}
G .

Proof. The inclusion from right to left follows from Lemma 2.22, and thus holds in general
(i.e., also for non-unary theories): S(s)G ∪ S(t)G ⊆ (S(s)∪ S(t))G = S(s+ t)G .

To show the other direction, assume that a ∈ S(s+ t)G. We show a ∈ S(s)G ∪ S(t)G by
induction on the number of saturation steps needed to add a to S(s+ t)G . In the base case,
we have a ∈ S(s+ t) = S(s)∪ S(t) ⊆ S(s)G ∪ S(t)G. Thus, assume that a is added in step n
of the saturation process, and that all the constants that have been added previously are
contained in S(s)G ∪ S(t)G. Thus, there is a constant b ∈ S(s)G ∪ S(t)G and an identity
b ≈ b+ u ∈ G with a ∈ S(u). If b ∈ S(s)G, then the existence of the identity b ≈ b+ u in G
and the fact that S(s)G is saturated imply that a ∈ S(s)G . In the same way, b ∈ S(t)G implies
that a ∈ S(t)G . �

Note that this lemma need not hold for non-unary ground theories. An easy counterexample
is G = {a+ b ≈ c}, where c ∈ S(a+ b), but c 6∈ S(a)∪ S(b).

Given a unary ground theory G, we will show that MinVEl-ACUIG can be reduced to
MinVEl-ACUI. Before we can describe this reduction, we need to extend the notion of
saturation from sets of constants to terms, substitutions, and unification problems. Given a
ground term s ∈ TΣ(F), its saturation is sG :=

∑

(S(s)G). Note that we have S(sG) = S(s)G

for any s ∈ TΣ(F), and that Lemma 2.41 yields (s1 + . . . + sn)G ≈ACUIG sG
1 + . . . + sG

n for
s1, . . . , sn ∈ TΣ(F).

For a ground substitutionσ : X → TΣ(F)we define its saturationσG asσG(x) := σ(x)G for
every x ∈ X . Recall that a term t ∈ TΣ(F, V) can be written in the form t = t0+ x1+ . . .+ xn,

2.5 Approximate Unification Modulo ACUIG 39

where t0 ∈ TΣ(F) and x1, . . . , xn ∈ V . We set tG := tG
0 + x1 + · · · + xn. Finally, given an

ACUIG-unification problem with constants Γ , its saturation Γ G consists of the equations
sG ≈? tG for every s ≈? t in Γ .

The following lemma is an easy consequence of Lemma 2.41.

Lemma 2.42. Let G be a unary ground theory, t ∈ TΣ(F), and σ a ground substitution. Then
S(σG(tG)) = S(σ(t))G .

Proof. Let t be of the form t = t0 + x1 + · · ·+ xn for a ground term t0. Then we have

S(σG(tG)) = S(tG
0 +σ

G(x1) + · · ·+σG(xn))

= S(tG
0 +σ(x1)

G + · · ·+σ(xn)
G) = S(σ(t)G) = S(σ(t))G . �

The idea is now to reduce MinVEl-ACUIG for Γ to MinVEl-ACUI for Γ G. The following
theorem states correctness of this reduction.

Theorem 2.43. Let G be a unary ground theory, Γ an ACUIG-unification problem, and `≥ 0.
Then the following are equivalent:

1. There is a substitution σ such that at most ` constants violate Γ modulo G w.r.t. σ.

2. There is a substitution θ such that at most ` constants violate Γ G w.r.t. θ .

Proof. Assume initially that there exists a substitution σ w.r.t. which Γ has at most ` violating
elements modulo G. It is easy to see that σG is a substitution w.r.t. which Γ G has at most `
violating elements. In fact, Lemma 2.42 yields for every s ≈? t ∈ Γ

S(σG(sG))∆S(σG(tG)) = S(σ(s))G∆S(σ(t))G ,

and hence Γ G (viewed as a MinVEl-ACUI instance) has at most ` violating constants w.r.t.
σG .

For the opposite direction, assume that there exists a substitution θ w.r.t. which Γ G has
at most ` violating elements (not considering G). Recall that, in Lemma 2.14.3, when
constructing an optimal substitution for a MinVEl-ACUI problem, we only use non-violating
elements. Hence, we can assume without loss of generality that θ introduces no violating
constants. Under this assumption, we will now show that, also modulo G, Γ has at most
` violating elements w.r.t. θ . Indeed, assume that a does not violate Γ G w.r.t. θ . Then, for
every s ≈? t ∈ Γ we have that a /∈ S(θ (sG))∆S(θ (tG)).

• If a ∈ S(θ (sG))∩ S(θ (tG)), we obtain by Lemma 2.42 that a ∈ S(θ (s))G ∩ S(θ (t))G,
and hence a does not violate s ≈? t modulo G.

• If a /∈ S(θ (sG))∪ S(θ (tG)), it is still possible that a ∈ S(θ (x)G) for some x occurring
in s (the case where x occurs in t is treated similarly), and hence a ∈ S(θ (s))G. By
Lemma 2.41, we obtain that there exists some b ∈ S(θ (x)) such that a ∈ {b}G . Since
we assume without loss of generality that θ does not introduce any violating elements,
b is also not violating. Hence, b occurs in θ (tG), and thus also in θ (t)G , which again
by Lemma 2.41 implies that a ∈ S(θ (t))G .
If, on the other hand, a /∈ S(θ (x))G for all variables x occurring in s or t, then we have
a /∈ S(θG(sG))∪S(θG(tG)), which by Lemma 2.42 is the same as a /∈ S(θ (s))G∪S(θ (t))G .

40 Chapter 2. Extending unification modulo ACUI

In any case, we conclude that a /∈ S(θ (s))G∆S(θ (t))G , and hence a does not violate s ≈? t
modulo G. To sum up, we have shown that every non-violating element of Γ G w.r.t. θ remains
non-violating modulo G for Γ w.r.t. θ , and thus the upper bound of ` for violating elements
also holds in Γ modulo G. �

Since saturation can be done in polynomial time (even if G is seen as part of the input) and
MinVEl-ACUI can be solved in polynomial time, this theorem yields the following complexity
result for the class of unary ground theories.

Corollary 2.44. Restricted to unary ground theories G, MinVEl-ACUIG is in P w.r.t. combined
complexity, and thus also w.r.t. term complexity.

2.6 Outlook

In this chapter, we have showcased our program in the setting of ACUI in order to obtain some
initial results and some intuition before we venture into the more expressive setting of FL0.
We have extended ACUI-unification in two directions. On the one hand, we have considered
approximate ACUI-unification w.r.t. three different ways of measuring the degree to which the
equations of the unification problem are violated by a given substitution that is not a unifier.
For two of these measures, the complexity of the associated decision problem increases from
P to NP-complete, whereas for one of them it stays in P. In essence, approximate unification
with respect to this measure reduces to investigating the different constants separately. This
is in line with approximate unification in FL0, as we will see in Chapter 6, where one can
reduce the initial problem to independently solving language equations, one for every concept
name, hence maintaining the same complexity as for the classical case.

On the other hand, we have extended ACUI-unification to ACUIG-unification, i.e., unifica-
tion in equational theories that are obtained from ACUI by adding a finite set G of ground
identities. We were able to show that adding such identities does not change the complexity
of the unification problem. Finally, we have combined the two extensions, i.e., we have in-
vestigated approximate ACUIG-unification. For the measures for which already approximate
ACUI-unification is NP-complete, the same holds for approximate ACUIG-unification. For the
third measure, the situation turns out to be more interesting. We were able to show that
there is a finite set G of ground identities such that approximate ACUIG-unification for this
fixed theory is NP-complete. But we have also introduced a class of ground theories G for
which approximate ACUIG-unification is in P.

In the setting of this third measure, it would be interesting to see whether one can show a
dichotomy result, i.e., whether one can prove that, depending on which ground theory G is
used, the complexity of approximate ACUIG-unification is either in P or NP-complete. If this
is actually the case, the next step would be to attempt a classification of the two cases, i.e.,
come up with conditions that ensure membership in P or NP-completeness.

Chapter 3

Languages and Automata

We now want to leave the safety of ACUI and venture into the world of FL0. As discussed
in the Introduction, in this setting, terms no longer correspond to subsets of a main set of
elements, but rather to (tuples of) languages, i.e. sets of words over some alphabet. Before
we introduce the actual correspondence between concepts and languages, we will provide
some technical results on how to deal with languages.

Even though FL0 concepts correspond to finite languages in the classical (no TBox)
setting, we have noted already that TBoxes may cause these languages to become infinite.
Furthermore, our approach for approximate unification in Chapter 6 eventually reduces to
checking for the existence of arbitrary (i.e., not necessarily finite) approximate solutions to
language equations. Finally, our algorithm for deciding matching in the presence of TBoxes in
Chapter 8 is taking a detour through the DL FLreg, in which concept descriptions correspond
to (tuples of) infinite languages. In order to define concept distance measures with respect
to general TBoxes in Chapter 5 we will need to compute distances between such infinite
languages. Apart from the motivation from Description Logic, the results we will present can
be of independent interest from a language-theoretic point of view.

In this chapter, after we provide some basic definitions from Formal Language Theory and
some elementary results regarding finite automata, we will introduce the notion of language
distances, by further investigating three particular such distances.

If we have access to a procedure that actually computes the distance between languages,
we first need to be able to specify these languages in a finite way before we feed them as
input to the procedure. Hence, we will then describe a correspondence between (tuples
of) languages and infinite trees, and how tree automata can be utilized to finitely represent
them. Afterwards, we will introduce weighted tree automata, which provide a mechanism for
assigning values to infinite trees, and demonstrate how they can be used to define language
distances. To the best of our knowledge, there is no technique for computing the behavior of
such automata; this will be the final focus of this chapter.

3.1 Basic Definitions

Let Σ be a finite nonempty set that we will call alphabet and its elements letters. A word
over an alphabet Σ is a finite sequence consisting of zero or more letters of Σ, where the
same letter might occur several times. The sequence of zero letters is called the empty word
and is denoted by ε. For example, ε, 1, 00, 10110 are words over the binary alphabet {0, 1}.
The set of all words over an alphabet Σ is denoted by Σ∗. If w and v are words over Σ, then
so is their concatenation wv, obtained by juxtaposition , that is, writing w and v one after
another. Concatenation is an associative operation and the empty word ε acts as an identity:

41

42 Chapter 3. Languages and Automata

wε = εw = w holds for all words w. Since associativity holds, powers of the form wn are
defined in the usual way: by definition, w0 := ε, and wk+1 := wkw.

The length of a word w, denoted by |w|, is the number of letters in w when each letter is
counted as many times as it occurs. Note that in particular |ε|= 0.

A (formal) language over Σ is a (finite or infinite) subset of Σ∗. As usual in mathematics,
the set of all languages, i.e., the powerset of Σ∗, is denoted by 2Σ

∗
. For example, ;, {ε},

{1,00,10110}, {1i0 | i is even}, {10i1 | i is prime} are languages over the binary alphabet
{0,1}. Note that the first three languages are finte, while the last two are infinite. A finite
language can always be defined by listing all its words. Such a procedure is not possible for
infinite languages. Some finitary specification (other that simple listing) is required to define
an infinite language. Much of formal language theory deals with such finitary specifications
of infinite languages: automata, grammars, etc. In this thesis, we deal with languages that
are representable by automata.

Various operations are defined for languages. Regarding languages as sets, the Boolean
operations of union, intersection, and complement (with respect to Σ∗), and furthermore
those of difference and symmetric difference are immediately defined in the usual fashion:
Given languages K , L we have

K ∪ L = {a ∈ Σ∗ | a ∈ K or a ∈ L} K \ L = {a ∈ K | a /∈ L}
K ∩ L = {a ∈ Σ∗ | a ∈ K and a ∈ L} K∆ L = (K \ L)∪ (L \ K)

K c = {a ∈ Σ∗ | a /∈ K}

The operation of concatenation is extended from words to languages in the natural way:

L1 · L2 = {w1w2 | w1 ∈ L1 and w2 ∈ L2}.

As usual in formal language theory, we will often omit the “·” operator, and simply write
L1 L2 instead of L1 · L2. As in the word setting, this operation is associative, and the language
{ε} acts as an identity: L{ε} = {ε}L = L holds for all languages L. Powers of the form Ln of
languages are similarly extended. Note that L0 = {ε}. The Kleene star of a language L, in
symbols L∗ is defined to be the union of all non-negative powers of L, i.e,

L∗ =
∞
⋃

i=0

L i .

Observe that this definition is in accordance with the notation used earlier: if we view Σ as
the finite language whose words are singleton letters, then Σ∗ is the set of words built by
concatenating arbitrarily many “words” (letters) from Σ, i.e., all words over Σ.

Furthermore, we will denote the set of all words over Σ of length at least (respectively, at
most/less than/more than) m by Σ≥m (respectively, Σ≤m/Σ<m/Σ>m).

Another operation that can be defined for languages is that or mirroring. For a word
w = σ1 . . .σ`, its mirror image is defined as wmi = σ` . . .σ1, and for a language L its mirror
image is Lmi = {wmi | w ∈ L}.

Finally, the left-quotient of a language L over Σ with a word w ∈ Σ∗ is defined to be the set
w−1 L = {v ∈ Σ∗ | wv ∈ L}.

3.2 Finitely representing languages: finite automata and regular expressions 43

3.2 Finitely representing languages: finite automata and regular
expressions

As discussed earlier, one of the main focuses of formal language theory is how to specify an
infinite language in a finite way. Of course, it is not possible to derive such a specification for
every possible language1. In this section we restrict our focus to regular languages. There
are two major types of mechanisms for defining languages: acceptors and generators. Next,
we introduce finite automata, simple devices which accept regular languages, and regular
expressions, which generate regular languages, and provide some basic results on how to
transit from one to the other. The definitions and the results in this section can be found
in any handbook on formal languages or even theoretical computer science [Per90; Yu97;
HMU06].

Finite automata A finite automaton consists of a finite set of internal states and a set of
rules that govern the change of the current state when reading a given input symbol. If
the next state is always uniquely determined by the current state and the current input
symbol, we say that the automaton is deterministic; otherwise it is called nondeterministic.
Depending on the state the automaton ends up after reading the entire input word, it either
accepts or rejects the word.

More formally, we have the following:

Definition 3.1. A deterministic finite automaton (DFA) A is a 5-tuple (Q,Σ,δ, q0, F), where

• Q is a finite set of states,

• Σ is the finite input alphabet,

• δ : Q×Σ→Q is the state transition function,

• q0 ∈Q is the starting state, and

• F ⊆Q is the set of final states. ♦

Note that δ describes the functionality of the automaton, that is, how the internal states
change according to the symbol from Σ that is currently being read. Intuitively, a DFA accepts
a word if, starting from the initial state, after reading the input word letter by letter, it
ends up in a final state. More formally, we can extend δ to a function operating on words
δ∗ : Q×Σ∗→Q by setting

• δ∗(q,ε) = q for every q ∈Q,

• δ∗(q, wa) = δ(δ∗(q, w), a) for every q ∈Q, w ∈ Σ∗ and a ∈ Σ.

We say that a word w is accepted by the DFA A, if δ∗(q0, w) ∈ F . The behavior of A, in symbols
L(A), is the language consisting of all the words that A accepts, i.e.,
L(A) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}. Conversely, we say that a language L is recognizable
if there exists a DFA A such that L = L(A). In this case, we say that L is recognized or accepted
by A.

1See undecidable languages [Pap94].

44 Chapter 3. Languages and Automata

Nondeterministic finite automata NFAs generalize DFAs by allowing several initial states,
and multiple possible transitions for a given state and input symbol. Formally, a nondetermin-
istic finite automaton (NFA) is a 5-tuple M = (Q,Σ,∆, I , F), where Q,Σ, and F are defined
the same way as for a DFA, I ⊆Q is a set of initial states, and ∆ : Q×Σ→ 2Q is the transition
function, where 2Q denotes the powerset of Q. Intuitively, when the automaton is in state q
and reads input letter a, then it can choose to transit to any of the states in ∆(q, a).

Overall, an NFA (potentially) allows for multiple ways to process an input word. It may
start with a different initial state, and at every input symbol it might have many possible
succeeding states. Hence, it is possible that whether the automaton ends up in a final state
will depend on the choices that were made. By definition, an NFA accepts a word if it is
possible starting from some initial state to reach a final one after reading the input word.

Formally, similarly to DFAs, we can extend ∆ into a function ∆∗ operating on words, in
order to define the behavior of the NFA. In particular,

• ∆∗(q,ε) = {q} for every q ∈Q,

• ∆∗(q, wa) = {q′ ∈∆(p, a) | p ∈∆∗(q, w)} for every q ∈Q, w ∈ Σ∗, a ∈ Σ.

A word w is accepted by the NFA A, if ∆∗(q0, w)∩ F 6= ; for some q0 ∈ I , and the behavior of
an NFA is defined similarly.

Every DFA can be viewed as an NFA, where each value of the transition function is a
singleton.

Two automata are said to be equivalent if they accept exactly the same language.

Lemma 3.2 (well-known). For each NFA there exists an equivalent DFA of at most exponential
size. Furthermore, there are NFAs for which such a blowup is unavoidable.

Regular expressions Regular expressions are succinct and comprehensible expressions in
sequential form that specify languages. They were first introduced by Kleene [Kle56].

Regular expressions are built from the letters of the alphabet by using the operations of
union, concatenation and Kleene star. More formally:

• The empty set ; is a regular expression denoting the empty language.

• Every letter a ∈ Σ is a regular expression denoting the singleton language {a}.

• Let e1, e2, e be regular expressions denoting the languages L(e1), L(e2), L(e) respectively.
Then, e1 ∪ e2, e1e2 and e∗ are also regular expressions that denote the languages
L(e1)∪ L(e2), L(e1)L(e2) and L(e)∗ respectively.

Note that all finite languages can be expressed by a regular expression. In particular,
{ε}= ;∗.

Equivalence and complexity issues In [Kle56], Kleene has shown that the family of lan-
guages specified by regular expressions and recognizable languages coincide, a class that is
refered to as simply regular languages. The proof of this result, which is known as Kleene’s
theorem, involves constructing regular expressions that correspond to the behavior of a given
automaton and vice versa.

3.2 Finitely representing languages: finite automata and regular expressions 45

Kleene mentions that, even though he does not investigate how big the resulting expressions
and automata have to be, this is an interesting topic to study. Indeed, a lot of research has
been devoted in this area since then. Next, we provide some basic results on the complexity
of such constructions.

In order to provide formal statements we need a firm definition of size for the notions
involved. The size of a regular expression is the amount of symbols it contains, while the
size of an automaton (either DFA or NFA) is usually considered to be the cardinality of its set
of states.2

Lemma 3.3. (Equivalence between finite automata and regular expressions)

• Given a DFA/NFA A, one can construct a regular expression eA of size exponential in the
size of A such that L(eA) = L(A).

• Given a regular expression e, one can construct an NFA Ae of size polynomial in the size
of e such that L(Ae) = L(e). By Lemma 3.2, this implies that a DFA of exponential size
can be constructed with the same property.

For a given regular language there are several automata recognizing it. However, among
equivalent DFAs there always exists one has minimal amount of states.

Lemma 3.4 (well-known). For each regular language, there exists a minimal DFA that accepts
it, that is, a DFA with a minimum number of states and this DFA is unique (up to renaming of
the states). Given a DFA, the minimal equivalent DFA can be obtained in polynomial time.

Furthermore, of particular interest is the complexity of certain language operations, i.e.,
given automata accepting certain languages, how large does an automaton have to be in order
to accept the result of the operation of the languages. The following results are well-known
in automata theory, and most can be found in [YZS94] and [HK03].

Lemma 3.5. (State complexity of language operations)

• Given DFAs A and B with m and n states respectively, one can construct a DFA C with mn
states such that L(C) = L(A)∪L(B), and also for L(C) = L(A)∩L(B).

• Given DFAs A and B with m and n states respectively, one can construct a DFA C with
m2n − 2n−1 states such that L(C) = L(A)L(B).

• Given DFA A with n states, one can construct a DFA B with 2n−1 + 2n−2 states such that
L(B) = L(A)∗.

• Given DFA A with n states, one can construct a DFA B with n states such that L(B) = L(A)c .

• Given DFA Awith n states, one can construct a DFA B with 2n states such that L(B) = L(A)mi .

• Given DFA A with n states and word w ∈ Σ∗, one can construct a DFA B with n states
such that L(B) = w−1L(A). Note in particular that the size of w does not affect the size of
the automaton.

2There have been other definitions of the size of an automaton, which also include the size of the transition
function, and/or the initial/final states. In any case, even if the size is defined this way, it can only be
polynomially bigger than the size we define here, hence for our analysis our definition suffices.

46 Chapter 3. Languages and Automata

• Given NFAs A and B with m and n states respectively, one can construct an NFA C with
m+ n states such that L(C) = L(A)∪L(B).

• Given NFAs A and B with m and n states respectively, one can construct an NFA C with
mn states such that L(C) = L(A)∩L(B).

• Given NFAs A and B with m and n states respectively, one can construct an NFA C with
m+ n states such that L(C) = L(A)L(B).

• Given NFA A with n states, one can construct an NFA B with n + 1 states such that
L(B) = L(A)∗.

• Given NFA Awith n states, one can construct an NFA B with 2n states such that L(B) = L(A)c .

• Given NFA A with n states, one can construct an NFA B with n + 1 states such that
L(B) = L(A)mi .

• Given NFA A with n states and word w ∈ Σ∗, one can construct an NFA B with n states
such that L(B) = w−1L(A). Note in particular that the size of w does not affect the size of
the automaton.

• Given DFAs A1, . . . , Ak each with at most n states, one can construct a DFA B with nk

states such that L(B) =
⋃k

i=1 L(Ai), and also for L(B) =
⋂k

i=1 L(Ai).

• Given NFAs A1, . . . , Ak each with at most n states, one can construct an NFA B with nk
states such that L(B) =

⋃k
i=1 L(Ai).

• Given NFAs A1, . . . , Ak each with at most n states, one can construct an NFA B with nk

states such that L(B) =
⋂k

i=1 L(Ai).

• Given NFAs A1, . . . , Ak each with at most n states, one can construct an NFA B with nk
states such that L(B) = L(Ai) · · ·L(Ak).

3.3 Language Distances

In this section we will discuss about functions that measure the distance between languages.
Even though there has been quite some research on distance measures for words, mainly
because of their applications in information retrieval and computational biology (see [Nav01]
for a survey on the topic), the respective area for languages has received limited investigation.

A survey containing many ideas and examples of how such a measure can be defined is
contained in [KN06]. In particular, the authors study measures based on the symmetric
difference and on the Kolmogorov complexity of the input languages, as well as functions
based on neighbourhood criteria and distances on words. Kephart in his PhD thesis [Kep05]
also considers a measure that is based on topological entropy.

For the purposes of this thesis, we restrict our focus in the first case, i.e., functions that
assess the size of the symmetric difference of languages.

Traditionally in mathematics, distance has been linked to the notion of a metric. Let S be a
set. A function d : S × S→ R≥0 is called a metric on S if it satisfies the following conditions
for every a, b, c ∈ S:

(M1) d(a, b) = 0 ⇐⇒ a = b

3.3 Language Distances 47

(M2) d(a, b) = d(b, a)

(M3) d(a, c)≤ d(a, b) + d(b, c)

If the distance between two elements of S is not required to be finite, then a function d
satisfying conditions (M1)-(M3) is called a generalized metric.

Following the aforementioned tradition, we use the term language distance to denote a
metric on the space of languages, i.e., a function d : 2Σ

∗
× 2Σ

∗
→ R≥0 that takes as input two

languages and outputs a positive real number.
If the underlying function is a generalized metric, we will talk about a generalized language

distance.
A common approach to define a language distance function is to “measure” the size of the

symmetric difference of the input languages [Via77; Kep05], i.e., define d(K , L) := f (K∆ L)
where K∆ L := (K\L)∪(L\K) and f is an appropriate function. This way, (M2) is guaranteed
to hold. If f is actually a measure (in the mathematical sense [Rud87]), (M3) holds as well,
(since K∆M ⊆ K∆ L ∪ L∆M and f is a subadditive function). (M1) corresponds to the
requirement that f (L) = 0 iff L = ;. Below we present some basic language distances based
on this principle.

Arguably, the easiest way to “count” how far apart two languages are is to consider the
cardinality of their symmetric difference. This is formalized by the function

d0(K , L) = |K∆ L|.

This approach, however, has two major disadvantages. On the one hand, when infinite
languages are considered the value might become infinite. This is hence not a language
distance, but rather a generalized one. On the other hand, this completely disregards the
structure of the objects under consideration, that is the languages, and simply views them as
sets.

Another function that also applies on domains whose elements are sets, but has received
quite some interest in the literature [KN06], is the Jaccard distance [Jac12] defined as

dJ (K , L) =
|K∆ L|
|K ∪ L|

.

Note however that this function is only defined for finite sets, hence does not apply to
languages in general.

The first approach that was tailored towards languages was published by Vianu [Via77],
who applied a metric proposed earlier by Bodnarchǔk [Bod65]. This is in fact the most
well-investigated language distance, since it appears in virtually every paper that investigates
the area [Kep05; KN06; FK15]. The formal definition of this distance is

d1(K , L) = 2−`,

where ` =min{|w| | w ∈ K∆ L} 3. This function considers the length ` of the shortest word
in the symmetric difference of K and L and yields 2−` as distance, which becomes smaller if
` gets larger. The main intuition, which aligns well with our motivation from description

3As usual, we assume that min;=∞ and 2−∞ = 0.

48 Chapter 3. Languages and Automata

logics4, is that longer words are of less importance than shorter ones. One drawback of this
function, however, is that d1 only focuses on the length of the shortest difference, completely
overlooking if there are more differences of equal or larger length.

This issue is addressed by the function

d2(K , L) = µ(K∆ L)

where for M ∈ 2Σ
∗

we define

µ(M) =
1
2

∑

w∈M

(2|Σ|)−|w|.

This function takes into account all the elements of the symmetric difference, each adding
some amount to the overall distance, but longer words count less that shorter ones. More
precisely, the weight of the word u counts as much as the sum of the weights of all words uv
properly extending u.

A very similar language distance has been considered in [KN06]. The authors of that work
point out the dependency on the size of the total alphabet Σ as a potential drawback. As a
remedy, adapting the Jaccard distance they suggest the function

δ2(K , L) =
∑

n∈N

�

�(K∆ L)[n]
�

�

�

�(K ∪ L)[n]
�

�

,

where for a language L ⊆ Σ∗ and a natural number n ∈ N we set L[n] to denote the projection
of L on words of length n, i.e., L[n] = L ∩ Σn = {w ∈ L | |w| = n}. Using the projection
notation, with simple calculations we can rewrite the measure used for d2 as follows.

µ(L) =
1
2

∑

w∈L

(2|Σ|)−|w| =
1
2

∑

n∈N

∑

w∈L[n]

1
(2|Σ|)|w|

=
1
2

∑

n∈N

∑

w∈L[n]

1
(2|Σ|)n

=
1
2

∑

n∈N

�

�L[n]
�

�

(2|Σ|)n
=

1
2

∑

n∈N

�

�L[n]
�

�

2n|Σn|
(?)

More functions that are based on the symmetric difference of the input languages were
considered in [KN06] and [Kep05; FK15], but they involve limit computations. In particular,
this implies that they do not satisfy (M1), and hence they do not constitute language distances
under our definition.

For the rest of our analysis we will deal with d0, d1, and d2. Next we show that these
functions are indeed language distances.

Lemma 3.6. The function d0 is a generalized metric, and the functions d1, d2 are metrics.

Proof. Initially note that all these functions are well-defined for any pair of languages. The
value of d0 is a nonnegative natural number or∞, while d1 and d2 are bounded from
above by 1. For d1 this is easy to see since the length of the shortest word in the symmetric
difference of two languages is a nonnegative natural number. For d2, if we use the projected

4See Section 5.3

3.4 Finitely representing tuples of languages 49

form of µ we derived in (?), since for every language L and n ∈ N we have that L[n] ⊆ Σn,
we obtain:

µ(L) =
1
2

∑

n∈N

�

�L[n]
�

�

2n |Σn|
≤

1
2

∑

n∈N

|Σn|
2n |Σn|

=
1
2

∑

n∈N

1
2n
=

1
2
· 2= 1.

Next, in order to show that these functions are language distances, we have to show that
they satisfy (M1), (M2) and (M3). (M1) and (M2) are obvious. Regarding the triangle
inequality (M3) d(K , L)¶ d(K , M) + d(M , L):
Initially note that for languages K , L, M it holds that K4L ⊆ K4M ∪ M4L. Indeed, if
x ∈ K \ L then either x 6∈ M , implying x ∈ K4M , or x ∈ M , implying x ∈ M4L.

For d0 we immediately obtain

d0(K , L) = |K∆ L| ≤ |K4M ∪M4L| ≤ |K4M |+ |M4L|= d0(K , M) + d0(M , L).

For d1, if d1(K , L) = 0 then (M3) holds trivially. Suppose that d1(K , L) = 2−n, where
n = |w| for some w ∈ K4L. Without loss of generality, suppose that w ∈ K4M . Thus
n ¾ min { |w| : w ∈ K4M } and consequently d1(K , M) ¾ 2−n. Consequently,
d1(K , L)¶ d1(K , M) + d1(M , L).

For d2, since K4L ⊆ K4M ∪M4L, summing over these sets, we get that
∑

w∈K4L

(2|Σ|)−|w| ¶
∑

w∈K4M∪M4L

(2|Σ|)−|w| ¶
∑

w∈K4M

(2|Σ|)−|w| +
∑

w∈M4L

(2|Σ|)−|w|

and thus d2(K , L)¶ d2(K , M) + d2(M , L). �

An important property for language distances, which will come in handy in later chapters,
is monotonicity w.r.t. the symmetric difference of the input languages. Formally, the property
mentions that

K∆ L ⊆ M∆N =⇒ d(K , L)≤ d(M , N). (3.1)

Note that this property holds for any language distance function d that is of the form
d(K , L) = m(K∆ L) where m is a measure, or at least a monotone function. In particular,
this implies that d0, d1 and d2 satisfy this property.

Next, we want to derive procedures that given a pair of languages compute these distances.
Naturally, this is straighforward in case the input languages are finite. This task becomes
more interesting when infinite languages are involved. For this, we would need to first
have a finite representation of the input languages and then some machinery operating
on this representation. In Section 3.2 we shortly examined how regular languages can be
represented by finite automata. While we will stick to regular languages, finite automata no
longer suffice, since we would prefer a single object representing the pair of languages. This
is the objective of the next section.

3.4 Finitely representing tuples of languages

In this section, we demonstrate how tuples of (possibly infinite) languages can be (finitely)
represented. This is motivated by our need to obtain a method for computing distances
between languages, but it will also find use in other applications, like in Section 8.2.

50 Chapter 3. Languages and Automata

Clearly, as was the case for languages, it is not possible to finitely represent all tuples of
languages. Since a finite automaton can be used to represent a language, a natural idea
is to use tuples of finite automata to represent tuples of languages. However, this is not
very convenient. This is only a first step towards our goal of computing distances between
languages, and hence we would like to obtain a single object that is able to interact with
other tools, in particular the weighted automata we will investigate in the next section. To
this end, we will make a transition from word languages to trees.

Initially we will introduce infinite trees and describe how tuples of languages can be
mapped onto such trees, following ideas in [BN01; BO13; Pen15]. Then we will present
tree automata, which like finite (word) automata are used to represent (families of) trees.
Finally, based on the relation between languages and trees, we will investigate the connection
between tuples of finite automata and tree automata.

Definition 3.7. Let Σ = {σ1, . . . ,σk} be a non-empty finite set of symbols. Given a set of labels
L, an L-labeled Σ-tree is a mapping t : Σ∗ → L that assigns a label t(w) ∈ L to every node
w ∈ Σ∗. The set of all L-labeled Σ-trees is denoted as TωΣ,L. A set of trees T ⊆ TωΣ,L is called a
tree language. A path π of t is a subset of Σ∗ such that the root belongs to π, and for every
w ∈ π exactly one of wσ1, . . . , wσk belongs to π. ♦

Intuitively, the nodes of a Σ-tree t correspond to (finite) words in Σ∗, where the empty
word ε represents the root of t and every node w has k children corresponding to the words
wσ1, . . . , wσk. Since for a non-empty alphabet Σ the set Σ∗ of all words over Σ is infinite,
Σ-trees are by definition infinite.

To represent tuples of languages we will employ infinite trees that use tuples over {0,1}
to label their nodes. We next define such a correspondence.

Definition 3.8. Let Σ be a finite set of symbols and ` ∈ N. We define the mapping
γ` :

�

2Σ
∗�` → Tω

Σ,{0,1}` as follows. Given a tuple of languages M = (M1, . . . , M`) over Σ,

γ`(M) := tM where tM : Σ∗→ {0, 1}` is the Σ-tree such that

tM(w) := (x1, . . . , x`), where x i = 1 iff w ∈ Mi (for all w ∈ Σ∗).

♦

It is easy to see that γ` is a bijection between tuples of languages over the alphabet Σ
and {0,1}`-labeled Σ-trees. Given a tree t ∈ Tω

Σ,{0,1}` , the inverse function yields the tuple

γ−1
`
(t) = (M1, . . . , M`) where Mi consists of the words w for which the ith component of

t(w) is equal to 1.

Example 3.9. Consider the languages given by regular expressions K = r∗ ∪ sr∗ and M = ss∗.
To express the tuple (K , M) as a tree, we assume that r is the first symbol of the alphabet and
s is the second. Then this tuple is represented by the tree sketched on Figure 3.10. For better
readability, we have labeled the edges with the symbols r and s. As an example for the labeling,
consider the node corresponding to the word sr. It has label (1,0) since this word belongs to
r∗ ∪ sr∗, but not to ss∗. The extension of this tree to infinity is obtained as follows. On the one
hand, the outgoing dotted edges tell us that all the nodes below are labeled with the tuple (0, 0).
Notice, for example, that there are no words starting with rs or srs in any of the two languages.

3.4 Finitely representing tuples of languages 51

t(K ,M) : (1,0)

(1,0)

(1,0)

(1,0)

r

. . .

r

(0,0)

s

r

(1,1)

(1,0)

(1,0)

r

. . .

r

(0,1)

(0,1)

s

. . .

s

s

K = r∗ ∪ sr∗, M = ss∗

Figure 3.10: Tuple of languages as infinite tree.

On the other hand, the nodes r r r, sr r and sss are the roots of infinite trees representing the
tuples of languages (r∗,;), (r∗,;) and (;, s∗), respectively. ♦

As mentioned before, our goal is to represent such tuples in a finite way. Using infinite
trees obviously does not solve this problem. Thus, we need to develop an approach for
representing such trees in a finite way. For general tuples of infinite languages and thus
arbitrary Σ-trees this is clearly not possible. However, for the scope of our results, we can
restrict our attention to the class of regular trees, which admit a finite representation.

We start by formally defining the notion of a regular tree, and then show that regular trees
can always be represented using certain kinds of tree automata.

Definition 3.11 (regular tree). Let t be a tree in TωΣ,L. Given a node w ∈ Σ∗, the subtree
tw : Σ∗→ L of t is defined as tw(v) := t(wv) for all v ∈ Σ∗. We say that t contains the subtree
t ′ if there exists w ∈ Σ∗ such that t ′ = tw. Then, t is a regular tree if it contains finitely many
distinct subtrees. ♦

Reference [Cou83] is a survey which covers the basic theory and applications of regular trees.
From the different ways that exist to represent regular trees in a finite way [Tho90], here,
we use tree automata. A tree automaton starts its computation by assigning an initial state
to the root and then works down to the rest of the tree. The transition relation specifies
which states can be assigned to the children of a node, given the state and the label of the
node. The tree automaton accepts the tree if there is a run built up in this fashion which is
“successful”, a notion that depends on the particular model of tree automata. A basic such
model is Büchi tree automata.

Definition 3.12. A Büchi tree automaton (BTA) is a tuple A = (Σ,Q, L,∆, I , F) where
Σ = {σ1, . . . ,σk} is a finite set of symbols, Q is a finite set of states, L is a finite set of la-
bels, ∆ ⊆Q× L ×Qk is the transition relation, I ⊆Q is a set of initial states, and F ⊆Q is a set
of final states. A run of A on a tree t ∈ TωΣ,L is a Q-labeled Σ-tree r : Σ∗→Q such that r(ε) ∈ I
and

(r(w), t(w), r(wσ1), . . . , r(wσk)) ∈∆

for all w ∈ Σ∗. The run r of A on t is called successful if for every path π of t we have

{q ∈Q | r(w) = q for infinitely many w ∈ π} ∩ F 6= ;.

52 Chapter 3. Languages and Automata

The tree language L(A) recognized by A is the set of all trees t ∈ TωΣ,L such that A accepts t,
i.e., A has a successful run on t. ♦

The following result is due to Rabin [Rab72]5.

Theorem 3.13. Any nonempty Büchi recognizable set of trees contains a regular tree.

An important decision problem for a class of automata is testing for emptiness, that is,
given an automaton A in that class, check whether there is any tree accepted by A. Vardi
and Wolper [VW86] proved that the emptiness test for Büchi tree automata is P-complete.

For the purposes of this chapter, a special case of Büchi automata will suffice. In particular,
we consider automata with a trivial accepting condition, called looping tree automata, that
were introduced in [VW94].

Definition 3.14. A looping tree automaton (LTA) is a Büchi tree automaton
A = (Σ,Q, L,∆, I , F) with F = Q. This implies that every run of A is successful, and hence a
tree t is accepted by A iff A has a run on t. For this reason, when talking about an LTA we will
omit F. ♦

Testing emptiness of this restricted class of tree automata was proved to be possible in
time linear in the size of the automaton [BT01].

In general, LTAs (and obviously also BTAs) recognize sets of trees. Therefore, to uniquely
represent a tree we only consider those recognizing singleton sets.

Definition 3.15. Let A = (Σ,Q, L,∆, I) be a looping tree automaton. We say that A represents
the infinite tree t ∈ TωΣ,L if L(A) = {t}. ♦

It is easy to see that trees that can be represented by looping tree automata are indeed
regular. In fact, since LTAs are (a special case of) BTAs, by Theorem 3.13 we obtain that if
such an automaton recognizes the singleton set {t}, then t must be regular. Conversely, we
can show that any regular tree can be represented in this way.

Proposition 3.16. Let t ∈ TωΣ,L be an L-labeledΣ-tree. Then, t is regular iff it can be represented
by an LTA. ♦

Proof. We have already seen that the if-direction holds. To show the only-if direction,
assume that t is a regular tree. By Definition 3.11 it thus contains only finitely many dis-
tinct subtrees, say t0, t1, . . . , tm where we assume without loss of generality that t0 = t.
For all 1 ≤ i ≤ m, we denote the direct subtrees of t i as t i

σ1
, . . . , t i

σk
. Note that these

are also subtrees of t, and thus belong to the set {t0, t1, . . . , tm}. We build the looping
tree automaton At = (Σ,Q t , L,∆t , {t0}) as follows: we set Q t := {t0, t1, . . . , tm} and
∆t := {(t i , t i(ε), t i

σ1
, . . . , t i

σk
) | 1≤ i ≤ m}.

In the following, we show that that t = t0 is the only tree accepted by At . Initially, we
prove that At accepts t, by inductively defining a run r of At on t. Set r(ε) = t0 = tε. Assume
that for w ∈ Σ∗, the state r(w) has already been defined and it holds that r(w) = tw = t j for

5The actual theorem in [Rab72] is about Rabin tree automata, which is a generalization of BTAs. This setting is
too general for our purposes, but the result holds nevertheless.

3.4 Finitely representing tuples of languages 53

some 0 ≤ j ≤ m. Note that t j
σi
= twσi

for every 1 ≤ i ≤ k. Since t(w) = tw(ε) = t j(ε) and

(t j , t j(ε), t j
σ1

, . . . , t j
σk
) ∈∆, we define r(wσi) = t j

σi
= twσi

. In this way, the run r of At on t
is inductively defined, and thus t ∈ L(At).

Next, assume that At has a run r ′ on a tree t ′. We will inductively show that r ′ = r and
t ′ = t. Note that r ′(ε) = t0 = r(ε), since otherwise r ′ would not be a run. The induction
hypothesis is that r ′(w) = r(w) = t j for some 0 ≤ j ≤ m. Recall that, by construction of r,
r(w) = tw. Hence by construction of At , (r ′(w), t ′(w), r ′(wσ1), . . . , r ′(wσk)) ∈ ∆ implies
that this tuple coincides with (t j , t j(ε), t j

σ1
, . . . , t j

σk
), i.e., t ′(w) = t j(ε) = tw(ε) = t(w)

and furthermore (r ′(wσ1), . . . , r ′(wσk)) = (t
j
σ1

, . . . , t j
σk
) = (r(wσ1), . . . , r(wσk)). Thus, for

every w ∈ Σ∗ we have that r ′(w) = r(w) and t ′(w) = t(w) and hence r ′ = r and t ′ = t,
implying that At accepts exactly t and has a unique run on it. �

The automaton At constructed in the above proof actually has a very specific syntactic shape
(see Definition 3.17 below), which ensures that it accepts only one tree.

Definition 3.17 (Representing looping tree automaton (rLTA)). A representing looping
tree automaton is a looping tree automaton A = (Σ, P, L,∆, {ps}) such that ∆ satisfies the
following condition:

• for every p ∈ P, there exists a unique symbol lp ∈ L and a unique tuple (p1, . . . , p|Σ|) ∈ P |Σ|

such that (p, lp, p1, . . . , p|Σ|) ∈∆. ♦

The following proposition states some obvious consequences of this definition and the proof
of Proposition 3.16.

Proposition 3.18. Let A be an rLTA and t a regular tree. Then

1. t can be represented by some rLTA At .

2. L(A) is a singleton set consisting of a regular tree tA and A has a unique run rA on tA.
♦

Proof. The first claim is immediate after observing that the automaton At introduced in the
proof of Proposition 3.16 is an rLTA. For the second claim, completely analogously to the
proof of Proposition 3.16, we can prove that A has a run r on some tree t, and for any run
r ′ of A on some tree t ′ it holds that r ′ = r and t ′ = t. �

In case we are given a general LTA A, we should like to know whether it actually represents
a tree (i.e., recognizes a singleton set), and if the answer is affirmative construct an rLTA
that represents the same tree.

Lemma 3.19. Let A be an LTA. We can decide in polynomial time whether A represents a tree.
If A represents a tree t ∈ TωΣ,L , then we can construct an rLTA representing t in polynomial time.

Proof. Given A, we remove superfluous states by applying the emptiness test for looping
tree automata [BT01; BO13] and check whether L(A) = ;. If this is the case, A does not
represent a tree. Otherwise, we check whether the automaton accepts a unique tree. If the
answer is affirmative, we obtain an automaton Ar by removing all but one transition for

54 Chapter 3. Languages and Automata

every state. Obviously, Ar is an rLTA and L(Ar) ⊆ L(A). If A represents a tree, Ar is the
rLTA we are looking for.

Before providing the exact algorithm below, a definition is due. Claiming that an LTA has
no superfluous states is the informal way of saying that the LTA is trim. An LTA A is called
trim if every state can be used in some run of A. It is easy to see that every LTA can be
transformed into a trim LTA that is equivalent in the sense of having the same runs.

Algorithm for deciding whether a given LTA represents a tree.
Given an LTA A= (Σ,Q, L,∆, I):

• Construct an equivalent trim LTA A′ = (Σ,Q′, L,∆′, I ′) [BO13, Lemma 2]. If the
resulting automaton has no initial states, then L(A) = ;, and thus A does not represent
a tree.

• Otherwise, compute the binary relation ∼ on Q′ (that is inspired from automata
minimization) as follows:

– B0 = {(q, q′) ∈Q′2 | ∃(q,`1, ...), (q′,`2, ...) ∈∆′ with `1 6= `2}
– For i = 1, 2, . . . , set

Bi = Bi−1 ∪ {(q, q′) ∈Q′2 | ∃(q,`, q1, . . . , qk), (q
′,`, q′1, . . . , q′k) ∈∆

′

and 1≤ i ≤ k s.t. (qi , q′i) ∈ Bi−1}.

The iteration becomes stable and thus terminates after m ≤ |Q′2| steps. Define
∼ :=Q′2 \ Bm.

• Check whether q ∼ q′ for every q, q′ ∈ I ′. The answer is positive iff A represents a tree.

The following lemma proves correctness of the algorithm.

Lemma 3.20. A trim LTA A = (Σ,Q, L,∆, I) represents a tree iff I 6= ; and q ∼ q′ for every
q, q′ ∈ I .

Proof. Assume that A does not represent a tree. This means that either it does not accept
any tree, or it accepts more than one. In the first case, since A is trim, we get that I = ;.
In the second case, there are at least two trees t1, t2 accepted by A. Let w = σi1 . . .σin be
a minimal word s.t. t1(w) 6= t2(w) and r1, r2 be runs of A on t1, t2 respectively. Thus, we
get that there are transitions (r1(w), t1(w), ...), (r2(w), t2(w), ...) ∈∆ with t1(w) 6= t2(w). By
the construction in the algorithm, (r1(w), r2(w)) ∈ B0 ⊆ Bm. For every proper prefix v of
w, since t1(v) = t2(v) (by minimality of w) we get that (r1(v), r2(v)) ∈ Bm. In particular,
(r1(ε), r2(ε)) ∈ Bm, and since r1(ε), r2(ε) ∈ I the proof of this direction is complete.

For the other direction, if I = ; then obviously A does not accept any trees. Assume
that q 6∼ q′, i.e., (q, q′) ∈ Bm for some q, q′ ∈ I . Then, let l be the least number such that
(q, q′) ∈ Bl . If l = 0, there exist (q,σ, . . .), (q′,σ′, . . .) ∈ ∆ with σ 6= σ′, and since the
automaton is trim, we get that A accepts at least two trees, one with root σ and one with
σ′. If l ≥ 1, there exist (q,σ, q1, . . . , qk), (q′,σ, q′1, . . . , q′k) ∈∆ with (qi , q′i) ∈ Bl−1 for some
1≤ i ≤ k. Iterating the above argument, we get a word w ∈ Σ∗ (with length at most l) and
a pair (p, p′) ∈ B0 s.t. p is a w-successor of q and p′ of q′ and, as before, we derive that A
accepts at least two trees (with the difference existing in the node w instead of the root).�

3.5 Towards computing language distances 55

The results of this section show that we can restrict the attention to rLTAs when representing
regular trees.

Finally, we are ready to implement our original idea: we show how to obtain a single
object, i.e., an rLTA, from a tuple of DFAs representing a tuple of regular languages.

Lemma 3.21. Given a tuple of DFAs A = (A1, . . . , Ak), each of size at most n, recognizing
the tuple of languages L = (L1, . . . , Lk), we can construct an rLTA AA of size nk representing
tL = γk(L).

Proof. Assume that Σ = {σ1, . . . ,σm} and the DFAs are of the form Ai = (Q i ,Σ, q0
i ,δi , Fi).

We define AA := (P,Σ, L,∆, {p0}), where P :=Q1 × · · · ×Qk, L := {0, 1}k, p0 := (q0
1, . . . , q0

k),
and

∆ := {(p,`, p1, . . . , pn) | p = (q1, . . . , qk) ∈ P, `= (x1, . . . , xk), x i = 1 iff qi ∈ Fi ,

pi = (δ1(q1,σi), . . . ,δk(qk,σi)) for i = 1, . . . , m }.

Initially, note that by construction AA is an rLTA. Hence, it has exactly one run, say r, on
exactly one tree, say t. We will now prove that t = tL, that is, for every w ∈ Σ∗ it holds that
t(w) = (x1, . . . , xk) with x i = 1 iff w ∈ Li .

By induction, it is easy to see that for every w ∈ Σ∗ holds r(w) = (δ∗1(q
0
1, w), . . . ,δ∗k(q

0
k , w)).

Since for every state p ∈ P there exists a unique label ` such that (p,`, . . .) ∈∆, and AA has
a run on t, we necessarily have that t(w) = (x1, . . . , xk) with x i = 1 iff δ∗i (q

0
i , w) ∈ Fi , which

is exactly iff w ∈ Li . �

If our starting point was a tuple of NFAs, this product construction would not have worked,
for it heavily relies on the fact that the component automata work synchronously. Since
rLTAs are by nature deterministic, in a sense they are “not compatible” with NFAs. In order
to obtain a similar result, we would have to first obtain a tuple of equivalent DFAs and
then perform the above construction. The entire procedure would, however, require time
exponential in the size of the input NFAs.

In later chapters, it will also be useful to define (tuples of) languages from trees with an
arbitrary set of labels. The following definition provides such a procedure.

Definition 3.22. Given an L-labeled Σ-tree t the language induced by the set F ⊆ L is defined
to be Kt(F) := {w ∈ Σ∗ | t(w) ∈ F}. Furthermore, the tuple of languages induced by the tuple
of sets F1, . . . , Fk ⊆ L is defined to be Kt(F1, . . . , Kk) := (Kt(F1), . . . , Kt(Fk)). ♦

3.5 Towards computing language distances

Our goal is now to assign values to tuples of (possibly infinite) languages that can be
represented by regular trees. Consequently, we need a device that takes as input such a
tree and returns a value. Weighted looping tree automata are such devices: they assign
values (from a so-called semiring) to infinite trees. In the next subsection, we introduce the
special type of weighted tree automata that we will use together with the necessary notions
(semirings, discounting, etc.). We will then show how the language distances d0, d1, d2
introduced in Section 3.3 can be realized using such automata.

56 Chapter 3. Languages and Automata

3.5.1 Weighted looping tree automata

In order to assign a value to a tree, weighted tree automata make use of transitions that are
equipped with weights. These weights are usually elements of a semiring such that one can
add and multiply weights. An extensive survey of weighted tree automata can be found in
[FV09]. In a setting where the automata are required to work on infinite trees, the underlying
semiring should admit suitable infinite sums and products [Rah07]. In the context of infinite
trees, it is also useful to employ discounting. This has been used for modeling systems with
non-terminating behavior [AHM03] in order to assign different degrees of importance to
incidents that happen later in time. In our setting, discounting can be used to assign less
importance to differences that occur for longer words, i.e., further down in the tree.

Semirings.

The weight structures underlying our weighted tree automata are totally complete commut-
ative semirings [Rah07].

Definition 3.23. A semiring S = (S,⊕,⊗, 0, 1) consists of a set S, two binary operations ⊕
and ⊗, and two constant elements 0 and 1 such that:

1. (S,⊕, 0) is a commutative monoid,

2. (S,⊗, 1) is a monoid,

3. multiplication distributes over addition from left and right,

4. 0⊗ a = a⊗ 0= 0 for all a ∈ S.

A semiring is called commutative if a⊗ b = b⊗ a for all a, b ∈ S. ♦

Next, assume that addition can be suitably extended to infinite sums, i.e., the semiring S
is equipped with infinitary sum operations

⊕

I : S I → S, for any index set I , such that for all
I and all families (ai | i ∈ I) of elements of S the following hold:

⊕

i∈;
ai = 0,

⊕

i∈{ j}
ai = a j ,

⊕

i∈{ j,k}
ai = a j ⊕ ak for j 6= k,

⊕

j∈J

⊕

i∈I j

ai

!

=
⊕

i∈I

ai , if
⋃

j∈J

I j = I and I j ∩ Ik = ; for j 6= k,

⊕

i∈I

(c ⊗ ai) = c ⊗
�

⊕

i∈I

ai

�

,
⊕

i∈I

(ai ⊗ c) =

�

⊕

i∈I

ai

�

⊗ c.

The semiring S together with the operations
⊕

I is called complete.
A complete semiring is said to be totally complete, if it is endowed with countably infinite

product operations satisfying for all sequences (ai | i ≥ 0) of elements of S the following
conditions:

⊗

i≥0

1= 1, a0 ⊗
⊗

i≥0

ai+1 =
⊗

i≥0

ai ,
⊗

i≥0

ai =
⊗

i≥0

ai
′,

3.5 Towards computing language distances 57

where a0
′ = a0 ⊗ . . .⊗ an1

, a1
′ = an1+1 ⊗ . . .⊗ an2

, . . . for an increasing sequence of natural
numbers 0< n1 < n2 < . . . , and

⊗

j≥1

⊕

i∈I j

ai

!

=
⊕

(i1,i2,...)∈I1×I2×...

�

⊗

j≥1

ai j

�

,

where I1, I2, . . . are arbitrary index sets.
A totally commutative complete semiring is a commutative and totally complete semiring

that additionally satisfies:

⊗

i≥0

(ai ⊗ bi) =

�

⊗

i≥0

ai

�

⊗

�

⊗

i≥0

bi

�

.

Examples The following semirings are totally commutative complete:

• the semiring (N∪ {+∞},+, ·, 0, 1) of natural numbers extended with positive infinity
+∞,

• the tropical semiring Trop = (N ∪ {+∞}, min,+,+∞, 0) and the arctic semiring
Arc = (N ∪ {+∞,−∞}, sup,+,−∞, 0) with the binary operations extended in the
natural way to infinitary operations,

• the counterparts of the aforementioned semirings over the nonnegative real numbers,
Rinf = (R≥0 ∪ {+∞}, inf,+,+∞, 0) and Rsup = (R≥0 ∪ {+∞,−∞}, sup,+,−∞, 0),

• the Viterbi semiring ([0,1], sup, ·, 0, 1),

• every complete distributive lattice.

All of the above examples but Viterbi can be found in [Rah07]. To the best of our knowledge,
whether the Viterbi semiring is totally commutative complete has not been investigated in
the literature before. To prove that this is indeed the case, it suffices to make the following
two observations:

• It is well-known (see for example [Kno51]) that the infinite product
∏

i≥0 ai converges
in case

∑

i≥0(1 − ai) converges, and is equal to 0 if
∑

i≥0(1 − ai) = +∞. Since
0≤ ai ≤ 1, we have that

∑

i≥0(1− ai) either converges or is equal to +∞, and thus
the infinite product is well-defined.

• For any index set I and any family (ai | i ∈ I) of elements in [0, 1] it holds that

sup
i∈I

ai = e
− inf

i∈I
{− log ai},

and for any sequence (ai | i ≥ 0) of elements in [0,1]

∏

i≥0

ai = e
−
∑

i≥0
(− log ai)

.

Thus, Viterbi being a totally commutative complete semiring is a corollary of Rinf being one.

58 Chapter 3. Languages and Automata

Discounting.

In the setting of semirings, discounting is defined by using semiring endomorphisms. This
approach was originally used for weighted automata on infinite words by Droste and Kuske
in [DK06], and extended to weighted automata on infinite trees by Mandrali and Rahonis
[MR09].

Definition 3.24. Let S = (S,⊕,⊗, 0, 1) be a semiring. A mapping f : S → S is called an
endomorphism if f (a ⊕ b) = f (a)⊕ f (b) and f (a ⊗ b) = f (a)⊗ f (b) for all a, b ∈ S, and
f (0) = 0, f (1) = 1. The set End(S) of all endomorphisms of S is a monoid with composition ◦
as binary operation and the identity mapping id as unit. ♦

For Rsup, it was proved in [DK06] that every endomorphism is of the form p(a) = p · a for
some p ∈ [0,+∞), and conversely, every p ∈ [0,+∞) defines an endomorphism of Rsup in
this way. The same result can be shown for Rinf as well [DR09]. Finally, it is not difficult to
see that a similar result holds for the Viterbi semiring.

Lemma 3.25. In the Viterbi semiring ([0,1], sup, ·, 0, 1), every endomorphism is of the form
p̃(a) = ap for some p ∈ [0,+∞), and conversely every p ∈ [0,+∞) defines an endomorphism
of Viterbi.

Proof. Initially, observe that for every a, b ∈ [0,1] and for every p ∈ [0,+∞) it holds that

• p̃(sup{a, b}) = (sup{a, b})p = sup{ap, bp}= sup{p̃(a), p̃(b)},

• p̃(a · b) = (a · b)p = ap · bp = p̃(a) · p̃(b),

• p̃(0) = 0p = 0 and

• p̃(1) = 1p = 1.

Thus, every p ∈ [0,+∞) defines an endomorphism of Viterbi.
Next, assume that Φ is an endomorphism of Viterbi, and define

φ(x) = − log(Φ(e−x)).

We will show that φ is an endomorphism of Rinf. Indeed, for every x , y ∈ Rinf it holds that

φ(inf{x , y}) = − log(Φ(e− inf{x ,y})) = − log(Φ(sup{e−x , e−y}))
= − log(sup{Φ(e−x),Φ(e−y)}) = inf{− log(Φ(e−x)),− log(Φ(e−y))}
= inf{φ(x),φ(y)}

and also

φ(x + y) = − log(Φ(e−(x+y))) = − log(Φ(e−x · e−y))

= − log(Φ(e−x) ·Φ(e−y)) = − log(Φ(e−x))− log(Φ(e−y))

= φ(x) +φ(y).

3.5 Towards computing language distances 59

Thus, φ is indeed an endomorphism of Rinf. Consequently, by [DR09], we know that there
exists some p ∈ [0,+∞), such that φ(x) = p · x for every x ∈ [0,+∞). Hence, for every
x ∈ [0,+∞) we get that

φ(x) = p · x =⇒ − log(Φ(e−x)) = p · x =⇒ Φ(e−x) = e−p·x = (e−x)p.

Since the image of the interval [0,+∞) under the function e−x is the interval (0, 1], for every
a ∈ (0, 1]we have thatΦ(a) = ap. Finally, since by definition of endomorphismΦ(0) = 0 = 0p,
we get that Φ(a) = ap holds in the complete interval, i.e., for every a ∈ [0,1]. �

Definition 3.26. Let Σ = {σ1, . . . ,σk} be a finite set of symbols and S a semiring. A discount-
ing for Σ and S is a tuple Φ ∈ (End(S))k.6 ♦

For a discounting Φ= (φ1, . . . ,φk) and for every word w= σi1σi2 . . .σin ∈ Σ
∗, we define

the endomorphism φw of S induced by Φ and w as φw = φi1 ◦φi2 ◦ · · · ◦φin , where for w = ε
the empty composition is id.

Weighted looping tree automata.

In the following, S is assumed to be a totally complete commutative semiring. An infinitary
tree series h over L and S is a mapping h : TωΣ,L → S. The class of all infinitary tree series over
L and S is denoted by S〈〈TωΣ,L〉〉.

Definition 3.27 (Weigthed looping tree automaton with discounting Φ). A weighted
looping tree automaton with discounting Φ (Φ-wLTA) over S is a tuple M= (Σ,Q, L, in, wt)
where Q is a finite state set, L is a finite set of labels, Σ = {σ1, . . . ,σk} is a finite set of symbols,
in : Q→ S is the initial distribution, and wt : Q× L ×Qk→ S is a mapping assigning weights
to the transitions of the automaton. ♦

Given a Φ-wLTA M= (Σ,Q, L, in, wt) over S, a run of M on a tree t ∈ TωΣ,L is a mapping
r : Σ∗→Q. We denote the set of all runs of M on t by RM(t). Given a run r, we denote the
transition (r(w), t(w), r(wσ1), . . . , r(wσk)) by −→r (w). The weight of the run r at w ∈ Σ∗ is
defined as wt(r, w) := wt(−→r (w)). The Φ-weight (or simply weight) of r is defined as

weight(r) := in(r(ε))⊗
⊗

w∈Σ∗
φw(wt(r, w)).

Finally, the Φ-behavior (or simply behavior) of M is the infinitary tree series ||M|| ∈ S〈〈TωΣ,L〉〉
whose coefficients are determined for every t ∈ TωΣ,L by

(||M||, t) :=
⊕

r∈RM(t)

weight(r).

If we take φi = id for every i = 1, . . . , k, then we are left with a “normal” wLTA over S in
the sense of [Rah07], and thus dispense with the prefix Φ- in the notation.

6In the literature, more general forms of discounting have been introduced, where the tuple of endomorphisms
to be used depends also on the label of a node, but here we restrict our attention to the simpler form of
discounting introduced above.

60 Chapter 3. Languages and Automata

If |L| = 1, then TωΣ,L consists of a single tree tul, which we will call the unlabeled tree since
the labels are then irrelevant. In this case, we omit the label from the transitions of a Φ-wLTA
M and write RM for its runs, omitting tul. Also note that then ‖M‖ is a single element of S
rather than a tree series.

3.5.2 Expressing language distances

In this section we show that our approach of mapping languages to trees is actually useful,
that is, wLTAs can be used to model language distances.

The functions d0, d1, d2 introduced in Section 3.3 take a pair of languages over an alphabet
Σ as input. Thus, to represent this kind of input in a tree, we use the label set L2 := {0, 1}2.
We show that d0, d2 as well as a vital component of d1 can be expressed by weighted looping
automata with discounting over Rinf. The function d1 itself can be expressed using the Viterbi
semiring.

Example 3.28. We start with the simplest language distance, d0(K , N) = |K∆N |. We introduce
a wLTA (without discounting) that, given a tree t representing the tuple of languages (K , N),
computes |K∆N |. Consider the wLTA M0 = (Σ,Q, L2, in0, wt0) over Rinf where Q = {q0, q1},
in0(q0) = in0(q1) = 0 and

wt0(q, l, p1, . . . , pk) =

0 if q = q0, l ∈ {(0,0), (1,1)}
1 if q = q1, l ∈ {(1,0), (0,1)}
+∞ otherwise

It is easy to see that there is a unique run r0 with non-infinite weight, the one that assigns q0
to the nodes labeled with (0, 0) or (1, 1), i.e., words that do not belong to K∆N, and q1 to the
ones labeled with (1, 0) or (0, 1), i.e., words that belong to K∆N. If the word does not belong
to K∆N it gets a zero weight. If it does belong to K∆N, it gets weight 1. “Multiplying” in Rinf,
we add 1 for every word in K∆N, and hence we obtain exactly |K∆N | as weight for this run.♦

Example 3.29. Next, we investigate the language distance d1. Recall tbat d1(K , N) = 2−n

where n = min{|w| | w ∈ K∆N}. We introduce a wLTA (without discounting) that, given
a tree t representing the tuple of languages (K , N), computes the minimum n (rather than
2−n itself). Given n, the exponentiation can be done by external computation. Consider the
wLTA M1 = (Σ,Q, L2, in1, wt1) over Rinf = (R≥0∪{+∞}, inf,+,+∞, 0), where Q = {q0, q1},
in1(q0) = +∞, in1(q1) = 0 and

wt1(q, l, p1, . . . , pk) =

1 if q = q1, l ∈ {(0,0), (1, 1)}, pi = q1 for some 1≤ i ≤ k
and p j = q0 for j 6= i

0 if q = q1, l ∈ {(1,0), (0, 1)}, pi = q0 for all 1≤ i ≤ k
0 if q = q0, l ∈ {0,1}2, pi = q0 for all 1≤ i ≤ k
+∞ otherwise

Intuitively, each run using only transitions with non-infinite weights selects one path in the tree,
which it labels with q1 until an element in the symmetric difference is found. The transitions up
to this point in the selected path receive weight 1, and all other transitions have weight 0. Thus,
adding up the weights (with the multiplication ⊗ = + of Rinf) gives us the distance from the

3.5 Towards computing language distances 61

root to the node where the difference was detected, i.e., the length of the word in the symmetric
difference (or +∞ in case no difference is found on the chosen path). By building the infimum
over all runs, the length of the shortest word in the symmetric difference is found.

Example 3.29’. Actually, we can compute the exact value of d1 by making use of the Viterbi semir-
ing. Consider the wLTA M′1 = (Σ,Q, L2, in′1, wt ′1) over the Viterbi semiring ([0, 1], sup, ·, 0, 1)
where Q = {q0, q1}, in′1(q0) = 0, in′1(q1) = 1 and

wt ′1(q, l, p1, . . . , pk) =

1
2 if q = q1, l ∈ {(0, 0), (1, 1)}, pi = q1 for some 1≤ i ≤ k

and p j = q0 for j 6= i
1 if q = q1, l ∈ {(1, 0), (0, 1)}, pi = q0 for all 1≤ i ≤ k
1 if q = q0, l ∈ {0,1}2, pi = q0 for all 1≤ i ≤ k
0 otherwise

It is easy to see that this automaton works completely analogously to the previous one. Each
run that does not use transitions with zero weight selects a path in the tree, which it labels with
q1 until an element in the symmetric difference is found. The transitions up to this point in the
selected path receive weight 1

2 , and all other transitions have weight 1.
Thus, if the distance from the root to the node where the difference was detected is k, the

weight of the run, i.e., the infinite product of the appearing weights (recall that ⊗ in Viterbi is
actual multiplication), which contains mainly 1s and k 1

2 s is (1
2)

k.
The supremum over all runs is obtained when the least 1

2 s appear, namely for the run that
chooses the path that leads to the shortest word in the symmetric difference. Note that if no such
word exists, for every such run the weight is a product containing infinitely many times 1

2 , and
hence is 0. ♦

Example 3.30. Finally, we take a look at d2. Recall that d2(K , N) = µ(K∆N), where
µ(M) = 1

2

∑

w∈M (2|Σ|)
−|w|. We introduce a Φ-wLTA that, given a tree t representing the

tuple of languages (K , N), computes µ(K∆N). Consider the Φ-wLTA M2 = (Σ,Q, L2, in2, wt2)
over Rinf where Q = {q0, q1}, in2(q0) = in2(q1) = 0 and

wt2(q, l, p1, . . . , pk) =

0 if q = q0, l ∈ {(0, 0), (1, 1)}
1
2 if q = q1, l ∈ {(1, 0), (0, 1)}
+∞ otherwise

Finally, the discounting Φ = (φ1, . . . ,φk) is defined as φi =
1

2|Σ| for every i = 1, . . . , k, where
1

2|Σ|(a) =
1

2|Σ| · a for a ∈ R≥0 and 1
2|Σ|(+∞) = +∞.

It is easy to see that there is a unique run r0 with non-infinite weight, the one that assigns q0
to the nodes labeled with (0, 0) or (1, 1), i.e., words that do not belong to K∆N, and q1 to the
ones labeled with (1, 0) or (0, 1), i.e., words that belong to K∆N. The discounting multiplies
the weight of every word w ∈ Σ∗ with (1

2|Σ|)
|w|. If the word does not belong to K∆N it gets a

zero weight. If it does belong to K∆N, it gets weight 1
2 . “Multiplying” in Rinf (i.e., summing

over all words in Σ∗), we obtain exactly µ(K∆N) as weight for this run. ♦

Note that in all of the above examples, the automaton does not differentiate between the
labels (0, 0) and (1, 1), and neither between (1, 0) and (0, 1). This is to be expected due to

62 Chapter 3. Languages and Automata

the definition of the particular distances. More generally, for distances that are defined based
on the symmetric difference (like, d0, d1 and d2) we could also use an alternative approach:
we could equivalently have trees representing a single language, the symmetric difference
of the input languages, and have the weighted automaton operate on this tree. Obtaining
weighted automata for the above distances that operate on such trees is straightforward
given the above examples.

Overall, we say that a language distance d can be expressed by a (Φ)-wLTA M if M operates
on {0,1}2- (or {0,1}-labeled) trees, and for every pair of languages K , L it holds that the
behavior of M on the tree representing the tuple (K , L) (or respectively the symmetric differ-
ence K∆ L), coincides with the d-distance of K and L, in symbols d(K , L) = (||M||, t(K ,L))
(or d(K , L) = (||M||, tK∆ L) respectively).

3.5.3 Further considerations

Although we have been able to obtain wLTAs for the language distances we are investigating,
it would still be interesting to futher explore this connection between language distances
and wLTAs.

In particular, it is not clear if we can express distances like δ2, which was shortly discussed in
Section 3.3, using Φ-wLTAs. Most probably this is not the case for functions that involve limit
computations7. Potentially, automata with weights over a so-called valuation monoid [DM10]
could be of use. However, valuation functions usually operate like black boxes and it is not
clear how (if) it is possible to compute the behavior of such automata, unlike Φ-wLTAs as we
will see next.

More generally, we would ideally like to have a characterization of when a language
distance can be expressed by a wLTA, and even a procedure to construct such an automaton.
Conversely, we would like to have algorithms for checking whether a givenΦ-wLTA expresses a
language distance, that is, the function it defines on pairs of languages satisfies the properties
(M1)-(M3) of a metric, as well as syntactic restrictions on the automata that guarantee
satisfaction of these properties.

This latter topic seems to have the best potential for fruitful investigation. For example,
given a Φ-wLTA M = (Σ,Q, {0,1}2, in, wt), for the property (M1) it suffices to restrict wt
such that for every q ∈Q, (q1, . . . , q|Σ|) ∈Q|Σ|

wt(q, (0, 0), q1, . . . , q|Σ|) = wt(q, (1,1), q1, . . . , q|Σ|) = 0

wt(q, (0,1), q1, . . . , q|Σ|) = wt(q, (1, 0), q1, . . . , q|Σ|)≥ 0.

Furthermore, for (M2) it suffices to set for every q ∈Q, (q1, . . . , q|Σ|) ∈Q|Σ|

wt(q, (0, 1), q1, . . . , q|Σ|) = wt(q, (1,0), q1, . . . , q|Σ|).

However, none of these two conditions are necessary, and furthermore, there is no obvious
way to guarantee the triangle inequality (M3) in a non-trivial way. Further investigation of
the subject is an interesting topic for future research.

7cf. [KN06]

3.6 Computing the behavior of wLTAs on regular trees 63

3.6 Computing the behavior of wLTAs on regular trees

Now, we turn to the problem of how to actually compute the value assigned by a wLTA to a
regular tree. Formally, given a Φ-wLTA M over a semiring S and an rLTA A representing a
regular tree t, we want to compute the behavior of M on t, i.e., (||M||, t). In a first step, we
reduce this problem to the problem of computing the behavior of a Φ-wLTA on the unlabeled
tree. To be more precise, we combine the two automata M and A into a single Φ-wLTA MA
that works on the unlabeled tree tul such that (||M||, t) = (||MA||, tul). Notice that, since
the unlabeled Σ-tree is unique, the behavior of the new wLTA is an element of the semiring
and not a function. Thus, in order to compute (||M||, t) it suffices to be able to compute the
behavior MA; this will be the objective of the next section.

Theorem 3.31. Given Φ-wLTA M = (Σ,Q, L, in, wt) over S and rLTA A = (Σ, P, L,∆, {ps})
representing a regular tree t, one can construct in polynomial time a Φ-wLTA MA over S working
on the unlabeled tree tul such that (||M||, t) = (||MA||, tul).

Proof. Let S = (S,⊕,⊗, 0, 1). By the definition of rLTAs, for every state p ∈ P there exists a
unique letter lp ∈ L such that (p, lp, . . .) ∈∆. Additionally, by Proposition 3.18 it holds that
A has a unique run, say θ , on t. For simplicity, for every w ∈ Σ∗ we denote θ (w) ∈ P by pw.

We define the Φ-wLTA MA = (Q× P × L,Σ, in′, wt ′) over S as follows:

in′(q, p, l) :=

¨

in(q) if p = ps and l = lps

0 otherwise

wt ′
�

(q0, p0, l0),(q1, p1, l1), . . . , (qk, pk, lk)
�

:=

¨

wt(q0, l0, q1, . . . , qk) if (p0, l0, p1, . . . , pk) ∈∆
0 otherwise

To prove that (‖M‖, t) = (‖MA‖, tul), it is sufficient to show that there exists an injec-
tion τ : RM(t) → RMA

such that weight(r) = weight(τ(r)) for every r ∈ RM(t) and
weight(r ′) = 0 for every r ′ ∈ RMA

\ im(τ), where im(τ) stands for the image set of the
mapping τ.

More precisely, the injection is defined as follows. Given a run r ∈ RM(t), we define
τ(r) = r ′ by setting r ′(w) = (r(w), pw, lpw

). We have in′(r ′(ε)) = in′(r(ε), pε, lpε) = in(r(ε)),
and for all w ∈ Σ∗:

wt(r ′, w) = wt ′(
−→
r ′ (w)) = wt ′(r ′(w), r ′(wσ1), . . . , r ′(wσk))

= wt ′((r(w), pw, lpw
), (r(wσ1), pwσ1

, lpwσ1
), . . . , (r(wσk), pwσk

, lpwσk
))

= wt(r(w), lpw
, r(wσ1), . . . , r(wσk)) = wt(r(w), t(w), r(wσ1), . . . , r(wσk))

= wt(r, w).

Thus, we obtain

weight(r ′) = in′(r ′(ε))⊗
⊗

w∈Σ∗
φw(wt(r ′, w))

= in(r(ε))⊗
⊗

w∈Σ∗
φw(wt(r, w)) = weight(r).

64 Chapter 3. Languages and Automata

Now suppose that r ′ ∈ RMA
\ im(τ). In other words, for every r ∈ RM(t), r ′ 6= τ(r), and

hence
∃z ∈ Σ∗, r ′(z) 6= (r(z), pz , lpz

) (3.2)

From r ′ we define three mappings r0 : Σ∗ → Q, p0 : Σ∗ → P, l0 : Σ∗ → L by setting
r ′(w) = (r0(w), p0(w), l0(w)) for every w ∈ Σ∗. Obviously, r0 ∈ RM(t) (since any mapping
from Σ∗ to Q is a run of M on t). Then, from (3.2), we get that ∃z ∈ Σ∗ such that p0(z) 6= pz
or l0(z) 6= lpz

(otherwise it would be the case that r ′ = τ(r0)), and assume without loss of
generality that z has minimal length. We distinguish two cases.

• z = ε. This implies that p0(ε) 6= pε or l0(ε) 6= lpε . In both cases, in(r ′(ε)) = 0 and thus
weight(r ′) = 0, since 0⊗ a = 0 for all a ∈ S.

• z = vσi. This implies that pz 6= p0(z) or lpz
6= l0(z). In the first case, we have

that (pv , lpv
, . . . , p0(z), . . .) 6= (pv , lpv

, . . . , pvσi
, . . .). Since (pv , lpv

, . . . , pvσi
, . . .) is the

unique pv-transition, we get that (pv , lpv
, . . . , p0(z), . . .) /∈∆, yielding wt(r ′, v) = 0.

In the second case, (pz , l0(z), . . .) 6= (pz , lpz
, . . .) and thus (pz , l0(z), . . .) /∈∆, yielding

wt(r ′, z) = 0. In both cases, we get that weight(r ′) = 0

Finally, since (S,⊕, 0) is a commutative monoid, we get that:

(‖MA‖, tul) =
⊕

r ′∈RMA

weight(r ′) =
⊕

r ′∈im(τ)

weight(r ′)

=
⊕

r∈RM(t)

weight(τ(r)) =
⊕

r∈RM(t)

weight(r)

= (‖M‖, t) �

Thus, it remains to show how the behavior of a Φ-wLTA working on the unlabeled tree
can be computed. For wLTAs (without discounting) over complete distributive lattices this
was done in [BP10]. In the next section, we show how the behavior of a Φ-wLTA over the
semiring Rinf can be computed.

3.7 Computing the behavior on the unlabeled tree in Rinf

Concentrating on Rinf is motivated, on the one hand, by the fact that our motivating examples
(the language distances d0, d1 and d2) can be expressed using wLTA with discounting over
this semiring. On the other hand, discounting for this semiring is well-understood [DK06]
and nicely behaved. Note, however, that our algorithms can be extended to the Viterbi
semiring. Still, in order to get analogous complexity results, further computability and/or
precision considerations have to be taken into account (see comments at the end of each
section).

Recall that, for Rinf, all endomorphisms are of the form p(a) = p · a for p ∈ R≥0, and
thus the discounting is of the form Φ = (p1, . . . , pk). Given w = σi1 . . .σim ∈ Σ

∗, we set
pw = pi1 · . . . · pim where the empty product (case w= ε) is 1. Then

φw(a) = φi1 ◦ · · · ◦φim(a) = pi1 · . . . · pim · a = pw(a),

3.7 Computing the behavior on the unlabeled tree in Rinf 65

and thus φw = pw. It is easy to see that, for p > 0, p distributes over inf and
∑

. In the
following, we assume that pi 6= 0 for i = 1, . . . , k, and we will write pw · a instead of φw(a).

A q-run r of M is a run with r(ε) = q. By a slight abuse of notation, in this sec-
tion we use R(q) to denote the set of all q-runs of M. The running weight of a q-run
is defined like its weight, but without taking the initial distribution into account, i.e.,
rweight(r) :=

∑

w∈Σ∗ pw ·wt(r, w), and thus weight(r) = in(q)+ rweight(r). Consequently,
if we define

µ(q) := infr∈R(q)rweight(r) (for every q ∈Q)

then (‖M‖, tul) =minq∈Q {in(q) +µ(q)} . Hence, in order to compute the behavior of M on
tul, it suffices to calculate the values µ(q) for all q ∈Q.

The following lemma provides recursive equations that are useful to achieve this goal.

Lemma 3.32. For every state q ∈Q it holds that

µ(q) = min
(q1,...,qk)∈Qk

¨

wt(q, q1, . . . , qk) +
k
∑

i=1

pi ·µ(qi)

«

.

Proof. With simple (but tedious) application of the definitions we obtain

µ(q) = inf
r∈R(q)

rweight(r) = inf
r∈R(q)

∑

w∈Σ∗
pw ·wt(r, w)

= inf
r∈R(q)

¨

pε ·wt(r,ε) +
∑

w∈Σ+
pw ·wt(r, w)

«

= inf
r∈R(q)

¨

wt(r,ε) +
∑

w∈Σ+
pw ·wt(r, w)

«

= inf
r∈R(q)

¨

wt(r,ε) +
∑

w∈Σ∗
pσ1w ·wt(r,σ1w) + · · ·+

∑

w∈Σ∗
pσkw ·wt(r,σkw)

«

= inf
r∈R(q)

¨

wt(r,ε) +
k
∑

i=1

∑

w∈Σ∗
pσi w ·wt(r,σiw)

«

= min
(q1,...,qk)∈Qk

inf
(r1,...,rk)∈

R(q1)×···×R(qk)

¨

wt(q, q1, . . . , qk) +
k
∑

i=1

pi ·
∑

w∈Σ∗
pw ·wt(ri , w)

«

= min
(q1,...,qk)∈Qk

wt(q, q1, . . . , qk) + inf
(r1,...,rk)∈

R(q1)×···×R(qk)

k
∑

i=1

pi ·
∑

w∈Σ∗
pw ·wt(ri , w)

= min
(q1,...,qk)∈Qk

¨

wt(q, q1, . . . , qk) +
k
∑

i=1

inf
r∈R(qi)

pi ·
∑

w∈Σ∗
pw ·wt(r, w)

«

= min
(q1,...,qk)∈Qk

¨

wt(q, q1, . . . , qk) +
k
∑

i=1

pi · inf
r∈R(qi)

∑

w∈Σ∗
pw ·wt(r, w)

«

= min
(q1,...,qk)∈Qk

¨

wt(q, q1, . . . , qk) +
k
∑

i=1

pi ·µ(qi)

«

�

66 Chapter 3. Languages and Automata

Note that the exact same computations can be made for the Viterbi semiring
([0,1], sup, ·, 0, 1), with the difference that inf,min,+,

∑

,∞, 0 are replaced by
sup,max, ·,

∏

, 0, 1 respectively, and that endomorphisms are of the form p̃(a) = ap. Thus,
we would obtain equations of the form

µ(q) = max
(q1,...,qk)∈Qk

(

wt(q, q1, . . . , qk) ·
k
∏

j=1

µ(qi)
p j

)

. (3.3)

Our approach for computing the values µ(q) depends on the kind of discounting used.

3.7.1 Behavior for nondecreasing discounting

In this section we assume that the discounting is nondecreasing, i.e., pi ≥ 1 for all i = 1, . . . , k.
Note that absence of discounting corresponds to the special case where pi = 1 for all
i = 1, . . . , k.

If the discounting is nondecreasing, then we have for every run r ∈ RM that

rweight(r) =
∑

w∈Σ∗
pw ·wt(r, w)≥

∑

w∈Σ∗
wt(r, w),

where in the latter infinite sum only finitely many distinct non-negative real numbers occur.
Consequently, this sum (and thus the original sum as well) is a finite number iff only 0 is used
infinitely often in the sum. Therefore, a run r has finite weight iff, from a certain depth on, it
has only zero-weight transitions. Consequently, we can restrict our attention to deciding for
each state q whether such a (finite weight) q-run exists, and compute the smallest weight
among all of them.

The first step consists of computing the set of states in Q that admit a run with only
zero-weight transitions. Clearly, these are exactly the states q for which µ(q) = 0. By keeping
only transitions with weight 0 and then applying the emptiness test for LTAs [BT01] to the
resulting automaton, these states can easily be computed.

More precisely, the computation can be done as follows. Let∆0 ⊆Qk+1 be the set containing
only the transitions in M with zero weight:

∆0 := {(q, q1, . . . , qk) ∈Qk+1 | wt(q, q1, . . . , qk) = 0}

and B0 the subset of Q containing all the states that have no transition in ∆0, i.e.,

B0 := {q ∈Q | ∀(q1, . . . , qk) ∈Qk. (q, q1, . . . , qk) /∈∆0}

Then, we define the following iteration for i ≥ 0:

Bi+1 := Bi ∪ {q ∈Q | ∀(q, q1, . . . , qk) ∈∆0. ∃i. qi ∈ Bi}

The iteration becomes stable after at most `≤ |Q| steps. The set Q` =Q \ B` is then the set
of states that admit a run with only zero-weight transitions, as the following lemma shows.

Lemma 3.33. q ∈Q` ⇐⇒ ∃r ∈ R(q) that has only transitions with weight 0.

3.7 Computing the behavior on the unlabeled tree in Rinf 67

Proof. Let q ∈ Q`. This means that there is a transition (q, q1, . . . , qk) ∈ ∆0 such that
(q1, . . . , qk) ∈ (Q`)k. Iterating this argument for the successor states one can build the wanted
run r.

For the opposite direction, suppose that q /∈Q` and thus q ∈ B`. Assume that j is the least
index such that q ∈ B j . By induction on j we will prove that there is no q-run that has only
zero-transitions, i.e., transitions from ∆0. If j = 0, i.e., q ∈ B0, then there is no zero-weight
transition starting from q, and thus no q-run with only zero-weight transitions. If j > 0, this
implies that for every (q, q1, . . . , qk) ∈∆0 exists some i such that qi ∈ B j−1. By the induction
hypothesis, there is no qi-run with only zero-weight transitions, and thus the same holds for
q. �

The following lemma is a straightforward consequence of the previous one and the defini-
tion of µ(q).

Lemma 3.34. q ∈Q` ⇐⇒ µ(q) = 0

Proof. Suppose that q ∈ Q`. Then ∃r ∈ R(q) such that rweight(r) = 0, and thus µ(q) = 0.
Conversely, q /∈ Q` implies that ∀r ∈ R(q) there is a transition with non-zero weight. Let
a0 be the least non-zero weight among all transitions in the automaton. Then, ∀r ∈ R(q),
∑

w∈Σ∗ wt(r, w)≥ a0, and thus µ(q)≥ a0 > 0. �

Summing up, the above construction gives us the next lemma.

Lemma 3.35. The set of states Qµ=0 := {q ∈ Q | µ(q) = 0} can be computed in polynomial
time.

A run with finite weight does not use a transition with weight +∞ and below a certain
depth in the tree it contains only states that belong to Qµ=0. Thus, the states used in the
run must have access to states in Qµ=0 through transitions with finite weight. To be more
precise, define the set Qacc of states that have access to Qµ=0 to be the least subset of Q such
that (i) Qµ=0 ⊆ Qacc and (ii) if qi ∈ Qacc for every i = 1, . . . , k and wt(q, q1, . . . , qk) 6= +∞
then q ∈ Qacc. States q that have access to Qµ=0 have a q-run with finite running weight,
and hence µ(q) < +∞. If q does not have access to Qµ=0, then µ(q) = +∞. By using an
approach inspired by Dijkstra’s shortest path algorithm, we can compute the states that have
access to Qµ=0 together with their µ-value in polynomial time.

Initially, note that in case Q` = ;, no state has access to Q` and thus µ(q) =∞ for all
q ∈Q.

To compute µ(q) for all the states q we use the following algorithm. Set S0 = Q` and
consider the function

m0(q) =

(

0, if q ∈ S0

min
(q1,...,qk)∈(S0)k

wt(q, q1, . . . , qk), otherwise

Next, for i > 0, iteratively do the following:

• Si := Si−1 ∪ {si}, for some si = argminq/∈Si−1
mi−1(q).

68 Chapter 3. Languages and Automata

• For all q /∈ Si , update their m value:

mi(q) :=min

(

mi−1(q), min
(q1,...,qk)∈(Si)k

(

wt(q, q1, . . . , qk) +
k
∑

j=1

p j ·mi−1(q j)

))

while for all q ∈ Si , mi(q) := mi−1(q).

This iteration terminates after f = |Q \Q`| steps. Moreover, since by Lemma 3.32 we know
that µ(q) corresponds to:

µ(q) = min
(q1,...,qk)∈Qk

(

wt(q, q1, . . . , qk) +
k
∑

j=1

p j ·µ(q j)

)

,

based on the definition of mi and the fact that (Si)k ⊆Qk it can be shown by induction on i
that:

µ(q)≤ mi(q), for all q ∈Q and i ≥ 0 (3.4)

We now show that, upon termination, m f (q) = µ(q) = infr∈R(q) rweight(r) holds for all
q ∈Q. From this, the behavior of M can be directly computed, since it can then be expressed
as:

‖M‖=min
q∈Q

�

in(q) +m f (q)
�

Lemma 3.36. For all i ≥ 0 and s ∈ Si , it holds that:

1. µ(s)≤ µ(q) for all q 6∈ Si , and

2. µ(s) = mi(s).

Proof. We prove our claims by induction on i.
Base case. i = 0. Since s ∈ S0 and S0 = Q`, by Lemma 3.34 and the definition of

m0, it follows that µ(s) = m0(s) = 0. In addition, let q 6∈ S0 be a state in Q. Since
µ(q) ∈ (R≥0 ∪ {∞}), this means that µ(s)≤ µ(q).

Induction step. We show our claims hold for all i > 0, based on the assumption that they
hold for all numbers smaller than i.

Let Si = Si−1 ∪ {si}. The application of induction yields µ(s) = mi−1(s) and µ(s) ≤ µ(si)
for all s ∈ Si−1. Since mi(s) = mi−1(s) for all s ∈ Si−1, this means that µ(s) = mi(s). Hence,
it remains to show that the claims hold for si .

1. We want to show that µ(si) ≤ µ(q) for all q 6∈ Si. Suppose for a contradiction that
there exists s′ 6∈ Si such that µ(s′) < µ(si). Without loss of generality, s′ is selected
such that µ(s′)≤ µ(q) for all q 6∈ Si . Based on Lemma 3.32, µ(s′) can be expressed as:

µ(s′) = wt(s′, q0
1, . . . , q0

k) +
k
∑

j=1

p j ·µ(q0
j), (3.5)

for some tuple (q0
1, . . . , q0

k) ∈Qk. Let us first show that (q0
1, . . . , q0

k) ∈ (Si−1)k. Suppose
on the contrary that q0

j 6∈ Si−1 for some 1 ≤ j ≤ k. Then, it clearly holds that

0< µ(s′)≤ µ(q0
j) by the way s′ was selected. We distinguish the following two cases:

3.7 Computing the behavior on the unlabeled tree in Rinf 69

• wt(s′, q0
1, . . . , q0

k)> 0.Consequently, µ(s′)> µ(q0
j) must hold8, a contradiction.

• wt(s′, q0
1, . . . , q0

k) = 0. To avoid the same contradiction as before, it must be the
case that µ(q0

λ
) = 0 for all λ 6= j. Hence, µ(s′) = µ(q0

j), and q0
j could have

been chosen as s′. By iterating this argument, while assuming the corresponding
transition has zero-weight, we will end up with s′ having a run with only zero-
weight transitions, i.e., belonging to Qµ=0

9. Thus, we obtain a contradiction since
s′ 6∈ S0 =Q` =Qµ=0.

Then, having (q0
1, . . . , q0

k) ∈ (Si−1)k implies that µ(q0
j) = mi−1(q0

j) for all 1≤ j ≤ k (by

induction). Recall that mi(s′) corresponds to the expression:

mi(s′) =min

(

mi−1(s′), min
(q1,...,qk)∈(Si)k

(

wt(s′, q1, . . . , qk) +
k
∑

j=1

p j ·mi−1(q j)

))

Since (Si−1)k ⊆ (Si)k, this means that the value corresponding to the inner minimiz-
ation in the previous expression is not greater than µ(s′). Therefore, using (3.4) we
obtain:

mi(s′) = µ(s′)< µ(si)≤ mi(si) = mi−1(si) (3.6)

Moreover, if mi(s′)< mi−1(s′) holds, this must have been a direct consequence of intro-
ducing si to form Si . In other words, mi(s′) is updated by using the value mi−1(si), which
means that mi−1(si)≤ mi(s′). The latter is obviously not consistent with (3.6). There-
fore, in order to still be consistent with µ(s′) < µ(si), the equality mi(s′) = mi−1(s′)
must hold. But then, it follows that mi−1(s′)< mi−1(si) which is a contradiction since
si was selected to obtain Si . Thus, we can conclude that µ(si)≤ µ(q) for all q 6∈ Si .

2. Consider µ(si) expressed as in (3.5) (substitute s′ by si). Since we have just shown that
µ(si)≤ µ(q) for all q 6∈ Si , similarly as before, it can be proved that (q0

1, . . . , q0
k) ∈ (Si−1)k

holds for si as well. Then, the same argument used in 1. yields that mi(si) ≤ µ(si).
Thus, mi(si) = µ(si) holds (using (3.4)). �

Summing up, computing Q` requires quadratic time and computing m f (q) for every q ∈Q
requires cubic time. Since the behavior of M on tul can easily be computed from the values
µ(q) for q ∈Q, this yields the following theorem.

Theorem 3.37. The behavior of a Φ-wLTA with nondecreasing discounting Φ over Rinf on the
unlabeled tree can be computed in polynomial time.

Note that a similar algorithm can be utilized for the behavior over the Viterbi semiring.
As was done for obtaining Equation (3.3), replace inf, min,+,

∑

,∞, 0 by sup,max, ·,
∏

, 0, 1
respectively. Also recall that endomorphisms are of the form p̃(a) = ap. Other than this, the
algorithm and the proof of its correctness is the same. However, since we might have to
compute numbers as small as x p|Q| , the algorithm might take exponential time because of
their computation.

8Recall that p j ≥ 1.
9This iteration terminates in at most |Q \Q` | steps.

70 Chapter 3. Languages and Automata

3.7.2 Behavior for contracting discounting

In this section, we assume a contracting discounting, i.e., p =
∑k

i=1 pi < 1.
Recall that it suffices to compute the value µ(q) for every q ∈ Q. Let Q = {q1, . . . , qn}.

For each qi ∈ Q, the unknown value µ(qi) is associated to a variable x i. Additionally, let
I = {1, . . . , n}. Then, Lemma 3.32 states that (µ(q1), . . . ,µ(qn)) is a solution of the following
system of equations:

x i = min
(i1,...,ik)∈Ik

(

wt(qi , qi1 , . . . , qik) +
k
∑

j=1

p j · x i j

)

(3.7)

In the following, we will make use of notions and results from metric topology. Refer to
the Appendix for the relevant definitions.

For all qi ∈Q, we define a function fi : Rn→ R as follows:

fi(a1, . . . , an) = min
(i1,...,ik)∈Ik

(

wt(qi , qi1 , . . . , qik) +
k
∑

j=1

p j · ai j

)

Next, we define the vector function f : Rn→ Rn as:

f (a1, . . . , an) = (f1(a1, . . . , an), . . . , fn(a1, . . . , an))

Clearly, a vector a = (a1, . . . , an) is a solution of the system of equations in (3.7) iff it is a
fixed point of f , i.e., f (a) = a. Thus, it is enough to show that f is indeed a contraction on a
complete metric space (Rn, d).

Lemma 3.38. The function f defined above is a contraction on (Rn, d∞).

Proof. Given a= (a1, . . . , an),b= (b1, . . . , bn) ∈ Rn, recall that d∞(a,b) =maxi∈I |ai − bi|.
For every i ∈ I we have:

fi(a) = min
(i1,...,ik)∈Ik

(

wt(qi , qi1 , . . . , qik) +
k
∑

j=1

p j · ai j

)

= wt(qi , qi0
1
, . . . , qi0

k
) +

k
∑

j=1

p j · ai0
j

for a particular (i0
1 , . . . , i0

k) ∈ I k, and likewise

fi(b) = wt(qi , qi1
1
, . . . , qi1

k
) +

k
∑

j=1

p j · bi1
j
.

Since for a, the minimum is achieved for (i0
1 , . . . , i0

k), it holds that:

wt(qi , qi0
1
, . . . , qi0

k
) +

k
∑

j=1

p j · ai0
j
≤ wt(qi , qi1

1
, . . . , qi1

k
) +

k
∑

j=1

p j · ai1
j
.

3.7 Computing the behavior on the unlabeled tree in Rinf 71

Without loss of generality, assume that fi(b)≤ fi(a). Thus, we have:

| fi(a)− fi(b)|= fi(a)− fi(b)

= wt(qi , qi0
1
, . . . , qi0

k
) +

k
∑

j=1

p j · ai0
j
−

wt(qi , qi1
1
, . . . , qi1

k
) +

k
∑

j=1

p j · bi1
j

!

≤ wt(qi , qi1
1
, . . . , qi1

k
) +

k
∑

j=1

p j · ai1
j
−

wt(qi , qi1
1
, . . . , qi1

k
) +

k
∑

j=1

p j · bi1
j

!

=
k
∑

j=1

p j · (ai1
j
− bi1

j
)≤

k
∑

j=1

p j ·max
i∈I
|ai − bi |

= p ·max
i∈I
|ai − bi |= p · d∞(a,b)

Overall, we get that | fi(a)− fi(b)| ≤ p · d∞(a,b) for every i ∈ I , and thus

d∞(f (a), f (b)) =max
i∈I
| fi(a)− fi(b)| ≤ p · d∞(a,b)< d∞(a,b),

where the last inequality holds since p < 1, and we have that f is a contraction. �

From Banach’s fixed point theorem, we have that f has a unique fixed point, and thus
the system of equations (3.7) has a unique solution. Thus, to compute the values µ(q) for
q ∈ Q it is sufficient to compute this unique solution. This can be realized using Linear
Programming [Sch99].

Definition 3.39. A Linear Programming problem or LP problem is a set of restrictions along
with an objective function. In its most general form, an LP problem looks like this:

objective: min/max z = c1 x1 + . . .+ cn xn

restrictions: a1,1 x1 + . . .+ a1,n xn Ô b1

...

am,1 x1 + . . .+ am,n xn Ô bm

where ai, j , bi , c j are rational numbers.
The feasible region of the LP problem consists of all the tuples (x1, . . . , xn) that satisfy the

restrictions. The answer to an LP problem is a tuple in the feasible region that maximizes the
objective function and “no” if the feasible region is empty. ♦

It is well known that LP problems are solvable in polynomial time in the size of the problem
[Sch99].

From the above system of equations (3.7) we can derive an LP problem. Consider for
every i ∈ I , (i1, . . . , ik) ∈ I k the inequation

x i ≤ wt(qi , qi1 , . . . , qik) +
k
∑

j=1

p j · x i j
(3.8)

72 Chapter 3. Languages and Automata

and the objective
z =max

∑

i∈I

x i . (3.9)

Lemma 3.40. The LP problem consisting of the inequations (3.8), and the objective (3.9) has
the unique solution

{x i 7→ µ(qi) | i ∈ I}.

Proof. Initially, observe that the above vector is in the feasible region, since it satisfies the
restrictions (3.8). Next, we procede to show that it is indeed the only point that maximizes
the objective function. First, we need the following claim.

Claim 3.41. If a is a solution that maximizes the objective function then, for every i ∈ I , at
least one of the inequalities (3.8) holds as an equality.

Claim. Suppose on the contrary that c is a solution that maximizes z, but for some i ∈ I ,
inequalities ci ≤ wt(qi , qi1 , . . . , qik)+

∑k
j=1 p j · ci j

are strict for all (i1, . . . , ik) ∈ I k. This would
mean that the value of ci can be increased, and all inequalities would still hold; the increase
in ci might increase the right-hand side of some other inequality, but since the left-hand side
remains the same, all restrictions are satisfied. Thus, a new point c′ has been produced that
satisfies all the restrictions of the LP problem and additionally gives a larger value for the
objective function. This is a contradiction to our initial assertion about c. This completes the
proof of the claim.

As a result, any points that are solutions to the LP problem, satisfy the condition

x i = min
(i1,...,ik)∈Ik

(

wt(qi , qi1 , . . . , qik) +
k
∑

j=1

p j · x i j

)

for all i ∈ I . Thus, they correspond to solutions of the system of equations (3.7).
Finally, since there is a unique such solution, the solution of the LP problem is this unique

solution, the vector (µ(q1), . . . ,µ(qn)). �

Since solutions of Linear Programming problems can be computed in polynomial time,
this is also the case for the values µ(q), and thus for the behavior.

Theorem 3.42. The behavior of a Φ-wLTA with contracting discounting Φ over Rinf on the
unlabeled tree can be computed in polynomial time.

Note that for the Viterbi semiring we get analogous equations:

yi = max
(i1,...,ik)∈Ik

(

wt(qi , qi1 , . . . , qik) ·
k
∏

j=1

yi j
p j

)

By taking the logarithm of these equations, we derive equations of the form (3.7). However,
the numbers might no longer be rational, and thus further computational issues should be
taken into consideration.

3.8 More results on tree automata 73

3.8 More results on tree automata

Before we conclude this chapter, we will provide some more technical results on LTAs that
will prove useful later in this thesis.

As we have already seen in Definition 3.22, we can use trees with an arbitrary label set to
define languages. Furthermore, as we discussed in the Introduction, there is a correspondence
between finite languages and FL0 concept descriptions. In Chapters 4 and 6 we will use the
runs of an LTA, which are essentially trees, to define languages, that we then want to use to
build FL0 concept descriptions. It is hence essential to be able to figure out whether any of
these runs corresponds to a finite language. This is indeed possible, as the following result
states.

Lemma 3.43. Let A= (Σ,Q, L,∆, I) be an LTA of size n. Given a set of states B ⊆Q, we can
check whether A has a run that uses states from B only finitely many times in time h(2|Σ|n) for
a polynomial h.

In order to perform this check, we can adapt an approach from [BO12] that uses a special
kind of Büchi tree automata. The main idea is to transform the LTA into a BTA that picks a
point (word) in every path after which it will not use states from B any more. This guarantees
that the states from B occur only finitely often in the entire tree.

Initially, we create a copy of non-B states. At any point the old automaton could reach a
non-B state, the new automaton has the option to go to the copy of this state, while copied
states can only reach copied (and hence non-B) states and no original states.

More precisely, given an LTA A = (Σ,Q, L,∆, I) and B ⊆ Q, construct the Büchi tree
automaton B = (Σ,Q′, L,∆′, I ′, F) as follows:

Q′ = Q ∪ {q′ | q ∈Q \ B},
I ′ = I ∪ {q′ | q ∈ I \ B},
F = {q′ |Q \ B}, and
∆′ = {(p,`, p1, . . . , pk) ∈Q′ × L ×Q′k | (1) or (2)}, where

(1) (p,`, q1, . . . , qk) ∈∆ and for every i = 1, . . . , k, pi = qi if qi ∈ B
or pi ∈ {qi , q′i} if qi /∈ B

(2)(q,`, q1, . . . , qm) ∈∆, q, q1, . . . , qk /∈ B, and p = q′, p1 = q′1, . . . , pk = q′k.

This BTA can be now used to perform the aforementioned check.

Lemma 3.44. Every successful run of B induces a run of A that uses states from B only finitely
many times, and conversely, every such run of A is induced by some successful run of B.

Proof. Let r be a successful run of B on a tree t ∈ TωΣ,L . Then by the definition of a successful
run and the construction of B, in every path states from A, i.e., states in Q, appear finitely
often. Furthermore, by construction of B, once a copied state, i.e., a state in Q′ \Q is reached
in a path, no original state can be accessed after that point. From this, we infer that the
original states form a tree; in particular a connected graph. Hence, if there exist infinitely
many of them, by König’s Lemma [Kle02], there exists an infinite path containing only
original states. This is a contradiction since the run was supposed to be successful. Therefore,
states from B occur finitely often. Now define the run r ′ of A by projecting all copied states
of r to their original counterparts. Clearly, r ′ is a run of A on t.

74 Chapter 3. Languages and Automata

The reverse procedure proves the second statement of the lemma. More precisely, consider
a run r of A on a tree t ∈ TωΣ,L that only uses states from B finitely many times. Define the
run r ′ of B by replacing in every path all states after the last occurence of a state from B with
their copied counterparts. By construction, this is indeed a successful run of B. �

Hence, since the emptiness check for BTAs can be performed in polynomial time, and the
size of B is at most 2|Σ||A|, we have proved Lemma 3.43.

3.9 Outlook

The main technical result of this chapter is the polynomial time procedure we have devised
in order to compute the behavior of Φ-wLTAs with nondecreasing or contracting discounting
over Rinf on regular trees represented by rLTAs. To the best of our knowledge, the only other
work that deals with computing the behavior of weighted automata working on infinite trees
is [BP10], where the authors consider weights over distributive lattices. Another method for
computing the behavior of weighted automata in the same setting can be implicitly obtained
from the results of [DKR08]. It would be interesting to build on this work and investigate
the remaining kinds of discounting over Rinf, and also computability for other semirings or
weight structures.

Combining this technical result with language distances, we obtain the following result,
which will be especially useful in Chapter 5.

Theorem 3.45. Given an rLTA representing the pair of languages (K , L) and a Φ-wLTA with
nondecreasing or contracting discounting over Rinf corresponding to the language distance d,
the value d(K , L) can be computed in polynomial time. In particular, this holds for the distances
d0, d1, and d2.

Chapter 4

Unification in the Description Logic FL0

In this chapter we will introduce the main problem that we will try to extend in the rest of this
thesis, that is unification in FL0, and we describe how this problem has been tackled in the
classical case. After we give some basic definitions from Description Logic, we will formally
define unification in this setting. We will then describe the reduction of this problem to
solving language equations of a certain kind, and we will conclude this chapter by discussing
how solvability of equations of that form can be checked.

4.1 The Description Logic FL0

We first provide the syntax and semantics of the Description Logic FL0, and we describe
TBoxes, the structures that model background terminological knowledge. We proceed to
discuss concept subsumption and how formal languages can be utilized to this end. The
presentation in this section is rather succinct. A more thorough look into DLs can be found
in [BCM+03].

Syntax Concept descriptions of the DL FL0 are built from disjoint sets of concept and role
names using the concept constructors conjunction (u), value restriction (∀r.C) and the top
concept (>). More formally, the set CFL0

(NC, NR) of FL0 concept descriptions over the set of
concept names NC and the set of role names NR is obtained using the following syntax rules:

C ::=> | A | C u C | ∀r.C , (4.1)

where A∈ NC, r ∈ NR, and C ∈ CFL0
(NC, NR).

If there is no confusion, we will usually omit the sets of concept and role names (also from
the notation) and simply refer to the set of FL0 concept descriptions (CFL0

).
When considering the complexity of certain tasks related to DLs, we commonly take the

size of a concept description as the input size for this task. Given an FL0 concept description
C , its size |C | is inductively defined as

|C | :=

1 if C ∈ NC ∪ {>}
1+ |D| if C = ∀r.D

|D1|+ |D2| if C = D1 u D2

At this point a clarification is needed, since there is some ambiguity in the literature
concerning the sets NC and NR. Sometimes they are assumed to be countably infinite sets,
while in other occasions they are supposed to be finite, and often even fixed. For practical

75

76 Chapter 4. Unification in the Description Logic FL0

applications finite sets suffice. However, regarding computational complexity, many hardness
results require arbitrarily large sets. For this reason, for the problems we will define in the
rest of the thesis we always assume (sometimes implicitly) that NC and NR are part of the
input. Often, however, these sets simply contain the concept and role names occurring in
the concept descriptions under consideration, and hence the size of the former is linearly
bounded by the size of the latter.

Semantics The semantics of FL0 is defined using the notion of an interpretation as in
first-order logic.

Definition 4.1. An interpretation I = (∆I , ·I) consists of a nonempty set ∆I , called the
interpretation domain, and a mapping ·I , called the interpretation function that maps every
concept name A ∈ NC to a set AI ⊆ ∆I , and every role name r ∈ NR to a binary relation
rI ⊆∆I ×∆I .

The interpretation function is inductively extended to arbitrary FL0 concept descriptions as
follows:

• >I :=∆I ,

• (C u D)I := CI ∩ DI ,

• (∀r.C)I := {d ∈∆I | ∀e.((d, e) ∈ rI =⇒ e ∈ CI)}. ♦

TBoxes The TBox (terminological box) contains terminological knowledge, i.e., knowledge
about how different concepts are related. The restrictions given in the TBox should be
satisfied by all elements of an interpretation.

Definition 4.2. A general TBox is a finite set of general concept inclusions (GCIs), which
are expressions of the form C v D, where C and D are concept descriptions.

More restricted forms of TBoxes consist of concept definitions instead of GCIs. A concept
definition is an expression of the form A≡ C, where C is a concept description and A∈ NC. A
TBox T containing only concept definitions is called acyclic or unfoldable if the following two
conditions hold:

• for every concept name A ∈ NC there is at most one concept definition of the form
A≡ C ∈ T .

• there is no {A1 ≡ C1, . . . , An ≡ Cn} ⊆ T such that Ai+1 occurs in Ci for 1≤ i < n and A1
occurs in Cn.

A TBox that does not satisfy the second requirement is called a cyclic TBox.
Concept definitions and GCIs are called TBox axioms. ♦

TBoxes consisting of concept definitions predate general TBoxes, and were the first attempt
at integrating background terminological knowledge. As will become apparent from the
semantics of TBoxes, a concept definition A≡ C is equivalent to the two GCIs Av C and
C v A. Hence, general TBoxes are indeed more general than the ones consisting of concept
definitions, and we will not deal further with concept definitions.

4.1 The Description Logic FL0 77

An interpretation I satisfies a GCI C v D if CI ⊆ DI . An interpretation that satisfies
each GCI in a TBox T is called a model of T . The size of a GCI g : C v D is defined to be
|g| := |C |+ |D|, and the size of a TBox T is the sum of the sizes of the GCIs it contains, i.e.,
|T | :=

∑

g∈T |g|.

Subsumption and formal languages Given a TBox T and concept descriptions C , D, we
say that C is subsumed by D with respect to T (denoted as C vT D) if CI ⊆ DI for every
model I of T , that is, if in every model of T , the concept description C is interpreted as a
subset of the interpretation of D. Two concept descriptions are equivalent with respect to T
(written C ≡T D) if C vT D and D vT C , that is, if they are interpreted as the same set in
every model I of T . If T is the empty TBox, we simply write C v D and C ≡ D instead of
C v; D and C ≡; D.

As an easy example, with respect to the empty TBox (and hence also w.r.t. any TBox) we
have that Au B v A, since for every interpretation I we have that (Au B)I = AI ∩ BI ⊆ AI .
Furthermore, if we consider the TBox T = {Av B}, for every interpretation I that is a model
of T we have that AI ⊆ BI . This implies that (Au B)I = AI ∩ BI = AI , and hence Au B ≡T A.

The subsumption problem for FL0 is EXPTIME-complete: the complexity upper bound
is inherited from the more expressive DL ALC [Sch91], and the lower bound was shown
in [BBL05]. In [BFP18] an alternative way of proving the upper bound is provided. It is
based on the characterization of subsumption that uses formal language inclusion. Traces of
this idea can already be found in [BL84], where it is shown that subsumption (and thus also
equivalence) for (an extention of) FL0 w.r.t. the empty TBox can be decided in polynomial
time. We will now introduce this characterization for the empty TBox,1 before we describe
the more general result from [BFP18].2

This characterization relies on transforming FL0 concept descriptions into an appropriate
normal form as follows. First, the semantics given to concept constructors in FL0 implies
that value restrictions distribute over conjunction, i.e., for all FL0 concept descriptions
C , D and role names r it holds that ∀r.(C u D) ≡ ∀r.C u∀r.D. Furthermore, we have that
>u C ≡ C , C u> ≡ C , and ∀r.>≡>. Using these equivalences as rewrite rules from left to
right, each FL0 concept description can be translated into an equivalent one that is either >
or a conjunction of concept descriptions of the form ∀r1 . . .∀rn. A, where {r1, . . . , rn} ⊆ NR
and A ∈ NC. Such expressions can be abbreviated as ∀w. A, where w represents the word
r1 . . . rn. Note that n = 0 means that w is the empty word ε, and thus ∀ε. A corresponds to A.
Furthermore, a conjunction of the form ∀w1. Au · · · u ∀wm. A can be written as ∀L. A where
L ⊆ NR

∗ is the finite language {w1, . . . , wm}. We use the convention that ∀;. A corresponds
to the top concept >. Thus, any two FL0 concept descriptions can be represented as

C ≡ ∀K1. A1 u . . .u∀Kk. Ak, D ≡ ∀L1. A1 u . . .u∀Lk. Ak, (4.2)

where A1, . . . , Ak are the concept names occurring in C and D, and K1, . . . , Kk, L1, . . . , Lk are
finite languages over the alphabet of role names NR, i.e., finite subsets of NR

∗. In case the

1Since [BL84] is quite verbose, and the connection is not explicitly mentioned, we will follow the line of
presentation of [BN01].

2The purpose of providing the special result first is not only didactic or historical. In Chapter 6, we will only be
able to extend unification in the approximate setting only for the case of the empty TBox. Hence, it will come
in handy to explicitly mention the relevant results.

78 Chapter 4. Unification in the Description Logic FL0

concept name Ai occurs in C , but not in D, then Li = ;, and thus ∀Li . Ai ≡>. Concept names
occurring in D, but not in C , are treated analogously. For example, the concept descriptions
C = A1 u ∀r1.(A1 u ∀r1.A2 u ∀r2. A1) u ∀r2.(A2 u A3) and D = ∀r1.(A1 u ∀r2.A1) u ∀r2.A2
have the normal forms ∀{ε, r1, r1r2}. A1 u ∀{r1r1, r2}. A2 u ∀{r2}. A3 and
∀{r1, r1r2}. A1 u∀{r2}. A2 u∀;. A3 respectively.

Using this representation, subsumption between the FL0 concept descriptions C , D can be
characterized as follows [BN01]:

C v D iff Li ⊆ Ki holds for all i, 1≤ i ≤ k.

Since these normal forms can be obtained in time polynomial in the size of the original concept
descriptions, checking subsumption with an empty TBox can be performed in polynomial
time [BN01].

Note that in our previous example, we have that C v D and the corresponding inclusions
between the languages in the normal forms hold.

In the presence of a non-empty TBox T , a similar characterization of subsumption and
equivalence can be obtained [Pen15; BFP18], but now the definition of the languages needs
to take the GCIs in T into account. Next, we recall this characterization.

Definition 4.3. Given an FL0 concept description C, a concept name A and an FL0 TBox T ,
the value restriction set of C w.r.t. A and T is defined as:

LT (C , A) := {w ∈ NR
∗ | C vT ∀w.A}.

If NC = {A1, . . . , Ak} we call the tuple of languages LT (C) = (LT (C , A1), . . . , LT (C , Ak)) the
value restriction set of C w.r.t. T . ♦

Using the value restriction sets, subsumption of FL0 concepts w.r.t. an FL0 TBox can be
characterized via language inclusions as for the empty TBox case.

Proposition 4.4 ([BFP18]). Let T be an FL0 TBox and C , D FL0 concept descriptions. Then
C vT D iff LT (D, A) ⊆ LT (C , A) for every concept name A occurring in C or D. Likewise, for
equivalence we have that C ≡T D iff LT (C , A) = LT (D, A) for every A. ♦

Characterizing an FL0 concept description C with normal form C = ∀K1. A1u· · ·u∀Kk. Ak
by its value restriction sets LT (C , Ai) generalizes determining the finite languages Ki
(1 ≤ i ≤ k) in the normalization step. Indeed, for the empty TBox we have L;(C , Ai) = Ki
for i = 1, . . . k. For a general TBox T , the languages LT (C , A) may be infinite. A simple
example is the FL0 concept description A and the TBox T = {Av ∀r. A}. One can easily see
that AvT ∀w. A for all w ∈ r∗, which means that LT (C , A) = r∗. Therefore, to determine
subsumption of two concepts by comparing the respective value restriction sets, inclusion
between infinite sets must be considered. Since LT (C) is a tuple of languages, it can be
represented as a tree in the lines of Definition 3.8. For ease of notation, when there is no
confusion on the TBox that is being used, we will denote this tree by tC instead of tLT (C).

Example 4.5. Let C be the FL0 concept description C := A u ∀s.(A u B) and T the TBox
T = {Av ∀r. A, B v ∀s.B}. With basic calculations, we obtain that the value restriction sets for
A and B are

LT (C , A) = r∗ ∪ sr∗ and LT (C , B) = ss∗.

4.2 Unification 79

Then, LT (C) is represented by the tree in Figure 3.10. ♦

As proved in [Pen15] (Theorem 5.21), LT (C , A) is a regular language for every concept
name A. In fact, Pensel actually computes an rLTA3 representing LT (C), that is, an LTA
accepting exactly the infinite tree corresponding to the tuple of languages LT (C).

Theorem 4.6 ([Pen15]). Given an FL0 concept description C and an FL0 TBox T , an rLTA
representing LT (C) can be constructed in time exponential in the size of C and T . Furthermore,
this rLTA provides a DFA of the same size for the language LT (C , A) for every A∈ NC.

Strictly speaking, the label set employed in [Pen15] is 2NC for NC = {A1, . . . , Ak} rather
than {0,1}k, but it should be clear that, by fixing a linear order A1 < A2 < . . . < Ak on NC,
these two representations can be translated into each other.

Using the same approach, given two concept descriptions C , D, the pair of tuples
(LT (C), LT (D)) can be represented as an infinite NR-tree t(C ,D) with label set {0, 1}k×{0, 1}k.
We can then use tree automata to check whether (the pair of tuples that corresponds to) such
a tree satisfies the language inclusions LT (D, A) ⊆ LT (C , A) for every A∈ NC. In particular, it
is easy to see that the LTA A= (NR, {q}, {0,1}2k,∆, {q}), where

∆= {(q,`, q, . . . , q) | `= (x1, . . . , xk, xk+1, . . . , x2k) with x i ≥ xk+i}

accepts exactly the pairs of tuples of languages with the aforementioned property. By taking
the intersection of A with the (r)LTA representing t(C ,D) and checking emptiness of the
product automaton we can decide whether C vT D or not.

4.2 Unification

In order to define unification in FL0 with respect to an FL0 TBox, we first need to introduce
the notions of concept patterns and substitutions. We consider an additional set NX, disjoint
from NC and NR, whose elements we call concept variables. Intuitively, NX contains the
concept names that have possibly been given another name or been specified in more detail
in another concept description describing the same notion. From a syntactic point of view,
concept variables are treated like concept names. More formally, the set PFL0

(NC, NR, NX) of
FL0 concept patterns over the concept names NC, the role names NR, and the concept variables
NX is the set CFL0

(NC ∪NX, NR), i.e., a concept pattern is a concept description defined over
the set of concept names NC ∪NX (instead of simply NC) and the set of role names NR.

Informally, a unification problem in FL0 asks, given FL0 concept patterns C and D, whether
the variables occurring in C and D can be replaced by concept descriptions such that the
resulting expressions are equivalent w.r.t. a given FL0 TBox. The meaning of “replacing” in the
previous sentence is formalized using the notion of a substitution. An FL0 substitution σ from
NX to CFL0

(NC, NR) is a mapping assigning FL0 concept descriptions σ(X) ∈ CFL0
(NC, NR) to

3Even though the automaton is simply refered to as an LTA, a closer look reveals that, by construction, it is an
rLTA.

80 Chapter 4. Unification in the Description Logic FL0

variables X ∈ NX. The application of such a substitution σ to concept patterns is inductively
defined as follows:

σ(>) :=>, σ(A) := A for all A∈ NC,

σ(C u D) := σ(C)uσ(D), σ(∀r.C) := ∀r.σ(C).

We denote the set of all FL0 substitutions as Sub(NX, NC, NR), or simply Sub if there is no
fear of confusion.

Definition 4.7 (Unification). Let C, D be FL0 concept patterns, and T an FL0 TBox. The
substitution σ is a unifier of C , D w.r.t. T if σ(C)≡T σ(D). If C , D have a unifier, then we call
them unifiable w.r.t. T . The FL0 unification problem asks whether two given FL0 concept
patterns are unifiable w.r.t. a given TBox or not. ♦

Given a unification problem C ≡?
T D, only the σ-images of variables occurring in C or D

are relevant. For this reason, we will assume in the following that NX consists of exactly these
variables.4 Furthermore, let NC and NR consist of the concept and role names occurring in C
and D. As proved in [BN01], it suffices to consider substitutions in Sub(NX, NC, NR), since if
there exists a unifier, there exists one that only uses the signature occurring in the patterns.

Decidability of the FL0 unification problem with respect to an FL0 TBox is a long-standing
open problem. The original paper on unification in FL0, [BN01], only deals with the special
case of the empty TBox. Even for the dual logic EL, where there have been considerably
more results on unification, decidability in the presence of general TBoxes remains open.

In Chapter 8 we will try to tackle this problem, but we will only be able to integrate TBoxes
for the case of matching. Matching is the special case of unification where one of the patterns
to be unified contains no variables, i.e., it is a concept description, and is hence invariant
under substitutions.

Example 4.8. Consider the FL0 concept patterns C = Au∀r.(Xu∀s.B) and D = Au∀r. Au∀r.Y
(and an empty TBox). Intuitively, forσ to be a unifier the substitution for X has to make up for the
value restriction ∀r.A occurring in D, while the substitution for Y should ensure that the restric-
tion ∀r.∀s.B occurs in σ(D). It is easy to verify that the substitution σ = {X 7→ A, Y 7→ ∀s.B}
is a unifier, since

σ(C) = Au∀r.(Au∀s.B)≡ Au∀r. Au∀r.∀s.B = σ(D). ♦

Size Before we talk about complexity of unification problems, we should also define the
size of the involved notions. In particular, the size of a concept pattern is defined in the same
way as the size of a concept description by considering concept variables as concept names,
i.e., by setting |X | = 1 for every X ∈ NX.5 The size of a unification problem C =? D is defined
to be the sum of the sizes of the concept patterns C and D, plus the size of the given TBox
T .6

4Also recall our discussion on NC and NR.
5Note that, in particular, if a concept description is viewed as a pattern, its size remains the same.
6Since we can restrict our focus to the concept and role names occurring in the problem, we do not have to

worry about the size of NC and NR.

4.3 Reducing unfication to language equations 81

Furthermore, the size of a substitution is defined to be the sum of the sizes of the concept
descriptions that substitute the concept variables, in symbols |σ|=

∑

X∈NX
|σ(X)|.

We will next introduce the approach for FL0 unification with respect to the empty TBox.
For the sake of readability, we will simply refer to this as the unification problem for FL0,
not mentioning that the TBox is empty.

4.3 Reducing unfication to language equations

In this section we will recall the approach of Baader and Narendran, who showed in [BN01]
that the FL0 unification problem (w.r.t. the empty TBox) is EXPTIME-complete. The EXPTIME

upper bound is proved by a reduction to language equations, which in turn are solved using
tree automata. Conversely, a reduction from a tree automata problem is used to prove the
lower bound.7 Here we sketch the reduction to language equations. In the next section we
will discuss how solvability of these language equations can be checked.

Let C , D be FL0 concept patterns, and let NC = {A1, . . . , Ak}, NR, NX = {X1, . . . , Xm}
respectively be the sets of concept names, role names, and concept variables occurring in C
or D. If we treat concept variables like concept names we can apply the normal form (4.2)
to patterns as well. Hence, we can assume without loss of generality that the input patterns
are in normal form, i.e.,

C = ∀K0,1.A1 u . . .u∀K0,k.Ak u∀K1.X1 u . . .u∀Km.Xm,

D = ∀L0,1.A1 u . . .u∀L0,k.Ak u∀L1.X1 u . . .u∀Lm.Xm,
(4.3)

where K0,i , L0,i , K j , L j are finite languages over NR. The unification problem for C , D can be
reduced to (independently) solving the language equations

K0,i ∪ K1 · X1,i ∪ . . .∪ Km · Xm,i =
? L0,i ∪ L1 · X1,i ∪ . . .∪ Lm · Xm,i (4.4)

for i = 1, . . . , k, where “·” stands for concatenation of languages. A solution σi of such an
equation is an assignment of languages (over NR) to the variables X j,i such that

K0,i ∪ K1 ·σi(X1,i)∪ . . .∪ Km ·σi(Xm,i) = L0,i ∪ L1 ·σi(X1,i)∪ . . .∪ Lm ·σi(Xm,i).

This assignment is called finite if all the languages σi(X j,i) are finite. We denote the set of
all assignments as Ass and the set of all finite assignments as finAss.

As shown in [BN01], C , D are unifiable iff the language equations of the form (4.4) have
finite solutions for all i = 1, . . . , k. In fact, given finite solutions σ1, . . . ,σk of these equations,
a unifier of C , D can be obtained by setting

σ(X i) := ∀σi(X i,1). A1 u . . .u∀σi(X i,k). Ak, (4.5)

and every unifier of C , D can be obtained in this way. Of course, this construction of a
substitution from a k-tuple of finite assignments can be applied to arbitrary finite assignments

7This reduction requires concept patterns containing arbitrarily many role names and concept variables, but
only a single concept name. Whether the problem is EXPTIME-hard for a fixed set of role names is, to the best
of our knowledge, not known.

82 Chapter 4. Unification in the Description Logic FL0

(and not just to finite solutions of the equations (4.4)), and it yields a bijection ρ between
k-tuples of finite assignments and substitutions.

Coming back to Example 4.8, the given concept patterns have normal forms

C = ∀{ε}. Au∀{rs}.B u∀{r}.X u∀;.Y
D = ∀{ε, r}. Au∀;.B u∀;.X u∀{r}.Y.

Hence, the language equations for the concept names A and B are

{ε} ∪ {r} · XA∪ ; · YA =? {ε, r} ∪ ; · XA∪ {r} · YA,

{rs} ∪ {r} · XB ∪ ; · YB =? ; ∪ ; · XB ∪ {r} · YB.

Among others, the first equation has XA = {ε}, YA = ; as a solution, and the second XB = ;
and YB = {s}. Using (4.5), but leaving out the value restrictions for ; (that would denote >
anyway), these solutions yield the unifier σ that we came up with in Example 4.8.

Another solution to the above language equations is XA = YA = {ε} and XB = YB = {ε, s},
which yields the unifier σ′ with σ′(X) = σ′(Y) = Au B u∀s.B.

4.4 Solving language equations

In order to check solvability of language equations of the above form, Baader and Naren-
dran [BN01] utilize automata on finite trees. As they pointed out, however, it is not clear how
tree automata can deal directly with language equations of the form (4.4). In particular, the
variables X i should appear in front of the coefficients Ki , Li if such automata are to be used.
Yet, such an equation can easily be obtained from 4.4 by considering the mirror images of
the involved languages. Recall that, for a word w= σ1 . . .σ`, its mirror image is defined as
wmi = σ` . . .σ1, and for a language L its mirror image is Lmi = {wmi | w ∈ L}. Obviously, σ
is a solution of (4.4) iff σ′ = {Yi 7→ σ(X i)mi | i = 1, . . . , m} is a solution of the corresponding
mirrored equation:

Kmi
0 ∪ Y1Kmi

1 ∪ · · · ∪ YmKmi
m =

? Lmi
0 ∪ Y1 Lmi

1 ∪ · · · ∪ Ym Lmi
m . (4.6)

If σ′ is a finite assignment given by enumeration of the words occuring in the finite languages,
σ is immediately derivable and of the same size. By Lemma 3.5, if it is given as a tuple of
DFAs of size n, DFAs of size 2n are required for the mirror languages, while the number drops
to n+ 1 when we consider NFAs.

In this section, following [BO13], we consider more general forms of language equations
than the ones given in (4.4) and (4.6). Here, all Boolean operators (and not just union) are
available. Language expressions are built recursively over a finite alphabet Σ using union,
intersection, complement, and one-sided concatenation of regular languages. Language
expressions with concatenation of regular languages from the left are formalized by the
syntax rules:

φ ::= L | X | φ ∪φ | φ ∩φ | ∼φ | L ·φ, (4.7)

4.4 Solving language equations 83

while if concatenation is applied from the right we have:

φ ::= L | X | φ ∪φ | φ ∩φ | ∼φ | φ · L. (4.8)

In both cases, L can be instantiated with any finite language over Σ and X with any vari-
able. Obviously, the left- and the right-hand sides of (4.4) are language expressions of the
form (4.7), while for the mirrored equation (4.6) of the form (4.8). As before, an assignment
σ ∈ Ass maps variables to languages over Σ. It is extended to expressions in the expected way,
that is σ(L) := L, σ(φ ∪ψ) := σ(φ)∪σ(ψ), σ(φ ∩ψ) := σ(φ)∩σ(ψ), σ(∼φ) := σ(φ)c ,
σ(L ·φ) := Lσ(φ), σ(φ · L) := σ(φ)L.

Definition 4.9 (Solvability of language equations). Let φ,ψ be language expressions that
are both of the form (4.7) or both of the form (4.8). The assignment σ solves the language
equation φ =? ψ if σ(φ) = σ(ψ). For finite solvability we require the languages σ(X) to be
finite, i.e., σ should be an element of finAss. ♦

The argument from the previous section about mirrored equations applies here as well.
More formally, we have the following.

Lemma 4.10. For every language equation between language expressions of the form (4.7) we
can construct in linear time a language equation between language expressions of the form (4.8),
such that there is a one-to-one correspondence between the solutions of the one and the solutions
of the other. In particular, this implies that solvability of the one implies solvability of the other.
The converse is also true.

To see why this holds, it suffices to extend mirroring to expressions and assignments. For
expressions this can be done inductively, and it is straightforward; in particular, we have
(L ·φ)mi = φmi · Lmi and vice versa, while we assume that X mi = X . Given an assignment
σ = {X i 7→ σ(X i) | i = 1, . . . , m}, define σmi = {X i 7→ σ(X i)mi | i = 1, . . . , m}. These
definitions suffice to verify that, if φ =? ψ is a language equation between expressions that
are both of one of the two forms, then φmi =? ψmi contains expressions of the other form,
and σ is a solution of the first iff σmi is a solution of the second.

Hence, it does not matter if we are exploring solvability of language equations between
expressions with concatenation from the left or from the right. Following [BO13], we deal
with the latter.

The first step to check solvability is to transform the given language equation φ1 =? φ2
into one of the form φ =? ; such that the language expression φ is normalized in the sense
that all constant languages L occurring in φ are singleton languages {a} for a ∈ Σ ∪ {ε}.
Basically, this approach introduces new variables and equations that express the constant
languages occurring in φ1 and φ2, using the fact that these languages can be expressed as
unique solutions of language equations in solved form (see [BO13] for details). The resulting
system of equations can then be expressed by a single equation φ =? ; using the facts that

• M = N iff M4N = ;, where M4N is an abbreviation for (M∩ ∼ N)∪ (N∩ ∼ M);

• M = ; and N = ; iff M ∪ N = ;.

Lemma 4.11 ([BO13], Lemma 1). Let φ1 =? φ2 be a language equation between expressions
both of the form (4.7) or (4.8). Then we can compute in polynomial time a normalized language

84 Chapter 4. Unification in the Description Logic FL0

expression φ0 (over an extended set of variables) such that there is a one-to-one correspondence
between the solutions of φ1 =? φ2 and the solutions of φ =? ;.

In a second step, [BO13] shows how a normalized language equation can be translated
into an LTA working on the infinite, unlabeled n-ary tree (where n = |Σ|). Recall that the
nodes of this tree can be identified with Σ∗.

Since runs of an LTA are themselves trees with the set of states as the label set, using the
procedure we introduced in Definition 3.22, i.e., by designating a set of states F , a run r of
the LTA A defines the language

Lr(A, F) := {w ∈ Σ∗ | r(w) ∈ F}.

Given a normalized language equation φ =? ; with variables {X1, . . . , Xm}, it is shown in
[BO13] how to construct an LTA Aφ = (Σ,Qφ , {`},∆φ , Iφ) and subsets F1, . . . , Fm ⊆Qφ such
that the following holds:

Proposition 4.12. Given a run r of Aφ , define the induced assignment σr by setting
σr(X i) := Lr(Aφ , Fi), for i = 1, . . . , m. Then, for every subexpression ψ of φ there exists
a set Fψ ⊆Q such that σr(ψ) = Lr(Aφ , Fψ). In addition, every assignment is induced by some
run of Aφ . ♦

The size of this LTA is exponential in the size of φ. In order to decide whether the language
equation φ =? ; has a solution, one thus needs to decide whether Aφ has a run in which no
state of Fφ occurs. This can easily be done by removing all states of Fφ from Aφ , and then
checking the resulting automaton A−φ for emptiness. In fact, as an easy consequence of the
above proposition we obtain that there is a one-to-one correspondence between the runs of
A−φ and the solutions of φ =? ; (Proposition 2 in [BO13]).

The above approach, however, as described until now can only check (general) solvability
of language equations, and not finite solvability, which is required for the original problem
of unification in FL0.

Let us call the states in
⋃m

i=1 Fi variable states. If a run of A−φ assigns such a state q to a
word w ∈ Σ∗, this means that the induced assignment for the variable(s) corresponding to q
contains w.

Hence, every run of A−φ that uses variable states only finitely often induces a finite
solution of the original language equation, and conversely, every finite solution of the
language equation is induced by such a run. Therefore, in order to check whether there
are finite solutions it suffices to check whether A−φ has a run that uses variable states only
finitely often.

For this purpose we can implement Lemma 3.43 by setting B =
⋃m

i=1 Fi. Since A−φ is
exponential in the size of the language equation, we obtain an EXPTIME procedure also for
checking finite solvability.

Chapter 5

Concept Distances

The goal of approximate unification is to increase the recall of classical unification by no
longer requiring two concepts to become equivalent, but rather “almost” equivalent. In this
chapter we formalize the notion of almost by introducing functions that measure the distance
between FL0 concept descriptions in the presence of background knowledge, namely a
general TBox.

Concept distance measures (CDMs) are, in a sense, the generalization of metrics in the
setting of knowledge representation. Fundamentaly, such a measure quantifies how close two
objects are from a conceptual point of view. A concept distance measure takes as input two
concept descriptions and outputs, in the most general setting, a non-negative real number,
with 0 standing for “no distance”, that is, complete similarity. Normalized distance measures
restrict the output to a value between 0 and 1, with 1 standing for the maximum distance
possible, that is, total dissimilarity. More generally, the smaller the outputed number is, the
more “close together” the input concept descriptions are. However, it is concept similarity
measures (CSMs), the dual notion of CDMs, that have received considerably more interest in
the literature. A concept similarity measure usually outputs a number between 0 and 1, but
here the semantics is reversed: it is 1 standing for complete similarity between the concepts
and 0 for total dissimilarity. More generally, a larger number indicates a greater degree
of similarity. Note that we can define a (normalized) concept distance measure ds from a
similarity measure s by setting d(C , D) = 1− s(C , D), and vice versa.1 We will refer to both
kinds of measures indistinguishably as concept comparison measures (CCMs). CCMs are an
integral part of approximate reasoning services, as we discussed shortly in the Introduction
of the thesis. The need for such measures is highlighted and addressed in the PhD thesis of
Ecke [Eck17], where furthermore concrete examples are provided on how to integrate them
in the formalism of Description Logics.

As we mentioned in the introduction of the thesis, research on concept comparison meas-
ures in DLs started with [BWH05] and the very inexpressive logic A, and until recently, it was
mostly concerned with EL [LT12; EPT15; Sun13] and more expressive DLs [dFE05]. Even
though the exact definition might vary slightly from one paper to another, all approaches
agree on the fact that the measure should respect the semantics of the formalism. In particu-
lar, equivalence of concepts should be reflected by the measure, that is the distance between
equivalent concepts should be minimal and equivalent concepts should be equidistant from
other concepts. To ensure this, concept descriptions are usually first translated into an
appropriate normal form, and then the structure of the normalized descriptions is compared.

1Further ways of transiting from one setting to the other have been considered in the literature. In particular,
another way to obtain a similarity measure s from a (not necessarily normalized) distance measure d is to set
s(C , D) = e−d(C ,D) [She87].

85

86 Chapter 5. Concept Distances

For instance, measures that satisfy this condition for the empty TBox or for acyclic TBoxes in
EL [LT12; Sun13] make use of the reduced form of EL concept descriptions introduced in
[Küs01]. Extensions to general TBoxes [EPT15] use the so-called canonical model, which is
generated by the polynomial-time subsumption algorithm for EL [BBL05].

A recent approach for defining concept comparison measures for FL0 [RS15] was restric-
ted to the case of the empty TBox. Unsurprisingly, it employs the formal language-based
characterization of equivalence between FL0 concept descriptions (with respect to the empty
TBox) that we described in the previous chapter.

In the remainder of this chapter, we will develop a general approach for defining concept
distance measures for FL0 concept descriptions that respect the semantics also w.r.t. general
TBoxes. This is achieved by using the characterization of equivalence in FL0 w.r.t. general
TBoxes (Proposition 4.4). Since equivalent concept descriptions correspond to the same
tuple of languages, it is sufficient to define measures that compare such tuples.

After we describe this framework and give concrete examples, we will introduce properties
for CDMs, originating in [LT12], and investigate which of them our measures satisfy.

5.1 Formal definitions

We now formally define CDMs and what it means to respect the semantics of DLs.

Definition 5.1. A concept distance measure for FL0 is a family of functions m that contains for
every general FL0 TBox T a function mT : CFL0

×CFL0
→ [0,+∞) that for every C , D, E ∈ CFL0

satisfies the following properties

• equivalence closedness: mT (C , D) = 0 ⇐⇒ C ≡T D,

• symmetry: mT (C , D) = mT (D, C),

• equivalence invariance: C ≡T D =⇒ mT (C , E) = mT (D, E).

If the requirement for finiteness is dropped, that is if we allow the distance between concepts to
become infinite, we have a generalized CDM, while if we restrict the value to the interval [0, 1],
we obtain a normalized CDM. ♦

Note that equivalence closedness corresponds to (M1) and symmetry to (M2) in the
definition of a metric. Equivalence invariance is a condition sine qua non; it is the essence of
respecting the semantics and it is ubiquitous, for it appears in (almost) every paper that treats
CCMs.

The notion of CDM generalizes equivalence. In fact, equivalence can be seen as the very
simple CDM m that is defined as mT (C , D) = 0 if C ≡T D and 1 otherwise. It is immediately
verifiable that this is in fact a normalized CDM.

In order to define more meaningful CDMs, we will employ the value restriction sets
introduced in Section 4.1. Lemma 4.4 shows that, in FL0, these formal languages can be
used to represent the semantic content of concept descriptions: up to equivalence, every
FL0 concept description C ∈ CFL0

(NC, NR) is uniquely represented by the tuple of languages

LT (C) := (LT (C , A1), . . . , LT (C , Ak)).

5.2 Using tuples of languages to define CDMs 87

We will use this fact to reduce the definition of concept comparison measures between FL0
concept descriptions w.r.t. a TBox to the definition of measures comparing tuples of languages:
given two FL0 concept descriptions C , D, we define cT (C , D) by comparing the tuples LT (C)
and LT (D). One advantage of this approach is that equivalence invariance comes “for free”
since equivalent concept descriptions are indistinguishable from the language point of view.

5.2 Using tuples of languages to define CDMs

The idea of using tuples of languages to compare FL0 concept descriptions has already
appeared in [RS15], but restricted to the empty TBox. Generally speaking, the approach
used consists of the following three steps:

1. Translate the FL0 concept descriptions C and D into their corresponding tuples of
languages L;(C) = (K1, . . . , K`) and L;(D) = (L1, . . . , L`). For the sake of readability,
we will denote these tuples as K and L, respectively.

2. To compare the tuples K and L, their components Ki and Li are compared pairwise,
and the values obtained this way are then appropriately combined into a value s(K,L).

3. Finally, the value s(K,L) is used to define c;(C , D).

Essentially, the definition of the measure is in the end reduced to define a function that
compares two languages. We now apply a similar technique in order to define CDMs in
the presence of general TBoxes. In particular, given a TBox T and concept descriptions
C , D, we first use a language distance d to compute for every concept name Ai ∈ NC the
value ei = d(LT (C , Ai), LT (D, Ai)). We then combine these k values to define a distance
between C and D. For this, we need an appropriate function. We say that the function
f : [0,∞)k→ [0,∞) is a combining function if it is

• monotone: a1 ¶ b1, . . . , ak ¶ bk =⇒ f (a1, . . . , ak)¶ f (b1, . . . , bk),

• zero-sum free: f (a1, . . . , ak) = 0 ⇐⇒ a1 = · · ·= ak = 0,

• and continuous.

The following are simple examples of combining functions:

• max(a1, . . . , ak),

• sum(a1, . . . , ak) = a1 + · · ·+ ak,

• avg(a1, . . . , ak) =
∑k

i=1 ai/k.

As we did for CDMs and language distances, we also introduce the notion of generalized
combining functions by considering functions capable of handling infinity, i.e., functions
f : [0,∞]k→ [0,∞] satisfying the above conditions, where by [0,∞] we denote the set
[0,+∞)∪ {+∞}. Note that all of the functions we provided as examples can also operate
as generalized combining functions, if we set f (a1, . . . , ak) = +∞ in case (at least) one of
the arguments is +∞.

We are now ready to formally define how to obtain a CDM starting from a language
distance.

88 Chapter 5. Concept Distances

Definition 5.2. Given a language distance d and a combining function f , we define the measure
md, f induced by d and f by setting for every FL0 TBox T and concept descriptions C , D:

md, f
T (C , D) = f

�

d(LT (C , A1), LT (D, A1)), . . . , d(LT (C , Ak), LT (D, Ak))
�

.

♦

It is easy to verify that this construction fulfills its purpose, as the following lemma
demonstrates.

Lemma 5.3. Let d be a language distance and f be a combining function. Then the measure
md, f induced by d, f is a CDM, i.e., it is equivalence closed, symmetric, and equivalence invariant.

Proof. Let T be an FL0 TBox, and C , D, E be FL0 concept descriptions. All properties can be
proved with simple computations.
Equivalence closedness:

md, f
T (C , D) = 0 ⇐⇒ f

�

d(LT (C , A1), LT (D, A1)), . . . , d(LT (C , Ak), LT (D, Ak))
�

= 0
(1)
⇐⇒ d(LT (C , A1), LT (D, A1)) = · · ·= d(LT (C , Ak), LT (D, Ak)) = 0
(2)
⇐⇒ LT (C , A1) = LT (D, A1), . . . , LT (C , Ak) = LT (D, Ak)
(3)
⇐⇒ C ≡T D,

where (1) holds because f is zero-sum free, (2) by d being a metric, and hence satisfying
property (M1), and (3) by Lemma 4.4.
Symmetry:

md, f (C , D) = f
�

d(LT (C , A1), LT (D, A1)), . . . , d(LT (C , Ak), LT (D, Ak))
�

= f
�

d(LT (D, A1), LT (C , A1)), . . . , d(LT (D, Ak), LT (C , Ak))
�

= md, f (D, C),

since d is a metric, hence satisfying property (M2).
Equivalence invariance:

C ≡T D
Lemma 4.4
=⇒ LT (C , Ai) = LT (D, Ai) for i = 1, . . . , k.

md, f (C , E) = f
�

d(LT (C , A1), LT (E, A1)), . . . , d(LT (C , Ak), LT (E, Ak))
�

= f
�

d(LT (D, A1), LT (E, A1)), . . . , d(LT (D, Ak), LT (E, Ak))
�

= md, f (D, E). �

Note that if d is a generalized language distance and f a generalized combining function,
the exact proof from above can be used to prove that md, f is a generalized CDM.

Furthermore, the keen reader might have noticed that continuity of f has not been used
yet. Indeed, this property is not needed to ensure that md, f is a CDM. However, it is a
very natural requirement for a function to be “well-behaved”, and it will be essential when
we reduce the problem of approximate unification to approximate solvability of language
equations in Chapter 6.

5.3 Some instances of CDMs 89

5.3 Some instances of CDMs

Let us now instantiate the language distance d of the framework we introduced above with
the distances d0, d1 and d2 we investigated in Section 3.3. All three functions are based on
the symmetric difference of the languages under consideration. Recall that, given formal
languages M1 and M2 over the alphabet Σ their symmetric difference M1∆M2 is defined to
be

M1∆M2 := (M1 \M2)∪ (M2 \M1).

The language distances d0, d1 and d2 are defined as

d0(M1, M2) := |M1∆M2|,

d1(M1, M2) := 2−n where n=min {|w| | w ∈ M1∆M2},

d2(M1, M2) := µ(M1∆M2) where µ(M) = 1
2

∑

w∈M
(2|Σ|)−|w|.

Intuitively, the symmetric difference captures all the discrepancies between two concept
descriptions C and D with respect to a concept name A. More precisely, if for instance,
w ∈ LT (C , A) \LT (D, A) for some w ∈ NR

∗, then C vT ∀w.A and D 6vT ∀w.A, which amounts
to a semantically relevant difference between C and D. Based on this intuition, d0 simply
counts all such discrepancies. Note that, formally, d0 is a generalized language distance,
and its value may become infinite, since value restriction sets are usually infinite languages.
It hence induces a generalized CDM that is very straightforward, but leaves a lot to be
desired. Using one of the language distances d1, d2 in this setting means that differences
between the concepts at larger role depth count less than differences at smaller role depth.
From a semantics point of view this is a quite valid requirement, since differences in the
properties of two given individuals and of their near successors should bear more importance
when computing their difference than the properties of their more distant descendants. The
distance d1 looks for the shortest such discrepancy, while d2 takes all differences into account,
but differences for longer words count less than differences for shorter ones. Since these
functions output a number between 0 and 1 as distance, using a combining function like
max or avg would result in md, f being a normalized CDM. In particular, this implies that, by
taking 1−md, f , we obtain a CSM, as we described in the introduction of this chapter.

5.4 Further properties for CDMs

In the prominent work of Lehmann and Turhan [LT12], a few more properties on concept
measures were investigated. Next, we have a look at some of these properties and investigate
to what extent CDMs obtained from our framework satisfy them.

Definition 5.4. Let T be an FL0 TBox C , D, E be FL0 concept descriptions. We say that the
CDM m is

• subsumption preserving if C vT D vT E =⇒ mT (C , D)≤ mT (C , E).

• reverse subsumption preserving if C vT D vT E =⇒ mT (D, E)≤ mT (C , E).

• fulfilling the triangle inequality if mT (C , E)≤ mT (C , D) +mT (D, E). ♦

90 Chapter 5. Concept Distances

Note that in [LT12], subsumption was considered with respect to the empty or an unfoldable
TBox, and the properties were considered for similarity measures. Extending to the case
of general TBoxes is straightforward, and the translation of the properties in the setting of
distance measures is easy to obtain given the discussion in the beginning of this chapter. For
an in-depth analysis of these properties and a nice review of the literature, the interested
reader should look into [LT12; Leh12].

We will now prove that for language distances satisfying property (3.1) introduced in
Section 3.3, that is if K∆ L ⊆ M∆N =⇒ d(K , L)≤ d(M , N), the CDM md, f is subsumption
preserving and reverse subsumption preserving.

More precisely, we have the following.

C vT D vT E
(1)
=⇒ LT (C , Ai) ⊇ LT (D, Ai) ⊇ LT (E, Ai) for every i = 1, . . . , k

(2)
=⇒ LT (C , Ai)∆LT (D, Ai) ⊆ LT (C , Ai)∆LT (E, Ai) and

LT (D, Ai)∆LT (E, Ai) ⊆ LT (C , Ai)∆LT (E, Ai) for every i = 1, . . . , k
(3)
=⇒ d(LT (C , Ai), LT (D, Ai))≤ d(LT (C , Ai), LT (E, Ai)) and

d(LT (D, Ai), LT (E, Ai))≤ d(LT (C , Ai), LT (E, Ai)) for every i = 1, . . . , k
(4)
=⇒ md, f

T (C , D)≤ md, f
T (C , E) and md, f

T (D, E)≤ md, f
T (C , E),

where (1) holds by Lemma 4.4, (2) is an easy set theoretic excercise, (3) holds because we
assumed that d satisfies property (3.1), and (4) holds since f is monotone.

For the triangle inequality to hold, we need to impose a constraint on the combining
function, namely restrict to subadditive functions. We say that a function f : A→ R, with
A⊆ Rk, is subadditive if for every a, b ∈ A it holds that f (a+ b)≤ f (a) + f (b). Note that all
three examples we provided as combining functions are actually subadditive. Furthermore,
any concave function is also subadditive [Rud87].

We will now show that if f is a subadditive combining function, md, f fulfills the triangle
inequality for any language distance d. Since d is in particular a metric, we know that for
every FL0 concept descriptions C , D, E and concept name Ai it holds that

d(LT (C , Ai), LT (E, Ai))≤ d(LT (C , Ai), LT (D, Ai)) + d(LT (D, Ai), LT (E, Ai)). (5.1)

For the sake of readability, for every i = 1, . . . , k we set ci = d(LT (C , Ai), LT (E, Ai)),
di = d(LT (C , Ai), LT (D, Ai)), ei = d(LT (D, Ai), LT (E, Ai)). Hence, (5.1) can be written as
ci ≤ di + ei . By monotonicity of f we have

f (c1, . . . , ck)≤ f (d1 + e1, . . . , dk + ek).

Finally, since f is subadditive, we have

f (d1 + e1, . . . , dk + ek)≤ f (d1, . . . , dk) + f (e1, . . . , ek),

which is exactly md, f
T (C , E)≤ md, f

T (C , D) +md, f
T (D, E).

A further property that is discussed in [LT12] is structural dependency, that intuitively
requires that the more common attributes the two concepts share, the closer together they

5.5 Computability of CDMs 91

should be. Formally, in our setting this is translated as follows: a CDM m is structurally
dependent if for every TBox T and for all sequences (Cn)n of concepts with Ci 6vT C j for
i 6= j , the concepts

Dn :=
l

i≤n

Ci u D and En :=
l

i≤n

Ci u E

fulfill the condition limn→∞mT (Dn, En) = 1. However, the measures we have introduced
are oblivious to the commonalities the concepts have. In particular, to achieve this, we might
have to sacrifice the property that measures are based on the symmetric difference of the
underlying languages. As a result, it will no longer be guaranteed that all the other properties
are satisfied. Even if they were, one would need to prove this again, under the new setting.

5.5 Computability of CDMs

Finally, we want to investigate computability of the functions measuring the distance between
concepts. What we in principle need is, given a CDM m to derive a procedure that takes as
input two concept descriptions C , D and a general TBox T and outputs mT (C , D).

One of the main advantages of our framework is the modular way in which CDMs are
defined. In particular, this provides us with a straightforward procedure of computing
the distance between the input concept descriptions in the presence of a TBox, based on
previous results on the constituting elements. More precisely, a CDM defined under our
framework, i.e., induced from the language distance d and combining function f , operates as
follows: it first derives the languages LT (C , Ai), LT (D, Ai) for every Ai ∈ NC, then it computes
d(LT (C , Ai), LT (D, Ai)), that is their distance under d, and finally combines these into a
single value using the combining function f . It is hence apparent what we need in order to
compute the final value:

1. a way to derive the language LT (C , A) given an FL0 TBox T , a concept description C ,
and a concept name A,

2. a way to compute the distance of two languages, and

3. a computable combining function.

For (1), Theorem 4.6 provides us with an EXPTIME procedure of deriving such a DFA.
Computing language distances was the main focus of Section 3.5. The main idea was to
combine an rLTA representing the input languages with a wLTA that corresponds to the
distance function. By Lemma 3.21, we can combine the DFAs obtained by Theorem 4.6 for
the input languages in quadratic time to derive such an rLTA. Computability of the distances
d0, d1, and d2 in polynomial time was a particular result of this procedure, as we saw in
Theorem 3.45. Lastly, picking a computable combining function is an easy task. Overall, we
obtain the following.

Theorem 5.5. The CDM md, f induced from a combining function f that is computable in
polynomial time and a language distance d that can be expressed by a Φ-wLTA2, is computable
in EXPTIME, that is, given an FL0 TBox T and concept descriptions C , D, we can compute
md, f

T (C , D) in time exponential in the combined size of T , C , D.

2The Φ-wLTA has to actually satisfy the restrictions of Theorem 3.45.

92 Chapter 5. Concept Distances

Chapter 6

Approximate Unification in the Description
Logic FL0

In this chapter we investigate a relaxed version of unification that we call approximate. As
motivated in the introduction, given patterns C and D it makes sense to look for substitutions
σ that are actually not unifiers, but come close to being unifiers, in the sense that the distance
between σ(C) and σ(D) is small. We call such substitutions approximate unifiers.

Subsequently, we will first introduce approximate unification based on concept distance
measures (CDMs) in the description logic FL0, and then we will proceed to solve this
problem. Our techniques for approximate unification are based on the approach from [BN01]
on classical unification that we introduced in Chapter 4. In particular, we will first introduce
approximately solving language equations based on distances between languages. As we
have seen in Chapter 5, language distances can be used to define CDMs. Based on this
relation, we show that approximate unification for CDMs obtained this way can be reduced
to approximately solving language equations. We conclude the chapter with the technical
part of how to check approximate solvability of these equations.

6.1 Definition

We will first define the problem with respect to general TBoxes. However, our techniques for
decidability only apply for the case of the empty TBox. Therefore, in the rest of this chapter
we will only deal with this setting.

Definition 6.1 (Approximate unification). Given a CDM m, FL0 concept patterns C , D,
TBox T and a substitution σ, the degree of violation of σ is defined as

vmT
(σ, C , D) := mT (σ(C),σ(D)).

For p ∈Q, we say that σ is a p-approximate unifier of C , D w.r.t. T if 2−p > vmT
(σ, C , D).♦

Equivalence closedness of m yields that vmT
(σ, C , D) = 0 iff σ is a unifier of C , D w.r.t. T .

The decision problem for approximate unification asks, for a given threshold p ∈Q, whether
C , D have a p-approximate unifier w.r.t. T or not.1 In addition, we consider the following
computation problem: compute infσ∈Sub vmT

(σ, C , D). The following lemma, which is imme-
diate from the definitions, shows that a solution of the computation problem also yields a
solution of the decision problem.

1The reason for formulating the problem like this will become clear in Section 6.3. In particular, our reduction
can only prove hardness of the problem if the threshold is provided in this very concise form.

93

94 Chapter 6. Approximate Unification in the Description Logic FL0

Lemma 6.2. Let m be a concept distance, C , D FL0 concept patterns, and T TBox. Then C , D
have a p-approximate unifier w.r.t. T iff 2−p > infσ∈Sub vmT

(σ, C , D).

Proof. By definition, if C , D have a p-approximate unifier w.r.t. T , then there exists a substi-
tution σ ∈ Sub, s.t. 2−p > vmT

(σ, C , D), and thus 2−p > infσ∈Sub vmT
(σ, C , D).

Suppose now that 2−p > infσ∈Sub vmT
(σ, C , D). By the definition of infimum, for every

ε > 0, there exists a σε ∈ Sub s.t. vmT
(σε, C , D) ¶ infσ∈Sub vmT

(σ, C , D) + ε. Thus, for
ε < 2−p − infσ∈Sub vmT

(σ, C , D) we have the required result. �

The reduction of the decision problem to the computation problem obtained from this
lemma is actually polynomial. In fact, though the size of a representation of the number 2−p

may be exponential in the size of a representation of p, the number 2−p need not be computed.
Instead, we can compare p with log2 infσ∈Sub vm(σ, C , D), where for the comparison we only
need to compute as many digits of the logarithm as p has.

As we discussed in Chapter 4, even (exact) unification w.r.t. general TBoxes is not known
to be decidable, and most results deal with the case of the empty TBox. Therefore, we will
also restrict our focus to this case. Furthermore, we will simplify the notation: by a slight
abuse of notation, we will write m to denote m;, the particular function of the family m that
corresponds to the empty TBox. Moreover, we will not refer to TBoxes whatsoever; the rest
of the results in this chapter are with respect to the empty TBox.

Recall that with respect to the empty TBox, the finite languages obtained by the normal
form (4.2) coincide with the value restriction sets, i.e., for an FL0 concept description C
with normal form C ≡ ∀K1.A1 u · · · u ∀Kk.Ak it holds that L;(C , Ai) = Ki .

6.2 Reducing to language equations

Following the approach that was used for exact unification in FL0, we will utilize the close
connection with formal languages. Recall that unification of two FL0 concept patterns
reduces to solving language equations of the form (4.4), or equivalently of the form (4.6).

In this section we will demonstrate how approximate FL0 unification can be reduced to
the following problem of approximately solving language equations. As in [BO13], instead of
equations of the form (4.4) or (4.6), we consider the more general case of equations between
expressions of the form (4.7) or (4.8).

Definition 6.3 (Approximate solvability of language equations). Given a language dista-
nce d, language expressions φ,ψ, and an assignment σ, the degree of violation of σ is defined
as vd(σ,φ,ψ) := d(σ(φ),σ(ψ)). For p ∈ Q, we say that σ is a p-approximate solution of
φ ≈? ψ if 2−p > vd(σ,φ,ψ). ♦

The decision and the computation problem for approximately solving language equations are
defined analogously to the case of unification. In addition, the analog of Lemma 6.2 also
holds in this case, and thus the decision problem can be reduced to the computation problem.

In this setting, equivalence of equations between expressions of the form (4.7) and of the
form (4.8) does not come for free, as for exact case. It still holds, however, when we consider
language distances d that are invariant under mirroring, i.e., for every pair of languages
L, M it holds that d(L, M) = d(Lmi .M mi). In fact, let d be such a distance and φ,ψ be both

6.2 Reducing to language equations 95

expressions of one of the forms (4.7) or (4.8), and σ an assignment. By induction, we can
prove that σ(φ)mi = σmi(φmi), and thus

vd(σ,φ,ψ) = d(σ(φ),σ(ψ)) = d(σ(φ)mi ,σ(ψ)mi)

= d(σmi(φmi),σmi(ψmi)) = vd(σ
mi ,φmi ,ψmi).

Hence, for this class of distances, to which d0, d1 and d2 belong in particular, we can
consider equations between expressions of either form interchangably.

Recall that unification in FL0 is reduced to finite solvability of language equations. The
above definition of approximately solving language equations and of the decision and the
computation problem can also be restricted to finite assignments, in which case we talk about
finite approximate solvability. However, we will show that finite approximate solvability can
actually be reduced to (general) approximate solvability. For this to be the case, we need the
language distance to satisfy an additional property (M4). Given a natural number `, we call
two languages K , L ⊆ Σ∗ equal up to length ` (and write K ≡` L) if K and L coincide on all
words of length at most `.

(M4) Let L be a language and (Ln) a sequence of languages over Σ.

Then, Ln ≡n L for all n≥ 0 implies Ln
d
−→ L.2

Note that, in particular, (M4) holds for d1 and d2: the assumption that Ln ≡ L mod Σ¶n

implies that d1(Ln, L)¶ 2−(n+1) and likewise

d2(Ln, L) =
1
2

∑

w∈Ln4L

(2|Σ|)−|w| ¶
1
2

∑

w∈Σ∗\Σ¶n

(2|Σ|)−|w| =
1

2n+1
.

Thus Ln
d1−→ L and also Ln

d2−→ L.
Note however, that (M4) does not hold for d0. As a counterexample, consider any infinite

language L, and set Ln := L∩Σ≤n. Then it holds that Ln ≡n L for all n≥ 0, but d0(Ln, L) =∞,

and hence Ln 6
d
−→ L. Hence, the rest of the results in this section do not apply for d0.

If (M4) is satisfied for d, then the computation problem for finite assignments has the
same solution as for arbitrary assignments.

Lemma 6.4. Let d be a language distance satisfying (M4) and φ,ψ language expressions.
Then,

inf
σ∈finAss

vd(σ,φ,ψ) = inf
σ∈Ass

vd(σ,φ,ψ).

Proof. Obviously,
inf

σ∈finAss
vd(σ,φ,ψ)¾ inf

σ∈Ass
vd(σ,φ,ψ).

Set p = infσ∈Ass vd(σ,φ,ψ). This means that there exists a sequence of assignments

σ1,σ2, . . . , s.t. vd(σn,φ,ψ)
d∞−→ p. By (M4), for each σi, there exists a sequence of

finite assignments σ(1)i ,σ(2)i , . . . , s.t. vd(σ
(n)
i ,φ,ψ)

d∞−→ vd(σi ,φ,ψ). We will construct

2The definition of convergence w.r.t. a metric d can be found in the Appendix.

96 Chapter 6. Approximate Unification in the Description Logic FL0

a sequence of finite assignments τ1,τ2, . . . , s.t. vd(σ
(n)
i ,φ,ψ)

d∞−→ p. This implies that
infσ∈finAss vd(σ,φ,ψ)¶ p, and the proof is complete.

By definition of convergence, we have that for every n ∈ N:

• there exists σin s.t. d∞(vd(σin ,φ,ψ), p)< 1
2n ,

• there exists σ jn
in

s.t. d∞(vd(σ
jn
in

,φ,ψ), vd(σin ,φ,ψ))< 1
2n .

Thus, by the triangle inequality, we get that d∞(vd(σ
jn
in

,φ,ψ), p)< 1
n . Set τn = σ

jn
in

and we
have the required sequence. �

To see that this result does not hold for d0, consider the language equation {ε}∪{a}X =? X .
For every finite assignment σ we have that vd0

(σ, {ε} ∪ {a}X , X) ≥ 1, while the infinite
assignment σ′ := {X 7→ a∗} is actually a solution, and hence vd0

(σ′, {ε} ∪ {a}X , X) = 0.

Reducing approximate unification to approximately solving language equations

In the following, we assume that d is a language distance, f a combining function, and
md, f the CDM induced by f , d. Let C , D be FL0 concept patterns in normal form, as shown
in (4.3), and (4.4) the corresponding language equations, for i = 1, . . . , k. We denote the
left- and right-hand sides of the equations (4.4) with φi and ψi , respectively. The following
lemma shows that the degree of violation transfers from finite assignments σ1, . . . ,σk to the
induced substitution ρ(σ1, . . . ,σk) as defined in (4.5).

Lemma 6.5. Let σ1, . . . ,σk be finite assignments. Then

f (vd(σ1,φ1,ψ1), . . . , vd(σk,φk,ψk)) = vmd, f (ρ(σ1, . . . ,σk), C , D).

Proof. Consider the concept patterns

C = ∀S0,1.A1 u . . .u∀S0,k.Ak u∀S1.X1 u . . .u∀Sn.Xn

D = ∀T0,1.A1 u . . .u∀T0,k.Ak u∀T1.X1 u . . .u∀Tn.Xn

Set Li, j := σ j(X i) for i = 1, . . . , n, j = 1, . . . , k. Recall that ρ is the bijection between
tuples of assignments and substitutions described in 4.5, and in the following abbreviate
ρ(σ1, . . . ,σk) by σ.

Then we have that

σ(C) =
kl

i=1

∀(S0,i ∪ S1 L1,i ∪ · · · ∪ Sn Ln,i)Ai

σ(D) =
kl

i=1

∀(T0,i ∪ T1 L1,i ∪ · · · ∪ Tn Ln,i)Ai

and

σi(ϕi) =S0,i ∪ S1 L1,i ∪ · · · ∪ Sn Ln,i

σi(ψi) =T0,i ∪ T1 L1,i ∪ · · · ∪ Tn Ln,i .

6.3 Approximately solving language equations 97

Thus

vmd, f (σ, C , D) =md, f (σ(C),σ(D))

= f (d(S0,1 ∪ S1 L1,1 ∪ · · · ∪ Sn Ln,1, T0,1 ∪ T1 L1,1 ∪ · · · ∪ Tn Ln,1),

. . . , d(S0,k ∪ S1 L1,k ∪ · · · ∪ Sn Ln,k, T0,k ∪ T1 L1,k ∪ · · · ∪ Tn Ln,k))

= f (d(σ1(ϕ1),σ1(ψ1)), . . . , d(σk(ϕk),σk(ψk)))

= f (vd(σ1,ϕ1,ψ1), . . . , vd(σk,ϕk,ψk)) �

Since the combining function is continuous and monotone, by Lemma A.4 the equality
stated in this lemma is preserved under building the infimum. In addition, Lemma 6.4 shows
that the restriction to finite assignments can be dispensed with if d satisfies (M4).

Lemma 6.6. Assume that d satisfies (M4). Then,

inf
σ∈Sub

vmd, f (σ, C , D) =

= f
�

inf
σ1∈finAss

vd(σ1,φ1,ψ1), . . . , inf
σk∈finAss

vd(σk,φk,ψk)
�

= f
�

inf
σ1∈Ass

vd(σ1,φ1,ψ1), . . . , inf
σk∈Ass

vd(σk,φk,ψk)
�

.

In case f is computable (in polynomial time), this lemma yields a (polynomial time) reduction
of the computation problem for approximate FL0 unification to the computation problem for
approximately solving language equations. In addition, we know that the decision problem
can be reduced to the computation problem. Thus, it is sufficient to devise a procedure for
the computation problem for approximately solving language equations.

6.3 Approximately solving language equations

In the following, we show how to solve the computation problem for language distances that
are defined using the symmetric difference of the input languages and can be expressed with
weighted tree automata, as described in Section 3.5. In particular, d0, d1 and d2 are such
instances. Our solution adapts the automata-based approach for solving language equations
introduced in [BO13], that we described in Section 4.4.

Similarly to the normalization step, given an approximate equation φ ≈? ψ, we first derive
two normalized equations φs =? ; and φa ≈? ;, the first to be solved strictly and the second
to be solved approximately. More precisely, we have the following for language distances d
defined using the symmetric difference of the input languages, i.e., if there exists a function
f : 2Σ

∗
→ [0,+∞] such that d(K , L) = f (K∆ L) for every K , L ⊆ Σ∗.

Lemma 6.7. Let φ,ψ be language expressions. Then we can compute in polynomial time
normalized language expressions φa and φs such that the following holds for every d defined
using the symmetric difference of the input languages:

{vd(σ,φ,ψ) | σ ∈ Ass}= {vd(σ,φa,;) | σ ∈ Ass∧σ(φs) = ;}.

98 Chapter 6. Approximate Unification in the Description Logic FL0

Proof. In [BO13] (Lemma 1) it is shown how a given system of language equations can
be transformed into a single normalized language equation such that there is a one-to-one
correspondence between the solutions of the original system and the solutions of the normal
form. Given an approximate equationφ ≈? ψ, we first abstract the left- and right-hand side of
this equation with new variables X , Y , and add strict equations that say that X must be equal
to φ and Y must be equal to ψ, i.e., we consider the approximate equation X ≈? Y together
with the strict equations X =? φ and Y =? ψ. We then apply the normalization approach of
[BO13] to the two strict equations, to obtain the normalized strict equation φs =? ;. Though
it is not explicitely stated in [BO13], it is easy to see that this transformation is such that,
for any assignment σ of the original equation, there is a solution θ of φs =? ; such that
θ (X) = σ(φ) and θ (Y) = σ(ψ). Conversely, any solution θ of φs =? ; satisfies θ (X) = σ(φ)
and θ (Y) = σ(ψ) for some assignment σ of the original equation. Consequently, we have

{(σ(φ),σ(ψ)) | σ ∈ Ass}= {(θ (X),θ (Y)) | θ ∈ Ass∧ θ (φs) = ;}.

If we now define φa := X4Y , then the lemma is an easy consequence of the above identity
and the fact that d considers the symmetric difference of the input languages, and thus
d(K , L) = f (K∆ L) = d(K∆ L,;). �

This lemma shows that, to solve the computation problem for φ ≈? ψ, we can solve the
computation problem for φa ≈? ;, but restrict the infimum to assignments that solve the
strict equation φs =? ;, that is,

inf
σ∈Ass

vd(σ,φ,ψ) = inf
σ∈Ass
σ(φs)=;

vd(σ,φa,;) = inf
σ∈Ass
σ(φs)=;

d(σ(φa),;). (6.1)

Next, recall that [BO13] would construct an LTA corresponding to the normalized equation.
We adapt this approach as follows: we apply this construction to the expression φ := φa∪φs,
to obtain an LTA Aφ = (Σ,Qφ , {`},∆φ , Iφ) with designated sets of states F1, . . . , Fm ⊆Qφ , as
described in Proposition 4.12.

Recall that every run r of Aφ induces an assignment σr and every assignment is induced
by some run of Aφ . By Proposition 4.12, we obtain sets of states Fs := Fφs

and Fa := Fφa

such that σr(φs) = Lr(Aφ , Fs) and σr(φa) = Lr(Aφ , Fa). holds for all runs r of Aφ .
By removing all states of Fs from Aφ , we obtain an automaton whose runs are in one-to-one

correspondence with the assignments that solve φs =? ;. In addition, we can make this
automaton trim3 using the polytime construction in the proof of Lemma 2 in [BO13].

Theorem 6.8. Given an approximate equation φa ≈? ; and a strict equation φs =? ;, we can
construct in exponential time a trim LTA A = (Σ,Q, {`},∆, I) and sets of states Fa, F1, . . . , Fm ⊆Q
such that every run r of A satisfies σr(φa) = Lr(A, Fa) and σr(φs) = ;. In addition, every
assignment σ with σ(φs) = ; is induced by some run of A.

Hence we obtain that

inf
σ∈Ass
σ(φs)=;

d(σ(φa),;) = inf
r∈RA

d(σr(φa),;) (6.2)

3An LTA A= (Σ,Q, {`},∆, I) is trim if every state can be used by some run of the LTA.

6.3 Approximately solving language equations 99

Now assume that we are given a Φ-wLTA M = (Σ, P, {0, 1}, in, wt) that operates on {0, 1}-
labeled trees and expresses the language distance d, i.e., for any pair of languages K , M over
Σ it holds that d(K , M) = (||M||, tK∆M).

First, we derive an “equivalent” Φ-wLTA that operates on Q-labeled trees as follows. Define
the mapping θ : Q→ {0,1} by setting θ (q) = 1 iff q ∈ Fa, and extend it to a mapping from
Q-labeled trees to {0,1}-labeled trees by setting θ (t)(w) = θ (t(w)) for every t ∈ TωΣ,Q and
w ∈ Σ∗. Note that for every run r of A (on the unlabeled tree), since r itself is a Q-labeled
tree, Theorem 6.8 together this construction gives us that

θ (r) = tσr (φa). (6.3)

Next, construct the Φ-wLTA M′ = (Σ, P,Q, in, wt ′) by setting for every (p0, p1, . . . , pk) ∈ Pk+1

and q ∈Q that wt ′(p0, q, p1, . . . , pk) = wt(p0,θ (q), p1, . . . , pk). The next lemma formulates
the exact meaning of the claim that M′ is equivalent to M.

Lemma 6.9. For every tree t ∈ TωΣ,Q it holds that (||M′||, t) = (||M||,θ (t)).

To prove this claim, note that every run of M′ on t can also be seen as a run of M on θ (t)
and vice versa. Thus we get

(||M||,θ (t)) = inf
r∈RM(θ (t))

¨

in(r(ε)) +
∑

w∈Σ∗
wt(r, w)

«

= inf
r∈RM(θ (t))

¨

in(r(ε)) +
∑

w∈Σ∗
wt(r(w),θ (t(w)), r(wσ1), . . . , r(wσk))

«

= inf
r∈RM′ (t)

¨

in(r(ε)) +
∑

w∈Σ∗
wt ′(r(w), t(w), r(wσ1), . . . , r(wσk))

«

= (||M′||, t).

Combining all the above, we have that

inf
σ∈Ass

vd(σ,φ,ψ)
(6.1)
= inf

σ∈Ass
σ(φs)=;

d(σ(φa),;)
(6.2)
= inf

r∈RA
d(σr(φa),;)

(∗)
= inf

r∈RA
(||M||, tσr (φa))

(6.3)
= inf

r∈RA
(||M||,θ (r))

Lemma 6.9
= inf

r∈RA
(||M′||, r),

where equality (∗) holds because M expresses the language distance d.
Hence, in order to solve our initial computation problem it suffices to be able to compute

infr∈RA
(||M′||, r). To this end, if M is over Rinf we can adapt the approach we followed

in Section 3.6: we combine the wLTA with the LTA into a new wLTA that operates on the
unlabeled tree. More precisely, we have the following lemma.

Lemma 6.10. Given a Φ-wLTA M over Rinf operating on Q-labeled trees and an LTA A with
state set Q, one can construct in polynomial time a Φ-wLTA MA such that

inf
r∈RA
(||M||, r) = (||MA||, tul).

100 Chapter 6. Approximate Unification in the Description Logic FL0

Proof. Assume that A= (Σ,Q, {`},∆, I) with sets of designated sets of states F1, . . . , Fm and
M = (Σ, P,Q, in, wt) over Rinf. We define the Φ-wLTA MA = (Σ, P ×Q, in′, wt ′) over Rinf as
follows:

in′(p, q) :=

¨

in(p) if q ∈ I
∞ otherwise

wt ′
�

(p0, q0),(p1, q1), . . . , (pk, qk)
�

:=

¨

wt(p0, q0, p1, . . . , pk) if (q0, q1, . . . , qk) ∈∆,

∞ otherwise

To prove that infr∈RA
(||M||, r) = (||MA||, tul), it is sufficient to show that there exists an

injection τ :
⋃

r∈RA
RM(r)→ RMA

such that for every r ∈ RA and every s ∈ RM(r) it holds
that weight(s) = weight(τ(s)), and weight(s′) =∞ for every s′ ∈ RMA

\ im(τ), where
im(τ) stands for the image set of the mapping τ.

Given a run r ∈ RA, for every s ∈ RM(r) set τ(s) = s′ such that s′(w) = (s(w), r(w)). Then,
for every s ∈ RM(r) and every w ∈ Σ∗ we have that

wt(s′, w) = wt ′(
−→
s′ (w)) = wt ′(s′(w), s′(wσ1), . . . , s′(wσk))

= wt ′((s(w), r(w)), (s(wσ1), r(wσ1)), . . . , (s(wσk), r(wσk)))
(∗)
= wt(s(w), r(w), s(wσ1), . . . , s(wσk))

= wt(−→s (w)) = wt(s, w),

where equality (∗) holds since (r(w), r(wσ1), . . . , r(wσk)) ∈∆.

Thus we obtain

weight(s′) = in(s′(ε)) +
∑

w∈Σ∗
φw(wt(s′, w))

= in(s(ε)) +
∑

w∈Σ∗
φw(wt(s, w)) = weight(s).

Now, suppose that s′ ∈ RMA
\ im(τ). Assume that s′(w) = (s0(w), r0(w)). If r0 is a run of

A, since s0 (like any P-labeled tree) can be seen as a run of M on r0, i.e., s0 ∈ RM(r0), and
hence we have that s′ = τ(s0), a contradiction. Thus we have that r0 /∈ RA. We distinguish
two cases.

• r0(ε) /∈ I . Then in′(s′(ε)) =∞, and thus weight(s′) =∞.

• There exists v ∈ Σ∗ such that (r0(v), r0(vσ1), . . . , r0(vσk)) /∈∆. Then

wt(s′, v) = wt ′
�

(s0(v), r0(v)), (s0(vσ1), r0(vσ1)), . . . , (s0(vσk), r0(vσk))
�

=∞,

and thus weight(s′) =∞.

6.3 Approximately solving language equations 101

Finally, we get that

(||MA||, tul) = inf
s′∈RMA

weight(s′) = inf
s′∈im(τ)

weight(s′)

= inf
s∈

⋃

r∈RA
RM(r)

weight(s) = inf
r∈RA

inf
s∈RM(r)

weight(s)

= inf
r∈RA
(||M||, r) �

For computing the behavior of the wLTA we obtained, which is also the answer to the
original computation problem, we can apply the results of Section 3.7. Overall, we have the
following result.

Theorem 6.11. Let d be a language distance defined using the symmetric distance of the input
languages that can be expressed by a Φ-wLTA over Rinf with nondecreasing or contracting
discounting. The computational problem (and hence also the decision problem) of approximate
solvability of language equations w.r.t. d can be answered in time exponential in the size of the
problem.

Furthermore, if d is invariant under mirroring and satisfies property (M4) and the combining
function f is computable in polynomial time, then the computational problem (and hence
also the decision problem) of approximate FL0 unification w.r.t. md, f can be answered in time
exponential in the size of the problem.

The second statement follows immediately from the first due to Lemma 6.6.
Next, we examine in more detail the cases of the distances d1 and d2. In particular, we will

provide specialized procedures for solving the computational problem, and through these
constructions we will be able to also prove hardness of the corresponding decision problems.

The measure d1

Using Lemma 6.7, Theorem 6.8, and the definition of d1, it is easy to see that the compu-
tation problem for an approximate language equation φ ≈? ψ can be reduced to solving
the following problem for the trim LTA A = (Σ,Q, {`},∆, I) of Theorem 6.8: compute
supr∈RA

min{|w| | r(w) ∈ Fa}. More formally, we have the following lemma.

Lemma 6.12. If `= supr∈RA
min{|w| | r(w) ∈ Fa} then infσ∈Ass vd1

(σ,φ,ψ) = 2−`.

In order to compute this supremum, it is sufficient to compute, for every state q ∈Q, the
length lpr(q) of the longest partial run of A starting with q that does not have states of Fa at
non-leaf nodes. More formally, we define:

Definition 6.13. Recall that Σ¶` denotes the set of all words over Σ of length at most `. Given
a trim LTA A = (Σ,Q, {`},∆, I), a partial run of A of length ` from a state q ∈Q is a mapping
p : Σ¶`→ Q such that p(ε) = q and (p(w), p(wσ1), . . . , p(wσk)) ∈∆ for all w ∈ Σ¶`−1 and
a ∈ Σ. The leaves of p are the words of length `. Furthermore, we say that a partial run of A
of length ` avoids the set A⊆Q if p : Σ¶`→Q \ A. Finally, for every q ∈Q we have that

lpr(q) := sup{` | there exists a partial run of A of length ` from the state q that avoids Fa}.
♦

102 Chapter 6. Approximate Unification in the Description Logic FL0

Lemma 6.14. The function lpr : Q→ N∪{∞} can be computed in time polynomial in the size
of A.

Proof. In order to compute lpr, we use an iteration similar to the emptiness test for looping
tree automata [BT01].

If q ∈ Fa, then clearly lpr(q) = 0 and otherwise q has an appropriate partial run of length
greater than 0 (recall that A is trim). For this reason, we start the iteration with

Q(0) := Fa.

Next, for i ≥ 0, we define

Q(i+1) :=Q(i) ∪ {q | ∀(q, q1, . . . , qk) ∈∆.∃ j.q j ∈Q(i)}.

We have Q(0) ⊆ Q(1) ⊆ Q(2) ⊆ . . . ⊆ Q. Since Q is finite, there is an index j ≤ |Q| such that
Q(j) =Q(j+1), and thus the iteration becomes stable.

It is easy to show that

lpr(q) =

¨

min{i | q ∈Q(i)} if q ∈Q(j)

∞ if q 6∈Q(j)

To prove the above, the following claim is enough.

Claim 6.15. It holds that q /∈Q(i) iff there is a partial run of length i + 1 of A starting with q
that does not have states of Fa at non-leaf nodes.

Proof (Claim). By induction on i:
For i = 0, q /∈Q(i) iff q /∈ Fa iff there is a partial run of length 1 of A starting with q that does
not have states of Fa at non-leaf nodes (i.e. at the root).
For i ¾ 1, if q /∈Q(i) then there exists (q, q1, . . . , qk) ∈∆ such that q1, . . . , qk /∈Q(i−1). By the
induction hypothesis, for every such q j there is a partial run of length i of A starting with q j
that does not have states of Fa at non-leaf nodes, thus we can construct such a run of length
i + 1 for q. If q ∈Q(i), then for every (q, q1, . . . , qk) ∈∆ it holds that there exists some j such
that q j ∈Q(i−1). By the induction hypothesis, there is no partial run of length i of A starting
with q j that does not have states of Fa at non-leaf nodes, and thus (q, q1, . . . , qk) cannot be
used to build a partial run of lenth i+1 starting with q. Since there exists such a q j for every
(q, q1, . . . , qk) ∈∆, this completes the proof of the claim.

If q /∈Q(j), note that the claim implies that there are such runs for every n ∈ N, and thus
lpr(q) =∞.

Since the number of iterations is linear in |Q| and every iteration step can obviously be
performed in polynomial time, this completes the proof. �

The function lpr can now be used to solve the computation problem as follows:

sup
r∈RA

min{|w| | r(w) ∈ Fa}=max{lpr(q) | q ∈ I}.

If this maximum is∞, then the measure d1 yields value 0 and the approximate equation
was actually solvable as a strict one.

6.3 Approximately solving language equations 103

Theorem 6.16. For the distance d1 and a polytime computable combining function, the com-
putation problem (for approximate FL0 unification and for approximately solving language
equations) can be solved in exponential time, and the decision problem is EXPTIME-complete.

Proof. The EXPTIME-upper bounds follow from our reductions and the fact that the automaton
A can be computed in exponential time and is thus of at most exponential size. Hardness can
be shown by a reduction of the strict problems, which are known to be EXPTIME-complete
[BN01; BO13]. In fact, the proof of Lemma 6.14 shows that d1 either yields the value
0= 2−∞ (in which case the strict equation is solvable) or a value larger than 2−(|Q|+1) (in
which case the strict equation is not solvable). In other words, for a threshold smaller than
2−(|Q|+1) the decision problem is equivalent to the classical solvability problem. �

The measure d2

Recall that the value of d2 is obtained by applying the function µ to the symmetric difference
of the input languages. In case one of the two languages is empty, its value is thus obtained
by applying µ to the other language. It is easy to show that the following lemma holds.

Lemma 6.17. The value µ(L) for L ⊆ Σ∗ satisfies the recursive equation:

µ(L) =
1
2
χL(ε) +

1
2|Σ|

∑

a∈Σ
µ(a−1 L), (6.4)

where a−1 L := {w ∈ Σ∗ | aw ∈ L} and χL is the characteristic function of the language L, that
takes the value 1 if w ∈ L and 0 otherwise.

Proof. With simple calculations we get

µ(L) =
1
2

∑

w∈L

(2|Σ|)−|w| =
1
2
(2|Σ|)−|ε|χL(ε) +

1
2

∑

w∈L\{ε}

(2|Σ|)−|w|

=
1
2
χL(ε) +

1
2

∑

a∈Σ

∑

aw∈L

(2|Σ|)−(1+|w|) =
1
2
χL(ε) +

1
2

∑

a∈Σ

∑

w∈a−1 L

(2|Σ|)−1(2|Σ|)−|w|

=
1
2
χL(ε) +

1
2|Σ|

∑

a∈Σ

1
2

∑

w∈a−1 L

(2|Σ|)−|w| =
1
2
χL(ε) +

1
2|Σ|

∑

a∈Σ
µ(a−1 L). �

Using Lemma 6.7, Theorem 6.8, and the definition of d2, it is easy to see that the compu-
tation problem for an approximate language equation φ ≈? ψ w.r.t. d2 can be reduced to
solving the following problem for the trim LTA A = (Σ,Q, {`},∆, I) of Theorem 6.8: compute
infr∈RA

µ(Lr(A, Fa)). In fact, this is the exact value that answers the computation problem,
as by combining (6.1) and 6.2, we obtain that

inf
r∈RA

µ(Lr(A, Fa)) = inf
σ∈Ass

vd2
(σ,φ,ψ).

In the following, we are only interested in languages defined by runs of A with set of final
states Fa, thus for ease of notation we will write Lr instead of Lr(A, Fa).

In order to obtain the technical results of this section, we need to look more closely to
the LTA from Proposition 4.12 and their exact construction in [BO13]. In particular, these

104 Chapter 6. Approximate Unification in the Description Logic FL0

are special instances of LTAs, that the authors of [BO13] call looping tree automata with
independent transitions (ILTA), since the state in each successor of a node is determined
independently of the choice of the states in its siblings. In particular, their transition relation
∆ is defined by using a transition function δ : Q×Σ→ 2Q in the fashion of an NFA; more
precisely,

∆= {(q, q1, . . . , qk) | q ∈Q, q1 ∈ δ(q, a1), . . . , qk ∈ δ(q, ak)}.

Using (6.4), we now show that this infimum can be computed by solving a system of
recursive equations that is induced by the transitions of A. Given an arbitrary (not necessarily
initial) state q ∈Q, we say that r : Σ∗→Q is a q-run of A if r(ε) = q and r(wa) ∈ δ(r(w), a)
for all w ∈ Σ∗ and a ∈ Σ. We denote the set of all q-runs of A with Rq

A. Since each run of A
is a q0-run for some q0 ∈ I , we have

inf
r∈RA

µ(Lr) =min
q0∈I

inf
r∈R

q0
A

µ(Lr).

For all q ∈Q, we define µ(q) := infr∈Rq
A
µ(Lr). The identity above shows that we can solve

the computation problem for approximate language equations w.r.t. d2 if we can devise a
procedure for computing the values µ(q) ∈ R for all q ∈ Q. The identity (6.4) can now be
used to show the following lemma.

Lemma 6.18. For all states q ∈Q we have

µ(q) =
1
2
χFa
(q) +

1
2|Σ|

∑

a∈Σ
min

p∈δ(q,a)
µ(p),

where χFa
denotes the characteristic function of the set Fa.

Proof. Given a run r ∈ Rq
A, for every a ∈ Σ a unique run ra ∈ Rr(a)

A is defined as ra(w) = r(aw).
Obviously, r(a) ∈ δ(q, a). Conversely, given a run ra ∈ Rqa

A , for every a ∈ Σ, such that
qa ∈ δ(q, a), a unique run r0 ∈ Rq

A can be derived, as

r0(w) =

¨

q if w= ε
ra(u) if w= au

Hence, there is a bijection between the set of q-runs Rq
A and the set of “successor” runs

SR(q) :=
⋃

p1∈δ(q,a1)
Rp1

A × · · · ×
⋃

pk∈δ(q,ak)
Rpk

A .

Given a run r ∈ R(q), it holds that

Lr = ε(q)∪
⋃

a∈Σ
aLra

where ε(q) = {ε} if q ∈ Fa and ; otherwise.

For the measure µ and disjoint sets of words A and B it holds that µ(A∪̇B) = µ(A) +µ(B).
Additionally, for a ∈ Σ and A⊆ Σ∗, it holds µ(aA) = 1

2|Σ|µ(A).

6.3 Approximately solving language equations 105

Thus, given a run r ∈ Rq
A it holds

µ(Lr) = µ(ε(q)∪
⋃

a∈Σ
aLra
) = µ(ε(q)) +

∑

a∈Σ
µ(aLra

)

=
1
2
χFa
(q) +

1
2|Σ|

∑

a∈Σ
µ(Lra

).

Thus it can be inferred that

µ(q) = inf
r∈Rq

A

µ(Lrq
) = inf

r∈Rq
A

�

µ(ε ·χFa
(q)) +

1
2|Σ|

∑

a∈Σ
µ(Lra

)

�

=
1
2
χFa
(q) +

1
2|Σ|

inf
r∈Rq

A

k
∑

i=1

µ(Lrai
) =

1
2
χFa
(q) +

1
2|Σ|

inf
(ra1

,...,rak
)∈SR(q)

k
∑

i=1

µ(Lrai
)

=
1
2
χFa
(q) +

1
2|Σ|

min
(p1,...,pk)∈

δ(q,a1)×···×δ(q,ak)

inf
(r1,...,rk)∈

R(p1)×···×R(pk)

k
∑

i=1

µ(Lri
)

=
1
2
χFa
(q) +

1
2|Σ|

min
(p1,...,pk)∈

δ(q,a1)×···×δ(q,ak)

k
∑

i=1

inf
r∈R(pi)

µ(Lr)

=
1
2
χFa
(q) +

1
2|Σ|

k
∑

i=1

min
p∈δ(q,ai)

inf
r∈R(p)

µ(Lr) =
1
2
χFa
(q) +

1
2|Σ|

∑

a∈Σ
min

p∈δ(q,a)
µ(p). �

By introducing variables xq (for q ∈Q) that range over R, we can rephrase this lemma by
saying that the values µ(q) yield a solution to the system of equations

xq =
1
2
χFa
(q) +

1
2|Σ|

∑

a∈Σ
min

p∈δ(q,a)
xp (q ∈Q). (6.5)

Thus, to compute the values µ(q) for q ∈Q it is sufficient to compute a solution of (6.5).
Next, we use Banach’s fixed point theorem to show that the system has a unique solution

in R. In particular, we will transform the system of equations to a contraction in Rk that has
as a fixed point the solution of (6.5).

For every equation (6.5) corresponding to a state qi ∈Q, we represent the right-hand side
as a function fi : Rk→ R, defined by

fi(x1, . . . , xk) =
1
2
χFa
(qi) +

1
2|Σ|

∑

a∈Σ
min

q j∈δ(qi ,a)
x j

Next, the right-hand sides of the entire system are denoted by a vector function f : Rk→ Rk,
with

f (x1, . . . , xk) = (f1 (x1, . . . , xk) , . . . , fk (x1, . . . , xk))

Proposition 6.19. A vector x = (x1, . . . , xk) is a solution of the system of equations of the form
(6.5) iff it is a fixed point of f . ♦

106 Chapter 6. Approximate Unification in the Description Logic FL0

Before proving that f is a contraction, we provide a technical lemma that will be useful in
the proof of the next one.

Lemma 6.20. Given a finite set of indices I and a set {J(i) ⊆ I | i ∈ I}, it holds that

max
i∈I

�

�

�

�

min
j∈J(i)

x j − min
j∈J(i)

y j

�

�

�

�

¶max
i∈I
|x i − yi| .

Proof. For every i ∈ I we have

min
j∈J(i)

x j = xki
for some ki ∈ J(i)

min
j∈J(i)

y j = y`i
for some `i ∈ J(i).

Then, for every i ∈ I we get
�

�

�

�

min
j∈J(i)

x j − min
j∈J(i)

y j

�

�

�

�

=
�

�xki
− y`i

�

�

(∗)
= xki

− y`i

¶ x`i
− y`i
¶max

i∈I
|x i − yi|.

For equality (∗) suppose without loss of generality, xki
¾ y`i

. If xki
¶ y`i

, the exact symmetric
argument can be used.

Finally, we have that

max
i∈I

�

�

�

�

min
j∈J(i)

x j − min
j∈J(i)

y j

�

�

�

�

¶max
i∈I

max
i∈I
|x i − yi|=max

i∈I
|x i − yi|. �

The following lemma provides the last condition for Theorem A.2.

Lemma 6.21. The function f defined above is a contraction in (Rk, d∞).

Proof. Let x= (x1, . . . , xk), y= (y1, . . . , yk) ∈ Rk. Then

d∞(f (x), f (y)) = max
i=1,...,k

| fi(x)− fi(y)|

= max
i=1,...,k

�

�

�

�

�

1
2
χFa
(qi) +

1
2|Σ|

∑

a∈Σ
min

q j∈δ(qi ,a)
x j −

�

1
2
χFa
(qi) +

1
2|Σ|

∑

a∈Σ
min

q j∈δ(qi ,a)
y j

�

�

�

�

�

�

= max
i=1,...,k

�

�

�

�

�

1
2|Σ|

∑

a∈Σ

�

min
q j∈δ(qi ,a)

x j − min
q j∈δ(qi ,a)

y j

�

�

�

�

�

�

¶
1

2|Σ|

∑

a∈Σ
max

i=1,...,k

�

�

�

�

�

min
q j∈δ(qi ,a)

x j − min
q j∈δ(qi ,a)

y j

��

�

�

�

(∗)
¶

1
2|Σ|

∑

a∈Σ
max

i=1,...,k
|x i − yi|=

1
2|Σ|
|Σ| max

i=1,...,k
|x i − yi|

=
1
2

max
i=1,...,k

|x i − yi|

where inequality (∗) holds because of Lemma 6.20. �

6.3 Approximately solving language equations 107

Finally, since (Rk, d∞) is complete, from Theorem A.2 and Proposition 6.19 we get the
following.

Lemma 6.22. The system of equations (6.5) has a unique solution.

In order to actually compute this, we employ a technique similar to the one used in
Section 3.7.2 and derive a linear programming problem from the above system of equations
(6.5). The only non-trivial step in this translation is to express the minimum operator. For
this, we introduce additional variables yq,a, which intuitively stand for minp∈δ(q,a) xp. Then
(6.5) is transformed into

xq =
1
2
χFa
(q) +

1
2|Σ|

∑

a∈Σ
yq,a (q ∈Q). (6.6)

To express the intuitive meaning of the variables yq,a, we add the inequalities

yq,a ≤ xp for all q ∈Q and p ∈ δ(q, a) (6.7)

as well as the objective to maximize the values of these variables:

z =max
∑

q∈Q

∑

a∈Σ
yq,a. (6.8)

Lemma 6.23. The LP problem consisting of the equations (6.6), the inequations (6.7), and the
objective (6.8) has the unique solution

{xq 7→ µ(q) | q ∈Q} ∪ {yq,a 7→ min
p∈δ(q,a)

µ(p) | p ∈Q, a ∈ Σ}.

Proof. Initially, observe that the above vector is in the feasible region, since it satisfies the
restrictions (6.6) and (6.7). Next, we procede to show that it is indeed the only point that
maximizes the objective function. First, we need the following claim.

Claim 6.24. If x is a solution that maximizes the objective function then, for every q ∈Q and
every a ∈ Σ, at least one of the inequalities (6.7) holds as an equality.

Proof of Claim. Suppose on the contrary that x is a solution that maximizes z, but for some
q ∈Q and a ∈ Σ, inequalities xq,a ¶ µp are strict for all p ∈ δ(q, a). This would mean that
the value of xq,a can be increased, until it actually becomes equal to minp∈δ(q,a)µp, and all
inequalities would still hold. The only restriction that would be hurt, is the one of the form
(6.6) for the state q. This can be easily mended by setting µq to be equal to the right-hand
side. This change will not affect any of the other restrictions. Thus, a new point x′ has been
produced, that satisfies all the restrictions of the LPP and additionally gives a larger value for
the objective function. This is a contradiction to our initial assertion about x. This completes
the proof of the claim.

As a result, any points that are solutions to the LP problem, satisfy the condition

yq,a = min
p∈δ(q,a)

xp for all q, a.

108 Chapter 6. Approximate Unification in the Description Logic FL0

Given that they also satisfy the equality constraints (6.6) (since they are in the feasible
region), they correspond to solutions of the system of equations (6.5).

Finally, since there is a unique such solution, the solution of the LP problem is this unique
solution. �

Since LP problems can be solved in polynomial time and the size of the LP problem in the
above lemma is polynomial in the size of A, we obtain an EXPTIME-upper bound for the
computation problem and the decision problem. EXPTIME-hardness can again be shown by a
reduction of the strict problem.

Even though the main idea is the same, the formal proof is quite more technical in this
case. Initially note that solving (6.5) induces a “best” q-run of the automaton for every
q; in every step, pick the state with the minimum value among all possible. Given such
a best run of the automaton, we say that p is a descendant of q at depth d, if there are
states q0 := q, q1, . . . , qd−1, qd := p, and a word a1 . . . , ad s.t. qi = arg minq∈δ(qi−1,ai)µ(q) for
i = 1, . . . , d. A bad descendant of a state q is a state p ∈ Fa that is a descendant of q. Note
that, if q ∈ Fa, then µ(q)¾ 1

2 and if q 6∈ Fa, then µ(q)¶ 1
2 .

Lemma 6.25. For a state q it holds that µ(q)> 0 if and only if q has a bad descendant.

Proof. If q has a bad descendant p, say at depth d, then there is a branch with nodes labeled
q, q1, . . . , p and thus µ(q)¾ 1

2|Σ|µ(q1)¾ · · ·¾ (
1

2|Σ|)
dµ(p)¾ (1

2|Σ|)
d 1

2 > 0.
Conversely, suppose that q has no bad descendant. Thus q /∈ Fa and the same holds for all

its descendants. Then it holds that

µ(q) =
1
2
χFa
(q) +

1
2|Σ|

∑

a∈Σ
min

p∈δ(q,a)
µ(p)

¶
1

2|Σ|

∑

a∈Σ
max
a∈Σ

min
p∈δ(q,a)

µ(p)

=
1
2
µ(p)

for some child p of q. Iterating this for d steps, we get that µ(q) ¶ (1
2)

dµ(p′) for some
descendant p′ of q. But since p′ /∈ Fa, µ(p′)¶ 1

2 and thus µ(q)¶ (1
2)

d+1. Since this holds for
every d, it can be concluded that µ(q) = 0. �

Lemma 6.26. If q has a bad descendant, then q has a bad descendant at depth at most |Q|.

Proof. Set k = |Q|. Suppose that there exists a q0 ∈Q with no bad descendants up to depth k.
It will be proved that there is a q0-run with no states from Fa, i.e. q0 has no bad descendants.
No bad descendants up to depth k implies that there is a partial run of length k of A starting
with q0 that does not have state of Fa. For a branch of length k, the nodes are labelled with
states q0, q1, . . . , qk. Since there are only k states, there are indices i < j ¶ k such that qi = q j .
The tree having as root the node labeled with qi has bigger length than the one labeled with
q j . Replace the latter tree with the former one. Then, all branches passing through the node
labeled with q j have length at least k+ 1. Iterating this procedure for all branches, a partial
run of length at least k+ 1 is derived. Every time the above is repeated, a longer partial run
is derived. We conclude that a partial run of infinite length, i.e. a q0-run of A can be derived
that has no states from Fa. Thus q0 has no bad descendants. �

6.4 On computing unifiers and a variation of the decision problem 109

Lemma 6.27. For the distance d2, the decision problem for approximately solving language
equations is EXPTIME-hard.

Proof. If µ(q) > 0, then q has a bad descendant at depth at most |Q|. Thus it holds that
µ(q) ¾ (1

2|Σ|)
|Q| · 1

2 =: t. We conclude that the decision problem with threshold t has a
positive answer for the equation φ ≈? ; iff the equation φ =? ; has a solution. Since the
latter problem is EXPTIME-complete, we get an EXPTIME-hardness result for our problem as
well. �

Theorem 6.28. For the distance d2 and a polytime computable combining function, the com-
putation problem (for approximate FL0 unification and for approximately solving language
equations) can be solved in exponential time, and the decision problem is EXPTIME-complete.

For this theorem to hold, the exact definition of the distance d2 is actually not important.
Our approach works as long as the distance induces a system of equations similar to (6.5)
such that Banach’s fixed point theorem ensures the existence of a unique solution, which can
be found using linear programming.

As an example, we can consider a weighted version of d2, where different letters have
different weights (degrees of importance). Given a weight function wt : Σ→ [0,1], such
that

∑

a∈Σ wt(a) = 1, extend this to a function over Σ∗, by setting wt(u) =
∏k

i=1 wt(ai) for
u= a1 . . . ak ∈ Σ∗. Then, for ν,λ ∈ [0,1], define

µ′(L) = ν
∑

u∈L

λ|u|wt(u).

The condition that a difference for the word u counts as much as the sum of all differences for
words uv properly extending u holds if we set λ = 1

2 . Furthermore, note that for ν = λ = 1
2 ,

wt(a) = 1
|Σ| for every a ∈ Σ, we get the function µ defined for d2.

6.4 On computing unifiers and a variation of the decision problem

The above procedures are able to check the existence of approximate solutions by computing
the optimal degree of violation, but do not actually provide such instances of such optimal
assignments.

For the distances d1 and d2 this seems to be possible. The main idea is that while solving
the relevant optimization problems on tree automata, one could actually mark the transitions
that lead to an optimal assignment. Hence, by only keeping these transitions it seems feasible
to construct an LTA Aopt , every run of which will correspond to an optimal assignment.
However, the exact details of this construction have to be properly investigated.

Furthermore, in order to obtain approximate unifiers, we need to be able to obtain optimal
finite assignments. By applying the results of Lemma 3.43 on the above automaton Aopt , we
can obtain a BTA with a successful run for every such assignment. However, it is not clear
how to obtain a near-optimal solution in case that no finite assignments achieves the optimal
value.

Finally, if we are able to answer the above questions, we will also obtain an algorithm for
the variation of the decision problem where < is replaced by ≤, that is, given a threshold p

110 Chapter 6. Approximate Unification in the Description Logic FL0

we want to check whether there exists a substitution σ such that vm(σ, C , D)≤ p. EXPTIME-
hardness of this problem is clear (even for a unary encoding of the threshold p), since we
can test exact unification by setting p = 0.

This problem can no longer be reduced to the computational problem itself. However, if
we have some extra knowledge on whether the infimum is indeed a minimum, that is, if
there exists a substitution that achieves the optimal degree of violation, then we can once
again employ the computational problem to solve this variation of the decision problem. In
particular, we have the following result in the lines of Lemma 6.2.

Lemma 6.29. Let m be a concept distance, C , D FL0 concept patterns, and p ∈Q a threshold.
Then there exists a substitution σ ∈ Sub with vm(σ, C , D)≤ p iff

• infσ∈Sub vm(σ, C , D)≤ p and this infimum is actually a minimum, or

• infσ∈Sub vm(σ, C , D)< p and this infimum is not a minimum.

Hence, in order to be able to answer this decision problem as well, it suffices to be able to
determine whether the value obtained from the computational problem is achievable by a
substitution or not.

For the corresponding decision problem for approximate language equations, the complete
analogous result holds.

Investigating in detail the problems mentioned in this section is a natural extension of the
results obtained in this chapter and is appropriate for future work.

Chapter 7

Approximate matching

Matching is the special case of unification where one of the terms to be unified has no
variables and thus remains unchanged under substitutions. In Description Logics (DLs),
matching concepts against patterns was introduced to help filter out unimportant aspects
of complicated concepts appearing in large industrial knowledge bases [BM96]. For FL0,
matching was investigated in detail in [BN01]. As it is a special case of unification, the
results of Section 4.3 apply in this setting, as well. In particular, checking whether a matcher
between a concept description and a pattern exists reduces to checking solvability of language
equations. However, since no variables occur in one of the sides, we don’t have to deal with
equations of the general form (4.4), but of a rather simpler kind. This allows to solve the
problem in polynomial time, in contrast to unification, which is EXPTIME-complete, as we
have seen in Section 4.3.

In this section, we will prove that a similar result holds for the approximate setting:
approximate matching is of lower complexity than approximate unification. To this purpose,
we need to solve language equations of the form (7.1) (introduced below) approximately.
Initially, we describe the algorithm used in [BN01] to check solvability of matching (in the
classical setting) in polynomial time. Next, after we formally define approximate matching,
we will prove that the problem is in NP for a wide range of distance measures. Finally, we
will investigate the distances d0, d1 and d2 in more detail, proving that the problem for d1 is
actually solvable in polynomial time, while it is NP-complete for the other two. For the latter,
we will make use of Max-±Pos-SAT, an NP-complete satisfiability problem. To the best of our
knowledge, this problem has not been investigated in the literature before, hence we devote
a section at the end of this chapter to formally introduce it and prove its NP-completeness.

7.1 Classic and approximate matching

The definition of matching is the same as Definition 4.7 for unification, with the difference
that one of the patterns contains no variables, in other words it is a concept description.
More precisely, we have the following.

Definition 7.1 (Matching). Let C be an FL0 concept description, D an FL0 concept pattern,
and T an FL0 TBox. The substitution σ is a matcher of C , D w.r.t. T if C ≡T σ(D). An FL0
matching problem C ≡?

T D asks whether given such C, D and T there exists a matcher w.r.t. T
or not. ♦

As was the case for unification, previous results only deal with the case of the empty
TBox. In the rest of this chapter, we will impose the same restriction, and defer the study

111

112 Chapter 7. Approximate matching

of TBoxes for the next chapter. Now, after we review the approach from [BN01], we will
extend matching (of this restricted case) to the approximate setting.

Since matching a special case of unification, all the results obtained in Section 4.3 apply
to this simpler setting as well. In particular, analogously to (4.4), matching can be reduced
to formal language equations of the following form: given finite languages K0, L0, L1, . . . , Lm
we want to know whether there exist finite languages X1, . . . , Xm such that

K0 = L0 ∪ L1 · X1 ∪ · · · ∪ Lm · Xm. (7.1)

As before, a solution of such an equation is an assignment σ of languages to the variables X i
such that the above equation holds as equality of languages. An assignment is called finite if
all the languages σ(X i) are finite. Identically to (4.5), the assignments are required to be
finite in order to maintain the correspondence with the Description Logic setting. Hence, by
slight abuse of notation, we will use the term matcher to also denote a finite assignment that
is a solution. Overall, matching in FL0 reduces to checking whether equations of the form
(7.1) have a matcher. Baader and Narendran [BN01] showed that this problem is decidable
in polynomial time by proving that (7.1) has a matcher iff the assignment

θ (X i) :=
⋂

v∈Li

v−1K0 (i = 1, . . . , m)

is a solution of (7.1). It is easy to see that computing θ and checking whether it actually is a
solution can be done in polynomial time.

As an example, consider the equation

{a, ab, abb}= {a, ab} · X .

Following the procedure above, for m = 1, K0 = {a, ab, abb}, L0 = ; and L1 = {a, ab} we
have that a−1K0 = {ε, b, bb}, (ab)−1K0 = {ε, b} and thus θ (X) := {ε, b, bb}∩{ε, b} = {ε, b}.
Immediately, it can be verified that {a, ab} · θ (X) = {a, ab, abb} holds as equality, and thus
θ is a solution.

On the other hand, for the equation

{ab}= {a, ab} · X

working as before we obtain a−1K0 = {b}, (ab)−1K0 = {ε} and thus θ (X) := {b} ∩ {ε}= ;.
Since {a, ab} · θ (X) 6= {ab}, this problem does not have a solution.

As we have shown in the previous chapter, approximate unification in FL0 w.r.t. d0, d1 and
d2 (or rather, w.r.t. the concept distances induced by these language distances and a proper
combining function) is of the same complexity as exact unification, i.e., EXPTIME-complete.
We will now see that for approximate matching, the exact complexity depends on the distance
used, but, in any case, remains lower than the corresponding bound for unification. First, let
us formally define the problem. Again, our techniques only apply for the case of the empty
TBox. Therefore, right from the start we define the problem in this restricted setting.

7.2 Containment in NP 113

Definition 7.2 (Approximate matching). Given concept description C, concept pattern D,
CDM m and threshold p ∈ Q the approximate matching problem asks whether there exists a
substitution σ such that

m (C ,σ(D))< p.

If such a substitution exists, it is called a p-approximate matcher of C , D. ♦

As for approximate unification, this decision problem reduces (in polynomial time) to the
respective computational problem, that is, to compute infσ∈Sub m(C ,σ(D)).

We will not deviate from the pattern established in the previous chapter; we will reduce
the above problem to one involving formal languages.

Definition 7.3 (Approximate language matching). Given an equation of the form (7.1),
the approximate language matching problem w.r.t. the language distance d with threshold
p ∈Q asks whether there exists a finite assignment σ such that

d(K0, L0 ∪ L1σ(X1)∪ · · · ∪ Lmσ(Xm))< p.

Such an assignment, if one exists, is called a p-approximate matcher. A (not necessarily
finite) assignment that satisfies the above inequality is called a p-approximate solution. ♦

The same relation between this decision problem and the corresponding computational
problem holds in this setting, as well.1 As we will see in the next section, however, we
can also use the decision problem to answer the computation problem for a wide class of
language distances, that includes d0, d1 and d2. Furthermore, by Lemma 6.5 we obtain that
the computational problem for approximate FL0 matching reduces to the computational
(and hence also the decision) problem for approximate language matching.

Returning to our previous example about the equation {ab} = {a, ab} · X , w.r.t. d1 with
threshold 2−2 we have that the assignment σ1(X) = {b} is a 2−2-approximate matcher while
σ2(X) = ; is not, since

d1({ab}, {a, ab} ·σ1(X)) = d1({ab}, {ab, abb}) = 2−3 < 2−2 while

d1({ab}, {a, ab} ·σ2(X)) = d1({ab},;) = 2−2 6< 2−2.

Furthermore, any assignment σ with {b} ⊆ σ(X) ⊆ {a, b}∗\{ε, a} is an approximate solution
for the same threshold.

7.2 Containment in NP

In this section, we prove that, for language distances that are monotone w.r.t. the symmetric
difference of the input languages, i.e., that satisfy property (3.1) introduced in Section 3.3,
the existence of a p-approximate solution implies the existence of a p-approximate matcher
of polynomial size. Recall that the property requires K∆ L ⊆ M∆N =⇒ d(K , L)≤ d(M , N)
for any languages K , L, M , N , and it holds for all language distance functions of the form
d(K , L) = f (K∆ L) where f is a monotone function. If the distance is computable in
polynomial time, this yields an NP-algorithm for deciding the approximate matching problem.

1Recall the discussion in Section 6.1.

114 Chapter 7. Approximate matching

Assume that we are given an equation of the form (7.1), a distance d satisfying property
(3.1), and a threshold p, and let σ be a p-approximate solution. The following observation
suffices to prove our claim:

Observation. Let Fi :=
⋃

w∈Li
w−1K0. Then, σ′(X i) = σ(X i) ∩ Fi is also a p-approximate

matcher.

Indeed, assume that u ∈ σ(X i) \ Fi . Then wu /∈ K0 for every w ∈ Li . Thus we get

K0∆σ
′
�

L0 ∪
m
⋃

i=1

LiX i

�

⊆ K0∆σ

�

L0 ∪
m
⋃

i=1

LiX i

�

and hence

d

�

K0,σ′
�

L0 ∪
m
⋃

i=1

LiX i

��

≤ d

�

K0,σ

�

L0 ∪
m
⋃

i=1

LiX i

��

< p,

i.e., σ′ is a p-approximate matcher as well (in fact a better one). Note that for every i
we have that σ′(X i) ⊆ Fi ⊆ Suf (K0), where Suf (w) = {u ∈ Σ∗ | ∃v ∈ Σ∗.vu = w} and
Suf (L) =

⋃

w∈L Suf (w). Note that |Suf (L)| ≤ ||L||+ |L|, which is linearly bounded by the
size of L. Furthermore, the longest word in Suf (L) is bounded by the size of ||L||. Hence,
we can conclude that Suf (K0), and thus also σ′(X i) for every i, is at most quadratic in the
size of K0, and overall we obtain the following.

Lemma 7.4. Assume that d is a language distance function satisfying property (3.1). An
approximate matching problem w.r.t. d with threshold p has a p-approximate solution iff it has
a p-approximate matcher of size at most quadratic in the size of the problem.

If the distance is computable in polynomial time, by guessing an assignment of polynomial
size and then checking in polynomial time whether it actually is a p-approximate matcher
for the given threshold value, we obtain an NP-algorithm for approximate matching. Overall,
we have the following result.

Theorem 7.5. Given an equation of the form (7.1), a threshold p, a distance d satisfying
property (3.1) that is computable in polynomial time, the approximate language matching
problem is decidable in NP.

A further consequence of Lemma 7.4 is that we can use the decision problem to also
answer the computational problem of approximate language matching. More specifically, for
language distances as in Theorem 7.5, we have that the (representation of the) value of d is
polynomial in the size of the input languages, since they are computable in polynomial time.
Furthermore, by (the proof of) Lemma 7.4 we obtain that the search space for a potential
matcher is not only finite, but also consists of substitutions of polynomial size. Hence, the
infimum among all degrees of violation is actually a minimum, and this minimum is of
size polynomial in the input problem. Overall, by applying binary search we can call the
algorithm for the decision problem a polynomial number of times to compute the optimal
value achievable.

7.3 Approximate Matching w.r.t. d1 115

7.3 Approximate Matching w.r.t. d1

For the language distance d1, we can actually get a better complexity result: the approximate
matching problem is decidable in polynomial time.

Since d1 is monotone w.r.t. the symmetric difference of the input languages, it suffices to
check whether there is an approximate solution (that is not necessarily finite). In the positive
case, Lemma 7.4 then guarantees the existence of an approximate matcher of polynomial
size, and hence finite. Looking at the definition of d1, it is easy to see that, if the input
languages agree on all words of length up to m− 1, their distance is at most 2−m. More
generally, we have the following:

Lemma 7.6. Let K , L be languages over Σ and p ≤ 2−m, m ∈ N. Then,

d1(K , L)< p ⇐⇒ K ∩Σ≤m = L ∩Σ≤m ⇐⇒ K ∪Σ≥m+1 = L ∪Σ≥m+1.

As an easy consequence of this lemma, we obtain:

Proposition 7.7. Given an equation of the form (7.1), the assignment σ(X i) = Mi is a p-
approximate solution w.r.t. d1 with threshold p ≤ 2−m+1 iff

K0 ∪Σ≥m = L0 ∪ L1M1 ∪ · · · ∪ LmMm ∪Σ≥m,

i.e., iff it is a solution of the equation

K0 ∪Σ≥m = L0 ∪ L1X1 ∪ · · · ∪ LmXm ∪Σ≥m. (7.2)
♦

Reflecting on the equation {ab}= {a, ab}X w.r.t. d1 with threshold p = 2−2 we have that

{ab} ∪Σ≥3 = {ab, abb} ∪Σ≥3 = {a, ab}σ1(X)∪Σ≥3,

thus verifying again that σ1 is a 2−2-approximate solution. In fact, for any assignment σ
with {b} ⊆ σ(X) ⊆ {a, b}∗ \ {ε, a} it holds that

{ab} ∪Σ≥3 = {a, ab}σ1(X)∪Σ≥3.

Meanwhile,
{ab} ∪Σ≥3 6= ; ∪Σ≥3 = {a, ab}σ2(X)∪Σ≥3,

since σ2 is not a 2−2-approximate solution.
By Proposition 7.7, finding a p-approximate solution w.r.t. d1 with p ≤ 2−m+1 for the

equation of the form (7.1) reduces to finding a solution for the equation (7.2). Adapting the
technique used in [BN01] for matching in FL0, we get the following result.

Lemma 7.8. An equation of the form (7.2) has a solution iff

σ(X i) = Mi :=
⋂

v∈Li

�

v−1(K0 ∪Σ≥m)
�

is a solution.

116 Chapter 7. Approximate matching

Proof. The if direction is trivial.
For the only-if direction, assume that τ(X i) = Mi is a solution of (7.2). We want to show

that
K0 ∪Σ≥m = L0 ∪ L1M1 ∪ · · · ∪ LmMm ∪Σ≥m. (7.3)

Obviously, the equation holds for all words of length at least m. Suppose that w ∈ K0 and
|w| < m. Since τ is a solution, either w ∈ L0 or w ∈ Li Mi for some i ∈ {1, . . . , m}. In the
first case, there is nothing more to show. In the second case, there are words v0 ∈ Li , u ∈ Mi
s.t. w= v0u. Since τ is a solution, for every word v ∈ Li it holds that vu ∈ K0 ∪Σ≥m. Thus
u ∈

⋂

v∈Li
v−1(K0 ∪Σ≥m) = Mi , which proves language inclusion in one direction.

For the other direction, since there is a solution, it holds that L0 ⊆ K0 ∪ Σ≥m. Thus it
suffices to prove that Li Mi ⊆ K0 ∪Σ≥m. Assume that w ∈ Li Mi . This means that w = v0` for
some v0 ∈ Li and ` ∈ Mi . Thus we get

` ∈
⋂

v∈Li

v−1(K0 ∪Σ≥m) =⇒ ` ∈ v0
−1(K0 ∪Σ≥m) =⇒ v0` ∈ K0 ∪Σ≥m,

which completes the proof. �

Applying the above lemma to our running example, we obtain

σ(X) := a−1({ab} ∪ {a, b}≥3)∩ (ab)−1({ab} ∪ {a, b}≥3)

= ({b} ∪ {a, b}≥2)∩ ({ε} ∪ {a, b}≥1)

= ({b} ∪ {a, b}≥2) = {a, b}∗ \ {ε, a},

which we have already seen that is a 2−2-approximate solution.
Checking in polynomial time whether the assignment from Lemma 7.8 is actually a solution

can be done by using tree-like automata (see [BN01] for details). Overall, we obtain the
following for d1.

Theorem 7.9. Given an equation of the form (7.1), the approximate matching problem w.r.t.
d1 with threshold p is decidable in polynomial time.

7.4 Hardness for d0 and d2

In the following, we prove that approximate matching w.r.t. d0 and d2 is NP-hard for FL0.
We provide a reduction of an (arbitrary) instance of Max-±Pos-2SAT (see Section 7.5 for
details, as well as a proof of NP-hardness of that problem) to an instance of approximate
matching w.r.t. md0 and md2 . Since the reduction will only require a single concept name,
there is no need for a combining function f ; equivalently, we can assume that identity is the
combining function.2 Hence we omit f from the notation of the distance.

2If a combining function f other than the identity is to be used, the same proof works by changing the threshold
p we obtain below to f (p).

7.4 Hardness for d0 and d2 117

Assume that we are given an instance I of Max-±Pos-2SAT, i.e., a formula Φ =
∧n

i=1 fi
with fi being of the form

φ1 = x1 ∨ x2 and φ2 = ¬ (x1 ∨ x2) .3 (7.4)

over the variables X = {x1, . . . , xm}, and an integer p. Recall that the decision problem is
whether exists a satisfying assignment v, i.e., an assignment that satisfies at least p of the n
conjuncts of Φ.

Intuitively, every conjunct will correspond to a chain of value restrictions, i.e., a word
over NR. For positive formulas, this will be chains of value restrictions that appear in the
concept description. If such a chain of value restrictions is not matched by the assignment
on the concept pattern, meaning that the corresponding formula is violated, this word would
contribute to the difference between the concepts. On the other hand, negative formulas
will correspond to chains of value restrictions that do not appear in the concept description
but might occur in the (description obtained after we apply a substitution to the) concept
pattern, depending on the substitution. This will be the case if the corresponding formula is
violated, and again the distance between the concepts will increase.

We construct the approximate matching problem I ′ w.r.t. md0 and md2 by setting

• C = ∀K0.A, where K0 = {an−i bi | 1≤ i ≤ n∧ fi positive}, and

• D =
dm

j=1∀L j .X j , where L j = {an−i bi | x j ∈ Var(fi)} for j = 1, . . . , m,

thus obtaining the problem C ≡? D. For d0 we set the threshold to q = n− p+ 1, while for
d2 to q = n−p+1

2·4n .4

Lemma 7.10. The original instance I has a satisfying assignment iff I ′ has a q-approximate
matcher.

Proof. For the only if direction, assume that I has a satisfying assignment v : X → {0,1}.
Define the substitution σ(X i) = ∀Mi .A, where

Mi =

¨

{ε} if v(x i) = 1

; otherwise
.

Note that

md0(C ,σ(D)) = d0(K0,
m
⋃

i=1

Li Mi) = |K0∆
m
⋃

i=1

Li Mi|, and

md2(C ,σ(D)) = d2(K0,
m
⋃

i=1

Li Mi) = µ(K0∆
m
⋃

i=1

Li Mi).

Obviously, K0∆
⋃m

i=1 Li Mi ⊆ {an−i bi | 1≤ i ≤ n}. Making use of the following claim, the
result is immediate.

Claim. v(fi) = 0 ⇐⇒ an−i bi ∈ K0∆
⋃m

j=1 L j M j .

3Formulas of the form φ1 will be referred to as positive, while formulas of the form φ2 will be referred to as
negative.

4Note that, if encoded in binary, this threshold is linear in the size of the original instance.

118 Chapter 7. Approximate matching

Assume that fi is positive, i.e., of the form x i1∨ x i2 . Then, by construction of I ′, an−i bi ∈ K0.
Observe that, on the right hand side, an−i bi is obtainable only if for at least one j ∈ {i1, i2},
X j is nonempty.

Since v(fi) = 0, this means that v(x j) = 0 for j = i1, i2, which in turn implies that M j = ;
for j = i1, i2. Thus, an−i bi cannot be obtained on the right hand side, and thus is in the
symmetric difference.

Likewise, if fi is negative, an−i bi 6∈ K0. But v(fi) = 0 now means that (at least) one of the
x j is evaluated to 1, thus implying that one of the M j contains ε. This time, we obtain that
an−i bi is on the right hand side, and thus is in the symmetric difference.

The reverse implication is completely analogous and the proof of the claim is complete.
Since v is a satisfying assignment, there are at most n− p formulas fi such that v(fi) = 0.

From the claim, we obtain that |K0∆
⋃m

i=1 Li Mi| ≤ n − p < n − p + 1, which is exactly
the threshold for d0. For d2, since all words in the symmetric difference are of length n,
d2(K0,

⋃m
j=1 L j M j)≤

n−p
2·4n <

n−p+1
2·4n , thus σv is a q-approximate matcher.

For the if direction, assume that I ′ has a q-approximate matcher σ. From Lemma 7.4
and the observation that preceeds it, there is also a q-approximate matcher σ′ such that
σ′(X i) = ∀Mi .A with Mi ⊆

⋃

v∈Li
v−1K0 = {ε} for every i.

Define the truth assignment vσ′(x i) = 1 ⇐⇒ σ′(X i) = {ε}. An argument completely
analogous to the one used for the only if direction completes the proof. �

Example 7.11. The above reduction can easily be understood with an example. Assume we are
given the formula Φ =

�

x1∨ x3

�

∧
�

x2∨ x3

�

∧
�

¬(x1∨ x3)
�

∧
�

¬(x1∨ x2)
�

. The chains of value
restrictions corresponding to these conjuncts are respectively a3 b, a2 b2, ab3, b4. We obtain

• K0 = {a3 b, a2 b2}, since the first and second formulas are positive,

• L1 = {a3 b, ab3, b4}, since x1 occurs in the first, third, and fourth formulas,

• L2 = {a2 b2, b4}, since x2 occurs in the second and fourth formulas, and

• L3 = {a3 b, a2 b2, ab3}, since x3 occurs in the first, second, and third formulas.

One can easily verify that F1 = F2 = F3 = {ε}. An optimal assignment for the original problem
is v that sets x1, x2, x3 to 0,0,1 respectively, which only violates the third formula. This
corresponds to the (optimal as well) substitution σv with σv(X1) = σv(X2) =>, σv(X3) = A,
which outputs ∀{a3 b, a2 b2, ab3}.A in the right-hand side, with ∀ab3.A being the only difference
with the left-hand side. ♦

Thus, we have the main result of this section.

Theorem 7.12. The FL0 approximate matching problem w.r.t. d0 and d2 is NP-complete.

7.5 Max-±Pos-(n)SAT

In this section, we formally define the problem Max-±Pos-(n)SAT, which we already used in
the previous section, and we prove that it is NP-complete via a reduction from the Max-Cut
problem, which is known to be NP-complete [GJ90].

7.5 Max-±Pos-(n)SAT 119

We consider clauses of positive literals and negations of such clauses, i.e., formulas of one
of the following forms:

φ1 =
k
∨

i=1

x i and φ2 = ¬

�

∨̀

i=1

x i

�

. (7.5)

Formulas of the form φ1 will be referred to as positive, while formulas of the form φ2 will be
referred to as negative.

Definition 7.13. Let v : X → {0,1} be a truth assignment of the propositional variables
X = {x1, . . . , xm}. Given a formula f over X , we define Var(f) to be the set of variables
occurring in f . If f is of the form φ1, we have that v(f) = 1 iff for at least one x ∈ Var(f) it
holds that v(x) = 1. If f is of the form φ2, we have that v(f) = 1 iff for every x ∈ Var(f) it
holds that v(x) = 0.

Given a formula Φ =
∧n

i=1 fi with conjuncts of the form (7.5), the satisfiability problem for
positive clauses and their negations (±Pos-SAT) asks whether there is a satisfying assignment,
i.e., an assignment of truth values to the variables s.t. v(fi) = 1 for all i = 1, . . . , m. The special
case when the formulas fi are restricted to contain n variables is called ±Pos-nSAT. ♦

It is obvious that ±Pos-SAT is solvable in linear time. Indeed, one just has to set all variables
that appear in a negative formula to 0, and then check whether any of the formulas of the form
φ1 evaluates to 0 under this assignment. However, we prove that the optimization version
of ±Pos-SAT, that we call Max-±Pos-SAT, is NP-hard. In fact, we will prove it already for the
special case Max-±Pos-2SAT, where the formulas fi are restricted to contain 2 variables.

Definition 7.14. The problem Max-±Pos-2SAT is defined as follows: given a formula
Φ =

∧n
i=1 fi with conjuncts fi of the form (7.5) with k = ` = 2 over the variables X , and an

integer N, determine whether there exists an assignment v : X → {0, 1} that satisfies at least N
conjuncts of Φ. ♦

Proposition 7.15. The problem Max-±Pos-2SAT is NP-complete.

Proof. Containment in NP is obvious by a guess-and-check algorithm. We prove hardness us-
ing a reduction from the Max-Cut problem. Since Max-Cut is an NP-complete problem [GJ90],
we obtain the overall result.

Let G = (V, E) be an undirected graph, for which we want to know whether there exists a
partition V0] V1 = V of V such that there are at least N > 0 edges {u, v} with u ∈ V0 and
v ∈ V1.

We build a corresponding instance Φ of Max-±Pos-2SAT as follows. The variables of Φ are
V]E. Letψ(x , y, z) be the following±Pos-2SAT formula: (x∨ y)∧(x∨ y)∧¬(x∨z)∧¬(y∨z).
For every edge e = {u, v} in G, we add the conjuncts of ψ(u, v, e) to Φ. We show that G has
a cut with at least N crossing edges if, and only if, Φ has an assignment that satisfies at least
N + 2|E| conjuncts.

Let V0] V1 = V be a cut of G with at least N crossing edges. Consider the following
assignment of the variables of Φ to {0,1}. A variable corresponding to a vertex v ∈ V is
mapped to b ∈ {0, 1} if, and only if, v ∈ Vb. A variable corresponding to an edge e = {u, v} is
mapped to b if both u and v are in Vb, and is mapped to an arbitrary value if u and v are in
different sets of the partition. For every edge e = {u, v}, the following cases occur:

120 Chapter 7. Approximate matching

• If u, v ∈ V0, then the first two conjuncts of ψ(u, v, e) are violated, while the last two
conjuncts are satisfied.

• If u, v ∈ V1, then the first two conjuncts of ψ(u, v, e) are satisfied, and the last two
conjuncts are violated.

• If u, v are in different parts, then the first two conjuncts of ψ(u, v, e) are satisfied and
exactly one of the other two conjuncts is satisfied.

Therefore, exactly 3N + 2(|E| − N) = N + 2|E| conjuncts of Ψ are satisfied.
Conversely, consider an assignment s : V] E→ {0, 1} of the variables of Φ that satisfies at

least N + 2|E| conjuncts of Φ. Define a partition V0] V1 = V of V by taking v ∈ Vb if, and
only if, v is mapped to b by the assignment. We claim that this defines a cut with at least N
crossing edges. Note that the maximum amount of satisfiable constraints of ψ is 3, which
is realized by any assignment that assigns different values to x and y, and that if x and y
are assigned the same value, then exactly 2 constraints are satisfied. Suppose that fewer
than N edges cross. This means that fewer than N constraints of the form ψ(u, v, e) are
such that s(u) and s(v) are distinct. As we noted above, exactly 2 conjuncts of ψ(u, v, e) are
satisfied if s(u) and s(v) are equal. This means that only 2|E| conjuncts of Φ are satisfied by
s, a contradiction to the hypothesis that s satisfies at least N + 2|E| conjuncts. �

7.6 Outlook

We have shown in this chapter that the problem of approximate matching in FL0 w.r.t. the
empty TBox is contained in NP for a wide class of distances. Furthermore, we obtained sharp
bounds for certain language distances, proving the problem to be solvable in polynomial time
for d1, while it is NP-complete for d0 and d2. In order to achieve the latter hardness results
we devised an NP-complete satisfiability problem, which, to the best of our knowledge is
novel.

Matching in extensions of FL0 has been investigated in [BKB+99], where the problem
reduces to solving equations that involve infinite languages. Hence, we would like to
investigate whether the results of this chapter can be extended to such equations.

In the next chapter, we will return to the classic (non-approximate) setting, in order to
incorporate TBoxes into matching. It would be interesting to explore whether this is possible
for the approximate case as well.

Chapter 8

Matching in FL0 w.r.t. TBoxes

Until now, we extended unification to the approximate setting in Chapter 6. Furthermore, we
showed in Chapter 7 that the result of matching being of lower complexity than unification
transfers to this setting as well. Following the program we set out in the beginning of this
thesis, it is now time to extend to the other direction, that is, incorporate TBoxes in this
reasoning service. However, we have no guarantee that unification in the presence of TBoxes
is actually decidable. In fact, previous results do not provide any hint on anything else than
unfoldable TBoxes. It hence makes sense to investigate the special case of matching. Since it
is of lower complexity in both the classic and the approximate case, it is intuitively more
probable that we can achieve a positive result. This intuition turns out to be correct, as we
demonstrate below.

In this chapter, we show that matching in FL0 in the presence of general TBoxes is an
EXPTIME-complete problem. Since already subsumption in FL0 w.r.t. TBoxes is EXPTIME-
complete [BBL05], EXPTIME-hardness of this problem is clear. The first main contribution of
this chapter is thus to show the EXPTIME upper bound. We do this by first showing an EXPTIME

upper bound for the problem of testing whether an FL0 matching problem has a matcher
in the extended logic FLreg. Basically, in FLreg one can use regular languages to express
infinite conjunctions of value restrictions. Our proof of the EXPTIME upper bound depends
on a fine-grained analysis of the complexity of subsumption of FLreg concept descriptions
w.r.t. an FL0 TBox. The second step is then to show that an FL0 matching problem has an
FL0 matcher iff it has an FLreg matcher. The second main contribution of this chapter is to
show that the complexity of the matching problem can be lowered from EXPTIME to PSPACE

if one considers TBoxes of a restricted form where the role depth on the left-hand side of a
GCI is not larger than the role depth on the right-hand side.

8.1 The description logic FLreg

The DL FLreg extends FL0 by allowing the use of regular languages L over the alphabet
of all role names NR to express infinite conjunctions of value restrictions. Basically, the
value restriction ∀L.C stands for the (possibly infinite) conjunction

d
w∈L ∀w.C , where (for

w = r1 . . . rk ∈ NR
∗) the expression ∀w.C is an abbreviation for ∀r1. · · ·∀rk.C . To be more

precise, the set CFLreg
(NC, NR) of FLreg concept descriptions over the set of concept names NC

and the set of role names NR is obtained using the following syntax rules:

C ::=> | A | C u C | ∀L.C ,

121

122 Chapter 8. Matching in FL0 w.r.t. TBoxes

where A ∈ NC, L is a regular language over NR, and C ∈ CFLreg
(NC, NR). Again, if there is

no fear of confusion, we will usually omit the sets of concept and role names (also from
the notation) and simply refer to the set of FLreg concept descriptions (CFLreg

). Since the
singleton language {r} for r ∈ NR is regular, every FL0 concept description is also an FLreg
concept description.

The size of an FLreg concept description is defined similarly to the case of FL0, but we
need to further define the size of a concept description of the form C = ∀L.D. Here we
assume that the regular language L is given by a regular expression or an NFA. If the size of
the representation of L is n, then |C | := n+ |D|.

Semantics is again defined using interpretations, as was done in Definition 4.1 for FL0.
Once more, we need to define how the interpretation function is extended to concept
descriptions of the form ∀L.C . This is done as follows:

• (∀ε.C)I := CI ,

• (∀w.C)I := (∀r1. · · ·∀rk.C)I where w= r1 . . . rk ∈ NR
+,

• (∀L.C)I :=
⋂

w∈L(∀w.C)I and in particular (∀;.C)I =∆I .

Subsumption (equivalence) between FLreg concept descriptions w.r.t. an FL0 TBox is
defined identically to the case of FL0: given FLreg concept descriptions C , D and FL0 TBox
T , we say that C subsumes (is equivalent to) D w.r.t. T , in symbols C vT D (C ≡T D), if
CI ⊆ DI (CI = DI) for every model I of T . The relevant decision problem is EXPTIME-
complete. The EXPTIME upper bound follows from the known EXPTIME upper bound for
propositional dynamic logic (PDL) [Pra80; HS85] since FLreg concept descriptions can be
translated into PDL and GCIs can be internalized [Sch91]. The corresponding EXPTIME

lower bound already holds for subsumption between FL0 concept descriptions w.r.t. an FL0
TBox [BBL05], as we’ve seen in Section 4.1.

Given the above semantics of FLreg concept descriptions, a normal form similar to 4.2
for FL0 can be obtained by applying the following equivalences (w.r.t. the empty TBox) as
rewrite rules from left to right:

∀L.(E u F)≡ ∀L.E u∀L.F, ∀L. Au∀L′. A≡ ∀(L ∪ L′). A,

∀L1.∀L2. . . .∀Ln.E ≡ ∀(L1·L2· . . . ·Ln).E,

where E, F are FLreg concept descriptions, A∈ NC, and L, L1, . . . , Ln are regular languages
given as NFAs or regular expressions. In the case of NFAs, one needs to use their closure
under union and concatenation in linear time1 to obtain the new automata in polynomial
time.

Using these rules, given FLreg concept description C can be transformed in polynomial
time into the following normal form:

C ≡ ∀K1. A1 u . . .u∀Kk. Ak, (8.1)

where NC = {A1, . . . , Ak} and K1, . . . , Kk are regular languages over NR (given as regular
expressions or NFAs). Concept names not occuring in C can be treated in the same way as
before.

1See Lemma 3.5.

8.1 The description logic FLreg 123

Later on, we will need to consider such normal forms, but where the regular languages
are given as deterministic finite automata (DFAs). We call this normal form then deterministic
normal form (DNF). A DNF of an FLreg concept description can obviously be obtained from
its normal form by constructing DFAs from the regular expressions or NFAs, which may
however result in DFAs that are exponentially larger than the original regular expressions or
NFAs. In general, this normal form is not unique since different DFAs may accept the same
language. One can make it unique (up to isomorphism of automata) by using minimal DFAs
(see Lemma 3.4).

Value restriction sets with respect to an FL0 TBox can actually be defined for FLreg concept
descriptions in the exact same way as for FL0 concept descriptions, and a characterization
of subsumption identical to Proposition 4.4 can be obtained.

Lemma 8.1. Let T be an FL0 TBox and C , D two FLreg concept descriptions. Then, C vT D
iff LT (D) ⊆ LT (C), and C ≡T D iff LT (D) = LT (C).

Proof. First, assume that C vT D, and consider w ∈ LT (D, A). Then we have
C vT D vT ∀w. A. Transitivity of the subsumption relation implies C vT ∀w. A, and thus
w ∈ LT (C , A).

Second, assume that C 6vT D, and C , D have the normal forms as depicted in (4.2). Then
there is a j, 1 ≤ j ≤ k, such that C 6vT ∀L j . A j. By the semantics of value restrictions in
FLreg, this implies that there is a word w ∈ L j such that C 6vT ∀w. A j . Consequently, we have
w ∈ LT (D, A j) \LT (C , A j), which implies LT (D) 6⊆ LT (C). �

Matching

We will now extend FL0 matching problems to allow for concept variables to be replaced by
FLreg concept descriptions. Other than this, we consider FL0 concept description, concept
pattern, and TBox over NC, NR, NX as input for the problem.

An FLreg substitutionσ is a mapping assigning FLreg concept descriptionsσ(X) to variables
X ∈ NX. The application of such a substitution σ to concept patterns is inductively defined
as usual.

Definition 8.2 (Matching). Let T be an FL0 TBox, C an FL0 concept description, and D an
FL0 concept pattern. The FLreg substitution σ is an FLreg matcher of the matching problem
C ≡?

T D w.r.t. T if C ≡T σ(D). If this matcher is an FL0 substitution, as before, we call it an
FL0 matcher. An FL0 matching problem C ≡?

T D asks whether given such C, D and T there
exists a matcher w.r.t. T or not. ♦

When it matters whether the matcher is an FL0 or an FLreg substitution, we will explicitly
mention that. Otherwise, one can assume that we refer to the more general case of FLreg.

Example 8.3. Let C and D respectively be the following FL0 concept description and FL0
concept pattern (in normal form):

C := ∀{r, s}. Au∀{s}.B, D := ∀{r r}. Au∀{r, s}.X1 u∀{s}.X2.

It is easy to see that L;(C , A) = {r, s}. Since D has the conjunct ∀{r r}. A, we know that the
word rr belongs to L;(σ(D), A) for all substitutions σ. By the characterization of subsumption

124 Chapter 8. Matching in FL0 w.r.t. TBoxes

given in Lemma 8.1, this implies that the matching problem C ≡? D has no matcher w.r.t. the
empty TBox.

However, if we consider C ≡?
T D w.r.t. TBox T := {A v ∀r. A,∀s.B v A}, there actu-

ally exists an FL0 matcher for this problem. Notice that the GCI ∀s.B v A implies that
C vT A. Moreover, A v ∀r. A yields that A vT ∀w. A for all w ∈ {r}∗. Hence, it follows that
LT (C , A) = {s,ε}{r}∗ and LT (C , B) = {s}. By setting σ(X1) := A and σ(X2) := B, we have
that LT (C , A) = LT (σ(D), A) and LT (C , B) = LT (σ(D), B). Thus, Lemma 8.1 implies that σ
is a matcher for C ≡?

T D. ♦

Recall the polynomial-time algorithm for deciding whether an FL0 matching problem has
an FL0 matcher w.r.t. the empty TBox that was introduced in [BN01] and we presented in
Section 7.1. Essentially, it is based on the observation that such a problem has a matcher iff
a certain candidate substitution is a matcher. The algorithm then computes this candidate
substitution and checks whether it is indeed a matcher. Basically, our matching algorithm
proceeds in the same way, but we need to overcome two problems. First, the candidate
substitution is an FLreg substitution rather than an FL0 substitution. Thus, we actually
check whether the problem has an FLreg matcher. However, we then show that the existence
of an FLreg matcher also implies the existence of an FL0 matcher. Second, the candidate
matcher may already be of exponential size. Thus, if we just use the result that subsumption
in FLreg w.r.t. an FL0 TBox is in EXPTIME, we obtain a doubly-exponential upper bound for
the overall complexity of checking whether the candidate substitution really is a matcher. In
order to bring this upper bound down to EXPTIME, we need a more fine-grained analysis of
the complexity of the subsumption problem, which we provide in the next section.

8.2 Subsumption in FLreg w.r.t. an FL0 TBox

Given FLreg concept descriptions C , D and an FL0 TBox T , we are interested in the complexity
of deciding whether C vT D holds or not. Basically, we will use the characterization of
subsumption given in Lemma 8.1 to obtain a subsumption algorithm. However, it turns
out that a model-theoretic variant of this characterization is more appropriate to achieve a
fine-grained complexity analysis that distinguishes between the size of C , D and the size of T .
For subsumption between FL0 concept descriptions w.r.t. an FL0 TBox T , such a semantic
characterization has been introduced in [Pen15; BFP18].

Definition 8.4. Let T be an FL0 TBox and C an FLreg concept description. An interpretation
I = (∆I , .I) is called a functional interpretation if ∆I = NR

∗ and rI := {(u, ur) | u ∈ NR
∗} for

all r ∈ NR. The functional interpretation I is called a

• functional model of C if ε ∈ CI ,

• functional model of T if I is a model of T ,

• functional model of C w.r.t. T if ε ∈ CI and I is a model of T . ♦

Calling such interpretations functional is justified by the fact that they interpret roles as
(total) functions: for every u ∈ NR

∗ and every r ∈ NR, the word ur is the unique r-successor

8.2 Subsumption in FLreg w.r.t. an FL0 TBox 125

of u. As an immediate consequence of this functional interpretation of roles, we have for all
A∈ NC and u, w ∈ NR

∗:
w ∈ (∀u. A)I iff wu ∈ AI .

We define inclusion and intersection of functional interpretations as follows:

• I ⊆ J if AI ⊆ AJ for all A∈ NC;

• I∩J is the unique functional interpretation that satisfies AI∩J = AI∩AJ for all A∈ NC.

It is easy to see that the above classes of functional models are closed under intersection,
i.e., if I and J are both functional models of C w.r.t. T (and likewise of C , or of T), then so
is their intersection I ∩J . This actually not only holds for binary intersection, but also for
arbitrary intersection of functional models. In particular, this implies that there must exist a
least functional model of C w.r.t. T , i.e., a functional model J of C w.r.t. T such that J ⊆ I
holds for all functional models I of C w.r.t. T . There is a close connection between the least
functional models and the value restriction sets introduced in the previous section.

Proposition 8.5. Given an FLreg concept description C and an FL0 TBox T , let
IC ,T = (NR

∗, ·IC ,T) be the functional interpretation satisfying

AIC ,T = {w ∈ NR
∗ | w ∈ LT (C , A)} for all A∈ NC.

Then, IC ,T is the least functional model of C w.r.t. T . ♦

The proof of this proposition is identical to the one given in [BFP18] for the case where C
is an FL0 concept description. Combining this result with Lemma 8.1 we can immediately
conclude the following.

Corollary 8.6. Let T be an FL0 TBox and C, D FLreg concept descriptions. Then C vT D iff
ID,T ⊆ IC ,T .

In order to test the condition ID,T ⊆ IC ,T , we want to represent these least functional
models using tree automata.

Functional interpretations can be represented as NR-trees with labels from the set 2NC .
More precisely, given a functional interpretation I, the 2NC -labeled NR-tree tI corresponding
to I is defined as tI(w) := {A ∈ NC | w ∈ AI}.2 Conversely, any tree t ∈ TωNR,2NC

induces a

functional interpretation It where AIt := {w ∈ NR
∗ | A∈ t(w)} for every A∈ NC. These two

mappings are bijections that are inverse to each other. In the following, we will not always
distinguish between a functional interpretation and its tree representation. For example,
we will say that an automaton recognizes a functional interpretation I rather than use the
(more exact) expression that it recognizes the tree representation tI of I.

In [BFP18] it is shown how to construct an LTA AC ,T that recognizes the functional models
of an FL0 concept description C w.r.t. an FL0 TBox T . If we set C =>, then this automaton
actually recognizes the functional models of T . Thus, the construction and the results in
[BFP18] (in particular, Definition 8 and Lemma 9 of [BFP18]) provide us with the following
results.

2Recall our discussion after Theorem 4.6 on the equivalence between the label sets {}k and 2NC .

126 Chapter 8. Matching in FL0 w.r.t. TBoxes

Proposition 8.7. Given an FL0 TBox T , we can construct an LTA AT such that

L(AT) = {tI | I is a functional model of T }.

The size of AT is exponential in the size of T , and it can be constructed in exponential time.♦

Now, consider an FLreg concept description C = ∀L1. A1 u · · · u ∀Lk. Ak in deterministic
normal form, and let A1, . . . , Ak be the DFAs recognizing the languages L1, . . . , Lk. Similarly
to Lemma 3.21, we can construct an LTA that recognizes all the functional models of C
(and not only the tree representing LT (C), as the lemma would give us). In the following,
we assume that these DFAs are of the form Ai = (Q i , NR, q0

i ,δi , Fi) where Q i is the set of
states, NR the alphabet, q0

i the initial state, δi : Q i ×NR→ Q i the transition function, and
Fi ⊆Q i the set of final states. We can use these DFAs to construct an LTA AC that recognizes
the functional models of C . To be more precise, we define AC := (P,Σ, L,∆, {p0}), where
P :=Q1 × · · · ×Qk, Σ := NR = {r1, . . . , rn}, L := 2{A1,...,Ak}, p0 := (q0

1, . . . , q0
k), and

∆ := {(p,`, p1, . . . , pn) | p = (q1, . . . , qk) ∈ P, {Ai | 1≤ i ≤ k, qi ∈ Fi} ⊆ `,
pi = (δ1(q1, ri), . . . ,δk(qk, ri)) for i = 1, . . . , n }

Lemma 8.8. L(AC) = {tI | I is a functional model of C}.

Proof. Since the automata Ai are deterministic, the automaton AC has at most one run ρ,
where ρ(w) = (δ1(q0

1, w), . . . ,δn(q0
k , w)). For a given tree t, ρ is indeed a run on the tree t iff

the following holds for all w ∈ NR
∗: t(w) contains all concept names Ai with δi(q0

i , w) ∈ Fi ,
i.e., it contains all Ai with w ∈ Li. Consequently, the tree t is accepted by AC iff w ∈ AIt

i

holds for all w ∈ Li . Since w ∈ AIt
i is equivalent to ε ∈ (∀w. Ai)It , this shows that AC accepts

exactly the tree-representations of functional models of C . �

Note that the size of AC is bounded by h(mk), where m is the maximal size of the auto-
mata A1, . . . , Ak, k is the number of concept names occurring in C , and h is a polyno-
mial. In order to obtain an automaton that recognizes all functional models of C w.r.t.
T , we can apply the standard product construction to obtain an automaton recognizing
L(AC)∩L(AT) = {tI | I is a functional model of C w.r.t. T }.

Proposition 8.9. Given an FLreg concept description C in DNF and an FL0 TBox T , we can
construct an LTA AC ,T such that L(AC ,T) = {tI | I is a functional model of C w.r.t. T }. If m
is the maximal size of the DFAs used to represent regular languages in C, k is the number of
concept names occurring in C or T , and τ is the size of T , then the size of AC ,T is bounded by
2h1(τ)·h2(mk) for polynomials h1, h2. ♦

Just as in the case of an FL0 concept description C , the automaton AC ,T can be transformed
into an LTA that accepts exactly the least functional model of C w.r.t. T . This transformation
removes states and transitions (see Definition 10 and Theorem 11 in [BFP18]).

Proposition 8.10. Given an FLreg concept description C in DNF and an FL0 TBox T , we can
construct an LTA bAC ,T such that L(bAC ,T) = {tIC ,T

}. The size of bAC ,T is bounded by the size of
AC ,T . ♦

8.3 The complexity of matching in FL0 w.r.t. TBoxes 127

Now, let T be an FL0 TBox and C , D FLreg concept descriptions in DNF. According to
Corollary 8.6, we have C vT D iff ID,T ⊆ IC ,T . As shown in [BFP18], the latter condition can
be reduced to the emptiness problem for an LTA that is obtained from AC ,T and AD,T using
an appropriate product construction (see the construction above Corollary 12 in [BFP18]).
Since the emptiness problem for LTAs can be decided in linear time, this yields the following
fine-grained complexity result for subsumption.

Theorem 8.11. Let T be an FL0 TBox and C , D FLreg concept descriptions in DNF. Then
subsumption between C and D w.r.t. T can be decided in time at most 2h1(τ)·h2(mk) where m is
the maximal size of the DFAs used to represent regular languages in C , D, k is the number of
concept names occurring in C , D or T , τ is the size of T , and h1, h2 are polynomials.

If we start with arbitrary FLreg concept descriptions C , D, then we can construct equivalent
normal forms in polynomial time without changing the set of concept names occurring in
these concept descriptions. Transforming the regular expressions or NFAs representing the
regular languages in these normal forms into equivalent deterministic automata may produce
DFAs whose size is exponential in the size of C , D. Thus, the maximal size m of the DFAs
occurring in the DNFs of C , D is bounded by 2s where s is the combined size of C , D. Thus,
h2(mk) = h2((2s)k) = h2(2s·k) is still single-exponential in the size of C , D.

Corollary 8.12. Let C , D be FLreg concept descriptions, and T an FL0 TBox. Then subsumption
between C and D w.r.t. T can be decided in time exponential in the combined size of C , D, and
T .

8.3 The complexity of matching in FL0 w.r.t. TBoxes

Since subsumption in FL0 w.r.t. a TBox is EXPTIME-complete [BBL05], matching w.r.t. a TBox
is EXPTIME-hard. In fact, we have E vT F iff the matching problem C ≡? D has a matcher
w.r.t. T , where C = E u F and D = E is a variable-free pattern. This hardness result is, of
course, independent of whether we are looking for a matcher in FLreg or in FL0. In this
section, we will show the corresponding upper bounds, first for the existence of an FLreg
matcher, and then for FL0 matchers.

Deciding the existence of an FLreg-matcher

By applying the normalization rules described above to the FL0 concept pattern D, a given
FL0 matching problem C ≡?

T D can be equivalently stated as an equation of the form:

C ≡?
T E u∀L1.X1 u . . .u∀Lm.Xm (8.2)

where E is an FL0 concept description, L1, . . . , Lm are finite languages over NR (given by
the enumeration of their elements), and X1, . . . , Xm are the concept variables occurring in D.
Generalizing the approach for matching in FL0 without a TBox [BN01], we now show that
an equation of the form (8.2) has an FLreg matcher iff a certain candidate substitution is a
matcher.

Let σ be an FLreg matcher of (8.2) such that σ(X i) is in normal form, and assume that
∀Li, j . A j is the conjunct for the concept name A j inσ(X i). Then, after applying the substitution

128 Chapter 8. Matching in FL0 w.r.t. TBoxes

σ to the right-hand side of the equation (8.2), the value restriction ∀Li·Li, j . A j is a conjunct on
the right-hand side, and thus subsumes C . Lemma 8.1 thus implies that Li·Li, j ⊆ LT (C , A j).
Now, assume that v ∈ Li, j. Then we know that uv ∈ LT (C , A j) must hold for every u ∈ Li,
i.e., v ∈ u−1LT (C , A j) for all u ∈ Li . This shows that Li, j ⊆

⋂

u∈Li
u−1LT (C , A j). At first sight,

this does not help us in our search for matchers since the languages LT (C , A j) are infinite,
and there are thus possibly infinitely many choices for such subsets to consider. However, we
can show that we can restrict our attention to the maximal such sets. To be more precise, we
define for i = 1, . . . , m and j = 1, . . . , k the languages

bLi, j :=
⋂

u∈Li

u−1LT (C , A j).

Since the class of regular languages is closed under building left-quotients and finite inter-
sections, and the languages LT (C , A j) are regular [Pen15, Theorem 5.21], the languages bLi, j
are also regular. Thus, we can use them within FLreg concept descriptions. Consequently, if
we define the candidate substitution bσ as

bσ(X i) := ∀bLi,1. A1 u . . .u∀bLi,k. Ak for i = 1, . . . , m,

then bσ is a well-defined FLreg substitution.

Lemma 8.13. The equation (8.2) has an FLreg matcher iff the candidate substitution bσ is a
matcher of (8.2).

Proof. Since bσ is an FLreg substitution, the if-direction of the proof is trivial. To show the other
direction, assume that equation (8.2) has an FLreg matcher σ, i.e., σ is an FLreg substitution
such that C ≡T E u∀L1.σ(X1)u . . .u∀Lm.σ(Xm). This implies that C vT E. Moreover, the
construction of bσ implies that C vT ∀Li .bσ(X i) for all i, 1≤ i ≤ m since Li·bLi, j ⊆ LT (C , A j)
holds for all j, 1≤ j ≤ k. Consequently, we have C vT E u∀L1.bσ(X1)u . . .u∀Lm.bσ(Xm).

To see the opposite direction, assume that σ(X i) = ∀Li,1. A1u. . .u∀Li,k. Ak for i = 1, . . . , m.
As argued above, the fact that σ is an FLreg matcher of (8.2) implies that Li, j ⊆ bLi, j holds for
all i, 1 ≤ i ≤ m and j, 1 ≤ j ≤ k. Consequently, we have bσ(X i) v σ(X i) for all i, 1 ≤ i ≤ m,
which yields E u∀L1.bσ(X1)u . . .u∀Lm.bσ(Xm)vT E u∀L1.σ(X1)u . . .u∀Lk.σ(Xm)≡T C .
Thus, we can conclude that bσ is a matcher of (8.2). �

This lemma reduces deciding whether (8.2) has an FLreg matcher to deciding whether bσ
is a matcher of (8.2). The latter can be checked as follows.

Lemma 8.14. The candidate substitution bσ is a matcher of (8.2) iff

1. C vT E, and 2. E u∀L1.bσ(X1)u . . .u∀Lm.bσ(Xm)vT C.

The first condition requires testing subsumption of FL0 concept descriptions w.r.t. an FL0
TBox, which can be performed in exponential time. The second condition requires testing
subsumption of FLreg concept descriptions w.r.t. an FL0 TBox. However, we cannot directly
apply Corollary 8.12 since the size of these concept descriptions need not be polynomial in
the combined size of C , D, and T . To show that this test can also be performed in exponential
time, we must use the more fine-grained complexity result for subsumption of FLreg concept

8.3 The complexity of matching in FL0 w.r.t. TBoxes 129

descriptions in DNF w.r.t. an FL0 TBox of Theorem 8.11. To obtain the desired EXPTIME

upper bound, we thus need to show that there are DFAs recognizing the regular languages
in the normal form of E u∀L1.bσ(X1)u . . .u∀Lm.bσ(Xm) that are of size at most exponential
in the combined size of C , D, and T . Assume the normal form of E is ∀K1. A1 u . . .u∀Kk. Ak,
for finite languages K1, . . . , Kk. Then the normal form of E u∀L1.bσ(X1)u . . .u∀Lm.bσ(Xm)
is ∀M1. A1 u . . .u∀Mk. Ak, where

M j = K j ∪ L1·bL1, j ∪ . . .∪ Lm·bLm, j for j = 1, . . . , k.

Lemma 8.15. For all j, 1 ≤ j ≤ k, there is a DFA recognizing M j whose size is at most
exponential in the combined size of C , D, and T .

Proof. We start the proof by constructing DFAs of appropriate size for the languages
bLi, j =

⋂

u∈Li
u−1LT (C , A j). As shown in [Pen15], the languages LT (C , A j) are recognized

by DFAs A j whose sizes are at most exponential in the combined size of C and T . For
every j, 1 ≤ j ≤ k and u ∈ Li, a DFA A j,u for u−1LT (C , A j) is obtained from A j by taking
as new initial state the state reached with u from the initial state of A j. The intersection
⋂

u∈Li
u−1LT (C , A j) can then be realized by building the product automaton Pi, j of the auto-

mata A j,u for all u ∈ Li. The size of Pi, j is exponential in |Li| times the combined size of C
and T , and thus exponential in the combined size of C , D, and T .

Second, let us consider the concatenation Li·bLi, j . For every u ∈ Li we can construct a DFA
Pu

i, j for {u}·bLi, j by adding |u| many states “before” the initial state of Pi, j . A DFA bPi, j for the

union
⋃

u∈Li
{u}·bLi, j = Li·bLi, j can then again be obtained by a product construction. The

exponent |Li| in the size of bPi, j caused by this product construction becomes a factor in the
overall exponent and it is bounded by the size of the pattern D. Consequently, the sizes of
the DFAs bPi, j recognizing Li·bLi, j are again exponential in the combined size of C , D, and T .

Finally, the union K j∪L1·bL1, j∪. . .∪Lm·bLm, j can again be realized by a product construction,
where the exponent m+ 1 caused by this construction again becomes a factor in the overall
exponent and is bounded by the size of the pattern D. �

Together with Theorem 8.11, this lemma yields the desired EXPTIME upper bound.

Theorem 8.16. The problem of deciding whether an FL0 matching problem w.r.t. an FL0 TBox
has an FLreg matcher or not is EXPTIME-complete.

We illustrate our EXPTIME decision procedure using the matching problem of Example 8.3.

Example 8.17. Consider the matching problem C ≡?
T D, where

C := ∀{r, s}. Au∀{s}.B, D := ∀{r r}. Au∀{r, s}.X1 u∀{s}.X2, T := {Av ∀r. A,∀s.B v A}.

We have seen in Example 8.3 that LT (C , A) = {s,ε}{r}∗ and LT (C , B) = {s}. Since
r−1LT (C , A)∩s−1LT (C , A) = {r}∗∩{r}∗ = {r}∗ and r−1LT (C , B)∩s−1LT (C , B) = ;∩{ε} = ;,
the value of the candidate substitution for X1 is bσ(X1) := ∀r∗. A. Regarding X2, we have that
s−1LT (C , A) = {r}∗ and s−1LT (C , B) = {ε}, which yields bσ(X2) := ∀r∗. Au B. With basic
calculations we can verify that bσ is in fact a matcher. This substitution is an FLreg matcher, but
it is not an FL0 substitution. Nevertheless, the matching problem has FL0 matchers, as we have
seen in Example 8.3. Next, we will prove that this is not simply a coincidence. ♦

130 Chapter 8. Matching in FL0 w.r.t. TBoxes

Deciding the existence of an FL0-matcher

We will show that a matching problem of the form (8.2) has an FL0 matcher iff it has an
FLreg matcher. We have shown that any matcher σ of (8.2) with normal form

σ(X i) := ∀Li,1. A1 u . . .u∀Li,k. Ak for i = 1, . . . , m, (8.3)

satisfies Li, j ⊆ bLi, j for i = 1, . . . , m and j = 1, . . . , k. Obviously, this substitution is an FL0
substitution iff the languages Li, j are finite.

Analogously to Lemma 8.14 we can thus show the following lemma characterizing the
existence of FL0 matchers.

Lemma 8.18. Equation (8.2) has an FL0 matcher iff

1. C vT E.

2. There are finite languages Li, j ⊆ bLi, j such that E u∀L1.σ(X1)u . . .u∀Lm.σ(Xm)vT C,
where σ is defined as in (8.3).

We claim that the second condition is satisfied if the candidate substitution bσ satisfies
the corresponding condition. Before we can prove this implication, we need to introduce
some more notation. A possibly negated FL0 concept assertion is of the form C(a) or ¬C(a)
where C is an FL0 concept description and a is an individual name from a set NI of such
names. We extend the semantics of FL0 such that interpretations I assign elements aI ∈∆I

to individual names a ∈ NI. Given a (finite or infinite) set M of such assertions, we say that
M is consistent w.r.t. the FL0 TBox T if there is a model I of T such that aI ∈ CI holds for all
positive concept assertions C(a) in M and aI 6∈ CI holds for all negative concept assertions
¬C(a) in M .

Lemma 8.19. If E u∀L1.bσ(X1)u . . .u∀Lm.bσ(Xm)vT C, then Condition 2 in Lemma 8.18 is
satisfied.

Proof. It is easy to see that E u ∀L1.bσ(X1) u . . . u ∀Lm.bσ(Xm) vT C holds in FLreg iff the
following (possibly infinite) set of assertions is inconsistent w.r.t. the FL0 TBox T :

¦

E(a),¬C(a)
©

∪
m
⋃

i=1

k
⋃

j=1

¦

(∀uv. A j)(a) | u ∈ Li ∧ v ∈ bLi, j

©

.

Since FL0 TBoxes and possibly negated FL0 concept assertions can clearly be translated
into sentences of first-order logic (FOL), compactness of FOL ([Hod97]) implies that there
is a finite set Γ ⊆

⋃m
i=1

⋃k
j=1

¦

(∀uv. A j)(a) | u ∈ Li ∧ v ∈ bLi, j

©

such that {E(a),¬C(a)} ∪ Γ is

inconsistent w.r.t. T . We use Γ to define finite subsets Li, j of bLi, j:

Li, j :=
�

v ∈ bLi, j | there is u ∈ Li such that (∀uv. A j)(a) ∈ Γ
	

.

Then Γ is a subset of the set Γ ′ :=
⋃m

i=1

⋃k
j=1

¦

∀uv. A(a) | u ∈ Li , v ∈ Li, j

©

, which implies

that {E(a),¬C(a)} ∪ Γ ′ is also inconsistent w.r.t. T . By defining σ as in (8.3), this in turn
implies that E u∀L1.σ(X1)u . . .u∀Lm.σ(Xm)vT C . �

8.4 Subsumption and matching w.r.t. forward TBoxes 131

We are now ready to show the following equivalence.

Theorem 8.20. An FL0 matching problem has an FLreg matcher iff it has an FL0 matcher.

Proof. Clearly, an FL0 matcher is also an FLreg matcher. Conversely, assume that the match-
ing problem is of the form (8.2) and that it has an FLreg matcher. Then the two condi-
tions in Lemma 8.14 are satisfied. The first condition coincides with the first condition
in Lemma 8.18 and, according to Lemma 8.19, the second condition implies the second
condition in Lemma 8.18. Thus, Lemma 8.18 yields the existence of an FL0 matcher. �

As an immediate consequence of Theorem 8.16, we thus obtain the following complexity
result.

Corollary 8.21. The problem of deciding whether an FL0 matching problem w.r.t. an FL0
TBox has an FL0 matcher or not is EXPTIME-complete.

8.4 Subsumption and matching w.r.t. forward TBoxes

Let T be an FL0 TBox. We assume in the following that the GCIs in T are of the form

∀v1. A1 u · · · u ∀vs. As v ∀v. A, (8.4)

where v1, . . . , vs, v ∈ NR
∗ and A1, . . . , As, A∈ NC. This is without loss of generality since (i) any

FL0 concept description is equivalent to a conjunction of value restrictions of the form ∀w.B,
and (ii) C v D u E iff C v D and C v E.

Definition 8.22. Let T be an FL0 TBox. Then T is called a forward TBox if all its GCIs are of
the form (8.4) where |vi| ≤ |v| for all i, 1≤ i ≤ s. ♦

For example, the GCI Av ∀r. A can be an element of a forward TBox, but the GCI ∀r.B v A
cannot. We show in the following that restricting to forward TBoxes lowers the complexity of
subsumption and matching from EXPTIME to PSPACE. Actually, the main contribution of this
section is developing the PSPACE subsumption algorithm. The PSPACE matching algorithm
can then be obtained from it by a simple modification.

Subsumption in FL0 w.r.t. forward TBoxes

We assume in the following that all FL0 concept descriptions are conjunctions of value
restrictions of the form ∀w.B for w ∈ NR

∗ and B ∈ NC. Given such a concept description D,
we denote with bD the set of these value restrictions. For example, if D = ∀r r. Au∀s. Au∀s.B,
then bD = {∀r r. A,∀s. A,∀s.B}.

For the same reason that GCIs can be restricted without loss of generality to being of
the form (8.4), we can also restrict our attention to subsumption problems of the form
C vT ∀w. A; instead of checking C vT D directly, it suffices to check whether C vT ∀w. A for
every ∀w. A∈ bD.

The main idea underlying the PSPACE subsumption algorithm presented below is the
following: if C vT ∀w0. A0 then either ∀w0. A0 ∈ bC , or there is some GCI

∀v1. A1 u · · · u ∀vs. As v ∀v. A0

132 Chapter 8. Matching in FL0 w.r.t. TBoxes

with w0 = pv for some p ∈ NR
∗ and C vT ∀pvi . Ai for i = 1, . . . , s. This idea is formalized

using the notion of a derivation tree.

Definition 8.23. Let T be an FL0 TBox, C an FL0 concept description, and ∀w0. A0 a value
restriction. A derivation tree for ∀w0. A0 w.r.t. T is a finite tree T satisfying the following
properties:

1. The nodes of T are labeled with value restrictions, where the root is labeled with ∀w0. A0.

2. If ∀w. A labels a node k of T and ∀w1. A1, . . . ,∀ws. As are the labels of its children
k1, . . . , ks, then there is a GCI g in T of the form:

g : ∀v1. A1 u . . .u∀vs. As v ∀v. A

and a word p ∈ NR
∗ such that w = pv and wi = pvi for all i = 1, . . . , s. Each child

node ki with label ∀wi . Ai is assigned the following two additional labels: the GCI-used
g(ki) = g and the prefix d(ki) = p. For the root k0 we set g(k0) = ⊥ (standing for “no
GCI”) and d(k0) = w0.

We denote as TT (∀w0. A0) the set of all derivation trees for ∀w0. A0 w.r.t. T . The set of value
restrictions labeling the leaves of such a tree T is denoted as L(T). We say that T is a derivation
tree for C v ∀w0. A0 w.r.t. T if L(T) ⊆ bC, and denote the set of such trees with TT ,C(∀w0. A0).
Finally, VT ,C consists of the value restrictions ∀w0. A0 such that TT ,C(∀w0. A0) 6= ;. ♦

Derivation trees can be used to obtain the following characterization of subsumption in
FL0 w.r.t. TBoxes.

Lemma 8.24. Let T be an FL0 TBox, C an FL0 concept description, and ∀w0. A0 a value
restriction. Then, C vT ∀w0. A0 iff there exists a derivation tree for C v ∀w0. A0 w.r.t. T .

Proof. The if-direction can be shown by a simple induction over the size of the derivation
tree.

To prove the only-if direction, we use the set VT ,C to construct a functional interpretation
as follows: let JT ,C be the functional interpretation such that

AJT ,C := {w | ∀w. A∈VT ,C} for all A∈ NC.

We show that JT ,C is a model of T . Let E v F ∈ T and w ∈∆JT ,C be such that w ∈ EIT ,C . We
can assume that E v F is of the form (8.4). Since w ∈ EJT ,C , this means that wvi ∈ (Ai)JT ,C

for all i, 1 ≤ i ≤ s. Hence, by the definition of JT ,C , we have that ∀wvi . Ai ∈ VT ,C for
all i, 1 ≤ i ≤ s. By definition of VT ,C we thus know that there exist derivation trees
T1 ∈ TT ,C(∀wv1. A1), . . . , Ts ∈ TT ,C(∀wvs. As). From this, it is clear that one can build a
derivation tree T ∈ TT ,C(∀wv. A). This implies that wv ∈ AIT ,C and thus w ∈ (∀v. A)JT ,C .
This shows that JT ,C is a model of T .

Finally, notice that ∀w. A ∈ VT ,C for all ∀w. A ∈ bC . Hence, by the definition of JT ,C , we
have that ε ∈ CJT ,C . Since C vT ∀w0. A0, this implies that ε ∈ (∀w0. A0)JT ,C , and thus
w0 ∈ A

JT ,C

0 . This yields ∀w0. A0 ∈VT ,C , which shows TT ,C(∀w0. A0) 6= ; as required. �

8.4 Subsumption and matching w.r.t. forward TBoxes 133

Using this lemma, we can try to decide whether C vT ∀w0. A0 as follows. Start with the
tree that has just one node k0 labeled with ∀w0. A0. If this label belongs to bC , then stop with
success. Otherwise, try to find a GCI that allows to expand the node k0 by adding children
with appropriate labels (see 2. in Definition 8.23). If the subsumption C vT ∀w0. A0 holds,
then there must be such a GCI. Thus, if there is none, we can stop with failure. Now assume
that we have already generated a derivation tree T for ∀w0. A0. If L(T) ⊆ bC , then we can
stop with success. Otherwise, we pick a leaf whose label does not belong to bC and try to
expand it using an appropriate GCI. If no such GCI exists, we stop with failure. Otherwise,
we continue the expansion process until a failure case occurs or the labels of all leaves belong
to bC .

As described until now, this approach does not yield a PSPACE algorithm for subsumption
for two reasons. First, the generated derivation trees may grow to having exponential size.
Second, expansion need not terminate unless we install an appropriate cycle check, but then
keeping the information necessary to detect cycles may require exponential space.

The main idea to solve the first problem is that we actually need not store the whole
derivation tree T . It is sufficient to know the value restrictions in L(T)\ bC (together with the
prefix label of the corresponding leaf). In fact, the value restrictions in L(T) \ bC are the ones
that require further expansion. In order to ensure that this information can be represented
using only polynomial space, we restrict the choice of which leaf is expanded next.

Definition 8.25. Let T, T ′ be derivation trees for ∀w0. A0 w.r.t. T . We write T → T ′ if T ′ is
obtained from T by expanding a leaf whose label belongs to L(T) \ bC, where among the eligible
such leaves we choose one whose prefix label has maximal length. ♦

The following proposition is an easy consequence of Lemma 8.24 and the fact that the
order of leaf expansion is irrelevant.

Proposition 8.26. Let T be an FL0 TBox, C an FL0 concept description, and ∀w0. A0 a
value restriction. Then, C vT ∀w0. A0 iff there exists a sequence T0 → T1 → . . . → Tn of
derivation trees for ∀w0. A0 w.r.t. T such that T0 has just one node k0 labeled with ∀w0. A0 and
Tn ∈ TT ,C(∀w0. A0). ♦

When checking for the existence of such a sequence T0→ T1→ . . .→ Tn, it is sufficient to
keep only L(Ti)\ bC as well as the prefix labels of the leaves that yield these value restrictions
in memory.3 Thus, our algorithm works with sets consisting of elements of the form (∀w. A, p)
where ∀w. A is the value restriction label and p is the prefix label of a leaf. We now show that
the cardinality of these sets is polynomial in the size of T , C , and ∀w0. A0, and that their
elements come from an at most exponentially large base set. In fact, this then implies that
there are only exponentially many such sets.

Given a derivation tree T , we denote the set of prefixes of nodes whose value restrictions
belong to L(T) \ bC with P(T). In addition, we denote the prefix order on words with �.

Lemma 8.27. Let T be a forward TBox, and T0→ T1→ . . .→ Tn be a sequence of derivation
trees for ∀w0. A0 w.r.t. T where T0 is as described in Proposition 8.26. Then, for each i, 0≤ i ≤ n,

1. the elements of P(Ti) are linearly ordered by the prefix order �;

3Strictly speaking, different leaves could be labeled with the same value restriction ∀w. A, but clearly we need
to expand only one of them into a derivation tree for C v ∀w. A.

134 Chapter 8. Matching in FL0 w.r.t. TBoxes

2. the set L(Ti)\ bC contains at most |w0| · t distinct value restrictions, where t is the number
of distinct value restrictions occurring in the left-hand sides of the GCIs in T .

Proof. 1. Since T0 has only one leaf, it trivially satisfies the property required by the lemma.
Now assume that (P(Ti),�) is a totally ordered set. Let ` be the leaf of Ti that is expanded
when going from Ti to Ti+1, ∀w. A its value restriction label and p its prefix label, k1, . . . , ks
the children of ` in Ti+1, and p′ the prefix label of these children. It is easy to see that
P(Ti+1) ⊆ P(Ti)∪ {p′}. In addition, by the definition of node expansion, both p and p′ are
prefixes of w, and thus p � p′ or p′ ≺ p. Since p is of maximal length in P(Ti) and P(Ti) is
linearly ordered w.r.t. �, all the elements of P(Ti) are prefixes of p. Thus, independently of
whether p � p′ or p′ ≺ p, the set P(Ti)∪ {p′} is also linearly ordered w.r.t. �.

2. The restriction to forward TBoxes implies that each value restriction ∀w. A occurring in a
derivation tree of ∀w0. A0 satisfies |w| ≤ |w0|. Since each prefix is a prefix of such a word w,
this length restriction also holds for the prefixes. A linearly ordered set of prefixes of length
at most |w0| can clearly have at most |w0| elements. Finally, if ∀w. A is the value restriction
label of a leaf ` with prefix label u, then w = uvi where ∀vi . Ai occurs on the left-hand sides
of some GCI in T . �

The second part of this lemma shows that representing such a value restriction set L(Ti)\ bC
requires only polynomial space. In addition, there can be only exponentially many different
such sets. In fact, we have seen that the value restrictions ∀w. A occurring in these sets satisfy
|w| ≤ |w0|. In addition, these words w contain only role names occurring in the input. Thus,
there are only exponentially many value restrictions that can potentially occur in these sets,
and consequently there are only exponentially many possibilities for choosing a polynomial
number of them. Our PSPACE algorithm thus non-deterministically generates a sequence
S0, S1, S2, . . . of such sets reflecting a sequence T0→ T1→ T2→ . . . of derivation trees, and
keeps only the most recent such set in memory. To solve the termination issue, we do not test
for cycles (since this would require keeping all the generated sets in memory), but in each
step increment an appropriate exponential counter (which needs only polynomial space),
which stops the algorithm with failure when it overflows. In fact, such an overflow indicates
that there must be a repetition in the sequence (i.e., i < j such that Si = S j), and thus a
shorter sequence would yield the same result.

Below we formally present this NPSPACE algorithm for deciding subsumption w.r.t. forward
FL0 TBoxes, and prove its correctness. Recall that t denotes the number of distinct value
restrictions occurring in the left-hand sides of the GCIs in T .

Lemma 8.28 (Termination). Algorithm 2 is a terminating non-deterministic PSPACE proced-
ure.

Proof. Termination of the procedure is guaranteed due to the use of the counter c. To see
that it is a non-deterministic PSPACE procedure, notice that each run of the procedure needs
to store only the current content of the set S, the number k, and the counter c.

• Regarding the set S, it contains pairs of the form (∀w. A, p) where p � w. According
to Lemma 8.27, we have that the set P = {p | (∀w. A, p) ∈ S} is a linearly ordered set
w.r.t. �, and that |w| ≤ |w0|. Moreover (∀w. A, p) ∈ S only if w = w0 and A= A0, or
w = pv and ∀v. A is a value restriction occurring in the left-hand side of a GCI in T .
Hence, S may contain at most |w0| · t pairs, and the size of each pair is linear in |w0|.

8.4 Subsumption and matching w.r.t. forward TBoxes 135

Algorithm 2: Subsumption in FL0 with respect to forward TBoxes

Input: Forward FL0 TBox T , FL0 concept description C , and value restriction
∀w0. A0.

Output: “yes” if C vT ∀w0. A0, and “fail” otherwise.
1 if ∀w0. A0 ∈ bC then
2 return yes
3 end
4 S := {(∀w0. A0, w0)};
5 c := 0 (c is stored in binary);

6 k := ((|NR|+ 1) · t)|w0|2·t (k is stored in binary);
7 while S 6= ; and c ≤ k do
8 non-deterministically choose (∀w. A, p) ∈ S with longest p;
9 non-deterministically choose a GCI g : ∀v1. A1 u · · · u ∀vs. As v ∀v. A

such that w= p′v for some p′ ∈ NR
∗;

10 (fail if there is no such GCI);
11 S := (S \ {(∀w. A, p)})∪ {(∀p′vi . Ai , p′) | i = 1, . . . , s and ∀p′vi . Ai /∈ bC};
12 c := c + 1;
13 end
14 return yes if S = ; and fail otherwise

• The number assigned to k is exponential in the size of T , C and w0, and the value of c
never exceeds k. Hence, their binary representation can be stored in space polynomial
in the size of T , C and w0.

Thus, every run of Algorithm 2 uses space polynomial in the size of T , C and ∀w0. A0. �

The following two lemmata show that Algorithm 2 is sound and complete.

Lemma 8.29 (Soundness). If Algorithm 2 answers yes, then C vT ∀w0. A0 holds.

Proof. Assume that the algorithm has a successful run performing n ≥ 0 iterations of the
while loop. Let S0 = {(∀w0. A0, w0)} and S1, . . . , Sn be the sets corresponding to S after the
ith-iteration of the while loop.

The following claim can easily be proved by induction on n− i:

For all 0≤ i ≤ n and all (∀w. A, p) ∈ Si we have C vT ∀w. A.

Since the algorithm answers yes, we have Sn = ;, and thus the base case for i = n is trivially
true.

Assuming that it holds for 0 < i ≤ n, we prove that it also holds for i − 1. For this,
let (∀w. A, p) ∈ Si−1. If (∀w. A, p) ∈ Si, the application of induction completes the proof.
Otherwise, (∀w. A, p) is the pair selected by the algorithm to obtain Si from Si−1. This
means that there exists a GCI g : ∀v1. A1 u . . . u ∀vs. As v ∀v. A in T such that w = p′v
for some p′ ∈ NR

∗. According to the algorithm, for each ∀p′v j . A j, either (∀p′v j . A j) ∈ bC
or (∀p′v j .A j , p′) ∈ Si. In both cases, we have that C vT ∀p′v j . A j (the latter by induc-
tion). This means that C vT ∀p′v1. A1 u . . .u∀p′vs. As. Distributivity of ∀p′ over u implies
C vT ∀p′.(∀v1. A1u. . .u∀vs. As). Hence, since w = p′v, the application of g yields C vT ∀w. A.

136 Chapter 8. Matching in FL0 w.r.t. TBoxes

Thus, since S0 = {(∀w0. A0, w0)}, we obtain that C vT ∀w0. A0. �

In principle, our proof of completeness considers a sequence T0 → T1 → . . . → Tn of
derivation trees for ∀w0. A0 w.r.t. T such that T0 has just one node labeled with ∀w0. A0 and
Tn ∈ TT ,C(∀w0. A0). It then transforms this sequence into a sequence of sets S0, S1, . . . , Sn by
considering the value restrictions not in bC labelling the leaves of the trees Ti (together with
the prefix label of the respective leaf). Unfortunately, this sequence of sets need not always
be a sequence of sets that can be produced by our algorithm. In fact, it may be the case that
Ti contains several leaves with label ∀w. A and maximal prefix u. If one of these leaves is
expanded in the transition Ti → Ti+1, then the others remain in Ti+1, and thus their label
∀w. A and prefix u remains in Si+1. However, one can assume without loss of generality that
all such leaves are expanded simultaneously in the same way. Let us denote the transition
relation on derivation trees obtained this way by→s. It is easy to see that Proposition 8.26
and Lemma 8.27 also hold with→s in place of→.

Lemma 8.30 (Completeness). If C vT ∀w0. A0, then Algorithm 2 answers yes.

Proof. Assume that C vT ∀w0. A0. If ∀w0. A0 ∈ bC , then Algorithm 2 immediately an-
swers yes. Otherwise, by (the →s-variant of) Proposition 8.26, there exists a sequence
T0→s T1→s . . .→s Tn of derivation trees for ∀w0. A0 w.r.t. T such that T0 has just one node
labeled with ∀w0. A0 and Tn ∈ TT ,C(∀w0. A0). We will now show how T0→s T1→s . . .→s Tn
can be used to produce a successful run of the algorithm. Let us start by constructing a
sequence of sets S0, S1, . . . , Sn as follows:

• S0 = {(∀w0. A0, w0)}.

• For all 0≤ i < n, the set Si+1 is constructed from Si as follows. Since Ti →s Ti+1, Ti+1
is obtained from Ti by expanding one leaf `i of Ti with label ∀wi . Ai (or several such
leaves) such that:

– ∀wi . Ai ∈ L(Ti) \ bC and d(`i) = pi is of maximal length.
– There exists a GCI gi of the form ∀v1. A1u . . .u∀vs. As v ∀v. Ai such that p′v = wi

for some p′ ∈ NR
∗ and ∀p′v j . A j ∈ L(Ti+1), (1≤ j ≤ s).

Then Si+1 := (Si \ {(∀wi . Ai , pi)})∪ {(∀p′vi . Ai , p′) | i = 1, . . . , s and ∀p′vi . Ai /∈ bC}.

Using induction on i, we can show the following for all i, 0≤ i ≤ n:

(∀w. A, p) ∈ Si only if there is a leaf ` in Ti with label ∀w. A∈ L(Ti) \ bC and d(`) = p.

Consequently, L(Tn) ⊆ bC implies Sn = ;. Furthermore, notice that starting with S = Si, an
iteration of the while loop resulting in S = Si+1 can be achieved by choosing (∀wi . Ai , pi)
from S and gi from T . Hence, if n≤ k the sequence S0, . . . , Sn yields a successful run of the
algorithm on input T , C and ∀w0. A0.

In case n > k, the counter c would overflow leading to a failing run of the algorithm.
However, S0, . . . , Sn can be transformed into a sufficiently short sequence S0, S j1 , . . . , S jm
inducing a successful run. This is an easy consequence of the following two arguments:

• Suppose there are two indices 0 ≤ i1 < i2 ≤ n such that Si1 = Si2 . Then, we can
transform S0, . . . , Sn into a shorter sequence S0, . . . , Si1 , Si2+1, . . . , Sn satisfying the same

8.4 Subsumption and matching w.r.t. forward TBoxes 137

properties described above for S0, . . . , Sn. Iteratively applying this argument will result
in a sequence S0, S j1 , . . . , S jm , where 1≤ ji ≤ n for all 1≤ i ≤ m and S ji1

6= S ji2
for all

0≤ i1 < i2 ≤ m.

• As seen in Lemma 8.28, each set Si contains at most |w0| · t elements. In addi-
tion, there are at most (|NR| + 1)|w0| · t many different elements a set Si can con-
tain, where we use (|NR|+ 1)|w0| as an over-approximation of the number of words
of length at most |w0| over the alphabet NR. This means that there are at most
((|NR|+ 1)|w0| · t)|w0|·t ≤ ((|NR|+ 1) · t)|w0|2·t different such sets.

Hence, m ≤ k and thus S0, S j1 , . . . , S jm corresponds to a successful run of Algorithm 2 on
input T , C and ∀w0. A0. �

Using the fact that PSPACE = NPSPACE, we thus have shown the desired PSPACE upper
bound for subsumption.

Basically the same algorithm can also be used to handle backward TBoxes, which consist of
GCIs of the form (8.4) where |vi| ≥ |v| for all i, 1≤ i ≤ s. While for such TBoxes expansion
of leaves may increase the length of value restrictions, one can stop with failure whenever a
value restriction is generated that is longer than the longest value restriction in bC .

Theorem 8.31. Subsumption in FL0 w.r.t. forward (backward) TBoxes is in PSPACE.

Matching in FL0 w.r.t. forward TBoxes

We now adapt the NPSPACE subsumption algorithm for forward TBoxes introduced above
to the problem of deciding whether a matching problem has an FL0 matcher. Consider
a matching problem of the form (8.2). According to Lemma 8.18, we need to check the
two conditions stated in this lemma. The first condition is a subsumption test w.r.t. the
forward TBox T , and can thus be performed in PSPACE. Regarding the second test, we
add elements to the finite language Li, j on the fly while performing the subsumption test
E u∀L1.σ(X1)u . . .u∀Lm.σ(Xm)vT C .

Basically, we run the NPSPACE subsumption algorithm on E v ∀w0. A0 for every value
restriction ∀w0. A0 in bC . But we now have two conditions under which a leaf with label
∀w. A j need not be expanded: either ∀w. A j ∈ bE, or there exists i, 1 ≤ i ≤ m, w1 ∈ Li, and
w2 ∈ bLi, j =

⋂

u∈Li
u−1LT (C , A j)with w = w1w2. Checking the second condition requires only

polynomial space. In fact, there are only polynomially many pairs w1, w2 to be considered.
For each of them, we need to check for all u ∈ Li whether uw2 ∈ LT (C , A j). Each of these
tests is a subsumption test C vT ∀uw2. A j, which needs only polynomial space. Note that
for backward TBoxes T , the languages LT (C , A j) are actually finite and contain only words
not longer than the longest value restriction in bC .

Algorithm 3 below formally describes the decision procedure sketched above to solve the
matching problem w.r.t. forward TBoxes.

Lemma 8.32 (Termination). Algorithm 3 is a terminating non-deterministic PSPACE proced-
ure.

Proof. Termination of the algorithm is guaranteed because of the counter and the fact that
there are finitely many value restrictions in bC . To see that it is a non-deterministic PSPACE

138 Chapter 8. Matching in FL0 w.r.t. TBoxes

Algorithm 3: Matching in FL0 with respect to forward TBoxes

Input: A forward FL0 TBox T and a matching problem of the form (8.2).
Output: “yes” if C ≡?

T E u∀L1.X1 u . . .u∀Lm.Xm has an FL0 matcher, and “fail”
otherwise.

1 if C 6vT E then
2 fail
3 end
4 foreach ∀w0. A0 ∈ bC \ bE do
5 S := {(∀w0. A0, w0)};
6 c := 0 (c is stored in binary);

7 k := ((|NR|+ 1) · t)|w0|2·t (k is stored in binary);
8 while S 6= ; and c ≤ k do
9 non-deterministically choose (∀w. A j , p) ∈ S with longest p;

10 if there exists i, 1≤ i ≤ m, w1 ∈ Li , w2 ∈ bLi, j =
⋂

u∈Li
u−1LT (C , A j) with

w= w1w2 then
11 S := S \ {(∀w. A j , p)}
12 else
13 non-deterministically choose a GCI g : ∀v1. A1 u · · · u ∀vs. As v ∀v. A

such that w= p′v for some p′ ∈ NR
∗;

14 (fail if there is no such GCI);
15 S := (S \ {(∀w. A, p)})∪ {(∀p′vi . Ai , p′) | i = 1, . . . , s and ∀p′vi . Ai /∈ bE};
16 end
17 end
18 fail if S 6= ;
19 end
20 return yes

procedure, notice that, like Algorithm 2, it only needs to store the content of the set S, the
counter c and the number k, and be able to perform the check in line 10 in polynomial space.

The proof that we only need polynomial space to store S is the same as in Lemma 8.28.
For the check in line 10, note that there are only polynomially many pairs w1, w2 to be
considered. For each of them, we need to check for all u ∈ Li whether uw2 ∈ LT (C , A j).
Each of these tests is a subsumption test C vT ∀uw2. A j , which needs only polynomial space
according to Theorem 8.31. Hence, the entire algorithm needs only polynomial space. �

Lemma 8.33 (Soundness). If Algorithm 3 answers yes, then C ≡?
T Eu∀L1.X1u. . .u∀Lm.Xm

has an FL0 matcher.

Proof. For all 1≤ i ≤ m and 1≤ j ≤ k we define the set Li, j ⊆ NR
∗ as follows:

Li, j := {w2 | the check in line 10 was invoked for w2 and succeeded}.

8.5 Outlook 139

Clearly, Li, j ⊆ bLi, j and the sets Li, j are finite since line 10 is reached only finitely often during
a successful run of the procedure. Using these sets, we define the following substitution:

σ(X i) =
kl

j=1

∀Li, j . A j , 1≤ i ≤ m.

We use Lemma 8.18 to show thatσ is a solution of the matching problem. Since the algorithm
did not fail, we know that C vT E. Hence, it remains to show the second condition that
E u∀L1.σ(X1)u . . .u∀Lm.σ(Xm)vT C , i.e., E u∀L1.σ(X1)u . . .u∀Lm.σ(Xm)vT ∀w0. A0
for each ∀w0. A0 ∈ bC .

If ∀w0. A0 ∈ bE, then this subsumption holds trivially. If ∀w0. A0 ∈ bC \ bE, then let S0, . . . , Sn
be the sequence of sets S computed by the corresponding iteration of the while loop. Sim-
ilarly to the proof of Lemma 8.29, induction can be used to show that (∀w. A, p) ∈ Si
implies E u∀L1.σ(X1)u . . .u∀Lm.σ(Xm)vT ∀w. A. Since S0 = {(∀w0. A0, w0)}, this implies
E u ∀L1.σ(X1) u . . . u ∀Lm.σ(Xm) vT ∀w0. A0. Thus, we can conclude that
E u∀L1.σ(X1)u . . .u∀Lm.σ(Xm)vT C . �

Lemma 8.34 (Completeness). If C ≡?
T Eu∀L1.X1u . . .u∀Lm.Xm has an FL0 matcher, then

Algorithm 3 answers yes.

Proof. By Lemma 8.18, the following two conditions are satisfied:

1. C vT E.

2. There are finite languages Li, j ⊆ bLi, j such that Eu∀L1.σ(X1)u . . .u∀Lm.σ(Xm)vT C ,
where σ is defined as in (8.3).

The first condition guarantees that the test in Line 1 does not fail. From the second one, we
know that E u ∀L1.σ(X1) u . . . u ∀Lm.σ(Xm) vT ∀w0. A0 for all ∀w0. A0 ∈ bC . By applying
distributivity of value restrictions over conjunction, E u∀L1.σ(X1)u . . .u∀Lm.σ(Xm) can
be transformed into an equivalent concept description D that is a conjunction of value
restrictions. Note that

∀w. A j ∈ bD iff
either ∀w. A j ∈ bE, or there exist 1≤ i ≤ m and w1, w2 ∈ NR

∗

such that w= w1w2, w1 ∈ Li and w2 ∈ Li, j ⊆ bLi, j .
(8.5)

By Lemma 8.30, D vT ∀w0. A0 implies that there is a successful run of Algorithm 2 for the
corresponding subsumption query. Due to (8.5), this is also a successful run of Algorithm 3
for the matching problem C ≡?

T E u∀L1.X1 u . . .u∀Lm.Xm. �

Again, backward TBoxes can be treated similarly. Finally, we obtain the main result of this
section.

Theorem 8.35. Matching in FL0 w.r.t. forward (backward) TBoxes is in PSPACE.

8.5 Outlook

We have shown in this chapter that matching in FL0 w.r.t. TBoxes is in EXPTIME, thus
complementing the positive results for matching w.r.t. TBoxes in EL [BM14]. This is the best

140 Chapter 8. Matching in FL0 w.r.t. TBoxes

possible complexity for matching in this setting since already the subsumption problem is
EXPTIME-hard. One drawback of our approach is the fact that the use of compactness in
Lemma 8.19 does not provide us with a constructive algorithm to compute FL0 matchers. In
particular, we do not even obtain a bound on the size of such matchers, which could potentially
provide us with such a procedure. Furthermore, we have shown that the complexity of
subsumption and matching can be lowered to PSPACE if restricted kinds of TBoxes are
considered. Unfortunately, until now we could not show a matching PSPACE lower bound,
but we believe that for forward TBoxes these problems are indeed PSPACE-complete.

The big open problem in this area is unification in FL0 w.r.t. TBoxes, for which nothing is
known. Note that our approach fails in this setting: the unification problem (w.r.t. the empty
TBox)

X ≡? Au∀r.X

has the FLreg substitution σ = {X 7→ ∀{r}∗. A} is a unifier, but no FL0 unifier. For EL,
decidability of unification w.r.t. TBoxes is also an open problem, but there are positive results
for TBoxes satisfying certain restrictions on cyclic dependencies [BBM12]. It would be
interesting to see whether this restriction or the restrictions we imposed in Section 8.4 of the
present chapter can lead to positive results for unification in FL0 w.r.t. TBoxes.

Chapter 9

Conclusion

As a conclusion to this thesis, we summarize the results obtained, while also discussing
extensions of the current work for future consideration.

9.1 Contributions of the thesis and future work

We started our investigation in the simpler setting of the equational theory ACUI in Chapter 2.
We extended ACUI-unification in two orthogonal directions, which we then brought together.
We first introduced approximate ACUI-unification and explored the computational complexity
of the problem w.r.t. three different measures. For two of these measures, the complexity
increases from P to NP-complete, whereas for one of them it stays in P. We moved on to
study unification in equational theories that are obtained from ACUI by adding a finite
set G of ground identities. We were able to show that ACUIG-unification is of the same
complexity as for ACUI, i.e., polynomial. Finally, we investigated approximate ACUIG-
unification, combining the two extensions. For the measures for which already approximate
ACUI-unification is NP-complete, the same holds for approximate ACUIG-unification, while
for the third measure, the exact complexity depends on the particular set G of ground
identities. We identified a theory G for which the problem is NP-complete, but also a class of
theories G for which approximate ACUIG-unification is in P. Figure 9.1 contains a schematic
description of our results extending ACUI-unification.

ACUI
Unification

approximate
ACUI

Unification

ACUIG
Unification

approximate
ACUIG

Unification

P P or NP

P P or NP

Figure 9.1: Extensions of ACUI unification. The results obtained in this thesis are highlighted.

141

142 Chapter 9. Conclusion

The main purpose of Chapter 3 was to provide the necessary background from formal
language and automata theory that would be needed for the rest of the thesis. The novel
contributions were quite technical. We initially described how infinite trees can be used
to represent tuples of languages on a theoretical level. We then studied how looping tree
automata can be used to (uniquely) define such trees. Next, we provided a direct link from
tuples of languages to LTAs by constructing an LTA accepting (the unique tree corresponding
to) a tuple of languages from the DFAs accepting these languages.

Furthermore, we demonstrated how weighted tree automata with discounting can be
used to express language distances. For this purpose, we used weighted tree automata
with discounting, and reduced the problem of computing the distance to the problem of
computing the behavior of such an automaton on the unlabeled infinite tree. If the weights
of the automaton come from the semiring Rinf, then this behavior can be computed in
polynomial time provided that the employed discounting is nondecreasing or contracting.
An obvious topic for future research is thus to extend these results to discounting that is
neither contracting nor nondecreasing, or to other semirings as weight structures.

The main technical contribution of Chapter 5 is the development of a general framework for
defining concept distance measures (CDMs) for the DL FL0 that are computable and invariant
under equivalence w.r.t. general TBoxes. Our framework is based on a characterization of
equivalence w.r.t. general FL0 TBoxes that uses tuples of formal languages. In particular, we
showed how a language distance can be paired with an appropriate combining function to
yield a proper CDM. In addition, we proved that our framework guarantees that the obtained
CDMs satisfy further properties often required for concept similarity measures.

Furthermore, making use of the results from Chapter 3 we proved computability of such
CDMs in polynomial time in case the corresponding language distance is expressed by a
wLTA.

We have used this framework in Chapter 6, but only in the very limited setting of the
empty TBox. It seems plausible that our framework can be used to define CSMs as well, if
instantiated with wLTAs inducing suitable functions. It would be interesting to see whether it
can output measures that can be employed within one of the other approximation approaches
mentioned in Section 1.3.

In Chapter 6 we have extended unification in FL0 to approximate unification (w.r.t. the
empty TBox). The degree of approximation was defined using a CDM. We demonstrated that
for CDMs defined using language distances, i.e., obtainable by our framework, the problem
can be reduced to approximate solving language equations if the underlying language distance
satisfies certain properties. For a class of such distances we showed decidability of the latter
problem in time exponential in the size of the instance. For the distances d1 and d2 we
showed in particular that the problem actually is complete for EXPTIME. Finally, we laid out
some ideas on how our approach can be used to obtain approximate solutions and how to
solve a variation of the decision problem.

Interesting topics for future research are considering approximate unification for other
DLs for which unification has been investigated. Such instances are the logics FLreg and
FL⊥reg that extend FL0 and for which unification is EXPTIME-complete ([BK01] and [BK02]
respectively), as well as the dual logic EL, for which unification is NP-complete [BM10]. For
this to become possible, however, one would need to define appropriate concept distance
measures in these logics. It would be interesting to see whether one can use similarity
measures for this purpose.

9.1 Contributions of the thesis and future work 143

On the formal language level, we could explore how our results can be used and extended
to investigate approximately solving other kinds of language equations [Kun07].

Furthermore, the study of approximate unification in FL0 is, in a sense, orthogonal to the
one about ACUI. While the first only focuses on how to approximately solve single equations,
the latter deals with how to deal with systems of equations.

In the classical case, this is without loss of generality for FL0, since one can reduce a
system of several equations to be unified to a single one. In fact, not only solvability of the
single equation is equivalent to solvability of the system, but also any substitution that is a
solution in the one case is also a solution for the other.1 In the approximate setting, however,
one has multiple ways to combine the violations from each of the several equations into a
single degree of violation for the entire system to compare to the given threshold. In principle,
it should be possible to implement the ideas from Chapter 2 in the setting of approximate
FL0 unification.

In Chapter 7 we showed that the problem of approximate matching in FL0 (w.r.t. the empty
TBox) is contained in NP for a wide class of distances. Furthermore, we obtained sharp
bounds for certain language distances, proving the problem to be solvable in polynomial time
for d1, while it is NP-complete for d0 and d2. In order to achieve the latter hardness results,
we devised an NP-complete satisfiability problem, which, to the best of our knowledge is
novel.

Matching in extensions of FL0 has been investigated in [BKB+99], where the problem
reduces to solving equations that involve infinite languages. Hence, it is worth investigating
whether the results of this chapter can be extended to such equations.

In Chapter 8 we showed that matching in FL0 w.r.t. TBoxes is in EXPTIME, thus com-
plementing the positive results for matching w.r.t. TBoxes in EL [BM14]. This is the best
possible complexity for matching in this setting since already the subsumption problem is
EXPTIME-hard. One drawback of our approach is the fact that the use of compactness in
Lemma 8.19 does not provide us with a constructive algorithm to compute FL0 matchers. In
particular, we do not even obtain a bound on the size of such matchers, which could poten-
tially provide us with such a procedure. Furthermore, we have shown that the complexity
of subsumption and matching can be lowered to PSPACE if restricted kinds of TBoxes are
considered. Unfortunately, until now we could not show a matching PSPACE lower bound,
but we believe that for forward TBoxes these problems are indeed PSPACE-complete.

The big open problem in this area is unification in FL0 w.r.t. TBoxes, for which nothing is
known. For EL, decidability of unification w.r.t. TBoxes is also an open problem, but there
are positive results for TBoxes satisfying certain restrictions on cyclic dependencies [BBM12].
It would be interesting to see whether this restriction or the restrictions we imposed in
Section 8.4 can lead to positive results for unification in FL0 w.r.t. TBoxes.

Another natural continuation of this research would be to try and extend these results
on matching to other DLs. An evident choice would be FLreg, since it already makes an
appearance in the proofs for FL0. Note, however, that we only consider FLreg concept
descriptions in the presence of an FL0 TBox. Hence our techniques might not suffice for
tackling this problem. Other candidate logics would be the extentions of FL0 from [BKB+99].

Finally, it would definitely make sense to combine the two extensions, as we did for ACUI,
and investigate approximate FL0 unification (or matching) in the presence of TBoxes. Note

1See [BN01] for details.

144 Chapter 9. Conclusion

FL0
Unification / Matching

approximate FL0
Unification / Matching

FL0
Matching with TBoxes

general / restricted

approximate FL0
Unification / Matching

with TBoxes

EXPTIME / P EXPTIME / P or NP

EXPTIME / PSPACE

language
equations

approximate
language
equations

through
FLreg

Figure 9.2: Extensions of FL0 unification and matching. The results obtained in this thesis are
highlighted. In particular, approximate unification has been investigated in Chapter 6,
approximate matching in Chapter 7, and matching in the presence of general and
restricted TBoxes in Chapter 8.

that the CDMs we have defined in Chapter 5 can deal with general TBoxes, and hence can be
used to define this problem. Other than this, however, we do not have a clear idea on how
to tackle this problem. One exception is approximate unification w.r.t. (CDMs using) the
language distance d1 and forward TBoxes. In particular, the definition of d1 guarantees that
we only need to check for violations up to a certain role depth (that is linearly defined by the
input threshold), and forward TBoxes ensure that longer chains of value restrictions cannot
have an influence on this. Hence, we can restrict our search for unifiers to substitutions up
to this depth. Since such substitutions can be of exponential size, and checking subsumption
(and thus also equivalence) w.r.t. a forward TBox can be performed in space polynomial in
the size of the input concept descriptions, we obtain a (potentially very naïve) 2EXPSPACE

algorithm. This could be a first step towards a more detailed investigation.
An overview of the results extending FL0 unification and matching can be seen in Figure 9.2.

Bibliography

[AHM03] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar: ‘Discounting the
Future in Systems Theory’. In Proc. of the 30th Int. Coll. on Automata, Languages
and Programming (ICALP 2003). Volume 2719. Lecture Notes in Computer
Science. Springer, 2003, pages 1022–1037 (cited on page 56).

[BKB+99] F. Baader, R. Küsters, A. Borgida, and D. McGuinness: ‘Matching in Description
Logics’. In Journal of Logic and Computation 9(3): 1999, pages 411–447 (cited
on pages 120, 143).

[Baa96] Franz Baader: ‘Using Automata Theory for Characterizing the Semantics of
Terminological Cycles’. In Annals of Mathematics and Artificial Intelligence 18:
1996, pages 175–219 (cited on pages 2, 3, 7, 11).

[BBM12] Franz Baader, Stefan Borgwardt, and Barbara Morawska: ‘Extending Unification
in EL towards General TBoxes’. In Proc. of the 13th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2012). AAAI Press/The MIT Press,
2012, pages 568–572 (cited on pages 12, 140, 143).

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz: ‘Pushing the EL Envelope’.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). Edited
by Leslie Pack Kaelbling and Alessandro Saffiotti. Edinburgh (UK): Morgan
Kaufmann, Los Altos, 2005, pages 364–369 (cited on pages 77, 86, 121, 122,
127).

[BBF15] Franz Baader, Gerhard Brewka, and Oliver Fernández Gil: ‘Adding Threshold
Concepts to the Description Logic EL’. In Proc. of the 10th Int. Symp. on Frontiers
of Combining Systems (FroCoS 2015). Volume 9322. Lecture Notes in Computer
Science. Springer, 2015, pages 33–48 (cited on page 6).

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors: The Description Logic Handbook: Theory, Imple-
mentation, and Applications. New York, NY, USA: Cambridge University Press,
2003 (cited on pages 1, 75).

[BE16] Franz Baader and Andreas Ecke: ‘Reasoning with Prototypes in the Descrip-
tion Logic ALC using Weighted Tree Automata’. In Proceedings of the 10th
International Conference on Language and Automata Theory and Applications
(LATA 2016), Prague, Czech Republic. Volume 9618. Lecture Notes in Computer
Science. Springer-Verlag, 2016, pages 63–75 (cited on page 6).

145

146 Bibliography

[BFM17] Franz Baader, Oliver Fernández Gil, and Pavlos Marantidis: ‘Approximation
in Description Logics: How Weighted Tree Automata Can Help to Define the
Required Concept Comparison Measures in FL0’. In Proceedings of the 11th
International Conference on Language and Automata Theory and Applications
(LATA 2017), Umeå, Sweden. Edited by Frank Drewes, Carlos Martín-Vide, and
Bianca Truthe. Volume 10168. Lecture Notes in Computer Science. Springer,
2017, pages 3–26 (cited on page 8).

[BFM18] Franz Baader, Oliver Fernández Gil, and Pavlos Marantidis: ‘Matching in the
Description Logic FL0 with respect to General TBoxes’. In Proc. of the 22nd Int.
Conf. on Logic for Programming, Artificial Intelligence and Reasoning (LPAR’18).
Edited by Gilles Barthe, Geoff Sutcliffe, and Margus Veanes. Volume 57. EPiC
Series in Computing. EasyChair, 2018, pages 76–94 (cited on page 9).

[BFP18] Franz Baader, Oliver Fernández Gil, and Maximilian Pensel: ‘Standard and
Non-Standard Inferences in the Description Logic FL0 Using Tree Automata’.
In GCAI 2018, 4th Global Conference on Artificial Intelligence. Edited by Daniel
Lee, Alexander Steen, and Toby Walsh. Volume 55. EPiC Series in Computing.
EasyChair, 2018, pages 1–14 (cited on pages 2, 7, 77, 78, 124–127).

[BK01] Franz Baader and Ralf Küsters: ‘Unification in a Description Logic with Transitive
Closure of Roles’. In Logic for Programming, Artificial Intelligence, and Reason-
ing. Edited by Robert Nieuwenhuis and Andrei Voronkov. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pages 217–232 (cited on page 142).

[BK02] Franz Baader and Ralf Küsters: ‘Unification in a Description Logic with Incon-
sistency and Transitive Closure of Roles’. In Proceedings of the 2002 International
Workshop on Description Logics (DL2002), Toulouse, France, April 19-21, 2002.
2002 (cited on page 142).

[BKM99] Franz Baader, Ralf Küsters, and Ralf Molitor: ‘Computing Least Common Sub-
sumers in Description Logics with Existential Restrictions’. In Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI’99). 1999, pages 96–101 (cited
on page 11).

[BKM00] Franz Baader, Ralf Küsters, and Ralf Molitor: ‘Rewriting Concepts Using Ter-
minologies’. In KR 2000, Principles of Knowledge Representation and Reasoning
Proceedings of the Seventh International Conference, Breckenridge, Colorado, USA,
April 11-15, 2000. 2000, pages 297–308 (cited on page 6).

[BM17] Franz Baader and Pavlos Marantidis: ‘Language equations for approximate
matching in the Description Logic FL0’. In Proceedings of the 31st International
Workshop on Unification (UNIF’17). Edited by Adrià Gascón and Christopher
Lynch. Oxford, UK, 2017 (cited on page 9).

[BMM18] Franz Baader, Pavlos Marantidis, and Antoine Mottet: ‘ACUI Unification modulo
Ground Theories’. In Proceedings of the 32th International Workshop on Uni-
fication (UNIF 2018). Edited by Mauricio Ayala-Rincón and Philippe Balbiani.
Oxford, UK, 2018, pages 37–41 (cited on page 7).

Bibliography 147

[BMO16a] Franz Baader, Pavlos Marantidis, and Alexander Okhotin: ‘Approximate Uni-
fication in the Description Logic FL0’. In Proc. of the 15th Eur. Conf. on Logics
in Artificial Intelligence (JELIA 2016). Edited by Loizos Michael and Antonis C.
Kakas. Volume 10021. Lecture Notes in Artificial Intelligence. Springer-Verlag,
2016, pages 49–63 (cited on page 9).

[BMO16b] Franz Baader, Pavlos Marantidis, and Alexander Okhotin: ‘Approximately Solv-
ing Set Equations’. In Proceedings of the 30th International Workshop on Unifica-
tion (UNIF’16). Edited by Silvio Ghilardi and Manfred Schmidt-Schauß. Porto,
Portugal, 2016, pages 37–41 (cited on page 7).

[BM09] Franz Baader and Barbara Morawska: ‘Unification in the Description Logic
EL’. In Proc. of the 20th Int. Conf. on Rewriting Techniques and Applications
(RTA 2009). Edited by Ralf Treinen. Volume 5595. Lecture Notes in Computer
Science. Springer, 2009, pages 350–364 (cited on pages 11, 12).

[BM10] Franz Baader and Barbara Morawska: ‘Unification in the Description Logic EL ’.
In Logical Methods in Computer Science 6(3): 2010 (cited on pages 5, 142).

[BM14] Franz Baader and Barbara Morawska: ‘Matching with Respect to General
Concept Inclusions in the Description Logic EL’. In KI 2014: Advances in Arti-
ficial Intelligence - 37th Annual German Conference on AI, Stuttgart, Germany,
September 22-26, 2014. Proceedings. 2014, pages 135–146 (cited on pages 12,
139, 143).

[BN01] Franz Baader and Paliath Narendran: ‘Unification of Concept Terms in Descrip-
tion Logics’. In J. of Symbolic Computation 31(3): 2001, pages 277–305 (cited
on pages 2, 5, 7–9, 11, 12, 50, 77, 78, 80–82, 93, 103, 111, 112, 115, 116, 124,
127, 143).

[BN98] Franz Baader and Tobias Nipkow: Term Rewriting and All That. United Kingdom:
Cambridge University Press, 1998 (cited on page 13).

[BN96] Franz Baader and Werner Nutt: ‘Combination Problems for Commutat-
ive/Monoidal Theories or How Algebra Can Help in Equational Unification’. In
Applicable Algebra in Engineering, Communication and Computing 7: Mar. 1996,
pages 309–337 (cited on page 3).

[BO12] Franz Baader and Alexander Okhotin: ‘Solving Language Equations and Dis-
equations with Applications to Disunification in Description Logics and Monadic
Set Constraints’. In Logic for Programming, Artificial Intelligence, and Reasoning
- 18th International Conference, LPAR-18, Mérida, Venezuela, March 11-15, 2012.
Proceedings. 2012, pages 107–121 (cited on page 73).

[BO13] Franz Baader and Alexander Okhotin: ‘On Language Equations with One-sided
Concatenation’. In Fundamenta Informaticae 126(1): 2013, pages 1–35 (cited
on pages 7, 8, 50, 53, 54, 82–84, 94, 97, 98, 103, 104).

[BP10] Franz Baader and Rafael Peñaloza: ‘Automata-based Axiom Pinpointing’. In J.
of Automated Reasoning 45(2): 2010, pages 91–129 (cited on pages 64, 74).

148 Bibliography

[BS93] Franz Baader and Klaus U. Schulz: ‘General A- and AX-unification via optimized
combination procedures’. In Word Equations and Related Topics. Edited by Habib
Abdulrab and Jean-Pierre Pécuchet. Volume 677. Lecture Notes in Computer
Science. Springer, 1993, pages 23–42 (cited on page 24).

[BS96] Franz Baader and Klaus U. Schulz: ‘Unification in the Union of Disjoint Equa-
tional Theories: Combining Decision Procedures’. In J. Symbolic Computation
21: 1996, pages 211–243 (cited on pages 12, 31).

[BS94] Franz Baader and Jörg H. Siekmann: ‘Unification Theory’. In Handbook of
Logic in Artificial Intelligence and Logic Programming. Edited by D. M. Gabbay,
C. J. Hogger, and J. A. Robinson. Oxford, UK: Oxford University Press, 1994,
pages 41–125 (cited on pages 3, 4, 11).

[BS01] Franz Baader and Wayne Snyder: ‘Unification Theory’. In Handbook of Auto-
mated Reasoning. Edited by J.A. Robinson and A. Voronkov. Volume I. Elsevier
Science Publishers, 2001, pages 447–533 (cited on pages 4, 11, 13).

[BT01] Franz Baader and Stephan Tobies: ‘The Inverse Method Implements the Auto-
mata Approach for Modal Satisfiability’. In Proceedings of the International Joint
Conference on Automated Reasoning IJCAR’01. Edited by Rajeev Goré, Alex-
ander Leitsch, and Tobias Nipkow. Volume 2083. Lecture Notes in Artificial
Intelligence. Springer, 2001, pages 92–106 (cited on pages 52, 53, 66, 102).

[Ban22] Stefan Banach: ‘Sur les opérations dans les ensembles abstraits et leur ap-
plication aux équations intégrales’. In Fundamenta Mathematicae 3(1): 1922,
pages 133–181 (cited on page 155).

[Bod65] VG Bodnarchuk: ‘The metrical space of events. Part I’. In Cybernetics and Systems
Analysis 1(1): 1965, pages 20–24 (cited on page 47).

[BM96] Alexander Borgida and Deborah L. McGuinness: ‘Asking Queries about Frames’.
In Proc. of the 5th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR’96). 1996, pages 340–349 (cited on page 111).

[BWH05] Alexander Borgida, Thomas J. Walsh, and Haym Hirsh: ‘Towards Measuring
Similarity in Description Logics’. In Proceedings of the 2005 International Work-
shop on Description Logics (DL2005), Edinburgh, Scotland, UK, July 26-28, 2005.
2005 (cited on pages 5, 6, 85).

[Bra77] Ronald J. Brachman: ‘What’s in a concept: structural foundations for se-
mantic networks’. In International Journal of Man-Machine Studies 9(2): 1977,
pages 127–152 (cited on page 2).

[Bra78] Ronald J. Brachman: ‘Structured inheritance networks’. In. Quarterly Progress
Report No. 1, BBN Report No. 3742: 1978, pages 36–78 (cited on page 2).

[BL84] Ronald J. Brachman and Hector J. Levesque: ‘The Tractability of Subsump-
tion in Frame-based Description Languages’. In Proceedings of the Fourth AAAI
Conference on Artificial Intelligence. AAAI’84. Austin, Texas: AAAI Press, 1984,
pages 34–37 (cited on pages 3, 77).

Bibliography 149

[BL87] Ronald J. Brachman and Hector J. Levesque: ‘Expressiveness and tractability in
knowledge representation and reasoning’. In. Volume 3. Feb. 1987, pages 78–93
(cited on page 6).

[Bra04] Sebastian Brandt: ‘Polynomial Time Reasoning in a Description Logic with
Existential Restrictions, GCI Axioms, and—What Else?’ In Proc. of the 16th Eur.
Conf. on Artificial Intelligence (ECAI 2004). IOS Press, 2004, pages 298–302
(cited on page 6).

[BKT02] Sebastian Brandt, Ralf Küsters, and Anni-Yasmin Turhan: ‘Approximation and
Difference in Description Logics’. In Proceedings of the Eights International
Conference on Principles and Knowledge Representation and Reasoning (KR-02),
Toulouse, France, April 22-25, 2002. 2002, pages 203–214 (cited on page 6).

[BHS87] Hans-Jürgen Bürckert, Alexander Herold, and Manfred Schmidt-Schauß: ‘On
equational theories, unification and decidability’. In Rewriting Techniques and
Applications. Edited by Pierre Lescanne. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1987, pages 204–215 (cited on page 25).

[Cou83] Bruno Courcelle: ‘Fundamental properties of infinite trees’. In Theoretical Com-
puter Science 25(2): 1983, pages 95–169 (cited on page 51).

[dFE05] Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito: ‘A Semantic Similar-
ity Measure for Expressive Description Logics’. In Proc. of Convegno Italiano
di Logica Computazionale (CILC05). Edited by A. Pettorossi. 2005 (cited on
page 85).

[DG84] William F. Dowling and Jean Gallier: ‘Linear-time Algorithms for Testing the
Satisfiability of Propositional Horn Formulae’. In Journal of Logic Programmming
1(3): 1984, pages 267–284 (cited on page 15).

[DKR08] Manfred Droste, Werner Kuich, and George Rahonis: ‘Multi-Valued MSO Logics
Over Words and Trees’. In Fundam. Inf. 84(3,4): Dec. 2008, pages 305–327
(cited on page 74).

[DK06] Manfred Droste and Dietrich Kuske: ‘Skew and infinitary formal power series’. In
Theoretical Computer Science 366(3): 2006, pages 199–227 (cited on pages 58,
64).

[DM10] Manfred Droste and Ingmar Meinecke: ‘Describing Average- and Longtime-
Behavior by Weighted MSO Logics’. In Mathematical Foundations of Computer
Science 2010. Edited by Petr Hliněný and Antonín Kučera. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pages 537–548 (cited on page 62).

[DR09] Manfred Droste and George Rahonis: ‘Weighted automata and weighted logics
with discounting’. In Theoretical Computer Science 410(37): 2009, pages 3481–
3494 (cited on pages 58, 59).

[Eck17] Andreas Ecke: ‘Quantitative Methods for Similarity in Description Logics’. PhD
thesis. PhD thesis. Dresden University of Technology, Germany, 2017 (cited on
pages 6, 85).

150 Bibliography

[EPT15] Andreas Ecke, Rafael Peñaloza, and Anni-Yasmin Turhan: ‘Similarity-based
Relaxed Instance Queries’. In Journal of Applied Logic 13(4, Part 1): 2015.
Special Issue for the Workshop on Weighted Logics for AI 2013, pages 480–508
(cited on pages 6, 85, 86).

[FK15] Sean A. Fulop and David Kephart: ‘Topology of language classes.’ In The 14th
meeting on the mathematics of language. Proceedings of the meeting, MoL 14,
Chicago, IL, USA, July 25–26, 2015. Stroudsburg, PA: Association for Computa-
tional Linguistics, 2015, pages 26–38 (cited on pages 47, 48).

[FV09] Zoltán Fülöp and Heiko Vogler: ‘Weighted Tree Automata and Tree Transducers’.
In Handbook of Weighted Automata. Edited by Manfred Droste, Werner Kuich,
and Heiko Vogler. Springer Berlin Heidelberg, 2009, pages 313–403 (cited on
page 56).

[GJ90] Michael R. Garey and David S. Johnson: Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,
1990 (cited on pages 35, 118, 119).

[HS85] David Harel and Rivi Sherman: ‘Propositional Dynamic Logic of Flowcharts’. In
Information and Control 64(1-3): 1985, pages 119–135 (cited on page 122).

[HLP08] Frank van Harmelen, Vladimir Lifschitz, and Bruce W. Porter, editors: Handbook
of Knowledge Representation. Volume 3. Foundations of Artificial Intelligence.
Elsevier, 2008 (cited on page 2).

[Hod97] Wilfrid Hodges: A Shorter Model Theory. New York, NY, USA: Cambridge Uni-
versity Press, 1997 (cited on page 130).

[HK03] Markus Holzer and Martin Kutrib: ‘Nondeterministic descriptional complexity of
regular languages’. In International Journal of Foundations of Computer Science
14(06): 2003, pages 1087–1102 (cited on page 45).

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman: Introduction to
Automata Theory, Languages, and Computation (3rd Edition) (The Cinderella
Book). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2006
(cited on page 43).

[Jac12] Paul Jaccard: ‘THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1’.
In New Phytologist 11(2): 1912, pages 37–50 (cited on page 47).

[Jan06] Krzysztof Janowicz: ‘Sim-DL: Towards a Semantic Similarity Measurement
Theory for the Description Logic ALCNR in Geographic Information Retrieval’.
In Proceedings of the 2006 International Conference on On the Move to Meaningful
Internet Systems: AWeSOMe, CAMS, COMINF, IS, KSinBIT, MIOS-CIAO, MONET -
Volume Part II. OTM’06. Montpellier, France: Springer-Verlag, 2006, pages 1681–
1692 (cited on page 6).

[JS87] Brigitte Jaumard and Bruno Simeone: ‘On the Complexity of the Maximum
Satisfiability Problem for Horn Formulas’. In Inf. Process. Lett. 26(1): 1987,
pages 1–4 (cited on page 16).

Bibliography 151

[KN86] Deepak Kapur and Paliath Narendran: ‘NP-Completeness of the Set Unification
and Matching Problems’. In Proceedings of the 8th International Conference on
Automated Deduction. Edited by Jörg H. Siekmann. Volume 230. Lecture Notes
in Computer Science. Oxford, UK: Springer, 1986, pages 489–495 (cited on
page 31).

[KN92] Deepak Kapur and Paliath Narendran: ‘Complexity of Unification Problems with
Associative-Commutative Operators’. In Journal of Automated Reasoning 9(2):
Oct. 1992, pages 261–288 (cited on pages 5, 7, 11, 13–15, 24, 31).

[Kep05] David E Kephart: ‘Topology, morphisms, and randomness in the space of formal
languages’. PhD thesis. PhD thesis. University of South Florida, Tampa FL, USA,
2005 (cited on pages 46–48).

[Kle56] Stephen Cole Kleene: ‘Representation of events in nerve nets and finite auto-
mata’. In Automata Studies. Edited by Claude Shannon and John McCarthy.
Princeton, NJ: Princeton University Press, 1956, pages 3–41 (cited on page 44).

[Kle02] Stephen Cole Kleene: Mathematical logic. Reprint of the 1967 original. Mineola,
NY: Dover Publications, 2002 (cited on page 73).

[Kno51] Konrad Knopp: Theory and Application of Infinite Series. New York: Hafner
Publishing Company, 1951 (cited on page 57).

[Kre78] E. Kreyszig: Introductory Functional Analysis With Applications. Wiley Classics
Library. John Wiley & Sons, 1978 (cited on page 155).

[KN06] Manfred Kudlek and Benedek Nagy: ‘Distances of formal languages.’ In PU.M.A.,
Pure Math. Appl. 17(3-4): 2006, pages 349–357 (cited on pages 46–48, 62).

[Kun07] Michal Kunc: ‘What Do We Know About Language Equations?’ In Proc. of
the 11th International Conference on Developments in Language Theory (DLT
2007). Edited by Tero Harju, Juhani Karhumäki, and Arto Lepistö. Volume 4588.
Lecture Notes in Computer Science. Springer-Verlag, 2007, pages 23–27 (cited
on page 143).

[Küs01] Ralf Küsters: Non-standard Inferences in Description Logics. Volume 2100. Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2001 (cited on page 86).

[Leh12] Karsten Lehmann: ‘A Framework for Semantic Invariant Similarity Measures
for ELH Concept Descriptions’. Diploma Thesis. Dresden, Germany: Technische
Universität Dresden, 2012 (cited on page 90).

[LT12] Karsten Lehmann and Anni-Yasmin Turhan: ‘A Framework for Semantic-based
Similarity Measures for ELH-Concepts’. In Proc. of the 13th Eur. Conf. on Logics
in Artificial Intelligence (JELIA’2012). Volume 7519. Lecture Notes in Computer
Science. Springer, 2012, pages 307–319 (cited on pages 5, 6, 85, 86, 89, 90).

[MR09] Eleni Mandrali and George Rahonis: ‘Recognizable Tree Series with Discounting’.
In Acta Cybernetica 19(2): 2009, pages 411–439 (cited on page 58).

[Mar96] Claude Marché: ‘Normalized Rewriting: an Alternative to Rewriting modulo a
Set of Equations’. In Journal of Symbolic Computation 21(3): 1996, pages 253–
288 (cited on page 12).

152 Bibliography

[MIM17] Joao Marques-Silva, Alexey Ignatiev, and Antonio Morgado: ‘Horn Maximum
Satisfiability: Reductions, Algorithms and Applications’. In Progress in Artificial
Intelligence. Edited by Eugénio Oliveira, João Gama, Zita Vale, and Henrique
Lopes Cardoso. Cham: Springer International Publishing, 2017, pages 681–694
(cited on page 16).

[Mun00] J.R. Munkres: Topology. Featured Titles for Topology Series. Prentice Hall,
Incorporated, 2000 (cited on page 155).

[Nav01] Gonzalo Navarro: ‘A Guided Tour to Approximate String Matching’. In ACM
Comput. Surv. 33(1): Mar. 2001, pages 31–88 (cited on page 46).

[Neb90] Bernhard Nebel: ‘Terminological reasoning is inherently intractable’. In Artificial
Intelligence 43: 2 May 1990, pages 235–249 (cited on pages 3, 7).

[PRZ16] Jeff Z. Pan, Yuan Ren, and Yuting Zhao: ‘Tractable approximate deduction for
OWL’. In Artificial Intelligence 235: 2016, pages 95–155 (cited on page 6).

[Pap94] Christos H. Papadimitriou: Computational complexity. Addison-Wesley, 1994
(cited on page 43).

[Pen15] Maximilian Pensel: ‘An automata based approach for subsumption w.r.t. general
concept inclusions in the description logic FL0’. Master’s thesis. Chair for
Automata Theory, TU Dresden, Germany, 2015 (cited on pages 2, 7, 50, 78, 79,
124, 128, 129).

[Per90] Dominique Perrin: ‘Handbook of Theoretical Computer Science (Vol. B)’. In. Ed-
ited by Jan van Leeuwen. Cambridge, MA, USA: MIT Press, 1990. Chapter Finite
Automata, pages 1–57 (cited on page 43).

[PKB55] James W. Perry, Allen Kent, and Madeline M. Berry: ‘Machine literature search-
ing X. Machine language; factors underlying its design and development’. In
American Documentation 6(4): 1955, pages 242–254 (cited on page 1).

[Pra80] Vaughan R. Pratt: ‘A Near-Optimal Method for Reasoning About Action’. In
Journal of Computer and System Sciences 20(2): 1980, pages 231–255 (cited
on page 122).

[Rab72] Michael Oser Rabin: Automata on Infinite Objects and Church’s Problem. Boston,
MA, USA: American Mathematical Society, 1972 (cited on page 52).

[RS15] T. Racharak and B. Suntisrivaraporn: ‘Similarity measures for FL0 concept
descriptions from an automata-theoretic point of view’. In 6th International
Conference of Information and Communication Technology for Embedded Systems
(IC-ICTES). 2015, pages 1–6 (cited on pages 6, 86, 87).

[Rah07] George Rahonis: ‘Weighted Muller Tree Automata and Weighted Logics’. In J.
Autom. Lang. Comb. 12(4): 2007, pages 455–483 (cited on pages 56, 57, 59).

[Rud87] Walter Rudin: Real and Complex Analysis, 3rd Ed. New York, NY, USA: McGraw-
Hill, Inc., 1987 (cited on pages 47, 90).

[Sch91] Klaus Schild: ‘A Correspondence Theory for Terminological Logics: Preliminary
Report’. In Proceedings of the 12th International Joint Conference on Artificial
Intelligence - Volume 1. IJCAI’91. Sydney, New South Wales, Australia: Morgan
Kaufmann Publishers Inc., 1991, pages 466–471 (cited on pages 77, 122).

Bibliography 153

[Sch99] Alexander Schrijver: Theory of Linear and Integer Programming. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley
& Sons, 1999 (cited on page 71).

[She87] Roger N Shepard: ‘Toward a universal law of generalization for psychological
science’. In Science 237(4820): 1987, pages 1317–1323 (cited on page 85).

[Sie89] Jörg H. Siekmann: ‘Unification theory: A Survey’. In Journal of Symbolic Com-
putation 7(3): 1989, pages 207–274 (cited on pages 4, 11).

[Sun13] Boontawee Suntisrivaraporn: ‘A Similarity Measure for the Description Logic
EL with Unfoldable Terminologies’. In 5th Int. Conf. on Intelligent Networking
and Collaborative Systems. IEEE, 2013, pages 408–413 (cited on pages 6, 85,
86).

[Tho90] Wolfgang Thomas: ‘Automata on Infinite Objects’. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B). The MIT Press,
1990, pages 133–192 (cited on page 51).

[VW86] Moshe Y. Vardi and Pierre Wolper: ‘Automata-theoretic techniques for modal
logics of programs’. In Journal of Computer and System Sciences 32(2): 1986,
pages 183–221 (cited on page 52).

[VW94] Moshe Y. Vardi and Pierre Wolper: ‘Reasoning about Infinite Computations’. In
Information and Computation 115(1): 1994, pages 1–37 (cited on page 52).

[Via77] Victor Vianu: ‘The Bodnarchuk Metric Space of Languages and the Topology of
the Learning Space’. In Mathematical Foundations of Computer Science 1977,
Proceedings. 1977, pages 537–542 (cited on page 47).

[Yu97] Sheng Yu: ‘Regular Languages’. In Handbook of Formal Languages (1). 1997,
pages 41–110 (cited on page 43).

[YZS94] Sheng Yu, Qingyu Zhuang, and Kai Salomaa: ‘The state complexities of some
basic operations on regular languages’. In Theoretical Computer Science 125(2):
1994, pages 315–328 (cited on page 45).

154 Bibliography

Appendix: Metric Topology

In this appendix we recall some basic notions from Metric Topology. Formal proofs and
discussion on the results we will now mention can be found in any book on the subject, for
example [Kre78; Mun00].

Given a set X , a metric (or distance) on X is a mapping d : X × X → [0,∞) that satisfies
the properties:

(M1) d(a, b) = 0 ⇐⇒ a = b

(M2) d(a, b) = d(b, a)

(M3) d(a, c)¶ d(a, b) + d(b, c)

In this case, (X , d) is called a metric space. A useful metric on Rk is the Chebyshev distance,
d∞, which for ~x = (x1, . . . , xk), ~y = (y1, . . . , yk) ∈ Rk is defined as

d∞(x,y) = max
i=1,...,k

|x i − yi|.

Given a metric space (X , d), a sequence (an) of elements of X is said to converge to a ∈ X

(written an
d
−→ a) if for every ε > 0 there is an n0 ∈ N s.t. d(an, a)< ε for every n¾ n0. For

a sequence ((an
1 , . . . , an

k))n of elements of Rk, we have that (an
1 , . . . , an

k)
d∞−→ (a1, . . . , ak) iff

an
i

d∞−→ ai for every i = 1, . . . , k. A sequence (an) is called a Cauchy sequence, if for every
ε > 0, there exists an n0 ∈ N, s.t. for every m, n ¾ n0 it holds that d(an, am) < ε. A metric
space (X , d) is called complete, if every Cauchy sequence converges to a point in X . It is well
known that the metric space (Rk, d∞) is complete [Kre78].

Definition A.1. Given a metric space (X , d) a function f : X → X is called a contraction, if
there is a λ ∈ (0, 1) such that d(f (x), f (y))¶ λd(x , y) for any x , y ∈ X . ♦

Theorem A.2 (Banach’s Fixed Point Theorem [Ban22; Kre78]). Let (X , d) be a complete
metric space and a function f : X → X be a contraction. Then there exists a unique fixed point,
i.e., p ∈ X such that f (p) = p.

Furthermore, let (X , d), (Y, d ′) be metric spaces. A function f : X → Y is called continuous, if
for every sequence (an) of X , it holds that

an
d
−→ a =⇒ f (an)

d ′
−→ f (a).

Finally, we provide the formal definition of the infimum of a set of real numbers, which will
be needed in the proofs.

Definition A.3. Given a set of real numbers S, we say that p is the infimum of S, and denote
this by p = inf S if the following two conditions hold:

155

156 Chapter . Appendix: Metric Topology

(a) p ¶ s for all s ∈ S, i.e. p is a lower bound of S,

(b) for all ε > 0, there is an s ∈ S such that s < p+ ε. ♦

Note that this means that if p = inf S, there exists a sequence (sn) of elements of S, s.t.

sn
d∞−→ p. Furthermore, if f is continuous and monotone, then f distributes over infimum in

the following sense.

Lemma A.4. Assume that f : Rn → R is continuous and monotone, and let I1, . . . , In ⊆ R.
Then

inf
(x1,...,xn)∈I1×···×In

f (x i , . . . , xn) = f
�

inf
x1∈I1

x1, . . . , inf
xn∈In

xn

�

.

List of Symbols

Description Logics

NC The set of concept names . 75

NR The set of role names . 75

NX The set of concept variables . 79

u Conjunction . 75

∀r.C Value restriction . 75

> The top concept . 75

LT (C , A) The value restriction set of C w.r.t. A . 78

Sub The set of all substitutions . 80

md, f The concept distance measure induced by d and f . 88

vmT
(σ, C , D) The degree of violation of σ for C and D w.r.t. mT . 93

IC ,T The least functional model of concept description C w.r.t. TBox T 125

bC The set of value restrictions occurring in the normal form of C 131

Languages, Trees, and Automata

Ass The set of all language assignments . 81

finAss The set of all finite language assignments . 81

157

158 List of Symbols

TωΣ,L The set of all L-labeled Σ-trees . 50

Σ∗ The set of all words over the alphabet Σ . 41

Σ≥m The set of all words over Σ of length at least m . 42

tul The unlabeled tree . 60

d0 Language distance . 47

d1 Language distance . 47

d2 Language distance . 48

K · L The concatenation of the languages K and L . 42

K ≡` L The languages K , L are equal up to length ` . 95

K∆ L The symmetric difference of the sets K and L . 42

Kt(F) The language induced by the set of labels F of the tree t 55

L∗ The Kleene star of the language L . 42

Lmi The mirror image of the language L . 42

Lr(A, F) The language defined by the run r of the LTA A and the set of states F . . . 84

RM(t) The set of all runs of the tree automaton M on the tree t 59

tM The tree corresponding to the tuple of languages M . 50

w−1 L The left-quotient of the language L with the word w . 42

Mathematical symbols

List of Symbols 159

inf S The infimum of a set S . 155

Rinf The semiring (R≥0 ∪ {+∞,−∞}, sup,+,−∞, 0) . 57

d
−→ Convergence w.r.t. the metric d . 155

d∞ The Chebyshev distance on Rk . 155

Unification Theory

TΣ(F, V) The set of terms built from Σ, F and V . 13

S(t) The set of constants occurring in the term t . 13

AG The saturation of the set of constants A w.r.t. the identities in G 25

∑

(A) The sum of constants in A . 27

G3c The ground theory encoding 3-colorability . 35

160 List of Symbols

Index

3-colorability, 35

ACUI, 13
unification problem with constants, 14

ACUIG, 24
unification problem with constant re-

striction, 27
alphabet, 41
approximate

language equation, 94
language matching, 113
matching, 112
unification, 93
unifier, 93

assignment, 83

Büchi tree automaton, 51
BTA, see Büchi tree automaton

CDM, see concept distance measure
combined complexity, 24
combining function, 87
complete metric space, 155
concatenation, 41, 42
concept

description, 75
pattern, 79
variable, 79

concept distance measure, 85, 86
continuous, 155
contraction, 155

derivation tree, 132
Description Logics, 1, 2
deterministic finite automaton, 43
DFA, see deterministic finite automaton
discounting, 56, 59

contracting, 70
nondecreasing, 66

distance, 155
DLs, see Description Logics

E-unification, 11
elementary, 11
general, 11
with constants, 11

equivalence, 77
closedness, 86
invariance, 86

FLreg, 121
normal form, 122

FL0, 75
normal form, 77
unification, 80

free constants, 13
functional

interpretation, 124
model, 124

GCI, see general concept inclusion
general ACUIG-unification, 30
general concept inclusion, 76
ground terms, 13

infimum, 155

L-labeled Σ-tree, see tree
language, 42

assignment, 83
equation, 83
expression, 82

language distance, 47
d0, 47
d1, 47
d2, 48

left-quotient, 42
letter, 41

161

162 Index

Linear Programming problem, 71
looping tree automaton, 52
LP problem, see Linear Programming prob-

lem
LTA, see looping tree automaton

matching, 80, 111
Max-±Pos-SAT, 119
Max-HSAT, 16
metric, 46, 155
MinV-ACUI, 23
MinV-ACUIG, 33
MinVEl-ACUI, 21
MinVEl-ACUIG, 33
MinVEq-ACUI, 17
MinVEq-ACUIG, 33

NFA, see nondeterministic finite automaton
nondeterministic finite automaton, 44
normal form, 77

±Pos-SAT, 119

regular expression, 44
regular tree, 51
representing looping tree automaton, 53
rLTA, see representing looping tree auto-

maton

saturation, 25
semiring, 56
substitution, 13, 79
subsumption, 77
symmetric difference, 42
symmetry, 86

TBox, 76
backward, 137
forward, 131
general, 76

term complexity, 24
tree, 50

unary ground theory, 38
unification, 80
unification problem with w.r.t. equational

theory, see E-unification
unifier, 80

value restriction set, 78
Viterbi semiring, 57

weigthed looping tree automaton with dis-
counting, 59

wLTA, see weigthed looping tree automaton
with discounting

word, 41

	Introduction
	Description Logics
	Unification
	Approximate services
	From concepts to languages and automata
	Structure of the Thesis

	Extending unification modulo ACUI
	Introduction
	Unification modulo ACUI
	Approximate unification modulo ACUI
	Minimizing the number of violated equations
	Minimizing the number of violating elements
	Minimizing the number of violations

	Unification modulo ACUIG
	The word problem for ACUIG
	ACUIG-unification with constant restriction
	General ACUIG-unification

	Approximate Unification Modulo ACUIG
	The problems MinVEq-ACUIG and MinV-ACUIG
	The problem MinVEl-ACUIG

	Outlook

	Languages and Automata
	Basic Definitions
	Finitely representing languages: finite automata and regular expressions
	Language Distances
	Finitely representing tuples of languages
	Towards computing language distances
	Weighted looping tree automata
	Expressing language distances
	Further considerations

	Computing the behavior of wLTAs on regular trees
	Computing the behavior on the unlabeled tree in Rinf
	Behavior for nondecreasing discounting
	Behavior for contracting discounting

	More results on tree automata
	Outlook

	Unification in the Description Logic mbbold0mu mumu FL0FL0FL0FL0FL0FL0mbbold0mu mumu FL0FL0FL0FL0FL0FL0FL0
	The Description Logic mbbold0mu mumu FL0FL0FL0FL0FL0FL0mbbold0mu mumu FL0FL0FL0FL0FL0FL0FL0
	Unification
	Reducing unfication to language equations
	Solving language equations

	Concept Distances
	Formal definitions
	Using tuples of languages to define CDMs
	Some instances of CDMs
	Further properties for CDMs
	Computability of CDMs

	Approximate Unification in the Description Logic mbbold0mu mumu FL0FL0FL0FL0FL0FL0mbbold0mu mumu FL0FL0FL0FL0FL0FL0FL0
	Definition
	Reducing to language equations
	Approximately solving language equations
	On computing unifiers and a variation of the decision problem

	Approximate matching
	Classic and approximate matching
	Containment in NP
	Approximate Matching w.r.t. d1
	Hardness for d0 and d2
	Max-Pos-(n)SAT
	Outlook

	Matching in mbbold0mu mumu FL0FL0FL0FL0FL0FL0mbbold0mu mumu FL0FL0FL0FL0FL0FL0FL0 w.r.t. TBoxes
	The description logic mbbold0mu mumu FLregFLregFLregFLregFLregFLregmbbold0mu mumu FLregFLregFLregFLregFLregFLregFLreg
	Subsumption in mbbold0mu mumu FLregFLregFLregFLregFLregFLregmbbold0mu mumu FLregFLregFLregFLregFLregFLregFLreg w.r.t. an mbbold0mu mumu FL0FL0FL0FL0FL0FL0mbbold0mu mumu FL0FL0FL0FL0FL0FL0FL0 TBox
	The complexity of matching in mbbold0mu mumu FL0FL0FL0FL0FL0FL0mbbold0mu mumu FL0FL0FL0FL0FL0FL0FL0 w.r.t. TBoxes
	Subsumption and matching w.r.t. forward TBoxes
	Outlook

	Conclusion
	Contributions of the thesis and future work

	Bibliography
	Appendix: Metric Topology
	List of Symbols

