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Reciprocity of linear systems with
smart materials utilized for precise
measurement techniques

Uwe Marschner1, Günther Pfeifer1 and Eric Starke2

Abstract

In electromechanical measurement techniques, passive transducers and passive electrical networks often interact. In

some applications, continua are considered as part of the system, where fields are formed and waves are propagated. In

this article, networks, continua, and electromechanical transducers feature sufficient amplitude linear behavior in their
environment (e.g. for operation around a bias) and are reciprocal. In addition, all elements of the system have constant

parameters during the measurement. Then, the skillful application of the inherent reciprocity of these systems can lead

to surprisingly useful benefits. This is shown by actual examples from metrology. The examples include the precise deter-
mination of transduction coefficients. It is also shown how the linearity of a system is checked by utilizing reciprocity

relations. Although the facts of the matter are well known, its potential is often overlooked or disregarded in measure-

ment techniques.
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Introduction

The description of time-invariant systems with negligi-

ble nonlinearity by linear networks is not limited to a

single physical domain. In particular, electromechani-

cal and electroacoustic systems of different actuatoric

and sensory applications can be described graphically

with linear networks in the form of a circuit represen-

tation. The heart of such sensors and actuators are

often reciprocal transducers (Gerlach and Dötzel,

2008; Lenk et al., 2010). Such a concise system repre-

sentation not only supports the understanding of the

physical operation of systems in design and analysis

but also supports the application of the linear network

theory allowing significant circuit simplifications in

order to expose the dynamic system core. The circuit

description is also essential for an efficient simulation

of the dynamic system behavior using powerful circuit

simulators.

In addition, linear time-invariant and reciprocal—

sometimes denoted as reversible—networks possess

properties that form the basis for accurate measuring

methods. For example, this way acoustic fields can be

treated in an analytically elegant manner with the help

of reciprocal relations. In this article, the reciprocity in

such networks is justified at the beginning of the article

by the example of an electromechanical transducer.

The transducer can include, for example, piezoelectric

or piezomagnetic materials, which are discussed in

detail next. This is followed by two examples of the

current applications of reciprocity. One application is

the calibration of acceleration sensors. Its specialty is

that a mechanical quantity is determined based only on

electrical measurements, which can be carried out very

precisely. The other application deals with the primary

calibration of laboratory standard microphones. Lower

measurement uncertainties cannot be currently

obtained with any other method. The method does not

depend on the applied material. Furthermore, in the

last section of the article in addition a method is out-

lined, where smallest nonlinearities can be examined

based on reciprocal measurements.

1Institute of Semiconductors and Microsystems, Technische Universität

Dresden, Dresden, Germany
2Institute of Lightweight Engineering and Polymer Technology, Technische

Universität Dresden, Dresden, Germany

Corresponding author:

Uwe Marschner, Institute of Semiconductors and Microsystems,

Technische Universität Dresden, 01062 Dresden, Germany.

Email: uwe.marschner@tu-dresden.de

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1045389X16642531&domain=pdf&date_stamp=2016-05-06


Reciprocity in linear networks with

reciprocal transducers

In an electrical network, the electrical voltage serves as

across quantity and the electrical current as through

quantity at an electrical port or terminal, respectively.

See, for example, Reibiger (2011) for a general intro-

duction to network theory. For any electrical n-port,

which consists of interconnected reciprocal subnet-

works (e.g. resistors, capacitors, inductors, and trans-

formers) and space-limited continua (where all linear

processes are admissible), it can be shown that it is reci-

procal (Desoer and Kuh, 1969; Koenig et al., 1967;

Kuh and Rohrer, 1967; Reinschke and Schwarz, 1976).

The reciprocity property can be checked by hand of

two sample experiments. Given the system E in Figure

1 with six ports, two ports are selected first. In Figure 1,

these are ports 3 and 6; the remaining ports can be

open- or short-circuited. These boundary conditions

have to be retained in both experiments. In the first

experiment, a sinusoidal voltage with the complex mag-

nitude, expressed by the underline, u
6
= û6e

juu6 is

applied at port 6 and the steady-state short-circuit cur-

rent i3,S is measured at port 3. In the second experiment,

the excitation and measurement ports are reversed, that

is, i�
6, S is measured while u�

3
is applied. It turns out that

equation (1) applies for the linkage of the two pairs of

through and across quantities

i3, S

u6
=

i�
6, S

u�
3

ð1Þ

This law indicates the reciprocity of a passive linear

network. It is not limited to electrical systems but also

applies to systems incorporating various physical

structures.

Analogous to the electrical system E, the experi-

ments can be performed on a passive electromechanical

system with reciprocal transducers to detect reciprocity

relations. As stated for electrical systems, the electro-

mechanical system consists of interconnected reciprocal

subnetworks. Besides the electrical elements, these

are, for example, compliances, masses, reluctances,

acoustical masses, and acoustical compliances, as

well as space-limited continua. The across and trough

quantities in different physical subsystems in this article

are listed in Table 1. Reciprocal transducers relate con-

sistently pairs of trough and across quantities of differ-

ent physical structures to each other (Lenk et al., 2010).

These, so-called ‘‘passive,’’ transducers between two

ports do not include internal energy sources, that is, the

total delivered power at one port is provided by the

other port.

With regard to an arbitrary passive linear electrome-

chanical system, reciprocal experiments can cover arbi-

trary electrical and mechanical ports, as emphasized by

Marschner et al. (2013). In the first experiment, for two

selected ports, a voltage un is applied and the blocked

force Fi,S measured. In the second experiment, excita-

tion port and measurement port are exchanged, that is,

the short-circuit current i�n, S measured while the velo-

city v�i is applied. The other ports may remain open- or

short-circuited (or mechanically blocked), but these

boundary conditions have to be kept during both

experiments. The two experiments result in the equality

of the two ratios

F i, S

un
=6

i�n, S

v�i
ð2Þ

For electromechanical transducers, further recipro-

city relations can be derived as a subset of all the trans-

fer functions

nO
i

=6
u�O
F� ð3Þ

yO
u

=6
i�S
F� ð4Þ

FS

i
=6

u�O
v�

ð5Þ

where the plus sign is related to magnetic transducers

and the minus sign to electric transducers. The linked

pairs of flow and differential quantities are marked in

Figure 2. The indices S and O denote short circuit and

open circuit, respectively. In the transducer, only reci-

procal processes are allowed in accordance with ther-

modynamics. For such transducers, the separation of

losses into the surrounding network out of the transdu-

cer succeeds. Electrical and magnetic transducers fulfill

this condition (Lenk et al., 2010).

In metrology, the calibration of accelerometers is a

classic application of the reciprocity relations. A

Figure 1. Reciprocal experiments at an electrical system.

Table 1. Port (terminal) quantities of different physical systems.

Across quantity Through quantity

Electrical system Voltage, u Electrical current, i
Mechanical system Velocity, v Force, F
Acoustic system Pressure, p Volume flow, q
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mechanical calibration source is not required, but any

arbitrary additional electromagnetic transducer can be

used. This application is analyzed in the second part of

the article.

The application of reciprocity relations furthermore

proves to be advantageous when continua are part of

the system. In 1926, Schottky applied the reciprocity

theorems of classical vibration theory for the determi-

nation of reception and transmission properties of elec-

troacoustic transducers. Thus, the effect of an

impacting quasi-spherical wave on a surface element

could be calculated from their emission efficiency.

Schottky illustrates the methodology on the example of

an electrodynamic horn speaker which prefers low fre-

quencies when it is used as receiver. The law led to the

mathematical theory of the receiving cone. The actual-

ity of the methodology is demonstrated by an electroa-

coustic example.

In the last part of the article the linearity of an elec-

tromechanical system is checked by hand of reciprocity

relations, where in addition the excitation signal magni-

tudes are increased. When the related experiments

approve the reciprocity, the system behaves linearly.

When the reciprocity relations are violated, the system

behaves non-linearly. A simple model is applied to

describe the source of nonlinearity.

Reciprocity of piezoelectric transducers

Reciprocity of piezoelectric materials is explicitly

included in their field equations

Dn =
X3

m= 1

e
T
nmEm +

X6

j= 1

dnjTj, n= 1, . . . , 3

Si =
X3

m= 1

d�miEm +
X6

j= 1

sEij Tj, i= 1, . . . , 6 ð6Þ

where D is the electric displacement, e the permittivity, E

the electric field strength, T the mechanical stress, S the

mechanical strain, and s the elastic compliance. The

piezoelectric coefficients dxy = d�xy are equal near the

operating point. The superscript T denotes that this e can

be measured for T = 0. The superscript E denotes the

boundary condition E = 0, where s can be measured.

Application of boundary conditions and integration

gives a device description. It is shown below how the

reciprocity of the constitutive field equations is trans-

ferred to the device equations. In case of a free thick-

ness oscillator, for example, see Figure 3, only the fields

in direction 3 are non-zero

E3,D3 6¼ 0

E1,E2,D2,D1 = 0

T3 6¼ 0

T1, T2, T4, . . . , T6 = 0

ð7Þ

and equation (6) reduces to

D3 = e
T
33E3 + d33T3

S3 = d33E3 + sE33T3
ð8Þ

or, with the elastic coefficient c and the piezoelectric

modulus e to

T3 =
1

sE33
|{z}

c

S3 �
d33

sE33
|{z}

e

E3

D3 = e
T
33 1�

d233

e
T
33s

E
33

� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

e

E3 +
d33

sE33

� �

|fflfflffl{zfflfflffl}

e

S3

ð9Þ

Integration of uniform fields and transitions to com-

plex quantities gives voltage u= lelE, current

i=jvAelD, force F= � AmechT , and velocity

n=jvlmechS. From equation (9) follows

i=jv e
Ael

lel
|{z}

Cb

u+
Ael

lmech

e

|fflffl{zfflffl}

1=Y

v

F= e
Amech

lel
|fflfflffl{zfflfflffl}

1=Y

u�
1

jv
lmech

cAmech
|fflfflffl{zfflfflffl}

nS

v
ð10Þ

Circuit interpretation of equation (10) leads to the

well-known circuit in Figure 4 (Lenk et al., 2010).

Figure 2. Reference arrow directions of electromechanical

transducers for (a) electrical excitation and (b) mechanical

excitation.

Figure 3. Free piezoelectric thickness oscillator (Lenk et al.,

2010).

Marschner et al. 1991



For free thickness oscillators, the network para-

meters can be analytically determined: the transduction

coefficient

Y =
lmechs

E
33

Aeld33
ð11Þ

with the thickness lmech working in actuation and sen-

sing direction, respectively, area Ael of the piezo block

and electrodes, the piezoelectric constant d33, the elastic

constant sE
33
, as well as the short-circuit compliance

nS = sE
33

lmech

Amech

ð12Þ

and the mechanically blocked capacitance

Cb = e
Ael

lel
=Cf �

nS

Y 2
ð13Þ

with permittivity e. The mechanically free capacitance

Cf differs from Cb by the transformed compliance. The

boundary condition–dependent network parameters

for other oscillator types can be found, for example, in

Lenk et al. (2010).

The reciprocity of this transducer device or two-port

is checked exemplarily by means of equations (2) and

(3). To verify equation (2), the transducer in Figure 4 is

excited with a voltage source and a velocity source sub-

sequently. These difference quantities act directly at the

transformer core. All flow quantities of the transducer

core are directly accessible if the related other physical

domain is short-circuited or blocked, respectively. The

first reciprocity relationship can thus be read from the

transducer core equations

FS

u
= �

i�S
n�

=
1

Y
ð14Þ

The negative sign is due to the reversed direction of

the short-circuit current compared to the defined direc-

tion of iW.

To prove the reciprocity relation (3), a current i is

supplied in the transducer in the first experiment. With

this excitation, the idle velocity yO of the freely vibrat-

ing port is measured. In the second experiment, a force

F* is applied to the mechanical gate and the open-

circuit voltage u�O is measured. To calculate the transfer

functions, the transducer is eliminated by transforma-

tion of the transducer components into the other physi-

cal domain as shown in Figure 5.

Considering the first experiment, the electrical side

of the transducer results in the relationship

yO
i
= Y

iT
i
= Y

1

jvCb

1

jvCb
+ Y 2

jvnS

= Y
1

1+ CbY 2

nS

ð15Þ

and, considering the second experiment, at the mechan-

ical side with u= Y � F= � Y � F� in the relation

u�O
F� = � Y

F�
T

F� = � Y
jvn

jvCbY 2 +jvn
= � Y

1

1+ CbY 2

nS

ð16Þ

From equations (15) and (16) follows equation (3)

for electric transducers

yO
i
=

u�O
F� ð17Þ

The other reciprocity relationships can be checked

similarly.

Reciprocity of piezomagnetic transducers

One-dimensional magnetomechanical transducer

When a magnetostrictive rod resides as solenoid core

freely (stresses T1, T2, T4, ., T6 = 0) at the transdu-

cers center, as investigated by Kellogg et al. (2005), a

one-dimensional (1D) translational transducer model—

similar to the piezoelectric transducer—can be derived.

Considering the field quantities stress T and magnetic

field strength H to be independent variables, the total

differentials

Bn =
X3

m= 1

mT
nmHm +

X6

j= 1

dnjTj, n= 1, . . . , 3

Si =
X3

m= 1

d�miHm +
X6

j= 1

sHij Tj, i= 1, . . . , 6

ð18Þ

give the linear constitutive equations for flux density B

and strain S in a piezomagnetic body at an operating

point. When H is applied in parallel to T, then equation

(18) yields for complex quantities

B3 =mT
33
H3 + d33T 3

S3 = d33H3 + sH
33
T 3

ð19Þ

Figure 5. Transformation of piezoelectric transducer

components in Figure 4 to prove reciprocity equation (3). (a)

Transformation of the short-circuit compliance and (b)

transformation of the blocked capacitance.

Figure 4. Equivalent circuit of a piezoelectric transducer.

1992 Journal of Intelligent Material Systems and Structures 27(14)



with permeability mT
33

(measurable for T = 0), piezo-

magnetic transduction coefficient d33, and Young’s

modulus 1=sH
33

(measurable for H = 0). Assuming uni-

form fields, the simplified relations B = F/A,

H = Vm/l, T = F/A, and S = j/l with the geometrical

parameters length l and area A result. The equations

relate B to the magnetic flux F, H to the magnetic vol-

tage (or magnetomotive force) Vm, T to force F, and S

to displacement j and velocity v, respectively. Then

equation (19) yields to (Marschner, 2008)

F=
1

Rm, f

Vm + d33F

v

jv
= d33Vm + nkF

ð20Þ

in the complex domain. Equation (20) includes the

body properties’ compliance nS = sH
33
� l=A, which can

be measured when the magnetic voltage resides at its

operating point, that is, here Vm = 0, and magnetic

reluctance Rm = l=(mT
33
A), measurable for F = 0. In

order to be consistent with network elements and to

obtain real transducer factors, the magnetic flux is dif-

ferentiated to flux rate Im = jvF. Using this quantity

and setting the translational transduction coefficient of

the piezomagnetic gyrator to Yt = nS/d33 and

F� = � F, to assure the defined network orientation,

from equation (20) follows

Im =jv
1

Rm, f

�
d2
33

nS

� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

1=Rm, b

vm +
d33

nS
|{z}

1=Ym

v

F� =
d33

nS
vm �

1

jvnS
v

ð21Þ

Equation (21) characterizes a piezomagnetic transducer

in the mechanical domain by its compliance nS and in

the magnetic domain by its magnetic reluctance Rm, f,

which is decreased by d2
33
=nS =Y 2

t nS to Rm, b, as shown

in Figure 6. The core relations of this magnetomechani-

cal transducer have gyratoric character.

1D electromechanical transducer utilizing a solenoid

A long and thin solenoid coil (radius r � l) can be seen

as ideal electromagnetic transducer with transduction

coefficient N, acting between magnetic flux rate to vol-

tage u and electrical current i to magnetic voltage when

Faraday’s law, u=jvANB, and Ampere’s law,

H =N=li, are applied (Carpenter, 1968; Deskur, 1999).

Figure 7 shows the coupling of the piezomagnetic

transducer with the electromagnetic solenoid transdu-

cer. The circuit can be simplified. First, the reluctance

is transformed into the electrical domain, where it

appears as inductance L=mA=lN2. In the next circuit,

the transducers can be combined to one electromecha-

nical transducer with transduction coefficient X as

shown in Figure 8. Compared to the piezoelectric trans-

ducer, the solenoid with piezomagnetic core exhibits

transformer properties. This explains the plus sign in

reciprocity relations (2)–(5).

Equation (5) can be easily checked. In order to

resolve this equation, an electrical current is applied to

the electrical port. The current is transformed into FT,

which is equal to the blocked force FS. It follows that

FS

i
=

1

Xt

ð22Þ

In a second experiment, a velocity source v* is excit-

ing the system. In case of an open electrical port

(i = 0), the measurable voltage u�O is equal to the inter-

nal voltage uT. The experiment results in

u�O
y�

=
1

Xt

=
FS

i
ð23Þ

The other reciprocity relations can be proved simi-

larly by application of the network theory.

Piezomagnetic unimorph

Two-layer piezomagnetic elements with a magnetic

and a non-magnetic layer are being used in bending

actuators or sensors. In contrast to volume transducers,

two-layer elements achieve significantly larger

Figure 8. Electromechanical model of a piezomagnetic

transducer after reluctance transformation into Lb and

transducer combination in Figure 7.

Figure 6. Translational magnetomechanical two-port model of

a piezomagnetic transducer.

Figure 7. Model of a piezomagnetic transducer residing as

solenoid core.

Marschner et al. 1993



displacements. The dynamic magnetomechanical beha-

vior of such a unimorph can be described by the equiv-

alent circuit in Figure 9, as it is derived by Marschner

et al. (2014b). The transduction coefficient YR relates

bending moment MT and magnetic voltage to each

other, as well as rotational velocity V and magnetic

flux rate Im. The parameter nR,S aggregates the bending

compliance and the parameter Rmm, f the mechanical

free reluctance similar to the piezomagnetic transla-

tional 1D transducer. This reluctance is reduced to

Rmm,b in the mechanically blocked case (V = 0).

In Marschner et al. (2014a), the reciprocal tran-

sducer properties of a piezomagnetic unimorph

were investigated. The unimorph with the reluctance

Rmm,b =Rm,m in Figure 10(c) took up only a section

of the surrounding solenoid coil. The tip displacement

due to induced strain actuation in a unimorph cantile-

ver beam as well as the sensing response from the patch

for bending moments acting on the unimorph were

independently measured by S. Datta, as shown in

Figure 10(a) and (b). The determined transduction

coefficients YR and Y �
R for actuation and sensing were

nearly equal and thus capture the reciprocity and line-

arity of the investigated transducers.

Application of the reciprocity relationship

for the calibration of acceleration sensors

A classic application of the reciprocity relations is the

calibration of accelerometers. The calibration requires

no mechanical calibration source, but an arbitrary addi-

tional electromagnetic transducer as depicted in Figure

11. Both transducers, the magnetic transducer and the

accelerometer, are connected via mass m3.

The construction of the standard magnetic transdu-

cer is depicted in Figure 12. Two masses are involved:

the mass of all components, which move with the hous-

ing mm,h, and the total mass of all components, which

move with the vibration table mm. From this magnetic

transducer, the mechanical input impedance

zL =(F=y)i= 0 for the electrical open connector must

be known.

A piezoelectric accelerometer is mounted exempla-

rily to the vibration table. Piezoelectric accelerometers

contain a piezoelectric ceramic as electromechanical

transducer element. This ceramic can be used in the

form of a circular-shaped element (for thickness oscilla-

tors) or a rectangular element (for bending and shear

oscillators). The basic structure of an accelerometer

with circular-shaped element is shown in Figure 13.

Upon application of forces in the drawn direction, an

electrical voltage is generated between the metallized

Figure 10. (a) and (b) Performed reciprocal experiments. (c)

Rotational electromechanical model of a piezomagnetic

unimorph core in a solenoid, as derived in Marschner et al.

(2014a). The length difference between coil and

magnetostrictive patch constitutes a magnetic voltage divider

(Rm, c +Rm,A) and demagnetization effects a second magnetic

voltage divider (Rm, d +Rm,m)).

Figure 12. Magnetic transducer setup.

Figure 11. Acceleration sensor calibration setup.

Figure 9. Piezomagnetic unimorph core in a solenoid.

1994 Journal of Intelligent Material Systems and Structures 27(14)



electrodes. The magnitude of the no-load voltage u2,O
depends on the characteristics of the piezoelectric cera-

mic used, on the thickness h of the element, and the

surface A on which the force acts.

The equivalent circuit of the mechanical components

of the accelerometer in Figure 14 shows the com-

pliances of the disk spring and the piezoelectric cera-

mic, which act in parallel. The equivalent circuit shows

that the sensor exhibits bandpass properties. Low-fre-

quency accelerations do not have an effect on the seis-

mic mass.

The completed equivalent circuit of the calibration

system is depicted in Figure 15. All masses establish a

virtual connection to the inertial frame. The mass of

the sensor is considered to be a part of the transducer

system. Thus, impedance zL must be measured with the

attached sensor. The sensor reacts to an acceleration a

with the voltage u2:

u2 =Baa=jvBav ð24Þ

It is the goal of the calibration to determine the

transfer function Ba.

The calibration utilizes the electromechanical reci-

procity relation of the magnetic transducer

vO
i1

=
u
1O

F
=BR ð25Þ

Calibration requires two experiments, as shown sche-

matically in Figure 16. First, an electric current i is fed

into the auxiliary magnetic transducer and the open-

circuit voltage u2,1 is measured. From this measurement,

the impedance can be determined. The impedance can

be expressed with relations (24) and (25) by

u
2,O

i1
=jvBaBR ð26Þ

In the second experiment, an external force F� sti-

mulates the system that reacts with the open-circuit vol-

tages u�
1O and u�

2,O at both electrical ports, which are

measured and divided by each other

u�
1O =BRF

�

u�
2,O =jvBav

�

u�
1O

u�
2,O

=
BR

jvBa

F�

v�
=

BR

jvBa

zL:

ð27Þ

Typically, the calibration system is designed in a

way that good approximation of zL =jvmtot can be

Figure 14. Mechanical part of a piezoelectric acceleration sensor, its structure, and circuit description; the force on n1 determines

the transduced voltage.

Figure 15. Equivalent circuit of the piezoelectric transducer calibration setup in Figure 11.

Figure 13. Piezoelectric acceleration sensor construction.

Marschner et al. 1995



assumed. The input current i can be transformed into a

voltage ui by means of a known resistor R0. Thus, the

transfer factor of the acceleration Ba can be traced back

through the application of the reciprocity relations to

relations of the measured voltages, the mass m, and

angular frequency v

Baj j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zLj j

v2

u2,O

i

u�
2,O

u�
1,O

s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mR0

v

u2,O

ui

u�
2,O

u�
1,O

s

ð28Þ

Since these quantities can be measured simple, fast,

and highly accurate, an efficient calibration method

results (Lenk et al., 2010).

Application of the reciprocity relationship

for the calibration of measurement

microphones

A currently indispensable application of reciprocity is

the primary calibration of laboratory standard micro-

phones. This is carried out by the national metrological

institute (e.g. the Physikalisch Technische Bundes-

anstalt of Germany) to represent the unit of sound

pressure Pascal (Pa). The unit is passed from these

primary-calibrated standard microphones in turn to all

to be calibrated microphones of the country by means

of a comparative method.

The microphone calibration by the reciprocity

method—described in its principles by MacLean

(1940)—is currently the method by which the lowest

measurement uncertainties can be obtained. There are

two main reasons:

1. The first sound pressure measurement is based

on the measurement of mechanical and electri-

cal quantities which is possible with very high

accuracy.

2. The transfer function of measuring microphones

depends on the acoustic boundary conditions

under which the microphone is used.

Only with the help of the reciprocity procedure, the

direct calibration for the metrological relevant cases—

pressure chamber (DIN EN 61094-2:2009, 2009), free

field (DIN EN 61094-3:1995, 1995), and diffuse sound

field (Vorländer, 1996)—is currently possible.

The basis for the calibration is the reciprocity of elec-

trostatic measurement microphones. As a prerequisite,

they need to be operated in their sufficiently linear region.

Figure 17 shows the definition of the electric and acoustic

quantities for the electroacoustic two-port ‘‘microphone.’’

These are voltage u and current i at the electrical port as

well as sound pressure p—averaged over the membrane

surface—and acoustic volume flow, generated by the

entire membrane, at the acoustic port. With these quanti-

ties, the electroacoustic circuit of the microphone in

Figure 18 for the linear region can be specified. As the

impedance matrix of the two-port network follows

u

p

� �

=
ZeB �M � ZaO

M � ZaO �ZaO

� �

�
i

q

� �

ð29Þ

where ZeB is the electrical impedance, generated when

the acting total volume flow q is 0. ZaO is the acoustic

impedance for an electrical open port, that is, current i

is equal to 0. The transmission coefficient M expresses

both the ratio of the open-circuit voltage (current i= 0)

to the exciting pressure in the case of reception and the

ratio of the short-circuit current volume flow (sound

pressure p= 0) to the applied current in the case of

transmission to

M =
u

p

�
�
�
�
�
i= 0

|fflffl{zfflffl}

Reception

=
q

i

�
�
�
�
p= 0

|fflffl{zfflffl}

Transmission

ð30Þ

For the calibration, one microphone is used as a

transmitter and one microphone as a receiver (herein-

after distinguished by subscripts 1 and 2), as shown in

Figure 19. The acoustic transmission path between the

sound flow q
1
generated by the transmitting micro-

phone M1 and the sound pressure p
2
at the reception

microphone M2 is described by the impedance matrix

Figure 16. Acceleration sensor calibration experiments.

Figure 17. Electric and acoustic parameters on electrostatic

measurement microphone.
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p
1

p
2

� �

=
ZaS1 �ZaT

ZaT �ZaS2

� �

�
q
1

q
2

� �

ð31Þ

Figure 20 shows the resulting circuit of the entire

calibration system.

Different acoustic impedance matrices result,

depending on whether the calibration takes place in the

pressure chamber, in the free field, or diffuse sound

field. Subsequently, the next steps illustrate free-field

calibration. For the free-field calibration according to

DIN EN 61094-3:1995 (1995), the free-field transfer

function

M f =
u

p

�
�
�
�
�
i= 0

=
q

i

�
�
�
�
p9= 0

ð32Þ

is introduced with respect to the sound pressure p#,

which would act as applied sound at an non-movable

microphone diaphragm (q= 0) and where the prime

sign denotes only that it is the pressure directly at the

two-port core. Thus, the effect of acoustic radiation

impedances ZaS1 and ZaS2 is already taken into account

in the transfer functions M f1 and M f2. The transmission

path between the microphones simplifies to

p0
1

p0
2

� �

=
0 �ZaT

ZaT 0

� �

�
q
1

q
2

� �

ð33Þ

with the acoustic transfer impedance

ZaT =
jvr

4pd12
� e�gd12 ð34Þ

which describes the propagation of sound in a free field.

Here, r is the density of the air, c the speed of sound, g

the complex propagation coefficient, and d12 the

Figure 19. Microphone calibration setup.

Figure 20. Equivalent circuit of the calibrator.

Figure 18. Electro-acoustic circuit of the microphone.
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distance between the acoustic centers of the micro-

phones. For the free-field calibration, the electrical

transfer impedance follows

Ze12=
u2
i1

=M f1 � ZaT �M f2 ð35Þ

Together with the known acoustic transfer impe-

dance ZaT, one obtains the product of two transfer coef-

ficients by the measurement of i1 and u2. Because of

reciprocity Ze12= Ze21, the swapping of transmitter and

receiver provides no additional information. However,

since the transfer function of a transmission path from

two microphones is not of interest, but the transfer

function of each microphone, it is necessary to add a

third microphone and to measure the microphones in

pairs. This yields three equations from which the three

desired transfer coefficients

M f1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ZaT

Ze12 � Ze13

Ze23

s

M f2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ZaT

Ze23 � Ze12

Ze13

s

M f3 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ZaT

Ze13 � Ze23

Ze12

s

ð36Þ

of the microphones can be calculated.

In summary, only measurements of voltage, current,

and effective distance as well as knowledge of fre-

quency, air density, and sound velocity were necessary

for the determination of the microphone transfer func-

tions. Using reciprocity calibration, extremely low mea-

surement uncertainties for acoustics of � 0.05 dB are

reached in the frequency range of 31.5 Hz to 8 kHz

(free-field and pressure chamber calibration; Bork et

al., 2007). Even in the lower ultrasonic range of 20–

160 kHz, measurement uncertainties of less than 0.2 dB

were achieved (Bouaoua, 2008) for the free-field cali-

bration of 1/4$ microphones. There is currently no

alternative method which achieves a similar low mea-

surement uncertainty and which is suited for the cali-

bration in the pressure chamber, in the free field, and in

the diffuse sound field.

As a future supplement to reciprocity, the use of

optical measurement methods for the calibration of

microphones is subject of this research (see Koukoulas

et al., 2008; Theobald et al., 2002). These methods have

not yet achieved the lowest measurement uncertainties

of reciprocity.

Application of the reciprocity relations for

linearity check of systems

Since linearity is one prerequisite of reciprocity, an

obvious way to perform a check on linearity of a

system results in utilizing reciprocity relations. A struc-

ture is analyzed metrologically in a way whether the

component arrangement fulfills the reciprocity relation.

At sufficiently small signals, one expects consistent reci-

procal relationships if the system behaves linearly. A

fast subsequent performance of the two experiments

eliminates cross sensitivities and parameter drifts most

widely. If for larger signal magnitudes an increasingly

growing deviation is found, it is ultimately due to non-

linearities in the system. Here, the source of nonlinear-

ity and its strength cannot be initially identified. This

method allows a check for sufficient linearity using a

configuration in which only one branch with respect to

its linearity is unknown. Since under correct boundary

conditions the reciprocity yields to identical signal

forms, the check of the linearity can be traced back to

a time measurement.

The method is demonstrated exemplarily by the cou-

pling of two piezoelectric transducers by a rod, as

depicted in Figure 21. It is assumed that the rod shows

sufficient linear behavior. In a first experiment, trans-

ducer 1 is excited with a low-voltage magnitude, which

is in the linear region of the transducer. At transducer

2, a transient short-circuit current signal is measured.

By the evaluation of the transmitted voltage and the

received current signal, the transit time t1, 1 between the

electrical ports of the electromechanical system can be

determined based on the signal form. If transducer 2 is

excited in the second experiment with a low-voltage

magnitude and transducer 1 is used as a receiver, the

measured transit time is t1, 2 = t1, 1 as consequence of

the reciprocity since both measured signals do not dif-

fer. There is no time difference Dt between the measur-

ing directions.

Figure 21. Coupling of two piezoelectric transducers with a rod.
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Then, the third and the fourth experiments are per-

formed subsequently. The third experiment is identical

to the first experiment. In the fourth experiment, the

excitation voltage magnitude at transducer 2 is

increased. Therefore, transducer 2 leaves the linear

operation range and the prerequisite for the reciprocity

is violated. This, in turn, leads to a change in the transit

time t2, 2. Compared to the transit time t2, 1 in the oppo-

site direction with the low excitation voltage at transdu-

cer 1, a time difference Dt= t2, 2 � t2, 1 6¼ 0 results. This

time difference can be used as a measure for the nonli-

nearity of transducer 2. The nonlinearity of transducer

1 can be studied in an additional experiment where the

excitation voltage at transducer 2 is kept low and the

excitation voltage at transducer 1 is raised.

The magnitude-dependent nonlinearity is modeled

with an additional quadratic factor A in the transducer

relation of the equivalent circuit in Figure 22. When the

experiments are performed below the rod’s first natural

frequency, the rod can be modeled by a T-circuit con-

sisting the rod’s compliance and mass. The factor A is

determined by simulation experiments using the equiva-

lent circuit where the time delay difference is repro-

duced. The basic idea is to keep all parameters equal in

both measurements, except one. When the measure-

ments can be described this way, then the source of the

nonlinearity is found. This way, the nonlinearity can be

captured with little effort.

Summary

Reciprocal linear time-invariant systems are an essen-

tial basis in electromechanical metrology. The article

shows some examples for calibration, reduction in mea-

surement uncertainty, and checking of nonlinearities,

where reciprocal relations of time-invariant linear net-

works are utilized in different ways. This applies in par-

ticular for linear systems, which include continuously

distributed media.
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