Implications of the Ice Melt: A Global Overview

Hindu Kush – Himalayas

Our Ice Dependent World The 6th Open Assembly of the Northern Research Forum Hótel Örk, Hveragerdi, Iceland 3rd - 6th September 2011

Pradeep Mool International Centre for Integrated Mountain Development

International Centre for Integrated Mountain Development

ICIMOD - an intergovernmental organisation with 8 member countries

A mountain learning and knowledge centre bridging research and policy

FOR MOUNTAINS AND PEOPLE

PAKISTAN

AFGHAN

Vision: The mountain population of the greater Himalayas enjoys improved well-being in a sustainable global environment?

INDLA

Mission: Enabling and facilitating equitable and sustainable well-being of the people of the greater Himalayas supporting sustainable mountain development and regional co-operation

BANGLADESH

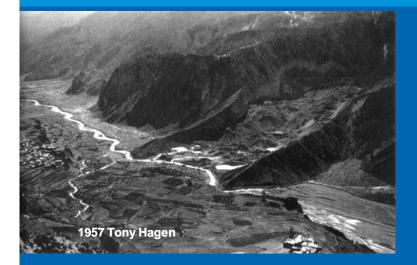
CHINA

MYANMAR

BHUTA

The Hindu Kush – Himalayas

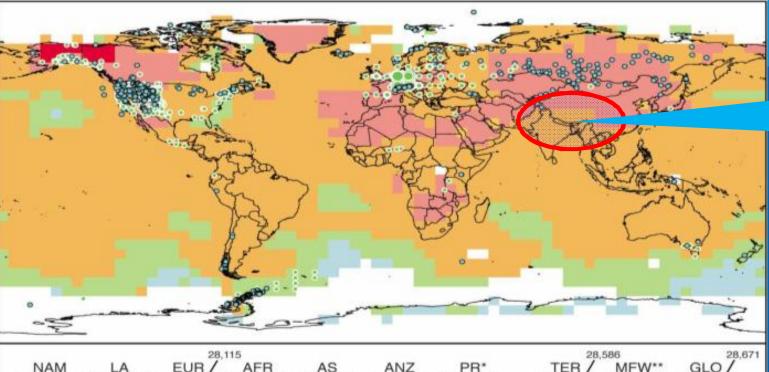
The third pole on earth - an area of extraordinary beauty and a world heritage site for biodiversity


Ecological buffer between Tibetan Plateau and South Asia Himalayan glaciers are sources of freshwater reserves providing headwaters for 10 major river systems in Asia – a lifeline for almost one third of humanity.

Changing Glacier Environment

"ISRO:75% of Himalayan glaciers retreating" (Tol, 16 May 2011)

FOR MOUNTAINS AND PEOPLE



Fast retreating Gangapurna glacier at the northern slope of Annapurna Range, Manang Lake and Manang Village, Nepal

Nabin Baral, 2007

Data gap in the HKH region

120

NA	MA	L	A	EU	JR/	AF	R	A	S	AN
355	455	53	5	119	*	5	2	106	8	6
94%	92%	98%	100%	94%	89%	100%	100%	96%	100%	100%

Observations

- Physical systems (snow, ice and frozen ground; hydrology; coastal processes)
- Biological systems (terrestrial, marine, and freshwater)

	Europe ***						
0	1-30		Tomo	oratu	e cha	ange °	C
0	31-100		remp		-2004		0
0	101-800	1					
0	801-1200	-1.0	-0.2	0.2	1.0	2.0	3.5
0	1201 -7500		0.780				

- * Polar regions include also observed changes in marine and freshwater biological systems.
- ** Marine and freshwater includes observed changes at sites and large areas in oceans, small islands and continents.
- *** Circles in Europe represent 1 to 7,500 data series.

FOR MOUNTAINS AND PEOPLE

Himalayas: A blank spot in IPCC AR4

	28.5	86	28.67			
TER	1	MF	W**	GL	0/	
764		1	85	765	*	
94% 90	%	100%	99%	94%	90%	

Physical Biological

Number of	Number of
significant	significant
observed	observed
changes	changes
Percentage	Percentage
of significant	of significant
changes	changes
consistent	consistent
with warming	with warming

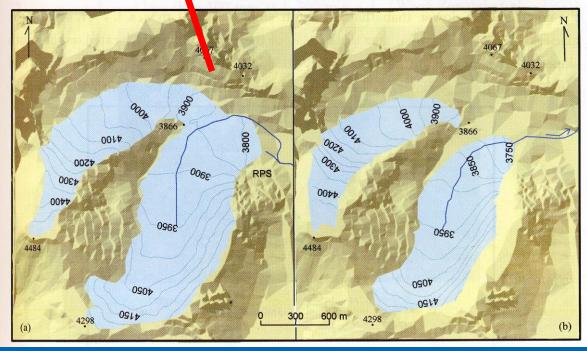
Glacier No.1 Urumqi, Tien Shan, China 43°07' N 86°48' E; 3800 - 4200 m asl Longest recorded glacier mass balance monitoring in ICIMOD RMCs

1962

1993



1996



2001 2005 Morphological changes of Urumqi Glacier No. 1 in the years 1962, 1988, 1993,1996, 2001 and 2005. Source: Zhongqin et al., 2008

ICIMOD

FOR MOUNTAINS AND PEOPLE

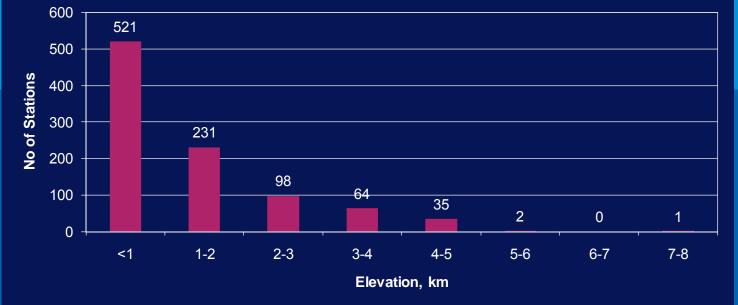
1962

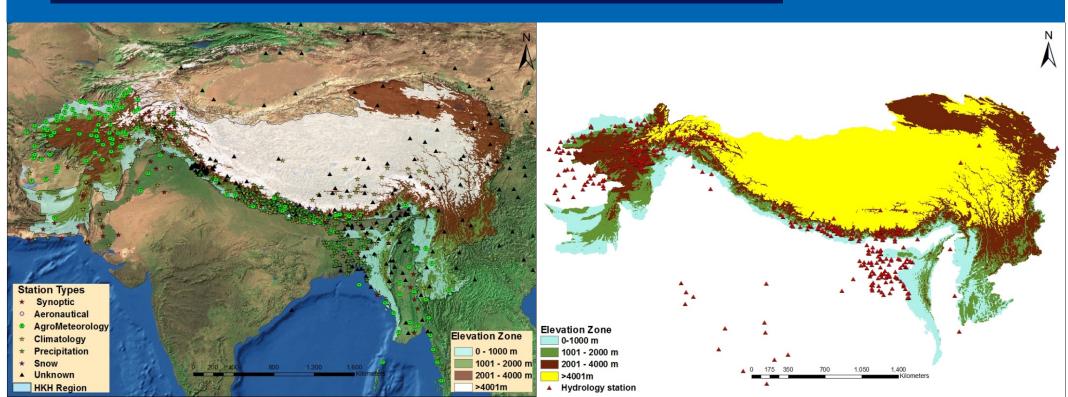
1994

- (a) Based on topographic map in 1962;
- (b) Based on terrestrial phograpmmetry map in 1994;
- Source: Shi Yafeng et.al. 2008, Glaciers and related environments in China

Name	Lat (N)	Long (E)	Elevation		Length	Area	Monitoring	Institute	Observations
			(m)		(km)	(km sq)	Dates		
Glacier No.1	43.083	86.817	3800 4	120	2	1.68	1959-1967;	CAREERI	mass balance, climate, hydrology, velocity
				0			1980-		

Glacier Mass Balance Study Areas in HKH (India, China and Nepal) Fragmented, uncoordinated and generally very short term measurement series



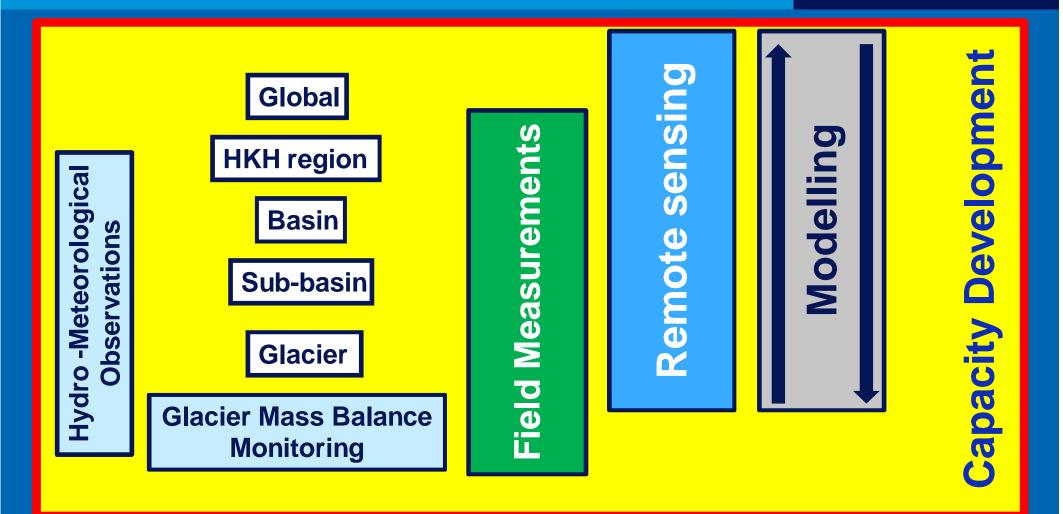

FOR MOUNTAINS AND PEOPLE

Glacier	z-max [m a.s.l.]	Area [km²]	Record years (#)
Changmekhan (India)	5300	4.5	1981 – 1986 (6)
Dunagiri (India)	5150	2.56	1986 – 1990 (5)
Shaune Garang (India)	5360	4.94	1982 – 1990 (9)
Gor Garang (India)		2	1977 – 1984 (8)
Tipra Bank (India)	5730	7	1986 – 1988 (3)
Neh Nar (India)	4925	1.7	1980 – 1984 (5)
Kolahoi (India)	5000	11.9	1984 (1)
Shishram (India)	4900	9.9	1984 (1)
Dokriani Glacier (India)		7	1993 – 2000 (6)
Chhota Shigri (India)	6263	15.7	2003 – 2006 (4)
Langtang (Nepal)	7000	74.8	1987 – 1997 (11)
Rika Samba (Nepal)		1	1999 (1)
AX010 (Nepal)	5360	0.568	1996 – 1999 (4)
Meikuang (China)	5520	1.1	1989 – 1998 (9)
Chongce i.c. (China)	6374	16.4	1987 (1)
Xiaodongkemadi (China)	5926	1,767	1989 – 1998 (10)

Dyurgerov & Meier (2005) - INSTAAR 58; Wagnon et al. (2007) - J.Glac. 53(183) Kaser, G; Innsbruck University, Climate & Cryosphere; 2009 June 08 Tromsø, Norway

Under-representation of meteorological observation in the High Himalayas

Glacier monitoring in Nepal Himalayas

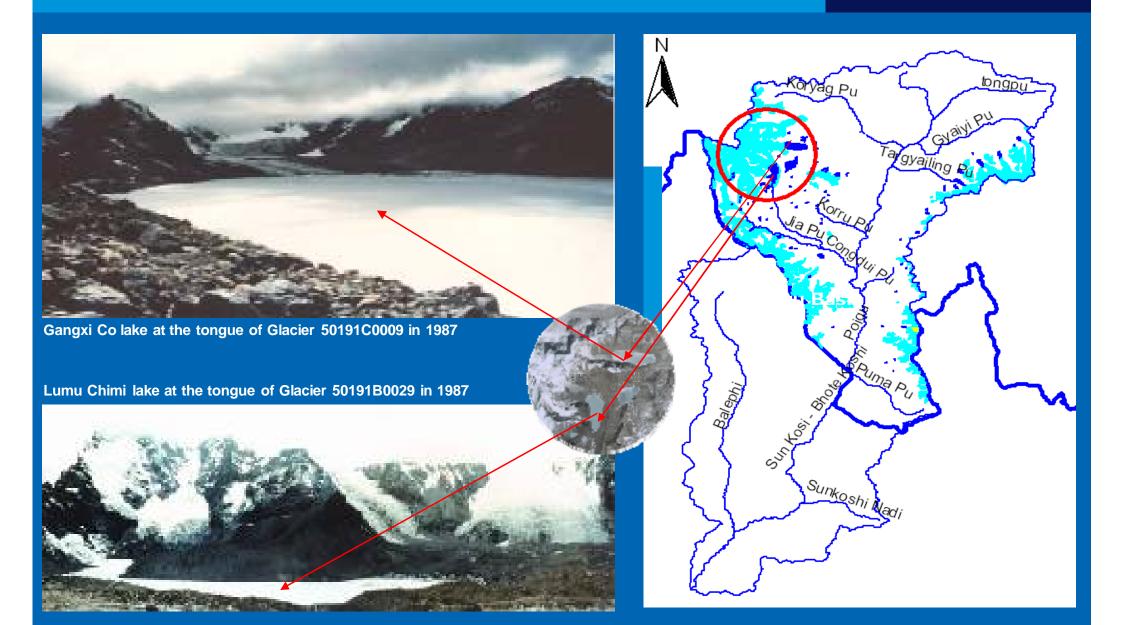

S No.	Glacier Name	Latitude (N)	Longitude (E)	Elevations (masl)				Area (km sq)	monitoring times	Institute	Station name/ Observation
1	Rika Samba, Hidden Valley, Dhaulagiri	28°49'60.00"N	83°29'60.00"E	5250	5985	4.8	1999	GEN / DHM	mass balance		
2	AX010, Dudh Kosi region of Shorong Himal	27°42'0.01"N	86°33'59.99"E	4950	5360	0.57	1996 – 1999	GEN / DHM	mass balance		
3	Mera	27°43'23.17"N	86°52'52.13"E	5387	6472	4.6	2007-	/ IRD,	mass balance; climate; hydrology;		
4	Yala, Langtang	28°14'60.00"N	85°36'60.00"E	5574	5746	2.57	2009-	,	mass balance; climate;		

Cryosphere Monitoring Programme

FOR MOUNTAINS AND PEOPLE

ICIMOD

Regional Cryosphere Knowledge Hub


ICIMOD

Regional Focus

- Regional Cryosphere Knowledge Hub for storage, analysis, sharing and disseminating knowledge for relevant operational services and research in the HKH region and internationally
- Regional snow and glacier mapping using remote sensing data
- Regular field based glacier and glacio- hydrological monitoring
- Global, Regional and National linkages: WGMS/Zurich, NSIDC/Colorado, TPE/China, CAREERI/China, CoG/India, GCISC/Pakistan, HiCCDRC/Nepal

Melting of Glaciers in Himalaya and formation of glacial lakes

Glacial Lake Outburst Floods (GLOFs)

- Impact of climate change is well observed in the Himalaya
- Several studies show that most of glaciers in Himalaya are shrinking at accelerated rates in recent decades
- Glacial lakes formed by rapid retreat of glaciers
- Water volume increase in these lakes from the glacier melt
- Lakes retained by unconsolidated moraine dams and ice core
- Moraine failure due to piping and overtopping
- Triggered by many factors
- Damaging impact downstream
- Common in Nepal, Tibet/China,
 Bhutan and other parts of HKH

FOR MOUNTAINS AND PEOPLE

Formation of Glacial Lakes in the Hindu Kush-Himalayas and GLOF Risk Assessment

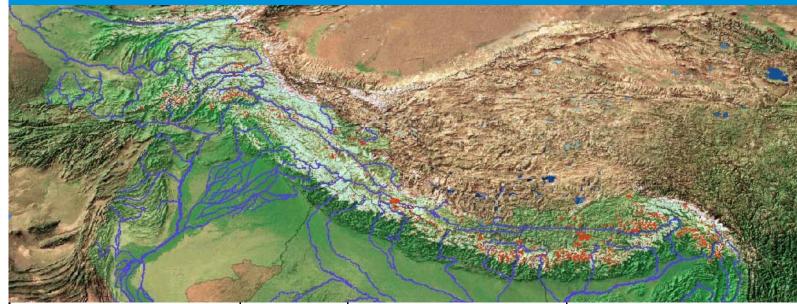
Comprehensive report on glacial lakes and GLOF of the HKH region

http://books.icimod.org/demo/index.php/downloads/pd/692

Ives, JD; Shrestha, RB; Mool, PK (2010) *Formation of glacial lakes in the Hindu Kush-Himalayas and GLOF risk assessment.* Kathmandu: ICIMOD

Glacial Lakes and Glacial Lake Outburst Floods in Nepal CIMOR

GFDR


Comprehensive report on glacial lakes and GLOF of Nepal

http://www.icimod.org/publications/index.php/search/publication/750 http://www.icimod.org/dvds/201104_GLOF/

ICIMOD (2011) Glacial lakes and glacial lake outburst floods in Nepal. Kathmandu: ICIMOD

Glacial lake mapping of five river basins of HKH region

	Basin	Lake Nur		Lake Area (sq km)		
Basin Name	Code	and Perce	ent	and percent	t	
	Code	No	%	Area	%	
Amu Darya	Am	1521	7.4	129.35	3	
Brahmaputra	Br	10097	49.3	2367.48	54.8	
Ganges	Ga	3840	18.7	598.05	13.8	
Indus	In	4889	23.9	1217.64	28.2	
Irrawaddy	Ir	138	0.7	7.86	0.2	
Total		20485	100	4320.39	100	

Growth of Lakes (Tsho Rolpa, Imja & Thulagi)

1.8 Tsho Rolpa Lake 1.6 Growth Imja Lake 1.4 Development **Surface Area (km2)** 9 8 1 5 Thulagi Lake Development Lakes **Expansion Rate** per Year 0.4 Length Area (m) (sq km) 42-47 Imja 0.0266 0.2 Tsho Rolpa 17-20 0.0129 0.118 Thulagi 35-41 0.0115 0 1950 1960 1970 **Yeai**980 1990 2000 2010

ICIMOD

Past GLOF events in the HKH region

FOR MOUNTAINS AND PEOPLE

About 56 past GLOF events in the HKH Region (Bhutan - 4, China - 29, Nepal - 14, Pakistan - 9) recorded with about 10 of them of trans-boundary nature.

GLOF events from Tibet/China affecting also inside Nepal in downstream area


	Date	River basin	Lake	Source	Cause of GLOF	Losses	Latitude	Longitude
15	Aug-35	Sun Koshi	Tara-Cho	Tibet (China)	Piping	66,700 m ² of wheat field, livestock etc	28° 17' 00"	86° 08' 00″
16	21-Sep-64	Arun	Gelhaipco	Tibet (China)	Glacier su rg e	Highway and 12 trucks	27° 58' 00″	87° 49' 00″
17	1964	Sun Koshi	Zhangzangbo	Tibet (China)	Piping	No remarkable damage	28° 04' 01″	86° 03' 45″
18	25-Aug-64	Trisuli	Longda	Tibet (China)	Not known	Not known	28° 37′ 01″	85° 20′ 58″
19	1968	Arun	Ауасо	Tibet (China)	Not known	Road, bridges etc	28° 21′ 00″	86° 29' 00″
20	1969	Arun	Ауасо	Tibet (China)	Not known	Not known	28° 21′ 00″	86° 29' 00″
21	1970	Arun	Ayaco	Tibet (China)	Not known	Not known	28° 21' 00″	86° 29' 00″
22	11-Jul-81	Sun Koshi	Zhangzangbo	Tibet (China)	Glacier surge	Hydropower station	28° 04' 01″	86° 03' 45″
23	27-Aug-82	Arun	Jinco	Tibet (China)	Glacier surge	Livestock, farmland	28° 00' 35″	87° 09' 39″
24	6-Jun-95	Trisuli	Zanaco				28° 39′ 44″	85° 22′ 19″

GLOF Risk Management

Thank you

