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Abstract

Quantum systems that are in weak contact with a thermal heat bath will ultimately relax to an
equilibrium state which is characterized by the temperature of the environment only. This state is
independent of the specific properties of the bath and of how it is coupled to the system. This changes
completely, when the system is additionally driven. Such a driven-dissipative situation can emerge,
for example, due to an additional time-periodic modulation of the system, or when it is brought into
contact with a second bath of different temperature. Then, the system will run into a well-defined
nonequilibrium steady state. This state, however, will depend on the very details of the environment
and its coupling to the system.

We study whether this freedom can be used to engineer interesting properties of quantum systems,
which are not found in their equilibrium states, i.e. in the absence of a drive. We focus on bosonic
quantum many-body systems. We investigate when far-from-equilibrium ideal gases feature Bose
condensation in a group of single-particle states, as opposed to situations where Bose condensation
is completely absent in the nonequilibrium steady state. We show that Bose condensation can be in-
duced in a finite one-dimensional ideal gas by the competition of two heat baths whose temperatures
both lie well above the equilibrium condensation temperature. This setup also allows to engineer
condensation in excited single-particle states. We discuss first ideas to study similar setups in weakly
interacting Bose gases. Describing the microscopic dynamics of interacting many-body systems cou-
pled to thermal baths is extremely challenging, due to the fact that generally the full many-body
spectrum is inaccessible. Using ideas from semiclassics, we develop an approximation to the dynamics
that yields good results at high and intermediate bath temperatures.

We also investigate the transient dynamics of driven-dissipative quantum systems. Our studies
are motivated by a result that is well known for isolated quantum systems: for a system whose
dynamics is generated by a time-periodic Hamiltonian, the stroboscopic dynamics (observed at integer
multiples of the driving period) can always be understood as if it would stem from a time-independent
Hamiltonian, the Floquet Hamiltonian. For open quantum systems in contact with an environment,
we ask if a similar mapping to an effective generator, the Floquet Lindbladian, is always possible. For
a simple qubit model we show that there are two extended parameter regions, one in which the Floquet
Lindbladian exists, and one in which it does not. We discuss problems of analytical expansions that
can give rise to this Floquet Lindbladian and discuss how we can interpret the region where it does not
exist. These results are important for dissipative Floquet engineering and open up new perspectives
for the control of open quantum systems via time-periodic driving.
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Zusammenfassung

Quantensysteme, die in schwacher Wechselwirkung mit einem thermischen Wärmebad stehen, re-
laxieren stets in einen Gleichgewichtszustand, welcher allein durch die Temperatur der Umgebung
beschrieben ist. Dieser Zustand ist unabhängig von den spezifischen Eigenschaften des Bades, und
davon wie dieses an das System gekoppelt ist. Dies ändert sich, wenn das System zusätzlich angetrieben
wird. Ein solches getrieben-dissipatives Szenario kann beispielsweise durch einen zusätzlichen zeitperi-
odischen Antrieb entstehen, oder wenn das System mit einem zweiten Bad unterschiedlicher Temper-
atur in Kontakt gebracht wird. In diesem Fall läuft das System in einen wohldefinierten stationären
Nichtgleichgewichtszustand. Dieser Zustand hängt jedoch von den Details der Umgebung, und davon
wie diese an das System gekoppelt ist, ab.

Es wird untersucht ob diese Freiheit genutzt werden kann um interessante Eigenschaften von Quan-
tensystemen zu konstruieren, die in deren Gleichgewichtszuständen, d.h. in Abwesenheit des Antriebs,
nicht zu finden sind. Der Fokus der Arbeit liegt auf bosonischen Quantenvielteilchensystemen. Es wird
ergründet unter welchen Bedingungen ideale Gase fernab des thermischen Gleichgewichts Bose Kon-
densation in einer Gruppe von Einteilchenzuständen aufweisen, im Gegensatz zu Szenarien in denen
überhaupt keine Bose Kondensation im stationären Nichtgleichgewichtszustand auftritt. Weiterhin
wird gezeigt, dass Bose Kondensation in einem eindimensionalen idealen Gas durch das Wechsel-
spiel zweier Wärmebäder induziert werden kann. Die Temperatur beider Bäder liegt dabei weit über
der Kondensationstemperatur des Gleichgewichts. Diese Anordnung erlaubt außerdem kontrollierte
Kondensation in angeregten Einteilchenzuständen. Erste Ideen für das theoretische Studium ähn-
licher Anordnungen für schwach wechselwirkende Bosegase werden diskutiert. Eine Beschreibung der
mikroskopischen Dynamik wechselwirkender Vielteilchensysteme ist extrem anspruchsvoll, da typis-
cherweise das volle Vielteilchenspektrum unzugänglich ist. Unter Zurhilfenahme semiklassischer Ideen
wird eine Näherung der Dynamik entwickelt, welche eine gute Beschreibung für hohe und intermediäre
Temperaturen liefert.

Weiterhin wird die transiente Dynamik getrieben-dissipativer Quantensysteme untersucht. Die Mo-
tivation bietet ein bekanntes Resultat für abgeschlossene Quantensysteme: Für ein System, dessen
Dynamik durch einen zeitperiodischen Hamiltonoperator bestimmt ist, kann die stroboskopische Dy-
namik (unter Beobachtung zu Zeiten, die Vielfache der Antriebsperiode sind) immer so verstanden
werden als würde sie von einem zeitunabhängigen Hamiltonoperator, dem Floquet Hamiltonian, in-
duziert. Für offene Quantensysteme im Kontakt mit einer Umgebung wird untersucht ob eine ähnliche
Abbildung auf einen effektiven Generator, den Floquet Lindbladian, existiert. Für ein einfaches Qubit
Modell wird gezeigt, dass es zwei ausgedehnte Parameterregionen gibt, eine in welcher der Floquet
Lindbladian existiert und eine weitere in der dieser nicht existiert. Es werden Probleme von analytis-
chen Entwicklungen des Floquet Lindbladian diskutiert. Auch wird eine Interpretation der Region
gegeben, in der dieser nicht existiert. Diese Resultate sind maßgeblich für dissipatives Floquetengi-
neering und eröffnen neue Blickwinkel auf die zeitperiodische Kontrolle offener Quantensysteme.
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1. Introduction

The laws of thermodynamics are an incredible finding. First formulated in the 19th century, together
with the study of waves, they constitute the first attempt to describe collective phenomena in phys-
ical systems. However, these laws do not originate from a microscopic, atomistic, description of the
thermodynamic system, but solely rely on a formal definition of macroscopic physical quantities like
temperature, heat, or work. Still, they predict extremely successfully the state of systems on the
smallest scale, as in the liquid drop model for the atomic nucleus, up to the largest scale, like for the
black body spectrum of the cosmic background radiation.

Statistical mechanics provides a microscopic concept that gives rise to these laws of thermodynam-
ics. One possible way to motivate statistical mechanics is from information theory: the state of the
system is given by the ensemble that has the highest information entropy and is compatible with our
knowledge of the system (for example its temperature, volume, etc.). On the one hand this is a great
enlightenment, because it allows to find universal properties of the thermal steady states. On the
other hand it implies also a great constraint for the possible properties that these states can show.
One example is the universality that connects scaling exponents at equilibrium phase transitions [1–3].
Another example is the Mermin-Wagner-Hohenberg theorem [4–6] which forbids long-range order at
finite temperatures for isotropic systems with short-range interactions in less than three dimensions.
This has a direct consequence for Bose condensation: since the presence of a condensate can be as-
sociated with a U(1) order parameter, in equilibrium, Bose condensation cannot occur in one or two
spatial dimensions [7].

In recent years, a lot of theoretical and experimental interest has gone into systems that are driven.
Such systems are inherently out-of-equilibrium and can give rise to new physics. One big class are iso-
lated systems that are time-periodically driven, so called Floquet systems. Time-periodic modulations
have been used as a tool to engineer interesting states of ultracold quantum gases in optical lattices
[8, 9], a technique that has been called Floquet engineering. Examples include the dynamical control
of tunneling in optical lattices [10, 11], which provides a tool to investigate the transition between
the bosonic superfluid and the Mott-insulator phase [12, 13], and the creation of artificial magnetic
fields for charge-neutral atoms [14–17], which led to the realization of systems with topologically
nontrivial band structures [18–20]. Also the recent discovery of Floquet time crystals [21–27] and the
possible control of many-body localization [28, 29] via time-periodic forcing reflect the importance
of a deeper understanding of the physics of time-periodically modulated systems. Exciting transient
states have also been found in time-periodically driven solid state systems, including light-induced
topological insulators [30–33] as well as light-induced superconductivity [34–36]. What underlies Flo-
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1. Introduction

quet engineering in many cases is a high-frequency expansion of the effective dynamics, governed by
a time-independent Floquet Hamiltonian. In the long-time limit, however, it is believed that generic
isolated interacting Floquet systems will heat up to an infinite-temperature state [37, 38]. One possible
way to interpret this heating problem is that the high-frequency expansion breaks down [39], because
in the presence of interactions the system possesses excitations at arbitrarily high energies. Thus, the
assumption that the driving is ‘fast’ when compared to all time scales of the system will be violated.
First quantitative studies to describe this heating were performed for atoms in periodically driven
one-dimensional [40–43] and two-dimensional optical lattices [44–46].

A possible idea to counter this problem is to bring the system in contact with a reservoir which
absorbs the heat that is generated by the driving. Such systems are called driven-dissipative. They fall
in the general class of open quantum systems. Driven-dissipative systems have gained a lot of interest
lately. One reason is that in the long-time limit they will run into a nonequilibrium steady state. This
state is characterized by the violation of detailed balance, which can lead to steady, but nonvanishing
currents through the system. This may for example be a steady current of heat, particles or spin.
These nonequilibrium steady states share the property of being an attractor of the dynamics with
equilibrium states. It means that irrespective of the initial state, in the long-time limit the dynamics
will always run into the same nonequilibrium steady state (if it is unique). These states, however,
are not constrained by equilibrium statistical mechanics, and will in general depend specifically on
all properties of the environment and how it is coupled to the system, so we can imagine to engineer
states with novel properties.

Such steady states were realized in photonic systems [47], where experimentally Bose-Einstein con-
densation has been achieved for exciton-polaritons [48–52] as well as for bare photons in a dye-filled
microcavity [53–55]. While in these experiments one goal was to find states with thermal properties,
it was shown for the exciton-polariton systems that the dissipation that is present gives rise to a
length scale above which the nonequilibrium nature of the system is revealed, and deviations from
universality are expected [56, 57]. The experiments have also triggered a debate about how Bose con-
densation can be distinguished from lasing [51, 53, 58–62]. Other photonic experiments exploit the
fact that optical microcavitities offer great freedom for designing system and dissipative environment.
This allows to engineer the coherent emission of multiple modes [63, 64], switching between emission
of two (or more) different modes [61, 65–68], and the development of topological microlasers [69, 70].

A second class of systems where nonequilibrium steady states have been studied are open Floquet
systems. It has been explored under which conditions the steady state of a Floquet system in weak
contact with a heat bath is effectively described by a thermal state [71–76]. Nevertheless, the question
whether immersing an interacting Floquet system in some thermal background could actually fight
heating and lead to exciting many-body states is still open [77–80]. In some systems it was ruled out
already that true criticality can be observed at high frequencies even though criticality is found in
the undriven limit [81]. Also, far-from-equilibrium steady states of open Floquet systems have been
studied. For the ideal gas, it was shown that Bose condensation may occur not only in one but in a
group of single particle states [62, 82–85], a fact that extends not just to Floquet systems but to all
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driven ideal Bose gases that are weakly coupled to the environment. (We will discuss some of these
results in Chapter 4.) This phenomenon has been linked to evolutionary game theory [86–88].

Finally, also in cold atom experiments nonequilibrium steady states have been realized in moving
optical lattices [89], as well as systems subject to engineered local [90, 91] and non-local particle
losses [92]. Furthermore, using shaped optical potentials, steady currents between atom reservoirs
with temperature-, particle number-, and spin imbalance have been realized [93, 94]. Here, one- and
two dimensional quantum wires between the reservoirs can be shaped. Also steady states of Rydberg
excitations in optically driven lattice gases have been investigated recently [95–98] where it was shown
that long-range order can emerge in two dimensions as a consequence of the driven-dissipative nature
of the system [99].

In this thesis, we will discuss four questions that arise naturally from these works. First, we want
to turn to the dynamics of time-periodically driven systems which are subject to dissipation. While
for the closed system the stroboscopic dynamics (observed at integer multiples of the driving period)
can always be recast into an effective evolution with the time-independent Floquet Hamiltonian, we
investigate if such a mapping to an effective time-homogeneous evolution is also possible for time-
periodically driven open systems. We will specifically focus on systems in memoryless, or Markovian,
environments. Such systems are generally described by an evolution that is governed by a Lindblad
superoperator. We want to discuss if also in the case of a time-periodically modulated Lindbladian
it is always possible to find an effective time-independent generator of the stroboscopic dynamics, a
Floquet Lindbladian. The existence of this Floquet Lindbladian has been implicitly assumed in recent
works [100–103]. As we will discuss for a simple qubit system, it is not guaranteed that such an operator
exists. In the parameter regime where it does not exist, the stroboscopic dynamics can therefore not
be reproduced by a time-independent Markovian evolution. However, for our model system we are
always able to construct an effective nonmarkovian evolution with some time-homogeneous exponential
memory kernel. Still, for the model system we find that the existence of a Floquet Lindbladian for
sufficiently high frequencies is guaranteed. Despite this fact, the Magnus expansion, a standard high-
frequency expansion, fails to produce a valid generator in the leading order. This problem has already
been observed in the recent literature [100, 104]. For our model system, we show that a possible way
to avoid the emergence of unphysical terms is by first transforming into the rotating frame and then
performing the Magnus expansion. Still, there is no guarantee that this procedure is a general strategy
to avoid the problems of the Magnus expansion, which manifests the need to develop a high-frequency
expansion that is tailored to the Floquet Lindblad problem.

The second question is motivated by recent studies on Bose condensation in nonequilibrium steady
states [82, 83]. It was shown that for driven ideal Bose gases that are weakly coupled to their environ-
ment and may exchange energy (but no particles) with it, generally the following happens: in the limit
of large particle number, there is one group of single-particle states whose occupations scale linearly
with the total particle number, while the occupations of all other states saturate. The former states
are called Bose selected and they can be inferred from the single-particle rates in the corresponding
Lindblad master equation. While a general rule was found for when there is condensation in one
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1. Introduction

single-particle state (namely when the rates feature a state that is ground-state-like), the question
of in which physical scenario we expect how many Bose-selected states has still been unanswered.
Depending on this number also the physics in the ultra-degenerate regime is possibly entirely differ-
ent: for an intensive number of Bose-selected states, i.e. not scaling with the total number of states,
the steady state can be seen as hosting fragmented condensation, while for an extensive number of
selected states the steady state is rather like a classical gas in a reduced state space of e.g. half of
the single-particle states. We show that in three scenarios general statements hold: if the rates are
continuous, for random rates, and for rates that have a product structure. Moreover, we show that, for
our purposes, the rates in chaotic Floquet systems cannot be simply assumed as uncorrelated random
numbers, even though this was suggested in the literature [73]. Our results might also be useful to
characterize the number of lasing modes in complex media, where the rate equations obey a similar
structure [62].

With the third question, we want to come back to our original motivation about the possibility
to engineer properties of nonequilibrium steady states which counter our intuition from the laws of
equilibrium statistical mechanics. In one spatial dimension, Bose condensation is absent in the ther-
modynamic limit. The reason for this is that low-lying excitations, namely long-wave fluctuations,
have thermal populations which are too high for an ordered condensed phase to form. In a finite one-
dimensional ideal Bose gas, however, there is a crossover to a condensed phase at some equilibrium
condensation temperature, which depends on system size. At fixed particle density, this temperature
is inversely proportional to the system size such that the condensed phase vanishes in the thermody-
namic limit. We will show a surprising finding: if a finite one-dimensional ideal Bose gas is in contact
with two heat baths of different temperature, the emerging nonequilibrium steady state can feature
Bose condensation even though there is no condensation when the gas is only in contact with any of
the baths individually! Here, one of the baths is a global bath, representing a thermal environment.
The other bath is a local bath that is much hotter than the global bath, which is why we want to refer
to it as “hot needle”. At large system sizes, the environmental temperature for this nonequilibrium con-
densation can be several orders of magnitude higher than in equilibrium. The reason is the emergence
of highly nonthermal occupation statistics in which the long-wave fluctuations are suppressed. The
condensate is formed such that it overlaps only weakly with the driving site and therefore avoids the
strong inflow of heat that is coming from the hot needle. This can be used to engineer condensation
in excited states. In the thermodynamic limit, however, the one-dimensional nature of the system is
revealed and also in the nonequilibrium steady state a true long-range ordered phase is absent.

The last question is how to find similar interesting steady states for interacting Bose gases. Here,
if we want to find a microscopic description we are facing a problem that does not occur in the
ideal gas. In the weak system–bath coupling limit the heat reservoir induces jumps between different
eigenstates of the system Hamiltonian. These jumps happen at a rate given by the energy difference
of these eigenstates. While the full many-body spectrum and the many-body eigenstates for the
noninteracting gas directly follow from diagonalizing the single-particle Hamiltonian, diagonalizing
the interacting problem (also beyond an effective low-energy description in terms of approximately
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free quasiparticles) is usually extremely challenging. This strongly restricts the achievable system sizes
and particle numbers. To circumvent this problem, we develop a semiclassical description of the bath
interaction which assumes that we may reduce its action to transitions between localized wavelets.
In contrast to other semiclassical methods, an ab-initio knowledge of if the system is condensed, or
how many condensates (and therefore how many order-parameter fields) there are, is not needed.
We employ our method for sufficiently weak interactions, where a good description of the interaction
effects is expected by performing a mean-field approximation, which gives rise to an effective single-
particle problem in a mean-field potential that is induced by the interaction with the background of
all other particles. We benchmark the method at equilibrium. Furthermore, we apply it to the “hot
needle” setup with weak interactions. Also, motivated by a recent quantum gas experiment [91] we
study the dynamics of a mean-field interacting Bose-Hubbard system that is coupled to an external
heat bath and undergoes local particle losses. The hope is that the external heat bath could model
incoherent thermalization processes that are not captured in a mean-field approximation.

We think that all of these results constitute prime examples for dissipative state engineering in
quantum many-body systems, or at least will guide the way to new ideas for how dissipation might be
used as an additional “knob” to control complex quantum systems.

This thesis is organized as follows: in Chapter 2, we introduce the fundamental framework of this
thesis, which is the master equation for open quantum systems. We will review both the axiomatic
approach to the Lindblad master equation (which is essential for our considerations in Chapter 3), and
the microscopic derivation of the Lindblad master equation from the assumption of weak system–bath
coupling (which lays the foundation of the remaining chapters). We shift an introduction to Floquet
theory to Chapter 3, where the concepts are introduced as soon as needed.

In Chapter 3 we discuss the existence of the Floquet Lindbladian. We apply the Markovianity test
that was developed for general quantum channels in Ref. [105] to a simple qubit model and find that
there are extended parameter regimes where the Floquet Lindbladian exists and where it does not.
In the regime where it does not exist, we describe a method to find an effective time-homogeneous
memory kernel, and we discuss the challenges of the high-frequency expansion for our model system.

Chapter 4 treats the number of Bose-selected states in nonequilibrium steady states of an ideal Bose
gas. We shortly review the results of Ref. [82, 83] on Bose selection, where criteria were found with
which one may determine the selected states from the antisymmetric part of the rate matrix only. We
apply these criteria to find predictions for the typical number of selected states for continuous rates,
uncorrelated random rates, and for rates with a product structure.

In Chapter 5 we turn to the “hot needle” setup for the ideal Bose gas. As a reference, we will first
discuss equilibrium condensation in a finite one-dimensional tight-binding chain. Then, we qualita-
tively describe the high-temperature nonequilibrium condensation that we find. Following this, we
turn to a quantitative analysis that predicts the nonequilibrium condensation temperature and the
parameters for which excited-state condensation is expected. We show that the “hot needle” effect can
also be found for the particle in a box as well as when the hot bath is replaced with a noisy Floquet
drive.
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1. Introduction

Chapter 6 gives an introduction to the semiclassical method that we have developed to overcome
the problem that for the interacting gas, even writing down the master equation for a system coupled
to a heat reservoir is a difficult task. We test our method with equilibrium states. Then, we find
nonequilibrium states for the hot needle setup with mean-field interactions, and study the dynamics
of a model that is motivated by the observation of a dynamical bistability in a recent quantum gas
experiment with engineered local particle losses.

Finally, in Chapter 7 we summarize our results and give an outlook on possible future research
directions and open questions.
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2. Master equation for open quantum systems

The fundamental starting point for this thesis is the master equation for open quantum systems. Here,
based on Refs. [73, 106–111], we motivate and introduce this equation.

2.1. Introduction

The master equation of open quantum systems is motivated by a very simple, yet fundamental ques-
tion: What equation governs the dynamics of a quantum system that is not isolated from its environ-
ment, as it is assumed in the Schrödinger equation? As we sketch in Fig. 2.1, on a formal level, we
may treat this problem by discussing scenarios where there is a sensible partition of the total physical
Hilbert space Htot =HS⊕HE into a ‘system’, with Hamiltonian HS, whose dynamics we want to keep
track of, and its ‘environment’, with Hamiltonian HE and some interaction Hint between both. The
total Hamiltonian therefore reads (✶α is the identity operator on Hα, α = S,E)

Htot =HS ⊗ ✶E + ✶S ⊗HE +Hint. (2.1)

Here we focus on autonomous systems, ∂tHS = 0, we will turn to time-periodically driven systems in
Chapter 3. For simplicity we restrict ourselves to finite-dimensional Hilbert spaces. Let %tot(t) be the
evolution of the total density matrix given by the Liouville-von-Neumann equation

∂t%tot(t) = −
i

h̵
[Htot, %tot(t)] , (2.2)

Environment

System

HS

HE

Hint

Figure 2.1.: Sketch of the general setup of interest in this thesis: there is a clear notion of a system
and its environment.
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2. Master equation for open quantum systems

which is solved formally by

%tot(t) = U(t)%tot(0)U
†
(t) (2.3)

with unitary time-evolution operator U(t) = exp − i
h̵Htott . Let us consider the reduced density matrix

of the system

%S(t) = TrE%tot(t), (2.4)

where TrE is the partial trace over the environmental degrees of freedom. The question that we pose
is which equation governs the time evolution of the reduced density matrix %S(t). What we especially
are looking for is an equation that depends on the reduced density matrix %S only, since in general it
is hard to keep track of all (possibly infinitely many) environmental degrees of freedom.

Without interaction, Hint = 0, the dynamics factorizes U(t) = US(t) ⊗ UE(t) with US~E(t) =

exp − i
h̵HS~Et . Then by using the Schmidt decomposition of %tot(0) = ∑i αi ⊗ βi we find that

%S(t) = TrE%tot(t) = TrE US(t)⊗UE(t) Q
i

αi ⊗ βi U †
S(t)⊗U

†
E(t)¡ (2.5)

= US(t) Q
i

αiTr UE(t)βiU
†
E(t) U †

S(t) = US(t)%S(0)U
†
S(t). (2.6)

In the last step we have performed a cyclic permutation in the trace. As a result, we have

∂t%S(t) = −
i

h̵
[HS, %S(t)] . (2.7)

Thus, without interaction we find the desired equation; the reduced density matrix undergoes inde-
pendent coherent dynamics with Hamiltonian HS. Under this coherent dynamics the eigenvalues (or
populations) of %S(t) remain constant and only the eigenstates are subject to a unitary rotation.

When the interaction is considered, Hint ≠ 0, it is clear that in general the dynamics of %S cannot
be unitary anymore. Think, e.g., of an atom in a cavity that is prepared in a mixed state %S(0) =
(Se⟩⟨eS + Sg⟩⟨gS)~2 of the ground state Sg⟩ and the excited state Se⟩. At temperature T = 0 the atom
will decay into the ground state, so asymptotically %S(t→∞) = Sg⟩⟨gS, which has different eigenvalues
than the initial state. Thus, in the evolution of %S there must be an additional term that accounts
for this population transfer, or more generally, for all noise and dissipation that are present in the
effective description of subsystem ‘S’.

There are two possible approaches that one may take: The first one is axiomatic and motivated by
the question ‘What is the “Schrödinger equation” of the open system?’, i.e. what is the most general
(memoryless) equation of motion for %S which maps ‘physical’ density matrices onto ‘physical’ ones.
This will lead us to master equations of Lindblad form. We will turn to this question in Section 2.2.
Note that in order to provide some answer to this question one has to clarify what ‘physical’ should
mean (which will lead us to the notion of completely positive quantum dynamical semigroups).
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2.2. Axiomatic approach: Lindblad master equation

The second approach is constructive and finds a microscopic derivation of the master equation. As
we discuss in Section 2.3, starting from the von-Neumann equation for the total system, Eq. (2.2),
three approximations are needed to arrive at an equation of motion for the reduced density matrix
that is of the form of a Lindblad master equation. All approximations are motivated by the assumption
that the system–bath coupling is weak. First, it is assumed that no entanglement between system and
bath is build up (Born approximation). Secondly, it is assumed that the bath has no memory (Markov
approximation). Thirdly, we are looking at cases where the system–bath coupling is weak when com-
pared to all energy splittings of HS, such that the off-diagonal elements of %S decay asymptotically
(rotating wave approximation). We will illustrate our discussion for a phononic heat bath.

2.2. Axiomatic approach: Lindblad master equation

Let us turn to the question ‘What is the most general equation that governs the evolution of a physical
density matrix?’. Here we will restrict ourselves to memoryless (Markovian) evolutions. Then, ‘phys-
ical’ evolutions in the sense of ‘compatible with quantum mechanics’ are characterized by completely
positive quantum dynamical semigroups. Their importance has first been recognized by Lindblad
[112], Gorini, Kossakowski and Sudarshan [113].

2.2.1. Quantum dynamical semigroups

From now on, we focus on the dynamics of the reduced density matrix % ≡ %S, so we will drop
the index ‘S’. A quantum dynamical semigroup is a one-parameter family of superoperators P(t) on
H (that map operators in H onto operators in H; more formally, let L(H) be the space of linear
operators on H, then P(t) ∈ L(L(H))). The semigroup shall give rise to the time-evloution of the
reduced density matrix,

%(t) = P(t)%(0). (2.8)

P(t) is also referred to as the dynamical map. Therefore it should fulfill the following requirements

• Positivity: For all positive operators σ ∈ L(H), σ ≥ 0, it holds that P(t)σ ≥ 0, such that we may
interpret the eigenvalues as probabilities. Note that positivity also implies that P(t) preserves
hermiticity, i.e. if σ = σ† then P(t)σ = [P(t)σ]†.

• Trace preservation: For all operators σ ∈ L(H) with Tr(σ) = 1 it holds that Tr(P(t)σ) = 1,
i.e. the (trace) norm of the physical states is conserved.

• Semigroup property: For all t, s it holds that P(s + t) = P(s)P(t). We will take this property
as the definition of time-homogeneous (or time-independent) Markovian dynamics. It means,
that at any point t in time we may stop the evolution, ‘reset’ it, and evolve the system for the
remaining time s with the dynamical map again. Here, we already see an important implication:
there cannot be any “memory” of the history of the system that is past time t. And since we may
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2. Master equation for open quantum systems

perform this decomposition at any intermediate time t, it is clear that there is no memory of
the history at all. So in an equation of motion ∂t%(t) = . . . , the right-hand side may also depend
on %(t) only, similar to the von-Neumann equation.

• Continuity: For all operators σ ∈ L(H) it holds that limt→0+P(t)σ = σ, which is sensible, since
the system should evolve continuously with parameter time.

2.2.2. Complete positivity

Although this list might look complete on first glance, there is an important point missing that is
connected to the existence of entangled states in quantum mechanics,

%ent ∈ L(H⊗HA) with %ent ≠ %⊗ %A, (2.9)

where HA is the environment (or some part of it). It is easy to show [106, 114] that if P(t),PA(t)
are quantum dynamical semigroups on H and HA respectively, then [P(t)⊗PA(t)]%ent need not be
positive anymore.

To avoid this problem, we will expand the list by the requirement of

• Complete positivity: P(t) is n-positive for all n ∈ ◆ and t, i.e. it holds that Pn(t) = P(t)⊗✶n is
positive, where ✶n is the identity on an n-dimensional Hilbert space.

For simplicity, from now on we will use the term “quantum dynamical semigroup” for a quantum
dynamical semigroup equipped with complete positivity. Disregarding the semigroup property, at
given time t the resulting dynamical map P(t) is a completely positive trace-preserving (CPTP) map,
or a quantum channel.

A characterization of completely positive maps is found by the Choi-Kraus theorem [110, 115]. It
states that any linear map P is completely positive iff it has the Kraus representation

P% =
M

Q
i=1
Vi%V

†
i with linearly independent Vi ∈ L(H), (2.10)

where M ≤ N2 and N is the dimension of H. As a direct consequence it follows that P is completely
positive iff it is N -positive. Additionally, P is trace-preserving iff additionally we have

✶ =
M

Q
i=1
V †
i Vi. (2.11)

A handy tool to investigate a quantum channel P is the Choi(-Jamiołkowski) isomorphism: it
provides a mapping of the quantum channel P ∈ L(L(H)) onto a quantum state (i.e. density matrix)
PΓ ∈ L(H⊗H) in the Hilbert space extended with itself as an ancilla. Let us first define the maximally
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2.2. Axiomatic approach: Lindblad master equation

entangled state

SΦ⟩ =
1
√
N

N

Q
i=1
Si⟩⊗ Si⟩ (2.12)

where {Si⟩} is the canonical basis of H.

The Choi isomorphism is then given by

P
Γ
= N ⋅ (P ⊗ ✶N)[SΦ⟩⟨ΦS] =

N

Q
i,j=1
P(Si⟩⟨jS)⊗ Si⟩⟨jS. (2.13)

It has the following properties [116]

• P is hermiticity-reserving iff PΓ is a hermitian operator, PΓ = PΓ†.

• P is n-positive iff PΓ is is an n-positive operator, i.e. ⟨ψSPΓSψ⟩ ≥ 0 for all Sψ⟩ ∈ H ⊗H with
Schmidt rank n or less (the number of terms in the Schmidt decomposition).

• P is completely positive iff PΓ is a positive operator, PΓ ≥ 0.

As a result, in order to check if a map P is completely positive (which is quite involved from its original
definition) it suffices to compute the matrix PΓ, check if it is hermitian and whether its eigenvalues
are nonnegative, which is straight-forward.

2.2.3. Lindblad master equation

Since the dynamical semigroup is a continuous semigroup, there exists a superoperator L, the generator
of the semigroup, such that

P(t) = exp(Lt). (2.14)

Then, conversely, we may extract the generator L, which we call the Lindbladian, from

L = lim
t→0+

P(t) − ✶

t
. (2.15)

On the level of the density matrix, one finds

∂t%(t) = L%(t), (2.16)

which is the master equation that we are aiming for. It is only left to find out how the other properties
of the dynamical semigroup, trace preservation and complete positivity, restrict the shape of L.

Using the Kraus representation, Eq. (2.10), of the dynamical semigroup we are able to find the
desired master equation [117]. It is clear that for all t there exist Kraus operators Vi(t) such that the
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2. Master equation for open quantum systems

dynamical map can be represented as

P(t)% =
M

Q
i=1
Vi(t)%Vi(t)

† with ✶ =
M

Q
i=1
Vi(t)

†Vi(t). (2.17)

Since P(t) is differentiable (because of Eq. (2.15)), for infinitesimal dt we may write

P(0 + dt)% = % + dtL% ≡
M

Q
i=1
Vi(0 + dt)%Vi(0 + dt)

†. (2.18)

As a result, the Kraus operators have to obey the form

Vi(0 + dt) = V
(0)
i +

√
dtV

(1)
i + dtV

(2)
i (2.19)

where in order to have no term ∝
√
dt in Eq. (2.18), it either holds that V (0)i ≠ 0 and V

(1)
i = 0 or it

holds V (0)i = 0 and then we may disregard the term V
(2)
i . Since P(0) is the identity channel, there

can be only one Kraus operator with V (0)i ≠ 0, namely

V1(0 + dt) = ✶ + (K − iH) ⋅ dt (2.20)

with K = K†, H = H†, where we have used that any operator can be written as the sum of its
hermitian and its antihermitian part. We represent all other operators as

Vi≠1(0 + dt) = Li−1
√
dt. (2.21)

Plugging this in Eq. (2.18) we find

L% = −i [H,%] + (K% + %K) +
M−1
Q
i=1

Li%L
†
i . (2.22)

From the Kraus sum normalization condition in Eq. (2.17), it follows

0 = i(H −H) + 2K +
M−1
Q
i=1

L†
iLi. (2.23)

Solving for K we finally find the Lindblad master equation

∂t%(t) = L%(t) = −i [H,%(t)] +
M−1
Q
i=1

Li%(t)L
†
i −

1

2
L†
iLi, %(t) , (2.24)

where {⋅, ⋅} is the anticommutator. The first part gives rise to the reversible, coherent evolution.
Nevertheless, H is not necessarily the system Hamiltonian HS, but may also include contributions
stemming from the system-bath interaction (we absorb h̵ into the Hamiltonian). The second part
describes the irreversible, dissipative evolution. It is governed by the Lindblad operators (or jump
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2.2. Axiomatic approach: Lindblad master equation

operators) Li. The first term in the bracket describes how the interaction with the environment
transfers populations in the reduced state %, while the second term is there to conserve the norm of %.

Note that we will always choose the Lindblad operators as traceless operators, Tr(Li) = 0. This is
because if we would choose operators with a finite trace, L̃i = ci✶+Li, in Eq. (2.24) (with some complex
number ci) it is straight forward to prove that this only leads to a redefinition of the Hamiltonian
H →H + i∑M−1

i=1 (c
∗
i Li − ciL

†
i). The convention of traceless jump operators gets rid of this freedom.

Finally, let us reformulate the dissipative term in Eq. (2.24) in terms of an arbitrary traceless basis
{Ai} of the operator space L(H). That means, we find a transformation T such that

Li =
N2−1
Q
j=1

TijAj . (2.25)

Plugging this in Eq. (2.24), we obtain

∂t%(t) = −i [H,%(t)] +
N2−1
Q
i,j=1

dij Ai%(t)A
†
j −

1

2
A†

jAi, %(t) , (2.26)

with coefficient matrix

dij =
M−1
Q
k=1

TkiT
∗
kj . (2.27)

Then, we immediately see that d is hermitian, dij = d∗ji, and for all vectors x ∈ ❈N2−1 we have

x†dx ≥ 0. (2.28)

Thus, d is positive semidefinite.

Conversely, a general superoperator L ∈ L(L(H)) that is brought to the form of Eq. (2.26) is only
a proper Lindbladian, if the matrix d is positive semidefinite. This requirement is the manifestation
of complete positivity. Namely, only then we may diagonalize the matrix

dij = U †DU
ij
=

N2−1
Q
k=1

U∗kiγkUkj (2.29)

with nonnegative eigenvalues, or rates, γk ≥ 0. With this we may bring Eq. (2.26) to the form of
Eq. (2.24) by using

Lk =
√
γk

N2−1
Q
i=1

U∗kiAi. (2.30)

To conclude, the Lindblad master equation is the result of our requirement of a physical evolution
of the reduced density matrix, which we formalize in the postulates of the dynamical semigroup. The
form of the Lindblad equation then follows by differentiating the Kraus representation that has to
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2. Master equation for open quantum systems

hold for the dynamical map because of trace preservation and complete positivity.

2.3. Microscopic approach: Born-Markov rate equation

Our considerations in Sec. 2.2 are motivated from a more mathematical point of view, namely from
the question what the most general equation of motion for a memoryless (Markovian) evolution of the
reduced density matrix is. However, the question remains open what this equation will look like in a
concrete physical system. Starting from the total Hamiltonian, Eq. (2.1), we will perform the Born,
Markov and the rotating-wave approximation, which are basically motivated by a separation of time
scales of the dynamics, to arrive at a rate equation which is of Lindblad form. We will illustrate our
results for a phononic heat bath.

2.3.1. Born approximation

In this section we follow closely the argumentation in Ref. [109].

Let us start by transforming the von-Neumann equation (2.2) into the interaction picture. For any
operator A(t) ∈ L(HS ⊗HE), it is defined via

Ã(t) = U †
S(t)⊗U

†
E(t) A(t) US(t)⊗UE(t) . (2.31)

Then, Eq. (2.2) takes the form

∂t%̃tot(t) = −
i

h̵
H̃int(t), %̃tot(t) . (2.32)

We may formally integrate this equation to find

%̃tot(t) = %̃tot(0) −
i

h̵
S

t

0
dτ H̃int(τ), %̃tot(τ) . (2.33)

If we plug this back into the right hand side of Eq. (2.32) we obtain

∂t%̃tot(t) = −
i

h̵
H̃int(t), %̃tot(0) −

1

h̵2
S

t

0
dτ H̃int(t), H̃int(τ), %̃tot(τ) . (2.34)

This equation is equivalent to Eq. (2.32), however it includes the interaction Hamiltonian H̃int on
second order, which will be useful for the following considerations.

Throughout the whole derivation we want to assume that the system–environment coupling is
‘weak’ when compared to the energy scales of HS and HE. We will specify what we mean by ‘weak’ at
multiple instances in the derivation. The first instance is now, when we want to discuss entanglement
between the system and its environment. We require that at t = 0 there is no entanglement between
the system and its environment. The Hamiltonian H̃int shall be weak such that there is no significant
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2.3. Microscopic approach: Born-Markov rate equation

buildup of entanglement during the evolution, and we may approximate

%̃tot(t) ≈ %̃(t)⊗ %̃E. (2.35)

Here, we have additionally assumed that the environment is ‘large’ in the sense that it has many
degrees of freedom. We will call such an environment reservoir or bath. As a result, the state of the
reservoir %̃E is unaltered by the weak contact to the ‘smaller’ system. These approximations that lead
to Eq. (2.35) are known as Born approximation.

Plugging Eq. (2.35) into Eq. (2.34) and performing the trace over the reservoir degrees of freedom
we find

∂t%̃(t) = −
i

h̵
TrE(H̃int(t)%̃E), %̃(0) −

1

h̵2
S

t

0
dτTrE H̃int(t), H̃int(τ), %̃(τ)⊗ %̃E . (2.36)

Let us discuss the first term of the right hand side of this equation. Note that we may assume that
Hshift = TrE(Hint%E) = 0. Because if it was nonzero, we simply may absorb its contribution in the
system Hamiltonian, Hint →Hint −Hshift ⊗ ✶E and HS →HS +Hshift in Eq. (2.1).

Thus, the first term in Eq. (2.36) drops out and we are left with the second term. Using a Schmidt
decomposition of the interaction Hamiltonian we find

Hint =Q
α

sα ⊗ Γα, (2.37)

where we require that the system- and bath coupling operators are hermitian, sα = s
†
α, Γα = Γ†

α.
Transforming this into the interaction picture, we may rewrite Eq. (2.36) as

∂t%̃(t) = −
1

h̵2
Q
α,β
S

t

0
dτ s̃α(t)s̃β(τ)%̃(τ) − s̃β(τ)%̃(τ)s̃α(t) aΓ̃α(t)Γ̃β(τ)fE + h.c. . (2.38)

with ⟨⋅⟩E = TrE(%E⋅). This is the master equation in Born approximation. Note that the right-hand
side still depends on %̃(τ), i.e. the evolution is non-Markovian as it will, in general, depend on the
history of the reduced state.

2.3.2. Markov approximation

In many physical situations, one can get rid of this cumbersome dependence on the history of the
state. This will lead us to a discussion of the time scales of the dynamics.

Let us investigate the bath correlation functions Cαβ(t, τ) = aΓ̃α(t)Γ̃β(τ)fE. Since the state of the
bath is stationary, it is clear that they may only depend on the temporal distance t − τ , i.e.

Cαβ(t, τ) ≡ Cαβ(t − τ) = aΓ̃α(t − τ)Γ̃β(0)fE . (2.39)

In most physical reservoirs, these correlation functions will decay on a time scale τB. Since the reservoir
is large, typically, the information gets scrambled on time scales τB that are much faster than the time
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scale τR of the relaxation dynamics of the system, τB ≪ τR. Note that this is especially compatible
with our requirement of ‘weak’ system–bath coupling Hint, because the time scale τR is inversely
proportional to the small energy scale of Hint (to be precise, τR is scaling as τR ∝ h̵2γ−2 if Hint ∝ γ).
Therefore, on the relevant time scales of the integral in Eq. (2.38), the reduced density matrix is
approximately constant. Consequently, we may perform the first step of the Markov approximation
and replace %̃(τ) with %̃(t) to obtain

∂t%̃(t) = −
1

h̵2
Q
α,β
S

t

0
dτ s̃α(t), s̃β(τ)%̃(t) Cαβ(t − τ) + h.c. . (2.40)

This is the Redfield master equation.

Now it is convenient to replace the integration variable τ → t− τ , such that in the integral it occurs
the factor Cαβ(τ). Then, since Cαβ(τ) decays rapidly, we may extend the upper bound of the integral
to infinity, which is the second part of the Markov approximation,

∂t%̃(t) = −
1

h̵2
Q
α,β
S

∞

0
dτ s̃α(t), s̃β(t − τ)%̃(t) Cαβ(τ) + h.c. . (2.41)

This is, in principle, the Born-Markov master equation.

We may arrive at a form that is more convenient by introducing the eigenstates of the system
Hamiltonian,

HS Sn⟩ = EnSn⟩. (2.42)

Then, we may rewrite

⟨nSs̃α(t)Sm⟩ = e
i
h̵
(En−Em)tsαnm, and ⟨nS%̃(t)Sm⟩ = e

i
h̵
(En−Em)t%nm(t), (2.43)

with matrix elements sαnm = ⟨nSsαSm⟩ as well as %nm(t) = ⟨nS%(t)Sm⟩.

Taking the matrix elements of Eq. (2.41) and inserting the completeness relation ✶S = ∑k Sk⟩⟨kS

between the operators, we find

∂t%nm(t) = −
i

h̵
(En −Em)%nm(t)

+
1

2
Q
k,l

Rml,nk%kl(t) −Rkn,kl%lm(t) +R
∗
nk,ml%kl(t) −R

∗
lm,lk%nk(t) .

(2.44)

where and we have defined the rates

Rnm,kl =
2π

h̵
Q
α,β

sαmns
β
klWαβ(Ek −El), (2.45)
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and the (imaginary) Laplace transform of the bath-correlation function

Wαβ(E) =
1

πh̵
S

∞

0
dτe−

i
h̵
EτCαβ(τ). (2.46)

Equation (2.44) is what we want to call the Born-Markov master equation. Note that Eq. (2.44) is
generally not of Lindblad form, which we would wish to hold such that a physical evolution of the
density matrix is guaranteed. For example, by using the Lindblad operators Lnm = Sn⟩⟨mS, n ≠m, one
may bring it to a form that is pseudo Lindblad, in the sense that it looks like Eq. (2.26) but with a
coefficient matrix d that is not positive semidefinite. Hence, complete positivity (or even positivity)
may be violated during the evolution with the Born-Markov master equation. However, it will be
violated only on short time scales. The physical reason is that on these time scales the error that we
made in Eq. (2.41) by replacing t in the integral with infinity is severe [118].

2.3.3. Rotating wave approximation

In the long time limit, however, complete positivity is guaranteed. This is because in this limit we
may perform the rotating wave approximation (or secular approximation) to find a master equation
that is of Lindblad form.

This approximation is again justified from a discussion of time scales of the dynamics. Here, we
assume that the time scale of relaxation τR is slow when compared to a typical time scale of the
system dynamics τS. Therefore, the dynamics may be thought of obeying the form

%nm(t) ≈ e
− i

h̵
(En−Em)t%nm(0) +O(γ

2t~h̵2), (2.47)

with fast coherent oscillations on time scale τS =maxn≠mh̵~(En −Em) and slow dissipative dynamics
on time scale τR ∝ h̵2~γ2 where γ is the order of magnitude of the system–bath coupling, Hint ∼ γ.
If τS ≪ τR the first term will dephase much faster than the time scale τR where contributions of
the second term start to play a role, so in the dissipative dynamics we may assume that %nm(t) is
asymptotically diagonal.

More formally, this can be seen from transforming (2.44) back into the interaction picture

%nm(t) = e
− i

h̵
Δnmt%̃nm(t), (2.48)

with Δnm = En −Em. We find

∂t%̃nm(t) =

1

2
Q
k,l

e
i
h̵
(Δnm−Δkl)t(Rml,nk +R

∗
nk,ml)%̃kl(t) − e

i
h̵
ΔnltRkn,kl%̃lm(t) − e

i
h̵
ΔkmtR∗lm,lk%̃nk(t) .

(2.49)

Now let us perform the rotating wave approximation: Since the dynamics of %̃ is much slower, we
average over the fast oscillating exponential functions. Assuming that there are no degeneracies in the
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2. Master equation for open quantum systems

spectrum of HS, i.e. Δnm ≠ 0 for n ≠m, this averaging yields

∂t%̃nm(t) =
1

2
(Rmm,nn +R

∗
nn,mm)%̃nm(t)+

1

2
δnm Q

k≠n
(Rnk,nk +R

∗
nk,nk)%̃kk(t) −

1

2
Q
k

(Rkn,kn +R
∗
km,km)%̃nm(t).

(2.50)

Note that here we also assumed that there are no accidental degeneracies in the energy splittings,
i.e. Δnm ≠Δkq for n ≠ k and m ≠ q.

As a result, in rotating wave approximation the probabilities pn(t) = %nn(t) relax independently
from the coherences %nm(t), n ≠m, namely as

∂tpn(t) =Q
m

(Rnmpm(t) −Rmnpn(t)) . (2.51)

This is the Pauli master equation. Herein, we have defined the real-valued Pauli rates

Rnm =
1

2
Rnm,nm +R

∗
nm,nm . (2.52)

These rates are nonnegative. The Pauli master equation is classical in the sense that the probability
flow between states n is described by a classical Markov chain with rates Rnm. The quantum properties
of the system manifest themselves in the existence of quantized states n and in the properties of the
rates Rnm.

For the coherences one finds

∂t%nm(t) = −
i

h̵
(En −Em) +

1

2
(Rmm,nn +R

∗
nn,mm) −

1

2
Q
k

(Rkn,kn +R
∗
km,km) %nm(t). (2.53)

Note that we may rewrite

Rkn,kn = Rkn + iQkn (2.54)

with real matrix Q. Then, we may redefine the system energies

E′n = En +
h̵

2
Q
k

Qkn. (2.55)

This energy correction is known as Lamb shift. It is obvious that the correction scales as ∝ γ2, where
γ is the overall strength of the system–bath coupling. Since, throughout this work, we are focusing
on the limit γ → 0, this correction will vanish for all of our purposes.

Finally, in rotating wave approximation we may reformulate the dynamics in a Lindblad master
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2.3. Microscopic approach: Born-Markov rate equation

equation

∂t%(t) = −
i

h̵
H ′, %(t) + Q

n≠m
Rnm Lnm%(t)L

†
nm −

1

2
L†
nmLnm, %(t)

+ Q
n≠m

Dnm Lnn%(t)L
†
mm −

1

2
L†
mmLnn, %(t) .

(2.56)

with Hamiltonian H ′ = ∑nE
′
nSn⟩⟨nS, jump operators Lnm = Sn⟩⟨mS and dephasing matrix

Dnm =
1

2
(Rmm,nn +R

∗
nn,mm) =D

∗
mn, (2.57)

which can be rewritten as

Dnm =
1

2
Q
α,β

sαmms
β
nn(Wαβ(0) +W

∗
βα(0)). (2.58)

For the case where there are no cross-correlations, Wαβ(E) = δαβWα(E), we directly see that this
matrix is positive semidefinite and Eq. (2.56) is a proper Lindblad master equation. (Note that the
Lindblad operators Lnn still have to be made traceless, which gives another Lamb-shift contribution
that we want to ignore.)

Note that we have the scaling Rnm,Dnm ∝ γ2. Therefore, in the strict weak-coupling limit, γ → 0,
the corresponding terms vanish and we observe that the steady state, ∂t%st = 0, has to commute with
the Hamiltonian

0 = ∂t%st = −
i

h̵
[HS, %st] , for γ → 0. (2.59)

More systematically, we may expand the steady state density matrix

%st =Q
n

p(0)n Sn⟩⟨nS + γ
2
Q
nm

%(2)nmSn⟩⟨mS +O(γ
4
). (2.60)

Since the off-diagonal elements are suppressed in this limit, in the asymptotic dynamics the dephasing
terms in the Lindblad equation are effectively suppressed with an additional factor γ2. So if we are
only interested in the dominating order of the asymptotic late-time dynamics it suffices to study the
Lindblad equation

∂t%(t) = −
i

h̵
[HS , %(t)] + Q

n≠m
Rnm Lnm%(t)L

†
nm −

1

2
L†
nmLnm, %(t) . (2.61)

Intuitively, the bath transfers particles from state m to n with rate Rnm.

The dominating order of the steady state is diagonal in the eigenbasis of HS with occupations p(0)n

that are obtained from the steady state of the Pauli equation (2.51).
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2. Master equation for open quantum systems

2.3.4. Rates for coupling to thermal phonon reservoir

We want to find the Born-Markov rates for a typical heat bath. Let us specify the environmental
degrees of freedom and the system–environment coupling in Eq. (2.1). A common choice for a bath
environment is a collection of harmonic oscillators

HE =Q
α

h̵ωαb
†
αbα (2.62)

It describes the quantized oscillatory (phononic) degrees of freedom in a heat bath, with bosonic
annihilation operator bα and frequency ωα. We want to focus on the diffusive regime, where the
system couples to the displacement xα ∝ (b

†
α + bα) of the oscillators.

Let us assume that all oscillators couple to the same system coupling operator v. Then, the system–
bath coupling takes the form

Hint = γv ⊗Q
α

cα b†α + bα , (2.63)

with (real) coupling coefficients cα to each mode α. We have extracted the overall strength γ of the
interaction, while v and cα are assumed on the order of unity. Note that the Hamiltonian Hint already
has the form of a direct product. Thus, its Schmidt rank is one and we have only one bath coupling
operator Γ = ∑α cα b†α + bα . A generalization to an interaction Hamiltonian Hint with multiple terms
of this form is straight-forward.

Finally, let us fix the state %E of the reservoir. We want to assume that it is in a thermal state with
temperature T (phonons have chemical potential µ = 0),

%E =
1

Tr(e−HE~kBT )
e−HE~kBT =M

α

1 − e−h̵ωα~kBT e−h̵ωαb
†
αbα~kBT . (2.64)

Note that indeed we have TrE(Hint%E) = 0.

Let us compute the bath-correlation function

C(t) = aΓ̃(t)Γ̃(0)f
E
. (2.65)

First, we transform the bath-coupling operator to the interaction picture,

Γ̃(t) =Q
α

cα eiωαtb†α + e
−iωαtbα . (2.66)

This yields

C(t) =Q
α

c2α eiωαtn(h̵ωα) + e
−iωαt(n(h̵ωα) + 1) , (2.67)

where we have defined the Planck occupation function n(E) = (exp(E~kBT ) − 1)−1.
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2.3. Microscopic approach: Born-Markov rate equation

Let us define the spectral density of the bath,

J̄(E) =Q
α

c2αδ(E − h̵ωα), (2.68)

which counts how many bath modes there are at energy E and how strong the system is coupled
to them. Typically, Markovian baths have a continuum of modes α such that J̄(E) is a continuous
function. A very prominent choice is J̄(E) = E, the ohmic bath. This is because in the classical limit
of the kinetic Hamiltonian H = p2~2m + V (q), this choice (together with system coupling operator
v = −q and γ =√η) gives rise to a Langevin equation with a linear friction term −ηq̇ [73, 119]. Other
common choices are J̄(E) = Ed, where for d > 1 the bath is called superohmic, and for d < 1 subohmic.

Also, to avoid divergences it is often needed to add a cutoff scale to J̄(E), for example by using
an exponential cutoff at energy Ec [111]. However, throughout this work, we are mainly investigating
systems with a bounded energy spectrum. In that case we do not run into such problems.

With this choice, we write

W (E) =
1

πh̵
S

∞

−∞
dE′S

∞

0
dτe−

i
h̵
Eτ J̄(E′) e

i
h̵
E′τn(E′) + e−

i
h̵
E′τ n(E′) + 1 , (2.69)

where we have set J̄(E) = 0 for E < 0 and exchanged the two integrals. First, let us split the complex
function W into its real and imaginary part

W (E) = g(E) + iw(E). (2.70)

Then, using the Sokhotski–Plemelj formula (P is the Cauchy principle value),

lim
ε→0+
S

∞

−∞
dE S

∞

0
dτe−iEτ−ετf(E) = πf(0) − iP S

∞

−∞
dE

f(E)

E
, (2.71)

we directly obtain the real part of the bath-correlation function

g(E) =

⎧⎪⎪
⎨
⎪⎪⎩

J̄(E)n(E) for E > 0,
J̄(−E)(n(−E) + 1) for E < 0.

(2.72)

Note that for the Planck distribution it holds that n(−E)+ 1 = −n(E) such that it is convenient to
define the antisymmetrized spectral density

J(E) = J̄(E) − J̄(−E), (2.73)

which allows for a compact form which is valid for all E,

g(E) =
J(E)

eE~kBT − 1
. (2.74)
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2. Master equation for open quantum systems

From this we find the Pauli rates for the phonon bath

Rnm =
2πγ2

h̵
S⟨nSvSm⟩S2 g(En −Em). (2.75)

This is the main result of this section. This rate is of Fermi’s golden rule type as it depends on the
matrix element of the coupling operator squared multiplied by some function which counts the density
of states in the bath. However, it differs from Fermi’s golden rule because we additionally have to
take into account the thermal occupation of the bath at the given energy difference that occurs in the
process.

Note that since the state %E of the bath is thermal, it holds that

g(−E) = eE~kBT g(E). (2.76)

As a result, the rates Rnm fulfill the following condition: there exist probabilities pn such that

Rnmpm = Rmnpn for all n,m. (2.77)

It means that in the Pauli rate equation (2.51) all terms in the sum vanish individually. This condition
is known as detailed balance, because there is no net probability flow between state n and m. This
condition is only fulfilled in thermal equilibrium. In our case, it immediately follows that the proba-
bilities pn are given by the Boltzmann factors pn ∝ exp(−En~kBT ). As soon as we choose rates Rnm

that do not fulfill a detailed balance condition, the system will relax to a nonequilibrium steady state.
Possibly the easiest way of breaking detailed balance is by coupling the system to two heat baths of
different temperature T1 and T2. Then the total rates Rnm will be the sum of the individual rates of
when the system is coupled to one of the baths only.

Let us shortly discuss the imaginary part w which is essential for the rates in the Born-Markov rate
equation (2.44). Using Eq. (2.71) on Eq. (2.69), we obtain

w(E) =
1

π
P S

∞

−∞
dE′

J̄(E −E′)n(E −E′)

E −E′
−
J̄(E′ −E)(1 + n(E′ −E))

E′ −E
. (2.78)

For ohmic spectral density we find

w(E) =
1

π
P S

∞

−∞
dE′n(E −E′) (2.79)

In the integral we may shift the variable E′ → E −E′ to find that the integral is independent on E.
Thus, we have w(E) = w0 = const. (note that, strictly speaking, the integral diverges at the boundary
infinity, but as we discussed earlier, we may cut it off at some energy Ec). If we think about what a
redefinition W (E)→W (E)+ iw0 means in the Born-Markov rate equation (2.44), we see that it may
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2.4. Rate equation for the ideal Bose gas

be interpreted as a modification of the Hamiltonian

HS →HS + πw0 Q
k,n,m

Q
α,β

sαnks
β
kmSn⟩⟨mS =HS + πw0Q

α,β

sαsβ, (2.80)

which is a contribution that again vanishes in the weak-coupling limit γ → 0.

As a result, for an ohmic bath we may absorb the imaginary part of the bath-correlation function
in the Hamiltonian, giving rise to the Born-Markov rates

Rnm,kl =
2πγ2

h̵
⟨mSvSn⟩⟨kSvSl⟩g(En −Em). (2.81)

2.4. Rate equation for the ideal Bose gas

The mere requirement that the eigenenergies En and the eigenstates Sn⟩ of the system Hamiltonian HS

are known is extremely challenging for a quantum many-body system, since e.g. for distinguishable
particles the Hilbert space grows exponentially with the numberN of particles is the system. Therefore,
for interacting quantum many-body systems, already writing down a Born-Markov rate equation in
the form of Eq. (2.44) is an extremely challenging task.

An interesting exception are many-body localized systems [120–124]. There, the existence of local-
ized integrals of motion (or l-bits) provides a convenient basis in which the full, interacting Hamiltonian
is diagonal. We have discussed this in detail in Ref. [125], but these considerations will not be part of
this thesis.

Noninteracting many-body systems, however, are readily treated if the diagonal form of the single-
particle Hamiltonian is at hand. Let us discuss this fact for bosons, since throughout this work we will
only discuss Bose gases. Similar considerations hold for noninteracting fermions [83]. Let us assume
that we have diagonalized the single-particle Hamiltonian

Hsp
S =

M

Q
k=1

εkSk⟩⟨kS. (2.82)

Note that we assume that the system is finite with M being the total number of single-particle states.
Then, the many-particle Hamiltonian for the ideal gas of N bosons takes the form

HS =Q
k

εkc
†
kck, (2.83)

where ck is the bosonic annihilation operator for state k. This Hamiltonian is diagonal in the Fock
basis Sn⟩ = Sn1, n2, . . . , nM ⟩ with occupation numbers nk ∈ ◆0 of the single-particle states k, namely

HSSn⟩ = EnSn⟩ =Q
k

εknkSn⟩. (2.84)
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2. Master equation for open quantum systems

Let us assume that the system’s coupling operator v is a single-particle operator

v =Q
nm

vnmc
†
ncm. (2.85)

with vmn = v
∗
nm. Note that since the eigenstates and the spectum of the system are known, we may

find a Born-Markov rate equation (2.44) or a Pauli rate equation (2.51) for the Fock space matrix
elements %nn′ of the density matrix. Such ideas are e.g. discussed in Refs. [83, 125].

Here we want to take a different approach that starts from the basis-free representation of the
Born-Markov equation, Eq. (2.41). First, we note that

ṽ(t − τ) =Q
nm

e−
i
h̵
(εn−εm)τvnmc̃

†
n(t)c̃m(t). (2.86)

Plugging this in Eq. (2.41) [remember that here we use sα = γv] we find

∂t%̃(t) = −
πγ2

h̵
Q

nmkl

vmnc̃
†
m(t)c̃n(t), vklc̃

†
k(t)c̃l(t)%̃(t) g(εk − εl) + h.c. . (2.87)

Here, again, we have identified the Laplace transform g(E) of the bath correlation function (let us
focus on ohmic baths and ignore the renormalization of the system Hamiltonian). Now we may use
the single-particle rates

Rnm,kl =
2πγ2

h̵
vmnvklg(εk − εl), (2.88)

and transform the equation back to the Schrödinger picture to find

∂t%(t) = −
i

h̵
[HS, %(t)] +

1

2
Q

nmkl

Rnm,kl c†kcl%(t), c
†
mcn + h.c. . (2.89)

This is the second-quantized version of the Born-Markov rate equation for the ideal Bose gas. It is
the starting point for our considerations in Chapter 6.

In the weak-coupling limit, γ → 0, we may perform the rotating wave approximation to find the
second-quantized version of the Lindblad equation (2.61) that governs the asymptotic dynamics. We
find that it has the same form as Eq. (2.61), but with Lindblad operators Lnm = c

†
ncm, i.e.

∂t%(t) = −
i

h̵
[HS , %(t)] + Q

n≠m
Rnm c†ncm%(t)c

†
mcn −

1

2
c†mcnc

†
ncm, %(t) . (2.90)

Note that we can perform the rotating wave approximation only if the energies En of the states
connected by v are nondegenerate. Since v is a single-particle operator, here it suffices that there are
no degeneracies in the single-particle spectrum εk.

From this equation, we find the asymptotic dynamics of the expectation value of the occupation
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2.4. Rate equation for the ideal Bose gas

Rkq

k

q

(a)

Rkq(nk + 1)nq

k

q

(b)

Figure 2.2.: Sketch of the dynamics of the occupations in an ideal Bose gas in weak coupling to
its environment. (a) For a single particle, the environment induces jumps from level q to k which
happen at rate Rkq. (b) Also in the ideal gas, single particles are transferred. The single particle
rate for this process is amplified with the occupation nq of the departure state and the bosonic
enhancement factor nk + 1.

numbers nk = c
†
kck,

∂t⟨nk⟩ = Tr(∂t%(t)nk) = −
i

h̵
⟨[nk,HS]⟩

+
1

2
Q
n≠m

Rnm a c†mcn, nk c†ncmf + ac
†
mcn nk, c

†
ncm f .

(2.91)

Note that here we have suppressed the time dependence of all expectation values ⟨⋅⟩ ≡ ⟨⋅⟩(t). Now we
use [nk,HS] = 0 as well as

c†mcn, nk = c
†
m [cn, nk] + c†m, nk cn = (δnk − δmk) c

†
mcn. (2.92)

Finally we use that for n ≠m it holds that c†mcnc
†
ncm = (nn + 1)nm, giving

∂t⟨nk⟩ =Q
q

Rkq ⟨(nk + 1)nq⟩ −Rqk ⟨(nq + 1)nk⟩ . (2.93)

This is the many-particle rate equation for the occupations in an ideal Bose gas. It is the starting
point for our analysis in Chapter 4 and 5. Its dynamics is sketched in Fig. 2.2. For the single-particle
problem, Fig. 2.2(a), the environment induces quantum jumps of one particle from level q to level
k. However, for the ideal Bose gas, Fig. 2.2(b), the rate for this process is the single-particle (Pauli)
rate Rkq multiplied with two factors: the first factor is the occupation nq of the departure state. This
factor also occurs for classical, i.e. distinguishable, particles. The second factor 1+nk depends on the
occupation of the target state and is the manifestation of quantum statistics. Bosons favor to occupy
the same state, thus the rate is increasing with the occupation of the target state. This factor is known
as bosonic enhancement- or bunching factor.

Note that Eq. (2.93) depends on higher-order correlators ⟨nknq⟩. This is a result of the fact that,
even though the system Hamiltonian is noninteracting, the full problem is interacting. This can be
seen on two levels: The Lindblad operators Lnm are quadratic and therefore the dissipator is quartic.

25



2. Master equation for open quantum systems

This, again, is a consequence of the fact that the system–bath interaction Hint is qubic. For quadratic
Hint, Eq. (2.93) becomes linear.

Remember that in the weak-coupling limit, γ → 0, asymptotically the state will be diagonal in the
eigenstates of the system, the Fock states,

%(t)
t→∞
—→Q

n

pnSn⟩⟨nS. (2.94)

As a result, the steady state is fully characterized by the knowledge of all the moments of the occu-
pations nk, i.e. ⟨nk⟩, ⟨nknq⟩, ⟨nknqnl⟩, and so on. As was noted by Vorberg et. al. [82–84] and will
be shortly discussed in Chapter 4, in many physical systems we may assume that the steady state
factorizes, i.e. pn ≈ pn1pn2⋯pnM

. Under this assumption, the state is fully characterized by knowledge
of the mean occupations ⟨nk⟩ only, and we may decompose the correlator ⟨nknq⟩ ≈ ⟨nk⟩⟨nq⟩, for k ≠ q,
in Eq. (2.93) to find a mean field- or kinetic equation. Then, by setting ∂t⟨nk⟩ = 0, we find a nonlinear
equation from which we may extract these mean occupations in the steady state.
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3. Existence of the Floquet Lindbladian

The stroboscopic evolution of a time-periodically driven isolated quantum system can always be
described by an effective time-independent Hamiltonian. Whether this concept can be generalized
to open Floquet systems, described by a Markovian master equation with time-periodic Lindbladian
generator, remains an open question. By using a two level system as a model, we find two different
phases. In one phase the stroboscopic evolution can be described by an effective Markovian master
equation with a time-independent Floquet Lindbladian. In the other phase it cannot; but here the
one-cycle evolution operator can be reproduced with an effective time-homogeneous master equation
that is nonmarkovian. Interestingly, we find that the boundary between the phases depends on when
during the period the evolution is monitored stroboscopically. This reveals the non-trivial role played
by the micromotion in the dynamics of open Floquet systems. We discuss how the Floquet Lindbladian
can be extracted from a high-frequency expansion and gain thereby some understanding of the role
of the micromotion. These results shed light on opportunities and challenges for dissipative Floquet
engineering.

The results of Sec. 3.1-3.3 have been published in Ref. [126]. Major parts of these sections are directly
adapted from the publication and are expanded in order to provide for a more detailed discussion of
the concept of the Floquet Lindbladian. The results of Sec. 3.4 on the high-frequency expansions are
unpublished.

3.1. The Floquet Lindbladian

When the coherent evolution of an isolated quantum Floquet system, described by the time-periodic
Hamiltonian H(t) = H(t + T ), is monitored stroboscopically in steps of the driving period T , this
dynamics is described by repeatedly applying the one-cycle time-evolution operator

U(T ) = T exp −
i

h̵
S

T

0
dt′H(t′) (3.1)

(with time ordering T ) [127, 128]. It can always be expressed in terms of an effective time-independent
HamiltonianHF , called Floquet Hamiltonian, U(T ) ≡ exp(−iHFT ~h̵). While the Floquet Hamiltonian
is not unique due to the multi-branch structure of the operator logarithm logU(T ), the unitarity of
U(T ) implies that every branch is Hermitian like a proper Hamiltonian. The concept of the Floquet
Hamiltonian suggests a form of quantum engineering, where a suitable time-periodic driving protocol
is designed in order to effectively realize a system described by a Floquet Hamiltonian with desired
novel properties. This type of Floquet engineering was successfully employed with ultracold atoms [8],
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3. Existence of the Floquet Lindbladian

e.g. to realize artificial magnetic fields and topological band structures for charge neutral particles
[14, 18–20, 129, 130].

However, systems like atomic quantum gases, which are very well isolated from their environment,
should rather be viewed as an exception. Many quantum systems that are currently studied in the
laboratory and used for technological applications are based on electronic or photonic degrees of
freedom that couple to their environment. It is, therefore, desirable to extend the concept of Floquet
engineering also to open Floquet systems. In this context, a number of papers investigating properties
of the nonequilibrium steady states approached by these driven dissipative systems in the long-time
limit have been published [71, 72, 74, 75, 77–80, 82, 83, 85, 89, 98], and we will cover some of the
properties of steady states in bosonic quantum many body systems in the following chapters. In this
chapter, in turn, we are interested in the (transient) dynamics of open Floquet systems and address
the question as to whether it is possible to describe their stroboscopic evolution with time-independent
generators, like it is the case for isolated systems.

We can distinguish three different possible scenarios for a given time-periodic Lindbladian L(t):
(a) the action of the dynamical map P(T ) can be reproduced with an effective Markovian master
equation described by a time-independent Floquet Lindbladian LF , P(T ) = exp(TLF ); (b) the action
of P(T ) is reproduced with an effective nonmarkovian master equation characterized by a time-
homogeneous memory kernel; (c) the action of P(T ) cannot be reproduced with any time-homogeneous
master equation. Scenario (a) is implicitly assumed in recent papers [100–102], where a high-frequency
Floquet-Magnus expansion [131] (routinely used for isolated Floquet systems [9, 39, 132]) is employed
in order to construct an approximate Floquet Lindbladian. It requires that one branch of the operator
logarithm logP(T ) has to be of Lindblad form so that it can be associated with TLF . However,
differently from the case of isolated systems, for which any logarithm branch of the unitary evolution
operator is guaranteed to be Hermitian, it is not obvious whether there is at least one valid branch
for a given open Floquet system, since general CPTP maps do not always possess a logarithm of
Lindblad type [105]. Below we demonstrate that scenario (a) is indeed not always realized even in the
case of a simple two-level model. Instead, we find that the parameter space is shared by two phases
corresponding to scenario (a) and (b), respectively.

We consider a time-dependent Markovian master equation [133]

ρ̇ = L(t)ρ = −
i

h̵
[H(t), ρ] +D(t)ρ, (3.2)

for the system’s density operator ρ, described by a time-periodic generator L(t) = L(t + T ). It is
characterized by a Hermitian time-periodic Hamiltonian H(t) and a dissipator

D(t)ρ =Q
i

γi(t) Li(t)ρL
†
i(t) −

1

2
{L†

i(t)Li(t), ρ} , (3.3)

with traceless jump operators Li(t) and non-negative rates γi(t), which both are time periodic. Note
that the time-dependent variation of L(t) may either be due to a time-periodic modulation of the
coherent evolution, governed by the Hamiltonian H(t), or due to a time-periodic modulation of
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3.1. The Floquet Lindbladian

the dissipative channels, represented by the rates γi(t) and Lindblad operators Li(t). This is the
most general time-local form guaranteeing an evolution described by a completely positive and trace
preserving (CPTP) map consistent with quantum mechanics [133]. Such an evolution may also be
called time-dependent Markovian.

Let us quickly revisit the Lindblad master equation. A quantum dynamical semigroup is an evolution
P(t, t0) ∈ L(L(H)) of the density matrix % ∈ L(H) in a Hilbert space H,

%(t) = P(t, t0)%(t0), and we denote P(t) = P(t,0), (3.4)

that is motivated by the constraints that a ‘physical’ evolution of the density matrix should obey:
It is continuous, limt→0+ P(t)% = %, trace preserving, Tr(P(t)%) = Tr(%), has the semigroup property,
P(t + s) = P(t)P(s), i.e. the evolution has no memory of its history, it is is time-local or Markovian,
and is completely postitive, P(t)⊗✶ ≥ 0, where ✶ is the identity on the operator space L(H) over the
Hilbert space H.

As it was shown by Lindblad, Gorini, Kossakowski and Sudarshan [112], the superoperator L that
generates this evolution, i.e.

∂tρ(t) = Lρ(t), or equally P(t) = exp(Lt), (3.5)

has to obey the Lindblad form, Eq. (2.26), where H is a Hermitian operator, the Hamiltonian, {Ai}

is a traceless operator basis of L(H) (dim(H) = N) and d ≥ 0 is a Hermitian positive semidefinite
coefficient matrix. The Lindblad operators Li and the corresponding nonnegative rates γi can then
be found by diagonalizing the coefficient matrix d.

Now, let us turn to the evolution P(t) that is generated by a time-dependent Lindbladian L(t), as
in Eq. (3.2), which formally yields

P(t) = T exp S
t

0
dtL(t) . (3.6)

By definition, this gives rise to an evolution P(t) that is continuous, trace preserving and completely
positive.

Since the evolution is time periodic, it is intriguing to study the stroboscopic dynamics, given by
the one-cycle evolution superoperator [134, 135]

P(T ) = T exp S
T

0
dtL(t) , (3.7)

which is CPTP, i.e. it is a quantum channel. The repeated application of it describes the stroboscopic
evolution of the system, i.e. for all ρ(0) one has

ρ(nT ) = P(T )nρ(0). (3.8)

Let us first address the question of the existence of a Floquet Lindbladian. In the time-periodically
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3. Existence of the Floquet Lindbladian

modulated isolated system, i.e. in our notation Eq. (3.2) with γi(t) = 0 for all i, it is well known that
there always exists an effective time-independent Hamiltonian HF , the Floquet Hamiltonian, such
that

P(T ) = exp −
i

h̵
[HF , ⋅]T . (3.9)

This Floquet Hamiltonian is subject to many theoretical studies, mainly due to the fact that it
can be used as an experimental tool to create interesting dynamics that would not be present in the
autonomous system. This technique has been coined Floquet engineering. Apart from that, the notion
of a Floquet-Hamiltonian is also a very powerful tool in nuclear magnetic resonance spectroscopy [136].
How can one see that such a Floquet Hamiltonian HF exists? For the coherent dynamics, the evolution
operator reduces to a unitary rotation of the density matrix

P(T ) = U(T ) ⋅U(T )†. (3.10)

The unitary one-cycle evolution operator U(T ) is divisible (any root of it is a unitary operator)
and yields a countably infinite set of Hermitian generators, HU,{x1,...,xN}, xa ∈ ❩, U(T ) = e−iHUT ~h̵,
parametrized by a choice of a branch of the logarithm logU(T ). This can be seen most easily by
representing the evolution operator U(T ), Eq. (3.1), in its spectral decomposition. Since it is unitary
we may represent it as

U(T ) =
N

Q
a=1

e−iεaT ~h̵Pa (3.11)

with real numbers εa and (Hermitian) orthogonal projectors Pa onto the eigenspace a. Now it becomes
apparent that, when computing the logarithm of U(T ), for every subspace a there is a freedom to
pick a branch of the complex logarithm giving a whole set

log [U(T )]{x1,...,xN} = −i
N

Q
a=1
(εaT ~h̵ + 2πxa)Pa. (3.12)

parameterized by N integer numbers xa ∈ ❩. For the corresponding Hermitian generator,

HU,{x1,...,xN} =
N

Q
a=1
(εa + h̵ωxa)Pa, (3.13)

this change of branch corresponds to a redefinition of the ‘energy’ εa → εa + h̵ωxa, where ω = 2π~T is
the driving frequency. That means, the ‘energies’ εa are only defined up to integer multiples of h̵ω,
which is why they are typically referred to as quasi-energies. Note that in the case of the coherent
dynamics, any of these generators can be chosen as Floquet HamiltonianHF , since all of the generators
HU,{x1,...,xN} qualify as physically sensible Hamiltonians. This choice can be made, e.g, by using the
principal branch, ∀xs ≡ 0, or the branch closest to the time-averaged Hamiltonian H(t).

In analogy to the closed system, a Floquet Lindbladian is a time-independent Lindblad superoper-
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3.1. The Floquet Lindbladian

ator LF for which

P(T ) = exp (LFT ) . (3.14)

The aim is to find a time-independent Markovian evolution, generated by the Floquet Lindbladian LF ,
that coincides with P(t) at stroboscopic instances of time. As it was discussed in Ref. [105, 126], it is
not necessary that such a Lindblad operator exists. Although, by using the complex matrix logarithm
one is always able to find a general superoperator K such that

P(T ) = exp (KT ) , i.e. K = log(P(T ))~T, (3.15)

this superoperator K is not necessarily of Lindblad form, i.e. the corresponding evolution exp (Kt) is
not necessarily a quantum dynamical semigroup anymore.

Since P(T ) is a hermiticity-preserving map, its spectrum is invariant under complex conjugation.
Thus, its N2 eigenvalues are either real or appear by complex conjugated pairs (we denote the number
of these pairs nc). The Jordan normal form of the map P(T ) can thus be represented as

P(T ) =
nr

Q
r=1

λrPr +
nc

Q
c=1
(λcPc + λ

∗
cPc∗) , (3.16)

where λr are the real eigenvalues, λc, λ∗c the pairs of complex eigenvalues, and Px the corresponding
(not necessarily Hermitian) orthogonal projectors on the corresponding subspaces.

Again, due to the nature of the complex logarithm, the operator K in Eq. (3.15) is not uniquely
defined, but for every branch of the logarithm we get a different operator. A straight-forward procedure
to test whether a given candidate K is a valid Lindblad generator is the Markovianity test proposed
by Wolf et al. in Refs. [105, 137]: (i) Check if the operator K is preserving Hermiticity, i.e. Kσ = Kσ†

for all σ ∈ L(H) that are Hermitian, σ = σ†. (ii) For the second test, let us first define the maximally
entangled state SΦ⟩ = ∑N

i=1 (Si⟩⊗ Si⟩) ~
√
N where {Si⟩} is the canonical basis of H. We need to check

that the operator K is conditionally completely positive, i.e. it has to hold

Φ⊥K
ΓΦ⊥ ≥ 0, (3.17)

where Φ⊥ = ✶ − SΦ⟩⟨ΦS is the projector on the orthorgonal complement of the maximally entangled
state and KΓ = N(K ⊗ ✶)[SΦ⟩⟨ΦS] ∈ L(H2) is the Choi matrix of K. Then the corresponding branch
can be nominated for an effective Lindblad generator LF . Already here the contrast with the unitary
case becomes apparent: it is not guaranteed that such branch exists.

Condition (i) simply demands that the spectrum of the candidate K has to be invariant under
complex conjugation. This means, in turn, that the spectrum of the map P(T ) should not contain
negative real eigenvalues λr = −Sλr S (strictly speaking, there must be no negative eigenvalues of odd
degeneracy). That is, because if one would set the logarithm of such an occasion e.g. to log(λr) =

iπ+log(Sλr S), the spectrum is not invariant under conjugation anymore. In this case there is no Floquet
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3. Existence of the Floquet Lindbladian

Lindbladian.

If P(T ) has no negative real eigenvalues, we find that we may represent the family of all candidates
K{x1,...,xnc} as

K{x1,...,xnc} = K0 + iω
nc

Q
c=1
xc (Pc − Pc∗) , (3.18)

where K0 is the generator that follows from the principle branch of the logarithm of P(T ). We have the
freedom to pick integer numbers {xc} ∈ ❩nc that determine the branch of the logarithm for every pair
of complex eigenvalues. Note that for the isolated system all eigenvalues of P(T ) lie on the unit circle,
therefore all eigenvalues of K are purely imaginary (or zero). In the isolated system, with the freedom
in Eq. (3.18) we recover that the eigenvalues of the Floquet Hamiltonian HF , the quasi-energies, are
only defined up to multiples of the driving frequency ω, so all branches lead to a physical evolution.
For the open system, typically only a few, sometimes even none of the branches lead to a generator
that is physical in the sense that it is of Lindblad form.

For that, we need to check condition (ii), which is more complicated and involves properties of
the eigenelements of the Floquet map. As coined in Refs. [105, 137], by plugging the candidates,
Eq. (3.18), into the test for conditional complete positivity, Eq. (3.17), it comes in handy to define a
set of nc + 1 Hermitian matrices

V0 = Φ⊥K
Γ
0Φ⊥, Vc = iωΦ⊥(Pc − Pc∗)

ΓΦ⊥, c = 1, . . . , nc. (3.19)

The condition is fulfilled, if there is a set of nc integers, {x} ∈ ❩nc , such that

V∑ = V0 +
nc

Q
c=1
xcVc ≥ 0. (3.20)

At a first glance, to test this condition, we have to inspect all branches, i.e., a countably infinite
number of combinations of nc integers. Fortunately, the situation is not that hopeless because finding
the solution for this equation is related to two known programing problems [138, 139]. When {x}
ranges over ❘nc , the condition V∑ = 0 outshapes either zero or a finite volume in which V∑ is positive
semidefinite. In the former case there is evidently no Floquet Lindbladian. In the latter case, the
volume is enclosed by a convex body called spectrahedron [140]. To check whether the spectrahedron
contains an integer point is a problem of polynomial complexity with respect to max{Sx01S, ..., Sx

0
nc
S},

where {x0} ⊂ ❘nc is the solution set of V∑ = 0. Finally, when the test is successful for one branch,
the Floquet Lindbladian LF is found, and we can extract from it the corresponding time-independent
Hamiltonian and jump operators. This decomposition of a Lindbladian into Hamiltonain and dissi-
pative parts is not unique. However, it becomes so if we assume that all operators are traceless. The
procedure is given in Appendix A.

Note that, given that one has extracted the operator K via the matrix logarithm, one is always
able to bring it into a form that is pseudo Lindblad, meaning that it has the form of Eq. (2.26) but
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3.2. Model system: Driven-dissipative two-level system

with some operator H and some coefficient matrix d. Then, condition (i) is equivalent to testing for
Hermiticity of H and d and condition (ii) is equivalent to testing for d to be positive semi-definite,
d ≥ 0. This is how we will apply these conditions when performing the high-frequency expansions in
Section 3.4.

If there is no set of integers such that Eq. (3.20) is fulfilled, no Floquet Lindbladian exists. Then it
is instructive to quantify the distance from Markovianity for the non-Lindbladian generator K{x}, by
picking the branch giving the minimal distance. For this purpose, we compute two different measures
for nonmarkovianity proposed by Wolf et al. [105] and Rivas et al. [141], respectively. The first measure
is based on adding a noise term µN of strength µ to the generator and noting the minimal strength
required to make at least one of the candidate channels Lindbladian, i.e.

µmin =min{x}min µ ≥ 0SK{x} + µN is a valid Lindblad generator . (3.21)

Here, N is the generator of the depolarizing channel exp(TµN )ρ = e−µTρ + [1 − e−µT ] ✶N .
The second measure quantifies the violation of positivity of the Choi image [115, 142, 143] of the

generated map [141]. It is based on the fact that a given map P is completely positive iff its Choi
representation is positive, PΓ ≥ 0 [115, 142]. Together with the fact that the map is trace-preserving,
TrPΓ = 1, one finds that SSPΓSS1 = 1 iff P is Markovian and SSPΓSS1 > 1 if it is not (here SS%SS1 = Tr

»
%†% is

the trace norm). On the level of the generator K, P(t) = exp(Kt), the derivative of this norm SSP(t)ΓSS1
at t = 0 can be used to define a distance measure [141]

dRHP = lim
ε→0

SS(✶ + εK)ΓSS1 − 1

ε
. (3.22)

Interestingly, we find that for our model system, that we introduce in Sec. 3.2, both measures agree:
within the numerical accuracy, the second measure is always found to be equal to µmin~2. For small
distances dRHP < 10

−7 the distance measure dRHP is hard to obtain numerically, therefore we will use
the measure µmin, which is better in this respect.

3.2. Model system: Driven-dissipative two-level system

To illustrate the problem, let us consider a driven two level system in a lossy channel,

L(t) = −
i

h̵
[H(t), ⋅] + γ σ− ⋅ σ+ −

1

2
{σ+σ−, ⋅} , (3.23)

with

H(t) =
Δ

2
σz +E cos(ωt −ϕ)σx. (3.24)

Here σx, σz and σ− are standard Pauli and lowering operators. Using the level splitting Δ and h̵~Δ

as units for energy and time (so that henceforth in this chapter Δ = h̵ = 1), the model is characterized
by four dimensionless real parameters: the driving strength E, frequency ω, and phase ϕ, as well as
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Figure 3.1.: Distance to Markovianity µmin of the effective generator K of the one-cycle evolution
superoperator as a function of driving strength E and frequency ω, for weak dissipation γ = 0.01
and two driving phases (a) ϕ = 0 and (b) ϕ = π~2. In the white region, where µmin = 0, a Flo-
quet Lindbladian LF exists. On the dashed line the Floquet map P(T ) possesses two negative real
eigenvalues.

the dissipation strength γ.

In Fig. 3.1 we follow the procedure that we have outlayed above and calculate the candidates K
from the logarithm of P(T ), and then check whether for any given branch condition (i) and (ii) is
fulfilled. Note that for the qubit, one has at most one pair of complex eigenvalues, therefore one
only has to check a single number x labeling the branches. If we find a branch x0 with a valid
generator, then this is the Floquet-Lindbladian LF = Kx0 . In Fig. 3.1(a), we fill the region where
there is such a branch and the Floquet-Lindbladian exists with white color in the parameter space
(E,ω). In the region where no such branch exists we plot the distance from Markovianity µmin for
the closest branch of the effective generator of the one-cycle evolution superoperator. We choose weak
dissipation γ = 0.01 and ϕ = 0. This extended non-Lindbladian phase is surrounded by a Lindbladian
phase (white region) where µmin = 0 so that LF can be constructed [scenario (a)]. It contains also
the ω axis, corresponding to the trivial undriven limit E = 0. Note that only for a fine-tuned set of
parameters, lying on the dashed line in Fig. 3.1(a), P(T ) possesses negative eigenvalues. However,
they come in a degenerate pair, such that the construction of a Floquet Lindbladian is not hindered by
condition (i). Both the high- and the low frequency limit are surrounded by finite frequency intervals,
where the Floquet Lindbladian exists. This suggests that a (Floquet-)Magnus-type expansion for the
Floquet-Lindbladian [100–102] can indeed describe the high-frequency regime. We will turn to this
question in Sec. 3.4. Somewhat counter-intuitively, we find that the Floquet Lindbladian also exists
in a finite region of driving strengths E around the strongly-driven limit, so that for large E the low
and the high-frequency Lindbladian phases are connected. In turn, for intermediate frequencies, the
Lindbladian phase does not stretch over a finite interval of driving strengths E around the undriven
limit E = 0. This can also be seen from Fig. 3.2(a) and (b), where we plot µmin along horizontal cuts
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3.2. Model system: Driven-dissipative two-level system

through the phase diagram of Fig. 3.1(a), using a logarithmic and a linear scale, respectively.
Figure 3.1(b) shows the phase diagram for a different driving phase, ϕ = π~2. Remarkably, compared

to ϕ = 0, Fig. 3.1(a), the non-Lindbladian phase covers now a much smaller area in parameter space.
The phase boundaries depend on the driving phase or, in other words, on when during the driving
period we monitor the stroboscopic evolution of the system. In the coherent limit, we can decompose
the time evolution operator of a Floquet system from time t0 to time t like

U(t, t0) = UF (t) exp[−i(t − t0)Heff]U
†
F (t0), (3.25)

where UF (t) = U(t+T ) is a unitary operator describing the time-periodic micromotion of the Floquet
states of the system and Heff is a time-independent effective Hamiltonian. The Floquet Hamiltonian
HF

t0 , defined via U(t0 + T, t0) = exp(−iTHF
t0) so that it describes the stroboscopic evolution of the

system at times t0, t0 + T , . . . , is for general t0 then given by HF
t0 = UF (t0)HeffU

†
F (t0) [39]. Note that

above we use the lighter notation HF =H
F
0 for t0 = 0. The operator HF

t0 depends on the micromotion
via a t0-dependent unitary rotation. However, in the dissipative system the micromotion will no longer
be captured by a unitary operator. This explains, why the effective time-independent generator of the
stroboscopic evolution can change its character as a function of t0 (or, equivalently, the driving phase
ϕ) in a nontrivial fashion, e.g. from Lindbladian to non-Lindbladian. A quantitative discussion of this
is found in Sec. 3.4, where we aim to extract the micromotion operator for the dissipative system.

In Fig. 3.2(c), the dependence of the phase diagram on the dissipation strength γ is investigated. We
find that the extent of the non-Lindbladian phase both in frequency, Δω, and driving strength, ΔE,
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Figure 3.2.: Distance to Markovianity µmin along horizontal cuts through the phase diagram in
Fig. 4.1(a) for ω = 1,2,3 (solid, dashed, dotted line), in (a) logarithmic and (b) linear plots. (c)
Maximum extent of the non-Lindbladian phase with respect to frequency, Δω, and driving strength,
ΔE, and maximum non-Markovianity µmin =maxω,E[µmin(ω,E)] versus dissipation strength γ.
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does not vanish in the limit γ → 0. Thus, even for arbitrary weak dissipation the Floquet Lindbladian
does not exist in a substantial region of parameter space. It is noteworthy that the maximum distance
from Markovianity µmin goes to zero linearly with γ, i.e., the nonmarkovianity is a first-order effect
with respect to the dissipation strength.

Note that in Fig. 3.1(a) there is only a finite ‘ear-shaped’ region where there is no Floquet Lindbla-
dian. Especially, in the limits ω →∞, ω → 0, E →∞ there always exists a finite bound, e.g. for ω ≳ 5.8,
above which the Floquet-Lindbladian is guaranteed to exist. It is puzzling that, despite this fact, in
the literature it was found that one of the most conventional high-frequency expansions, the Magnus
expansion, does not produce a valid Lindblad generator on the lowest order [100, 104]. Just to make
this point clear, in the high-frequency limit, by direct calculation of the logarithm one finds that there
exists a valid Floquet Lindbladian that is physical, however the dominating term in the high-frequency
approximation to the Floquet Lindbladian is not physical, because it violates our condition (ii), i.e. it
is not conditionally completely positive [even though conditional complete positivity is only violated
in higher orders of 1~ω than the expansion was performed]. To illustrate this, in Section 3.4.1, we will
perform the Magnus expansion for our example system, Eq. (3.23).

In Section 3.4.4 we show that this problem can be circumvented by performing the Magnus expansion
in the rotating frame. Then, already the lowest order gives rise to a nontrivial approximation that
is physical for all parameter values. The lowest-order approximation in the rotating frame already
contains terms on all orders of 1~ω, which cures the problems of the high-frequency expansion in the
direct frame.

While in the (white) parameter region where there is a Floquet Lindbladian LF , we are able to
reconstruct the stroboscopic evolution with a time-local evolution

∂t%̃(t) = LF %̃(t), (3.26)

with a time-homogeneous generator LF , we may ask whether in the other (blue) region we may
always find a time-nonlocal evolution but with a time-homogeneous memory kernel. As we show in
the following section, this is always possible for the qubit model.

3.3. Construction of an effective evolution with time-homogeneous
memory kernel

While in the non-Lindbladian phase, we are not able to find a Markovian time-homogeneous master
equation reproducing the one-cycle evolution operator P(T ), one might still be able to construct
a time-homogeneous non-Markovian master equation, which is nonlocal in time and described by a
memory kernel. In order to construct such an equation, we make the following ansatz [144–146]

∂t%̃(t) = S
t

0
dτ e(τ−t)~τmemLK %̃(τ), for t ∈ [0, T ] , (3.27)
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Figure 3.3.: Shortest memory time τmem for the exponential kernel of the effective nonmarkovian
generator in Eq. (3.27). τmem = 0 (white) indicates the Lindbladian phase. Due to limited numerical
accuracy, we cannot resolve values of τmem ≤ 10

−2T . This leads to a spurious plateau at small τmem.
Other parameters as in Fig. 3.1(a).

where τmem is the memory time and LK is the kernel superoperator. The kernel on the right-hand side
is not of arbitrary form. In order to find an effective evolution that is CPTP, the choice of possible
kernel superoperators LK needs to be restricted. In the Markovian limit, τmem → 0, it suffices to
guarantee that LK is a valid Linbladian. For finite τmem, however, an ‘easy’ criterion that characterizes
all admissible LK is yet unknown. For the exponential kernel a sufficient (but not necessary) criterion
is that E = ✶ + LK is a CPTP map [144]. It is useful to introduce a map P̃ describing the evolution
resulting from the effective master equation (3.27), %̃(t) = P̃(t)%(0). It solves the equation

∂tP̃(t) = S
t

0
dτ e(τ−t)~τmemLKP̃(τ) (3.28)

with P̃(0) = ✶. We now have to construct a superoperator LK , so that P̃(T ) = P(T ). For that purpose,
we represent the one-cycle evolution in its Jordan normal form, Eq. (3.16). A natural ansatz is then
LK = ∑a λ

K
a Pa, with Pa being the projectors in Eq. (3.16). For this ansatz we find an evolution

operator of the form P̃(t) = ∑a ha(t)Pa, with characteristic decay functions ha(t) obeying ha(0) = 1.
Plugging everything into the equation of motion, Eq. (3.28), the problem reduces to solving a set of
scalar equations

∂tha(t) = S
t

0
dτ e(τ−t)~τmemλKa ha(τ). (3.29)

They possess solutions (cf. Appendix B.1)

ha(t) = e
−t~2τmem[cosh(Γat) + sinh(Γat)~(2Γaτmem)], (3.30)
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with Γa = [τ
−2
mem~4+λ

K
a ]

1~2. Requiring P̃(T ) = P(T ) implies ha(T ) = λa, where λa are the eigenvalues of
P(T ), Eq. (3.16). Solving this equation, we obtain the eigenvalues λKa as a function of the memory time
τmem (for details on the numerical implementation see Appendix B.2). It is then left to check, whether
the corresponding LK , which depends on the memory time τmem, is an admissible superoperator such
that the evolution P̃(t) is CPTP. We have checked that for all memory times τmem the superoperator
E = ✶ +LK violates complete positivity, therefore we cannot simply apply the criterion of Ref. [144].
In lack of a simple criterion, one way is to guarantee that P̃(t) complete positivity numerically: We
find that there is always a memory time τmem such that a physical evolution is guaranteed by testing
P̃(t)Γ ≥ 0 for all t on a numerical grid tn ∈ [0, T ] (data not shown).

Here we present a different approach that is motivated by the fact that complete positivity is often
broken for short times only, as we observe e.g. in Fig. 3.4(b). For short times t ≪ τmem, we find
ha(t) ≈ 1 + t

2λKa ~2 ≈ exp(t
2λKa ~2). As a result, for short times the evolution P̃(t) is approximated by

P̃(t) ≈ exp(t2LK~2), which is a semigroup with rescaled time t. As a result, we can guarantee complete
positivity for short times by requiring that LK is of Lindblad form by performing the test for condition
(ii). In the phase where the Floquet Lindbladian LF exists, we find a Lindbladian LK for arbitrarily
short memory times τmem. However, in the non-Lindbladian phase the memory time τmem cannot be
chosen smaller than a minimal value. In Fig. 3.3 we plot this minimal memory time versus driving
strength and frequency. It shows good qualitative agreement with the distance to Markovianity µmin

shown in Fig. 3.1(a) (note that the apparent plateau for small values of τmin is an artifact related
to the fact that our numerics cannot resolve memory times below 10−2T ). Note that the minimal
memory time τmem in principle also qualifies as a measure for the distance from Markovianity. The
fact that there is still some different behavior visible when comparing it to µmin might be due to the
restricted choice of the kernel Lindbladian LK that we make.

The fact that for the used model we can always construct a time-homogeneous memory kernel shows
that for our qubit model the non-Lindbladian phase corresponds to scenario (b). It is an intriguing
open question whether this holds only for our model or if such a construction is always possible.
One should be aware, however, that a time-homogeneous master equation with memory kernel like
Eq. (3.27) cannot reproduce the full stroboscopic evolution, since P̃(2T ), P̃(3T ), etc., will depend on
the history of the previous periods. The stroboscopic evolution can only be obtained by erasing the
memory after each period, which corresponds to a modification of the integrand of Eq. (3.27),

∂t%̃(t) = S
t

0
dτ e(τ−t)~τmemΘ (τ − ⌊t~T ⌋T )LK %̃(τ), for all t, (3.31)

where Θ denotes the Heaviside step function and ⌊⋅⌋ is the floor function.
In Fig. 3.4 we show two examples of the driven-dissipative two-level system. It is instructive to

analyze the eigenvalues λΓ of the Choi image P(t)Γ of the dynamical map P(t). The evolution is
CPTP only if all these eigenvalues are nonnegative. The parameters in Fig. 3.4(a) lie in the region
where a Floquet Lindbladian exists, therefore there is a semigroup evolution (dashed lines) that
coincides with P(nT ), n ∈ ◆0, and is CPTP for all times. For the parameters in Fig. 3.4(b) such
a semigroup evolution does not exist. We show the semigroup evolution that is closest to a CPTP
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Figure 3.4.: Instantaneous eigenvalues λΓ(t) of the Choi matrix of the full evolution P(t) (solid
lines) and of the effective semigroup exp(tK) (dashed lines) for the two-level model with γ = 0.01, ϕ =
0 and (a) ω = 1.5,E = 1.5 as well as (b) ω = 1.2,E = 0.75. K = log(P(T ))~T is chosen from the branch
that is closest to Markovianity. By definition, both evolutions coincide at integer multiples of the
period, t = nT . The inset shows a zoom into the three smallest eigenvalues and the first period.
The evolution is CPTP, only if all eigenvalues of the Choi matrix are nonnegative for all times.
By construction P(t) is CPTP. The semigroup evolution in (a) is CPTP, thus LF exists, but in
(b) it is not CPTP, thus no LF exists. The dotted lines stem from the evolution with the designed
exponential kernel. Even though there is no time-local effective evolution with a time-independent
generator LF , the time-homogeneous time-nonlocal evolution with the designed kernel is CPTP at
all times and coincides with P at the full period T .

evolution (in the sense of the distance measure µmin). However, there exists an evolution with a time-
homogeneous exponential kernel in the sense of Eq. (3.31) (dotted lines) [using that we erase the
memory at stroboscopic times with the Heaviside function], which coincides with P(nT ), n ∈ ◆0, and
is CPTP for all times.

3.4. High-frequency expansions of the Floquet Lindbladian

A standard tool to extract the Floquet Hamiltonian for high frequencies is the Magnus expansion
[131]. It has originally been developed as a general tool to find the fundamental solutions of an
ordinary linear differential equation with time-dependent coefficients. As such, we will apply it to
our dissipative qubit model to extract the Floquet Lindbladian. Even though the existence of the
Floquet Lindbladian is guaranteed in the high-frequency limit (as we have seen in Section 3.2), as we
show in Sec. 3.4.1, the Magnus expansion does not yield a physical generator (i.e. it is not a proper
Lindbladian) on the dominating order of the high-frequency expansion.

A second high-frequency expansion that we want to consider is a van-Vleck-type perturbation theory
in the extended Hilbert space. For the coherent case it has been developed in Ref. [39]. It has the
advantage that it yields an effective generator that is independent of the driving phase and a unitary
rotation that accounts for the micromotion. In Sec. 3.4.2 we introduce this van-Vleck high-frequency
expansion and generalize it to open quantum systems. As we show in Sec. 3.4.3, the problem of an
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3. Existence of the Floquet Lindbladian

unphysical leading order is shared by this expansion.
In Sec. 3.4.4 we show that this problem of an unphysical leading order can be cured by transforming

into the (generalized) rotating frame, where the driving term is integrated out. In this frame, not the
the driving, but the static part of the Lindbladian enters on a perturbative level both in the Magnus as
well as in the van-Vleck high-frequency expansion. As we discuss in Sec. 3.4.4, for our model system,
performing the Magnus expansion in the rotating frame instead of the direct frame leads to a generator
that is much closer to the generator that we obtain numerically from the logarithm. Additionally, on
the dominating order of the expansion we obtain a generator that is physical for all parameters.

In Sec. 3.4.5 we turn to the van-Vleck high-frequency expansion in the rotating frame. It yields a
valid effective Lindbladian on the first two orders of the expansion. As a result, for our model system
and on these orders of the expansion, the origin of the non-Lindbladian phase can be traced back to
the (non-unitary) micromotion that transforms the effective Lindbladian in a generator that is not of
Lindblad form anymore.

3.4.1. Emergence of unphysical terms in the Magnus expansion

The Magnus expansion is a high-frequency expansion of the dynamics that is commonly used for
systems with coherent dynamics governed by a time-periodic Hamiltonian H(t). Despite this success,
for open quantum systems, however, it was observed in the literature that the Magnus expansion
typically produces unphysical terms in low orders [100, 104]. These terms are unphysical as the
corresponding superoperator cannot be brought into Lindblad form.

In order to illustrate this problem, let us discuss the first and second order of the Magnus expansion
of the driven-dissipative qubit model, Eq. (3.23). Because the Lindblad superoperator is time-periodic,
we may represent it in a Fourier expansion,

L(t) = Q
n∈❩

eiωntLn. (3.32)

The Magnus expansion [131] is a general high-frequency expansion for linear differential equations
with time-dependent coefficients. Therefore it can be directly applied to our problem. It gives rise to
one candidate K for LF . Let us denote this expansion of the generator by

KMag = Q
n∈◆0

1

ωn
K
(n). (3.33)

Then, it holds that

K
(0)
=

1

T
S

T

0
dtL(t) = L0 (3.34)

K
(1)
=
ω

2T
S

T

0
dtS

t

0
dt′ L(t),L(t′) = i

∞
Q
n=1

[Ln,L−n] + [L0,Ln −L−n]

n
, (3.35)

K
(2)
=
ω2

6T
S

T

0
dtS

t

0
dt′S

t′

0
dt′′ L(t), L(t′),L(t′′) + L(t′′), L(t′),L(t) . (3.36)
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3.4. High-frequency expansions of the Floquet Lindbladian

Note that for the second order Magnus expansion, Eq. (3.36), we do not present an explicit expression
in terms of the Fourier components of L(t). This is due to the fact that such an explicit expression
is tedious to obtain analytically. As we discuss in Appendix C we have found explicit expressions for
Ω(2) in the literature [100, 136], however some of them have to be questioned since for our example
system they do not produce the correct result.

For our example system, Eq. (3.23), the driven qubit with driving phase ϕ = 0, one has

L0 = −i
σz
2
, ⋅ + γ σ− ⋅ σ+ −

1

2
{σ+σ−, ⋅} and L1 = L−1 = −i

E

2
[σx, ⋅] . (3.37)

Therefore the first order 1~ω drops out, K(1) = 0 (as all odd orders will). Using Eq. (3.36) we find up
to the second order

KMag = L0 +
2

ω2
[L0, [L0,L1]] −

1

ω2
[L1, [L0,L1]] +O(1~ω

4
). (3.38)

Let us in the following denote the general qubit Lindblad form by

L(H,d) = −i [H, ⋅] +Q
nm

dnm σn ⋅ σm −
1

2
{σmσn, ⋅} , (3.39)

with HamiltonianH governing the coherent evolution and coefficient matrix d governing the dissipative
part. Recall that for the evolution to be physical, i.e. completely positive and trace-preserving, this
matrix must be positive semi-definite d ≥ 0.

By using the general expressions for the commutator of two general qubit Lindblad superoperators
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Figure 3.5.: (a) Matrix distance d = SSKMag−Kx0 SSF (using the Frobenius norm SS⋅SSF ) of the generator
KMag obtained by second order Magnus expansion in the direct frame to the exact candidate Kx0 ∈

log(P(T ))~T for the Floquet Lindbladian LF of branch x0, which is closest to a physical generator.
(b) Typical graph f(λ) of the characteristic polynomial of the coefficient matrix d~γ of the second
order Magnus expansion KMag of the Floquet Lindbladian. The matrix d therefore has one negative
eigenvalue.
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that we present in Appendix D, we compute

[L0,L1] = L(H,d), with H =
E

2
σy, and d = γE

⎛
⎜
⎜
⎜
⎝

0 0 −i

0 0 −1

i −1 0

⎞
⎟
⎟
⎟
⎠

. (3.40)

Similarly, we find

[L0, [L0,L1]] = L(H,d), with H = −
E

2
σx, and d = 2γE

⎛
⎜
⎜
⎜
⎝

0 0 1

0 0 −i

1 i 0

⎞
⎟
⎟
⎟
⎠

, (3.41)

as well as

[L1, [L0,L1]] = L(H,d), with H =
E2

2
σz +O(γ

2
), and d = γE2

⎛
⎜
⎜
⎜
⎝

0 i 0

−i 2 0

0 0 −2

⎞
⎟
⎟
⎟
⎠

+O(γ2). (3.42)

Altogether, we find that up to second order in 1~ω and first order in γ

KMag = L(H,d), with H = −
ε

ω
σx +

1

2
1 − ε2 σz, and d = γ

⎛
⎜
⎜
⎜
⎝

1 i(1 − ε2) 4ε~ω

−i(1 − ε2) 1 − 2ε2 −4iε~ω

4ε~ω 4iε~ω 2ε2

⎞
⎟
⎟
⎟
⎠

.

(3.43)

where ε = E~ω. The matrix distance of the matrix representation of the superoperator KMag to matrix
representation of the exact candidate K for the Floquet Lindbladian is shown in Fig. 3.5(a). Note
that although for high frequencies, ω →∞, this distance approaches zero, the generator KMag is not
a physical generator in the whole region of the parameters. This can be seen from the characteristic
polynomial of its dissipator matrix d (let us extract the common prefactor γ from the eigenvalues λ)

f(λ) = det(d~γ − λ✶) = −λ3 + 2λ2 − λ 4ε2 − 5ε4 −
32ε2

ω2
− 2ε6. (3.44)

As illustrated in Fig. 3.5(b), for λ → −∞ we have f(λ) →∞, but at the same time one finds f(0) =
−2ε6 < 0. Therefore there will always be a negative eigenvalue λ and the dissipator matrix d is not
positive semi-definite. As a result, the dominating order KMag of the Magnus expansion is not a valid
Lindblad generator and cannot serve as a good approximation for the Floquet-Lindbladian LF . Note
again, that this is unsatisfactory because from direct calculation of the logarithm it is known that in
the high-frequency limit, ω → ∞, the Floquet-Lindbladian LF exists, so one would like to have an
approximation to it which is a physical generator.

As was already pointed out in the literature [100], the negative eigenvalue emerges due to the fact
that the characteristic polynomial has terms that are of higher order than 1~ω2 up to which the
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3.4. High-frequency expansions of the Floquet Lindbladian

Magnus expansion was performed. It is indeed expected, that the characteristic polynomial is correct
only up to this order,

f(λ) = −λ3 + 2λ2 − 4ε2λ, (3.45)

and that the next higher order will only be revealed after evaluating the Magnus expansion up to
fourth order and so on. Note that if we only take into account the terms up to order 1~ω2, Eq. (3.45),
indeed, the characteristic polynomial only has positive eigenvalues, so one could argue that complete
positivity is only violated in orders higher than 1~ω2. However, if one would want to find a generator
that is physical in this order 1~ω2, there is no well-defined procedure on how to modify the terms in
the dissipator matrix d, such that its characteristic polynomial is exactly the one in Eq. (3.45).

Note that the problem of an unphysical generator KMag is not originating from a faulty choice of
branch for KMag. We have also checked the other branches of KMag numerically and they also do not
yield a physical generator. In the high-frequency limit ω →∞, we generally expect that it suffices to
investigate the principle branch. This is because for a high-frequency expansion KMag(ω) it holds that

KMag,{x}(ω) = KMag(ω) + iω
nc

Q
c=1
xc (Pc(ω) − Pc∗(ω)) . (3.46)

In the high-frequency limit, the principle branch KMag(ω) converges to the diabatic (or rotating-wave)
Lindbladian KMag(ω) → L0, therefore all the projectors will also converge, Pc(ω) → Pc(∞). As long
as it holds that

Φ⊥(Pc(∞) − Pc∗(∞))
ΓΦ⊥ ≠ 0 (3.47)

the matrices Vc in the Markovianity test, Eq. (3.20), will scale linearly with ω in that limit. Therefore,
for ω →∞ all matrices VΣ(ω) for branches different from x = 0 will diverge, leaving only the principle
branch as a candidate.

In Section 3.4.4 we show that for our model system this problem of an unphysical leading order does
not occur, when we first transform into a co-rotating frame, and then perform the Magnus expansion.

3.4.2. Effective Lindbladian in extended space and van-Vleck high-frequency
expansion

Instead of performing time integration, the stroboscopic map P(T ) and therefore also the candidate
K for the Floquet Lindbladian can be obtained by solving an eigenvalue equation in the extended
Hilbert space (extended by the space of time-periodic functions), much like in the case of the coherent
evolution.

If this diagonalization is only performed perturbatively up to a given order in inverse frequency, we
find a high-frequency expansion that we want to call van-Vleck high-frequency expansion [147]. We
will see that the problem of an unphysical leading order that we found for the Magnus expansion is
also present in this approach.
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Extended Hilbert space

Since L(t) is periodic we may apply Floquet’s theorem to Eq. (3.2) to find that the fundamental
solutions of Eq. (3.2) take the form

%a(t) = e
−iΩatΦa(t) (3.48)

where the index a runs over all N2 fundamental solutions (the Hilbert space H has dimension N), and
where Ωa and Φa(t) = Φa(t + T ) denote complex numbers and time-periodic matrices, respectively.
We may expand the time-periodic L and Φa in the Fourier series

L(t) = Q
n∈❩

eiωntLn, (3.49)

Φa(t) = Q
n∈❩

eiωntΦa,n. (3.50)

Note that all Ln are superoperators acting on the Φa,n which are linear operators on H, Φa,n ∈ L(H).
Plugging everything into Eq. (3.2), we find

Q
n

(−iΩa + iωn)Φa,ne
iωnt
= Q

k,m

LkΦa,m e
iω(k+m)t. (3.51)

By comparing the prefactors, we find an eigenvalue equation in the “extended” Hilbert space L(H)⊗F ,
with F being the space of periodic functions with period T . It reads

ΩaΦa,n =Q
m

(iLn−m + δn,mmω ✶)Φa,m =Q
m

Q̄nmΦa,m, (3.52)

where Q̄ is the extended-space representation of the “quasi-energy” superoperator,

Q(t) = iL(t) − i∂t, (3.53)

the generalization of the quasi-energy operator [39] to the open system.

Very similar to the isolated system, Eq. (3.52) obeys the structure

Ωa

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .

Φa,−1

Φa,0

Φa,1

. . .

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .

iL1 iL0 − ω ✶ iL−1 iL−2 iL−3

iL2 iL1 iL0 iL−1 iL−2

iL3 iL2 iL1 iL0 + ω ✶ iL−1

. . .

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .

Φa,−1

Φa,0

Φa,1

. . .

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.54)

however the entries in the vectors are operators and the entries in the matrix are nonhermitian (but
Hermiticity-preserving) superoperators.
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Van-Vleck high-frequency expansion

The aim of the van-Vleck high-frequency expansion is to find a rotation D̄ that does not necessarily
diagonalize, but block diagonalizes the problem in the extended space,

Q̄
′
= D̄

−1
Q̄D̄, (3.55)

such that

Q̄
′
nm = δnm(iLeff + mω ✶). (3.56)

However, in contrast to the closed system, Q̄ is not necessarily Hermitian, so the rotationD is in general
not a unitary transformation. Still, the spectrum Ωa is of course invariant under this transformation.

In analogy to the closed system [39], it suffices to take into account time-periodic transformations
D(t) = ∑n e

iωntDn, therefore in extended space the operator D̄nm may only depend on the difference
of the phonon indices D̄nm = Dn−m. First of all, we observe that for two time-local time-periodic
superoperators,

A(t) = Q
n∈❩

eiωntAn and B(t) = Q
n∈❩

eiωntBn, (3.57)

the product of both operators in the time domain

C(t) = A(t)B(t) = Q
n,m∈❩

eiω(n+m)tAnBm = Q
n,m∈❩

eiωntAn−mBm, (3.58)

leads in extend space to

C̄nm = Cn−m = Q
k∈❩
An−m−kBk = Q

k∈❩
An−kBk−m = (ĀB̄)nm. (3.59)

Therefore, products in the time domain directly translate into products in the extended space and vice
versa. As a result, the inverse transformation D̄−1 in extended space is indeed just the representation
of the inverse transformation in time,

D
−1
(t) =Q

n

eiωnt(D−1)n with D
−1
(t)D(t) = 1, (3.60)

i.e. we have (D̄−1)nm = (D−1)n−m.

Thus, it holds that

Φ′a(t) = D
−1
(t)Φa(t), → %′(t) = D−1(t)%(t). (3.61)
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The equation of motion in the transformed frame reads

∂t%
′
(t) = (∂tD

−1
(t))%(t) +D−1(t)∂t%(t) ≡ L

′
(t)%′(t) (3.62)

Thus, much like in the coherent case, this transformation is equivalent to a generalized gauge trans-
formation

L
′
(t)[⋅] = (∂tD

−1
(t))D(t) ⋅ +D−1(t)L(t)[D(t)⋅], (3.63)

resembling a gauge transformation for unitary rotations.

As it was put forward recently in the literature [103], in analogy to the closed system, Eq. (3.25),
the effective Lindbladian Leff is the time-independent operator that fulfills

P(t, t0) = D(t) exp[(t − t0)Leff]D
−1
(t0), (3.64)

but since the system is dissipative, the time-periodic “micromotion” operator D(t) is not necessarily
unitary anymore. It follows directly that the Floquet Lindbladian can be represented as

L
F
t0 = D(T + t0)LeffD

−1
(t0), (3.65)

where here we use the more general notion of the Floquet Lindbladian LFt0 ,

P(t0 + T, t0) = exp L
F
t0T , (3.66)

in which we allow for any initial time t0, and in our notation we denote LF = LF0 . From Eq. (3.65)
we see that even if Leff is a physical generator, due to the fact that D is in general non-unitary, it
is possible that D changes the character of the generator such that LFt0 is not a physical generator
anymore.

It is an intriguing question whether, also in the dissipative system it is possible to find a high-
frequency expansion for the effective Lindbladian Leff and the micromotion superoperator D. Such
an expansion has been found in a recent work by Dai et al. [103]. However, to establish a connection
to van-Vleck perturbation theory also for the dissipative system, we want to derive this expansion
from a perturbative expansion in the extended space, much like it is done in Ref. [39] for the coherent
system. We closely follow the reasoning of Ref. [39] and decompose

Q̄ = Q̄0 + λV̄ (3.67)

with (Q̄0)nm = δnmmω✶ taking the role of the unperturbed quasienergy operator. As we present in
Appendix F, where we perform a nonhermitian van-Vleck-type perturbation theory on this problem,
it becomes apparent that it is sufficient to replace all Hamiltonians Hn in the resulting expressions
for the coherent system with the corresponding term iLn. In this way we obtain a high-frequency

46



3.4. High-frequency expansions of the Floquet Lindbladian

expansion, Keff = ∑
∞
n=0K

(n)
eff ~ω

n, with [39, 103]

K
(0)
eff = L0, (3.68)

K
(1)
eff = i

∞
Q
n=1

[Ln,L−n]

n
, (3.69)

K
(2)
eff = −Q

n≠0

⎛

⎝

[Ln, [L0,L−n]]

2n2
+ Q

m≠0,m≠n

[Lm, [Ln−m,L−n]]

3nm

⎞

⎠
. (3.70)

By n ≠ 0 we denote the sum over n ∈ ❩ ∖ {0}. Again, we find a candidate superoperator Keff for the
effective Lindbladian Leff and we have to decide whether it is a proper Lindbladian. We may also
perform an expansion for the micromotion superoperator

D(t) = exp(G(t)) with G(t) =
∞
Q
n=1

G(n)(t)~ωn, (3.71)

where

G(1)(t) = −iQ
n≠0

einωt
Ln

n
, (3.72)

G(2)(t) = −Q
n≠0

einωt
⎛

⎝

[L0,Ln]

n2
+ Q

m≠0,m≠n

[Ln−m,Lm]

2mn

⎞

⎠
. (3.73)

3.4.3. Unphysical terms in the van-Vleck high-frequency expansion

It is an intriguing question whether the candidate Keff for the effective Lindbladian Leff, that one finds
in a van-Vleck high-frequency expansion, shares the problem of a leading order that is unphysical. We
show that for our model system this is indeed the case.

We may now calculate the candidate for the effective Lindbladian for our model system,

Keff = L0 −
1

ω2
[L1, [L0,L1]] +O(1~ω

4
). (3.74)

Using Eq. (3.42), we find that up to second order in 1~ω and first order in γ it holds that

Keff = L(H,d), with H =
1

2
1 − ε2 σz, and d = γ

⎛
⎜
⎜
⎜
⎝

1 i(1 − ε2) 0

−i(1 − ε2) 1 − 2ε2 0

0 0 2ε2

⎞
⎟
⎟
⎟
⎠

. (3.75)

Here we may directly read off one eigenvalue of d~γ

λ3 = 2ε
2. (3.76)
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The other eigenvalues follow from solving

0 = f̃(λ) = λ2 − 2(1 − ε2)λ − ε4. (3.77)

Again, f̃(0) = −ε4 < 0 while asymptotically f̃ is positive, therefore there must be one negative eigen-
value, and also the candidate for the effective Lindbladian is unphysical. Thus, the van-Vleck high-
frequency expansion shares the problems of the Magnus expansion in the rest frame.

3.4.4. Magnus expansion in the rotating frame

We present an alternative high-frequency expansion for the driven qubit that is performed in a ro-
tating frame of reference obtained by integrating out the driving term. For the isolated system, this
transformation is known to yield better results for strong driving. The reason that this transformation
allows to treat also higher driving strengths E ∝ ω is that it is equivalent to a summation of an infinite
number of terms in a perturbative series in E~ω. As a result, when performing the Magnus expansion
in the rotating frame instead of the direct frame, the result is not a perturbative expansion in E~ω

anymore. For our model system, surprisingly, by performing the Magnus expansion of the generator
in the rotating frame, we find a generator that is physical already in the lowest order of the high-
frequency expansion, which solves the problem that we encountered in Section 3.4.1. Whether and
how this procedure can be generalized to more complex systems and for systems where the dissipative
part of the generator is driven remains an open question.

Transformation to the rotating frame

Note that, in general, we may assume a decomposition of the Linbladian in its time-constant part
plus a driving term

L(t) = Ld(t) +L0 with Ld(t) = Q
n≠0

einωtLn. (3.78)

Let us, for the sake of simplicity assume that Ld(t) commutes with itself at different times,

Ld(t),Ld(t
′
) = 0, ∀t, t′, (3.79)

which is equivalent to [Ln,Lm] = 0, ∀n,m ≠ 0. In analogy to the coherent system one may define a
transformation to a generalized rotating frame in which the driving term is integrated out,

%̃(t) = Λ−1(t)%(t), with Λ−1(t) = exp −S
t

0
dt′Ld(t

′
) . (3.80)

We denote operators in the rotating frame with a tilde. This definition is sensible because in case
that only the coherent part of the Lindbladian is driven, Ld(t) = −i [Hd(t), ⋅], it reduces to a standard
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definition of a rotating frame

%̃(t) = U(t)†%(t)U(t), with U(t) = exp −iS
t

0
dt′Hd(t

′
) . (3.81)

The equation of motion in the rotating frame reads

∂t%̃(t) = (∂tΛ
−1
(t))%(t) +Λ−1(t)∂t%(t) ≡ L̃(t)%̃(t) (3.82)

with gauge-transformed Lindbladian

L̃(t)[⋅] = (∂tΛ
−1
(t))Λ(t) ⋅ +Λ−1(t)L(t)[Λ(t)⋅]. (3.83)

Now because Ld(t) commutes with itself at different times, also Λ(t) commutes with Ld(t), therefore
we find

L̃(t)[⋅] = −Ld(t) ⋅ +Λ
−1
(t)Ld(t)[Λ(t)⋅] +Λ

−1
(t)L0[Λ(t)⋅] (3.84)

= Λ−1(t)L0[Λ(t)⋅]. (3.85)

As a result, we have eliminated the driving term, but it comes at the expense of a (possibly nonunitary)
“rotation” of the part of the dissipator that was static before.

Note that we aim for a high-frequency expansion in the rotating frame, similar to the one that
we performed in Section 3.4.1. This yields an effective time-independent generator K̃, such that, in
analogy to Eq. (3.15), we have

P̃(T ) = exp(K̃T ) (3.86)

in the rotating frame. However, since for our choice of Ld(t), where ∫
nT
0 dtLd(t) = 0, n ∈ ◆0, we find

that

%̃(nT ) = %(nT ), (3.87)

i.e. the rest frame and the rotating frame coincide at stroboscopic times. Therefore P̃(T ) = P(T ), and
thus K̃ is also a candidate for the Floquet Lindbladian LF in the rest frame. Note that this does for
a general choice of Ld(t), e.g. if Ld(t) does not commute with itself at different times.

Explicit transformation for model system

Let us, for our model system, transform the generator L(t) into the rotating frame and calculate
the Fourier components of the transformed generator. For our model, Eq. (3.23), we find the unitary
transformation

%̃(t) = U(t)%(t)U(t)†, with U(t) = exp (iχ(t)σx) , (3.88)
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3. Existence of the Floquet Lindbladian

where χ(t) = E
ω sin(ωt) and

L̃(t)[⋅] = −i
1

2
σ̃z(t), ⋅ + γ σ̃−(t) ⋅ σ̃+(t) −

1

2
{σ̃+(t)σ̃−(t), ⋅} . (3.89)

We have introduced Pauli operators in the rotating frame,

σ̃z(t) = U(t)σzU(t)
†
= cos(2χ(t))σz + sin(2χ(t))σy, (3.90)

σ̃±(t) = U(t)σ±U(t)
†
= σx ± i [cos(2χ(t))σy − sin(2χ(t))σz] . (3.91)

In order to perform the high-frequency expansions in the rotating frame, let us first determine
the Fourier components of the gauge-transformed Lindbladian L̃(t), Eq. (3.89). Using the definition
z = 2E~ω, we may rewrite the Fourier transform

Fn[cos(2χ(t))] ≡
1

T
S

T

0
cos(2χ(t))e−inωtdt =

1

T
S

T

0

1

2
eiz sin(ωt) + e−iz sin(ωt) e−inωtdt (3.92)

=
1

2
[Jn(z) + J−n(z)] = enJn(z). (3.93)

Here Jn(z) is the n-th Bessel function of first kind, we have used J−n(z) = (−1)nJn(z) and we set

en =

⎧⎪⎪
⎨
⎪⎪⎩

1, n even,
0, n odd,

and on =
⎧⎪⎪
⎨
⎪⎪⎩

0, n even,
1, n odd.

(3.94)

Similarly, we find

Fn[sin(2χ(t))] = −ionJn(z), (3.95)

Fn[sin(2χ(t)) cos(2χ(t))] = −i
on
2
Jn(2z), (3.96)

Fn[cos(2χ(t))
2
] =

1

2
[δn0 + enJn(2z)] , (3.97)

Fn[sin(2χ(t))
2
] =

1

2
[δn0 − enJn(2z)] . (3.98)

As a result, the Fourier components read

L̃n = L(Hn, dn), with Hn =
Jn(z)

2
(enσz − ionσy) (3.99)

and dn = γ
⎛
⎜
⎜
⎜
⎝

δn0 ienJn(z) −onJn(z)

−ienJn(z)
1
2(δn0 + enJn(2z))

i
2onJn(2z)

onJn(z)
i
2onJn(2z)

1
2(δn0 − enJn(2z))

⎞
⎟
⎟
⎟
⎠

(3.100)

where for odd n only iL̃n is of Lindblad form (for n ≠ 0 the operators Ln in the Fourier series can
actually be any complex number times some Lindblad operator).
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3.4. High-frequency expansions of the Floquet Lindbladian

Zeroth order Magnus expansion in the rotating frame

The lowest order of the Magnus expansion in the rotating frame reads

K̃Mag,0 = L̃0 = L(H,d), (3.101)

with H =
J0(z)

2
σz and d = γ

⎛
⎜
⎜
⎜
⎝

1 iJ0(z) 0

−iJ0(z)
1
2[1 + J0(2z)] 0

0 0 1
2[1 − J0(2z)]

⎞
⎟
⎟
⎟
⎠

, (3.102)

where, again, z = 2E~ω. Note that for z → 0, i.e. for E → 0 or ω → ∞, such that J0(z) → 1 and, as
expected, we recover the static Hamiltonian and dissipator. In Fig. 3.6(a) we plot the distance of the
matrix representation of the superoperator of this approximation K̃ to the exact candidate for the
Floquet Lindbladian and see a much better agreement than in Fig. 3.5(a), especially for smaller values
of ω. This is expected because the transformation to the rotating frame integrates out the driving
term which corresponds to a summation of infinite terms in E~ω, here entering in the function J0. In
the direct frame, however, the leading order correction in the Magnus expansion only captures terms
up to order (E~ω)2.

The eigenvalues of the coefficient matrix d read

λ1~2 = γ

⎡
⎢
⎢
⎢
⎢
⎣

µ(z) ± µ(z)2 + J0(z)2 −
1

2
[1 + J0(2z)]

⎤
⎥
⎥
⎥
⎥
⎦

, (3.103)

λ3 =
γ

2
[1 − J0(2z)], (3.104)

with µ(z) = [3+ J0(2z)]~4. The corresponding generator is a valid physical generator only if all three
eigenvalues are non-negative. This is generally the case since

J0(z)
2
−
1

2
[1 + J0(2z)] = J0(z)

2
−
1

2
Q
k∈❩

Jk(z)J−k(z) −
1

2
(3.105)

= J0(z)
2
−
1

2
Q
k∈❩

J2k(z)
2
+
1

2
Q
k∈❩

J2k+1(z)
2
−
1

2
(3.106)

= J0(z)
2
−Q

k∈❩
J2k(z)

2
= −Q

k≠0
J2k(z)

2
≤ 0, (3.107)

In the first step we have used the identity Jn(y + z) = ∑k∈❩ Jk(y)Jn−k(z) and in the third step we
have used that 1 = ∑k∈❩ Jk(z)

2.
This shows that the values that the square root in Eq. (3.103) takes will be smaller than µ(z).

Therefore, the zeroth order expansion in the rotating frame produces a nontrivial term that is physical,
i.e. K̃Mag,0 is a valid Lindblad generator for all parameter values. Note again that this first order term
already has terms of all orders in ε = E~ω, which is probably the reason for why high-frequency
expansions (or weak-driving expansions which we have performed but do not present here) in the
direct frame have a very slow convergence only. In fact, by comparing the result that we obtain in the
rotating frame, Eq. (3.102), to the one that we obtain when directly performing the Magnus expansion,
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Figure 3.6.: Matrix distance d = SSK̃−Kx0 SSF of the generator K̃ obtained by (a) zeroth order Magnus
expansion K̃Mag,0 and (b) first order Magnus expansion K̃Mag,1 in the rotating frame, to the exact
candidate Kx0 ∈ log(P(T ))~T for the Floquet-Lindbladian LF of branch x0, which is closest to a
physical generator.

Eq. (3.43), we find that by expanding the Bessel function to second order, J0(z) ≈ 1 − z2~4, by using
z = 2ε we recover the terms ∝ ε2 in Eq. (3.43), while the terms ∝ ε~ω do not occur (we will find
them after performing the next order of the Magnus expansion in the rotating frame). However, if one
eliminates the terms ∝ ε~ω in Eq. (3.43), only keeping the terms ∝ ε2, still, the resulting generator is
not physical. Thus, to find a physical generator one needs to know the higher order terms in 1~ω, but
those are hard to extract in the direct frame because orders higher than two in the Magnus expansion
are cumbersome to compute.

Note that from comparing Eq. (3.34) to Eq. (3.68) we learn that on this zeroth order in 1~ω, the
van-Vleck high-frequency expansion of the effective Lindbladian K̃eff and the Magnus expansion K̃Mag

coincide, K̃eff,0 = K̃Mag,0, therefore on this order also the effective Lindbladian exists for all parameter
values. We will have a more detailed discussion of the van-Vleck high-frequency expansion in the
rotating frame in Sec. 3.4.5.

First order Magnus expansion in the rotating frame

The order 1~ω of the Magnus expansion in the rotating frame reads

K̃
(1)
= iQ

n>0

L̃n, L̃−n + L̃0, L̃n − L̃−n

n
= Q

n>0
2on

L̃0, iL̃n

n
, (3.108)

where in the second step we have used that for the Fourier components in Eq. (3.100) we have
L̃−n = (−1)

nL̃n.
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Figure 3.7.: Distance to markovianity µmin of the candidate K̃Mag,1 for the Floquet-Lindbladian
obtained from a first order Magnus expansion in the rotating frame for the same model and parameter
γ = 0.01 as in Fig. 3.1. The candidate K̃Mag,0 that we obtain in zeroth order of the expansion is
physical for all parameters (E,ω). Note that we only calculate distances for ω ≥ 0.3, values below
this are drawn in white.

It is straight-forward to compute that for odd n

L̃0, iL̃n = L(Hn, dn), (3.109)

with Hn = −
J0(z)Jn(z)

2
σx and dn =

γ

2

⎛
⎜
⎜
⎜
⎝

0 0 fn(z)

0 0 −4iJ0(z)Jn(z)

fn(z) 4iJ0(z)Jn(z) 0

⎞
⎟
⎟
⎟
⎠

, (3.110)

with fn(z) = Jn(z)[1 + J0(2z)] + Jn(2z)J0(z) and we ignore terms of higher order in γ. Thus, up to
first order in 1~ω, the Magnus expansion in the rotating frame reads

K̃Mag,1 = L(H,d), with H = J0(z)
1

2
σz −

ν(z)

ω
σx , and

d = γ

⎛
⎜
⎜
⎜
⎝

1 iJ0(z)
1
ω [ν(z)(1 + J0(2z)) + J0(z)ν(2z)]

−iJ0(z)
1
2[1 + J0(2z)] −4i

ω J0(z)ν(z)
1
ω [ν(z)(1 + J0(2z)) + J0(z)ν(2z)]

4i
ω J0(z)ν(z)

1
2[1 − J0(2z)]

⎞
⎟
⎟
⎟
⎠

,

(3.111)

where we have introduced ν(z) = ∑n>0[onJn(z)~n]. Note that in lowest order ν(z) ≈ z~2 and therefore
we also recover the terms ∝ ε~ω in Eq. (3.43). In Fig. 3.6(b) we show the distance of the matrix
representation of the superoperator of this approximation K̃ to the exact candidate for the Floquet
Lindbladian and see only a minor improvement over the zeroth order result in Fig. 3.6(a).

In contrast to the lowest order of the expansion, in this order the candidate for the Floquet-
Lindbladian is not a physical generator for all parameters E,ω. Similar to Section 3.2, we check
whether the Floquet Lindbladian is a valid generator by testing for conditional complete positivity
and in case that this fails we compute the distance µmin to Markovianity. We show this distance in
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3. Existence of the Floquet Lindbladian

Fig. 3.7 and in this order it resembles already very much the structure that one obtains by directly
computing the logarithm of the map P(T ). Nevertheless, the ear-shaped structure extends to larger
values of E and ω than it does for the exact generator.

Interestingly, since L̃−n = (−1)nL̃n we have [L̃n, L̃−n] = 0, therefore in first order, the van-Vleck
high-frequency expansion of the effective Lindbladian in the rotating frame has no contribution. Thus,
we have K̃eff,1 = K̃eff,0, and also in this order the effective Lindbladian is physical for all parameters. It
is an intriguing question whether the effective Lindbladian is also a physical operator in the next order
K̃eff,2. Unfortunately, the next order involves quite a number of commutators, so it is complicated to
obtain analytically. In the next section, we will thus evaluate the van-Vleck high-frequency expansion
numerically.

3.4.5. Van-Vleck high-frequency expansion in the rotating frame

In our example system we observe that the Magnus expansion produces better results in the co-
rotating frame where the driving term has been integrated out. Compared to an expansion in the
direct frame, the results are better in two ways: First, the distance from the exact result is much
smaller, and secondly the expansion yields a proper Lindbladian in the high-frequency and strong-
driving limit. Here, we discuss that also the van-Vleck high-frequency expansion yields better results
in the rotating frame. Other than in the previous section where we found analytical expressions for the
Magnus expansion, here calculations get quite involved, so we treat this expansion only numerically.
To this end, it is instructive to discuss the action of the generalized rotating-frame transformation Λ(t)

in the extended Hilbert space first, because it yields expressions that are easy to treat numerically,
when superoperators are mapped to matrices.

As we have seen in Section 3.4.2, the aim of the van-Vleck high-frequency expansion is to find a
transformation D(t) that “removes” the micromotion leaving an evolution with the time-independent
effective Lindbladian Leff . This transformation D can be regarded as a generalized gauge transforma-
tion much like the generalized rotating-frame transformation Λ. It is therefore instructive to represent
Λ in the extended Hilbert space. By doing so, we obtain a more systematic approach to the high-
frequency expansion in the rotating frame.

Formalism

Both the rotating-frame transformation Λ(t) and the micromotion D(t) are generalized gauge trans-
formations. Instead of finding D(t) directly, however, we may first perform a transformation to the
rotating frame, %̃(t) = Λ−1(t)%(t), and then find the micromotion transformation there. Since Λ(t) is
periodic, we have

Λ(t) =Q
n

einωtΛn, (3.112)

so we also may represent it in extended space Λ̄nm = Λn−m. Note that this representation is only
possible due to the fact that we assume that the driving term Ld(t) commutes with itself at different
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3.4. High-frequency expansions of the Floquet Lindbladian

times, so in its definition we do not have to introduce a time-ordering operator and Λ(t) is effectively
a time-local superoperator.

As a result, the quasi-energy operator in the rotating frame reads

¯̃
Q = Λ̄−1Q̄Λ̄. (3.113)

Like in the direct frame, the goal is to find a transformation D̃ such that

Q̄
′
=

¯̃
D
−1 ¯̃
Q

¯̃
D (3.114)

where Q̄′ is block diagonal. We directly observe that

D(t) = Λ(t)D̃(t). (3.115)

Here we again see why in the limit of high frequency and strong driving the high-frequency expansion
in the direct frame will at least have a slow convergence only. The transformation Λ involves a
summation of infinitely many terms in E~ω. However, a high-frequency expansion in the direct frame
tries to capture the dynamics of D̃(t) and Λ(t) on an equal footing from which problems are arising.

Note that on the other hand for the quasienergy operator in the rotating frame we have

Q̃ = iL̃ − i∂t (3.116)

with L̃ according to Eq. (3.85), which in the extended space reads

¯̃
L = Λ̄−1L̄0Λ̄ i.e. ¯̃

Lnm = L̃n−m =Q
k

Λ−1n−kL0Λk−m. (3.117)

This equation allows for a very efficient calculation of the Fourier components L̃n of the Linbladian in
the rotating frame L̃. To this end let us determine the coefficients Λn. In Appendix G we show that
for driving terms of the form

Ld(t) = φ(t)L
′
d, with scalar function φ(t) = Q

m≠0
eimωtφm, (3.118)

one finds an explicit expression in extended space

Λ̄ = M
m≠0

f̄ (m)
φmL

′
d

imω
ḡ(m)

φmL
′
d

imω
. (3.119)
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Here we denote f̄ (m)nl = f
(m)
n−l , ḡ(m)nl = g

(m)
n−l and

f (m)n (x) =

⎧⎪⎪
⎨
⎪⎪⎩

Jk(x) if n = km,k ∈ ❩,
0 else.

g(m)n (x) =

⎧⎪⎪
⎨
⎪⎪⎩

e−xIk(x) if n = km,k ∈ ❩,
0 else.

(3.120)

We use the Bessel functions of first kind Jk, and modified Bessel functions of first kind Ik, taken at
some matrix argument (which may be evaluated most easily by performing a spectral decomposition of
L′d). Since Λ−1(t) is directly obtained from Λ(t) by setting φ(t)→ −φ(t), we find Λ̄−1 from Eq. (3.119)
by setting φm → −φm.

First order van-Vleck high-frequency expansion in the rotating frame

For our example system we have

φ(t) = 2 cos(ωt), L
′
d = L1 = L−1 = −i

E

2
σx, ⋅ (3.121)

From Eq. (3.119) (or an explicit calculation) we find

Λn = Jn
2L1
iω

, (3.122)

which finally yields

L̃n =Q
k

Jn−k −
2L1
iω

L0Jk
2L1
iω

. (3.123)
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Figure 3.8.: (a) Distance to Markovianity µmin of the candidate for the Floquet Lindbladian K
obtained from a first order van-Vleck high-frequency expansion K̃vV,1 in the rotating frame, where
we do not expand the exponential in D̃(t) = exp(G̃(t)). We present the same model and parameter
γ = 0.01 as in Fig. 3.1(a). Note that we only calculate for ω ≥ 0.3, values below this are drawn
in white. (b) Matrix distance d of the candidate K̃vV,1 to the exact candidate K obtained by the
logarithm of P(T ).
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By translating superoperators intoN2×N2-dimensional matrices as shown in Appendix E, we therefore
have an alternative procedure to the one we obtained in Section 3.4.4 to calculate the operators
L̃n and from this the van-Vleck high-frequency expansion. An explicit calculation using this matrix
representation is presented in Appendix H and on zeroth order of the Magnus expansion we recover
the result K̃Mag,0 of Section 3.4.4.

Equation (3.123) is a good starting point for numerical investigations, because it is easy to evaluate
numerically after we have translated the superoperators L0,L1 into N2×N2-dimensional matrices. We
then may use the expressions in Section 3.4.2 to perform the van-Vleck high-frequency expansion in the
rotating frame. By this procedure we find candidates for the effective Lindbladian K̃eff,n = ∑

n
k=0 K̃

(k)
eff ~ω

k

and for the Floquet Lindbladian

K̃vV,n = D̃n(0)K̃eff,nD̃
−1
n (0). (3.124)

Here we cut off the expansion in the exponent of D̃n(t) = exp(∑
n
k=1Gk(t)~ω

k) and do not perform an
expansion of the exponential function. Only after doing so, we would recover the candidate from the
Magnus expansion K̃Mag,n in the rotating frame [39].

On zeroth order we find that the candidate for the Floquet Lindbladian is given by the effective
Lindbladian, K̃vV,0 = K̃eff,0. Furthermore, as we discussed in Section 3.4.4 already, on zeroth order
one also finds that the effective Lindbladian coincides with the corresponding order of the Magnus
expansion, K̃eff,0 = K̃Mag,0. As a result, also here, the zeroth order expansion of the Floquet Lindbladian
yields a generator is physical for all parameters (E,ω).

The first order where this expansion produces a different result is therefore n = 1. As mentioned
in Section 3.4.4, one finds that there is no contribution to the effective Lindbladian, K̃eff,1 = K̃eff,0

which is, thus, also a valid Lindblad generator for all (E,ω). On this order, the only contribution
to the Floquet Lindbladian K̃vV,1 is therefore stemming from the rotation D̃1(0). As we observe
impressively in Fig. 3.8(a), this rotation gives rise to a large ear-shaped region, where K̃vV,1 is not
a valid Lindbladian. The shape and dimensions of this region are very similar to the exact values in
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Figure 3.9.: Distance to Markovianity µmin of the exact effective generator K as in Fig. 3.1 for
some intermediate values of the driving phase ϕ.
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Fig. 3.1(a), therefore we expect that K̃vV,1 is a very good approximation for the exact candidate K
already. This is also confirmed in Fig. 3.8(b) where we observe even smaller distance values than for
the Magnus expansion on this order, cf. Fig 3.6(b).

At this point, we gain a little of understanding for why the region where there is no Floquet
Lindbladian shrinks so much for a different driving phase ϕ, as in Fig. 3.1(b): In the rotating frame,
in leading order of the van-Vleck high-frequency expansion, the effective Lindbladian L̃eff is a physical
generator for all parameter values (E,ω), while the non-unitary micromotion superoperator D̃(t0)
(with t0 = Tϕ~2π being the initial time which relates to the initial phase ϕ) may ‘rotate’ the generator
such that the resulting generator is not physical for some parameter values. Note that in the direct
frame for t0 ≠ 0 the candidate for the Floquet Lindbladian K is given after the rotation D(t0) =
Λ(t0)D̃(t0). However, for our model system Λ(t0) is a unitary transformation and thus does not
change whether the generator is physical or not. As a result, the closer D̃(t0) is to the identity (or to
a unitary transformation) the smaller the region of unphysical generators in the (E,ω) will be. This
confirms on the formal level of a high-frequency expansion our previous discussion of the non-trivial
role of the micromotion, Sec. 3.2.

That this is a valid picture is confirmed also by Fig. 3.9 which shows, similar as in Fig. 3.1, the
region where the exact effective generator K is unphysical, but for four intermediate values of the
driving phase ϕ. We see how this region continuously shrinks from the ϕ = 0 to the ϕ = π~2 behavior,
which is expected since D̃(t0) is a continuous function. That the region is smallest for driving phase
ϕ = π~2 can be understood from the dominating order of the rotation already,

D̃1(t0) = exp −iQ
n≠0

einωt0
L̃n

nω
= exp −i

∞
Q
n=1

2 cos(nωt0)
L̃n

nω
, (3.125)

where in the second step we have used that for our model we find L̃−n = (−1)nL̃n. The biggest
contribution to the sum in Eq. (3.125) stems from the n = 1 term. This term vanishes for a value of
t0 that corresponds to the driving phase ϕ = π~2. Therefore for ϕ = π~2 we expect the rotation D̃1(t0)

to be closest to the identity.
In conclusion, on a first-order van-Vleck high-frequency expansion in the rotating frame it becomes

apparent that for our model indeed there exists a phase-independent generator, the effective Lindbla-
dian L̃eff , which is a valid Lindblad generator for all parameters. In this order we can directly trace
back the non-Lindbladian phase of the candidate for the Floquet Lindbladian to the micromotion
which yields a nonunitary rotation for the dynamics of open quantum systems. It is an interesting
open question, if this picture is also valid in higher orders of the high-frequency expansion and for
more complex model systems. Here, we want to conclude our calculations by discussing the next order
of the expansion of the effective Lindbladian L̃eff .

Second order van-Vleck high-frequency expansion in the rotating frame

As we have seen in the previous section, the effective Lindbladian Leff is a physical generator in
the dominating order K̃eff,1 of the van-Vleck high-frequency expansion. In the last section of our
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Figure 3.10.: Distance to Markovianity µmin of the candidate K̃eff,2 for the effective Lindbladian
obtained from a second order van-Vleck high-frequency expansion in the rotating frame for the same
model and parameter γ = 0.01 as in Fig. 3.1. We only calculate for ω ≥ 0.1, values below this are
drawn in white.

discussion of this high-frequency expansion we aim to shed some light on an intriguing hypothesis
that one can make based on our observations: Even though it is generally not guaranteed that the
Floquet Lindbladian LF exists, maybe the effective Lindbladian Leff is always a valid generator?

To this end, we calculate numerically the candidate for the effective Lindbladian K̃eff,2 from a second
order van-Vleck high-frequency expansion in the rotating frame. In Figure 3.10 we show the result of
a markovianity test for the resulting operator. At first glance, we observe that at low frequencies there
is some region where the candidate for the effective Linbladian is unphysical, so our hypothesis could
be wrong. However, we have to keep in mind that the Magnus expansion is expected to converge only
in the high-frequency regime where [131, 148]

S

T

0
SSL(t)SS2dt < π. (3.126)

Here, SSASS2 =maxSSxSS2=1 SSAxSS2 is the induced 2-norm. We can gain a very rough estimate for the region
of convergence by discussing the undriven limit of E = 0 and γ = 0. As shown in Appendix H, the matrix
representation of the generator then reads LSE=0,γ=0 = diag(0,−i, i,0), therefore SS(LSE=0,γ=0)SS2 = 1.
Thus, for E = 0 and γ = 0 we find that the Magnus expansion is only expected to converge for ω > 2.
For finite values of the driving strength E the norm of L(t) will increase and thus the radius of
convergence will decrease even further.

As a result, Figure 3.10 shows that within the region of convergence of the Magnus expansion, K̃eff,2

is a valid Lindbladian. Our hypothesis, that the effective Lindbladian could exist for all parameters,
is therefore also not violated on the second order of the van-Vleck high-frequency expansion in the
rotating frame.
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3. Existence of the Floquet Lindbladian

3.4.6. Concluding remarks on the high-frequency expansions

Our results shed new light on the problems of the Magnus expansion that were already observed
in Ref. [100, 104]. Namely, even though for our model system it is guaranteed that the Floquet
Lindbladian exists in the high-frequency limit, the Magnus expansion, a standard high-frequency
expansion, does not yield a physical Lindblad generator in the leading order of the expansion. The
reason is that physicality follows from the eigenvalues of the dissipator matrix d. The characteristic
polynomial that yields these eigenvalues, however, is a nonlinear function of the matrix d. It thus
generally has terms that are of a higher order than the order in which the Magnus expansion was
performed. These higher order terms can lead to a violation of physicality, as in our case where they
give rise to one negative eigenvalue of the dissipator matrix d.

As a result, we can conclude that the Magnus expansion is generally not an effective tool to extract
the Floquet Lindbladian. In the future, the hope is that these problems could be cured by developing an
alternative expansion which is a systematic expansion of the eigenvalues and eigenvectors of dissipator
matrix d in powers of inverse frequency.

Here, however, we observe that some of these problems can be cured by transforming into a (gener-
alized) rotating frame where the driving term has been integrated out. Why this transformation is so
successful can be observed for example by investigating the characteristic polynomial of the Magnus
expansion in the direct frame in Eq. (3.44). We observe that the problems of an unphysical generator
arise from terms that are a function of E~ω where E is the driving strength. By transforming into
the rotating frame, the driving is integrated out which corresponds to a summation of infinitely many
terms in E~ω. As a result, the expansion in the rotating frame is not perturbative in E~ω anymore,
which cures the problems of the direct frame. It is an intriguing open question, if also for general
time-periodically driven Lindbladians one can always identify problematic terms in the characteristic
polynomial and cure these terms by integrating out the corresponding quantity.

Finally, by performing a van-Vleck high-frequency expansion in the rotating frame, we are able
to show that for our model system, in first order of the expansion, indeed there is a driving-phase
independent effective Lindbladian L̃eff that is a valid physical generator for all parameters of the
driving. However, the Floquet Lindbladian LF , giving rise to the stroboscopic dynamics, only follows
after a nonunitary rotation that is due to the micromotion. In that way the micromotion can be
accounted for the emergence of the non-Lindbladian phase. Whether or not this picture also holds
on higher orders of the expansion and for more general time-periodically driven Lindbladians is an
intriguing open question.

60



4. Number of Bose-selected modes in
driven-dissipative ideal Bose gases

In an ideal Bose gas that is driven into a steady state far from thermal equilibrium, a generalized form
of Bose condensation can occur. Namely, the single-particle states unambiguously separate into two
groups: the group of Bose-selected states, whose occupations increase linearly with the total particle
number, and the group of all other states whose occupations saturate [82]. However, so far very little
is known about how the number of Bose-selected states depends on the properties of the system and
its coupling to the environment. The answer to this question is crucial since systems hosting a single,
a few, or an extensive number of Bose-selected states will show rather different behavior. While in
the former two scenarios each selected mode acquires a macroscopic occupation, corresponding to
(fragmented) Bose condensation, the latter case rather bears resemblance to a high-temperature state
of matter. In this chapter, we systematically investigate the number of Bose-selected states, considering
different classes of the rate matrices that characterize the driven-dissipative ideal Bose gases in the
limit of weak system–bath coupling. These include rate matrices with continuum limit, rate matrices
of chaotic driven systems, random rate matrices, and rate matrices resulting from thermal baths that
couple to a few observables only.

This chapter has been published in Ref. [85]. Only minimal changes have been made in order to
match the general frame of this thesis. Also, some results of this chapter, presented in Sec. 4.2 and
Sec. 4.3.1, have already been discussed in the author’s master’s thesis [149].

4.1. Driven-dissipative ideal Bose gas and Bose selection

In this chapter, we are focusing on driven-dissipative ideal gases of N noninteracting bosons that
exchange energy with the environment but no particles. They can be driven out of equilibrium, e.g.
by periodic driving in combination with the coupling to a heat bath or by coupling the system to two
heat baths of different temperature. In such setups the ideal gas will relax to a nonequilibrium steady
state (NESS) which is characterized by a finite heat current through the system. It is an interesting
question, whether (and if yes when and in which form) a system can show Bose condensation (or
other forms of ordering) under such nonequilibrium conditions. Since this NESS does not follow from
thermodynamic principles it is not obvious whether such a state will feature Bose condensation or not.
It was observed in Ref. [82] that in the quantum degenerate limit of large densities the single-particle
states split into two groups; the Bose-selected states, whose occupations increase linearly with the
total particle number, much like for the ground state in thermal equilibrium, while the occupations
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4. Number of Bose-selected modes in driven-dissipative ideal Bose gases

of all other states saturate.

However, so far very little is known about the factors that determine the number of Bose-selected
states. The answer to this question is crucial since systems hosting a single, a few, or an extensive
number of Bose-selected states will show rather different behavior. While in the former two scenarios
each selected mode acquires a macroscopic occupation, corresponding to (fragmented) Bose conden-
sation, the latter case rather bears resemblance to a high-temperature state of matter. Moreover,
inducing transitions between several condensate modes can be a very efficient mechanism to exchange
energy with the environment, which is not present in systems hosting a single condensate only [82].

In the limit of weak system–bath coupling, the system will approach a nonequilibrium steady state
%S that is diagonal in the eigenstates i of the Hamiltonian for an autonomous (i.e. non-driven) system
or in the Floquet states i for a time-periodically driven system [83, 108, 150]. The mean occupations
of these states obey the equation of motion Eq. (2.93) [82]. The rate for a boson to jump from single-
particle level j to i is given by the single-particle rate Rij multiplied by the bosonic enhancement factor
(ni + 1) which manifests that bosons favor to “jump” into states that already have large occupation.

It was pointed out in Refs. [82, 83] that a generalization of Bose condensation is also observed in
the NESS, called Bose selection. Here, a whole group of an odd number of single-particle states, the
Bose-selected states, can acquire large occupation. As we briefly recapitulate in this section, these
selected states are only determined by the rate asymmetry matrix

Aij = Rij −Rji. (4.1)

We assume that the gas may exchange heat with an environment of one or more thermal phonon
baths. As we discuss in Sec. 2.3.4, a single bath is described as a collection of harmonic oscillators
HB = ∑α h̵ωαb

†
αbα which are in thermal equilibrium. The corresponding system–bath coupling operator

reads HSB = γv∑α cα(b
†
α+bα) with dimensionless system coupling operator v, coefficients cα and cou-

pling strength γ. We assume that the baths are Markovian. Thus, the single-particle rate Rij for the au-
tonomous system, Eq. (2.75), is of golden rule type. Here enter the energy εi of single-particle eigenstate
Si⟩ and the bath-correlation function g(ε), Eq. (2.74), where T is the temperature (measured in units
of energy, kB = 1) of the bath and J is its spectral function J(ε) = ∑α c

2
α [δ(ε − h̵ωα) − δ(ε + h̵ωα)].

In the following we will consider ohmic baths with a continuum of modes α and spectral function
J(ε) = ε.

A nonequilibrium situation is found when e.g. the system is coupled to multiple baths at different
temperatures, where the total rate is given by the sum of the rates R(b)ij corresponding to the individual
bath b,

Rij =Q
b

R
(b)
ij . (4.2)

Another possible scenario are time-periodically driven systems coupled to a heat bath. In this case
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4.1. Driven-dissipative ideal Bose gas and Bose selection

the rates read [73, 151]

Rij =
2πγ2

h̵

∞
Q

m=−∞
Svij(m)S

2g(εi − εj −mh̵ω) (4.3)

with vij(m) = ω
2π ∫

2π~ω
0 eimωt⟨i(t)SvSj(t)⟩dt, driving frequency ω, Floquet states Si(t)⟩, and correspond-

ing quasienergies εi.

The equation of motion (2.93) for the mean occupations depends also on the two-particle density–
density correlations, the equations of which depend in turn on three-particle correlations and so on.
In this way it establishes a hierarchy, which in the following will be truncated already at the single-
particle level by employing the mean-field decomposition ⟨ninj⟩ ≈ ⟨ni⟩⟨nj⟩, i ≠ j. As a result, the
steady state occupations, ∂t⟨ni⟩ = 0, follow from the nonlinear equations of motion

0 =Q
j

Aij⟨nj⟩⟨nj⟩ +Rij⟨nj⟩ −Rji⟨ni⟩. (4.4)

Here we have used the rate asymmetries Aij , which for the rates of a single bath read

A
(b)
ij =

2πγ2

h̵
S⟨iSvSj⟩S2J(εj − εi), (4.5)

so that they are independent of temperature. Note that it has been shown by comparison to quasi-
exact Monte-Carlo simulations [83] that the mean-field (or kinetic) equation (4.4) yields excellent
predictions for the mean occupations ⟨ni⟩ for a broad range of models. A possible reason for this good
agreement has been pointed out recently [152, 153]; a driven system with a set of observables {Ai}

which are approximately conserved quantities will relax towards a steady state that is well described
by a generalized Gibbs ensemble %GGE = Z

−1
GGE exp (−∑i λiAi) . Due to the weak-coupling limit that

we assume, the occupations ni of the system’s single-particle states i are almost conserved, so in our
context this set is given by {ni}. For a state %GGE ∝ exp (−∑i λini), the mean-field decomposition is
exact, ⟨ninj⟩ = ⟨ni⟩⟨nj⟩, i ≠ j.

The solid lines in Fig. 4.1 show the steady-state solutions of Eq. (4.4) as a function of the total
particle number N = ∑i⟨ni⟩ for three different scenarios: Fig. 4.1(a) shows occupations for a tight-
binding chain of M = 20 sites, coupled to one heat bath only; therefore, the steady state is thermal.
Figure 4.1(b) shows occupations for the same chain, but additionally in contact also with a second,
population inverted heat bath described by a negative temperature T2 < 0. Note that negative tem-
peratures have been realized, e.g., in atomic quantum gases by preparing a state at the upper edge
of a Bloch band [154]. Figure 4.1(c) shows occupations for a time-periodically driven quantum kicked
rotor with M = 20 Floquet states coupled to a single bath. The system is in a regime, where the
corresponding classical system, the Chirikov standard map [155], is known to be chaotic.

For small total particle number N , the bosons behave classically and the occupations ⟨ni⟩ are given
by the single-particle probabilities pspi to occupy the state i scaled linearly with particle number N ,
⟨ni⟩ ≃ p

sp
i N . However, at large total particle numbers the bosonic quantum statistics makes itself
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Figure 4.1.: Mean occupations ⟨ni⟩ of the single-particle eigenstates i as a function of the total
particle number N for the nonequilibrium steady state of an ideal Bose gas. Solid lines are from mean
field theory, Eq. (4.4), dashed lines from the asymptotic theory. (a,b) The system is a tight-binding
chain with M = 20 sites, tunneling parameter J , that is (a) in thermal equilibrium, coupled to a bath
at temperature T = J and (b) in a nonequilibrium steady state, coupled to a bath at temperature
T1 = J to the occupation number operator at site ‘1 = 3 and a second bath with temperature
T2 = −0.2J at site ‘2 = 5 with equal coupling strength γ1 = γ2. (c) Nonequilibrium steady state of
a fully chaotic Floquet system (frequency ω) with M = 20 modes, the quantum kicked rotor with
kicking strength K = 10, coupled to a single bath at temperature T = h̵ω.

felt. As a result, we observe Bose selection [82]: the occupations of some of the states saturate, while
all additional particles gather in a set S of selected states whose occupations grow linearly with N .
In equilibrium, Fig. 4.1(a), this corresponds to Bose condensation in the ground state. Away from
equilibrium several states can be Bose selected.

From Figs. 4.1(a)-4.1(c) we already observe that the number MS = SSS of selected states can range
from only few up to an extensive number, while the former case corresponds to fragmented Bose
condensation, since each of the selected state acquires a macroscopic occupation in the limit N →∞,
the latter case does not correspond to Bose condensation, since none of the selected states will acquire
a macroscopic occupation. To be more precise, in the thermodynamic limit, N,M →∞, N~M = const.,
there can only be (fragmented) condensation if the number MS of Bose-selected states is intensive,
i.e. asymptotically independent of M . However, if there is an extensive number of selected states,
MS ∝ M , the system will behave effectively classically also in the ultra degenerate limit. So far,
however, very little is known about how MS depends on the properties of the system and in particular
on the form of rates. The main goal of this chapter is to obtain a better understanding of how the
number of selected states is determined by the properties of the rate matrix.
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4.1. Driven-dissipative ideal Bose gas and Bose selection

Before we begin with our analysis, let us briefly review the equations that determine the set of
selected states and what so far has been known about their number. It has been shown that generally
the number MS of these selected states is odd. The starting point for determining the set of selected
states is an asymptotic expansion (dashed lines in Fig. 4.1) of the mean occupations in the limit of
large occupation, N ≫ 1. For the selected states, i ∈ S, Eq. (4.4) yields in this limit [82, 83]

0 =Q
j∈S

Aijηj ,∀i ∈ S, (4.6)

where ηi are the leading order occupations ⟨ni⟩ = ηiN +O(N0). Note that for the nonselected states,
these contributions vanish, so it must hold ηi = 0, i ∉ S. The vector ηi, i ∈ S, is thus a nontrivial vector
in the kernel of the skew-symmetric matrix AS = {Aij Si, j ∈ S}. The leading order of the occupations
of the nonselected states, i ∉ S, is then given by

⟨ni⟩ = −
∑j∈S Rijηj

∑j∈S Aijηj
+O(N−1). (4.7)

The physical condition of having positive occupations, ⟨ni⟩ > 0 for both the selected and the nonse-
lected states, has been shown to uniquely determine the set of the selected states [83]. Using equations
(4.6) and (4.7) this condition can be cast into the simple form

µ = Aη with
⎧⎪⎪
⎨
⎪⎪⎩

µi = 0, ηi > 0, for i ∈ S
µi < 0, ηi = 0, for i ∉ S.

(4.8)

From this condition a few simple statements about the number of selected states have been drawn
already. First, we know that MS is generically odd, since without fine tuning the skew-symmetric AS

possesses a nontrivial kernel for an odd number of selected states only. Second, in case the system
possesses a ground-state like state k defined by

Rki > Rik,∀i ≠ k, (4.9)

one can immediately see that the problem (4.8) is solved by S = {k}, i.e. a single selected state is
found. Finally, for uncorrelated random rates it has been observed numerically that the number of
selected states follows a binomial distribution. Thus, an extensive number of states (on average half
of the states) are selected.

However, a general estimate for MS is not straight forward. In the following, we will discuss different
scenarios in which such estimates can be found; First we will study rates which possess a well-defined
continuum limit for M →∞. Second we will consider rates that do not have such a continuum limit,
discussing the two important cases where rates are truly random, and rates that stem from a chaotic
kicked system. Finally, we will discuss rates that are given by a sum of direct products, as they are
relevant for autonomous systems that couple to the environment via a few observables only.
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4. Number of Bose-selected modes in driven-dissipative ideal Bose gases

4.2. Rates with continuum limit

In this section we discuss systems described by rate matrices that have a smooth continuum limit and
which are, thus, strongly correlated. We assume that the quantum numbers i ∈ {0, ...,M − 1} can be
labeled by a variable

ki = α
i

M
, with constant α ∈ ❘, (4.10)

that becomes continuous in the limit M →∞. Moreover, we focus on one-dimensional systems whose
rate matrices shall become smooth in that limit, i.e. that there exists a function R(k, q), such that

Rij = R(ki, kj)Δ
2 (4.11)

with Δ = α~M . The generalization to higher-dimensional systems described by several continuous
quantum numbers is straight forward.

An example for this situation are the rates for a single bath coupled to site ‘ of the tight-binding
chain described by the Hamiltonian [see Fig. 4.1(b)]

HS = −J
M−2
Q
i=1
(a†

i+1ai + a
†
iai+1), (4.12)

where J is the tunneling constant and ai is the bosonic annihilation operator at site i. In this case we
find [156]

R(k, q) =
2γ2

πh̵
g(ε(k) − ε(q)) sin(k‘)2 sin(q‘)2 (4.13)

with dispersion ε(k) = −2J cos(k) and k-space sampling with i = 1, . . . ,M − 1, and α = π.

We make the ansatz that there is a discrete set of Bose-selected states S = {ks}, such that in the
asymptotic limit for large densities n→∞ the mean occupation density reads

⟨n(k)⟩ = ⟨nn(k)⟩ + n̄sδ(k − ks), (4.14)

where we have introduced the normalization condition

n = NΔ =Q
i

⟨ni⟩Δ⇒ n = S
α

0
⟨n(k)⟩dk. (4.15)

Eq. (4.6) then translates to

a(ks) = 0, ∀ks ∈ S, (4.16)
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Figure 4.2.: Sketch of the typical behavior of the function a(k) defined in Eq. (4.17). The function
is globally negative with zeros at the Bose-selected states ks.

where we have defined the function

a(k) =Q
s∈S

A(k, ks) n̄s, (4.17)

with rate asymmetry function A(k, q) = R(k, q) − R(q, k). Note that for smooth rates, the function
a(k) will be smooth as well. The starting point for our reasoning is the analog of Eq. (4.7), which
predicts that in the continuum limit the asymptotic occupations of all modes k ∉ S read

⟨nn(k)⟩ = −
∑s∈S R(k, ks) n̄s

a(k)
. (4.18)

Since here the numerator is strictly nonnegative, the denominator has to be strictly negative

a(k) < 0, ∀k ∉ S. (4.19)

In the following, we assume that R is two-fold differentiable. By discussing the rate function in
the vicinity of the selected states, we will then be able to restrict the possible selected states to a
few candidates only. From Eqs. (4.16) and (4.19) it follows that a(k) is negative almost everywhere,
however at local maxima it assumes the value zero, whenever k = ks, see sketch in Fig. 4.2. This
implies both

0 = a′(ks) = Q
p∈S

A′(ks, kp) n̄p, (4.20)

and

0 > a′′(ks) = Q
p∈S

A′′(ks, kp) n̄p, (4.21)

where we have defined A′(k, q) = ∂kA(k, q) and A′′(k, q) = ∂2k A(k, q). Note that these local criteria
are necessary, but not sufficient for Bose selection in state ks. Note also that state space k may have
a boundary or not. For example for the tight-binding chain in Fig. 4.1(b), we do not impose periodic
boundary conditions in real space, then k takes values in the interval [0, π]. Thus the dispersion ε(k)
is not a periodic function of k and our state space possesses boundaries at 0 and π. At such boundaries
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4. Number of Bose-selected modes in driven-dissipative ideal Bose gases

the criteria (4.20) and (4.21) do not have to apply, because here the maxima of a(k) are no longer
characterized by derivatives.

As we will see, the criteria (4.20) and (4.21) strongly constrain the set of selected states. To illustrate
this fact, we will discuss different scenarios in the following subsection.

4.2.1. Different selection scenarios

If only one state k0 is selected and does not lie at the boundary of the state space, it follows that

0 = ∂kA(k, q)S(k0,k0) and 0 > ∂2k A(k, q)S(k0,k0). (4.22)

Since A is skew-symmetric,

A(k, q) = −A(q, k),∀k, q, (4.23)

we also find

0 = ∂qA(k, q)S(k0,k0) and 0 < ∂2q A(k, q)S(k0,k0). (4.24)

Since also the gradient of A vanishes at (k0, k0), this point must be an extreme point of the asymmetry
function A. Moreover, we find that the mixed derivative at this point must vanish

∂k∂qA(k, q)S(k0,k0) = ∂q∂kA(k, q)S(k0,k0)

= −∂q∂kA(q, k)S(k0,k0) = −∂k∂qA(k, q)S(k0,k0) = 0.
(4.25)

Here we first used Schwarz’ theorem and in the third step renamed the variables. Thus k0 either
corresponds to a saddle point on the diagonal of the rate asymetry matrix or it lies at the boundary
of state space (if there is one), where both local criteria do not have to apply.

An example is given by the rate-asymmetry function A shown in Fig. 4.3(a). Here we mark the
position of the selected state by black arrows on the side and the relevant matrix element A(k0, k0)
by a red arrow. It lies at a saddle point (having the correct curvature) on the diagonal. Clearly, also
the rest of function a(k)∝ A(k, k0) must remain below the blue A = 0 plane.

For MS > 1 the vector of the occupations {n̄s}s∈S is a homogeneous solution of Eq. (4.16) and at
the same time of Eq. (4.20). This provides a strong restriction, since both equations generally will
not have a common set of solutions. Therefore, selected states will generically occur in two special
scenarios.

The first scenario is the following. Since the rate asymmetry A is continuous we will naturally find
zero lines A(k, q) = 0 also away from the diagonal A(k, k) = 0. If the selected states lie at these zero
lines, i.e. A(ks, kp) = 0, the occupations {n̄s}s∈S are only determined by Eq. (4.20).

Note that since the coefficient matrix (A′(ks, kp))s,p is not necessarily skew-symmetric, in this case
also an even number of selected states ks may occur in the continuum limit. In the discrete case, an
even number MS of selected states requires fine-tuning in the rate matrix [83] such that for example
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(a) (b)

(c)

Figure 4.3.: Gallery of selected states in the random wave model, Eq. (4.26), for a superposition of
L = 80 plane waves with wavenumber κ = 3π (a, b) and κ = 5π (c). We discretize k-space such that
M = 50 (a, b) and M = 200 (c) states exist. The smooth rate-asymmetry function A(k, q) is sampled
at the grey points. The blue plane represents A = 0. Selected states are marked by black arrows at
the k- and q-axis. We indicate the contributing matrix elements A(ks, kp) by red (for A ≥ 0) and
blue (for A < 0) arrows. For clarity we do not mark diagonal elements A(ks, ks) if MS > 1.

some of the Aij vanish. However, for continuous rate asymmetry functions it is natural to have zero
lines, i.e. A(ks, kp) = 0 for ks ≠ kp, such that in the continuous case no fine-tuning is needed to observe
an even number MS . However, if an even number of selected states ks occurs in the continuous model,
a corresponding discrete system will still feature an odd number of selected states. We then typically
find pairs of neighboring selected states around at least one1 of the selected states ks of the continuous
model [as in the example in Fig. 4.3(b)]. To avoid confusion, we refer to the number of selected states
in the continuous system as continuum number of selected states MS = 1,2,3,4, . . ..

In Fig. 4.3(b) we observe Bose selection at zero lines where the continuum selection of MS = 2 states

1Around which of the states ks pairs form is, however, not universal and depends on the discrete grid. If one plots the
selected states as a function of discretization parameter M for example, one can observe how such pairs jump from one
ks to the other quite irregularly (not shown).
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Figure 4.4.: Typical example for Bose selection in a more complex rate matrix. Parameters are like
in Fig. 4.3, but M = 300 and κ = 7π.

occurs. The asymptotic states k1, k2 lie at a zero line of A. Since in the discrete system the number
of selected modes MS is always odd, we find MS = 3 in the discrete system with a pair of neighboring
states in the vicinity of state k2 > k1.

Another possible scenario is that the selected states are found such that at (ks, kp) the rate asym-
metry function possesses saddle points. Then A′(ks, kp) = 0 such that the occupations {n̄s}s∈S are
solely determined by Eq. (4.16). In this case the corresponding continuum MS will be odd.

However typically neither of the cases – selection at only zero lines or only saddle points – occurs in
a “pure” form. This can be seen in the example in Fig. 4.3(c), where we observe the selection at both
zero lines and saddle points with a continnum selection of MS = 3 states. In this case, some of the
relevant points (ks, kp) lie on the zero lines of A, and others have saddle points in the vicinity of the
point (ks, kp). Here, MS = 5 states are selected in the discrete system, with pairs at two continuum
wave numbers k.

But it is only in continuous rate matrices with few oscillations (like in the examples chosen in
Fig. 4.3) that we find selected states defined by one of the different mechanisms stated above. If we
consider systems with more variation in the rate matrix, like in Fig. 4.4, the points (ks, kp) are not
clearly relatable to either zero lines nor saddle points anymore. Nevertheless, these points are often
still found in the vicinity of zero lines and saddle points.

4.2.2. Random-wave model

The rate functions shown in Fig. 4.3 and 4.4 are motivated by a random wave model for chaotic
eigenfunctions [157]. They are defined by

R(k, q) =
L

Q
l=1

Re cl exp i(κk,lk + κq,lq) +C. (4.26)
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Figure 4.5.: Mean number ⟨MS⟩ of selected states in the random wave model (4.26) for (a) a
superposition of L = 50 plane waves as a function of the wave-number κ. The rates R(k, q) are
sampled at M = 10, 20 and 50 discrete states. We average over 500 realizations of the random rates.
We see a linear increase with ⟨MS⟩ ≈ 0.75κ~π (dashed line, guide to the eye) before it saturates at
a value where more than half of the single particle states are Bose selected. (b, c) Mean number
of selected states as a function of the number L of components for (b) M = 10 and (c) M = 20
discretization steps and 250 realizations. We see only a weak dependence on L.

It is a superposition of L independent plane waves with κk,l = κ sin(ϕl), κq,l = κ cos(ϕl), fixed absolute
value of the wavenumber κ and uniformly distributed angles ϕl ∈ [0,2π). Amplitudes SclS are drawn
from a normal distribution and phases arg(cl) are distributed uniformly. The global constant C is
chosen such that all rates are nonnegative. Its specific value is irrelevant for the set of the Bose-selected
states, which are solely determined by the rate-asymmetry function A(k, q) in which C will drop out.

This model produces rate functions that are smooth and show oscillations on the length scale
2π~κ in state space, see e.g. Fig. 4.3. It allows us to investigate the typical behavior of smooth rates
that show variations on such a scale. We discretize state space via Eq. (4.10) where, to unravel the
continuum physics, we choose the discretization length Δ to be small with respect to the oscillation
length of the model, Δ = 1~M ≪ 2π~κ.

As we increase the wavenumber κ of the model the structure of R will become more and more
complex, leading to more and more zero-lines and saddle points in the rate asymmetry function. Thus,
we expect that with the characteristic wavenumber κ, which determines the typical oscillation length
2π~κ of the smooth rate function R, also the average number of selected modes ⟨MS⟩ will increase.
This is confirmed by the numerical results shown in Fig. 4.5(a). The mean number of selected states
increases as soon as κ exceeds the threshold κ ≈ π, where the wavelength 2π~κ of the plane waves is
about double the system size. Afterwards, we see a linear increase with ⟨MS⟩ ≈ 0.75κ~π as marked by
the black and white dashed line. The linear scaling is explained by the above reasoning, since e.g. the
number of extrema (and also the number of zeros) of sin(κk) on the interval k ∈ [0,1] is of the order
of κ~π. However the origin of the prefactor of about 0.75 remains open.

Note that the mean number ⟨MS⟩ only depends weakly on the number of components L that we
use in the random wave model as shown in Fig. 4.5(b) for M = 10 discrete states and (c) M = 20 and
three different values of κ.

The behavior seen in Fig. 4.5(a) clearly suggests that for smooth rates, the number of selected states
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4. Number of Bose-selected modes in driven-dissipative ideal Bose gases

is typically on the order of the number of oscillations in the rate asymmetry function A. Therefore,
for fixed smooth A, even if the number of discrete states M is large, M →∞, as observed in Fig. 4.5,
the number MS will remain intensive as it is solely the property of the smooth function A.

We expect a breakdown of the theory for continuous rates as soon as the oscillation length of the
rate function becomes comparable to the discretization length. For the random rates this breakdown
occurs for κ ≈ Mπ as visible in Fig. 4.5(a). Interestingly, the mean number of selected states ⟨MS⟩

for the random wave model does not saturate at ⟨MS⟩ =M~2 as one would expect for truly random
rates (see Sec. 4.3.1). We observe a first saturation at values that are slightly above M~2: for M = 20
discrete states we find saturation at about ⟨MS⟩ = 13, or for M = 10 we find ⟨MS⟩ ≈ 6.2

4.3. Rates without continuum limit

4.3.1. Uncorrelated random rates

The single particle rates Rij that one observes typically for a fully chaotic quantum rotor have been
shown to roughly follow an exponential distribution [73]. If we suppose that there are no additional
correlations between the rates Rij , we may draw typical rates from a random realization of the
exponential distribution, where p(Rij) = exp(−λRij)~λ. Note that the choice of the parameter λ is
irrelevant, since it only determines the time scale on which the system relaxes but not the steady
state.

Figure 4.6(a) shows the distribution of the number MS of Bose-selected states for random rates
connectingM = 40 single particle states. The odd number of Bose-selected states is given by a binomial
distribution,

p(MS) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 for MS even

1
2M−1

⎛

⎝

M

MS

⎞

⎠
for MS odd

(4.27)

centered around ⟨MS⟩ = M~2 [cf. Fig. 4.6(c)]. Such a behavior was observed in the literature for
random rates, mostly in the context of population dynamics, where similar equations, the Lotka-
Volterra equations, appear [82, 158–161]. Usually this result is motivated by arguing that for the
random rates all states are equal, so that every state has the same probability to be Bose selected or
not. Taking into account the additional constraint that the total MS must be odd, one can in this way
motivate the distribution (4.27) by just counting the number of possible choices of MS states among
the total M states.

However, the argument that every state has the same probability to be Bose selected or not must
also follow rigorously from the steady state equations, and thus also from Eq. (4.8). To fill this gap,
we will compute the distribution of selected states. To this end, we will first contruct transformations

2Note that after this first saturated regime, for the red line M = 10, the number drops again at around κ = 2πM . This
is related to the effect of aliasing occuring when the wavelength 2π~κ of the random wave model is smaller than the
discretization length Δ = 1~M .
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4.3. Rates without continuum limit

of the rate-asymmetry matrix A = (Aij) under which the number of Bose-selected states MS remains
invariant, i.e. the solutions of the problem (4.8) have the same MS .

Reordering transformations

Since the indexing of the states is arbitrary, MS will remain invariant when reordering the states. The
matrix Tk,l describes the transpositions that exchange state k and l. Since T−1k,l = Tk,l the corresponding
transformation takes the form

A→ Tk,lATk,l. (4.28)

Under this transformation, the matrix remains skew-symmetric, and also the number of Bose-selected
states remains invariant.

So for discussing the properties of a general A with a given number MS of Bose-selected states, we
can thus assume solutions of the form

η = (η1, ..., ηMS
,0, ...,0)T . (4.29)

Rescaling transformations

We are only interested in the number of selected states and not in their occupation. Therefore, let us
consider a rescaling of the coefficients ηi and µi. This is accomplished by a transformation induced
by the matrix

Dλ = diag(λ1, ..., λM), with positive λk > 0. (4.30)

As we want to apply this matrix to both the vectors η and µ, it is important that only positive rescaling
λk > 0 is allowed. Otherwise we would transform a solution of problem (4.8) into vectors that do not
solve a problem of this type. Since the inverse of this matrix is again diagonal, D−1λ = D(1~λ1,...) we
find that the rescaling transformation

η →Dλη, µ→D−1λ µ, A→D−1λ AD−1λ (4.31)

preserves skew-symmetry of the matrix A. Note that we multiply A with the inverse from the left and
the right. The rescaled quantities µ̃, η̃, Ã with S̃ = S fulfil again Eq. (4.8), since

µ̃ =D−1λ µ =D−1λ AD−1λ Dλη = Ãη̃. (4.32)
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Figure 4.6.: (a) Distribution of the number MS of Bose-selected states for 5000 realizations of
exponentially distributed random rates Rij for a system of size M = 40. The distribution of the odd
MS is binomial with p = q = 0.5 (given by the black crosses connected by the dashed line). (b) Same as
in (a) but for 5000 realizations of a chaotic quantum kicked rotor with M = 40 Floquet modes where
we choose the kicking strength K randomly from the interval K ∈ [9.5,10.5). Binomial distribution
with p = 0.62 for comparison. (c) Mean number ⟨MS⟩ divided by system size M of Bose-selected
states as a function of M for the random rate model (dots) and the kicked rotor (triangles) both
for 50 realizations of the system. For random rates ⟨MS⟩ coincides with the predicted value M~2
(dashed line), however values for the kicked rotor deviate significantly from this result.

Standard matrices

As we know that for any given skew-symmetric A the problem (4.8) has a unique solution S [82, 83],
we always find a sequence of transformations such that

η̃ = ( 1, ...,1,
·„„„„„„„‚„„„„„„„„¶

MS entries

0, ...,0)T , µ̃ = ( 0, ...,0,
·„„„„„„„‚„„„„„„„„¶

MS entries

−1, ...,−1)T (4.33)

holds. As the transformations (4.28) and (4.31) are invertible, it turns out that it suffices to discuss
the properties of the set of standard matrices AMS

that is constructed such that it gives rise to a
solution of the form (4.33). Then the space of rate-asymmetry matrices with selection number MS is
spanned by a sequence of the two physically intuitive transformations discussed above.

We find that these standard matrices take the form

AMS
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x
(1)
MS+1 ⋯ x

(1)
M

AS
MS

x
(2)
MS+1 − x

(1)
MS+1 ⋯ x

(2)
M − x

(1)
M

x
(3)
MS+1 − x

(2)
MS+1 ⋯ x

(3)
M − x

(2)
M

⋮ ⋱ ⋮

1 − x
(MS)
MS+1 ⋯ 1 − x

(MS)
M

−x
(1)
MS+1 −x

(2)
MS+1 + x

(1)
MS+1 ⋯ −1 + x

(MS)
MS+1

−x
(1)
MS+2 −x

(2)
MS+2 + x

(1)
MS+2 ⋯ −1 + x

(MS)
MS+2

⋮ ⋮ ⋱ ⋮ Aarb

−x
(1)
M −x

(2)
M + x

(1)
M ⋯ −1 + x

(MS)
M

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(4.34)

with arbitrary real numbers x(i)j , arbitrary (M −MS)-dimensional skew-symmetric matrix Aarb and
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4.3. Rates without continuum limit

MS-dimensional skew-symmetric matrix AS
MS

restricted by the existence of the homogeneous solution

AS
MS

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1

⋮

1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (4.35)

Consequence for random rates

For a random rate matrix, all entries (Aij)j>i of the rate asymmetry are random and statistically
independent. We aim to find the probability to randomly choose a matrix that is from the class
generated by the AMS

-matrix (under the transformations (4.28) and (4.31)). To this end, we first
count the number d of degrees of freedom in determining a general matrix AMS

. In a second step we
then discuss the influence of the transformations.

Let us begin with the block AS
MS

. To construct such a matrix, we start from an arbitrary MS-
dimensional skew-symmetric matrix which has dS = 1

2 (MS − 1)MS degrees of freedom. We have to
distinguish two different cases: For odd MS this matrix has always a homogeneous solution, for even
MS we have to fine tune one parameter for a homogeneous solution to exist, which reduces the
number of degrees of freedom by one. Furthermore we have to subtract MS − 1 degrees because the
homogeneous solution is pinned to (1, . . . ,1)T . Thus the number of degrees of freedom in the subspace
of the selected modes is

doS =
1

2
(MS − 1) (MS − 2), (4.36)

deS = d
o
S − 1 (4.37)

for an odd or even number of selected modes, respectively.

Then, there are M−MS rows, each of which has MS−1 free variables x(i) to choose. This contributes

df = (M −MS) (MS − 1) (4.38)

degrees of freedom.

Also there is still an arbitrary (M −MS)-dimensional skew-symmetric matrix free to choose, which
adds another

darb =
1

2
(M −MS) (M −MS − 1) (4.39)

degrees of freedom.
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This sums up to

do = doS + df + darb =
1

2
(M − 1)(M − 2) (4.40)

de = do − 1 (4.41)

for odd and for even MS respectively. Interestingly for every MS the number of free parameters of
the generating matrix AMS

depends on the parity of MS only. Matrices with an even MS have one
degree of freedom less.

If we now choose a rate-asymmetry matrix randomly, the probability to hit a matrix with a specific
number of selected states is proportional to its size in parameter space. The diagonal transformations
(4.31) do not favour any number of selected states, as they always contribute M degrees of freedom.
For an even number of selected states there is one free parameter less than for an odd numberMS , such
that their generating matrices form a set of probability measure zero in parameter space. Therefore all
generators AMS

of odd selection numbers have equal size in probability space and the even numbers
are suppressed.

It is left to discuss the influence of the reordering transformations (4.28). They allow to distribute
the MS selected states over the M states. The number of possible configurations for this is given by
the binomial factor

⎛

⎝

M

MS

⎞

⎠
. (4.42)

After normalization, we infer the distribution (4.27).

4.3.2. Chaotic quantum kicked rotor

We want to compare these results for uncorrelated random rates to chaotic systems.
A paradigm for quantum chaos is the quantum kicked rotor, a one-dimensional rotor governed by

the Hamiltonian

H(ϕ, p, t) =
p2

2
+K cos(ϕ)Q

n∈Z
δ(t − n) (4.43)

with time-periodic kicks of strength K, period τ = 1 and [ϕ, p] = ih̵eff . For h̵eff = 2π
M , M ∈ ◆, we can

restrict the system to a torus with periodic coordinate ϕ ∈ [0,2π) and periodic momentum p ∈ [−π,π).
Note that since the available phase space volume on the torus is V = (2π)2, there exist V ~(2πh̵eff) =M
Floquet states on the torus.

These Floquet states Si(t)⟩ are eigenstates of the one-cycle evolution operator

U(1,0) = e
− i

h̵eff
K cos(ϕ)

e
− i

h̵eff

p2

2 (4.44)

fulfilling U(1,0)Si(0)⟩ = exp(−iεi~h̵eff)Si(0)⟩ with corresponding quasienergies εi.
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This kicked rotor is coupled to a bath with temperature T . We consider the coupling operator

v = sin(ϕ) + cos(ϕ), (4.45)

which respects the periodicity of ϕ and breaks the parity (such that also even and odd Floquet states
are coupled to each other).

In Fig. 4.6(b) we show the distribution for the number of selected states MS that we obtain when
randomly choosing the kicking strength K within the interval [9.5,10.5] (where the classical coun-
terpart of the quantum kicked rotor is essentially fully chaotic) for a rotor with M = 40 Floquet
states. From Fig. 4.6(b) and (c) it is clear that the random rate model fails to predict the number
of selected states for a typical realization of the chaotic quantum kicked rotor. The distribution is
centered around a much larger value than MS =M~2 expected for random rates [Fig. 4.6(a)]. It also
seems that the distribution may not be fitted with a binomial distribution, which for example for
p = 0.62 (black crosses) is much broader then the one that is observed. This trend also manifests itself
in Fig. 4.6(c) where the triangles show the mean number ⟨MS⟩ of Bose-selected states for the quantum
kicked rotor. This number lies well above M~2, for systems of size M ≳ 150 about 80% of the states
are Bose selected. Consequently, we come to the intriguing conclusion that there must be additional
correlations among the rates Rij that are responsible for the fact that significantly more states are
selected for the chaotic quantum kicked rotor than in the random-rate model. In the following section,
we describe a model with correlated random rates that shows a similar distribution of selected states
as the quantum kicked rotor model. However, the origin of the large number of selected states for our
quantum kicked rotor model remains an interesting open question.

4.3.3. Modified random wave model for the rates in the quantum kicked rotor

The deviations from the random rate model indicate that the rates of the chaotic quantum kicked
rotor contain correlations that lead to the Bose selection of more states than in the uncorrelated case.
In this section we construct a random rate matrix that has correlations that lead to similar behavior.

Correlations of the rates associated with the quantum-kicked-rotor model in contact with a heat
bath that we considered were discussed in Ref. [73] (where the single-particle problem was studied).
The rate Rij and the backwards rate were proposed to obey

Rji = (1 + ξij)Rij , for i > j, (4.46)

with both Rij and ξij stemming from individual exponential distributions with scale parameters λ
and λξ, where λξ decreases with system size as λξ ∝M−1.2. However, the rate model (4.46) leads to
steady states with even less than half of the states being Bose selected (data not shown).

Note that in Sec. 4.2.2 we have encountered a model, which also features that typically more than
half of the states are Bose selected. It is the random wave model, Eq. (4.26), with parameter κ ≈ 1.9πM
[cf. also Fig. 4.5]. A suggestive point of view for why the random wave model might be suitable to
approximate rates of a chaotic map, is that random waves have been used successfully to model

77



4. Number of Bose-selected modes in driven-dissipative ideal Bose gases

(a)

10 20 30
0.0

0.1

0.2

0.3

MS

p(MS)

(b)

10 20 30
0.0

0.1

0.2

0.3

MS

p(MS)

(c)

0 50 100 150 200 250
0.00

0.25

0.50

0.75

1.00

modified random wave

M

hMSi/M

Figure 4.7.: (a) Distribution of the number MS of Bose-selected states for 5000 realizations of
rates Rij stemming from the random wave model, Eq. (4.26), with κ = 1.9πM , L = 80 and M = 40
states. (b) Same as in (a) but for 5000 realizations of the modified random wave model, Eq. (4.47),
with M = 40 states, κ = 1.9πM , L = 80 and λ = 10. (c) Mean number ⟨MS⟩ of Bose-selected states
divided by system size M as a function M for the modified random wave model (triangles) for 50
realizations of the system. We use L = 2M components. The dashed line is at MS =M~2.

typical chaotic eigenstates [157, 162, 163]. Note, however, that this vague reasoning is not based on a
microscopic picture for the derivation of the rates.

We can see in Fig. 4.7(a) that the distribution for the random wave model with M = 40 is much
broader than the one we observe for the quantum kicked rotor in Fig. 4.6(b). Also the rates Rij

that result from a random wave model, Eq. (4.26), do not follow an exponential distribution. Their
distribution p(Rij) is rather peaked at some finite value. To correct for this, we introduce a modified
random wave model for the rates

R(k, q) =
L

Q
l=1
SclSRe 1 + ei(κk,lk+κq,lq+αl) e−λSk−qS, (4.47)

where we constrain the waves to positive values and localize them on a length λ−1 by introducing an
exponential factor. In this model we choose κk,l = κ sin(ϕl), κq,l = κ cos(ϕl) similar to the random wave
model with fixed absolute value of the wavenumber κ, uniformly distributed angles ϕl, αl ∈ [0,2π] and
cl from a normal distribution.

We observe that the modified random-wave model has rates that are distributed exponentially and
the distribution of the MS shows relatively good agreement with the data from the quantum kicked
rotor for κ = 1.9πM and localization parameter λ = 400~M . This can be seen for example by comparing
the distribution for M = 40 discrete states in Fig. 4.7(b) to the distribution of the quantum kicked
rotor in Fig. 4.6(b), although the mean values coincide, the distribution of our model is, however, a
bit broader than the one obtained for the quantum kicked rotor. Also as a function of system size,
Fig. 4.7(c), the model seems to reproduce the mean value of selected states in Fig. 4.6(c) quite nicely.

However, despite the fact that the modified random wave model (4.47) gives rise to a similar
distribution of the number of selected states as the one obtained for the quantum kicked rotor, we
have no evidence that the modified random-wave model mimics the physics of the quantum kicked
rotor coupled to a heat bath [see Sec. 4.3.2].
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4.4. Rates with product structure

Consider an arbitrary time-independent system with Hamiltonian HS which is coupled to a positive
temperature bath (B1) and a population-inverted bath (B2) described by a negative temperature
through coupling operators which obey the form of a projector on a single quantum state,

v(B1) = Sf⟩⟨f S, v(B2) = Sg⟩⟨gS. (4.48)

Note that the states Sf⟩ and Sg⟩ can also be coherent superpositions of the single-particle eigenstates
i. In this section we show that the number of selected states remains always lesser than or equal
three, MS ≤ 3, for all system sizes M . Note that in case of this specific system-bath coupling even a
system with chaotic single–particle dynamics features only a maximum number of three condensates.
An example of a system with such a system bath coupling is the one depicted in Fig. 4.1(b). Here the
states f and g correspond to the local Wannier orbitals at lattice sites ‘1 and ‘2, respectively.

For coupling operators of the form (4.48), we find the rate asymmetry matrix

Aij =
2π

h̵
J(εj − εi)(fifj − gigj) (4.49)

from Eq. (4.5), where fi = S⟨iSf⟩S
2, and gi = S⟨iSg⟩S

2. Here we assume that JB2(ε) = −JB1(ε) = −J(ε),
giving rise to rates Rij ≥ 0. Moreover, let us first consider ohmic baths with spectral density J(ε)∝ ε.
We find a rate asymmetry matrix having the product struture

Aij ∝ fifjεj − fifjεi − gigjεj + gigjεi. (4.50)

Now let ηi be the solution of Eq. (4.8). It then follows that in the subspace of selected states one
has

0 =Aη =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

fi1

fi2

...

fiMS

⎞
⎟
⎟
⎟
⎟
⎟
⎠

c1 −

⎛
⎜
⎜
⎜
⎜
⎜
⎝

fi1εi1

fi2εi2

...

fiMS
εiMS

⎞
⎟
⎟
⎟
⎟
⎟
⎠

c2 −

⎛
⎜
⎜
⎜
⎜
⎜
⎝

gi1

gi2

...

giMS

⎞
⎟
⎟
⎟
⎟
⎟
⎠

c3 +

⎛
⎜
⎜
⎜
⎜
⎜
⎝

gi1εi1

gi2εi2

...

giMS
εiMS

⎞
⎟
⎟
⎟
⎟
⎟
⎠

c4 (4.51)

with

c1 =Q
i∈S
εifiηi, c2 =Q

i∈S
fiηi,

c3 =Q
i∈S
εigiηi, c4 =Q

i∈S
giηi.

(4.52)

Since fi > 0, gi > 0 and εi > 0 (otherwise we can always shift all εi by some constant), these coefficients
are positive,

ci > 0. (4.53)
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Figure 4.8.: (a) Maximum number and (b) mean number MS of Bose-selected states observed for
200 realizations of a random chaotic system HS ∈ GOE(M) as a function of the number of baths
MB coupled to the system. We place MB ohmic baths at some random index i (coupling operator
v = Si⟩⟨iS). We choose half of the baths with positive, the other half with negative temperature (for
odd MB we randomly decide). The dashed line in (a) is the predicted upper bound 2MB−1. (c) mean
number MS of selected states in this model (here only 50 realizations are used) but as a function of
system size M . We choose MB =M~2, i.e. we are in the regime of so many baths that the number
MS is saturated.

Now if MS = 1 or MS = 3 then the four vectors in Equation (4.51) will be linearly dependent, thus
the ci can be positive as they should. However, if MS was greater than three, then generally the four
vectors will be linearly independent, so that ci = 0 must hold, in contradiction to the assumption
ci > 0.

Therefore we have shown that for two ohmic baths with product coupling to the system, the number
of Bose-selected states is restricted to a maximum of three.

There is a straight-forward generalization of this simple algebraic argument to the case where
MB ohmic baths are coupled to an autonomous system via coupling operators of the product form,
Eq. (4.48). In this case, we find an analog to Eq. (4.51), but with a linear combination of 2MB vectors.
By similar reasoning the number of selected states is then restricted to MS ≤ 2MB − 1.

We expect that there is a generalization of the above arguement also to non-ohmic systems described
by arbitrary spectral densities. We have checked functions of the form (remember that J must be odd)

J(ε)∝ SεSdsgn(ε) (4.54)

with some power d (not necessarily integer) and similarly observe MS ≤ 2MB − 1.

Fig. 4.8(a) confirms the result for ohmic spectral densities J(ε)∝ ε. It shows the maximum number
MS of selected states for 200 systems that are randomly drawn from the Gaussian orthogonal ensemble,
GOE(M), the ensemble of orthorgonal M ×M matrices, where the probability to find a matrix H is
given by p(H)∝ exp(−M

4 tr(H
2)). In random matrix theory these Hamiltonians serve as a model for

a fully chaotic system with time-reversal symmetry. We choose random Hamiltonians to make sure
that the number of Bose-selected states is not additionally restricted by the system dynamics. We
couple these systems to MB ohmic baths, where we randomly choose an index i ∈ {1, . . . ,M} to which
the bath is coupled with operator v = Si⟩⟨iS. For half of the baths we choose positive temperature, for
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4.4. Rates with product structure

the other half negative temperature (the selected states are only determined by the rate asymmetry
matrix A and thus independent of the absolute values of these temperatures).

In Fig. 4.8(a) we plot the maximum number of selected states found for an ensemble of 200 realiza-
tions of this model. For sufficiently small MB it equals the predicted upper bound for MS . However,
we observe that for larger values of MB, the observed maximum number of selected states saturates
very quickly at values that are of the order of

√
M where M is the system size. This bounds the mean

number of selected states as shown in Fig. 4.8(b).
We would like to stress that the behavior of the autonomous GOE is very different from that of the

time-periodically driven rotor, although both systems exhibit chaotic single particle dynamics. First,
in the limit of large system size, M →∞, the number of selected states can be intensive, as long as the
number of baths MB is not scaled with system size, so that we may find fragmented condensation in
the thermodynamic limit. However, even if we scale MB with system size, as shown in Fig. 4.8(c) for
MB =M~2, the mean number of selected states seems to scale strongly sublinear with at maximum
⟨MS⟩ ∝

√
M , rather than the drastically different extensive ⟨MS⟩ ∝ M scaling that is observed for

time-periodically driven systems, cf. Sec. 4.3.
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5. High-temperature nonequilibrium Bose
condensation induced by a hot needle

We investigate theoretically a one-dimensional ideal Bose gas that is driven into a steady state far from
equilibrium via the coupling to two heat baths: a global bath of temperature T and a “hot needle”, a
bath of temperature Th ≫ T with localized coupling to the system. Remarkably, this system features a
crossover to finite-size Bose condensation at temperatures T that are orders of magnitude larger than
the equilibrium condensation temperature. This counterintuitive effect is explained by a suppression
of long-wavelength excitations resulting from the competition between both baths. Moreover, for
sufficiently large needle temperatures ground-state condensation is superseded by condensation into
an excited state, which is favored by its weaker coupling to the hot needle. Our results suggest a general
strategy for the preparation of quantum degenerate nonequilibrium steady states with unconventional
properties and at large temperatures.

This chapter has been published in Ref. [156]. Most of this chapter is directly adapted from the
publication, only a few additions have been made. The results on the “Floquet needle” in Sec. 5.8,
however, are yet unpublished.

5.1. System and model

In this chapter we investigate the nonequilibrium steady state of a quantum gas in contact with two
heat baths of different temperature. In particular, we consider a one-dimensional (1D) ideal Bose
gas that is coupled globally to an environment of temperature T and driven into a steady state far
from equilibrium via the additional coupling to a “hot needle”, a local bath of temperature Th ≫ T ,
as sketched in Fig. 5.2(a). We find the surprising effect that a crossover to Bose condensation can
occur when both temperatures T and Th are orders of magnitude larger than the temperature where
(finite-size) condensation occurs in equilibrium. We explain this behavior by a suppression of long-
wavelength excitations resulting from the competition between both baths. Moreover, we observe
that for sufficiently large needle temperatures Bose condensation occurs in an excited state of the
system, which provides a better decoupling from the hot needle. This intriguing phenomenon bears
resemblance to the quantum Zeno effect.

Let us consider a one-dimensional system of N noninteracting bosons that tunnel between adjacent
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5. High-temperature nonequilibrium Bose condensation induced by a hot needle

sites of a tight-binding chain of length M . The Hamiltonian reads

H = −J
M−1
Q
i=1

a†
i+1ai + a

†
iai+1 =Q

k

εknk. (5.1)

Here J is the tunneling parameter and ai the bosonic annihilation operator at lattice site i. The
dimensionless wave numbers k = πν~(M + 1) with ν = 1, . . . ,M characterize the single-particle energy
eigenmodes with energy εk = −2J cos(k), wave function ⟨iSk⟩ =

»
2~(M + 1) sin(ki) (describing a

superposition of states with quasimomenta k and −k), and number operator nk = c
†
kck with ck =

∑i⟨kSi⟩ai. The eigenstates of the Hamiltonian are Fock states Sn⟩ labeled by the vector n of occupation
numbers nk.

A heat bath b is modeled as a collection of harmonic oscillators in thermal equilibrium with tem-
perature Tb that couple to a single-particle system operator v(b) ≡ ∑qk v

(b)
qk c

†
qck. In the limit of weak

system–bath coupling (small compared to mink≠q{SΔqkS} ≈ 1.5J~M2, with Δqk ≡ εq − εk), the bath
induces quantum jumps between the energy eigenstates Sn⟩ of the system, Eq. (2.93), where a boson is
transferred from mode k to mode q with rate (nq + 1)nkR

(b)
qk . Here the dependence on the occupation

nq reflects the bosonic quantum statistics. The single-particle rate R(b)qk is obtained within the rotating-
wave Born-Markov approximation and is given by the golden-rule-type expression in Eq. (2.75) [108].
We choose ohmic baths with spectral density Jb(ε) = ε (though the precise form of the spectral density
should not be essential). Setting h̵ = kB = 1 from now on, the rates take the form

R
(b)
qk = γ

2
b f
(b)
qk

Δqk

eΔqk~Tb − 1
(5.2)

with the coupling strength γb (in which we absorb the factor
√
2π) and factor f (b)qk = Sv

(b)
qk S

2. We also
define the rate asymmetry

A
(b)
qk = R

(b)
qk −R

(b)
kq = −f

(b)
qk γ

2
bΔqk. (5.3)

We will consider two baths, Rqk = R
(g)
qk +R

(h)
qk , a global bath g of temperature T and coupling strength

γ as well as a hot local bath h at site ‘ (the hot needle) of temperature Th and coupling strength γh,
cf. Fig. 5.2(a). The hot needle couples to the operator v(h) = a†

‘a‘ so that f (h)qk = 4 sin
2(‘q) sin2(‘k),

whereas the global bath is modeled by a collection of local baths of temperature Tg = T , each
coupling to the occupation a†

iai of one site with strength γ~
√
M , so that R(g)qk = ∑iR

(gi)
qk gives

f
(g)
qk = ∑i 4 sin

2(iq) sin2(ik)~M ≃ 1.

In order to treat large systems and as a starting point for analytical approximations, we employ the
meanfield approximation ⟨nqnk⟩ ≈ ⟨nq⟩⟨nk⟩. It gives rise to a closed set of nonlinear kinetic equations
for the mean occupations ⟨nk⟩ from which we obtain the steady state,

∂t⟨nk⟩ =Q
q

Akq⟨nq⟩⟨nk⟩ +Rkq⟨nq⟩ −Rqk⟨nk⟩ = 0. (5.4)
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5.2. Finite-size equilibrium condensation

In Section 5.6 we compare mean field with exact Monte-Carlo results for M = 50 and find excellent
agreement (see also Ref. [83] for a detailed description of both methods). Note that for a fixed ratio
γh~γ, the steady state does not depend on γ. After having defined the system, we are now in the
position to compute the steady-state mean occupations ⟨nk⟩ from Eq. (5.4).

5.2. Finite-size equilibrium condensation

Let us first recapitulate the equilibrium case, where the system is coupled to a single bath of temper-
ature T only, as sketched in Fig. 5.1(a). Here, i.e. for γh = 0 in the kinetic Equation (5.4), one recovers
the familiar grand-canonical mean occupations

⟨nk⟩ =
1

e(εk−µ)~T − 1
, (5.5)

which are independent of all properties of the bath but its temperature T . Here the chemical potential
µ has to be adjusted so that ∑k⟨nk⟩ = N and k runs over the discrete wave numbers k = πν~(M + 1)
with ν = 1,2,3, . . . .

In the thermodynamic limit, M → ∞ at constant density n = N~M , thermal fluctuations prevent
the formation of a Bose condensate in a one-dimensional system at finite temperature. However, for a
finite system size M , a crossover into a Bose condensed regime with a relative occupation of order one
in the ground state kc = π~(M + 1) occurs when T reaches the condensation temperature T eq

c . This is
illustrated in Fig. 5.1(b) where we plot this relative ground-state occupation ⟨nkc⟩~N (which may also
be referred to as the condensate fraction) of the tight binding chain with density n = 3 particles per
site as a function of system size M . We observe that in this one-dimensional system at a given finite
system size M there is indeed a temperature T eq

c below which almost all particles occupy the ground
state. Nonetheless, at fixed density this temperature scales like T eq

c ∝ 1~M and therefore there will
be no condensation in the thermodynamic limit.

We define this condensation temperature T eq
c as the temperature at which half of the particles

occupy the single-particle ground state. In the following, we find an analytic approximation to this
temperature that gives rise to the dotted line in Fig. 5.1(b): When (finite-size) Bose condensation sets
in, µ approaches εk0 from below, so that the occupations of the low-energy modes with k ≪ 1 can be
approximated by

⟨nk⟩ ≃
T

εk − µ
≃

T

Jk2 − 2J − µ
, (5.6)

where we have used εk = −2J cos(k) ≃ −2J +Jk2. Using this expression, the chemical potential can be
expressed in terms of the occupation Nc = ⟨nkc⟩ of the ground state,

µ = −2J + Jk2c − T ~Nc. (5.7)

For low temperatures, the number N ′ of particles occupying excited states, with k = πν~(M + 1) ≃
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Figure 5.1.: (a) Sketch of the equilibrium situation: A finite tight-binding chain with M sites and
tunneling constant J is coupled with strength γ to a heat bath of temperature T . (b) Condensate
fraction Nc~N at temperature T (green shading) as function of system size M . The blue-white dotted
line gives the analytical estimate for the condensation temperature, where half of the particles occupy
the single-particle ground state.

πν~M , is dominated by the long-wavelength modes k ≪ 1. Therefore we may approximate

N ′ = Q
k′≠k0
⟨nk⟩ ≃

∞
Q
ν=2

1
Jπ2

TM2 (ν2 − 1) +
1
Nc

. (5.8)

For a finite system, we define the characteristic temperature T eq
c , where Bose condensation sets in, as

the temperature for which half of the particles occupy the single-particle ground state, N ′ = Nc = N~2.
Thus, at this temperature we find

N

2
=
T eq
c M2

Jπ2

∞
Q
ν=2

1

(ν2 − 1) + 2T eq
c M2

NJπ2

. (5.9)

Consequently, the condensation temperature is approximately given by

T eq
c ≃

aπ2

2

nJ

M
≈ 8.3

nJ

M
, (5.10)

where a ≈ 1.68 solves 1 = a∑∞ν=2 1~(ν2+a−1). We plot this as the dotted line in Fig. 5.1(b). The inverse
dependence of T eq

c on the system size M reflects the well-known result that in one spatial dimension,
in the thermodynamic limit Bose-Einstein condensation is suppressed by thermal long-wavelength
fluctuations.

5.3. High-temperature nonequilibrium condensation

Turning to the nonequilibrium situation with both the global bath and the hot needle present, we
have to compute the steady state by solving Eq. (5.4) numerically. Figure 5.2(b) shows the condensate
fraction Nc~N , with occupation Nc of the most populated mode kc, versus both temperatures T and
Th for a system of M = 500 sites with n = 3, ‘ = 5, and γh~γ = 0.5. For low needle temperatures, Th ≲ T ,
we find a crossover into a Bose-condensed regime, roughly when the global temperature T falls below
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5.3. High-temperature nonequilibrium condensation

the equilibrium value T eq
c (blue-white dotted line). However, when the needle temperature is increased

further, a surprising effect occurs: The global temperature at which condensation occurs increases by
almost two orders of magnitude until it reaches a saturation value. Thus, for an environment well
above the equilibrium condensation temperature T eq

c , coupling the system to a second, even hotter
local bath (the hot needle) can induce Bose condensation. When the needle temperature is increased
even further, we can observe another intriguing effect: the condensate is suddenly formed in an excited
state, kc ≈ π~‘, as indicated by the color code. Only for very large needle temperatures, condensation
eventually breaks down completely.

In Fig. 5.2(c) the condensate fraction is plotted versus global temperature T and system size M .
One sees that up to large system sizes of about 103 sites, condensation occurs at a large condensation
temperature T ne

c that is practically independent of the system size. This behavior is reminiscent of the
physics of Bose condensation in a three-dimensional (3D) system. Only at even larger system sizes, the
condensation temperature decreases with M resembling the equilibrium behavior in one dimension.
In the limit of small M (≲ 100), again excited-state condensation in the mode kc ≈ π~‘ is found.

In order to obtain a better understanding of the intriguing behavior observed in Figs. 5.2(b) and
(c), let us have a look at the full momentum distribution ⟨nk⟩. It is plotted in Fig. 5.3(a) for the
parameters indicated by the black dot in Fig. 5.2(b). The occupation of the condensate formed in
the ground state is indicated by a red cross and the occupation of all other modes by a red line. We
find an unconventional nonmonotonous behavior of ⟨nk⟩ with equidistant peaks or dips. They are
located around those wave numbers κα = πα~‘ with α = 0,1, . . . , ‘ that decouple from the hot needle,
f
(h)
qκα = f

(h)
καq = 0. For momenta k ≈ κα the distribution ⟨nk⟩ approximately follows a thermal distribution

with temperature T (dashed gray line). Between the momenta κα, the distribution roughly follows the
thermal distribution associated with the hot temperature Th of the needle (dashed black line), which
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T, γ

1 M...

J Th, γh

ℓ

(b)
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100 104

Tne
c

T eq
c
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h

kc ≈ 0 π
ℓ

Th/J

T/J

(c)

102 103 104

↓

Tne
c

T eq
c

M 0

1/2

1

Nc/N

Figure 5.2.: (a) Tight-binding chain with N = nM bosons on M sites and tunneling parameter
J , coupled with strengths γ and γh to a global bath of temperature T and to a “hot needle” of
temperature Th at site ‘, respectively. (b,c) Condensate fraction Nc~N indicated by green (blue)
shading for ground-state (excited-state) condensation in the mode kc ≈ 0 (kc ≈ π~‘) versus T and Th
or M ; for ‘ = 5, γh = 0.5γ, n = 3 and (b) M = 500 or (c) Th = 60J . Estimated temperature T ne

c for
1D-like (3D-like) Bose condensation plotted as red dotted (solid) lines. Blue-white dotted lines give
equilibrium condensation temperature T eq

c (for γh = 0). Black dashed line gives estimated needle
temperature T s,1

h , where excited-state condensation sets in. Black arrows indicate the parameters
where (b) and (c) coincide.
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Figure 5.3.: (a,b) Mean occupations ⟨nk⟩ for the parameters of Fig. 5.2 with Th = 60J and M = 500,
(a) versus k [for T = 0.29J , black dot in Fig. 5.2(b)] and (b) versus T . In (a) the crosses indicate the
condensate occupation, the gray (black) dashed line in the main panel shows thermal distributions
for the temperature T (Th); the inset shows ⟨nk⟩ for small k. (c,d) Like (a,b), but for the equilibrium
situation with γh~γ = 0. Occupations obey the Bose-Einstein distribution. (e) Specific heat per
particle in equilibrium [blue line] versus the analogous quantity in the nonequilibrium steady state
[red line, parameters like in (b)]. (f) Heat current I from the needle through the system into the
global bath versus T for the nonequilibrium steady state [red line, parameters like in (b)], the blue
line shows the trivial equilibrium value I = 0.

is rather flat. This behavior can be explained by noting that for high bath temperatures, Tb ≫ SΔqkS,
(or equally for small energy differences) the rates (5.2) become proportional to the bath temperature,

R
(b)
qk = γ

2
b f
(b)
qk

Δqk

eΔqk~Tb − 1

Tb≫SΔqk S
—→ f

(b)
qk γ

2
bTb, (5.11)

so that the occupations ⟨nk⟩ are dominated by the hot bath with Th ≫ T , except for momenta near
κα that almost decouple from the needle.

This discussion gives us already an idea of the mechanism behind the high-temperature condensation
induced by the needle. Due to the fact that we place the needle relatively close to the boundary of
the system ‘ ≪ M , the ground state, which vanishes at the boundaries, and many of the long-wave
modes, have a small coupling to the needle only. Therefore, the width of the peak of ⟨nk⟩ around k = 0
is now determined by the competition between the global bath and the hot needle. An estimate w for
the peak width can be obtained from requiring that within the width of the peak, the rates induced
by the hot needle are suppressed, i.e.

R
(h)
qk

R
(g)
qk

≈
γ2hThf

(h)
qk

γ2T
≲ 1 (5.12)
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5.3. High-temperature nonequilibrium condensation

for k < w and all q. Using f (h)qk ≲ ‘
2k2 for small k, this yields

w =
γ

‘γh

T

Th
. (5.13)

This width can be small compared to the width of the thermal distribution at temperature T , see
Fig. 5.3(c). Indeed, in Section 5.4.1 we derive an analytical estimate, Eq. (5.21), for the occupations
for small k and recover this width w. In this way, long-wavelength excitations, which destroy Bose
condensation in one-dimensional equilibrium systems for temperatures above T eq

c , are reduced. The
effect of Bose condensation and the dramatic increase of the condensation temperature Tc induced
by the hot needle can clearly be observed in Figs. 5.3(b) and (d), showing the T -dependence of the
occupations ⟨nk⟩ for a system with and without coupling to the needle, respectively.

To summarize the discussion, the effect of high-temperature condensation relies on the presence of
highly nonthermal occupation statistics that are present in the nonequilibrium steady state. These
nonthermal occupations may roughly be divided into two groups: Those modes k that have a large
amplitude at the needle site ‘ thermalize with the needle temperature Th, therefore their distribution
is rather flat. Then there are modes, as the ground mode, that have a node close to the coupling site,
so they decouple from the needle and thermalize with environmental temperature T . Occupations of
the long-wave modes are suppressed due to the interplay of the hot and the cold bath, which leads to
a pole that can be much narrower than in equilibrium at temperature T . Thus, to find condensation
in the nonequilibrium steady state two conditions have to hold: First, this pole has to be narrow
enough to suppress long-wave excitations at given system size M , which is true at environmental
temperatures T ≲ T ne1

c , the dotted red lines in Fig. 5.2(b) and (c). This is discussed in detail in
Section 5.4.1. Second, also the occupations of the “flat” distribution of the modes that thermalize with
Th must be small enough, which is true at environmental temperatures T ≲ T ne2

c , the solid red lines in
Fig. 5.2(b) and (c). A detailed consideration of this can be found in Section 5.4.2. For condensation
to occur, the temperature T must lie below both of these temperatures which allows us to define the
nonequilibrium condensation temperature as T ne

c =min(T ne1
c , T ne2

c ).

Figure 5.4(d) shows how the occupations depend on the needle temperature Th for a system with
γh~γ = 1, M = 500, ‘ = 7, and T = 2J . Since the global temperature T lies well above the equilibrium
condensation temperature T eq

c ≈ 0.05J , no Bose condensate is found at Th = T , where the system is
in equilibrium. However, when Th is increased, soon ground-state Bose condensation sets in. When
the needle temperature is increased further, remarkably a Bose condensate in the excited mode k ≈
π~‘ supersedes the ground-state condensate at a switch temperature T s,1

h . The condensate mode
switches once more to k ≈ 2π~‘ at T s,2

h , before eventually at very large needle temperatures Th ≳ 104J
condensation breaks down again. The panels (a), (b), and (c) depict the momentum distribution for
the three different needle temperatures marked in (d) and clearly show condensation in three different
modes. Details on how we obtain an estimate for the switch temperature T s,α

h , the dashed lines in
Fig. 5.2 and Fig. 5.4, are presented in Section 5.5.

An intuitive interpretation of the high-temperature and excited-state Bose condensation observed
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Figure 5.4.: Mode occupations (d) versus needle temperature Th for T = 2J , ‘ = 7, M = 500,
n = 3, and γh~γ = 1. With increasing Th the system passes from a state without Bose condensate
through a sequence of states with a condensate in the states k0 ≈ 0 (green line), k1 ≈ π~‘ (light
blue line), and k2 ≈ 2π~‘ (violet line), before condensation breaks eventually down again. (a-c)
Momentum distribution for states with condensates in three different modes. (e) Total inner energy
(solid lines) and heat current (dotted lines) for the parameters of (d) (red) compared to equilibrium
at temperature Th (blue).

here is that the nonequilibrium condensation can also be viewed as a mechanism that suppresses the
heat influx Ih from the hot bath, with

Ib =Q
qk

ΔqkR
(b)
qk (⟨nq⟩ + 1)⟨nk⟩. (5.14)

Namely, keeping the distribution ⟨nk⟩ fixed, Ih would increase linearly with Th (according to Eq. (5.2)),
while it still has to be balanced by the outflux Ig into the colder global bath (since Ih = −Ig for a steady
state). This increase is prevented by forming of a condensate in a mode that almost decouples from the
hot needle. This interpretation is supported by Fig. 5.3(f) showing that the heat current I = Ih = −Ig
through the system plotted versus T shows a maximum near the condensation temperature and, thus, a
negative differential heat conductivity, ∂I~∂(Th−T ) < 0, in the condensed regime. This counterintuitive
effect is explained by noting that the number of particles contributing to the heat transport is reduced
by condensing into the ground state k0, which hardly couples to the hot needle. The onset, first of
ground-state condensation and later also of excited-state condensation observed when the needle
temperature Th is increased as we observe in Fig. 5.4(d), can therefore be understood as a strategy of
the system to minimize its coupling to the hot needle, and with that the current I, further and further.
This can be observed in the drops in the dotted line in Fig. 5.4(e). Namely, typically the allowed wave
numbers k = νπ~(M + 1) that comply with the boundary conditions, do not assume those values
κα that would perfectly decouple from the hot needle. We denote by kα the allowed wavenumber
that minimizes the distance δα = Sk − καS, which quantifies the coupling, f (h)qkα

≃ 4 sin2(‘q)‘2δ2α. With
increasing Th we generally find a sequence of condensate modes k0, kα1 , kα2 . . ., where αj+1 is the
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smallest value of α with α > αj and δα < δαj . The sequence ends, when the coupling cannot be lowered
anymore by a larger α. Since one has δ0 = k0 for the ground state k0 and fluctuating values δα ≤ δ0~2
(depending on M and ‘) for α ≥ 1, one always finds at least one switch of the condensate mode and
α1 = 1. While for the parameters of Fig. 5.2(b) the sequence ends already with k1, it ends with k2 for
the parameters of Fig. 5.4 (for ‘ = 21 and M = 200, we observe the sequence α = 0,1,2,7, not shown).

Note that these intriguing effects do not rely on the discrete nature of the tight-binding chain
considered here and, therefore, occur equally in a continuous system, as we discuss in Section 5.7.

5.4. Estimating the condensation temperature

Based on our qualitative discussion, we can estimate the nonequilibrium condensation temperature
T ne
c . In the hot-needle setup a Bose condensate in the ground state k0 = π~(M + 1) can be destroyed

either by a large occupation of long-wavelength modes or by large occupations of excited states at all
energies. While the former case resembles condensation in a one-dimensional system in equilibrium
and leads to a system-size dependent condensation temperature T ne1

c , the latter case bears similarity
to equilibrium condensation in three dimensions and happens at a condensation temperature T ne2

c ,
which is independent of the system size. In this section, we give an estimate to both temperatures.
The generalization to excited-state condensation is straightforward and not presented here.

5.4.1. Condensation destroyed by long-wavelength modes

Deep in the condensate regime, where a large fraction Nc~N of the particles occupy the ground-state
mode k0 = π~(M + 1), the occupation of excited modes k ≪ 1 in the vicinity of k0 is approximately
given by a second order pole. We obtain this as follows: We assume that all particles occupy long-
wavelengths modes k ≪ 1 (which is a valid approximation for T ≪ T ne2

c , see next section) and neglect
the coupling of the hot bath to the condensate mode k0, but not to other long-wavelength modes. The
condensation temperature T ne1

c , defined by the point where Nc = N~2, is then estimated. To arrive at
an analytical estimate for T ne1

c , there are a number of approximations needed. For the sake of clarity,
we list all these approximations in Table 5.1.

For our analysis, we start with the meanfield equation for the steady state, Eq. (5.4), where we split

Limit of where
Approx. 1 large system size M ≫ 1~w

Approx. 2 global temperature below 3D transition T ≪ T ne2
c

Approx. 3 high needle temperature T, J ≪ Th
we consider long-wave modes (consequence of Approx. 2) k ≪ 1

Table 5.1.: Approximations that are used to derive T ne1
c .
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5. High-temperature nonequilibrium Bose condensation induced by a hot needle

the ground state k0 from some of the sums

0 = Akk0⟨nk⟩⟨nk0⟩ +Rkk0⟨nk0⟩⟩ + Q
q≠k0

Akq⟨nq⟩⟨nk⟩ +Rkq⟨nq⟩ −Q
q

Rqk⟨nk⟩. (5.15)

Let us suppose that the system is in the condensed regime, where a large fraction Nc~N of the
particles occupy the ground-state mode and the modes at large quasimomenta are approximately
unoccupied (which requires Approx. 2, T ≪ T ne2

c , see next section). The mean occupations ⟨nk⟩ of
the long-wavelength modes k with k0 < k ≪ 1 in the vicinity of k0 are then obtained from

0 ≈ A
(g)
kk0
⟨nk⟩Nc +R

(g)
kk0
Nc + Q

q≠k0
Akq⟨nk⟩⟨nq⟩ + Q

q≠k0
Rkq⟨nq⟩ −Q

q

Rqk⟨nk⟩, (5.16)

which was derived from Eq. (5.15) by neglecting the weak residual coupling of the ground-state mode
to the hot needle, R(h)kk0

≈ 0 ≈ A
(h)
kk0

. One may neglect those contributions as a consequence of the
small-SΔkq S~T expression, Eq. (5.11), and Approx. 1 and 3, since using these we have

R
(h)
kk0
≪ R

(g)
kk0

Approx. 3
⇔
k≪1

γ2hThf
(h)
kk0
≪ γ2T ⇔ γ2hTh sin(k0‘)

2
≪ γ2T ⇔

1

w
≪M (5.17)

and similar considerations lead to A(h)kk0
≪ A

(g)
kk0

.

We can now use the assumption of a large needle temperature Th ≫ T , Approx. 3. Employing the
scaling ⟨nk⟩∝ T ~Th (which will be shown to be self-consistent below), we find on leading order

0 = R
(g)
kk0
Nc + Q

q≠k0
R
(h)
kq ⟨nq⟩ −Q

q

R
(h)
qk ⟨nk⟩ +O(T ~Th), (5.18)

where we assumed the temperature-dependent scaling R(b)kq ∝ Tb and A
(b)
kq ∝ const. from Eqs. (5.11)

and (5.3). The rates R(h)kq scale like k2 for small k. So for k going to zero, we may omit the second
term, but not the third one since ⟨nk⟩ is peaked around zero, which will keep the third term finite.
This yields

0 ≈ R
(g)
kk0
Nc −Q

q

R
(h)
qk ⟨nk⟩

Approx. 3
≈

k≪1
γ2TNc − 2γ

2
h‘

2k2MTh ⟨nk⟩. (5.19)

For the second approximation we used the small-SΔkq S~T expression, Eq. (5.11), for the rates R(g)kk0

and

Q
q

R
(h)
qk

Approx. 3
≈ 4γ2hTh sin(‘k)

2
Q
q

sin2(‘q)
k≪1
≈ 2γ2hTh‘

2k2M. (5.20)

Thus, for large Th we have

⟨nk⟩ =
Ncγ

2T

2Mγ2h‘
2Thk2

=
Nc

2M

w2

k2
, (5.21)
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5.4. Estimating the condensation temperature

with the pole width w as defined in Eq. (5.13). We have tested this prediction against numerical
calculations of the distribution ⟨nk⟩ in the non-equilibrium steady state and see generally a good
agreement. The occupations scale like T ~Th as required by self consistence. Even though expression
(5.21) is derived for modes k with k0 < k ≪ 1, we can use it for all k ≠ k0 since it vanishes rapidly
with increasing k. With that, the condensate depletion due to the long wave modes N ′ = ∑k≠k0⟨nk⟩

is approximately given by

N ′ ≈ Ncw
2 M

2π2

∞
Q
ν=2

1

ν2
= Ncw

2 M

2π2
π2

6
− 1 . (5.22)

Using the definition that at the condensation temperature Nc = N
′ = N~2, we can estimate

T ne1
c ≈ 30.6

‘2γ2hTh

γ2
1

M
. (5.23)

This estimate is plotted as red dotted line in Figs. 5.2(b) and (c) and agrees well with the observed
behavior. Like in equilibrium in one dimension, also the nonequilibrium condensation relies on the
infrared cutoff given by the inverse system size.

5.4.2. Condensation destroyed by modes with large quasimomentum

In contrast to equilibrium, in the nonequilibrium steady state Bose condensation can also be destroyed
by increasing the occupation of modes with large momenta q, which couple to the condensate via the
rates induced by the global bath. This effect can be estimated by considering the regime T ≪ T ne1

c ,
where the total occupation of excited long-wavelength modes is suppressed by the finite system size
M , so that we can approximate the occupation of excited states by the flat distribution ⟨nk⟩ ≈ N ′~M
induced by the dominant hot-needle bath (dashed black line in Fig. 5.3(a)). Considering the coupling
of the so-occupied excited states to the condensate via the global bath, we find the condensation
temperature T ne2

c ≈ nJ . The fact that it does not depend on the system size, has some similarity
to the break-down of Bose condensation in a three-dimensional system in equilibrium, which is not
driven by long-wavelength modes either. Again, we list all the approximations that we make to find
the expression for T ne2

c in Table 5.2.
Let us suppose that the system is in the condensed regime with a large fraction Nc~N of particles

occupying the ground-state mode. But now, we assume that T ≪ T ne1
c , Approx. 4, so that the long-

wavelength modes are hardly occupied. Furthermore, we assume that the occupations of most of the

Limit of where
Approx. 1 large system size M ≫ 1~w

Approx. 3 high needle temperature T, J ≪ Th
Approx. 4 global temperature below 1D transition T ≪ T ne1

c

Explicit term is found for intermediate densities n ≳ 1

Table 5.2.: Approximations that are used to derive T ne2
c .
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5. High-temperature nonequilibrium Bose condensation induced by a hot needle

excited modes k ≠ k0 are close to a flat distribution corresponding to the hot temperature Th ≫ J ,
Approx. 3, so that we can approximate ⟨nk⟩ ≈ N ′~M for k ≠ k0. Plugging this ansatz into the mean-
field equation, Eq. (5.4), we find for k = k0

0 ≈
N ′

M
NcQ

q

A
(g)
k0q
+
N ′

M
Q
q≠k0

R
(g)
k0q
−Nc Q

q≠k0
R
(g)
qk0
. (5.24)

Analogous to Eq. (5.16), here we assumed that the ground state k0 almost from the needle, which is
true for sufficiently large systems, Approx. 1. Note that by combining Approx. 1 and 4 we see

1

w

Approx. 1
≪ M

Approx. 4
≪

1

w2
, (5.25)

where typically w ≪ 1 holds because Th ≫ T , so the assumptions in this section are only valid in an
intermediate system-size regime, which also becomes apparent in Fig. 5.2(c).

In the condensed regime we find Nc ≫ T ~J , and Nc ≫ N ′~M and therefore the first and the last
term in Eq. (5.24) dominate over the second one. Using ∑qA

(g)
k0q
= γ2∑q Δqk0 ≈ γ

22JM this leads to

0 ≈ γ2Nc 2JN ′ − Ts(T ) , (5.26)

where we have defined the sum

s(T ) = Q
q≠k0

Δqk0~T

eΔqk0
~T − 1

. (5.27)

So we find the total depletion to be given by

N ′ =
Ts(T )

2J
. (5.28)

Solving this equation for Nc = N
′ = nM~2, we may obtain T ne2

c numerically from solving

JnM = T ne2
c s(T ne2

c ). (5.29)

However, with the limiting value of

s(T ne2
c )

Tne2
c ≫J
—→ M − 1. (5.30)

the condensation temperature reads

T ne2
c ≈ nJ, (5.31)

which is consistent with the assumption T ne2
c ≫ J as long as densities are intermediate n ≳ 1. For

densities that are below this value of unity, T ne2
c needs to be evaluated numerically.
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5.5. Temperature for switch to excited-state condensation

This temperature T ne2
c = nJ is plotted as red solid line in Fig. 5.2(b) and (c). Also from combining

Eq. (5.28) and (5.30) it follows that N ′ ≈ TM~2J and from our assumption of a flat distribution we
find the occupations ⟨nk⟩ ≈ N ′~M ≈ T ~2J which we plot as the dashed black line in Fig. 5.3(a) which
describes the order of magnitude of the flat part of the distribution very well. Note that T ne2

c does
not depend on the system size. This behavior is similar to the break-down of Bose condensation in a
three-dimensional system in equilibrium, which is not driven by long-wavelength modes either.

Another reminiscent of the three-dimensional phase transition can be seen in Fig. 5.3(e) where we
plot the quantity

1

N

∂E

∂T M,N,Th

with total inner energy E =Q
k

⟨nk⟩εk, (5.32)

which is, without the coupling to the needle, the thermodynamic specific heat per particle CV ~N

(blue line in Fig. 5.3(e)): As we expect for an ideal one-dimensional Bose gas it scales like T 1~2 for
low temperatures T . For high temperatures T , in the continuous one-dimensional system one recovers
the classical value of 1~2 (remember that we set kB = 1). Nevertheless, here we see that for high
temperatures the specific heat decreases again. This is expected for the considered tight binding
system with only a single energy band, where the total inner energy E is bounded from above. If we
look at the same quantity in presence of the needle (red line in Fig. 5.3(e)), we see that the curve
has a cusp in the vicinity of the condensation temperature T ne

c , which is very similar to the famous
Lambda-shape of the specific heat with a kink at the critical temperature of the second order phase
transition in an ideal three-dimensional Bose gas.

5.5. Temperature for switch to excited-state condensation

Here we estimate the switch temperature T s,α
h , above which a condensate in mode kα forms, which

gives rise to the dashed lines in Fig. 5.4(d). We find this temperature by noting that there is a point,
below which, i.e. for Th < T

s,α
h , a condensate in the kα cannot be supported, because it would give

rise to occupations that are unphysical for some of the other modes. The point T s,α
h above which

all occupations are physical, coincides with the point where the switching of the condensate occurs,
as long as by this switching of modes, the system can reduce the coupling of the condensate to the
needle.

Let us discuss, under which conditions we can expect condensation in an excited state, kc = kα ≈ απ
‘ ,

in the finite system. The mean field equation (5.4) must hold for all k, which we may solve formally

Limit of where

Approx. 3 high needle temperature T, J ≪ Th
Approx. 2 & 4 global temperature below 1D and 3D transition T ≪ T ne1

c , T ne2
c

Approx. 5 intermediate system size M ≫ 1
w

…
T
Th
=

γh
γ ‘

Table 5.3.: Approximations that are used to derive T s,α
h .
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5. High-temperature nonequilibrium Bose condensation induced by a hot needle

like

⟨nk⟩ =
∑qRkq⟨nq⟩

∑q Aqk⟨nq⟩ +Rqk

. (5.33)

We will use the fact that all occupations must be non-negative, ⟨nk⟩ ≥ 0, to find the regime where
excited state condensation may occur.

Since the numerator of Eq. (5.33) is strictly positive, the denominator has to be positive, too. Deep
in the condensed regime, i.e. under Approx. 2 and 4, we may neglect the depletion, Nc ≈ N , which
yields

AkckN +Q
q

Rqk > 0. (5.34)

Under Approx. 5 the condensate decouples sufficiently from the hot bath, and the rate imbalance
Akck is dominated by the global bath and we can approximate Akck ≈ A

(g)
kck
= γ2Δkkc . Note that, since

only the rate imbalance A(h)kck
has to be small when compared to A(g)kck

, this only relies on a weaker
approximation of intermediate system size M , Approx. 5, rather than the large the system size limit,
Approx. 1, that is needed for R(h)kck

≪ R
(g)
kck

.

Additionally Th ≫ T , Approx. 3, holds, such that ∑qRqk ≈ ∑qR
(h)
qk ≈ γ

2
hTh2M sin(k‘)2. In total, we

have to satisfy

γ2ΔkkcN + γ
2
hTh2M sin(k‘)2 > 0 (5.35)

for all k. For ground-state condensation kc = k0 = π~(M + 1) both terms are positive, such that for
all parameter values the ground state condensate ansatz does not violate the physical requirement

(a)
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Figure 5.5.: (a) Mean occupations ⟨nk⟩ of the single-particle eigenstates as function of particle
density n for system with M = 80, l = 5, γ = 2γh, T = J , Th = 80J . At intermediate densities n
there is a condensate in the excited state with kc ≈ π~‘ (light blue), while in the limit of N → ∞
ground state (green line) condensation is found. The switch is estimated by the dashed line which
is found by solving Eq. (5.36) for the density n where this switching occurs, ns,1. (b) Occupations
in equilibrium, γh = 0, for comparison.
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5.6. Quasiexact Monte-Carlo results for a small system

of positive occupations. For kα ≈ κα = απ
‘ with α ≥ 1 however, the first term is negative for all

k < kα and must be compensated by the second term. Since the second term is minimal at one of the
decoupling wavenumbers kα′ , α′ < α, it suffices to check for positivity at these wave numbers. From
this requirement, we find that for

Th > T
s,α
h =

nγ2

2(‘γh)2
max
α′<α

Δkαkα′

δ2α′
(5.36)

condensation in the excited state kα may occur. We have plotted this temperature as the dashed
lines in Fig. 5.2 and Fig. 5.4 and observe a good agreement with the transitions that we find in the
numerical data. This is remarkable, since our estimations only predict the temperature where this
switching of the condensate mode could occur. However, from the numerics we observe that, if the
coupling to the needle can be reduced by such a transition, it also will occur at this temperature.

The linear dependence of T s,α
h on n indicates that excited-state condensation is suppressed (shifted

to Th = ∞) in the limit of high densities, where ground-state condensation is expected for a system
coupled to two thermal baths (of positive temperature, cf. the discussion on Bose selection in Sec.)
[82, 83]. This can also be observed in Fig. 5.5(a) where we plot the mean occupations as a function of
particle density n. Excited state condensation is found at intermediate densities only. We may solve
Eq. (5.36) also for the density n where a switching to ground state condensation occurs. This gives rise
to the dashed line that nicely predicts the switching in Fig. 5.5(a). The comparison to equilibrium,
Fig. 5.5(b), reveals that over a wide range of the density n excitations are strongly suppressed in the
nonequilibrium steady state.

While we have presented examples for ‘≪M , with the needle placed near the edge of the sample,
and assumed this limit also in our analytical estimates, simulations show that the enhancement of
the condensation temperature equally occurs for any needle position. However, placing the needle
away from the edge we typically observe excited-state condensation, as it is indicated also by the ‘−2

behavior of the estimated shift temperature T s,α
h .

5.6. Quasiexact Monte-Carlo results for a small system

The mean-field approximation ⟨nqnk⟩ ≈ ⟨nq⟩⟨nk⟩, which gives rise to the closed set of kinetic equa-
tions (5.4) for the mean occupations, allows us to treat large systems of up to M = 104 lattice sites
and to find analytical estimates for the parameters where condensation sets in. In order to justify this
approximation, we have also simulated the full many-body rate equation for the probability distribu-
tion pn for finding the system in the eigenstate Sn⟩. It directly follows from writing down the Pauli
master equation, Eq. (2.51), in Fock space giving [83]

ṗn =Q
kq

(1 + nq)nk Rkqpnq←k
−Rqkpn , (5.37)
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Figure 5.6.: Mean occupations ⟨nk⟩ for a system with M = 50, n = 3, l = 3, γ = γh, Th = 120J .
Crosses represent the Monte-Carlo results. We show error bars for the least occupied state only,
because for the other states they are too small to be visible. The data is well approximated by the
solid lines which result from the meanfield approximation.

where nq←k denotes the vector of occupation numbers obtained from n by transferring a particle from
mode k to mode q.

An efficient way of solving this equation is given by quantum-jump Monte-Carlo simulations (see,
e.g., [164]). For that purpose we generate a random walk in the classical space of Fock states n (which
is exponentially large with respect to the system size, but much smaller than the Fock space, which
contains also the coherent superpositions of the Fock states). Namely, according to the sum and the
relative weight of the many-body rates Rqk(nq +1)nk leading away from the current state n, we draw
both the time after which a quantum jump happens and the new state nq←k, respectively. Expectation
values like the mean occupations ⟨nk⟩ are computed by averaging over a random path. This method
gives quasiexact results, in the sense that the accuracy is controlled by the length of the random path.
A detailed description of the method is given in Ref. [83].

In Fig. 5.6 we plot the mean occupations ⟨nk⟩ of a system of M = 50 sites and n = 3, ‘ = 3, γh~γ = 1,
and Th = 120J . The Monte-Carlo data (red crosses) are reproduced almost perfectly by the mean-field
solution (solid lines). Already in this rather small system, we can see a relatively sharp crossover, to
a Bose condensed regime at T ne

c .

5.7. Continuous system

In Section 5.3, we treat a one-dimensional system of noninteracting bosons in a tight-binding lattice.
However, the effects discussed in Section 5.3 do not depend on the discrete nature of the tight-binding
lattice. They occur in a similar form also in a continuous one-dimensional system in a setup that is
sketched in Fig. 5.7(a). Here, the system consists of noninteracting bosons trapped in a box potential,
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Figure 5.7.: (a) Sketch of the system. Bosons, mass m, are trapped in a box potential of length L.
With strength γ the full system is in contact with a global heat bath at temperature T as well as
with a local bath, strength γh, temperature Th, that is located at x = ‘ and has a spatial width d. (b)
Condensate fraction Nc~N for the continuous 1D system of length L = 500d and density of n = 0.1~d
versus the temperatures T and Th of the global bath and the hot needle, respectively. The hot needle
is placed at distance ‘ = 40d from the edge. The relative coupling between both baths is γh~γ = 1~4.
Green (light blue) shading indicates the relative number of particles in the mode k0 ≈ 0 (k1 ≈ πd~‘).
The blue-white dotted line corresponds to the condensation temperature in equilibrium.

which is described by the Hamiltonian

H = S
L

0
dxψ†

(x) −
h̵2

2m○

d2

dx2
ψ(x) =Q

k

εknk, (5.38)

where m○ denotes the mass of the particles and ψ(x) is the field operator annihilating a boson at
position x. In the following we will again use h̵ = 1. The dimensionless wavenumbers k = νπd~L with
ν = 1,2, . . . and some length scale d (which we take to be the extent of the hot needle defined below)
characterize the single-particle eigenstates with energy

εk =
k2

2m○d2
≡ Ck2, (5.39)

and wave functions ⟨xSk⟩ =
»
2~L sin(kx~d). The corresponding number operator reads nk = c

†
kck with

ck = ∫
L
0 dx ⟨kSx⟩ψ(x). The energy eigenstates of the system are Fock states Sn⟩ labeled by the vector

of occupation numbers nk. In a similar calculation as presented in Section 5.2 one finds that for the
particles in the box the equilibrium condensation temperature reads

T eq
c =

aπ2n

4m○

1

L
≈ 8.3C

nd2

L
, (5.40)

where, again, a ≈ 1.68 solves 1 = a∑∞ν=2 1~(ν
2 + a − 1) and n = N~L is the density of the particles.

In such a continuous system, a hot local bath at position x = ‘ of spatial extent d, can be described
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5. High-temperature nonequilibrium Bose condensation induced by a hot needle

by the coupling operator

vh =
L

d
S

‘+ d
2

‘− d
2

dxψ†
(x)ψ(x). (5.41)

The corresponding single-particle rates are of the form of Eq. (5.2), with f
(h)
kq = [cos(k

‘
d) sinc(k~2) −

cos(q ‘
d) sinc(q~2)]

2 approaching f (h)kq ≃ 4 sin
2(k‘~d) sin2(q‘~d) in the limit d → 0. A global heat bath

is still described by Eq. (5.2) with f (g)kq = 1.

From these rates we compute the corresponding mean occupations for a system of N = 0.1L~d

particles, length L = 500d, and needle position ‘ = 20d. In Fig. 5.7(b) we plot the condensate fraction,
i.e. the fraction of particles occupying the most occupied mode whose wave number is indicated by
the color of the shading (green for k0 ≈ 0, light blue for k1 ≈ πd~‘, blue for k2 ≈ 2πd~‘). Note that
for computational reasons, we cut off the unbounded spectrum at M = 300 states, however we make
sure that the occupations of the states at this cut-off value are sufficiently low for all parameters. As
for the tight-binding chain, we can clearly see that the temperature T of the global bath at which
the system condenses increases with needle temperature Th. As a result, Bose condensation is found
for the nonequilibrium steady state in a system coupled to two baths both having temperatures well
above the equilibrium condensation temperature T eq

c (which is indicated as blue-white dotted line).
Moreover, when the needle temperature is increased further, ground-state condensation in mode k0 ≈ 0
is superseded by the formation of a condensate in the excited mode k1 ≈ πd~‘, which provides a better
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Figure 5.8.: Analogous plots to Fig. 5.3(a)-(d), but for ideal bosons in a box with L = 1000d,
‘ = 20d, γh~γ = 1, n = 0.1~d and Th as indicated in Figure (b) and the temperature T used in Figures
(a) and (c) is given by the arrow in Figure (b). We cut off the spectrum above the first M = 700
states, because their occupations are small, only at very high temperatures T ≈ 0.5C we observe
that their occupations would be on the order 10−4.
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5.7. Continuous system

decoupling from the hot needle.

Following our reasoning in Section 5.3, we analogously find a decomposition into modes that ther-
malize with environmental and needle temperature. In the limit d → 0 the rates take the same form
as in the tight-binding system and approximations of the 1D-like condensation temperature T ne,1

c and
of the switching temperature T s,α

h can be found by similar type of arguments as in the case of the
tight-binding chain.

However for the 3D-like condensation temperature T ne,2
c a slight modification of the arguments is

needed, since in the continuous system the single-particle spectrum is not bounded, therefore the
occupations of the modes that thermalize with Th cannot assumed to be flat, which e.g. becomes
apparent in Fig. 5.8(a). Rather than this, let us assume that all particles are either in the ground-state
condensate ⟨nk0⟩ = Nc or in the depletion, which, for sufficiently low T ≪ T ne1

c has no contributions
from the long-wave modes. For this reason, we can assume that the depletion follows a Bose-Einstein
distribution,

⟨nk≠k0⟩ =
1

z−1h eεk~Th − 1
, (5.42)

with temperature Th and fugacity of the depletion zh = exp (µh~Th) which is connected to the total
number of particles in the depletion via

N ′ = Q
k≠k0
⟨nk⟩. (5.43)

We plug this ansatz into the mean field equation, Eq. (4.4), for k = k0, and approximate that the
condensate decouples from the needle, similar as in Eq. (5.24), to find

0 ≈ Nc Q
q≠k0

A
(g)
k0q
⟨nq⟩ + Q

q≠k0
R
(g)
k0q
⟨nq⟩ −Nc Q

q≠k0
R
(g)
qk0
. (5.44)

This is, again, dominated by the first and last term so that it has to hold

0 ≈ Q
q≠k0

A
(g)
k0q
⟨nq⟩ − Q

q≠k0
R
(g)
qk0
≈ γ2 Q

q≠k0

εq

z−1h eεq~Th − 1
−

εq

eεq~T − 1
(5.45)

where we have employed εk0 ≈ 0, which is true in the limit of large system size. Here we already
observe why the 3D-like behavior is expected: The fugacity zh is determined by a sum in which the
IR-divergence is suppressed by an additional εq ∝ q2 in the numerator. Therefore Eq. (5.45) will give
rise to an zh-behaviour which is independent of the cutoff.

We may now use the geometric series to find

0 ≈ γ2 Q
q≠k0

εq
zhe
−εq~Th

1 − zhe−εq~Th
−

e−εq~T

1 − e−εq~T
= γ2 Q

q≠k0
εq
∞
Q
m=1

zmh e
−mεq~Th − e−mεq~T (5.46)
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5. High-temperature nonequilibrium Bose condensation induced by a hot needle

Dividing by γ2 and exchanging the sums, this may further be simplified to read

0 ≈
∞
Q
m=1
Q
q≠k0

−zmh
∂

∂(m~Th)
e−mεq~Th +

∂

∂(m~T )
e−mεq~T (5.47)

In the large system-size limit we may approximate the sum over the momentum q by the integral

Q
q

=
L

πd
Q
q

πd

L
≈
L

πd
S dq (5.48)

This yields

0 ≈
∞
Q
m=1

−zmh
∂

∂(m~Th)
S

∞

0
e−mCq2~Thdq +

∂

∂(m~T )
S

∞

0
e−mCq2~Tdq (5.49)

=
∞
Q
m=1

⎡
⎢
⎢
⎢
⎢
⎣

−zmh
∂

∂(m~Th)

πTh
2mC

+
∂

∂(m~T )

πT

2mC

⎤
⎥
⎥
⎥
⎥
⎦

(5.50)

and after performing the derivatives we find

0 =

‰
π

2C

∞
Q
m=1

−zmh
Th
m

3~2
+

T

m

3~2
=

‰
π

2C
−T

3~2
h Li3~2(zh) + T

3~2ζ
3

2
. (5.51)

Here Lis(z) is the polylogarithm function and ζ(s) = Lis(1) is the Riemann zeta function. This can
be solved for the fugacity,

zh(T,Th) = Li
−1
3~2

T

Th

3~2
ζ

3

2
, (5.52)

which indeed is independent of the system size. Note that for T < Th the equation has a solution
zh ∈ [0,1), but for the ansatz to be valid, we have to satisfy that the corresponding number of
particles N ′ = ∑k(z

−1
h exp(εk~Th) − 1)

−1 is smaller than the total number of particles in the system.
This prediction for zh(T,Th) gives rise to the Bose-Einstein distribution, Eq. (5.42), that is shown
as a black dashed line in Fig. 5.8(a) and we see an excellent agreement with the distribution of the
high-energy modes that couple to the needle.

Since zh depends directly on Th, the critical temperature T ne2
c , where condensation is destroyed by

the high-energy modes, is not Th-independent like for the chain. For given Th, the critical temperature
T ne2
c follows implicitly from

N ′

L
=
n

2
=

m○ Th
2π

1~2
Li1~2 zh T ne2

c , Th , (5.53)

which is also found by performing the continuum approximation, Eq. (5.48). This equation can be
solved numerically for T ne2

c and gives the prediction that is shown as a red line in Fig. 5.7(b).
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5.8. Experimental prospects and the “Floquet needle”

The effects that we find in presence of both a global environmental bath and a hot local bath are
intriguing and suggest that via bath engineering one is able to induce and control condensation in a
one-dimensional system. However, if one would like to find such effects in an experiment, one needs
experimental setups in which there is a high level of control over a quantum many-body system. A
prime example of such setups are ultracold atom experiments. But while they offer a high level of
controllability – e.g. the strength of the interactions between the atoms can be tuned via Feshbach
resonances [165]– and the possibility to access the timescales of their dynamics experimentally, typ-
ically ultracold atom experiments are well isolated from their environment. So in order to observe
such interesting nonequilibrium steady states in ultracold quantum gases one would have to artifi-
cially introduce an environmental bath as well as the local hot bath. It should be feasible to model
the presence of an environmental bath in a mixture of two species of atoms: There is one species of
noninteracting bosons, the system, that is immersed in and interacts weakly with a big number of
atoms of another species, the bath, that is thermalized. Such mixtures have already been used widely
in experiments, mostly for sympathetic cooling [166, 167], but in recent experiments also the dynamics
of one [168, 169] or a few [170] impurity atoms in weak contact to a Bose condensed cloud have been
addressed. Other experiments have used two different hyperfine states of a single species of atoms
where the atoms in one hyperfine state act as a bath to the atoms in another hyperfine state [171].

While the prospects of engineering a global bath are good, it is unclear whether and how it is possible
to create a second bath which only couples locally to the system. A very successful tool to control
ultracold quantum gases is by time-periodic forcing, which has been coined Floquet engineering [8].
In this section, we investigate very similar nonequilibrium steady states as in the hot needle setup
that are found if one keeps the ideal Bose gas in weak contact with a global environment but replaces
the hot local bath with a driving field that couples locally to the system. It is expected that a local
Floquet drive can act as a heat source, since in general isolated quantum systems are expected to
heat up to an infinite temperature state under periodic driving. Also, studies of nonequilibrium steady
states that emerge when a time-periodically driven system is coupled to a bath show that there is a
heat current from the driven system into the bath [83].

We find that for a tight-binding system

H(t) = −J
M−1
Q
i=1

a†
i+1ai + a

†
iai+1 + γ‘f(t)n‘ (5.54)

where at site ‘ the local density n‘ = a
†
‘a‘ is coupled to a time-periodic field f(t) = f(t + T ) with

strength γ‘. Such a local driving field could e.g. be imprinted experimentally by a spatial light mod-
ulator [172].

If this time-periodically driven system is coupled weakly to a bath, asymptotically, its density matrix
will be diagonal in the Floquet states Sa(t)⟩ = Sa(t + T )⟩ (respectively in the corresponding Floquet-
Fock states for the ideal gas) [73]. Again, via operator a†

iai, we couple each site i with strength γ~
√
M
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Figure 5.9.: Main figure: Mean occupations ⟨na⟩ of the Floquet modes a for a system of M = 40
sites and n = 3 particles per site and environmental bath temperature T = J as a function of the
driving amplitude γ‘ of the time-periodic drive with the noisy function f(t). We choose driving
frequency ω = 0.7J and use Mf = 5 higher harmonics. The driving site is ‘ = 20. Insets: Arrows
indicate the value of γ‘ at which we show the occupation statistics (we sort the levels a according
to their population) as well as the real (solid red) and imaginary part (dashed green line) of the
condensate Floquet mode ψc (snapshot at t = 0).
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to a bath at temperature T leading to the single-particle rates

Rab = 2π
γ2

M

M

Q
i=1

∞
Q

m=−∞
Sv
(i)
ab (m)S

2g(εa − εb −mh̵ω), (5.55)

where ω = 2π~T is the frequency of the drive, v(i)ab (m) =
1
T ∫

T
0 eimωt⟨a(t)Sa†

iaiSb(t)⟩dt, and εa is the
quasienergy of Floquet state a.

It turns out that, similar to the case with a localized hot bath (the hot needle) one can find
interesting nonequilibrium steady states which feature a higher condensate fraction than the thermal
state without the drive. To this end it is important that there is actually a significant amount of
heat transferred into the system. This can be achieved by choosing a drive f(t) with a relatively low
frequency 0 < ω ≲ J and additionally adding Mf higher harmonic components

f(t) =
1
»
Mf

Mf

Q
m=1

cos(mωt +ϕm) (5.56)

to make the drive sufficiently noisy. Note that we have to add random phases ϕm because otherwise
f(t) will be largely peaked around t = 0. To make our results reproducible, rather than random phases
we choose quasiperiodic phases

ϕm = cos(2πmα) (5.57)

where α = (1+
√
5)~2 is the golden ratio. We would like to refer to this setup as the ‘Floquet needle’.

By solving the corresponding mean-field equations we find the mean occupation ⟨na⟩ of the Floquet
states a in the ideal gas. In Figure 5.9 we show the steady state occupations ⟨na⟩ of the Floquet modes a
for fixed environmental temperature T = J as a function of the driving amplitude. Remarkably, already
for a relatively small system size M = 40, we see a very similar behavior as for the static hot needle
scenario in Fig. 5.4. By driving the system locally at site ‘ (here it is in the middle of the system),
the condensate fraction increases significantly over its equilibrium value at γ‘ = 0, where the Floquet
states are simply the eigenstates of the autonomous Hamiltonian H. In the insets we show, for given
value of γ‘, both the occupation statistics ⟨na⟩ (sorted in descending order) as well as a snapshot of
the condensed Floquet mode ψc at time t = 0. With increasing γ‘ we first observe the emergence of
a condensate in a mode whose profile resembles very much the one of a π~‘-mode that has a node at
the coupling site. This node is an indicator that should be clearly visible in the steady state density
profile ⟨ni⟩ of the gas in a possible experimental realization. Much like in the case of the hot needle,
after a transition into a second phase there is even a condensate in a ‘higher excited’ 2π~‘-like mode
emerging. After this phase, at very large γ‘ there is another phase which is more different from the
ones that we observe in the hot needle scenario. In this phase the condensate localizes dominantly on
one side of the driven site, as the barrier that is due to the relatively large driving amplitude γ‘ is
beginning to make itself felt.

By going to higher system sizes M , and reducing the basic driving frequency ω while at the same

105



5. High-temperature nonequilibrium Bose condensation induced by a hot needle

0 50 100

1

100

a

hnai

0 50 100

−0.1

0.0

0.1
ψc(i)

i

0 50 100

1

100

a

hnai

0 50 100

−0.1

0.0

0.1
ψc(i)

i

0 50 100

1

100

a

hnai

0 50 100

−0.1

0.0

0.1
ψc(i)

i

0.0 0.2 0.4 0.6 0.8 1.0

0.1

1

10

100

γℓ/J

hnai

Figure 5.10.: Same as in Fig. 5.9, but for system size M = 100, ω = 0.3J and Mf = 12.

time adding more higher harmonics Mf , one can make the effects more clear, as shown in Fig. 5.10.
With these parameters, the increase in the condensate fraction is even more pronounced, and the
observed condensed Floquet modes resemble the ones of the hot needle even better.

In conclusion, we observe similar physics if the hot needle is replaced by a noisy Floquet drive. It can
equally provide a strong in-flow of heat, which induces condensation in a state that decouples from the
drive. Quite different to existing experiments in Floquet engineering, here, interesting physics arises
from an incoherent drive. We expect that a similar condensation phenomenon occurs even when the
driving field is not periodic, but pure noise. It is an intriguing open question whether experimental
setups like mixtures of quantum gases can effectively be described by an ohmic bath or if a more
realistic description, e.g. in terms of coupling the system to Bogoliubov quasiparticles, is needed.
Also studies with a finite coupling strength γ should be performed in order to map out how weak the
coupling to the bath needs to be such that the hot-needle or the Floquet needle effect can be observed.
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6. Weakly interacting Bose gases far from
thermal equilibrium

We study weakly interacting Bose gases that are driven into nonequilibrium steady states due to the
presence of multiple baths with different temperature. For the ideal gas a simple description of such
open systems is given by the Born-Markov approximation. Within this framework, the bath induces
quantum jumps between energy eigenstates. Taking into account temperature-dependent dissipation
for the interacting gas is challenging. Already on the level of a simple mean-field approximation, it
requires the diagonalization of the mean-field Hamiltonian in every step of the time integration. We
propose and test a scheme to circumvent this problem by treating the system–bath coupling semi-
classically. To this end, we decompose the system into overlapping bins and approximate that the bath
may only drive transitions between wavelets that localize in such a bin. We thus find an approximate
description of the action of the dissipative bath interaction that is independent of the interactions in
the system. This provides a convenient tool to study far from equilibrium gases, whose steady state
density profile in general is not known ab-initio.

The results in this chapter are unpublished.

6.1. Semiclassical description of bath action

In the previous chapters we have observed intriguing effects that occur in the nonequilibrium steady
states of ideal Bose gases that are driven out of equilibrium by heterogeneous bath environments. Quite
naturally, the question arises, whether effects like the high-temperature nonequilibrium condensation
that we discuss in Chapter 5 may also be found in the presence of interactions. We would like to
have a similar microscopic description of interacting quantum gases in terms of a Born-Markov rate
equation.

However, as we shortly discuss already in Section 2.4, for a quantum many-body system the spec-
trum of the full many-body Hamiltonian is typically inaccessible. Thus, already writing down the
exact Born-Markov rate equation, describing jumps between the many-particle eigenstates, is an ex-
tremely challenging task. An exception are many-body localized systems, where it is guaranteed that
the Hamiltonian is diagonal in the Fock basis of quasi-localized integrals of motion (l-bits) [125] which
for weak interactions might be computed perturbatively. Here, however, we are aiming at bosonic sys-
tems that are in an interaction regime where superfluidity is expected. To avoid the problem that the
full spectrum is unknown, we develop a semiclassical description of the dissipative term that describes
the action of the bath. It is based on the introduction of wavelet states that are localized both in space
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6. Weakly interacting Bose gases far from thermal equilibrium

and with respect to momentum. Although we motivate and use this method only for systems where
we describe interactions on a mean-field level, in principle this semiclassical form of the dissipator
could also be combined with more sophisticated methods that deal with the interactions.

Let us consider in the following a model system of N interacting bosons. Here we are focusing on
lattice systems that can be described by the Bose-Hubbard Hamiltonian,

H = −J Q
⟨i,j⟩
[a†

iaj + a
†
jai] +

M

Q
i=1
[Vini +

U

2
ni(ni − 1)], (6.1)

where ⟨⋅, ⋅⟩ denotes the sum over nearest neighbors and J is the tunneling constant. Moreover, it enter
trapping potential Vi, on-site interaction U , bosonic annihilation operator ai for site i and number
operator ni = a

†
iai. For the moment we also assume periodic boundary conditions. The system is

allowed to exchange energy with multiple heat baths at different temperatures. The total Hamiltonian
for such a setup reads

Htot =H +
M

Q
i=1
γiniQ

α

cα(bα,i + b
†
α,i) +Q

α,‘

h̵ωαb
†
α,ibα,i (6.2)

where the phonon baths are modeled by a collection of harmonic oscillators with annihilation operators
bα,i and frequencies ωα. For each site i we couple a bath to the local density ni of the gas. This coupling
is mediated with strength γi and dimensionless coupling constants cα.

For the noninteracting gas, U = 0, a microscopic description of the dynamics can be found using the
Born-Markov approximation [108], as we discuss in Section 2.4. It assumes that the bath-correlation
times are short when compared to the relaxation time scales and that the coupling is weak enough so
that system and bath do not build up correlations. In this approximation, the equation of motion for
the system density matrix %, Eq. (2.89), reads

∂t% = −
i

h̵
[H,%] +D[%]

D[⋅] = Q
klpq

Rql,pk

2
c†pck ⋅ c

†
l cq − c

†
l cqc

†
pck⋅ + h.c.

(6.3)

with the eigenstates c†k = ∑
M
i=1⟨iSψk⟩a

†
i of the noninteracting Bose-Hubbard HamiltonianH = ∑k εkc

†
kck.

The evolution is given by the coherent evolution and the dissipative action of the bath that induces
transitions between the energy eigenstates. This happens at single-particle rates which are the sum
Rql,pk = ∑

M
i=1R

(i)
ql,pk of the rates corresponding to the coupling to the individual baths at site i,

R
(i)
ql,pk =

2π

h̵
γ2i v

(i)∗
ql v

(i)
pk g

(i)
(εp − εk), (6.4)

with the matrix elements of the coupling operator v(i)kq = ⟨ψkSniSψq⟩, bath correlation function g(i)(ε) =
J(ε)~[exp(ε~kBTi)−1] and spectral density of the bath J(ε) = ∑α ScαS

2[δ(ε− h̵ωα)−δ(ε+ h̵ωα)]. Here
we assume ohmic baths with a continuum of modes and J(ε) = ε (remember that we absorb the
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6.1. Semiclassical description of bath action

strength of the coupling into the constants γi). If all temperatures Ti of the baths are identical, the
system will relax to a thermal state in the long time limit, while nonequilibrium steady states are
found when the baths have different temperatures.

Note that without further approximations, the equation of motion Eq. (6.3) cannot be cast into
Lindblad form. This Lindblad form only emerges after performing a rotating-wave (or secular) ap-
proximation which uses that for sufficiently weak system–bath coupling the density matrix % will be
diagonal in the energy eigenbasis in the long-time limit.

Let us now turn to the interacting problem, U ≠ 0. While for large interaction U and integer filling
N~M , the Bose-Hubbard system undergoes a phase transition into the Mott insulating phase [173],
for weak interactions U ≪ Jn, the system is superfluid. In the latter regime the interaction effects
can be captured on a mean field level, which leads to a dynamics with an effective potential V eff

i (t) =

Vi+2U⟨ni⟩(t) that is “seen” by a single particle. This can be motivated by deriving equations of motion
for the coherent part of the evolution of the single particle density matrix %ij = ⟨a

†
iaj⟩ = Tr(%a

†
iaj),

∂t%ij Scoh ≡ −
i

h̵
⟨ a†

iaj ,H ⟩ = −
i

h̵
Q
l

%ilhlj − hil%lj +
U

2
⟨nl a

†
iaj , nl + a†

iaj , nl (nl − 1)⟩ , (6.5)

where in the second step we have defined the single-particle matrix elements of the Hamiltonian,
H SU=0 = ∑ij hija

†
iaj . In the following we set kB = h̵ = 1. Using a†

iaj , nl = a
†
iaj(δjl − δil), we find

∂t%ij Scoh = −iQ
l

%ilhlj − hil%lj +
U

2
(σjjij − σ

ii
ij + σ

ij
jj − σ

ij
ii ) . (6.6)

Here we denote the two-particle correlations σijkl = ⟨a
†
iaja

†
kal⟩. For weak interactions and finite tempera-

tures, we may neglect nontrivial particle-particle correlations, so it approximately holds the mean-field
(Wick-)decomposition

σijkl ≈ %ij%kl + %il(%kj + δkj). (6.7)

Note that for interacting systems mean-field methods are known to perform badly in one dimension,
especially at T = 0. That is because they fail to predict the power-law decay of correlations in the
ground state [174] which is due to interaction-induced phase fluctuations. At finite temperatures
however, thermal fluctuations lead to an exponential decay of single-particle correlations which will
dominate the behavior at large distances [175]. Such physics can be understood on a mean-field level.
Nevertheless, in a finite system, if temperature is reduced, the coherence length of thermal fluctuations
will become comparable to the system size, and one could imagine that interaction-induced fluctuations
play a dominant role. For harmonically trapped one-dimensional gases a more detailed analysis shows
that indeed there is an intermediate temperature regime where therefore only quasicondensation is
found [176]. At low temperatures, however, a true condensate is found and a mean-field description is
again valid. If the interaction strength is reduced to zero, the temperature regime of quasicondensation
will also shrink to zero. As a result, for weak interactions this regime will be very small and we may
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ignore it.
Plugging Eq. (6.7) into Eq. (6.6), and using the notation n̄i = %ii = ⟨ni⟩, we find

∂t%ij Scoh = −i Q
l

(%ilhlj − hil%lj) +
U

2
[(2n̄j + δij)%ij − (2n̄i + 1)%ij + %ij(2n̄j + 1) − %ij(2n̄i + δij)] .

(6.8)

This evolution can be recast into an effective equation of motion with mean-field Hamiltonian

HMF(t) =Q
ij

(hij + 2Un̄i(t)δij)a
†
iaj , (6.9)

which turns the problem into an effective single-particle problem. However the an effective potential
V eff
i (t) = Vi+2U⟨ni⟩(t) depends on the density profile of the gas ⟨ni⟩(t) itself, which is generally time

dependent. Note that in contrast to the Gross-Pitaevskii Equation (GPE), here enters a factor of 2
in front of the effective potential U⟨ni⟩(t). This is because the mean-field decomposition, Eq. (6.7),
is exactly valid only for the grand canonical ensemble. For thermal bosons, occupations of the single-
particle orbitals are small, and therefore number fluctuations in the canonical ensemble and the
grand-canonical ensemble coincide in the thermodynamic limit. In a condensed phase, in turn, number
fluctuations in the canonical ensemble are not correctly captured by the grand-canonical ensemble.

In the GPE, however, a canonical situation is assumed. For example, let us consider for the non-
interacting gas a fully condensed state % = SψF ⟩⟨ψF S with some Fock state SψF ⟩ = (ψ

†
0)

N S0⟩~N !, with
ψ†
0 = ∑i φ(i)a

†
i . It is easy to see that in this state we may evaluate the expectation values of normal

ordered products by the replacements ai →
√
Nφ(i), a†

i →
√
Nφ(i)∗, which is the essence behind the

semiclassical theories like GPE, that treat the condensate as a complex order parameter
√
Nφ. Thus,

in this fully condensed state the decomposition reads

σijkl = %il(%kj + δkj), (6.10)

and we would not find the factor 2 in the mean field potential.
Another viewpoint on the physical origin of this factor is bosonic bunching, which is best understood

in the normalized second order-correlation function

g(2)(δx) =
⟨a†

1a
†
1+δxa1+δxa1⟩

⟨n1⟩⟨n1+δx⟩
, (6.11)

which is a standard quantity that for the ideal gas is well studied in the literature both theoretically
[177, 178] but also experimentally [55, 179, 180]. Thermal bosons are known to show bunching when
they are at the same position, g(2)(0) = 2, i.e. if a boson is found at one position, the probability of
finding a second boson at the same position is enhanced. This bunching only occurs on the correlation
length ξ of the gas, at large distances g(2)(δx ≫ ξ) = 1 holds. This can be anticipated from a Wick
decomposition of the numerator of Eq. (6.11). In a condensed phase in the grandcanoncal ensemble, the
Wick decompositon is still valid and since ξ →∞ one finds g(2)(δx) = 2 everywhere. For a condensate
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in the canonical ensemble, however, all particles occupy the same state and are indistinguishable, so
these statistical fluctuations vanish such that g(2)(δx) = 1.

As a result, we expect that our model gives a valid description only if we would allow additionally
for particle exchange. For fixed particle number N , we expect correct results at high and intermediate
temperatures only. In the presence of a large condensate fraction, the model might tend to overestimate
interaction effects due to the presence of the factor 2 in the mean-field potential.

We aim to use the Born-Markov approximation, Eq. (6.3), for this mean-field Hamiltonain HMF(t),
Eq. (6.9). The key to the Born-Markov approximation is a separation of time scales. It is assumed
that the time scale τB of the bath correlations is much shorter than the time scale τR of relaxation.
Since in Eq. (6.3) the rotating wave approximation is not performed, there is no assumption on the
time scales of the system dynamics τS made. However, it is used that the system is autonomous,
i.e. the Hamiltonian is time independent. This allows for the spectral decomposition of the coupling
operator v that is done in order to obtain Eq. (6.3). The Hamiltonian HMF(t) is not autonomous
and thus there is generally no notion of a spectrum. Nevertheless, if we assume that we can apply a
separation of timescales, i.e. that the mean-field potential V eff(t) varies only slowly when compared
to the typical time scale τS associated with the energies of the system, we may diagonalize the system
at a fixed time t, iterate it with Eq. (6.3), obtain a new density profile ⟨ni⟩(t +Δt) and from this a
new mean field V eff(t+Δt). This procedure is repeated until the dynamics is stationary. Since for this
stationary state the two-time assumption is valid, we expect an exact description (in the framework
of the Born-Markov approximation and mean-field interactions) of the stationary state and also of
the late-time dynamics.

However, this idea is still challenging since it in principle requires to diagonalize the mean-field

s

ϕq(r)

ϕk(r)

V eff
i

εq(j) ≈ εWL
q + hV eff

i ibin

j

εk(j)

bath

Figure 6.1.: Sketch of the method: We approximate that the action of the bath can be captured
locally in transitions between wavelets. We define wavelets ϕk(r) that form a local basis for the bin
starting from site j with size s. Within such a bin the mean-field potential V eff

i varies only weakly
so that locally we may assume it is flat and replace it with the average value ⟨V eff

i ⟩bin in the bin
(red line). Together with the kinetic energy of the wavelet εWL

k , we have the energy εk(j) of the
wavelets. From this we obtain rates for the transitions between the wavelets that are independent
of the effective potential.
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6. Weakly interacting Bose gases far from thermal equilibrium

potential V eff
i (t) at every timestep t from which one then deduces the instantaneous eigenstates and

rates. Also, with such a scheme, casting Eq. (6.3) into Lindblad form through a rotating wave approx-
imation (which reduces the numerical effort from computing the full single-particle density matrix to
only occupations) is not feasible, because the steady state density profile ⟨ni⟩ is not known ab-initio
and therefore the basis in which the late-time dephasing occurs and the rotating wave approximation
can be done is in principle unknown.

To circumvent the large numerical effort of diagonalizing the mean-field potential at every timestep,
here we are presenting a semiclassical approximation of the action of the bath that, as we will see
later, is valid for intermediate temperatures T ≳ J . In this approximation, that we visualize in Fig. 6.1,
the bath drives transitions between wavelets

b†k(j) =
s−1
Q
r=0

ϕk(r)a
†
j+r (6.12)

that localize within overlapping bins that start from site j and have size s. Since the bins are over-
lapping, they form an overcomplete basis. Here the ϕk(r) form an orthonormal basis within each bin,
therefore there are s different wavelets. Such a wavelet treatment is inspired by microscopic derivations
of the quantum Boltzmann equation [181]. There, ultimately, one is interested in the dynamics of the
kinetic variable f(j, k, t) = ⟨b†k(j)bk(j)⟩(t) which is a function of position j and momentum k (and
time). In contrast to such quantum kinetic theories, however, here we aim for a semiclassical descrip-
tion on the level of the dissipator already. From this starting point, we will find a kinetic theory such
that we can study the dynamics of the full single-particle density matrix, which allows for a coherence
length ξ of the gas that is not limited by the bin size s as it would be in a Boltzmann equation.

Within the bins, we argue that the effective potential varies only weakly and therefore we may
approximate it with its mean value ⟨V eff

i ⟩bin. Thus, the wavelets are the same in every bin and the
ϕk(r) do not have an extra j-dependence. Also, this allows to identify energies εk(j) = εWL

k + ⟨V eff
i ⟩bin

for the wavelet b†k(j), where εWL
k is the kinetic energy of the wavelet that we will fix later. The bath

may drive transitions between the different wavelets in the bin. Then we sum over all of these processes
to find the corresponding dissipator for this semiclassical action of the bath

DWL[⋅] =
1

s

M

Q
j=1
Q
klpq

Rql,pk(j)

2
b†p(j)bk(j) ⋅ b

†
l (j)bq(j) − b

†
l (j)bq(j)b

†
p(j)bk(j)⋅ + h.c. . (6.13)

The rates for the corresponding processes Rql,pk(j) = ∑
s−1
r=0R

(r)
ql,pk(j) are the sum over all rates of the

transitions in the bin

R
(r)
ql,pk(j) = 2πγ

2
j+rϕq(r)ϕl(r)

∗ϕp(r)
∗ϕk(r) g

(j+r)
(εp(j) − εk(j)). (6.14)

There occur only energy differences εp(j) − εk(j) = εWL
p − εWL

k , therefore the dissipator and the rates
are independent of the density profile of the gas which reduces the numerical effort dramatically. Note
that the bin size s sets an upper limit for coherence length of the bath. Here, the baths couple to local
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6.1. Semiclassical description of bath action

operators ni in Eq. (6.2) only, therefore in our model the bath coherence length is zero. Hence, we
may use any bin size s. Also this form of the dissipator does not rely on any approximations to the
coherent evolution. Although we have used the picture of a mean-field interaction to motivate this
form of the dissipator (and for all numerical results we will always use mean-field interactions), in
principle this dissipator may be used also with more sophisticated methods to describe the interacting
system.

Still, within this approximation, the steady states that we obtain in the equilibrium case are very
close to thermal states. From Eq. (6.13), we find the steady-state single-particle density matrix %ij by
deriving equations of motion for it

∂t%ij Sdiss =
1

2s

M

Q
j′=1
Q
klpq

Rql,pk(j
′
)⟨ b†l (j

′
)bq(j

′
), a†

iaj b†p(j
′
)bk(j

′
)⟩ + c.c., i↔ j (6.15)

(6.16)

Here, we may evaluate the commutator

b†l (j
′
)bq(j

′
), a†

iaj = b
†
l (j
′
)

s−1
Q
a=0

ϕq(a)
∗δj′,i−a aj − a

†
i

s−1
Q
a=0

ϕl(a)δj′,j−a bq(j
′
) (6.17)

and by use of the definition of the wavelets, Eq. (6.12), we find

∂t%ij Sdiss =
1

2s

s−1
Q

abcd=0
[R̃cd

ab(x)σ
x+b,j
x+c,x+d − R̃

cd
ba(y)σ

i,y+b
y+c,y+d + c.c., i↔ j] (6.18)

where in the sums one has to replace x = i − a and y = j − a and we define rates in position space

R̃cd
ab(i) = Q

klpq

Rql,pk(i)ϕq(a)
∗ϕl(b)ϕp(c)ϕk(d)

∗. (6.19)

Note that, due to the locality of the wavelets, the sums in the dissipative part only runs over s
terms. So already for the noninteracting system, this is a dramatic reduction from the extensive
sum over M terms that one has to do without the approximation. To find a kinetic equation and
treat Eq. (6.18) numerically, we again perform the mean-field approximation, Eq. (6.7), that neglects
nontrivial particle-particle correlations

∂t%ij Sdiss =
1

2s

s−1
Q

abcd=0
R̃cd

ab(x) + R̃
bd
ac(x) %x+b,j%x+c,x+d − (R̃

cd
ba(y) + R̃

cb
da(y))%i,y+b%y+c,y+d

+
s−1
Q

abcd=0
R̃cd

ab(x)%x+b,x+dδj,x+c −
s−1
Q

abc=0
R̃ba

bc(y)%i,y+c + c.c., i↔ j,

(6.20)

where again one has to replace x = i − a and y = j − a. Again, the truncation on mean-field level is a
practical choice and in general not necessary to apply the method. A more sophisticated treatment can
for example be found by computing also the equation of motion for the four-point correlators σijkl and
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6. Weakly interacting Bose gases far from thermal equilibrium

truncating the hierarchy by decomposing the six-point correlators that will occur in this evolution.
Finally, it is left to define the wavelets that we use. As we discuss in the following section, we

observe that the optimal choice is given by ϕk(r) =
»
2~(s + 1) sin[k(r + 1)], with k = πm~(s + 1),

m = 1,2, . . . , s, i.e. standing waves of size s. Their energy εWL
k is given also by the cosine dispersion

εWL
k = −2Jeff cos(k), however with a renormalized hopping Jeff = Js~(s − 1). The reason why the

hopping has to be renormalized can for example be seen for the s = 2 case where there is only the
symmetric (k = π~3) and the antisymmetric (k = 2π~3) wavelet. Without the renormalization, the
corresponding wavelet energies would be −J and J , however when the ground state of the full system
is probed by the wavelets it has maximum overlap with the symmetric wavelet and it should therefore
rather give an energy of −2J .

6.2. Benchmark: Equilibrium states

We benchmark the method using the ideal gas, U = 0, in thermal equilibrium conditions i.e. identical
temperature T‘ = T , and coupling strength γ‘ = γ for all sites ‘. In Fig. 6.2(a) and (b) we show the
relative difference Δrel = SS%ij − %

TD
ij SS~SS%

TD
ij SS of the single-particle density matrix in the steady state,

∂t%ij = 0, when compared to the thermal density matrix %TD
ij at the same parameters. Although we

started out with a system with fixed particle numberN , after performing the mean-field approximation
⟨N2⟩ = ⟨N⟩2 does not hold anymore, therefore there are particle number fluctuations. We thus compare
to the grand canonical ensemble. We generally find errors that are on the order of a few percent only,
including the case of the smallest possible choice of the bin size, s = 2. Without an external trapping
potential Vi = 0, Fig. 6.2(a), the approximation that the potential does not vary within the bin is
exact, therefore we observe the error that is due to the binning only. As expected, by increasing the
bin size s the dynamics induced by the bath is reproduced better and better, so the error decreases.
Note that depending on the choice of the wavelets ϕk(r) and their kinetic energy εWL

k this error can
be very large (typically on the order of 1 for an uneducated guess). By numerical experiments, we
find that the optimal choice are the standing waves that we define above.
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Figure 6.2.: Benchmark of the method (periodic boundary conditions): (a, b) Relative difference
Δrel = SS%ij − %

TD
ij SS~SS%

TD
ij SS of the single-particle density matrix %ij obtained by the wavelet method

with different bin sizes s for an ideal Bose gas, U = 0, system size M = 12, filling n = N~M = 3, in
an equilibrium situation where T‘ = T and γ‘ = γ = 0.01J when compared to the equilibrium density
matrix %TD

ij for (a) no trapping potential Vi = 0, (b) with trapping potential Vi = 2J cos(2πi~M).
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Figure 6.3.: (a) Eigenvalues ⟨nk⟩ of the steady state single-particle density matrix as a function of
interaction strength U for a gas of n = N~M = 5 particles per site, obtained by the wavelet method
with s = 2, T = J , γ = 0.05J for an open chain with M = 30 sites. (b) Corresponding real-space
density profile n̄i and (c)-(e) full single-particle density matrix %ij for some selected values of the
interaction strength U .

Why the results without an external trapping potential Vi = 0, Fig. 6.2(a), are good, especially in
the limit of high temperatures can be understood by calculating the resulting effective rates in the
basis of the true eigenstates. In Appendix I, we show that for the case with bin size s = 2 and no
trapping potential, these effective rates reproduce the first two orders of a high-temperature expansion
(in powers of J~T ) of the true rates in the true eigenbasis, i.e. the ones that appear in Eq. (6.3). We
expect that similar correspondence is also found for increasing bin size s. On the other hand, we do
not expect that the true rates are also reproduced by our wavelet method in higher orders of the
high-temperature expansion, which is the reason why the error that we observe in Fig. 6.2(a) has its
maximum around T = J . For temperatures in this regime, occupations of the depletion will have an
error which stems from the contributions to the true rates that are on the order (J~T )2 and that we do
not reproduce with our wavelet method. At even lower temperatures, the occupations in the depletion
get overall reduced and the resulting density matrix is again closer to the exact thermal density matrix.
Also note that the calculation in Appendix I explicitly relies on the fact that the bath is ohmic. It
seems that the semiclassical approximation as it is presented here only works for ohmic baths. We
have experimented with other spectral densities (super-/subohmic, and constant) and generally we
observe errors of the order of unity (not shown) when performing a similar comparison to thermal
states as in Fig. 6.2. From our calculation in Appendix I, we observe the reason why the method only
works for ohmic baths: in the resulting effective rates in the basis of the true eigenstates one can only
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6. Weakly interacting Bose gases far from thermal equilibrium

recover a linear behavior in the spectral density J(ε).

Remarkably, also in presence of a trapping potential Vi = 2J cos(2πi~M), Fig. 6.2(b), the result
is very close to the thermal density matrix. Note that the steady state density matrix that we find
is diagonal in the eigenstates of the potential and they are given the correct thermal weights even
though in the evolution the dissipator is completely independent of these eigenstates. This is crucial
for our aim to describe mean-field potentials, and we expect sensible results also in presence of finite
mean-field interactions, U ≠ 0.

In Figure 6.3, we present the resulting steady states of this method in the presence of mean-field
interactions for the Bose-Hubbard system but with the slight modification of open boundary condi-
tions, i.e. we break the periodicity in the sum over nearest neighbors in Eq. (6.1). In the semiclassical
dissipator, Eq. (6.13), we therefore have to restrict the sum over j′ such that it runs from 0 to M − s,
because all other wavelets have contributions outside of the boundary. In contrast to the noninter-
acting system, we do not compare our results to exact thermal states, because exact diagonalization
of the Bose-Hubbard Hamiltonian for M = 30 sites and N = 150 particles is numerically inaccessible.
Figure 6.3(a) shows the eigenvalues ⟨nk⟩ (note that the eigenstates k, or natural orbitals, depend on
the interaction) of the single particle density matrix. In accordance with theoretical results [182–184]
(for harmonic and box trapping potential) and experimental results [185] (for harmonic trapping po-
tential) for interacting one-dimensional Bose gases, we observe that the condensate fraction decreases
slightly with interaction strength U . In Figure 6.3(b) we show the steady-state density profile n̄i and
in Fig. 6.3(c)-(f) the corresponding density matrices for some values of the interaction strength. Since
the temperature T of the bath is fairly low, T = J , for the ideal gas, U = 0, about two third of the
particles occupy the ground state and we observe its typical sinusoidal profile also in the thermal state
density profile. For increasing interaction strength, we recover the typical behavior that is known from
the Gross-Pitaevski equation (for T = 0; keep in mind that our theory might over-estimate interaction
effects in this limit). Namely, in Thomas-Fermi approximation [7, 186] the density profile of the gas is
given by the inverted profile of the trap, which means that for the box potential it is flat. This is true
up to length scales of the healing length ξh =

»
J~Un [187] on which the system reacts to variations

of the potential, which leads to the behavior at the edges of the box. Note that a more detailed
discussion of the validity of the states that we observe should be based on a comparison to extensions
of the GPE to finite temperatures that have been developed in the literature [188–190]. Typically,
Bogoliubov-de Gennes theories are used which divide the total gas into a condensed order-parameter
field and a thermal cloud of Bogoliubov quasiparticles.

In conclusion, other than field-theoretic or hydrodynamic approaches to interacting Bose gases,
our method is motivated by a microscopic description of the system and the action of the bath. The
semiclassical treatment of the bath interaction provides efficient access to the full density matrix of
thermal states with errors of a few percent only. This is true already for bin size s = 2, which we
will use in the following. Note that our method is not limited to the decomposition ansatz, Eq. (6.7),
of the four-point correlators σijkl. Similar as for the ideal Bose gas [83], we may also decompose only
on the level of the six-point correlators into two- and four-point correlators and derive equations of
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6.3. Nonequilibrium steady states: Hot-needle condensation in presence of weak interactions

motion for those, both for the coherent and the dissipative evolution. We expect that such a treatment
will describe fluctuations more precisely and thereby also resolve the problem of the occurance of the
factor 2 in the mean field potential for the canonical ensemble.

Our method is not limited to an equilibrium situation where the temperature of the individual
baths are equal. Having gained confidence that the method is capable of producing plausible results
for equilibrium states, we can now approach the nonequilibrium case. In the next section, we study
nonequilibrium steady states in the ‘hot needle’ scenario that we introduced in Chapter 5, but in
presence of weak interactions.

6.3. Nonequilibrium steady states: Hot-needle condensation in
presence of weak interactions

While in equilibrium better approaches to study one-dimensional thermal Bose gases are available,
this is not the case anymore when dealing with nonequilibrium systems in contact with more than one
heat bath. Here we use the semiclassical wavelet method to shed some light on the question whether
also in presence of weak interactions Bose condensation can be induced by a hot local bath, as we
discussed in Chapter 5 for the ideal gas. Unfortunately, the hot-needle effect of a higher condensate
fraction is more prominent at large system sizes M which are, despite the semiclassical approximation
of the bath, still hard to reach numerically. Nevertheless, we show that also in presence of interactions,
one can induce a condensate with a node at the ‘hot needle’ site.

Let us investigate the non-equilibrium situation, where in addition to the global bath environment,
we couple a hot bath at temperature Th at site ‘, see sketch in Fig. 5.2(a), but with finite mean-field
interaction U . In Figure 6.4 we show the same plots for the same parameters as in Figure 6.3 but in
presence of a ‘hot needle’ at site ‘ = 10. Note that different to Chapter 5, here we do not scale down the
coupling to the environment γi = γ with the root of the system size, but rather scale γh ∝

√
M . This

leads to a slightly different notion of the coupling strength. This notion is reasonable, because here
we do not perform the rotating wave approximation (in which γ is practically zero), so the strength of
the coupling is relevant and can influence the steady state. It is unnatural to assume that the strength
of the coupling to the global bath should depend on system size. But in order for the local drive to
have the same magnitude as in Chapter 5, we scale up the coupling γh.

As we observe in Fig. 6.4 also for finite coupling strength γ = 0.1J , the noninteracting gas, U = 0,
also shows the ‘hot needle’ effect. That is, the gas ‘avoids’ the strong inflow of heat by condensing in
an excited state which has a node at the coupling site, which can clearly be observed in the density
profile, Fig. 6.4(b), and in the amplitude of the condensed state, Fig. 6.4(f), which is the typical
π~‘ mode. Also the occupations in the condensate are slightly higher than in equilibrium, Fig. 6.3(a)
for U = 0, which leads to an increase of coherence in the density matrix, Fig. 6.4(c). However, we
observe that with increasing interaction the effect is reduced. This happens in three stages: There is
a small regime U ≲ 0.05J where the hot-needle effect survives. Similar to thermal equilibrium, with
mean-field interaction U the condensate fraction decreases. However, in the nonequilibrium steady
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Figure 6.4.: (a)-(e) Same as in Fig. 6.3 but with a hot local bath with temperature Th = 25J at
‘ = 10. Coupling strength is γh = 0.2γ

√
M . (f)-(h) Amplitude of the condensate(s) for the states in

(c)-(e). Red is the condensate with largest occupation, green second largest, and blue third.
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6.3. Nonequilibrium steady states: Hot-needle condensation in presence of weak interactions

state this drop is more severe since there is a second condensate emerging, which leads to the second
regime 0.05J ≲ U ≲ 0.15J .

Interestingly, in this second regime it seems that there are two condensates. Since for increasing
repulsive interactions it becomes favorable that the density profile n̄i is flat, in equilibrium the shape
of the condensate is flattened. In the driven system however, from Fig. 6.4(g) we observe that in this
second phase the π~‘-like condensate (red line) has the highest occupation and differs only slightly
from the noninteracting case. Instead of a flattening of this condensate, a second condensate emerges
that localizes in the right well of the mean-field potential created by the first condensate, where
there is no drive. This is surprising and means that in a nonequilibrium steady state, fragmented
condensation can be switched on by varying the interaction strength. Also it is remarkable that
fragmented condensation is found at all, because in the noninteracting case of the hot needle only
phases with a single condensate (in the ground state or a decoupled state) are found.

Finally, in the third regime U ≳ 0.15J there are three condensates. For increasing interaction
strength, Fig. 6.4(h), the profile of the condensate with the highest occupation (red line) deviates
more from the π~‘-shape and develops a relatively sharp node at the coupling site. The length scale
on which the profile drops is on the order of the healing length ξh. Note that all three condensates
have very little overlap with the coupling site also at relatively strong interactions, however coherence
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Figure 6.5.: Eigenvalues ⟨nk⟩ of the single-particle density matrix as a function of total particle
number N for the hot-needle setup with M = 16, T = J , ‘ = 4, Th = 80J , γ = 0.02J , γh = 0.4γ

√
M ,

calculated with the wavelet method and bin size s = 2 for different values of the mean-field interac-
tion U .
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6. Weakly interacting Bose gases far from thermal equilibrium

in the single-particle density matrix, Fig. 6.4(h), is reduced quite substantially when compared to the
ideal gas, and also more dramatically than for the equilibrium system without the driving.

In Fig. 6.5 we plot the eigenvalues of the single-particle density matrix as a function of the total
particle number N . Note that the parameters are different than in Fig. 6.4, because large particle
numbers are very hard to reach numerically for system size M = 30. For the ideal gas, Fig. 6.5(a), also
with our wavelet method, we observe the typical behavior as observed in Chapter 5, especially when
comparing to Fig. 5.5(a). As discussed in Section 5.5, for intermediate particle numbers there is a
condensate in the π~‘ state that decouples from the needle, while there is a transition to ground-state
condensation that is found in the limit N → ∞. With increasing interaction U there are still two
regimes found, where for intermediate numbers N the single-particle density matrices resemble the
ones of the π~‘ condensate and for large particle numbers similarity to a ground state condensate is
found. The occupations ⟨nk⟩ of the natural orbitals k however resemble the noninteracting case only
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Figure 6.6.: Same as in Fig. 6.4 but with strong system-bath coupling γ = 0.15J and a hot local
bath with temperature Th = 40J at ‘ = 10. Coupling strength is γh = 0.6γ

√
M . For such strong

system-bath coupling the gas is essentially divided by the potential barrier due to the coupling at
the driving site.
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6.4. Dynamics: Bistability in presence of local particle losses

in the latter, ground-state like regime. The behavior in the intermediate regime is quite complicated
and for larger U one might be able to identify more than a single condensate in this regime, but here
the occupations of many of the states lie close.

A clear identification of condensates is expected for larger system size M . But larger system sizes
are very hard to reach in the presence of interactions, since for large particle numbers a new timescale
τint ∝ 1~UN emerges in the coherent dynamics. Altogether, the dynamics happens on three time
scales, since there are also the time scale of the noninteracting system τS ∝ 1~J and the long time
scale of relaxation τR ∝ 1~γ2. For high particle numbers τint becomes very short which makes it
difficult for the nonlinear solvers to find the steady state, which can easily take times that are on the
order of 106 of τint (take for example U = 0.1J , γ = 0.01J , N = 1000) to emerge.

Allowing for larger γ however is not possible because then we would be far away from the weak
coupling limit and already for the noninteracting system there is a back action of the coupling onto
the system, which leads to the steady state density not being diagonal in the eigenstates of the system
anymore. In Fig. 6.6 we show a typical example of the behavior in presence of a strong coupling to
the environment. We observe that hot-needle-induced condensation is not found at strong coupling.
Instead, the gas is divided by the hot local drive. Since the coupling strength γh is on the order of J , it
provides a potential barrier that leads to the gas being expelled from the coupling site in the density
profile, Fig. 6.6(b). Although the fact that the gas avoids the coupling site is reminiscent of the hot-
needle effect, here, for the ideal gas, U = 0, coherence over the coupling site is almost destroyed and
two separate condensates form that localize to the left and to the right of the coupling site, as can be
observed from Fig. 6.6(c),(f). With increasing interaction U such a localization of particles becomes
less favorable and some coherence between both sides is reestablished, cf. Fig. 6.6(e). Although the
density profile, Fig. 6.6(b), shows that also the occupation at the driving site ‘ increases with the
interaction strength, from Fig. 6.6(g),(f) we clearly see that both condensates retain a node at the
coupling site, such that a strong inflow of heat from the hot bath is avoided. Hence, site ‘ is filled
with particles from the depletion only.

6.4. Dynamics: Bistability in presence of local particle losses

In this section we are investigating a possible model for the bistability in a driven-dissipative superfluid
that was observed in a recent experiment [91]. In this experiment, that is sketched in Fig. 6.7(a), a
one-dimensional optical lattice is occupied with a weakly interacting Bose condensate with a few
hundred atoms per site. Using a focused electron beam [192] the authors are able to engineer local
single-particle loss in one of the wells. Then it is observed that there exists a regime of the loss rate
γloss where the steady state depends on whether the driven site is full or empty in the initial state.
While there are theoretical models using a discrete Gross-Pitaevski equation with local loss presented
in Refs. [91, 191], the experimental behavior is reproduced only remotely. Neither the loss rate γloss
where the bistable regime sets in, investigated in Ref. [91], nor the loss rate γloss where it ends, studied
in Ref. [191], are correctly predicted by the GPE. Also, in the experiment a critical slowing down in
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Figure 6.7.: (a) Sketch of the experiment by Labouvie et. al. [91] (following the sketch in Ref. [191]).
A Bose condensate is loaded in a periodic potential with a wide trapping potential. The central site
is irradiated with an electron beam which leads to single particle loss. (b) Sketch of the model: A one
dimensional Bose-Hubbard chain with tunneling amplitude J and on-site interaction U undergoes
single particle loss at site ‘ with a loss rate γloss. All sites but the central site are subject to a bath
of temperature T which is coupled with strength γ to each individual site.

the bistable regime is observed which is not reproduced by the GPE [91].
We aim to investigate the setup with a simple microscopic model that also accounts for the inco-

herent processes leading to thermalization. As sketched in Fig. 6.7(b), we study the master equation

∂t% = −i[H,%] +Dloss[%] +DWL[%] (6.21)

with Bose-Hubbard Hamiltonian H, as in Eq. (6.1). We do not add a trapping potential, Vi = 0, and
study the system with open boundary conditions. Additionally, there are two dissipative terms. The
first term is a Lindblad term that corresponds to the particle loss with rate γloss at site ‘

Dloss[%] = γloss a‘%a
†
‘ −

1

2
{a†

‘a‘, %} . (6.22)

Such a term has also been used in the GPE approaches [91, 191]. The second term DWL phenomeno-
logically describes the thermalization (with the semiclassical wavelet method, Eq. (6.13)) that occurs
due to incoherent scattering of the bosons in the individual wells. These incoherent processes are not
captured by the mean-field interaction, which is why we add them by hand. From a one-boson perspec-
tive we may imagine that the particle in the well “sees” the coherent cloud and its thermal excitations
that are described by Bogoliubov particles which for low energies are approximately phonons [193],
and thus effectively provide a phononic bath to the particle. Similar ideas are also found in the lit-
erature [194], where it was found that the relaxation dynamics of an isolated (interacting) BEC can
effectively understood via a dynamical generation of heat baths of Boguliubuv quasiparticles. Also
experimentally, thermalization has been observed in the refilling dynamics of the central site with
temperatures T on the order of 3J [90]. Note that in our model, we do couple all sites to baths with
equal strength, γi = γ, i ≠ ‘, but not the driven site, γ‘ = 0, because it is constantly emptied and cannot
be expected to be described by local thermal equilibrium. A more refined theory might consider also
the nonthermal distribution among the various levels on that site. In some cases, like in the limit of
large γloss, as well as for initial states without atoms at site ‘ it will be unoccupied and thus there
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6.4. Dynamics: Bistability in presence of local particle losses
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(d) n‘(0) = 0, γloss = 0
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(e) n‘(0) = 0, γloss =
0.6J
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(f) n‘(0) = 0, γloss = 1.1J
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(g) n‘(0) = n, γloss = 0
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(h) n‘(0) = n, γloss =
0.6J
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(i) n‘(0) = n, γloss = 1.1J
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Figure 6.8.: Time evolution of the model, Fig. 6.7(b), with M = 29 sites, ‘ = 15, γ = 0.1J , U = 0.15J
and T = 3J and ninit = 50. (a), (b) Relative occupation (with respect to the time-dependent total
density ntot(t) of bosons) of the driven site n̄‘ as a function of time t for different values of the loss
strength γloss for driving site that is initially (a) empty (b) full. (c) Occupation of the driven site at
t = 20~J . Similar to Ref. [91] we observe a “bistable” regime where the system retains some memory
of its initial state. (d)-(i) Instantaneous eigenvalues ⟨nk⟩ of the single-particle density matrix %ij as
a function of t. We also show the amplitude SψiS

2 of the orbital with the highest (red) and the second
highest (green) occupation at t = 20~J . (j) Mean total number of particles ⟨N⟩ at t = 20~J .
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6. Weakly interacting Bose gases far from thermal equilibrium

will be also no incoherent background present at this site.

In Fig. 6.8 we show a typical realization of the model for a system with M = 29 sites and bath
temperature T = 3J , at relative strong coupling γ = 0.1J which has also been observed experimentally
[90]. Fig. 6.8(a) and (b) show the dynamics of the occupation number n̄‘ of the driven site ‘ as a
function of time and loss strength γloss for two kinds of initial state. Note that, in order to account
for the overall particle losses, we show n̄‘(t) in relation to the overall density ntot(t) = ⟨N⟩(t)~M of
the gas at that time t. The initial state in Fig. 6.8(b) is a uniformly filled classical state

%ij(t = 0) = nδij . (6.23)

The initial state in Fig. 6.8(a) is an uniformly filled classical state with a vacancy in the driven site

%ij(t = 0) = niδij with ni =
⎧⎪⎪
⎨
⎪⎪⎩

0, i = ‘

n M
M−1 , else

. (6.24)

In Fig. 6.8(c) we show the relative filling n̄‘~ntot of site ‘ in the long-time state at t = 20~J . The
parameters are chosen such that there is some resemblance to the behavior that was reported in the
experiment [91]. Namely, we observe that for intermediate values of γloss the filling n̄‘ at t = 20~J

strongly depends on the initial state, i.e. if in the initial state the site was full (empty) it will have
high (little) relative occupation in the long-time state.

This memory of the initial state is only found due to a finite interaction strength U as we observe
in Fig. 6.9, where we repeat the plots from Fig. 6.8(a)-(c) with identical parameters, but U = 0. By
comparing Fig. 6.9(a) and (b) we observe that the dynamics of the occupations is very similar and
therefore memory of the initial state is lost after a short time of t ≈ 1~J already. An intuitive argument
why the presence of interactions is required to see this bistability is the following: Let us consider
the initial state with empty driving site first, Eq. (6.24). In the noninteracting case, a vacancy at the
site ‘ will be filled by delocalizing the particles. In this process, energy of the order Jn is set free,
which is first transformed to kinetic energy, and then at longer time scales damped into the bath. In
presence of the interactions, however, when a particle is transferred from a neighboring site to the
empty site ‘ an energy on the order Un2 is set free, which cannot be absorbed as kinetic energy, so
for large densities n the system is stuck and cannot fill site ‘. It is of course only stuck up to the time
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Figure 6.9.: Same as in Fig. 6.8(a)-(c) but for the noninteracting gas, U = 0.
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6.4. Dynamics: Bistability in presence of local particle losses

scale of the bath relaxation, because the bath will eventually dissipate this energy. If some particles
have entered the site already, this energetic discrepancy gets smaller and smaller, which leads then
to a rapid filling up of the site as we observe nicely in Fig. 6.8(a) for γloss = 0. We have also varied
the coupling strength γ to the bath and observe that the refilling time gets larger when γ is reduced
(data not shown) which supports this hypothesis.

If now additionally the particle losses are ramped up, γloss ≠ 0, particles that have entered site
‘ have an increasing probability of being removed again and a high energy mismatch persists. This
leads to an increase in the time that is needed for the refilling to occur, as we observe in Fig. 6.8(a).
Around γloss ≈ 0.5J , for our parameters, it seems that this refilling time is shifted to infinity (which
becomes more clear by looking at the dynamics at even later times, up to t = 50~J in Fig. 6.10(a))
and the system is pinned to a steady state that has little occupation at the coupling site only. This
can be observed Fig. 6.8(d)-(f) where we plot the eigenvalues of the single-particle density matrix as
a function of time and the corresponding eigenstates at the latest time. As we see from Fig. 6.8(j),
for states that have an initial vacancy, only around 10% of the total atoms are lost, which is also the
case in the experiment [91].

If we turn to the dynamics with a site that is initially full, on the other hand, we see a particle
loss that is much higher, up to about 50% Fig. 6.8(j). It seems that as soon as particles are lost, the
driven site is refilled with particles rapidly which then are dissipated again. This is not observed in
the experiment, where also for the state that is initially full only about 10% of the particles are lost.
At later times, the total particle losses become even more severe, Fig. 6.10(d), and the true steady
state of the system with an initially full site seems to have a vacancy at site ‘ above γloss ≈ 0.5J as
well, Fig. 6.10(b) and (c), i.e. the region of bistability shrinks down until it vanishes. This can also
be seen in the dynamics of the eigenvalues in Fig. 6.8(h). Even though the natural orbital with the
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Figure 6.10.: Same as in Fig. 6.8(a)-(c), and (j) but for times up to t = 50~J .
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6. Weakly interacting Bose gases far from thermal equilibrium

highest population has a node at the driven site, the relative occupation of the site is still close to
unity because the natural orbital with the second largest occupation is such that it ‘fills’ the mean
field potential of the first orbital and the resulting density profile is flat. This state however is subject
to strong losses.

So while our model could provide an explanation for the behavior when the site is initially empty,
the behavior when the site is initially full is such a true bistability in the steady state is not reproduced
by the model. Nevertheless, there is some memory of the initial state for long times. One possible
reason for the discrepancies could be that we have not taken into account that it was observed that
the tunneling into the driven site depends on the filling of the driven site [90, 91], which could be
implemented by using an occupation-dependent effective hopping rate J(n‘) between site ‘ − 1 and ‘
and site ‘ + 1 and ‘.

Similar to the data shown in Ref. [91], we may also show the phases as a function of the value of
the tunneling J and the loss rate γloss. This is shown in Fig. 6.11 for parameters that give rise to a
bistable regime that is quite similar to the observation in the experiment.

Let us make a final note that concerns our investigations on the interacting nonequilibrium steady
states in Sec. 6.3. While for the rate equation equation describing the asymptotic dynamics of the
noninteracting Bose gas, the uniqueness of the nonequilibrium steady state is guaranteed [82, 84],
this is by no means clear for our interacting model. This could be another reason for the problems of
convergence for the nonlinear solvers that we use to find the states in Sec. 6.3. Note that there we
slowly ramp up the parameters (e.g. particle number or interaction strength), and use the ‘old’ steady
state as an initial guess for the steady state at a new parameter. To find out whether the search for
“the” steady state of the interacting hot needle setup is sensible at all, we should go back and study
the dynamics of the model first (which unfortunately, due to a lack of time, we were not able to do
in the scope of this thesis).
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Figure 6.11.: Steady-state phase diagram of the relative filling of the driven site in the steady state
(at t = 20~J0) as a function of both hopping amplitude J and loss rate γloss for when the driven site
is initially (a) empty and (b) full. Other parameters are M = 29, l = 15, n = 50, γ = 0.1J0, T = 3J0 as
well as U = 0.25J0.

126



7. Summary and outlook

In this thesis we have explored a whole variety of new possibilities for system- and state engineering
that emerge due to the dissipative nature of driven open quantum systems.

First, we have investigated some of the challenges that occur when we want to generalize the
concept of Floquet engineering to open quantum systems. Here we have focussed on the Markovian
case, where the dynamics can be described with a time-periodic Lindblad operator. Similar to the
Floquet Hamiltonian for the closed system, we ask whether there is an effective time-independent
Lindblad generator, the Floquet Lindbladian, which gives rise to the stroboscopic dynamics. This
generator basically follows from the logarithm of the dynamical map describing the one-cycle evolution.
However, other than for the closed system, not all branches of the complex logarithm will give rise to
a physical generator. For the qubit system that we use as a model, checking the branches is straight-
forward because they are labeled by a single integer. But for more complex models, the number of
branches will scale with the dimensionality of the Hilbert space squared. It has even been proven that
extracting the corresponding Lindbladian (if it exists) from a given CPTP map is a problem which
is generally NP-hard [137, 195]. This problem is sometimes referred to as the Markovianity problem.
Time-periodically driven open quantum systems with many degrees of freedom have already been
studied e.g. in Ref. [135]. It is a very appealing question, if there are ways to avoid the Markovianity
problem when trying to extract the Floquet Lindbladian in this situation. For example, in the high-
frequency limit all candidate branches but the principle branch will scale linearly with frequency. If
this limit is perturbative, the asymptotic Floquet Lindbladian can only be finite if it connects to the
principle branch at high frequencies. An idea to find the right branch for the Floquet Lindbladian also
at intermediate frequencies would be sweeping from high frequencies and keeping track of possible
changes of branch. Also, recently it was shown that for classical fields that are described by a Langevin
equation that is time-periodic [196], an effective time-independent Langevin equation can be found. As
a result, in the classical limit the existence of the Floquet Lindbladian should always be guaranteed.

For the model system we show that (for all driving phases) the Floquet Lindbladian exists in
extended regions around the adiabatic- (or low-frequency-), the diabatic (high-frequency-) limit, as
well as in the limit of strong driving. A striking question is whether this also holds for more complex
models (or even for all time-periodic Lindbladians). Finding answers seems especially hard since,
e.g., we observe that the conventional high-frequency expansions are tools that must be used carefully.
They produce a series expansion of the generator that, when cut-off at some order, can give rise to
a non-physical generator even though the Floquet Lindbladian is guaranteed to exist. The reason is
that the rates, i.e. the eigenvalues of the coefficient matrix of the dissipative term in the Lindblad
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7. Summary and outlook

equation, can pick up terms that are higher than the order in which we perform the high-frequency
expansion [100]. We show that this problem can be reduced, and a valid approximation to the Floquet
Lindbladian may be found, by performing the high-frequency expansion in the rotating frame. Still,
also in the rotating frame cutting off the expansion is in principle uncontrolled. Therefore, the hope is
that in the future an alternative expansion can be developed which overcomes this problem by giving
rise to a generator with rates that only have contributions on the order of the expansion.

The model system shows that the region where no Floquet Lindbladian exists can strongly depend
on the driving phase. Even more, we have seen indications that there could be a phase-independent
effective Lindbladian which exists for all parameters. The effective nonmarkovian phase could thus be
due to the fact that for the open system the micromotion is a nonunitary rotation that rotates the
effective Lindbladian into a generator that is not physical anymore. Future works should investigate
the nontrivial role that is played by the micromotion in dissipative Floquet systems in more detail.

In the regime where no Floquet Lindbladian exists, we are able to find an effective evolution with a
time-homogeneous exponential memory kernel for our model system. This opens up a completely new
pathway for Floquet engineering: It suggests that effective nonmarkovian dynamics can be engineered
in a setup where we only have Markovian channels at hand. However, as was noted in the literature
[105], the so-achievable quantum channels are only a subset in the space of all nonmarkovian channels.
It is thus by no means guaranteed that any given memory kernel can be “Floquet engineered”. Further
investigation to classify the “engineerable” memory kernels is needed. Also the contrary question is
completely open: Can any time-periodic Markovian channel effectively be mapped into an evolution
with a time-homogeneous memory kernel? If so, is it always possible to use an exponential kernel?

The huge number of fundamental open questions confirms that the field of dissipative Floquet
engineering has just started to evolve.

Furthermore, we have studied nonequilibrium steady states of ideal Bose gases that may exchange
heat with their environment. First, we have turned to general considerations about the number MS of
Bose-selected states that are expected for driven ideal Bose gases in a system with a total of M states.
The Bose-selected states are defined as those states whose occupations will not saturate in the limit
of infinite particle number (while keeping all other parameters fixed). These selected states can be
inferred from the (Pauli) rates for the quantum jumps between different single-particle states. We find
that in some cases, like for rates that emerge from a discretization of some continuous function or in
cases where the system is coupled to a few single-particle operators only (and the rates obey a product
structure), indeed it is guaranteed that the number MS of selected states is independent of the total
number M of single-particle states. In these cases, (fragmented) condensation can be found in the
nonequilibrium steady state, since each selected state may acquire a macroscopic occupation in the
thermodynamic limit M →∞ at fixed particle density n = N~M . However, it will additionally depend
on the specific model if (fragmented) Bose condensation is really found in the thermodynamic limit.
To this end, the characteristic density nc for when the system reaches the ultra-degenerate regime and
condensation sets in must also saturate in the thermodynamic limit (which is not even the case for
the hot needle, where for large M eventually the one-dimensional nature of the system is resolved and
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nc will grow linearly with M). Then, there are cases where we show that the number of selected states
will scale with the total number of single-particle states, like for random rates or for time-periodically
driven chaotic systems. Here the steady state will never feature an ordered phase, because also for
large particle numbers the state looks essentially classical (from the viewpoint of quantum statistics),
apart from the fact that a whole fraction of the states remains almost unpopulated. For the chaotic
Floquet systems, we observe about three quarter of the states are Bose selected. This number is
significantly higher number than half of the states, which is what is found for uncorrelated random
rates. It means that there must be additional correlations in the rates. We present a naiive model that
gives rise to more than half of the states beeing selected, nevertheless future research should trace the
origin of these correlations back to the kinetics of the model.

Our results provide one of the few examples where a relatively complete classification of nonequi-
librium steady states in a given setup has been achieved. Based on these results a systematic study
of the factors determining the number of Bose-selected states in suitable photonic systems should be
possible. Bose selection is expected in systems where the dynamics is governed by the interplay of
pumping, particle loss, and thermalization [62, 84]. As a result, Bose selection connects in some limits
to Bose condensation while in other limits to lasing.

Then, we have shown that indeed the nonthermal statistics of nonequilibrium steady states can
be used to engineer quantum many-body states with properties that are absent in the corresponding
equilibrium state (i.e. if we would take away the driving): By using two heat reservoirs that both
have a temperature that is well above the equilibrium condensation temperature, we find that in a
(finite) one-dimensional ideal Bose gas high-temperature nonequilibrium condensation can be induced.
Condensation occurs not only in the ground state, but for sufficiently strong driving also in excited
single-particle states. We find that this effect is always found if one of the baths is very hot and there
exists at least one single-particle state that couples only weakly to this bath. The basic intuition for
why the effect occurs is that by condensing in a mode that couples only weakly to the hot bath,
the system can avoid a strong inflow of heat. It should thus be applicable as a general strategy
for the robust preparation of quantum degenerate nonequilibrium states. The fact that the system
runs into a state that decouples from the drive has some similarity to the quantum Zeno effect
[197]. Interestingly, even though the system is one dimensional, for intermediate system sizes the
environmental temperature at which the system condenses is independent of the system size, much
like in equilibrium in three dimensions. Only at large system sizes the true one-dimensional nature of
the model is revealed. However, the corresponding length scale is a function of the driving parameters
and thus in principle tunable.

This is in accordance with the findings for two-dimensional driven condensates, where on intermedi-
ate length scales algebraic correlations may be found, but on long scales correlations will always decay
exponentially on a length scale that is set by the relation of pump- and loss rate [56]. Note that also in
driven-dissipative Rydberg atoms, anomalously long-range correlations between Rydberg excitations
have been observed in one dimension [198, 199], but later works have traced the physics back to the
Hohenberg-Halperin Model A [99, 200–202], which rules out true long-range order in one dimension.
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7. Summary and outlook

Also here the correlation length is governed by the relation between pump- and de-excitation rate.
This asymptotic scaling of the correlation length with the ratio of pump- and loss rate (in our case of
heat, not particles) holds also for our model of the hot needle, as we observe by solving the relevant
equation not for the critical temperature T ne1

c but for the critical system size Mc where Bose conden-
sation breaks down. More detailed investigations should be made to clarify if and how the hot-needle
effect relates to such similar observations of long-range order in nonequilibrium steady states, and
whether common concepts for all of these systems can be developed.

Another intriguing question is whether the hot needle scenario can be implemented in an experi-
mental setup. We have shown that the hot bath can also be replaced by a noisy Floquet drive, which
might be easier to implement than a local bath for a cold atom experiment. We even expect that the
physics is similar for noise that is not time-periodic. A hope is that the environmental bath could be
realized by a cloud of atoms of another species [170]. To this end, bath models that provide a more
realistic description for such situations should be considered. Also, we may think of an implementation
in photonic systems, possibly in an array of pumped microcavities with one site being coupled to an
additional reservoir. That steady states in a pumped polariton gas can in principle be described by a
similar rate equation with thermal rates has been shown in Ref. [62].

Also the question of how finite system–bath coupling and weak interactions modify the hot-needle
effect is crucial for any possible experiment. It has only been answered partially by our semiclassical
theory and requires further investigations (even though we indeed have seen signatures of the effect
for small system sizes). This semiclassical theory is necessary to overcome the problem that for in-
teracting quantum many-body systems the spectrum and eigenstates of the full Hamiltonian are in
most cases inaccessible. This is a problem if we want to find a microscopic description of the system
in terms of a Born-Markov rate equation, where the bath induces jumps between the eigenstates at
rates that depend on their energy difference. We develop a semiclassical way around this problem by
defining localized wavelets with defined position and momentum for a Bose-Hubbard Hamiltonian. A
thermal bath will drive transitions between all of these wavelets. We argue that the energy difference
in these transitions is only due to their change in kinetic energy, because the wavelets are localized.
We benchmark this method with thermal states and observe excellent agreement for high- and inter-
mediate temperatures. Our method only applies to ohmic baths, whether a similar description can
also be found for other spectral densities is a question that remains open.

The semiclassical method is a promising tool to describe steady states of interacting systems within
a mean-field approximation both in the hot needle setup as well as in setups where we observe Bose
selection for the ideal gas. Still, also within this method, mean-field interacting nonequilibrium steady
states are extremely hard to compute numerically. This is a consequence of the fact that the dynamics
happens on three time scales, which may differ in several orders of magnitude: because the system–
bath coupling should be weak, relaxation happens on extremely long time scales, while the time scale
of the mean-field interaction gets shorter as we add more particles to the system. New ideas (at least
from a numerical perspective) are required to overcome this problem.

Finally, we have used this method to study the dynamics of a Bose Hubbard system that is both
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coupled to a thermal bath and also subject to local single-particle losses. This model is motivated by a
recent quantum gas experiment [91], where a focused electron beam was used to engineer local particle
losses, and interesting nonequilibrium steady states in weakly interacting Bose gases were observed.
For intermediate times, in the presence of mean-field interactions, we observe a bistability that shares
some similarities with the behavior that was observed in the experiment. Nevertheless, the long-time
behavior is not truly bistable and there are no signatures of a critical slowing down as was observed in
the experiment. Thus, the hope is that the model can be refined in order to account for example for
the internal structure of the lattice sites. Still, the idea of describing isolated interacting Bose gases
with the help of an artificial bath environment in order to model for the incoherent thermalization
processes (that are in our case due to a suspected formation of a reservoir of Bugoliubov quasiparticles)
seems quite promising. To find a rigid description of the thermalization dynamics, it might however
be necessary to consider also a time-dependence of the temperature and the coupling strength of the
artificial bath.
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Appendix

A. Extracting Hamiltonian and Lindblad operators from a
Lindbladian generator matrix

In the region where the Floquet Lindbladian LF exists, we can extract its components, that are
a time-independent effective Hamiltonian HF and a set of effective jump operators {Li}. Here we
describe a general procedure to extract these quantities.

To this end, we use the fact that any Lindbladian may be represented in the form [112]

L(%) = ϕ(%) − κ% − %κ†, (A.1)

where κ ∈ ❈n×n and ϕ is a completely positive map with ϕ∗(✶) = κ + κ†. Then, iHF is given by the
antihermitian part of κ, iHF =

1
2(κ − κ

†), and the Lindblad operators are the Kraus operators of ϕ,
ϕ(⋅) = ∑iLi ⋅L

†
i .

Now we may use that in the Basis B = (SΩ⟩, . . . ), where SΩ⟩ ∈ ❈n ⊗ ❈n is a maximally entangled
state, the Choi matrix of L has the structure

L
Γ
= (L⊗ id) (SΩ⟩⟨ΩS) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 . . .

0 ● ● ●

0 ● ● ●

0 ● ● ●

. . .

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶
ϕΓ

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a b∗ c∗ d∗ . . .

b 0 0 0

c 0 0 0

d 0 0 0

. . .

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶
−(κ⋅+⋅κ†)Γ

. (A.2)

This allows for the direct identification of κ and thus the Hamiltonian (up to a global shift of the
energies).

For a two-level system, the above representation can be rewritten in the Bell basisB = (SΩ⟩, SΣ⟩, SΓ⟩, SΛ⟩),
with SΩ~Σ⟩ = 1√

2
(S00⟩ ± S11⟩), SΓ~Λ⟩ = 1√

2
(S01⟩ ± S10⟩). This yields

HF =
1

2

⎛

⎝

−Im(b) −Im(c) + iRe(d)

−Im(c) − iRe(d) Im(b)

⎞

⎠
. (A.3)

Since LF exists, we know that ϕΓ is positive semi-definite and we can bring it to the form ϕΓ = ∑i viv
†
i

133



Appendix

with vectors vi = (0, vi2, vi3, . . . ). Note that these vectors are already the representation of the Lindblad
operators Li in the sense that Svi⟩ = (Li ⊗ id)SΩ⟩. For a two-level system we therefore find

Li =
1
√
2

⎛

⎝

vi2 vi3 + vi4

vi3 − vi4 −vi2

⎞

⎠
. (A.4)

B. Construction of an effective memory kernel

Here, we discuss technical details of the construction of the memory kernel in Section 3.3.

B.1. Characteristic decay function of exponential kernel

In Section 3.3, we show that with a special choice of the spectral decomposition of the Kernel Lindbla-
dian LK the problem of engineering an effective evolution with a time-homogeneous memory kernel
can be reduced to solving a scalar integro-differential equation for the characteristic decay functions
ha(t). Here we solve this equation.

The equation (3.29)

∂tha(t) = S
t

0
dτ eΓ(τ−t)λKa ha(τ) (B.1)

(we set Γ = 1~τmem for convenience) can be transformed into a second order differential equation, by
taking its derivative,

∂2t ha(t) = −ΓS
t

0
dτ e−Γ(t−τ) λKa ha(τ) + e

−Γt e+ΓtλKa ha(t) (B.2)

= −Γ∂tha(t) + λ
K
a ha(t), (B.3)

where additionally we have to satisfy the boundary conditions ha(0) = 1, ∂ha(t)St=0 = 0 [by setting
t = 0 in Eq. (B.1)].

This homogeneous second order differential equation can be solved by exponential ansatz

ha(t) = e
µat (B.4)

which leads to the characteristic polynomial

(µ2a + Γµa − λ
K
a )ha(t) = 0 (B.5)

which is solved by

µ±a = −Γ~2 ± Γa (B.6)

134



B. Construction of an effective memory kernel

with the complex root Γa =
»
Γ2~4 + λKa . So the general solution takes the form

ha(t) = e
−Γt~2 αeΓat + βe−Γat (B.7)

By imposing ha(0) = 1, ∂ha(t)St=0 = 0 we find

α + β = 1, and −
Γ

2
(α + β) + Γa(α − β) = 0. (B.8)

This we can solve for

2α = 1 +
Γ

2Γa
(B.9)

and finally get

ha(t) = e
−Γt~2 1

2
eΓat + e−Γat +

Γ

4Γa
eΓat − e−Γat . (B.10)

B.2. Numerically stable procedure to find eigenvalues of LK

By setting P(T ) = ∑a λaPa ≡ P̃(T ) = ∑a ha(T )Pa we require that the kernel evolution coincides
stroboscopically with the dynamical map. Nevertheless, solving the nonlinear equation ha(T ) = λa for
λKa can in general not be performed analytically. Here we present a numerically stable to obtain these
eigenvalues λKa .

For the steady state subspace, λa = 1, we directly infer that λKa = 0 is a solution. Note that one
eigenvalue 0 is required, since LK(Γ) has to be a valid generator and thus obey the form

LK[⋅] = 0 ⋅ PSS[⋅] +Q
r

λKr Pr[⋅] +Q
c

(λKc Pc[⋅] + λ̄Kc Pc̄[⋅]) (B.11)

with real eigenvalues λKr and pairs of complex conjugated eigenvalues λKc , λ̄Kc . One way to determine
the remaining λKa would be to use a numerical root finding algorithm. However, the stroboscopic
identity ha(T ) = λa has generally infinitely many solutions in the complex plane, and a root finding
algorithm can converge into solutions with large imaginary part (which generally yields a LK that is
not a valid generator; similar to the Markovian case we suspect that high branches do not give a valid
generator anymore).

A numerical way around this is expanding the equation in a power series, then cutting it off at some
index, so we have a polynomial equation, where all roots of the polynomial can be evaluated from the
numerics. Rewriting ha(T ) = λa in a power series gives

∞
Q
n=0

(ΓaT )
2n

(2n)!
+

Γ

4Γa

(ΓaT )
2n+1

(2n + 1)!
= λae

ΓT ~2, (B.12)
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and using the definition of Γa we find

∞
Q
n=0
(Γ2
~4 + λKa )

n T 2n 1

(2n)!
+
Γ

4

T

(2n + 1)!
= λae

ΓT ~2, (B.13)

where numerically, we cut off the power series at some index n0, solve for all solutions z = Γ2~4 + λKa ,
and then regain all possible λKa = z − Γ2~4. By this we again find infinitely many candidates for LK .
For the case where λa is real of course we only may take the one root z where λKa is real, but for the
complex pair λKc there is no restriction apart from them occurring in a pair, so we can choose any
complex solution λKc . However only for solutions with a small absolute value, we may cut off the sum
at index n0. In order to avoid inaccuracies, we thus restrict ourselves to a few solutions λKc with small
imaginary part. Still, for the two-level system one can always find a parameter Γ such that a valid
kernel evolution exists and we observe that in most cases it suffices to consider the solution λKc with
the smallest imaginary part.

C. Discrepancy to the Magnus expansions presented in the literature

We discuss a discrepancy in the general expressions of the second order of the Magnus expansion (in
terms of the Fourier components of the generator) that are presented in Refs. [100, 136]. One should
therefore be cautious when using these expressions .

As it was shown in the literature [100, 136], by plugging the Fourier expansion, Eq. (3.32), into the
conventional Magnus expansion [131] one finds on the lowest orders

K
(0)
= L0, (C.1)

K
(1)
=
∞
Q
n=1

[Ln,L−n] + [L0,Ln −L−n]

n
. (C.2)

However on the order 1~ω2 there is a discrepancy between the results in the different works. In
Ref. [100] it is presented

K
(2)
FCM =Q

n≠0
Q
m≠0

[[Ln,L−n] ,Lm]

2nm
−
[Ln, [Lm,L−n−m]]

3nm
−Q

n≠0
Q

m≠0,m≠n

[Ln, [L0,Lm]]

2nm

+
∞
Q
n=1

Q
m≠0,m≠−n

[[Ln,Lm] + [L−n,L−m] ,L0]

2n(n +m)
,

(C.3)

while in Ref. [136] it was found

K
(2)
LMV = −Q

n≠0
Q
m≠0

[Lm, [L−m,Ln]]

nm
+
[Lm, [Ln,L0]]

2nm
−Q

n≠0
Q

m≠0,m≠n

[Lm, [Ln−m,L−n]]

3nm

+Q
n≠0

[L0, [L0,Ln]]

2n2
−
[Ln, [L0,L−n]]

2n2
,

(C.4)
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where we have adapted the expression to our notation for the dissipative Floquet system. Here, by
n ≠ 0 we denote the sum over n ∈ ❩ ∖ {0}.

Note that with these expressions for our qubit model with ϕ = 0 we find

K
(2)
FCM = [L0, [L0,L1]] +

1

3
[L1, [L0,L1]] , (C.5)

K
(2)
LMV = [L0, [L0,L1]] − [L1, [L0,L1]] , (C.6)

which differ by the prefactors of both terms from the direct calculation

K
(2)
= 2 [L0, [L0,L1]] − [L1, [L0,L1]] . (C.7)

This is worrisome because the result of the direct calculation was obtained in the same way, but for
a special choice of the driving, so in principle all expressions should coincide.

However, in Ref. [136] another expression for the second order term is presented. This expression was
obtained by performing the van-Vleck-type Floquet-Magnus expansion, yielding an effective Hamil-
tonian/generator in the rotated basis (the basis rotation DF is unitary, if the dynamics is coherent)

Λ(t) =DF e
L̄F tD−1F ≡ e

LF t. (C.8)

The Floquet Lindbladian LF can then be obtained in second order in 1~ω by finding L̄F up to second
order combined with the second order of the expansion of the rotation matrix

DF = exp i(S(1)~ω + S(2)~ω2
) . (C.9)

With this identification it is found

K
(0)′
= K

(0), K
(1)′
= K

(1), K
(2)′
LMV = K

(2)
LMV −Q

n≠0
Q
m≠0

[L0, [Lm,Ln−m]]

nm
(C.10)

and argued that the difference between the both expressions is due to approximations in the derivation
of the van-Vleck expansion [136].

Interestingly, in our case of the driven qubit, by calculating

K
(2)′
LMV = 2 [L0, [L0,L1]] − [L1, [L0,L1]] (C.11)

we recover the expression in Eq. (C.7) that we found by directly performing the conventional Magnus
expansion. We therefore expect that there could be a small error in the direct derivation of K(2)LMV via
the Magnus expansion and that it maybe also holds that K(2)LMV = K

(2)′
LMV.

As a result, the only expression that could be correct is K(2)
′

LMV.
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D. Commutator of two general qubit Lindblad superoperators

Given are two arbitrary Lindbladians L(1) and L(2) for a qubit system. We find a general expression
for their commutator.

The Lindbladians L(1) and L(2) can be represented as

L
(i)
= −i[H(i), ⋅] +Q

nm

d(i)nm σn ⋅ σm −
1

2
{σmσn, ⋅} , (D.1)

where the indices n,m in the following run over 1,2,3. Their commutator therefore reads

L
(1),L(2) = − H(1), H(2), ⋅ + H(2), H(1), ⋅

− iQ
nm

d(1)nm σn H(2), ⋅ σm −
1

2
σmσn, H

(2), ⋅ − H(2), σn ⋅ σm +
1

2
H(2),{σmσn, ⋅}

+ iQ
nm

d(2)nm σn H(1), ⋅ σm −
1

2
σmσn, H

(1), ⋅ − H(1), σn ⋅ σm +
1

2
H(1),{σmσn, ⋅}

+ Q
nm,kl

(d(1)nmd
(2)
kl − d

(1)
kl d

(2)
nm) σn σk ⋅ σl −

1

2
{σlσk, ⋅} σm −

1

2
σmσn, σk ⋅ σl −

1

2
{σlσk, ⋅} .

(D.2)

This can be simplified to read

L
(1),L(2) = − i Hcoh, ⋅ + iQ

nm

d(1)nm H(2), σn ⋅ σm + σn ⋅ H
(2), σm −

1

2
H(2), σmσn , ⋅

− iQ
nm

d(2)nm H(1), σn ⋅ σm + σn ⋅ H
(1), σm −

1

2
H(1), σmσn , ⋅

+ Q
nm,kl

(d(1)nmd
(2)
kl − d

(1)
kl d

(2)
nm) σn σk ⋅ σl −

1

2
{σlσk, ⋅} σm −

1

2
σmσn, σk ⋅ σl −

1

2
{σlσk, ⋅} .

(D.3)

with resulting Hamiltonian due to the coherent parts

Hcoh
= −i H(1),H(2) = 2Q

kql

εkqlh
(1)
k h(2)q σl. (D.4)

In the last step we have represented the Hamiltonians in the Pauli basis,

H(i) = h
(i)
0 ✶ +Q

k

h
(i)
k σk. (D.5)

Note that the first and second line of Eq. (D.3) are already in Lindblad form. The third line, however,
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needs more work, but one can show that it can be brought to Lindblad form

Q
nm,kl

(d(1)nmd
(2)
kl − d

(1)
kl d

(2)
nm) σn σk ⋅ σl −

1

2
{σlσk, ⋅} σm −

1

2
σmσn, σk ⋅ σl −

1

2
{σlσk, ⋅} (D.6)

= −i Hdiss, ⋅ +Q
mn

ddissmn σm ⋅ σn −
1

2
{σmσn, ⋅} (D.7)

with resulting hamiltonian due to the dissipative parts,

Hdiss
= −2 Q

nmkq

εnmqRe(d
(1)
nk )Re(d

(2)
mk)σq, (D.8)

as well as

ddissnm = 2iQ
k

Im(d
(1)
nk d

(2)
mk − d

(1)
mkd

(2)
nk ). (D.9)

Therefore, in total the commutator reads

L
(1),L(2) = −i Hcoh

+Hdiss, ⋅ +Q
nm

(dc−dnm + d
diss
nm ) σn ⋅ σm −

1

2
{σmσn, ⋅} (D.10)

where we have also evaluated the terms coming from the mixed coherent and dissipative terms

dc−dnm = 2Q
kl

d
(1)
lm h

(2)
k − d

(2)
lm h

(1)
k εknl + d

(1)
nl h

(2)
k − d

(2)
nl h

(1)
k εkml . (D.11)

E. Matrix representation of the most general qubit Lindbladian

For the qubit the Hilbert space is H = ❈2. Under the identification

% =
⎛

⎝

a b

c d

⎞

⎠
→ S%⟩ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

a

b

c

d

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(E.1)

we may represent density matrices as vectors and superoperators as matrices. Here we provide an
explicit translation table of the superoperator into matrix notation for the most general static qubit
Lindbladian.

The most general Lindbladian has the form

L = −i Q
k

hkσk, ⋅ +Q
mn

dmn σm ⋅ σn −
1

2
{σnσm, ⋅} (E.2)
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with coefficient matrix

d =

⎛
⎜
⎜
⎜
⎝

a d + ie f + ig

d − ie b s + it

f − ig s + it c

⎞
⎟
⎟
⎟
⎠

. (E.3)

After some algebra one finds its matrix form as

L =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−a − b − 2e ih1 − h2 + f + is −ih1 − h2 + f − is a + b − 2e

ih1 + h2 + f − is − 2ig − 2t −2ih3 − a − b − 2c a − b − 2id −ih1 − h2 − f + is − 2ig − 2t

−ih1 + h2 + f + is + 2ig − 2t a − b + 2id 2ih3 − a − b − 2c ih1 − h2 − f − is + 2ig − 2t

a + b + 2e −ih1 + h2 − f − is ih1 + h2 − f + is −a − b + 2e

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

(E.4)

F. Degenerate perturbation theory in extended space for the
dissipative system

For the coherent system, it was shown [39] that a high-frequency expansion can be derived from a
canonical van-Vleck degenerate perturbation theory in the extended Hilbert space. Here we list the
steps that are necessary to generalize this ansatz to the open system.

To this end, let us suppose that we may divide the quasienergy superoperator in the following
fashion

Q̄ = Q̄0 + λV̄ (F.1)

where the spectrum of the operator Q̄0 is known. Note that since the system is dissipative, we need
to consider the right eigenvectors

Q̄0Sa,m⟫ = Ω
(0)
a,mSa,m⟫ (F.2)

as well as the left eigenvectors

⟪ã,mSQ̄0 = ⟪ã,mSΩ
(0)
a,m (F.3)

since for non-hermitian operators these will differ in general. Here we split the photon index m from
the eigenindex, since the spectrum will obey

Ω
(0)
a,m+n = Ω

(0)
a,m + nω. (F.4)

It holds the orthogonality relation

⟪ã,m Sb, n⟫ = δabδmn. (F.5)
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Note that even though we denote the eigenvectors as ket- and bra-vectors, they are actually density
matrices, so e.g. in Eq. (F.5) the inner product that is occurring is actually relying on the Frobenius
inner product

(A,B)F = tr(A
†B). (F.6)

Let us elaborate a bit on this point. The eigenvectors have the form

Sa,m⟫ ≡

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .

Φa,m,−1

Φa,m,0

Φa,m,1

. . .

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ⟪ã,mS ≡ . . . Φ̃a,m,−1 Φ̃a,m,0 Φ̃a,m,1 . . . , (F.7)

As we show in Appendix E as an example for the qubit, it is possible to map density matrices Φij

(here, i, j are the matrix indices) in the N -dimensional Hilbert space H onto N2-dimensional vectors
SΦ⟩ = SΦ11, . . .Φ1N ,Φ21, . . . ,ΦNN ⟩. Then, superoperators are just (non-hermitian) matrices of shape
N2 × N2. We can then use standard linear algebra to diagonalize the matrix representation of the
superoperator. For this matrix we find eigenvectors SΦb⟩, ⟨Φ̃aS fulfilling ⟨Φ̃aSΦb⟩ = δab. Translating it
back to density matrices we find

δab = ⟨Φ̃aSΦb⟩ =Q
i,j

Φ̃a
∗
ij
(Φb)ij = tr(Φ̃

†
aΦb) = (Φ̃a,Φb)F . (F.8)

Therefore, the inner product in the extended Hilbert space, Eq. (F.5), reads

⟪ã,m Sb, n⟫ =Q
k

(Φ̃a,m,k,Φb,n,k)F . (F.9)

Remarkably, using this language, one is able to generalize the perturbative procedure that was found
in Ref. [39]. The aim is to find a transformation to the new basis states of the perturbed problem,

Sa,m⟫B = D̄Sa,m⟫, B⟪ã,mS = ⟪ã,mSD̄
−1, (F.10)

such that in the transformed basis the quasi-energy operator is block diagonal,

Bub̃,mTQ̄Sa,n⟫B = 0, ∀m ≠ n. (F.11)

It is clear that the left eigenvectors have to transform with D̄−1, because also in the transformed basis,
it has to hold B⟪ã,m Sb, n⟫B = δabδmn.

Now, like in the coherent case [39], we can separate the block-diagonal part of this equation

D̄
−1
(Q̄0 + λV̄D + λV̄X)D̄ D

= Q̄0 + W̄D, (F.12)
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from the block-off-diagonal part

D̄
−1
(Q̄0 + λV̄D + λV̄X)D̄ X

= 0. (F.13)

with some block diagonal operator W̄ = W̄D. Here, we use the convention

ĀD =Q
m

P̄mĀP̄m, ĀX = Q
m≠n
P̄mĀP̄n (F.14)

with projector P̄m = ∑a Sa,m⟫⟪ã,mS. By representing the rotation as

D̄ = exp(ḠX) it directly follows D̄
−1
= exp(−ḠX). (F.15)

Here the rotation Ḡ = ḠX is chosen such that it does not affect the blocks with the same photon
number m. We then can expand the operators

ḠX =
∞
Q
n=1

λnḠ
(n)
X , W̄D =

∞
Q
n=1

λnW̄
(n)
D , (F.16)

plug this into Eq. (F.12) and Eq. (F.13), sort it by orders of λ and find exactly the same expressions
as in Appendix C of Ref. [39]. Let us just present the first nontrivial order ∝ λ1, where it has to hold

W̄
(1)
D = V̄D, as well as Ḡ

(1)
X , Q̄0 = V̄X . (F.17)

Very similar to the coherent case, the occurring commutators Ḡ(n)X , Q̄0 may be unraveled by taking
matrix elements of the form

⟪ã,mS Ḡ
(1)
X , Q̄0 Sb, n⟫ = (Ωa,m −Ωb,n)⟪ã,mSḠ

(1)
X Sb, n⟫ = ⟪ã,mSV̄X Sb, n⟫, (F.18)

with m ≠ n. Therefore, we see that the argumentation for the closed system can be directly translated
to the open system by replacing the real quasienergies ε(0)a,m with the complex eigenvalues Ω

(0)
a,m, the

bra-vectos ⟪a,mS with left eigenvectors ⟪ã,mS and the rotation Ū with D̄ as well as Ū † with D̄−1.

Thus, like in the coherent case, we may find a high-frequency expansion of the superoperator by
taking

Q0 = −i∂t, such that Q0Sa,m⟫ =mωSa,m⟫ (F.19)

and with the natural basis Sa,m⟫. Note that Q0 is hermitian, therefore the left eigenvectors are just
⟪a,mS.
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G. Fourier components of the superoperator generating the rotating
frame transformation

Here we prove Eq. (3.119) which provides an explicit expression of the extended-space superoperator Λ̄
generating the (generalized) rotating frame transformation for an operator of the form of Eq. (3.118).

By definition

Λn =
1

T
S

T

0
dte−inωt exp S

t

0
dt′Ld(t

′
) . (G.1)

We can further evaluate this expression if we assume that, like for our model system, it holds that

Ld(t) = φ(t)L
′
d (G.2)

with some periodic scalar function φ(t) = ∑m≠0 e
imωtφm. Then we may evaluate

S

t

0
dt′Ld(t

′
) = χ(t)L′d with χ(t) = S

t

0
dt′φ(t′) = Q

m≠0

eimωt − 1

imω
φm. (G.3)

We may rewrite eimωt − 1 = cos(mωt) − 1 + i sin(mωt). This gives

Λn =
1

T
S

T

0
dte−inωt exp Q

m≠0

sin(mωt)

mω
φmL

′
d + Q

m≠0

cos(mωt) − 1

imω
φmL

′
d (G.4)

=
1

T
S

T

0
dte−inωt M

m≠0
exp

sin(mωt)

mω
φmL

′
d exp

cos(mωt) − 1

imω
φmL

′
d (G.5)

We may now represent L′d using its spectral decomposition

L
′
d =Q

a

λaUΦ
(d)
a {vΦ̃

(d)
a U (G.6)

and may use the Bessel functions of first kind Jn to evaluate

f (m)n (x) =
1

T
S

T

0
dte−inωt+ix sin(mωt)

=
1

T
S

T

0
dte−inωtQ

k∈❩
Jk(x)e

ikmωt (G.7)

=

⎧⎪⎪
⎨
⎪⎪⎩

Jn~m(x) if n = km,k ∈ ❩
0 else.

(G.8)

Similarly, with the modified Bessel functions of first kind In we find

g(m)n (x) =
1

T
e−xS

T

0
dte−inωt+x cos(mωt)

=

⎧⎪⎪
⎨
⎪⎪⎩

e−xIn~m(x) if n = km,k ∈ ❩
0 else.

(G.9)

Note that in Eq. (G.5) occurs the Fourier transform of a product of the functions that we transformed
above, which gives rise to a relatively involved structure. A compact form can be obtained in extended
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Hilbert space where it holds

Λ̄ =Q
a
M
m≠0

f̄ (m)
φmλa
imω

ḡ(m)
φmλa
imω

UΦ(d)a {vΦ̃
(d)
a U (G.10)

= M
m≠0

f̄ (m)
φmL

′
d

imω
ḡ(m)

φmL
′
d

imω
. (G.11)

H. Explicit calculation of the perturbative expansion in extended
space for the driven-dissipative qubit

Instead of the explicit rotating-frame transformation on the level of the superoperator, as presented in
Sec. (3.4.4) for the driven-dissipative qubit, here we calculate the components L̃n in matrix represen-
tation by using Eq. (3.123). This matrix representation can be used to evaluate the Floquet-Magnus
expansion numerically.

For our model system, by using Eq. (E.4) we find the matrix representations

A = iL1 = iL−1 =
E

2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 −1 1 0

−1 0 0 1

1 0 0 −1

0 1 −1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and L0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−4γ 0 0 0

0 −i − 2γ 0 0

0 0 i − 2γ 0

4γ 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (H.1)

We start by diagonalizing the Hermitian matrix A. One can show that A = UDU † with

U =
1

2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−1 0
√
2 −1

−1
√
2 0 1

1
√
2 0 −1

1 0
√
2 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and D =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−E 0 0 0

0 0 0 0

0 0 0 0

0 0 0 E

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (H.2)

As can be seen from the power series of Jk it holds that Jk(−2A~ω) = UJk(−2D~ω)U † yielding

Jk −
2A

ω
=
1

2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ak ck −ck bk

ck ak bk −ck

−ck bk ak ck

bk −ck ck ak

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(z). (H.3)

where we set z = 2E~ω and define the functions

ak(z) = ekJk(z) + δk0, (H.4)

bk(z) = −ekJk(z) + δk0, (H.5)

ck(z) = okJk(z) (H.6)
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Here we have used that Jk(0) = δk0, Jk(−z) = (−1)kJk(z) and the definitions

ek =

⎧⎪⎪
⎨
⎪⎪⎩

1, k even,
0, k odd,

and ok =
⎧⎪⎪
⎨
⎪⎪⎩

0, k even,
1, k odd.

(H.7)

With this, we evaluate

L0Jk −
2A

ω
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−4γak −4γck −4γck 4γbk

(−i − 2γ)ck (−i − 2γ)ak (−i − 2γ)bk (i + 2γ)ck

(−i + 2γ)ck (i − 2γ)bk (i − 2γ)ak (i − 2γ)ck

4γak 4γck −4γck 4γbk

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(z), (H.8)

and

L̃n = Q
k∈❩

Jk−n −
2A

ω
L0Jk −

2A

ω

= −γQ
k∈❩

Jk−n (z)Jk (z)

⎛
⎜
⎜
⎜
⎜
⎜
⎝

enpk onqk −onqk −enpk

onpk enqk −enqk −onpk

−onpk −enqk enqk onpk

−enpk −onqk onqk enpk

⎞
⎟
⎟
⎟
⎟
⎟
⎠

− γδn0

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

+
1

2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−4γenJ0 −ionJ0 −ionJ0 −4γenJ0

on(−4γJ0 − iJn) −ien(J0 + Jn) −ien(J0 − Jn) on(−4γJ0 + iJn)

on(4γJ0 + Jn) −ien(−J0 + Jn) −ien(−J0 − Jn) on(4γJ0 + iJn)

4γenJ0 ionJ0 ionJ0 4γenJ0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(z) ,

(H.9)

with pk = 2ek + ok, as well as qk = 2ok + ek. Therefore, we finally find the representation of the zeroth
order expansion

K
(0)
= L̃0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−γ[2J0 + 2f + g] 0 0 −γ[2J0 − 2f − g]

0 −iJ0 − γ[1 + f + 2g] −γ[1 − f − 2g] 0

0 −γ[1 − f − 2g] iJ0 − γ[1 + f + 2g] 0

γ[2J0 + 2f + g] 0 0 γ[2J0 − 2f − g]

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(z)

(H.10)

where we define f(z) = ∑k∈❩ ekJk(z)
2 as well as g(z) = ∑k∈❩ okJk(z)

2. Note that it holds,

f(z) + g(z) = Q
k∈❩

Jk(z)
2
= 1, (H.11)
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which allows to express K(0) in terms of J0(z) and g(z) only

K
(0)
=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−γ[2J0 + 2 − g] 0 0 −γ[2J0 − 2 + g]

0 −iJ0 − γ[2 + g] γg 0

0 γg iJ0 − γ[2 + g] 0

γ[2J0 + 2 − g] 0 0 γ[2J0 − 2 + g]

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(z). (H.12)

By comparing the matrix representation K(0) to the most general form of the qubit Lindbladian,
Eq. (E.4), we find the Hamiltonian and the dissipator matrix,

K
(0)
= L(H,d) with H =

J0(z)

2
σz, and d = γ

⎛
⎜
⎜
⎜
⎝

1 iJ0(z) 0

−iJ0(z) 1 − g(z) 0

0 0 g(z)

⎞
⎟
⎟
⎟
⎠

. (H.13)

Note that this is exactly the same result that we obtained in Eq. (3.102). To see this, we use the
Bessel function identity Jn(y + z) = ∑k∈❩ Jk(y)Jn−k(z) to rewrite

J0(2z) = Q
k∈❩

Jk(z)J−k(z) = Q
k∈❩
(−1)kJk(z)

2
= Q

k∈❩
ekJk(z)

2
−Q

k∈❩
okJk(z)

2
= f(z) − g(z). (H.14)

Together with f(z) + g(z) = 1 we find that

g(z) =
1

2
[1 − J0(2z)] . (H.15)

I. Effective rates for the wavelet method

Remarkably, the semiclassical wavelet method reproduces thermal states up to a few percents for an
equilibrium situation where γ‘ = γ and T‘ = T . Why the method performs so good can be seen for
the noninteracting gas, U = 0, without a trapping potential, Vi = 0. Then one finds that within the
semiclassical method the effective rates between the eigenstates k are identical up to order T to the
exact thermal rates in the limit of high temperatures T ≫ J .

Similar to the kinetic Eq. (6.18) in real space, one may find equations of motion for the single
particle density matrix ⟨c†kcq⟩ in k-space, c†k = ∑

M−1
j=0 eikja†

j~
√
M . Therefore we express the wavelet

operators in terms of k-space operators b†q(j) = ∑k e
−ikjφq(k)c

†
k~
√
M where φq(k) = ∑s−1

r=0 e
−ikrϕq(r).

Plugging this into the semiclassical Eq. (6.13) we find for the dissipative evolution

∂t⟨c
†
kcq⟩diss =

1

2
Q
lpm

Reff
kl,pm⟨c

†
l cqc

†
pcm⟩ −R

eff
lq,pm⟨c

†
kclc

†
pcm⟩ + c.c., k↔ q (I.1)

which obeys the same form as the equation of motion that one finds for the exact Born-Markov
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evolution, Eq. (6.3), but with effective rates

Reff
kl,pq =

1

sM2

M−1
Q
j=0
Q
αβγδ

Rαβ,γδ(j)e
i(k−l−p+q)jφ∗α(k)φβ(l)φγ(p)φ

∗
δ(q) . (I.2)

As discussed in the Sec. 2.3.3, the evolution leads to the density matrix being diagonal in the eigenbasis
of the Hamiltonian, ⟨c†kcq⟩ = n̄kδkq. Given the mean-field decompositions, in the first term in Eq. (I.1)
only rates of the type Reff

kl,kl and Reff
kk,ll are dominating the asymptotic dynamics. Note that due to the

second term the rates Reff
kk,ll drop out and only rates of type Reff

kl,kl are left. Here we show for the case
of the bin with two sites, s = 2, for an ohmic bath, these rates coincide with the thermal rates Rkl,kl

in the first two orders of a high-T expansion.

Using the definition of Rαβ,γδ(j) for the equilibrium case where γ‘ = γ and T‘ = T , and φα(k) =

∑
s−1
r=0 e

−ikrϕα(r), we may perform the sum over α and β in Eq. (I.2) and use the orthonormality of
the wavelets, ∑αϕ

∗
α(r)ϕα(r

′) = δrr′ , to find

Reff
kl,kl =

2πγ2

h̵sM
Q
γδ

φγ(k)φ
∗
δ(l)f

γ
δ (k − l)g(ε

WL
γ − εWL

δ ). (I.3)

Here we have defined fγδ (k) = ∑
s−1
r=0 ϕ

∗
γ(r)ϕδ(r)e

ikr. From now on let us restrict to the s = 2 case. In
this case, the wavelet basis reads ϕγ(r) = (−1)

γr~
√
2 (let us, for simplicity label the wavelet basis

γ = 0,1). Then we have φγ(k)∝ 1+ (−1)γe−ik and fγδ (k)∝ 1+ (−1)γ+δeik. Putting this together gives

Reff
kl,kl =

2πγ2

h̵4M
Q
γδ

[1 + (−1)γ cos(k) + (−1)δ cos(l) + (−1)γ+δ cos(k − l)]g(εWL
γ − εWL

δ ). (I.4)

Note that up to now this is an exact expression for the effective rates in the case of bin size s = 2. We
find that the effective rates are up the first order reproducing the exact rates in the limit where k and
l are close, such that Sk − lS≪ 1 and we may approximate cos(k − l) ≈ 1. Under this approximation, it
holds

Reff
kl,kl =

2πγ2

h̵M
g(0) +

1

4
(cos(k) − cos(l)) (g(−4J) − g(4J)) . (I.5)

Now if we perform a high-temperature expansion, T ≫ ε, of the bath correlation function

g(ε) =
ε

eε~T − 1
≈ T −

1

2
ε + TO

ε2

T 2
(I.6)

we recover exactly the high-temperature expansion of the exact rates

Rkl,kl =
2πγ2

h̵M
g(εk − εl) ≈

2πγ2

h̵M
T −

1

2
−2J cos(k) + 2J cos(l) . (I.7)

Note that within this calculation we explicitly use that the spectral density is ohmic, J(E) ∝ E. A
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generalization to other spectral densities is not obvious.
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