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Introduction

Waste incineration releases a variety of extremely different com-

pounds containing, for example, chlorine, sulphur and heavy met-

als (Mueller et al., 2010). During combustion most of these 

components are released as vapour, liquid droplets or small solid 

particles and form deposits on the water walls, which negatively 

affects the combustors in two ways: First, deposits reduce the heat 

transfer (Gupta et al., 1999) and second, they are corrosive, which 

may lead to a damage of the water walls (Bryers, 1996). To avoid 

these two problems, the deposits have to be removed during the 

plant operation (Mueller et al., 2010). Material properties of the 

deposits, e.g. strength, porosity, thermal conductivity and others, 

are inhomogeneous and highly dependent on the original fuel 

composition and on the process control. The exact properties of 

deposits are unknown during operation. Different deposit struc-

tures need different cleaning adjustments (Zbogar et al., 2009). As 

a result, a general optimisation of cleaning mechanisms for the 

present types of deposits is not possible, yet. To improve the 

cleaning efficiency, empiric investigations concerning the influ-

ence of impact time and impact pressure, aimed at identifying the 

principle cleaning mechanisms, were performed by the authors. 

One focus of this work was to classify the deposits and to analyse 

the optimal cleaning parameters for every classification group. 

The investigations were carried out in two steps. At first, different 

deposits were collected from a waste incinerator and grouped by 

their material structure. Additionally, the effect of thermal stress 

was tested with these sample deposits. Further investigations were 

carried out at a test rig of the Technische Universität Dresden: 

Model deposits with defined properties were investigated to deter-

mine the influence of single parameters on the cleaning results; 

here the material porosity, the deposit temperature and the 

momentum of the water jet. This article contains investigation 

results of both measurement campaigns.

Deposits and deposit cleaning systems

Current investigations very often focus on the ash properties, but 

they do not investigate the most suitable cleaning setup for the spe-

cific type of deposit. A detailed description of ash in biomass-fired 
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boilers can be found in Sandberg (2011). The deposit formed by the 

ash is usually classified into two groups – slagging and fouling. 

Between these two, there is a more or less gradual transition 

(Żelkowski, 2004). Slagging occurs primarily in the radiation sec-

tion, while fouling can be found on the walls of the superheater 

packages and water walls in convection passes. In Erickson et al. 

(1995), the fouling and slagging within coal-fired boilers were 

described, and a slagging growth model as well as a fouling model, 

were developed. Baxter et al. (1996) analysed the deposits in bio-

mass-fired boilers and focused on the alkalis within them. The 

deposit formation in biomass-fired boilers is described by 

Obernberger et al. (1997) and Obernberger and Biedermann (1997), 

with the focus on the influence of heavy metals. Skrifvars et al. 

(2004) investigated the deposit formation in a pulverised wood-

fired boiler through deposit sampling and the collection of fly ash.

The mechanism of deposit formation in general, with focus on 

coal-fired boilers, is pictured (Bryers, 1996; Gumz et al., 1958; 

Raask, 1985; Żelkowski, 2004) giving detailed descriptions on 

the deposit formation process and the deposit composition of 

coal ash. Transferring these findings to waste incinerators is par-

tially possible, because biomass, and waste in particular, have a 

very inhomogeneous constitution. Fewer sources analyse the ash 

of waste incinerators. Viklund (2013) describes the corrosion in 

biomass and waste-fired boilers in the superheater section, while 

Frandsen et al. (2001) investigated both fly ash and the deposit 

formation process inside a waste incinerator. A good summary of 

the state of knowledge regarding the physical properties of bio-

mass deposits is presented by Zbogar et al. (2009). The scope of 

that review is especially the comparison of deposit strength and 

occurring stresses. The article gives an overview of typical clean-

ing mechanisms and classifies the deposits into four main groups, 

namely: powdery, lightly sintered, heavily sintered and liquid 

slag. They propose a cleaning effect through mechanically and 

thermally induced stresses. The result of these stresses could be a 

break-up owing to high internal force or a removal of the deposits 

from water walls. This knowledge shall be adapted to the depos-

its from waste incinerators.

Several cleaning systems exist on the market, which use dif-

ferent methods to remove the deposits during plant operation. 

The basic principles of these methods are either mechanically or 

thermally induced stresses that are created inside the deposits. 

The following online cleaning systems are based on a mechanical 

cleaning method.

1. Explosion: The cleaning is caused by pressure waves that are 

generated via a targeted explosion of a gas mixture. The 

explosion is initialised from an explosion generator. The 

tubes and walls oscillate and thereby the deposits loosen from 

the water walls (Luedi, 2011; Zilka et al., 1998).

2. Pneumatic knocking: A knocking system sets the heat 

exchanging surfaces also into oscillation. This results in a 

loss of bonds and therefore a removal of the deposits. The 

system is preferably used to clean superheater coils (Gehlen 

and Mergler, 2000; von Paczkowksi, 1995).

3. Sonic and infrasonic: The deposits are impinged with sonic or 

infrasonic waves. This cracks the deposit structures and loos-

ens them from the water walls (Norris, 1996; Saikia et al., 

2014).

4. Water-cannon: A high-pressure water jet blows off the depos-

its. The water jet follows a cleaning path. Therefore this 

cleaning system allows a very precise adjustment to the local 

deposit condition. The pressure of the cleaning medium can 

be adjusted to the deposit type to improve the cleaning result 

(Mueller et al., 2010; Scharton and Taylor, 1990).

5. Soot-blower: Process steam is blown with the aid of a soot 

blower under low pressure onto the water walls. The typical 

operating location is within the superheater package. Through 

the rotation of the blower, an adjusted cleaning is possible, 

but operating costs are high owing to the loss of process 

steam. The supersonic jet drills into the deposit and cracks it 

immediately during the exposure (Pophali et al., 2013).

The following online cleaning systems are based on a thermal 

cleaning method.

1. Water-cannon: The water jet temperature is beneath 100 °C. 

Hence, the water jet induces a very high temperature gradient 

and therefore causes thermal stresses. The smart cleaning is 

important to avoid thermal fatigue of the water walls 

(Coleman, 2007; Jameel, 1999).

2. Shower-cleaning: The shower-cleaning system consists of a 

shower head that is moved through the incinerator while it 

sprays water onto the water walls. The water washes the 

deposits and induces high thermal stresses comparable with 

those from a water jet. This method is only applicable to com-

bustion chambers with empty passes and a small cross section 

(Mueller et al., 2010).

Materials and methods – Study 1

Study design

The thermal stress within deposits depends on many different 

factors, e.g. the Young’s modulus or the heat transfer coefficient. 

That is why some deposits are suitable for cleaning methods 

based on thermal stress while others show no effect. To approach 

the decision of whether or not a deposit type is suitable for ther-

mal cleaning methods, they have to be classified into main groups 

according to their composition. To do so, the experiments pre-

sented in the following were carried out.

The major problem of most cleaning mechanisms is the lack of 

information about the deposits and the correlation to the operating 

principle. Therefore, a systematic collection of several deposits 

and an analysis of their properties were necessary to provide an 

overview over the existing sorts of deposits. In the past, several 

possible cleaning mechanisms were determined (Kaliazine et al., 

2010; Zbogar et al., 2009). One of the major mechanisms is ther-

mal stress. The present investigation aimed at separating mechani-

cal influences from thermally induced stresses. An experimental 
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setup was developed that avoids mechanical cleaning and allows 

the occurrence of thermal stresses and evaporation.

The focus of the first experiment was the investigation on 

the influence of water on deposit removal under operational 

conditions. The avoidance of any cooling by the surrounding 

area during the measurement was critical, as this would result in 

a change of the deposit structure and, thus, its strength. That is 

why the investigations were carried out on-site at the combus-

tion chamber of the municipal waste incinerator in Kassel, 

Germany. Figure 1 depicts the setup. The apparatus consisted  

of a heated chamber that was connected to a drop batcher.  

A thermocouple measured the gas temperature inside the cham-

ber. A valve allowed access to the combustion chamber of the 

incinerator. A probe was slid into the combustion chamber and 

stayed there for several hours depending on the desired layer 

thickness of the deposit on the probe. Afterwards, the probe was 

pulled out of the combustion chamber and then was held inside 

the heated chamber of the testing device directly below the  

drop batcher. The water was dosed in droplets onto the hot 

deposits.

The probe itself consisted of a long outer metal pipe that was 

closed at the end facing the combustion chamber, and an inner 

pipe that served for cooling through compressed air. The com-

pressed air exited the inner pipe at the probe tip, flew backwards 

between the outer and inner pipe, and left at the cold end of the 

pipe. Several thermocouples at the inner side of the outer pipe 

measured the probe temperature and served as an input signal for 

the flow control. The flow control realised a constant surface 

temperature. The experiments were carried out at different loca-

tions inside the line 4 incinerator in Kassel. The steam generator 

had a steam mass flow of 36.3 tonnes per hour, with a live steam 

temperature of 420 °C and a live steam pressure of 4.2 MPa. As 

depicted in Figure 2, the experiments were carried out at two dif-

ferent locations.

To retrieve comparable results, all experiments were carried 

out using the following parameters.

•• The water droplets were applied at three locations onto the 

probe, located at 60 mm, 160 mm and 260 mm from the tip.

•• The probe temperature measured at a distance of 30 mm from 

the tip remained constant at 260 °C.

•• The amount of water droplets was 20, with a frequency of 1 

droplet per second.

•• The flue gas temperature was measured at both locations as 

790 °C at the first measurement position and 690 °C at the 

second one.

Altogether, six measurement series were carried out.

•• Three experiments at the first measurement location with a 

duration of 16 hours inside the combustion chamber.

•• One experiment at the first measurement location with a 

duration of 40 hours.

•• Two experiments at the second measurement location with a 

duration of 16 hours respectively.

Figure 1. Setup and functionality of the experimental system with (a) the probe inside the combustion chamber and (b) the 
probe inside the heated chamber.

Figure 2. Measurement location inside the boiler.
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Measurement execution

All probes were treated in the same way: After applying the 

water, all probes were compared regarding their layer thickness 

and the effect of the water droplets. The probes that remained 

inside the incinerator for 16 hours had a layer thickness of 1 mm 

to 4 mm. At the locations of the droplets, a removal of the depos-

its was visible. Obviously, some parts were split off. Here, the 

occurrence of thermal stress was very likely. Other parts were 

dissolved. These deposits consisted of salt layers, which were 

soluble in water.

Probe 4 lasted 40 hours at the same location as the first three 

probes. The deposit layer was much thicker (11 mm to 18 mm). 

Upstream side and downstream side were clearly distinguished. 

There was almost no visible effect of the water droplets. Hence, 

neither the thermal stress had an effect on the deposit nor was it 

dissolved or washed.

The two probes collected at the second location had clearly 

visible upstream and downstream sides from the flow inside the 

incinerator. The layer thickness lay within 9 mm to 14 mm. The 

impact point of the droplets was visible by eye, but no removal of 

the deposits occurred.

The comparison of all six probes showed a connection 

between the layer thickness and the thermal stress; the thicker 

the layer, the lower was the effect of thermal stress. We assume 

that the deposit structure is responsible for that. The very thin 

layer on the pipe was either sintered and very compact or con-

sisted of salt while the material structure of the thick layer was 

more porous and not as vulnerable for thermal gradients. That 

connotes that not the layer thickness itself but the constitution of 

the deposit was responsible for the cleaning effect through ther-

mal stress. To draw a conclusion about that, the material proper-

ties have to be similar for two experiments with different layer 

thicknesses. The results of the first measurement campaign are 

summarised in Table 1.

The results of the investigations showed that the cleaning 

effect of thermal stresses differs depending on the deposit type. 

To determine the influence of specific parameters, it is necessary 

to avoid unknown parameter constellations. The deposit proper-

ties have to be well-known to draw inferences about their reac-

tion to stresses during the cleaning cycle. This is why a second 

measurement campaign used model deposits with known mate-

rial properties. The following section describes the procedure and 

study design of these measurements.

Parameter study – Study 2

Study design

In a second measurement series, a test rig was used to analyse the 

cleaning efficiency of water jets on different deposits with known 

material structures. Following the experimental setup, the proce-

dure and the obtained data are described.

The experimental setup consisted of a natural gas burner, a 

combustion chamber, a middle chamber to even flow and tem-

perature distribution and the actual water jet. Inside the water jet 

chamber was a water jet cannon opposed to a superheater wall 

segment. Air flew through this segment to control the tempera-

ture. A model deposit was attached to the water wall. The air that 

streamed through the wall segment was preheated to model a 

steam temperature as in practical water walls. The exhaust gas 

streamed from the combustion chamber through the homogenisa-

tion chamber into the water jet chamber where it heated the 

deposit. Afterwards, the exhaust gas exited through the exhaust 

duct. The whole setup is shown in Figure 3.

Thermocouples were located within the deposit, which record 

the temperature profile of the model deposit. Figure 4 depicts the 

size and shape of the model deposit, including the position of 

three thermocouples that were installed in several distances from 

the heat exchanging surface of the superheater wall.

First, the probes were prepared in moulds to guarantee the 

same shape for all of them, afterwards they hardened for several 

days. Finally, the model deposits were fixed to the wall segment 

with gypsum. When the deposit reached a constant temperature 

Table 1. Effect of water droplets on different deposit types.

Deposit type and effect of water droplets Deposits on the probe Layer Lasting time

Thin salt layer: Water 
dissolves deposits

1 mm 16 hours

Crusty layer splits off 2–4 mm 16 hours

Thick layer of fine-
grained particles 
remains without effect

10–18 mm 40 hours
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state, a water jet was imposed onto the deposit and the immediate 

cooling of the deposit was recorded by the thermocouples. All 

jets were applied to the deposits with water at a pressure of 

0.45 MPa. The water nozzles were solid cone nozzles. The impact 

time was set to 3 seconds. An optical port allowed a visual moni-

toring of the process.

The aim of the measurement series was to gain information 

about the influence of the material properties, deposit tempera-

ture, and momentum on the material removal and the crack 

growth. It should be mentioned that the following presented 

results are not a systematic investigation. In the first step, the 

main influencing parameters shall be determined that form a 

basis for future experiments.

Measurement execution

The first study showed that the interaction of porosity and mate-

rial strength plays a significant role for the cleaning, especially 

Figure 3. Measurement setup of the testing field.

Figure 4. Shape and measure of the model deposit.
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for the use of thermal stress. This strongly influenced the choice 

of the model deposit. Three different types of model deposits 

were created to analyse the influence of the material properties. 

All three deposits contained gypsum as a basis material. The idea 

was, to create a compact and a porous material with similar 

strength and a third compact material with less strength. 

Therefore, the first model deposit was made of compact, hard and 

fine-grained gypsum only. To increase the porosity, the second 

deposit was a mixture of gypsum and styrofoam (50 vol%, 

respectively). During the heating of the deposit, the styrofoam 

burned and left large pores inside the material. Hence, the deposit 

was porous, but still hard and fine-grained. The third type was a 

mixture of sand and gypsum (80 vol% sand and 20 vol% gyp-

sum), which made the deposit relatively loose. It consisted of 

gritty sand grains that were loosely connected and the material 

was brittle. All three deposits were treated in the same way.

•• The surface was preheated to approximately 540 °C to 570 °C.

•• The jet spray duration was 3 s.

•• The flowrate was 0.36 L s−1 of cleaning water.

•• The water pressure was 0.45 MPa.

The third deposit type, the sand-gypsum-mixture, was also used 

in the second parameter study. It was cleaned for 3 s with 

0.63 L s−1. The surface varied for four different probes from 

20 °C, to 250 °C, 335 °C and 540 °C.

Afterwards, a third study has been concerned with the influ-

ence of the momentum. To realise the experiments, four constel-

lations were selected.

•• Sand–gypsum mixture, 540 °C surface-temperature, 0.36 L s−1 

water, 3 s.

•• Sand–gypsum mixture, 540°C surface-temperature, 0.63 L s−1 

water, 3 s.

•• Sand–gypsum mixture, 325°C surface-temperature, 0.36 L s−1 

water, 3 s.

•• Sand–gypsum mixture, 325°C surface-temperature, 0.63 L s−1 

water, 3 s.

The difference in the surface temperature was necessary to deter-

mine the influence of the mechanical stresses.

Results and discussion

Influence of the deposit structure

As expected, all three deposits showed different cleaning behav-

iours. While the gypsum remained almost completely intact, the 

more porous gypsum–styrofoam mixture had large removals in 

the core area. This porous and fine-grained deposit broke imme-

diately through cracking. Probably, this was a result of the high 

thermal stress during the immediate cooling. The gypsum–sand 

mixture showed the most visible effect. The whole surface area 

was removed; large parts were split-off up to the base, so that all 

three thermocouples were exposed. A prediction of the dominant 

cleaning mechanism was impossible owing to the brittle structure 

of the model deposit. Both the momentum and the thermal stress 

could be responsible for the shattering of the deposit.

Influence of the deposit temperature

Besides the material properties, the deposit temperature affects 

the cleaning efficiency. While the material properties are relevant 

for every cleaning principle, the temperature mainly affects the 

thermal stress within the deposit. The lower the deposit tempera-

ture, the smaller is the temperature gradient between the water 

and the deposit. A high temperature gradient results in large ther-

mal stress. The following hypothesis is derived: If thermal stress 

contributes to the cleaning result of a deposit type, the cleaning 

effect must be larger for hotter deposits.

The gypsum–sand mixture showed a good cleaning ability 

during the first parameter study. Nonetheless, a statement whether 

the thermal stress or the mechanical stress was responsible for 

this result was not possible. Thus, this mixture was very suitable 

for the second parameter study. The results showed that the 

deposit removal strongly depended on the deposit temperature. 

The reason was the increase of the thermal stress inside the 

deposit for higher surface temperatures. At ambient tempera-

tures, the cleaning was achieved through a mechanical impact. 

The heated deposits were subject to larger temperature gradients 

as they became hotter and, thus, to thermal stresses. In detail, the 

results were the following.

The deposit with 20 °C surface temperature showed only 

14 mm abrasion in the area of the water jet. The surrounding area 

remained unaffected. The deposit with a surface temperature of 

250 °C was reduced by 20 mm. Additionally, lesser removal was 

visible in the surrounding area. The probe with a surface tem-

perature of 335 °C already showed abrasion up to 24 mm and 

removal of the deposit over the whole surface. Finally, the hottest 

deposit, with a surface temperature of 540 °C, was removed to a 

depth of 40 mm with strong wear over the whole surface area. As 

a result, both the mechanical and thermal stress served for an 

effective cleaning of the deposit; with increasing deposit tem-

perature, the effect of the thermal stress grew strongly. It was not 

possible to determine the absolute increase in thermal stress, 

because the change of the material strength owing to higher 

ambient conditions was unknown. Possibly, the material strength 

decreased for hotter deposits. However, undoubtedly the results 

showed a high contribution of the thermal stress to the cleaning 

efficiency.

Influence of the momentum

The third parameter was the momentum. The hypothesis to this 

parameter is the following: If the cleaning improves at low sur-

face temperatures with an increasing momentum, the momen-

tum affects the mechanical stresses. A repetition of this 

experiment at a high surface temperature determined the effect 

of the momentum on the thermal stresses. If both experiments 
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show no significant change in the cleaning result, the influence 

of the momentum is negligible.

The results showed an increase in the deposit removal for a 

higher momentum at a surface temperature of 540 °C. By con-

trast, the cleaning efficiency did not improve with a higher 

momentum at a surface temperature of 325 °C. This indicates that 

the dependency of the thermal stresses on the momentum is 

larger than the dependency on the mechanical stresses to the 

momentum. As in incinerators, the surface temperatures are 

higher than in the experiments carried out, an increase of the 

momentum is a possible option to improve the cleaning process.

Summary of the results

The first measurement campaign implied a strong dependency of 

the occurring thermal stress on the deposit structure. To validate 

this hypothesis, a second study investigated single parameters 

and their effect on the cleaning through thermal stress. The ana-

lysed parameters were the deposit structure, the deposit tempera-

ture and the momentum of the jet. The results for all three 

parameter studies are summarised in Table 2.

To illustrate these results more clearly they are qualitatively 

shown in Figure 5.

The figure shows distinctly the dependency of the surface 

temperature and the deposit removal, as well as the dependency 

of the material and the deposit removal. The white bars stand for 

the original deposit height, while the grey bars show the remain-

ing deposits after the water cleaning. A repetition of the experi-

ments showed similar results.

Conclusion

Owing to the results of the first measurement campaign at the 

incinerator in Kassel, we were able to identify three different 

deposit types at the specific measurement positions. Further 

types at other positions (e.g. the superheater section) are very 

likely. The presented types vary in material properties and layer 

thickness. It was ascertained that the reaction to the thermal stress 

induced by spraying with water is strongly dependent on the 

material properties. Thus, not every deposit type could be cleaned 

through the thermal stress. In future, we recommend the method 

used in Study 1 to investigate more deposit compositions and 

their reaction on thermal stresses. This is not only useful at other 

sections, but also for different fuel compositions. Additionally, 

we suggest an extension of the experimental setup, to enable a 

study of other cleaning effects. To support the findings, a second 

measurement study followed. It consisted of three parameter 

studies, namely the material properties, the deposit temperature 

and the amount of water. All three parameter studies showed an 

influence on the cleaning result. Summarised, the main findings 

are the following.

•• The material properties strongly influence the cleaning result. 

Crucial are the deposit’s porosity, grain-size and material 

strength.

•• Thermal stresses are an important cleaning mechanism; the 

larger the temperature gradient, the better the cleaning result.

•• An increase of the amount of water is especially useful if this 

leads to an increase of the thermal stress, i.e. for high surface 

temperatures.

The presented results give an overview of the influence single 

parameters have on the cleaning result of deposits inside waste 

incinerators. Dependencies could be isolated and investigated 

separately; however, the present data only allows qualitative con-

clusions. To realise a more quantitative analysis, the current 

results have to be implemented into a mathematical model. Such 

a model would allow more precise parameter studies. Further 

Table 2. Results of the parameter studies.

Material Characteristics Surface temperature Amount of water Result

Gypsum Compact, hard, fine-
grained

570 °C 0.63 L s−1 Removal of thin layer at the surface

Gypsum + 
Styrofoam

Porous, hard, fine-
grained

570 °C Large removal in core area

Gypsum + 
Sand

Gritty sand grains (app. 
1 mm), relatively loose 
connected, brittle

540 °C Large area of deposit removed 
completely up to the base

20 °C 0.36  L s−1 Removal of core area: 14 mm;
surrounding area unaffected

250 °C Removal of core area: 20 mm; removal 
of surrounding area visible

335 °C Removal of core area: 24 mm; removal 
of whole deposit surface visible

540 °C Removal of core area: 40 mm; removal 
of whole deposit surface visible

540 °C 0.36  L s−1 Larger amount of water results in 
larger material removal0.63  L s−1

325 °C 0.36  L s−1 No increase of removal through 
increase of amount of water0.63  L s−1
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experiments can contribute to the knowledge about deposits and 

help validate modelling assumptions. A continuation of the meas-

urement campaign has to change from the qualitative level to a 

more systematic analysis that gradually changes all cleaning 

parameters instead of picking selective parameters. This study 

can include the following parameters: Nozzle size, lasting time of 

the water jet, water pressure, probe temperature, flue gas tem-

perature and probe material.
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