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1 Introduction 

 

 

1.1 Fibroblasts 

Fibroblasts are cells ubiquitously present in the human body (Doppler et al., 2017). 

Based on histological examinations of the heart, most authors agree that fibroblasts are the 

largest population of non-myocytes (Nag, 1980) making up 15 - 30 % of cardiac cells (Pinto et 

al., 2016). Morphologically, fibroblasts are small (< 50 µm) spindle shaped cells with multiple 

stellate processes; a flat, oval nucleus, extensive rough endoplasmic reticulum and plenty of 

cytoplasmic granules (Goldsmith et al., 2004; Camelliti et al., 2005; Baudino et al., 2006; Yue 

et al., 2011). To date, no exclusively cardiac-fibroblast-specific marker protein has been 

identified. Therefore, the co-expression of e.g. vimentin, human fibroblast surface protein, 

fibroblast activation protein (FAP), alpha smooth muscle actin (αSMA), collagen and discoidin 

domain receptor 2 (DDR2) is approved to identify a fibroblast in the heart (Ivey und Tallquist, 

2016). The main fibroblast functions can be categorized in a) structural support and 

maintenance of the extracellular matrix (ECM), b) chemical and electrical signaling and c) 

wound healing (Kendall und Feghali-Bostwick, 2014; Künzel, 2014; Klesen et al., 2018). 

Structural support and maintenance of the ECM 

 Fibroblasts are the principal source of ECM in the heart. By forming a scaffold of ground 

substance (e.g., glycosaminoglycanes like hyaluron), structural proteins comprising mainly 

collagen type 1 and 3 and adhesive proteins (e.g., laminin and fibronectin) (Kendall und 

Feghali-Bostwick, 2014), fibroblasts provide an orderly tissue architecture to embed 

cardiomyocytes and guarantee their proper function. The balance of ECM (mainly collagen) 

deposition and degradation is maintained by matrix metalloproteinases (MMPs), which break 

down interstitial collagen (Wynn, 2008; Baum und Duffy, 2011). Dysfunction of ECM 

homeostasis can result in fibrosis-related disease, eventually leading to failure of the affected 

organ (Kendall und Feghali-Bostwick, 2014). 

Chemical and electrical signaling  

 Communication between different cell types is crucial for regular organ function. 

Fibroblasts are reported to secrete and respond to a plethora of proteins, cytokines and growth 

factors allowing them to communicate with neighboring cells (Wynn, 2008; Baum und Duffy, 

2011; Kuenzel et al., 2018). Consequently, recent research has demonstrated that fibroblasts 

are substantially involved in angiogenesis and immune response by orchestrating the involved 
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(Jordana et al., 1994; Porter und Turner, 2009; Baum und Duffy, 2011; Kendall und Feghali-

Bostwick, 2014). Besides chemical means of communication, fibroblasts have been shown to 

interact with other cardiac cells via electrical signals (Camelliti et al., 2005; Klesen et al., 2018). 

Fibroblasts can couple to myocytes via connexins 43 and 45 or nanotubes to propagate action 

potentials and exchange ions and cytosolic proteins (Camelliti et al., 2005; Dixon und Davies, 

2011; Quinn et al., 2016). This finding however indicated that altered electrophysiological 

properties of fibroblasts might be a source of arrhythmia (Poulet et al., 2016; Klesen et al., 

2018).  

Wound healing  

 Fibroblasts are essential for wound healing. Upon injury fibroblasts proliferate, secrete 

new ECM as a scaffold for regenerative tissue and express αSMA filaments allowing them to 

manipulate the ECM fibers and surrounding cells to close the wound. Furthermore, activated 

fibroblasts recruit immune cells involved in the process of wound healing by chemotaxing 

(Gabbiani, 2003; Midwood et al., 2004; Bainbridge, 2013; Kendall und Feghali-Bostwick, 

2014). A recently published study revealed that myofibroblasts contribute to engulfment of 

dead cells after myocardial infarction and thereby help to limit inflammation and further 

contribute to ordered wound healing (Nakaya et al., 2017). 

1.2 Fibroblast activation – myofibroblast-differentiation 
Exposure to adequate stimuli initiates transition of fibroblasts from activated fibroblasts 

into their myofibroblast phenotype (Figure 1). Under physiological conditions myofibroblasts 

are absent in the heart. Activating stimuli comprise, inter alia, loss of cell-cell contacts, 

mechanical stress (rapid beating frequencies of the heart), myocardial injury (infarction and 

tissue hypoxia e.g.), chemical mediators (foremost TGF-β) and epigenetic factors like DNA 

methylation, histone modification and siRNAs (see Fig. 1) (Masur et al., 1996; Baum und Duffy, 

2011; Liu et al., 2012; Robinson et al., 2012; Hu und Phan, 2013). In vitro experiments have 

demonstrated that activation of the TGF-β receptor 1 and 2 induces phosphorylation of the 

transcription regulators SMAD2 and SMAD3 which form a complex with SMAD4 in the nucleus 

and gene expression of myofibroblast-differentiation genes like ACTA2 which is encoding for 

αSMA (Tallquist und Molkentin, 2017). During the process of transition, activated fibroblasts 

and especially myofibroblasts secrete excessive ECM (see 1.1 Fibroblasts) and a plethora of 

(inflammation) mediators like TGF-β, angiotensin 2, interleukins and osteopontin (Petrov et al., 

2002; Liu et al., 2012; Tallquist und Molkentin, 2017). Furthermore, they develop a contractile 

apparatus by forming ordered bundles of αSMA micro filaments which enables myofibroblasts 

to exert contractile force on the surrounding ECM and neighboring cells (Baum und Duffy, 

2011). Finally, myofibroblasts become resistant towards apoptosis guaranteeing their 
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presence until a wound is closed and repaired or activating stimuli are absent (Rog-Zielinska 

et al., 2016; Tallquist und Molkentin, 2017). Pathologically prolonged presence of 

myofibroblasts though, leads to local inflammation and excessive deposition of interstitial 

collagen, fostering a pathological condition called fibrosis (Rog-Zielinska et al., 2016; Tallquist 

und Molkentin, 2017). 

 

Figure 1. Schematic illustration of fibroblast activation and subsequent myofibroblast 
differentiation. The figure illustrates in a simplified manner the process of fibroblast-to-myofibroblast 
transition. Upon injury, chemical stimuli or epigenetic modification, fibroblasts become activated and 
secrete collagen and cytokines like TGF-β or osteopontin. As activation stimuli are present for a 
prolonged period, activated fibroblasts express contractile αSMA-microfilaments (orange bundles) and 
are referred to as myofibroblasts. (modified from (Künzel, 2014; Tallquist und Molkentin, 2017) 

 

1.3 Fibrosis  
 In ancient Greek philosophy the ‘golden mean’ marked an optimality between the 

extremes of excess and deficiency. In the human organism, this optimality is called 

homeostasis and is required for proper function on organ-, tissue- and cell-level. Tissue 

homeostasis in the heart however, is mainly regulated by fibroblasts which secrete and 

degrade ECM proteins.  

Cardiac fibrosis 

A common hallmark of cardiovascular disease is the imbalance of ECM homeostasis 

with a shift towards synthesis, leading to excessive interstitial collagen deposition - fibrosis. In 

FIBROBLAST
 Moderate collagen secretion
 DDR2-positive
 Vimentin-positive
 FAPα-negative
 αSMA-negative

MYOFIBROBLAST
 Strong collagen secretion Fibrosis
 Inflammation mediator secretion Inflammation
 DDR2-positive
 Vimentin-positive
 FAPα-positive
 αSMA-positive

ACTIVATED FIBROBLAST
 Increased collagen secretion
 DDR2-positive
 Vimentin-positive
 FAPα-positive
 αSMA-negative

ACTIVATION DIFFERENTIATION

Dedifferentiation upon loss of activation stimuli
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the course of fibrosis, cardiac tissue stiffens and loses its ability to relax and contract orderly. 

Diminished elasticity causes diastolic (Burlew und Weber, 2002) and finally systolic 

dysfunction, resulting in reduced cardiac performance and lower life expectancy (Biernacka 

und Frangogiannis, 2011). Recent studies estimated that > 45 % of mortality is caused by 

fibrosis-associated disease in Western countries (Wynn, 2008; Rosenbloom et al., 2013). 

Myofibroblasts are responsible for fibrosis development in the heart (Fan und Guan, 2016). 

With a rising proportion of myofibroblasts the disease progresses and aggravates. Due to 

fibrosis, diffusion distances increase continuously. As a result of this, tissue hypoxia occurs in 

the heart (Gramley et al., 2010). Hypoxia has been described to alter fibroblasts epigenetically 

on the level of DNA methylation (Robinson et al., 2012). Altered methylation patterns influence 

the transcription of genes. In primary human lung fibroblasts these epigenetic modifications 

were found to lead to fibroblast activation and fibrosis (Robinson et al., 2012). This mechanism 

could be applicable to cardiac fibroblasts as well. 

Although cardiac fibrosis is a major health care issue, the currently available antifibrotic 

pharmacotherapy is insufficient. ACE or aldosterone inhibitors for example, which are known 

for their positive effects on fibrotic remodeling thus failed to prevent fibrosis progression in 

heart failure (Fang et al., 2017). Fibrotic remodeling of myocardium occurs in all chambers of 

the heart. In human atria, fibrosis becomes more prevalent with age and is a hallmark of 

remodeling due to atrial fibrillation.  

(Non-cardiac) dermal fibrosis  

Since fibroblasts are ubiquitously present in the human body their activation and the 

subsequent development of fibrosis can affect virtually all tissues and organs. There is 

evidence that localized e.g. fibrosis leads to an increase in systemic inflammation mediators 

such as TGF-β, osteopontin or interleukins (Wu et al., 2012; Wu und Assassi, 2013) which can 

then induce fibrosis in a different location. Especially dermal fibrosis is well-studied in this 

regard. An interesting but mechanistically poorly understood manifestation of skin fibrosis is 

the radiation-induced Morphea (RIM), which occurs in patients after successful treatment of 

breast cancer with chemo- and radiotherapy (Spalek et al., 2015). The dermatological term 

Morphea describes a circumscribed area of skin fibrosis which normally occurs in scleroderma. 

Although 1 in 500 breast cancer patients is affected by RIM (Spalek et al., 2015) the disease-

relevant pathological mechanisms are only little understood. For this reason, the therapeutic 

options are confined to immunosuppression with only moderate success rates (Akay et al., 

2010; Spalek et al., 2015). However, it is evident that fibroblast function must be altered in this 
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context and studying functional and molecular properties of primary fibroblasts from these 

patients could lead to novel treatment options. 

1.4 Fibroblast function in sinus rhythm and atrial fibrillation  
Sinus rhythm (SR) is characterized by the periodical excitation and contraction of the 

atria followed by the ventricles. This regular excitation is generated by specialized myocytes 

which are called pacemaker cells. Atrial fibrillation (AF) on the other hand is the result of 

uncoordinated high frequency excitation, leading to irregular contraction of the atria. AF is the 

most prevalent tachyarrhythmia in clinical practice with rising prevalence in the elderly 

(Miyasaka et al., 2006).  

Sinus rhythm and atrial fibrillation 

Physiological excitation of the heart is initiated in pacemaker cells located within the 

sinus node. The excitation wave front propagates through the atrial myocardium to the atrio-

ventricular node from where it seizes both ventricles in an orderly manner. The autonomous 

nervous system modifies the intrinsic rhythm (sinus rhythm) for optimal adaptation of blood 

supply to the needs of the organism. AF constitutes a common arrhythmia with high-frequency, 

uncoordinated activation of the atrial myocardium and irregular conduction of the excitation 

wave to the ventricles. The tachyarrhythmia is a frequent cause of heart failure. Since the 

fibrillating atria do not contract efficiently, blood flow slows down and is prone to clot formation 

that may cause embolic stroke (Calvo et al., 2018). Many comorbidities are associated with 

AF, including diabetes, hypertension and heart failure (Calvo et al., 2018). 

Epidemiological studies indicate that overall AF prevalence ranges from 1.9 – 2.9 % in 

European adults (Zoni-Berisso et al., 2014). Globally, AF incidence and prevalence increased 

drastically in the past decades which could result in an estimated number of over 50 million 

affected patients worldwide by 2030 (Colilla et al., 2013; Zoni-Berisso et al., 2014). Based on 

these numbers AF can be described as a major health care problem that yet has to be solved.  

Paroxysmal, persistent and permanent AF 

 Atrial fibrillation exhibits a progressive time course. In the beginning of the 

manifestation of the disease, AF terminates within 7 days (paroxysmal AF) either 

spontaneously or upon pharmacological or electrical conversion to sinus rhythm (Kirchhof et 

al., 2014; Kirchhof et al., 2016; Calkins et al., 2017). On the other hand, there is] Persistent AF 

lasts beyond 7 days, whereas long standing persistent AF is characterized by a duration of 

greater than 12 months. Finally, in permanent AF the persistence of AF is accepted by both 

patient and physician and there will be no further attempts to restore SR (Calvo et al., 2018).  
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Pathophysiology of AF 

Despite intensive research in AF during the past decades, the underlying mechanisms 

of AF maintenance remain incompletely understood. AF is initiated when a trigger hits a 

vulnerable substrate (Künzel, 2014). A trigger may consist of focal ectopic activity originating 

from sinoatrial-like pacemaker cells in the sleeves of atrial myocardium that extend into the 

pulmonary veins (Jones et al., 2008) or within diseased atrial cells exhibiting early or delayed 

afterdepolarizations which exacerbate into extra systoles (Antzelevitch und Burashnikov, 

2011). Mechanical stress, cellular calcium overload, genetic defects are typical initiating 

insults. Propagation of ectopic electric signals leads to reentry when the excitation waves 

spread around a conduction obstacle like for instance a fibrotic area and finds its originating 

myocardium re-excitable. Thus a short effective refractory period and slowing of conduction 

will favor reentry (Ravens, 2014).  

With regard to AF maintenance, there are two accepted theories explaining the drivers of AF. 

The first concept is based on the existence of so-called rotors which create self-sustaining 

spiral waves of electricity in the tissue. Those rotors are considered the engine of fibrillation 

since they can lead to high frequency excitation of the atria (Jalife et al., 2002). The second 

theory is explained by asynchronous electrical activation of the atrial endo-, and epicardial 

layer of muscle. High resolution mapping of the right atria of AF patients revealed that 

excitation of these layer can be highly asynchronous and eventually an excitation wave front 

can break through into the other layer and thereby consolidate fibrillation (de Groot et al., 

2016).  

Remodeling in AF 

One hallmark of AF is electrical, structural and cellular remodeling of the atria (Calvo et 

al., 2018). The clinically most relevant component of remodeling is probably fibrosis leading 

deteriorating cardiac function and further arhythmogenesis in the course of AF. Most of the 

fibrotic remodeling is mediated by pathologically activated myofibroblasts (Nattel et al., 2008; 

Baum und Duffy, 2011; Nattel und Harada, 2014; Calvo et al., 2018). For this reason, we have 

previously studied functional differences between fibroblasts derived from SR or AF patients 

(Poulet et al., 2016). Our main findings included that AF leads to diminished fibroblast 

proliferation but increases basal differentiation into myofibroblasts indicating that AF leads to 

profibrotic fibroblast activation (Poulet et al., 2016). There is a great need for fibroblast-specific 

upstream antiremodeling therapies (Calvo et al., 2018). However, the mechanisms underlying 

the phenomena observed by Poulet and colleagues remain to be investigated in order to 

identify new therapeutic targets.  
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1.5 Polo-like kinase 2 

Polo-like kinase 2 (PLK2), also referred to as serum inducible kinase (Snk), belongs to 

a family of conserved serine/threonine protein kinases (Burns et al., 2003a; Shen et al., 

2012),which is characterized by the presence of the C-terminal “polo box” domain which is 

crucial for protein interactions (Park et al., 2010). The kinase domain is localized at the N-

terminus (Archambault und Carmena, 2012). The PLK-family has so far been associated with 

cell proliferation, reactive oxygen species production in the mitochondria and apoptosis 

(Strebhardt, 2010; de Cárcer et al., 2011, S. 1; Archambault und Carmena, 2012). PLK2 

regulates centriole duplication and is mainly expressed in G1 phase (Warnke et al., 2004; 

Cizmecioglu et al., 2008; Cizmecioglu et al., 2012) and is therefore crucial for mitosis and cell 

proliferation (Burns et al., 2003a; Warnke et al., 2004). Furthermore, PLK2 can induce a G2/M 

checkpoint of the cell cycle to induce cell cycle arrest (Clay et al., 1993; Glover et al., 1998; 

Ma et al., 2003). Consequently, PLK2 overexpression has been reported in malignant 

neoplasia going alongside with uncontrolled proliferation (Strebhardt, 2010; Ou et al., 2016). 

To date PLKs have been foremost the subject of neurological studies. In the brain, PLK2 is 

responsible for the regulation of synaptic plasticity by controlling Ras signaling. PLK2 

phosphorylates RasGRF1 which is a guanidine exchange factor that stimulates downstream 

Ras activity. After phosphorylation, pRasGRF1 is degraded in the proteasome (Lee, Lee et al., 

2011; Lee, Hoe et al., 2011). Taken together, PLK2 acts as a negative regulator of Ras activity. 

However, a potential involvement of PLK2 in cardiovascular pathophysiology remains to be 

elucidated. Recent research published by Mochizuki et al. proved that PLK2 expression of 

cardiac progenitor cells is higher as long as they remain in a proliferative state. Upon terminal 

differentiation though, PLK2 expression is drastically reduced. Instead of terminal 

differentiation though, cells can also enter a dormant non-proliferative state called senescence 

(Coppé et al., 2008). Experimental data revealed that loss of PLK2 function leads to induction 

of senescence (Deng et al., 2017). Cell senescence is linked to physiological cell aging but 

also marks a response to cellular stress. However, senescent cells are, although being 

dormant, metabolically active. The senescence-associated secretory phenotype (SASP) 

causes inflammation (Coppé et al., 2008) that favors fibrosis development (Boos et al., 2006; 

Boos und Lip, o. J.). The mechanisms regulating PLK2 expression and the physiological 

functions of PLK2 in the adult heart remain widely unknown. Although. PLK2 expression was 

shown to be regulated by p53, miR-126 and via promoter methylation (Burns et al., 2003b; 

Syed et al., 2006; Benetatos et al., 2011; Liu et al., 2014), further studies will be necessary to 

identify the mediators responsible for PLK2 regulation as well as the main PLK2 substrates in 

the heart.  
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1.6 Osteopontin 
Osteopontin (OPN) is a secreted phosphoprotein of the extracellular matrix which is 

produced by various cardiac cell types including fibroblasts, myocytes, endothelial cells and 

macrophages (Trueblood et al., 2001; Singh et al., 2010; Collins et al., 2012; Zhao et al., 2016). 

OPN was identified to serve in signaling pathways beyond its originally considered function in 

bone mineralization (Noda, 1989). In vitro studies confirmed that OPN increases myofibroblast-

differentiation, collagen secretion and inflammation thereby contributing to fibrosis 

development in the heart (Pardo et al., 2005; Singh et al., 2010). Clinical research confirmed 

that elevated plasma levels of OPN were present in patients with permanent AF (Güneş et al., 

2017). With regard to the inflammatory component of AF, OPN seems to be a promising target 

in the center of inflammation processes. Supporting this hypothesis, inhibition or knockout (KO) 

of OPN clearly reduced fibrotic tissue remodeling in dilated cardiomyopathy and after 

myocardial infarction in mouse models (Trueblood et al., 2001; Zhao et al., 2016). Yet, an 

experimentally based molecular link between PLK2 and OPN has to be elucidated. 
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1.7 Aim of the study  
The following study was designed to foster the understanding of PLK2 function in the 

healthy and diseased heart with particular emphasis on patients suffering from atrial fibrillation. 

Primary human, murine and rat cardiac fibroblasts were isolated and generally characterized 

with regard to PLK2 function. Echocardiography and surface ECG recordings were obtained 

from a specific PLK2 knockout mouse model to study the impact of PLK2 on cardiac function. 

Atrial tissue samples and peripheral blood from patients in SR and AF were studied for fibrosis 

markers, inflammation proteins and epigenetic modifications. In an approach for deep 

phenotyping, a secretome analysis of PLK2 KO and wildtype fibroblasts was performed at 

King’s College London and expanded by an RNA sequencing. The following questions were 

addressed in this study: 

 

a) What is the physiological function of PLK2 in cardiac fibroblasts and how is it altered 

in atrial fibrillation?  

 

b) Which molecular pathways are involved in the signaling of cardiac PLK2 and are 

there putative drug targets up- or downstream of PLK2? 

 
c) Are there putative clinical implications by targeting PLK2 or its signaling cascade? 

 
d) Is the PLK2-signaling axis generally relevant in (non-cardiac) fibrotic remodeling? 

 
Since our previous work revealed marked functional differences between fibroblasts from SR 

and AF patients, we need to clarify the underlying molecular mechanisms of these phenomena 

in order to expand our knowledge about atrial fibrillation pathophysiology. Greater knowledge 

will ultimately lead to new drug targets and complement existing therapeutic strategies to 

fibroblast specific antifibrotic pharmacotherapy.
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2 Material and Methods 

 

 

2.1 Material list 
2.1.1 Devices and experimental hardware 

Function Product specification Supplier 

Analytical balance MC BA 100 Sartorius, Göttingen, Germany 

Human tissue preparation Binocular S761 Olympus, Tokyo, Japan 

Autoclave Vakulab HP Münchener Medizin Mechanik, 
Munich, Germany 

Cell culture hood HeraSafe KSP15 Thermo Fisher Scientific, 
Waltham, USA 

Cell culture incubator BBD 6220 Thermo Fisher Scientific, 
Waltham, USA 

Cell culture suction BVC professional suction VACUUBRAND GMBH + CO 
KG, Wertheim, Germany 

Echocardiography setup Vevo3100 FUJIFILM VisualSonics, 
Amsterdam, The Netherlands 

Hypoxia chamber CB 60 BINDER GmbH, Tuttlingen, 
Germany 

Automatic stainer for histology Linear Stainer COT 20 Medite, Burgdorf, Germany 

Digital fluorescence microscope  BZ-X710 Keyence, Osaka, Japan 

Microplate reader BioTek SynergyHTX multi-mode 
reader 

BioTek Germany, Bad 
Friedrichshall, Germany 

Western blot and PCR gel 
development device 

Fusion FX Vilber Lourmat, Eberhardzell, 
Germany 

PCR gel casting chamber 

PCR electrophoresis chamber 

40-1515 

41-2025 

Peqlab, Erlangen, Germany 

Peqlab, Erlangen, Germany 
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Western blot gel casting glass 
plates 

1 mm, 1.5 mm, 2 mm Bio-Rad Laboratories GmbH, 
Munich, Germany 

Western blot gel casting frame Mini-PROTEAN® Tetra Cell Casting 
Stand 

Bio-Rad Laboratories GmbH, 
Munich, Germany 

Western blot electrophoresis 
chamber 

Mini-Protean 3  Bio-Rad Laboratories GmbH, 
Munich, Germany 

Western blot power supply PowerPack Basic Bio-Rad Laboratories GmbH, 
Munich, Germany 

Western blot table shaker Gyro-rocker SSL3 Cole-Parmer, Stone, UK 

Western blot roller mixer Stuart roller mixer SRT9 Cole-Parmer, Stone, UK 

Electric ball mill TissueLyser LT Qiagen, Hilden, Germany 

Microscopes 

 

 

Primo Star 

LSM-510 confocal microscope 

Olympus CK40 

Zeiss, Oberkochen, Germany 

Zeiss, Oberkochen, Germany 

Olympus, Tokyo, Japan 

Magnetic stirrer RH Basic IKA, Staufen im Breisgau, 
Germany 

Microtome RM 2235 Leica, Wetzlar, Germany 

Microwave HF 22023 Siemens, Munich, Germany 

Paraffin embedding system TES Valida Medite, Burgdorf, Germany 

Paraffin stretch bath 1052 Gesellschaft für Labortechnik, 
Burgwedel, Germany 
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PCR cycler Mastercycler nexus (gradient) Eppendorf, Hamburg, 
Germany 

pH meter pH Level 2 WTW Inolab, Weilheim, 
Germany 

Cordless pipetting controller Pipetus Hirschmann, Eberstadt, 
Germany 

Powersupply (gel 
electrophoresis) 

PowerPac Basic Bio-Rad Laboratories GmbH, 
Munich, Germany 

qPCR cycler CFX96 Touch Deep Well Real-Time 
PCR detection system 

Bio-Rad Laboratories GmbH, 
Munich, Germany 

Ultrapure water filtration system Milli-Q Q-Pod Merck Millipore, Burlington, 
USA 

Spectrophotometer Nanodrop 1000 Thermo Fisher Scientific, 
Waltham, USA 

Thermomixer Thermomixer compact Eppendorf, Hamburg, 
Germany 

Convection drying oven UT 6760 Heraeus, Hanau, Germany 

Vortex Minishaker MS2 IKA, Staufen im Breisgau, 
Germany 

Centrifuges 

 

 

Microfuge 18 

Megafuge 8R 

3K30 

Beckmann Coulter, Brea, USA 

Heraeus, Hanau, Germany 

Sigma-Aldrich, St. Louis, USA 

2.1.2 Software 

Function Product specification Supplier 

PC operating system Windows 10 Microsoft Corporation, 
Redmont, USA 

Image editing  Paint.NET dotPDN LLC 
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Office productivity software Microsoft Office (MS Word, 
MS Powerpoint, MS Excel) 

Microsoft Corporation, 
Redmont, USA 

Spectrophotometer Nanodrop 1000 v3.7 Thermo Fisher Scientific, 
Waltham, USA 

Microplate reader operation BioTek Gen5 data analysis 
software 

BioTek Germany, Bad 
Friedrichshall, Germany 

Statistical analysis GraphPad Prism 5 GraphPad Software, San 
Diego, USA 

Operating system western blot and PCR 
gel development device 

Fusion-Capt Vilber Lourmat, Eberhardzell, 
Germany 

Digital fluorescence microscope 

 

BZ-X Viewer 

BZ-X Analyzer 

Keyence, Osaka, Japan 

Keyence, Osaka, Japan 

Operating and analysis of qPCR CFX Manager Bio-Rad Laboratories GmbH, 
Munich, Germany 

2.1.3 Cell culture consumables 

Function Product specification Supplier 

Filtration of cell debris and 
tissue 

100 µm nylon filter BD Biosciences, San Jose, 
USA 

Sterile plastic tubes BD Falcon tubes (15 ml, 50 ml) BD Biosciences, San Jose, 
USA 

Petri dishes Nunclon surface Nunc, Roskilde, DK 

Cell culture plates 6-, 12-, 24-wells Nunclon surface Nunc, Roskilde, DK 

Cell scraper  24 cm, 30 cm TPP, Trasadingen, CH 

Mesh Cell strainer 40 µm Corning, Tewksbury, USA 

Disposable plastic pipettes 5 ml, 10 ml, 25 ml, 50 ml Sigma-Aldrich, St. Louis, USA 
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Disposable pipette tips SafeSeal tips for pipettes (10 µl, 20 
µl, 100 µl, 200 µl, 1000 µl) 

Sigma-Aldrich, St. Louis, USA 

Disposable sterile scalpel Techno cut Myco Medical, Cary, USA 

Eppendorf tubes 50 µl, 500 µl, 1.500µl, 2.000 µl Eppendorf, Hamburg, 
Germany  

Glass coverslips 1 cm diameter Warner Instruments, Hamden, 
USA 

Microscope glass slides 24 x 60 mm Engelbrecht, Edermünde, 
Germany 

2.1.4 Cell culture media, supplements and chemicals 

Function Product specification Supplier 

Fibroblast medium Dulbeccos’s Modified Eagle 
Medium (DMEM), high glucose 

Gibco-Life Technologies, 
Carlsbad, USA 

Wash buffer Phosphate Buffered Saline (PBS) Sigma-Aldrich, St. Louis, USA 

Nutritive medium supplement Fetal calf serum (FCS) Sigma-Aldrich, St. Louis, USA 

Antibiotics Penicillin/ Streptomycin (10000 
U/ml) 

Gibco-Life Technologies, 
Carlsbad, USA 

Cell detachment 0.25% Trypsin-EDTA TPP, Trasadingen, CH 

Cell viability staining Trypan blue stain 0.4% Thermo Fisher Scientific, 
Waltham, USA 

Specific ERK1/2 inhibitor SCH772984 Selleckchem, Munich, 
Germany 

Specific PLK2 inhibitor TC-S 7005 Tocris Bioscience, Bristol, UK 

Osteopontininhibitor Mesalazine (5-Asa) Sigma-Aldrich, St. Louis, USA 
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Solvent for PLK2 inhibitor Dimethyl sulfoxide (DMSO) Sigma-Aldrich, St. Louis, USA 

Fixation of cells/ tissue Roti®-Histofix 4 % Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

Permeabilization of cells Triton-X 100 VWR International LLC, 
Radnor, USA 

Mounting medium Fluoromount-G Sigma-Aldrich, St. Louis, USA 

Chromatin staining of nuclei 4′,6-Diamidin-2-phenylindol (DAPI) Sigma-Aldrich, St. Louis, USA 

2.1.4 Kits and reagents 

Function Product specification Supplier 

RNA isolation PeqLab total RNA mini Peqlab Biotechnologie GmbH, 
Erlangen, Germany 

cDNA synthesis PeqGold cDNA synthesis kit Peqlab Biotechnologie GmbH, 
Erlangen, Germany 

gDNA isolation PureLink Genomic DNA Extraction 
kit 

Thermo Fisher Scientific, 
Waltham, USA 

qPCR mastermix SYBR green Bio-Rad Laboratories GmbH, 
Munich, Germany 

Bisulfite conversion  EZ DNA starter kit Zymo Research, Irvine, USA 

Assessment of cell migration Cell migration kit Cell Biolabs Inc., San Diego, 
USA 

Senescence detection Senescence Detection Kit 
(ab65351) 

Abcam, Cambridge, UK 

Histology staining 

 

 

H&E fast staining kit 

Trichrome Stain (Masson) Kit 

Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

Sigma-Aldrich, St. Louis, USA 
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Picro Sirius Red Stain Kit 
(Connective Tissue Stain) 
(ab150681) 

Abcam, Cambridge, UK 

DNA ladder marker GeneRulerTM 100bp Thermo Fisher Scientific, 
Waltham, USA 

 

Migration assay Wound Healing Assay Cell Biolabs, Inc., San Diego, 
USA 

Protein concentration 
measurement assay 

Pierce™ BCA Protein Assay Kit Thermo Fisher Scientific, 
Waltham, USA 

Western blot development 
substrate 

Pierce™ ECL Western Blotting 
Substrate 

Thermo Fisher Scientific, 
Waltham, USA 
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2.2 Cell isolation and cell culture conditions 
2.2.1 Human sample acquisition 

All patients enclosed in this study gave written informed consent according to the 

Declaration of Helsinki. Human cardiac tissue samples (right atrial appendages) were collected 

in collaboration with Herzzentrum Dresden GmbH from patients who underwent open heart 

surgery like bypass or valve replacement (official file number: EK 114082202). Only tissue 

specimen that accrued anyway in the course of an operation have been used for this study - 

no extra tissue was removed from patients. Peripheral blood samples from AF patients who 

would undergo ablation of pulmonary veins were collected prior to the intervention in EDTA-

tubes (EK 465122013). Low voltage zones being electrophysiological indicators for fibrotic 

tissue areas were assessed by electrophysiological mapping of the left atrium and defined as 

bipolar voltage < 0.5 mV. The obtained blood samples were kept at 4° C for a maximum of 1 h. 

The tubes were subsequently centrifuged for 10 min at 1000 g at 4° C. Then, the plasma was 

transferred into 500 µl Eppendorf tubes and stored at -80° C until analysis. Detailed patient 

data can be found in supplemental tables 5 -7 (see: 6 Supplementary Data).  

2.2.2 Human right atrial fibroblast isolation  

Primary human right atrial fibroblasts were isolated via outgrowth method from cardiac 

biopsies (Poulet et al., 2016). Prior to fibroblast isolation, heart tissue was dissected carefully 

under a laminar flow. The epicardium and epicardial fat were removed to avoid the outgrowth 

of other cell types than fibroblasts (Figure 2 b). Myocardial tissue was subsequently cut into 

small pieces of approximately 1 mm3 with a sterile scalpel. Afterwards, the tissue pieces were 

placed on a 6 cm petri dish (Figure 2 c). Carefully, 1 ml of cell culture medium was added drop 

by drop to avoid dislocation of the tissue chunks. The primary cultures were then kept at 37° C 

and 5 % CO2 for 21 days to allow outgrowth of fibroblasts in a more physiological way.  
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Figure 2. Human tissue preparation and fibroblast outgrowth. a) Typical human right atrial 

appendage. b) Isolated myocardial tissue. c) Primary culture after tissue dissection. d) Primary atrial 

fibroblasts growing out of the tissue (tissue borders are indicated by the white line).  

2.2.3 Murine and rat cardiac fibroblast isolation 

PLK2 WT and KO mice (Ma et al., 2003; Inglis et al., 2009) are commercially available 

via The Jackson Laboratory (129S.B6N-Plk2tm1Elan/J, stock number: 017001 Plk2 KO) but these 

animals have not been characterized with regard to cardiac development and function, yet. 

Wild type Wistar rats were purchased from Charles River Laboratories. Primary murine and rat 

cardiac fibroblasts were isolated enzymatically via Langendorff-perfusion (El-Armouche et al., 

2008). The supernatant was centrifuged for 1 min at 350 g to remove heavier components like 

cardiomyocytes and debris. The resulting supernatant was centrifuged a second time for 1 min 

at 750 g to sediment contained fibroblasts. The supernatant was removed and the resulting 

pellet was resuspended in cell culture medium and transferred into a t25 cell culture flask for 

primary culture. Cells were harvested for experiments when optical confluence was at around 

90 %. The animal study was approved by the local bioethics committee (T 2014/5; TVA 

25/2017, TVV 64/2018) and internationally accepted animal welfare guidelines (Guillen, 2012) 

were followed. 

2.2.4 Immortalized human ventricular fibroblasts 

Immortalized human ventricular fibroblasts were purchased from abm Inc. (Richmond, 

Canada) and adjusted to our cell culture conditions (see 2.2.7). The rationale to buy these cells 

was the opportunity to perform larger scaled experiments without the confounder of patients’ 

a b

c d

100 µm
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bio variability. Furthermore, immortalized fibroblasts are known to display higher proliferation 

rates which increases cell availability for experiments compared to human primary fibroblasts.  

2.2.5 Human dermal fibroblasts 

 Primary human dermal fibroblasts were obtained from Prof. Claudia Günther’s working 

group (Dermatology Department, University hospital Carl Gustav Carus, Dresden, Germany). 

These fibroblasts have either been isolated of healthy female breast skin (Control fibroblasts) 

or from RIM lesions (RIM fibroblasts).  

2.2.6 Ultrasonic-augmented primary murine fibroblast isolation 

 In order to improve the enzymatic fibroblast isolation via Langendorff-perfusion, we 

generated a novel fibroblast isolation method using ultrasonic waves and enzymatic tissue 

digestion. This fast and cost-effective method delivered high-quality viable primary fibroblasts. 

The detailed protocol can be found in the supplemental data. The protocol is currently in 

revision at the Journal of Visualized Experiments (JoVE). 

2.2.7 Cell culture conditions 

Cells were cultured in Dulbecco modified eagle medium supplemented with 10% fetal 

calf serum and 1% penicillin/ streptomycin. Petri dishes and cell culture flasks did not require 

additional coating. Cells were kept in a humidified surrounding at 37° C and with 5 % CO2.The 

cell culture medium was changed every other day. To expose the cells towards hypoxic 

conditions (1 % O2) cells were cultured in a hypoxia incubator chamber for 24 up to 96 h 

depending on the experimental setup. 

 

2.3 Cell culture based experiments 
2.3.1 Immunocytochemistry 

To perform immunocytochemical staining experiments, fibroblasts were seeded on 

1 cm glass cover slips and cultivated for 7±1 days until they reached approximately 90% of 

optical confluence. Cells were then washed 3 times with cold PBS, fixed in 4% PFA for 15 min 

at RT, washed and subsequently permeabilised using Triton X. After blocking with FCS, the 

cover slips were incubated with primary antibody (DDR2, Vimentin, hFSP, αSMA, Col1, PLK2 

(dilution 1:200)) and DAPI for 1 h in a dark, humidified surrounding at RT. After 10 times 

washing by gently dipping the cover slips into a beaker containing cold PBS, the secondary 

antibodies Alexa-Fluor 448 or Alexa Fluor 597 (Abcam, Cambridge, UK) were applied for 1 h 

under the same conditions as described for the primary antibody. The cover slips were washed 

10 times again and mounted onto microscope glass slides using Fluoromount G. To avoid 
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dislocation, the cover slips were fixed with transparent nail polish. The samples were kept in 

the dark until fluorescence images were obtained with a Zeiss LSM-510 confocal microscope. 

2.3.2 Proliferation 

To determine fibroblast proliferation, cells were plated at densities of 1*104/ well of a 

12-well plate (Figure 3). To harvest and count cells, the wells were incubated with 1 ml 0.25 % 

trypsin for 5 min at 37° C. The reaction was stopped by adding the double amount of cell culture 

medium. Cells were detached using a cell scraper. The cell suspension was then centrifuged 

for 5 min at 350 g. The supernatant was removed and cells were resuspended in 1 ml cell 

culture medium. Finally, the cells were counted using a Bürker chamber.  

 

Figure 3. Example of plate layout for proliferation experiments. Cells were harvested after 7 (day 
7) or 14 days (day 14), respectively. Control indicates solvent control (1 µl DMSO), PLK2 inhibitor 
indicates TC-S 7005 1 µM.  

2.3.3 Migration 

To explore the effect of PLK2 inhibition on migration capacity a commercially available 

wound healing assay was performed (Cell Biolabs). Plastic dividers which were included in the 

kit were placed into a 24-well plate ensuring a cell-free area in the middle of the well. Equal 

densities of 2.5*104 cells were seeded on each side of the divider. After 24 hours the dividers 

were removed and cells were washed twice with PBS and images were obtained (Figure 4 a). 

Fresh medium containing drug (PLK2 inhibitor e.g.) or solvent control (1 µL DMSO) were 

added. Afterwards, a picture of the newly created cell free area (wound) was acquired (t = 0 h). 

After 24 hours the cells were washed with PBS three times and fixed with 4% formaldehyde 

for 15 min at RT. The nuclei were stained with DAPI. After DAPI staining a fluorescence image 

of the well was acquired in order to count the cells which migrated into the wound area 

(t = 24 h) (Figure 4 b).  

Control day 7
(1 µl DMSO)

Control day 7
(1 µl DMSO)

Control day 7
(1 µl DMSO)

Control day 14
(1 µl DMSO)

Control day 14
(1 µl DMSO)

Control day 14
(1 µl DMSO)

PLK2 inhibitor
day 7
(1 µM)

PLK2 inhibitor
day 7
(1 µM)

PLK2 inhibitor
day 7
(1 µM)

PLK2 inhibitor
day 14
(1 µM)

PLK2 inhibitor
day 14
(1 µM)

PLK2 inhibitor
day 14
(1 µM)

A DCB

1

2

3
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Figure 4. Migration assay. a) Example image of the cell-free area (wound) after seeding at t = 0 h. 

b) DAPI staining to count the number of migrated cells into the former wound area after 24 h. 

2.3.4 β-galactosidase staining for senescent cells 

Fibroblasts were plated on 6-well plates at densities of 2.5*104 cells/ well and kept in 

culture for 7 days. Afterwards cells were fixed with 4 % formaldehyde for 15 min at RT and the 

senescence staining was performed. Therefore, a commercially available senescence 

detection kit (β-galactosidase staining) was purchased and performed according to the 

manufacturer’s instructions. Cells that were positive for β-galactosidase were considered 

senescent (Figure 5). 

 

Figure 5. Detection of β-galactosidase positive cells. a) Example picture from the manufacturer 
(modified from abcam), the black arrows mark β-galactosidase positive cells. b) Example of senescent 
human cardiac fibroblasts, the white circle mark β-galactosidase positive cells.  
  

a bt = 0 h t = 24 h

a b
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2.3.5 Hypoxia cell culture 

To evaluate the effects of chronic hypoxia (1 % O2) on the methylation status of the 

PLK2 gene and subsequently it’s expression on mRNA level, fibroblasts were seeded on 6-

well plates at densities of 5*104/ well. Plates were prepared in duplicate for hypoxia incubation 

and control. After 24 h the treatment plate was transferred into a hypoxia chamber for 24 and 

up to 72 h. RNA or genomic DNA (gDNA) were isolated afterwards to evaluate the effects of 

hypoxia on PLK2 gene expression. 

 

2.4 Molecular biology 
2.4.1 Western Blot 

SDS-PAGE, western blotting and immunodetection. Protein was extracted from whole 

heart tissue with Kranias lysis buffer containing 10 % protease and phosphatase inhibitors. To 

isolate protein from cells, RIPA buffer containing 10 % protease and phosphatase inhibitors 

was used. Protein concentration was measured with a BCA kit (Pierce). For gel electrophoresis 

8 - 15 % polyacrylamide gels were used. 30 µg of protein were loaded into each lane of a gel. 

Proteins were subsequently transferred to a 0.45 µm nitrocellulose membrane. Equal loading 

was proven with a ponceau red staining. Before blocking, the mebranes were cut to enable the 

application of several primary antibodies. The blocking step was done in 5 % milk for 1 hour at 

RT. After blocking, the membranes were washed 3 times with 0.1 % TBST for 3x 10 min. 

Membranes were incubated with primary antibodies overnight at 4° C. After 3 times washing 

with 0.1 % TBST for 3x 30 min, secondary antibodies (anti mouse or anti rabbit) were applied 

for 1 h at RT under constant gentle shaking. After a final washing step (3x 10 min with 0.1 % 

TBST), membranes were incubated with ECL development solution and placed in a Fusion FX 

device to acquire images. Standard housekeeping proteins, depending on the molecular 

weight of the proteins of interest, were glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

calsequestrin (CSQ) or eukaryotic elongation factor 2 (EEF2). Data analysis was done with the 

Fusion CaptAdvance software.  
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Table 1: Kranias lysis buffer 

Chemical Concentration  

Tris 30 mM 

EDTA 5 mM 

NaF 30 mM 

SDS 3 % 

Glycerol 10 % 

pH  Adjusted to 8.8 

 

Table 2: RIPA lysis buffer 

Chemical Concentration  

Tris 30 mM 

EDTA 0.5 mM 

NaCl 150 mM 

NP-40 1 % 

SDS 10 % 0.1 % 

 

2.4.2 Quantitative polymerase chain reaction (qPCR) 

RNA isolation. Total RNA from either cardiac tissue samples or cultured cardiac fibroblasts 

was isolated using the PeqLab total RNA mini kit according to the manufacturer’s instructions. 

The optional on column DNAse1 digestion was performed for each RNA isolation. RNA 

concentration was measured using the nanodrop photometer.  

Reverse transcription - cDNA synthesis. Reverse transcription of RNA into cDNA was 

performed with the PeqGold cDNA synthesis kit according to the manufacturer’s instructions.  

Quantitative real-time PCR (qPCR). Real-time PCR was used to measure the gene expression 

of PLK2. Specific exon-exon spanning primers for PLK2 were designed using the Primer Blast 
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software. GAPDH was used as standard housekeeping gene. For hypoxia experiments RPL32 

was used as a hypoxia-stable housekeeper. PCR was performed in a CFX96 Touch Deep Well 

Real-Time PCR Detection System. Samples were amplified in duplicates or triplicates as 

indicated in the corresponding figures in the results part. Data analysis was done with the CFX 

manager software. Results were calculated and interpreted using relative quantification. 

Table 3: RT mastermix 

Component Volume per 20 µl reaction 

SsoAdvanced universal SYBR® Green 

supermix (2x) 
10 µl 

Forward primer 1 µl 

Reverse primer 1 µl 

Template 100 ng (volume variable) 

Nuclease-free H2O variable 

Total reaction mix volume 20 µl 

 

2.4.3 Methylation specific polymerase chain reaction 

The methylation-specific PCR was performed according to previously literature (Syed 

et al., 2006; Benetatos et al., 2011; Robinson et al., 2012). Genomic DNA (gDNA) was isolated 

using the PureLink Genomic DNA Extraction kit (Thermo Fisher). Purified gDNA was 

subsequently bisulfite converted using the EZ DNA starter kit according to the manufacturer’s 

instructions. The following PCR protocol was designed according to the suggestions of ZYMO 

Research. For unmethylated samples 36 cycles were run and for detection of DNA methylation 

40 runs, respectively. For electrophoresis, the PCR products were then applied to a 2% 

agarose gel containing HD green. Visualization of gel bands was achieved with a Fusion FX 

(peqlab) development device.  

PLK2 unmethylated for.: 5′-CACCCCACAACCAACCAAACACACA-3′ 

PLK2 unmethylated rev.: 5′-GGATGGTTTTGAAGGTTTTTTTGTGGTT-3′ (product = 142 bp) 

PLK2 methylated for.: 5′-CCCACGACCGACCGAACGCGCG-3′ 

PLK2 methylated rev.: 5′-ACGGTTTTGAAGGTTTTTTCGCGGTC-3′ (product = 137 bp) 
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2.4.4 Human osteopontin ELISA  

To measure the osteopontin concentration in the peripheral blood of healthy SR control 

and AF patients with or without fibrosis, an enzyme linked immunosorbent assay (ELISA) was 

performed as previously published (Güneş et al., 2017). We purchased the human osteopontin 

ELISA kit from abcam and used it according to the manufacturer’s instructions. To generate 

an appropriate standard curve, a four parameter logistic fit was done using the Graph Pad 

Prism software (version 5).  

 

2.5 Secretome analysis 
To evaluate the effect of PLK2 KO on the fibroblasts secretome, cell culture media were 

collected and studied. Fibroblasts were seeded on t25 cell culture flasks and grown until they 

reached 90 % of optical density. Cells were then washed 3 times with PBS, followed by a 10 

min incubation with PBS at 37° C. PBS was gently removed and replaced by serum-free DMEM 

with 1% PS. Serum-free culture is crucial to avoid albumin “contamination”. Cells were further 

cultivated for 72 h. Afterwards the cell medium was removed, filled into cryo tubes and frozen 

in liquid nitrogen. The samples were stored at -80° C until analysis. The secretome analysis of 

PLK2 WT and KO fibroblasts was then performed in the laboratory of our cooperation partner 

Prof. Manuel Mayr at King’s College London. After purification the proteins from the cell culture 

media were loaded onto a commercially available electrophoresis gel and separated. A silver 

staining was performed (Figure 6) to visualize the protein band and allow cutting of the gel for 

further digestion which is required for the final MS run. The MS run and data analysis were 

performed as previously published by Prof. Mayr (Suna et al., 2018). 

 

 

 

Figure 6. Representative silver 
stained electrophoresis gel. The gel 
was cut into lanes using a protein 
standard marker (right and left lanes). 
Lanes 2 C and 2 D are an example of 
remaining albumin that could not be 
washed off prior to serum-free culture.  
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2.6 Transcriptome analysis 
The transcriptome analysis of 3 PLK2 WT vs 4 PLK2 KO fibroblast RNA samples was 

conducted in cooperation with the department of gynecology and the National Center for Tumor 

Diseases (NCT), Partner Site Dresden. RNA was isolated as described above. The 

sequencing and bioinformatic analysis were done as previously published (Schott et al., 2017; 

Kuenzel et al., 2018). 

 

2.7 Echocardiography and surface ECG recording 
PLK2 WT and KO mice were anesthetized with 2 - 4% isoflurane and subsequent 

ultrasound images were acquired in supine position using a Vevo 3100 Imaging System. Body 

temperature (core temperature) was measured using a rectal temperature probe. Core 

temperature was maintained at 37 °C. Surface ECG recordings were obtained using limb 

electrodes. A standard 2D echocardiographic study was performed in the parasternal long-

axis and short-axis views for assessment of diastolic and systolic function.  

 

2.8 Statistical analysis 
For statistical analysis and graphic representation of the data, Graph Pad Prism 

software (version 5, San Diego, USA) was used. Data is presented as mean ± SEM. For 

comparisons between two groups student’s t-test was used with Welsh’s correction if 

appropriate. When comparing three groups, a one-way ANOVA with Newman-Keuls posttest 

was performed. P-values < 0.05 were considered statistically significant and indicated with 

asterisks (*) in the corresponding figures (*p < 0.05; **p <  0.01; ***p  <  0.001). In cases of 

clear trends but with short missing of the limit of significance p-values were given in the figure.  
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3 Results 

 

 

3.1 Differentially regulated gene expression in SR and AF fibroblasts 
3.1.1 Validation of the Affymetrix microarray 

A previously published study from our laboratory revealed marked functional 

differences in fibroblasts derived from SR and AF patients. These differences comprised lower 

proliferation and migration rates but contrariwise elevated differentiation into myofibroblasts in 

AF derived fibroblasts compared to SR controls (Poulet et al., 2016). An Affymetrix® microarray 

for more than 10.000 genes was performed as a first attempt to reveal the underlying molecular 

mechanism responsible for these phenomena. Out of the genes which were regulated in 

fibroblasts from AF patients compared to SR controls, we put particular emphasis on target 

genes that have been associated with a) immune response, b) regulation of proliferation and 

apoptosis or c) cell migration/ invasion. These genes comprised CACNB4 (calcium channel, 

involved in proliferation, differentiation (Rima et al., 2017)), PDGFA (platelet-derived growth 

factor A, involved in proliferation (Bonner et al., 1990)), ANO1 (Ca2+-activated Cl- channel, 

involved in proliferation and migration (Jacobsen et al., 2013; Guan et al., 2016)), MMP1 

(matrix metallo proteinase, involved in proliferation and migration (Das et al., 2017; He et al., 

2017)) and PLK2 (polo-like kinase 2, involved in proliferation, apoptosis and oxidative stress 

(Ma et al., 2003; Mochizuki et al., 2017)). To validate the findings from the microarray, 

quantitative PCR was performed. The results did not reveal significant regulation of ANO1, 

CACNB4, PDGFA and MMP1, although there were clear trends for reduced PDGFA and 

MMP1 expression in AF samples (Figure 7 d). However, there was a significant 1.6-fold 

reduction of PLK2 mRNA expression in AF samples (Figure 8 a). This finding was further 

validated by western blot analysis revealing significantly lower PLK2 protein abundance in AF 

tissue samples (Figure 8 b and c).  
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Figure 7. qPCR analysis of mRNA expression normalized to GAPDH for selected genes in SR 
and AF. a) Relative mRNA expression of ANO1 in SR and AF fibroblasts. b) Relative mRNA expression 
of CACNB4 in SR and AF fibroblasts. c) Relative mRNA expression of PDGFA in SR and AF fibroblasts. 
d) Relative mRNA expression of MMP1 in SR and AF fibroblasts, (nSR = 7; nAF = 5). The results failed 
to reach the level of statistical significance. 

 

Figure 8. Analysis of PLK2 gene expression and protein abundance. a) Expression of PLK2 mRNA 
normalized to GAPDH in primary human atrial fibroblasts from SR and AF patients, analyzed with qPCR 
(n = 7 vs. 5). b) Quantification of western blot for PLK2 protein abundance in SR and AF atrial tissue 
lysates (n = 9 per group). c) Example western blot. p-values < 0.05 were considered statistically 
significant. 

 

3.1.2 Epigenetic modification of the PLK2 promoter in AF 

Recent studies focused on differential expression of polo-like kinase in malignant 

neoplasia. DNA methylation was described as one frequently occurring mechanism of PLK 

expression regulation (Syed et al., 2006; Benetatos et al., 2011; Coley et al., 2012b). DNA 

methylation is reported to occur in CpG-islands which are short segments of eukaryotic DNA 

ahead of promoter regions. Methylation of these islands results in blockade of gene 

transcription of the following gene region. In analogy to these studies we investigated the 

methylation status of the CpG-island of the PLK2 promoter (Syed et al., 2006; Benetatos et 

al., 2011) in SR and AF atrial tissue samples and isolated fibroblasts with methylation specific 

PCR. Methylation was present in 6 out of 13 AF samples but in none of the analyzed SR (n = 

11) samples suggesting a correlation of PLK2 downregulation and promoter methylation in AF 

(Figure 9).  
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Figure 9. Analysis of the methylation status of the PLK2 gene promoter. a) Quantification of SR 
and AF heart tissue samples in which methylation was present or not. Statistical analysis was done with 
Fisher ‘s exact test. b) Methylation-specific PCR of the PLK2 promotor region (U: unmethylated, 
M: methylated, Pos = positive control (human universal methylated DNA standard), Neg = water control). 
p-values < 0.05 were considered statistically significant. 

 

3.1.3 Effect of rapid ventricular pacing on PLK2 protein expression 

 To prove the assumption that AF is causal for PLK2 downregulation, we obtained 

protein lysates from a canine ventricular tachycardia pacing model (Hanna et al., 2004). The 

only variable in this model was whether or not the animals received pacing or a SHAM surgery. 

For this reason, confounding variables such as age, comorbidities, medication, etc. could be 

excluded. We found a reduction of PLK2 protein abundance by 48% after rapid ventricular 

pacing for 5 weeks. Due to the limited number of animals the result slightly failed to reach the 

level of statistical significance (p = 0.056).  

  

N
o.

 o
f a

na
ly

ze
d

pa
tie

nt
's

 P
LK

2 
pr

om
ot

er
s

SR AF
0

5

10

15 No methylation
Methylation

*

a b



Results 

 

30 

 

 

Figure 10. PLK2 protein abundance in ventricular tachy-pacing dog samples. 
a) Quantification of western blot for PLK2 protein abundance in VTP dog samples (n = 3 - 4 per group). 

b) Example western blot for a. p-values < 0.05 were considered statistically significant. 

 

3.2 Effect of PLK2 inhibition or deficiency on fibroblast function in vitro 
3.2.1 Fibroblast identification 

Cells analyzed in this study were either isolated with the outgrowth method or via 

centrifugation of Langendorff supernatants (see 2.2). Stainings for vimentin (Vim), human 

fibroblast surface protein (hFSP) and DDR2 were done to identify the isolated cells as 

fibroblasts. Almost all cells (≈ 99%) were positive for those three markers. There was no 

contamination with other cell types like endothelial cells detectable. Figure 11 shows 

representative staining images for the marker proteins. 

 

 

Figure 11. Immunocytochemical fibroblast identification. Representative staining images of primary 
fibroblasts for the fibroblast marker proteins vimentin DDR2 and hFSP, after P1. The nuclei were stained 
with DAPI (blue). The scale bar equals 20 µm. The original colour of the fluorescence signal (green) 
was altered for better visibility with the ZEN2.3 lite software for DDR2 and hFSP.  
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3.2.2 Effect of PLK2 inhibition on human atrial myofibroblast differentiation 

There are several well-established factors stimulating fibroblasts to undergo phenotypic 

transition into myofibroblasts. These factors include amongst others: mechanical stress, 

missing cell-cell contacts, hypoxia, inflammatory cytokines or prolonged cell culture (Baum und 

Duffy, 2011; Tallquist und Molkentin, 2017). Despite the variety of appropriate stimuli, the 

common hallmark of fibroblast-to-myofibroblast differentiation is the expression of organized 

αSMA microfilaments (Figure 12). 

 

 

Figure 12. Immunofluorescence staining for αSMA in myofibroblasts. The white arrows indicate a 
myofibroblast displaying orderly arranged αSMA microfilaments. The dashed line indicates fibroblasts 
without αSMA microfilaments. The nuclei were stained with DAPI (blue). The scale bar equals 20 µm. 

 

In this study we analyzed the effect of PLK2 inhibition with 1 µM TC-S 7005. Fibroblasts were 

grown on coverslips and incubated with PLK2 inhibitor for 7±1 days until they reached > 80 % 

of optical confluence. In parallel, control fibroblasts were grown in the presence of 1 µl 

DMSO/ml cell culture medium as solvent control. After immunological staining (described in 

2.3.1) images of the cells were acquired with a confocal microscope. An overview image was 

obtained for further quantitative analysis. 50 cells at least were analyzed for each sample to 

determine the number of αSMA-positive cells. Inhibition of PLK2 led to increased myofibroblast 

differentiation. Compared to solvent control (18.1 % myofibroblasts), there was an increase of 

26.8 % of myofibroblasts in the PLK2 inhibitor-treated samples (44.9 % myofibroblasts in total) 

(Figure 13 a to c).  
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Figure 13. Analysis of PLK2 inhibition-dependent myofibroblast differentiation. a) Solvent control 
immunofluorescence staining image for αSMA. b) Immunofluorescence staining image for αSMA in the 
presence of PLK2 inhibitor, the nuclei were stained with DAPI (blue). c) Quantification of immunostaining 
experiments for αSMA protein abundance dependent on PLK2 inhibition (n = 6 in each group). Primary 
right atrial SR fibroblasts were incubated either with 1 µM TC-S 7005 (specific PLK2 inhibitor) or DMSO 
control (1 µl/ml of cell culture medium) for 7±1 days. p-values < 0.05 were considered statistically 
significant. 

 

3.2.2.1 Effect of genetic knockout PLK2 on murine cardiac myofibroblast differentiation 

To consolidate the observed effect that pharmacological inhibition of PLK2 increases 

differentiation of fibroblasts into myofibroblasts, PLK2-deficient cardiac fibroblasts were 

isolated from commercially available PLK2 knock-out (KO) mice and their wild type littermates. 

Similar results were observed in these murine fibroblasts. PLK2 KO fibroblast cultures 

displayed on average 35.6 % of myofibroblasts whereas only 13.1 % of the wildtype fibroblasts 

underwent phenotypic transition into myofibroblasts (Figure 14 a to c). On average, KO of 

PLK2 increased myofibroblast differentiation by 22.5 % which is comparable to the effect of 

pharmacological inhibition (+ 26.8 %).  
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Figure 14. Analysis of PLK2 knockout-dependent myofibroblast differentiation. a) and b) 
Immunofluorescence staining images for αSMA, the nuclei were stained with DAPI (blue). c) 
Quantification of immunostaining experiments for αSMA protein abundance dependent on PLK2 
knockout (n = 4 per group). Primary murine cardiac PLK2 wild type and knockout fibroblasts were grown 
on glass cover slips for 7±1 days. p-values < 0.05 were considered statistically significant. 

 

3.2.2.2 Effect of pharmacological PLK2 inhibition on human atrial fibroblast proliferation 

Since reduced PLK2 expression and lower fibroblast proliferation were present in AF 

(Poulet et al., 2016) we tried to reveal whether these findings are causally linked or merely 

epiphenomena. In order to answer this question, primary fibroblasts from SR patients were 

seeded into 12-well cell culture plates at densities of 1*104 cells/ well and cultivated for 14 days 

in the presence of solvent control (1 µl DMSO/ml cell culture medium) or 1 µM TC-S 7005, 

respectively (see 2.3.2). Cells were counted after 7 and 14 days to extrapolate proliferation 

curves. Pharmacological inhibition of PLK2 significantly reduced fibroblast proliferation by 

23 % after 7 and 31 % after 14 days (Figure 15).  
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Figure 15. Effect of PLK2 inhibition 
on human atrial fibroblast 
proliferation. Proliferation curves of 
primary human SR fibroblasts. Cells 
were incubated either with 1 µM TC-
S 7005 or DMSO control (1 µl/ ml of 
cell culture medium) (n = 9 per group). 
p-values < 0.05 were considered 
statistically significant. 
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3.2.2.3 Effect of genetic KO of the PLK2 gene on murine cardiac fibroblast proliferation 

In analogy to increased myofibroblast differentiation caused by KO of PLK2 we also 

tested the effects of the KO on fibroblast proliferation. In this set of experiments cell 

proliferation was assessed after 5 and 10 days. Preliminary proliferation experiments were 

done with rat cardiac fibroblasts due to their good availability. We noticed very fast proliferation 

compared to human fibroblasts leading to excessive cell densities in the cell culture wells after 

14 days (Figure 16 a). For this reason, the observation period was shortened to 10 days. 

Based on these preliminary experiments with rat cardiac fibroblasts, we also expected higher 

proliferation rates in murine fibroblasts. Surprisingly, basal murine fibroblast proliferation was 

significantly lower than observed in rat fibroblasts. However, the results were comparable to 

the human proliferation curves though proliferation was slightly lower in general. Similar to 

PLK2 inhibition, the genetic KO reduced proliferation by about 30% after 5 and 10 days 

(Figure 16 b).  

 

 

Figure 16. Rodent cardiac fibroblast proliferation. a) Preliminary proliferation experiments with rat 
cardiac fibroblasts, solvent control vs. 1 µM TC-S 7005, (n = 10 per group).  b) Proliferation curves of 
primary PLK2 WT and KO mouse cardiac fibroblasts (n = 5 vs. 6). p-values < 0.05 were considered 
statistically significant. 
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3.2.2.4 Effect of pharmacological PLK2 inhibition on human atrial fibroblast migration 

Since fibroblasts derived from SR and AF patients were shown to differ in terms of 

lower migration capacity in AF compared to SR, we tested whether PLK2 inhibition would result 

in the same observation. Human right atrial fibroblasts from SR patients were treated with 

solvent control or 1 µM TC-S 7005 (see 2.2.3). There was no significant difference between 

solvent control and PLK2 inhibitor group (Figure 17).  

 
Figure 17. Effect of PLK2 inhibition on human atrial fibroblast migration. Migration capacity of 
primary human atrial fibroblasts was tested for DMSO control (1 µl/ ml of cell culture medium) or 1 µM 
TC-S 7005 (specific PLK2 inhibitor). a) Number of migrated cells depicted as scatter plot (n = 5 per 
group). b) Number of migrated cells from a) depicted as average values.  

 

 

3.2.3 PLK2-dependent induction of cell senescence  

In order to clarify the significance of PLK2 for senescence induction, a β-galactosidase 

staining was performed on cultured primary mouse PLK2 WT and KO fibroblasts (Figure 18 a). 

A trend towards increased senescence in PLK2 KO fibroblasts was found (Figure 18 b) 

although the results shortly failed to reach statistical significance (p = 0.052). Yet, 

pharmacological inhibition of PLK2 in primary human SR fibroblasts with 1 µM TC-S 7005 for 

10 days resulted in significantly increased β-galactosidase activity compared to the vehicle-

treated control group (Fig. 18 c).  
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Figure 18. PLK2-dependent induction of cell senescence. a) Representative β-galactosidase-
staining to detect cellular senescence. β-galactosidase-positive cells are stained green. The scale bar 
equals 100 µm. b) and c) Quantification of β-galactosidase-positive cells (senescent cells) depending 
on PLK2 expression/ function. Values are depicted as percentage of the total cell count/ well. b) Basal 
proportion of senescent fibroblasts in primary PLK2 WT and KO cell culture (n = 5 WT mice vs. 6 KO 
mice). c) Proportion of senescent fibroblasts in human primary SR fibroblast cell culture incubated with 
solvent control (1 µl DMSO/ ml medium) or 1 µM TC-S 7005 (PLK2 inhibitor) (n = 5 per group). p-values 
< 0.05 were considered statistically significant. 
 
 
3.3 Effect of PLK2 deficiency on heart tissue and function 
3.3.1 Fibrosis marker protein expression in SR and AF heart tissue  

In vitro and clinical research have confirmed that AF is accompanied by and causes 

fibrotic tissue remodeling (Rudolph et al., 2010; Nattel und Harada, 2014; Heijman et al., 2018; 

Klesen et al., 2018). To identify dysregulated myofibroblast and fibrosis markers correlating 

with lower PLK2 expression in AF, we performed western blots for FAPα (Figure 19 a), αSMA 

(Figure 19 b) and vimentin (Figure 19 c). These markers indicate fibroblast activation (FAPα), 

myofibroblast differentiation (αSMA) and gain of cell size (vimentin). In line with the literature, 

all of them were significantly more abundant in AF samples compared to SR controls 

(Figure 19 a-c). The upregulation of FAPα in AF though (Figure 19 a) marks a novel finding 

indicating a general fibroblast activation in a pre-myofibroblast state.  
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Figure 19. Analysis of myofibroblast and fibrosis markers in SR and AF atrial tissue. a) Protein 
abundance of fibroblast activation protein alpha (FAPα) normalized to the housekeeping protein 
calsequestrin (CSQ) (n = 12 vs. 13). The panel below shoes an original example western blot. b) Protein 
abundance of the myofibroblast marker protein alpha smooth muscle actin (αSMA) normalized to the 
housekeeping protein eukaryotic elongation factor 2 (EEF2) (n = 10 per group). The panel below shoes 
an original example western blot. c) Protein abundance of the fibroblast marker vimentin normalized to 
the housekeeping protein EEF2 (n = 10 per group). The lower panels show corresponding original 
western blots. p-values < 0.05 were considered statistically significant. 

 

3.3.2 αSMA expression in PLK2 WT and PLK2 KO heart tissue 

Based on the findings that PLK2 expression is significantly lower in AF compared to 

SR controls and that especially the most recognized myofibroblast marker αSMA is 

upregulated in AF, we made western blots for αSMA of mouse PLK2 WT and KO heart tissue 

to identify a correlation of PLK2 and αSMA expression. We found a 4-fold upregulation of 

αSMA in PLK2 KO samples (Figure 20 a and b).  

 

Figure 20. αSMA expression in PLK2 WT and PLK2 KO heart tissue. a) Original western blot for 

αSMA. b) Quantification of αSMA protein abundance (normalized to GAPDH) in heart tissue samples 

from PLK2 WT and KO mice analyzed by western blot (n = 6 vs. 10 animals). p-values < 0.05 were 

considered statistically significant. 
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3.3.3. Fibrotic tissue remodeling in PLK2 KO mouse hearts 

Since myofibroblast and fibrosis markers were significantly elevated in PLK2 KO mouse 

hearts, we investigated the presence of contiguous interstitial fibrosis areas. Sirius red staining 

of 8 months old PLK2 WT and KO heart sections demarked vast interstitial fibrosis areas, 

especially in the left ventricle in PLK2 KO animals compared to their WT littermates (Figure 21 

right panel). Quantification was omitted as there were no contiguous interstitial fibrosis areas 

present in the WT samples (Figure 21 left panel). 

 
Figure 21. Sirius red staining of histological sections of PLK2 WT and KO hearts. Paraffin sections 
of murine hearts. Collagen was stained intensively red. The area displayed is located mid-ventricular 
(halfway between the cardiac valves and the apex cordis). Left panel) PLK2 wildtype samples displayed 
as overview and with a corresponding magnified area. Right panel) PLK2 knockout samples displayed 
as overview and with a corresponding magnified area. 
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3.3.4. Effects of fibrotic tissue remodeling on the heart and body development 

The heart weight and corresponding tibia length of 4 months old PLK2 WT, 

heterozygous (HET) and KO animals were measured to assess to which extent the fibrotic 

remodeling affects heart development and potentially heart function. Although we did not find 

a shorter overall survival of PLK2 KO mice compared to their WT littermates, the PLK2 KO 

hearts were significantly lighter than WT hearts (-35.3 mg) (Figure 22). The heart weight was 

normalized to the corresponding tibia length as a body weight-independent reference (Yin et 

al., 1982). Using the tibia length was necessary since the PLK2 knockout significantly 

influenced the body weight development of the mice (Figure 23 a) but did not affect the tibia 

length (Figure 23 b). Heterozygous animals were significantly lighter than their WT littermates 

and there was a pronounced trend towards lighter body weight in the PLK2 KO mice. 

 

Figure 22. PLK2 mouse model heart weight normalized to tibia length at 4 months of age. 
(nWT = 20, nHET = 12, nKO = 15). p-values < 0.05 were considered statistically significant. 
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Figure 23. PLK2 mouse model body weight and tibia length at 4 months of age. a) Comparison of 
PLK2 WT, HET and KO mouse body weight at 4 months of age (nWT = 9, nHET = 10, nKO = 4). b) 
Comparison of PLK2 WT, HET and KO mouse tibia length at 4 months of age (nWT = 9, nHET = 10, nKO = 
4). p-values < 0.05 were considered statistically significant. 

 

3.3.5 PLK2 KO impairs the cardiac performance in vivo 

 Since lack of PLK2 expression and/ or function induced a marked myofibroblast 

phenotype in vitro and interstitial fibrosis in the mouse model, we further assessed the 

functional consequences of the genetic PLK2 KO using transthoracic echocardiography in 4 

vs. 4 PLK2 WT and KO animals. Although the heart rate was not altered (Figure 24 a), we 

found a significant reduction in stroke volume, and end diastolic volume in the KO group 

(Figure 24 b and d). This finding was in line with a reduced cardiac output in the KO group 

(Figure24 f). Interestingly the ejection fraction was only minimally reduced (Figure 24 e).  
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Figure 24. Echocardiographic comparison of PLK2 WT and KO mice. Transthoracic 
echocardiography was performed on anesthetized PLK2 WT and KO mice with a Vevo3100 small animal 
echocardiography device. a) Heart rate [beats per minute], b) Stroke volume [µl], c) End dystolic volume 
[µl], d) End diastolic volume [µl], e) Ejection fraction [%], f) Cardiac output [ml per minute]. (n = 4 animals 
per group). p-values < 0.05 were considered statistically significant. 
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3.3.6 Effects of PLK2 KO on selected surface ECG parameters 

 In human AF samples we found reduced PLK2 gene and protein expression. Using 

surface ECGs we intended to clarify if PLK2 KO could also induce AF-typical changes in the 

KO animals. Surface ECGs were obtained during echocardiography. Compared to their WT 

littermates the PLK2 KO mice displayed a prolonged PQ and QRS duration and a prolonged 

PR interval (Figure 25 b – d). 

 

 

Figure 25. Surface ECG recordings from PLK2 WT and PLK2 KO mice. Surface ECGs were 
acquired during echocardiography. The data is presented in arbitrary units resulting from the 
measurement of specific ECG sections. a) Example ECG recordings. b) PQ duration. c) QRS duration. 
d) PR interval. (n = 4 animals per group). p-values < 0.05 were considered statistically significant.  
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3.4 Effects of PLK2 on the fibroblast secretome 

3.4.1 Most regulated proteins in PLK2 KO fibroblast cell culture medium 

PLK2 inhibition and genetic KO led to significantly increased myofibroblast 

differentiation and senescence induction. Based on these findings, we studied the senescence 

associated secretory phenotype (SASP) (Coppé et al., 2008) of PLK2 KO and WT mouse 

fibroblasts with mass spectrometry. The proteins secreted by fibroblasts (further referred to as 

“secretome”) into the cell culture medium were analyzed with particular emphasis on 

inflammation mediators. The most highly regulated proteins (until p = 0.05) are assembled in 

Table 4.  

 

3.4.2 PLK2 KO induces OPN de novo secretion 

Among the significantly regulated proteins, we found de novo expression of 3 proteins 

in the PLK2 KO fibroblast media. Macrophage metalloelastase, OPN and Glycine-tRNA ligase 

were only abundant in the PLK2 KO group (Table 4, Figure 26 a). Since OPN has already been 

associated with cardiovascular inflammation and heart failure (Zhao et al., 2016),we further 

focused on this mediator. Consistent with our finding in the mass spectrometry, OPN protein 

abundance was similarly elevated in right atrial tissue samples from AF patients compared to 

SR controls (Figure 26 b.).  

 

Figure 26. PLK2-dependent osteopontin expression. a) Osteopontin protein abundance in PLK2 WT 
or KO fibroblast cell culture medium analyzed by mass spectrometry. PLK2 KO fibroblasts secrete 
osteopontin de novo (n = 3 mice per group). b) Quantification of western blots for osteopontin protein 
abundance in SR and AF right atrial tissue lysates (n = 10 per group). p-values < 0.05 were considered 
statistically significant. 
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Table 4 Significantly differentially expressed proteins of the secretome analysis 

# Protein name 
UniProt 

Accession No. 

Molecular 

Weight 
p-Value 

Number of identified spectra 

KO 1 KO 2 KO 3 WT 1 WT 2 WT 3 

1 Macrophage metalloelastase MMP12_MOUSE 55 kDa 0.00016 9 8 7 0 0 0 

2 Osteopontin OSTP_MOUSE 66 kDa 0.00039 4 4 3 0 0 0 

3 Glycine-tRNA ligase SYG_MOUSE 82 kDa 0.0022 3 2 2 0 0 0 

4 Transcription elongation factor B polypeptide 1 ELOC_MOUSE 12 kDa 0.0022 0 0 0 3 2 2 

5 Properdin PROP_MOUSE 50 kDa 0.0022 3 2 2 0 0 0 

6 A disintegrin and metalloproteinase with thrombospondin motifs 5 ATS5_MOUSE 102 kDa 0.0061 7 9 8 12 12 14 

7 40S ribosomal protein S3 RS3_MOUSE 27 kDa 0.0078 5 4 5 3 2 2 

8 Protein disulfide-isomerase A6 PDIA6_MOUSE 48 kDa 0.011 17 17 15 10 11 13 

9 Glutaminyl-peptide cyclotransferase QPCT_MOUSE 41 kDa 0.013 4 3 4 6 6 5 

10 Lysosomal acid lipase/cholesteryl ester hydrolase LICH_MOUSE 45 kDa 0.016 5 4 4 0 2 2 

11 Calsyntenin-1 CSTN1_MOUSE 109 kDa 0.025 20 19 20 17 13 16 

12 Ribonuclease T2 RNT2_MOUSE 30 kDa 0.025 4 2 3 5 5 6 

13 Disintegrin and metalloproteinase domain-containing protein 9 ADAM9_MOUSE 92 kDa 0.029 6 4 3 2 0 0 

14 Lysosomal alpha-glucosidase LYAG_MOUSE 106 kDa 0.033 9 5 6 10 11 11 

15 Serotransferrin TRFE_MOUSE 77 kDa 0.036 58 59 45 43 29 33 

16 Putative phospholipase B-like 2 PLBL2_MOUSE 66 kDa 0.038 19 15 17 13 13 14 

17 Cathepsin S CATS_MOUSE 38 kDa 0.041 10 5 8 3 2 4 

18 Cathepsin D CATD_MOUSE 45 kDa 0.045 55 48 59 47 42 41 
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3.4.3 OPN levels in the peripheral blood of patients 

The relationship of atrial fibrillation and plasma OPN levels has been subject of clinical 

research recently (Güneş et al., 2017). OPN was proven to be an independent predictor of AF 

recurrence after cryoballoon ablation and could therefore predict the long term success rate of 

invasive AF treatments (Güneş et al., 2017). Since OPN is associated with inflammation, 

fibrosis and atherosclerosis, high systemic levels of this mediator could be detrimental to 

patients. For this reason, we aimed to identify a positive correlation of electrophysiologically 

detected fibrosis and OPN levels in the peripheral blood of AF patients.  

Patients undergoing pulmonary vein catheter ablation were enclosed in this study. 2.7 ml of 

venous blood were taken and stored in EDTA tubes in analogy to the procedure of Güneş and 

colleagues (Güneş et al., 2017). After centrifugation at 1000 g for 10 min, cell-depleted plasma 

was stored at -80° C for further analysis. The samples were matched according to the patients’ 

age, sex, comorbidities and drugs. Control samples were donated by healthy volunteers 

without cardiac comorbidities. The ELISA analysis revealed a 1.7-fold increase of OPN in AF 

blood samples without fibrosis (16.78 ng/ml) and a 2.7-fold increase in samples from patients 

with fibrosis (25.99 ng/ml) compared to healthy SR controls (9.66 ng/ml) (Figure 27 a). We 

expected lower levels of OPN in the SR control group because of the significantly younger age 

of the healthy volunteers. To ascertain this hypothesis patient age and OPN plasma levels 

were correlated. The R2 coefficient of 0.022 indicates no significant correlation of patient age 

and plasma OPN (Figure 27 b). 

Figure 27. Systemic OPN protein expression in patients. a) Osteopontin concentration in patients’ 
peripheral blood. Osteopontin concentration was measured with ELISA (nSR(healthy) = 4, nAF(no fibrosis) = 8, 
nAF(fibrosis) = 9). b) Correlation of osteopontin concentration in the peripheral blood and the patients’ 
age. p-values < 0.05 were considered statistically significant. 
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3.5. Mechanistic link between PLK2 and OPN secretion 
3.5.1 Identification of signaling pathways involved in OPN secretion 

The work of Beck et al (Beck und Knecht, 2003) and Xie et al (Xie et al., 2004) provided 

evidence that p42/44 MAPK (ERK1/2) mediates OPN secretion. For this reason, we performed 

a western blot to confirm the expected higher abundance of p42/44 MAPK (ERK1) in PLK2 KO 

mice. We found a significant 1.25-fold higher p42 MAPK protein abundance in PLK2 KO mouse 

heart samples compared to PLK2 WT controls (Figure 28 a and b). 

 

 
Figure 28. p42 MAPK expression in PLK2 WT and KO hearts. a) Quantification of western blots for 
p42/44 MAPK (n = 4 vs. 5 mice). b) Representative western blot experiment for a. p-values < 0.05 were 
considered statistically significant. 

 

3.5.2 Identification of cardiac PLK2 substrates linked to the p42/44 MAPK pathway 

We focused on the Ras pathway which was shown to be a downstream signaling 

cascade of PLK2 (Lee, Hoe et al., 2011). Especially RasGRF1, a guanidine exchange factor 

that stimulates Ras signaling was shown to be negatively regulated via PLK2-dependent 

phosphorylation. First, we analyzed protein expression of RasGRF which was described in the 

literature (Lee, Hoe et al., 2011). Western blot analysis revealed no expression of RasGRF1 

in cardiac fibroblasts (Figure 29). Subsequent mRNA analysis revealed expression of 

RasGRF2 in cardiac fibroblasts (data not shown). Western blotting proved RasGRF2 

upregulation in cardiac fibroblasts when PLK2 was inhibited with 1 µM TC-S 7005 for 72h 

compared to DMSO solvent control (Figure 30 a and b). 
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Figure 29. Original western blot for RasGRF1 protein abundance in human cardiac fibroblast. 
PLK2-dependence of RasGRF1 protein abundance was tested abundance in human ventricular 
fibroblasts which were treated with solvent control (1 µl DMSO/ ml cell culture medium) or 1 µM of a 
specific PLK2 inhibitor (TC-S 7005) for 72 hours (n = 3 per group. 

 

 

 

Figure 30. PLK2-dependent RasGRF2 protein abundance in human cardiac fibroblasts. a) 
Quantification of western blots for RasGRF2 protein abundance in human ventricular fibroblasts which 
were treated with solvent control (1 µl DMSO/ ml cell culture medium) or 1 µM of a specific PLK2 inhibitor 
(TC-S 7005) for 72 hours (n = 3 per group. b) The original western blot for a). p-values < 0.05 were 
considered statistically significant. 
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abundance in the TC-S-treated group compared to control (Figure 31 a and b). Thus, we 

provide evidence that reduced PLK2 expression or function attenuates RasGRF2 degradation 

resulting in enhanced expression of p42/44 MAPK which can stimulate OPN transcription and 

secretion. 

 

Figure 31. PLK2-dependent p42/44 MAPK expression in human cardiac fibroblasts. a) 
Quantification of western blots for p42 MAPK protein abundance in human ventricular fibroblasts which 
were treated with solvent control (1 µl DMSO/ ml cell culture medium) or 1 µM of a specific PLK2 inhibitor 
(TC-S 7005) for 72 hours (n = 3 per group). The results were normalized to EEF2. b) Quantification of 
western blots for p44 MAPK protein abundance in human ventricular fibroblasts which were treated with 
solvent control (1 µl DMSO/ ml cell culture medium) or 1 µM of a specific PLK2 inhibitor (TC-S 7005) for 
72 hours (n = 3 per group). The results were normalized to EEF2. c) The original western blot for a) and 
b). p-values < 0.05 were considered statistically significant. 

 

3.5.4 Suggested mechanism of PLK2-OPN interaction 

In figure 32 the working hypothesis for the PLK2-OPN-axis is presented (Figure 32 a). 

We found that PLK2 inhibition led to increased RasGRF2 (Figure 32 b) protein abundance. 

Based on literature research we connected these results via the Ras pathway (Thomas et al., 

1992). Inhibition of PLK2 in human ventricular fibroblasts led to enhanced p42 MAPK 

phosphorylation and subsequently to an increase in OPN protein abundance (Figure 32 c and 

d).  

In order to verify these findings, PLK2 WT and KO fibroblasts were analyzed with regard to 

RasGRF2 protein abundance, p42 phosphorylation and OPN expression (Figure 33 a – c). 

Furthermore, the specific p42/44 MAPK inhibitor SCH772984 was used in these experiments. 

Primary PLK2 KO fibroblasts were cultured in the presence of 10 nM SCH772984 after P1 for 

48 h. These experiments confirmed an elevated RasGRF2 protein abundance, increased p42 

MAPK phosphorylation and increased OPN protein abundance (Figure 33 a – c). Additionally, 

inhibition of p42/44 MAPK decreased RasGRF2 and OPN protein abundance significantly 

(Figure 33 a and c).  
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Figure 32. Suggested mechanism of PLK2-OPN interaction. Cells were either treated with solvent 
control (1 µl DMSO/ ml cell culture medium) or 1 µM of a specific PLK2 inhibitor (TC-S 7005) for 72 
hours (n = 3 per group). a) PLK2 phosphorylates RasGRF2 and leads thereby to its proteasomal 
degradation. In Absence of PLK2 RasGRF2 is not degraded and stimulates the Ras pathway. Ras 
phosphorylates and thereby activates p42/44 MAPK which induces OPN transcription via AP1 and 
ELK1. The blue boxes in the scheme were experimentally proven, the grey boxes are assumptions 
based on literature research. b) Quantification and representative western blot for RasGRF2 protein 
abundance in human ventricular fibroblasts c) Quantification and representative western blot for total 
and phosphorylated (Thr202/Tyr204) p42/44 protein abundance in human ventricular fibroblasts. d) 
Quantification and representative western blot for OPN protein abundance in human ventricular 
fibroblasts. p-values < 0.05 were considered statistically significant. 
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Figure 33. Effect of pharmacological p42/44 MAPK inhibition on PLK2 KO fibroblasts. Primary 
murine PLK2 WT and KO fibroblasts were used. Cells were either treated with solvent control (1 µl 
DMSO/ ml cell culture medium) or 10 nM of a specific ERK1/2 inhibitor (“ERKi”, SCH772984) for 48 
hours (n = 4 per group). a) Quantification and representative western blot for RasGRF2 protein 
abundance. b) Quantification and representative western blot for phosphorylated (Thr202/Tyr204) p42 
protein abundance. d) Quantification and representative western blot for OPN protein abundance. p-
values < 0.05 were considered statistically significant.  
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3.5.5 Comparison of the PLK2 wild type and knockout fibroblast transcriptome 

 In order to gain further mechanistic insight of possible PLK2 downstream interactions, 

we performed a transcriptome analysis of the very same wildtype and PLK2 KO fibroblasts that 

were used in the proteome analysis. The objective was to systemically characterize the effects 

of PLK2 KO on cardiac fibroblast mRNA expression. Surprisingly, there were no significant 

differences in mRNA expression between the wild type control and the PLK2 KO group. 

However, the obtained data clearly verified the knockout of PLK2 in comparison to the wild 

type animals (Table 5). 
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Table 5. Top 20 differentially expressed genes in the transcriptome analysis 

Gene symbol WT 1 WT 2 WT 3 KO 1 KO 2 KO 3 KO 4 p-value Adjusted p-value (multiple testing) 

Plk2 690 951 541 1 0 0 0 4,127E-86 9,415E-82 

Xlr3b 28 23 23 3 4 7 1 3,599E-06 4,105E-02 

Cnn1 497 105 23 16 10 29 4 2,952E-05 2,245E-01 

Laptm5 5 6 1 12 22 33 50 1,624E-04 9,263E-01 

Myh11 537 143 38 43 21 95 38 1,141E-03 9,999E-01 

Ramp1 19 26 3 1 4 1 0 2,281E-03 9,999E-01 

C1qb 1 12 1 14 38 30 108 2,567E-03 9,999E-01 

Myl9 639 783 91 105 140 149 220 2,799E-03 9,999E-01 

Bmf 20 71 25 3 7 19 17 3,721E-03 9,999E-01 

Acta1 46 39 3 5 0 5 0 4,299E-03 9,999E-01 

Ctss 1 9 1 7 46 17 59 4,725E-03 9,999E-01 

Lhx9 9 27 8 4 4 2 0 6,445E-03 9,999E-01 

C1qc 1 13 3 12 29 24 44 7,548E-03 9,999E-01 

Gm27786 0 1 0 4 12 3 27 7,572E-03 9,999E-01 

Sema6b 5 16 10 27 35 19 62 7,885E-03 9,999E-01 

Tyrobp 2 2 2 2 17 11 36 9,252E-03 9,999E-01 

Skiv2l2 377 391 270 421 631 603 565 9,289E-03 9,999E-01 

Lmod1 143 130 26 44 15 55 16 9,611E-03 9,999E-01 

Lmo2 9 13 10 13 69 15 82 1,168E-02 9,999E-01 

Lyz2 476 196 188 274 681 805 1206 1,172E-02 9,999E-01 
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3.6. Upstream mechanism triggering PLK2 downregulation in AF 

3.6.1 Hypoxia induced PLK2 downregulation 

Recent studies in non-cardiac tissues (Syed et al., 2006; Benetatos et al., 2011) have 

demonstrated that PLK2 gene expression can be regulated by promoter methylation. Since we 

were able to proof promoter methylation in several AF heart tissue samples, it was our aim to 

induce methylation in primary human atrial SR fibroblasts to downregulate PLK2 expression. 

A common stimulus known to induce genome wide promoter methylation is chronic hypoxia 

(Robinson et al., 2012). After 24h of hypoxia treatment we found a significant downregulation 

of PLK2 mRNA expression (Figure 34). However, we did not find promoter methylation in the 

corresponding gDNA samples after 24 h (Figure 35). Since epigenetic modifications need to 

be passed to daughter cells to be broadly detectable we increased the time of hypoxia 

treatment to 72 h and 96 h that fibroblasts can pass through several cell cycles. Furthermore, 

we chose human ventricular fibroblasts for the prolonged experiments, since their proliferation 

rate is higher than that of primary atrial fibroblasts. Anyway, after 72 h there was no promoter 

methylation present (Figure 35). A recently published study by Robinson et al found that human 

fibroblasts have to be exposed to hypoxia for 8 days to develop robust genome wide DNA 

hypermethylation whereas 4 days can be sufficient to identify slight levels of methylation 

(Robinson et al., 2012). After 96 h of hypoxia treatment we detected methylation of the PLK2 

promoter (Figure 35). To proof the concept of hypoxia-mediated promoter methylation we 

further used 0.25 mM Dimethyloxaloylglycine (DMOG), an inhibitor of PHD finger protein (PHF) 

and factor inhibiting HIF (FIH-1) mimicking hypoxia by upregulation of hypoxia-inducible factor 

(HIF-1α) (Ayrapetov et al., 2011). 96 h DMOG added further evidence that PLK2 promoter 

methylation is hypoxia-sensitive (Figure 35).  
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Figure 34. Effect of chronic hypoxia treatment on PLK2 mRNA expression. Primary human atrial 
SR fibroblasts were cultured either in a normoxic (20% O2) or hypoxic (1% O2) environment for 24 h (n= 
6 per group). Relative mRNA expression was calculated with RPL32 as housekeeping gene. p-
values < 0.05 were considered statistically significant. 

 

 

 
Figure 35. Methylation-specific PCR gel images of the PLK2 promoter region. Methylation-
specific PCR of the PLK2 promotor region. Primary human atrial fibroblasts were cultured either in a 
normoxic (20% O2) or hypoxic (1% O2) environment for 24 h, 72 h or 96 h. (U: unmethylated, 
M: methylated, Pos = positive control (human universal methylated DNA standard), H2O = water 
control).  
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3.6.2 PRKRA-p53-dependent PLK2 downregulation 

Since promoter methylation is not the only way of reducing gene expression, we further 

focused on direct regulators of PLK2 expression. Previous research on this topic has identified 

direct induction of PLK2 in a p53-dependent manner (Burns et al., 2003b). In the Affymetrix 

microarray data we found a significant mRNA up-regulation of the negative p53 regulator 

PRKRA (Li et al., 2007) in AF fibroblasts compared to SR (Figure 36 a). Consequently, p53 

mRNA expression was diminished in the AF group (Figure 36 b). 

 

 

Figure 36. Upstream regulation of PLK2. a) mRNA expression of the negative p53 regulator PRKRA 
in primary human atrial fibroblasts from SR (n = 8) and AF (n = 6) patients analyzed with an Affymetrix 
chip microarray. b) mRNA expression of p53 in primary human atrial fibroblasts from SR (n = 8) and AF 
(n = 6) patients analyzed with an Affymetrix chip microarray. p-values < 0.05 were considered 
statistically significant. * = p < 0.05 
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3.7 Validation of the PLK2-p42/44MAPK-axis as a universally applicable fibrotic pathway  
Our experiments identified a clear relevance of the PLK2-p42/44MAPK-signaling axis 

for myofibroblast differentiation and OPN secretion in cardiac fibroblasts during permanent AF. 

To prove whether the observed phenomena and mechanisms are generally valid in non-

cardiac fibrosis, we used primary dermal fibroblasts from female control patients and patients 

suffering from radiation-induced Morphea (RIM) after breast cancer treatment.  

3.7.1 Dermal fibroblast identification  

 As described in 3.2.1 cells were identified as fibroblasts by immunofluorescence 

staining for accepted fibroblast marker proteins. Here we used hFSP, DDR2 and Col1. All cells 

(≈ 99%) were positive for these marker proteins. Figure 37 displays representative staining 

results.  

 
Figure 37. Immunocytochemical dermal fibroblast identification. Representative staining images of 
primary dermal fibroblasts for hFSP, DDR2 and Col1. The nuclei were stained with DAPI (blue). The 
scale bars equal 50 µm. The original colour of the fluorescence signal (far red) was altered for better 
visibility with the ZEN2.3 lite software for hFSP AND Col1. 

3.7.2 PLK2 expression is altered in RIM fibroblasts  

 Comparably to AF fibroblasts, we found a clear trend towards reduced PLK2 mRNA 

expression in dermal RIM fibroblasts (Figure 38 a). However, western blot experiments also 

revealed distinctly altered PLK2 protein abundance in RIM fibroblasts compared to control 

(Figure 38 b). Whereas control samples displayed clear and sharp PLK2 bands, the RIM 

samples displayed blurred bands which were merely above background noise. The trend 

towards altered or reduced PLK2 expression was further supported by immunofluorescence 

staining experiments which indicated a weaker PLK2 fluorescence signal in RIM fibroblasts 

compared to control (Figure 39). 
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Figure 38. PLK2 mRNA and protein expression is altered in RIM fibroblasts. a) Expression of PLK2 
mRNA normalized to EEF2 in primary human dermal fibroblasts from control and RIM patients, analyzed 
with qPCR (n = 3 per group). b) Representative western blot for PLK2 protein abundance in control and 
RIM fibroblasts. c) Quantification of western blot for PLK2 protein abundance in control and RIM 
fibroblasts (n = 3 per group). The results failed to reach the level of statistical significance. 

 

 

Figure 39. Immunocytochemical PLK2 detection in dermal fibroblasts. Representative staining 
images of primary dermal fibroblasts for PLK2. The nuclei were stained with DAPI (blue). The scale bars 
equal 50 µm.   
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3.7.3 Functional characterization of RIM fibroblasts  

 In order to understand whether the cardiac fibroblast dysfunction which was initially 

observed in AF fibroblasts (Poulet et al., 2016) and confirmed in PLK2-deficient cardiac 

fibroblasts in this study, represents a general principle of fibroblast adaptation to certain 

pathological stimuli, such as rapid pacing, chemical stimulation or irradiation, we characterized 

dermal control and RIM fibroblasts with particular emphasis on proliferation, migration and 

myofibroblast differentiation.  

Proliferation 

 Dermal fibroblasts displayed higher proliferation rates than cardiac fibroblasts. 

However, in accordance to our prior observations, RIM fibroblasts proliferated significantly 

lower compared to control fibroblasts after 5 and 10 days of culture (Figure 40). In RIM 

fibroblasts, we found a reduction in cell count of 24.17% at day 5 and 48.11% at day 10 

compared to Control fibroblasts.  

 

Migration 

 Comparably to AF fibroblasts, RIM fibroblasts displayed a significantly reduced 

migratory capacity. The number of migrated cells was 43% lower in RIM compared to Control 

(Figure 41).  
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Fig. 40. Proliferative capacity of 
dermal Control and RIM 
fibroblasts. Proliferation curves of 
primary Control and RIM fibroblasts 
under basal (n = 6 experiments per 
group, Cells were isolated from N = 3 
patients). p-values < 0.05 were 
considered statistically significant. 
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Differentiation 

 Finally, the basal differentiation into myofibroblasts was assessed. A cell was 

considered myofibroblast when orderly arranged αSMA microfilaments were present 

(Figure 42 a and b, cell in the center). Under basal conditions, 7.3% of Control fibroblasts were 

considered myofibroblasts whereas 23.5% of RIM fibroblasts were considered myofibroblasts 

(Figure 42 c).  

 

Figure 42. Analysis of myofibroblast differentiation in dermal fibroblasts. a) and b) 
Immunofluorescence staining images for αSMA, the nuclei were stained with DAPI (blue). 

c) Quantification of immunostaining experiments for αSMA protein abundance (n = 3 patients per group). 

Primary dermal fibroblasts were grown on glass cover slips for 4±1 days. p-values < 0.05 were 

considered statistically significant. 
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Fig. 41. Migratory capacity of 
dermal Control and RIM 
fibroblasts. Number of 
migrated primary Control and 
RIM fibroblasts in 24 h. (n = 9 
experiments per group, Cells 
were isolated from N = 3 
patients). p-values < 0.05 were 
considered statistically 
significant. 
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3.7.4 Effect of Mesalazine (5-aminosalicylic acid) on dermal fibroblasts  

 Mesalazine belongs to the group of an aminosalicylate anti-inflammatory drugs and is 

commonly used for the treatment of inflammatory bowel disease. However, recent studies on 

liver fibrosis identified Mesalazine as a potent osteopontin inhibitor with a long history of clinical 

use (Ramadan et al., 2018). Furthermore, there is evidence for the beneficial effects of 

aminosalicylate drugs in inflammatory skin disease such as psoriasis (Mastrofrancesco et al., 

2014). In this respect, the effects of Mesalazine on dermal fibroblasts were tested in vitro with 

particular emphasis on functional properties and fibrosis-relevant protein abundance.  

 

Fibrosis-relevant protein expression 

 To assess the effects of Mesalazine on fibrosis-relevant protein expression, RIM 

fibroblasts were treated with low-dose Mesalazine (1 µM or 1 mM) for 72 h. Based on literature 

information Mesalazine is used at higher concentrations (> 10 mM) in vitro (Schwab et al., 

2008). Here we wanted to titrate an optimal dose for fibroblast treatment. There was trend 

towards an increase in PLK2 expression in the presence of 1 mM Mesalazine and a dose-

dependent reduction in RasGRF2 protein abundance (Figure 43 a and b). The same effect 

was observed for OPN and αSMA (Figure 43 c and d). However, the results failed to reach the 

level of statistical significance. For this reason, Control and RIM cells were treated with 10 mM 

Mesalazine for 72h in the subsequent set of experiments. Compared to control fibroblasts, RIM 

fibroblasts expressed significantly more OPN and αSMA. We found a significant reduction of 

RasGRF2 protein abundance in RIM fibroblasts (Figure 44 a) after Mesalazine treatment. 

Accordingly, OPN and αSMA were also significantly reduced in RIM fibroblasts by 10 mM 

Mesalazine (Figure 44 b and c). In Control cells however, we found trends towards reduced 

expression of RasGRF2, OPN and αSMA (Figure 44 a – c). 
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Figure 43. Effects of low-dose Mesalazine on fibrosis-relevant protein abundance. RIM fibroblasts 
were treated with solvent control (water, pH = 5.1) or Mesalazine at the concentrations stated above. 
For 72 h a) Protein abundance of PLK2. b) Protein abundance of RasGRF2. c) Protein abundance of 
OPN. d) Protein abundance of αSMA. The results failed to reach the level of statistical significance. (n 
= 3 per group). 
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Figure 44. Effects of high-dose Mesalazine on fibrosis-relevant protein abundance. Control and 
RIM fibroblasts were treated with solvent control (water, pH = 5.1) or 10 mM for 72 h (n = 3 per group). 
a) Protein abundance of RasGRF2. b) Protein abundance of OPN. c) Protein abundance of αSMA. d) 
Protein abundance of αSMA. p-values < 0.05 were considered statistically significant. 
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Cell morphology and polarization 

 Cell morphology and polarization are important parameters to determine cell viability 

and their differentiation into myofibroblasts (Omelchenko et al., 2002). Here we tested if 

administration of Mesalazine to RIM fibroblasts which appeared less polarized, could improve 

cell morphology and polarization. We found that 10 mM Mesalazine applied for 72 h increased 

polarization and led to an overall more regular cell morphology (Figure 45 right panel). 

 

Figure 45. Influence of 10 mM Mesalazine on fibroblast morphology and polarization. Primary 
fibroblasts from RIM patients were exposed either to solvent control (water, pH = 5.1) or 10 mM 
Mesalazine for 72 h. The scale bar equals 200 µm. 
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Proliferation 

 In analogy to the experiments in 3.2.2.3 the effect of 10 mM Mesalazine on proliferation 

was tested. Cells between P5 and P10 were used for these experiments. Cells were seeded 

at initial densities of 1x104 cells/ well and counted after 5 and 10 days. Mesalazine significantly 

reduced fibroblast proliferation in Control and RIM fibroblasts (Figure 46 a and b). 

 

Figure 46. Influence of 10 mM Mesalazine on dermal fibroblast proliferation. a) Proliferation curves 
of primary Control fibroblasts in the presence of solvent control (water, pH = 5.1) or 10 mM Mesalazine 
(n = 6 experiments per group, Cells were isolated from N = 3 patients). b) Proliferation curves of primary 
RIM fibroblasts in the presence of solvent control (water, pH = 5.1) or 10 mM Mesalazine (n = 6 
experiments per group, Cells were isolated from N = 3 patients). p-values < 0.05 were considered 
statistically significant. 

 

Migration 

 Finally, the effects of 10 mM Mesalazine on dermal fibroblast migration were tested. 

Interestingly the effects of Mesalazine were adverse in Control and RIM cells. In Control 

fibroblasts 10 mM Mesalazine reduced cell migration. In RIM fibroblasts, however migration 

was elevated to the same migration rates that Control cells displayed in the presence of 

Mesalazine (Figure 47). 
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Figure 47. Effects of 10 mM Mesalazine on dermal fibroblast Migration. Cells were either treated 
with solvent control (water, pH = 5.1) or 10 mM Mesalazine for 24 h and subsequently counted. (n = 9 
experiments per group, cells in both groups were isolated from N = 3 patients). p-values < 0.05 were 
considered statistically significant. 

 

3.7.5 Molecular mechanisms involved in RIM  

 In order to clarify a general validity of the PLK2-OPN axis in myofibroblast differentiation 

and fibrosis, p42/44 MAPK phosphorylation was investigated. Due to reduced PLK2 and 

increased RasGRF2 protein abundance in RIM fibroblasts, we hypothesized an increase in 

p42/44 MAPK phosphorylation. P42 phosphorylation was 1.6 fold elevated in RIM fibroblasts 

compared to Control cells (Figure 48 a). There is evidence that activated (phosphorylated) p42 

can phosphorylate SMAD2/3 (Yoon et al., 2015) which subsequently induces gene expression 

of collagens and αSMA (March et al., 2018). We found a trend towards more SMAD2/3 

phosphorylation in RIM compared to Control fibroblasts (Figure 48 b). Thus SMAD 

phosphorylation was reduced by Mesalazine (Figure 46 b). Finally, we investigated the basal 

and Mesalazine-stimulated protein abundance of PPARγ in Control and RIM fibroblasts 

because Mesalazine was shown to induce PPARγ in non-dermal cells (Schwab et al., 2008). 

Studies focusing on liver fibrosis found that Mesalazine reduced αSMA and OPN protein 

abundance (Ramadan et al., 2018) without clarification of the molecular basis of these 

observation. We found a generally lower expression of PPARγ in RIM cells than in Control 

cells (Figure 48 c left panel). Pooled (Control and RIM) Mesalazine-treated fibroblasts 

expressed significantly more PPARγ compared to untreated cells (Figure 48 c right panel). 
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Figure 48. The role of p42/44 MAPK, SMAD2/3 and PPARγ in RIM fibroblasts. Cells were either 
treated with solvent control (water, pH = 5.1) or 10 mM Mesalazine for 72 h (n = 3 per group). a) 
Quantification and representative western blot of phosphorylated p42 MAPK in Control and RIM 
fibroblasts. b) Quantification and representative western blot of phosphorylated SMAD2/3 in Control and 
RIM fibroblasts. c) Quantification and representative western blot PPARγ in Control and RIM fibroblasts. 
The right panel displays the overall effect of Mesalazine on PPARγ protein abundance in Control and 
RIM fibroblasts. p-values < 0.05 were considered statistically significant. 
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4 Discussion 

 

 

Over the last decade, considerable effort was put into identifying fibrosis mechanisms and 

putative therapeutic targets for innovative antifibrotic pharmacotherapy. Fibrosis was and 

continues to be a major determinant of clinical outcome in cardiovascular burdened patients. 

Stiffening of the myocardial walls and proarrhythmogenic remodeling of the atria are leading 

to deteriorating cardiac performance resulting in end stage heart failure and life threatening 

arrhythmia. However, available drugs and therapeutic approaches are still insufficient to 

prevent either fibrosis development or aggravation. Recent research has focused on novel 

molecular mediators that control fibroblast activation and differentiation in terms of cell-specific 

targeted pharmacotherapy. The family of polo-like kinases turned out to be a highly promising, 

as it is involved in these processes mentioned above, at least in non-cardiac tissue.  

 

4.1 Summary of the main findings 
Primary and commercially available human and murine cardiac fibroblasts, heart tissue 

and human peripheral venous blood were analyzed in the present study to gain insight in the 

(patho)physiological function of cardiac PLK2. The following main results were obtained:  

1. We found a novel role for PLK2 in AF pathophysiology and cardiac fibrosis. Gene 

expression analysis revealed a significant 1.9-fold PLK2 downregulation in primary 

human right fibroblasts derived from AF patients compared to SR control cells. This 

finding was validated on protein level in right atrial appendages with western blot and 

supported by samples of an AF dog model. Analysis of the methylation status of the 

PLK2 promoter in SR and AF patients and a hypoxia cell culture model revealed 

hypoxia-induced promoter hypermethylation to be the likely cause of the observed 

PLK2 downregultion in AF patients.  

2. Pharmacological inhibition of PLK2 with the specific PLK2 inhibitor TC-S 7005 and 

genetic KO in murine fibroblasts led to reduced cell proliferation but vice versa 

increased myofibroblast differentiation. PLK2 inhibition induced cell senescence in a 

considerable portion of fibroblasts. Cell migration however, was not affected by 

diminished PLK2 function.  

3. In a broad secretome analysis of PLK2 WT and KO fibroblasts we found 20 significantly 

regulated secreted proteins in the two groups. The most promising finding was a de 
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novo secretion of the inflammatory cytokine-like phosphoprotein OPN. Consequently, 

OPN was elevated in AF heart tissue and the peripheral blood of AF patients. 

4. We were able to decipher parts of the cardiac PLK2 signaling mechanism. We found 

that RasGRF2 is a substrate of cardiac PLK2, which accumulates in the absence of 

PLK2 leading to an increase in p42 MAPK phosphorylation and subsequent OPN and 

αSMA protein expression. Pharmacological inhibition of p42 MAPK thus reduced OPN 

protein expression below control values.  

5. The functional and molecular characterization of dermal fibroblasts isolated from 

patients with radiation induced Morphea (a severe form of dermal fibrosis) implied a 

general validity and importance of the PLK2-p42MAPK-OPN-axis in (non-cardiac) 

fibrosis. 

 

4.2 The function of PLK2 in the heart 

4.2.1 Regulation of PLK2 gene expression 

Regulation of eukaryotic gene expression is a complex and well-regulated process 

which basically focuses on controlling the initiation of gene transcription. Transcription is 

controlled by 2 major mechanisms: 1) proteins which modulate RNA polymerase and 2) 

modifications of the DNA in terms of chromatin density or methylation patterns (Cooper, 2000). 

Studies in non-cardiac tissue have pointed out that PLK2 gene expression is most likely target 

of DNA promoter methylation which leads to reduced PLK2 expression if present (Syed et al., 

2006; Benetatos et al., 2011; Coley et al., 2012b). Yet, only little is known about PLK2 

expression in the heart. Cardiac PLK2 expression was hitherto only described in human iPSC-

derived cardiac progenitor cells (CPCs), which displayed an inverse correlation of PLK2 

expression and increasing cell maturity (Mochizuki et al., 2017). Mochizuki and colleagues 

were able to show that downregulation of PLK2 increased the expression of lineage genes 

without further addition of differentiation medium (Mochizuki et al., 2017) indicating that 

downregulation of PLK2 in heart could be a physiological initiator of cell differentiation. This 

finding is consistent with the 1.9-fold downregulation of PLK2 mRNA expression in AF derived 

fibroblasts compared to SR controls. Based on our results and on the assumption that 

differentiated cells generally express less PLK2, it can be hypothesized that AF samples which 

have been shown to contain a larger proportion of differentiated myofibroblasts (Poulet et al., 

2016) should also express less PLK2 overall. In order to derive therapeutic strategies from this 

finding, it is important to investigate and understand the underlying control mechanism(s) of 

PLK2 expression. In order to validate that the observed PLK2 downregulation is caused by AF, 

we analyzed western blot samples of control and rapidly paced dog heart tissue and found a 
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clear trend towards reduced PLK2 expression which slightly failed to reach the level of 

statistical significance (p = 0.056). However, this finding nonetheless strongly suggests that 

PLK2 downregulation in patient cells is caused by AF since confounding variables such as 

patient age, sex, comorbidities and medication were not present in the dog model. To 

understand the mechanism that reduces PLK2 expression during AF, the methylation status 

of the PLK2 promoter was analyzed in SR and AF patient samples, since methylation is a 

common epigenetic mechanism to silence gene expression (Lim und Maher, 2010). In 6 out of 

13 AF atrial tissue samples we found methylation of the PLK2 promoter in contrast to the SR 

controls (n = 11) in which methylation was absent. This finding is strengthened by previous 

studies that focused on PLK2 expression in hematological neoplasia. PLK2 promoter 

methylation was frequently found in B-cell malignancies and acute myeloid leukemia, both 

neoplasia in which PLK2 expression was shown to be reduced (Syed et al., 2006; Benetatos 

et al., 2011). Anyway, it must be noted that the analysis in this study was performed in a small 

cohort of patient samples and that more extensive analysis is needed in order to draw a firm 

conclusion about general pathomechanisms from these results. The initiating trigger of 

promoter methylation also needs to be identified. There is convincing clinical and experimental 

data that AF and structural remodeling go alongside with tissue hypoxia and ischemic stress 

(Thijssen et al., 2002; Gramley et al., 2010; Stevenson et al., 2010; Lu et al., 2013; Opacic et 

al., 2016; Marulanda-Londoño und Chaturvedi, 2017). To date it is unclear whether hypoxia is 

the cause or the consequence of AF but effects of hypoxia on fibroblasts have been described 

in terms of higher myofibroblast differentiation (Robinson et al., 2012; Gao et al., 2014). 

Furthermore, Robinson and colleagues demonstrated elegantly that chronic hypoxia treatment 

of primary human lung fibroblasts induces genome wide DNA methylation (Robinson et al., 

2012). Based on these evidences we exposed primary human right atrial and commercially 

available immortalized human ventricular fibroblasts to chronic hypoxia for 24 h, 72 h and 96 

h (see 3.6.1). Although we found a significant PLK2 downregulation after 24 h of hypoxia 

treatment (Figure 34), there was no methylation present in the methylation-specific PCR at this 

time point (Figure 35 a). This result is in line with previous studies which determined 4 to 8 

days of chronic hypoxia as the critical duration to induce DNA methylation (Robinson et al., 

2012). For a prolonged hypoxia cell culture, special equipment, foremost a hypoxia cell culture 

bench, is necessary since short periods of normoxia e.g. for a medium change can be sufficient 

to remove hypoxia-induced effects (Wenger et al., 2015). Since our laboratory is not 

specialized in hypoxia, we were unable to perform an 8-days chronic hypoxia equipment for 

technical reasons. However, we performed hypoxia experiments without medium change for 

72 h and 96 h. In accordance with Robinson et al. there was no methylation detectable after 

72 h but slightly methylated bands occurred after 96 h (Figure 35 b and c). As a positive control 

we additionally exposed the cells to 0.25 mM dimethyloxaylglycine (DMOG). DMOG is known 
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to inhibit PHD finger protein (PHF) and factor inhibiting HIF (FIH-1) and thereby mimics 

maximal cellular hypoxia via accumulation of hypoxia inducible factor 1 alpha (HIF-1α) 

(Ayrapetov et al., 2011). Exposure to DMOG for 96 h clearly induced DNA methylation of the 

PLK2 promoter and proofed that PLK2 promoter methylation is sensitive to hypoxia (Figure 35 

c). Despite of this, we were able to shed led on an additional negative upstream regulation 

mechanism of PLK2 via PRKRA and p53. P53 is reported to positively regulate PLK2 

expression (Burns et al., 2003b, S. 2). This finding led us to the hypothesis that reduced p53 

expression could additionally contribute to reduced PLK2 expression. We found enhanced 

expression of the negative p53 regulator PRKRA in AF fibroblasts compared to SR in the 

Affymetrix® microarray (Figure 36 a). Little is known about the regulation of PRKRA. However, 

endoplasmic reticulum stress (ER stress) was shown to induce PRKRA (Singh et al., 2009). 

ER stress in turn was also reported to be present in AF (Wiersma et al., 2017). For this reason, 

we hypothesize that the elevated PRKRA expression might be attributed to chronic ER stress 

in AF. Therefore, p53 expression is reduced in AF fibroblasts resulting in lower PLK2 

expression in total. Taken together we provided experimental evidence for 2 upstream 

regulation mechanisms of PLK2 in AF which have to be addressed in future studies for better 

comprehension of AF pathophysiology.  

4.2.2 In vitro effects of PLK2 modulation on cardiac fibroblasts 

 Since fibrosis is a crucial yet unmet complication in cardiovascular disease, the 

identification of novel fibroblast-specific targets is of high clinical relevance. The common aim 

of fibroblast studies is to identify mechanisms leading to fibroblast activation and subsequent 

myofibroblast differentiation (Figure 1). The expression of αSMA has been approved to be a 

reliable surrogate marker for myofibroblast differentiation. For this reason, the success or 

failure of a novel intervention on fibroblasts is usually measured by changes in αSMA 

expression. AF has been shown to be associated with fibroblast activation, myofibroblast 

differentiation and subsequent fibrosis (Nattel et al., 2008; Poulet et al., 2016; Lugenbiel et al., 

2017). In this context, the need for fibroblast-specific antifibrotic therapy is evident. In the 

current study we put particular emphasis on the influence of lower PLK2 expression or 

inhibition respectively, on cardiac fibroblasts.  

 

Myofibroblast differentiation 

 Fibroblasts from AF patients differentiate more into myofibroblasts compared to SR 

controls (Poulet et al., 2016). To explore whether this circumstance and our finding that AF 

fibroblasts express less PLK2 are mere coincidence or correlate, we studied the effect of the 

specific PLK2 inhibitor TC-S 7005 on fibroblast differentiation. We found a nearly 27 % 
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increase in myofibroblasts (fibroblasts with organized bundles of αSMA (Figure 12)) after PLK2 

inhibition (see 3.2.2). To date there are no studies that explored the effect of PLK2 inhibition 

on cardiac myofibroblast differentiation. However, in CPCs that were later on differentiated into 

endothelial cells, maturation went alongside with lower PLK2 expression and loss of PLK2 

induced terminal differentiation respectively (Mochizuki et al., 2017). Furthermore, 

downregulation of the PLK gene (not further specified) was proved to accompany the loss of 

proliferation ability in cardiomyocytes (Georgescu et al., 1997). Taken together, 

downregulation or reduced function of PLK2 appears to be a physiological mechanism linked 

to cell maturation or differentiation in the heart. This hypothesis is supported by the consistent 

results we obtained in PLK2 KO fibroblasts compared to WT controls. PLK2 KO led comparably 

to increased myofibroblast differentiation (+ 22.5 % myofibroblasts in KO compared to WT). 

Comparing basal myofibroblast differentiation in human and murine cells, it is evident that the 

basal fraction of myofibroblasts is higher in human cells. Various factors like patient age, 

comorbidities and administered drugs can influence the basal myofibroblast differentiation. The 

mice however do not have confounding comorbidities or have drug intake. The question why 

there are not even more myofibroblasts upon loss of PLK2 function remains to be clarified. A 

plausible explanation could be a certain redundancy with other PLK isoforms. PLK1 for 

example was shown to exert similar cellular functions like PLK2 in terms of proliferation (Jeong 

et al., 2018). A compensatory upregulation of other PLK isoforms could prevent myofibroblast 

differentiation to a greater extent. In addition, a complex process such as cell differentiation is 

usually not only controlled by one single mechanism. 

 

Fibroblast proliferation 

 The second major cellular function studied in fibroblasts is proliferation. A higher 

proliferation rate is considered to contribute to fibrosis besides fibroblast activation and 

differentiation (Travers et al., 2016). AF has been shown to reduce fibroblast proliferation by a 

so far unknown mechanism (Poulet et al., 2016). Here we explored the possible contribution 

of PLK2 to reduced fibroblast proliferation in AF. We found reduced proliferation as well in 

experiments with pharmacological PLK2 inhibition as in experiments performed with PLK2 KO 

fibroblasts. In general, this finding is consistent with previously published data indicating that 

inhibition of PLK2 reduced cell proliferation (Liu, 2015; Mochizuki et al., 2017). Additionally, 

reduced proliferation is also a hallmark of terminally differentiated cells. In combination with 

our results from the differentiation experiments it is not surprising that inhibition or KO of PLK2 

reduced proliferation as they enhanced myofibroblast differentiation. The therapeutic potential 

of this finding is arguable. In malignant neoplasia, reduced proliferation is clearly an advantage. 

Basically patients with fibrosis could also benefit from reduced fibroblast proliferation but the 
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increased differentiation of resident fibroblasts into myofibroblasts on the other hand could be 

negative for the clinical outcome of the patients.  

 

Senescence induction 

AF is increasingly regarded as an inflammatory disorder with a local and systemic 

component (Chung et al., 2001; Watanabe et al., 2005; Boos et al., 2006). Several 

inflammation mediators have been identified to be involved either in AF induction or 

maintenance such as TGF-β, TNFα, MMP1, Interleukin 1,2 and 6 and others (Hadi et al., 

2010). Besides myofibroblasts which are known to secrete a plethora of cytokines (Calvo et 

al., 2018) there is a second considerable group of non-immune cells that secrete inflammatory 

mediators – senescent cells (Coppé et al., 2008; Rodier und Campisi, 2011). We investigated 

senescence induction depending on PLK2 function and found a trend towards increased cell 

senescence in PLK2 KO fibroblasts and significantly more senescent fibroblasts after 

pharmacological PLK2 inhibition (see 3.2.3). In the aging heart the fraction of senescent 

fibroblasts increases physiologically (Cowling, 2015). However, upon pathological stimuli, the 

fraction of senescent fibroblasts increases. Senescent cardiac fibroblasts are known to 

contribute fibrosis because their secretome shifts towards a more inflammatory phenotype 

(SASP) (Coppé et al., 2008; Zhu et al., 2013; Cowling, 2015). We found that PLK2 is a novel 

mediator of cardiac fibroblast senescence. Further investigations are thus required to elucidate 

the druggability of cardiac fibroblast senescence with special emphasis on a potential 

reversibility of once induced senescence as a tool to fight fibrosis.  

4.2.3 Ex vivo effects of PLK2 KO  

Cellular dysfunctions like fibroblast activation or senescence do not necessarily cause 

clinical symptoms or impair the patient’ s quality of life. Tissue remodeling however bears a 

greater risk of causing debilitation. Fibrosis leads to wall stiffening and impairs the diastolic 

fillability of the ventricles and leads to heart failure on long term (Nihoyannopoulos und 

Dawson, 2009). Here, we wanted to clarify whether fibroblast activation and senescence 

induction which we found has tissue-level effects on PLK2 KO mice in terms of interstitial 

fibrosis development. Histological examination of explanted PLK2 WT and KO hearts revealed 

vast interstitial fibrosis areas (see 3.3.3, Figure 21) in the KOs whereas contiguous fibrosis 

areas were absent in WT. This finding indicates that PLK2 KO not only alters fibroblast function 

but has tangible impact on the organ structure and presumably the organ function. AF patients 

frequently suffer from heart failure with preserved ejection fraction (HFpEF) (Kotecha et al., 

2016) which is characterized by elevated left ventricular filling resistance caused by fibrosis. 

Anyway, HFpEF patients do not display reduced ejection fraction or reduced cardiac output 
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because contraction force and heart rate are compensatory elevated (Mandinov et al., 2000). 

After a certain time, compensation fails and symptoms exacerbate. The molecular 

mechanisms leading to diastolic dysfunction or HFpEF are only little understood. Combining 

the facts that AF patients suffer from fibrosis and display PLK2 downregulation in cardiac 

fibroblasts which we prove to induce fibrosis at least in the PLK2 KO mouse model, we 

conclude that PLK2 downregulation could be a novel pathomechanism in AF leading to fibrosis 

and subsequent diastolic dysfunction. 

4.2.4 In vivo effects of PLK2 KO  

The genetic KO and pharmacological inhibition of PLK2 led to significantly altered 

fibroblast function. A pronounced myofibroblast phenotype was observed in vitro and 

accordingly PLK2 KO mice developed myocardial fibrosis. To test if PLK2 KO contributes to a 

HFpEF or HFpEF-like phenotype, we assessed the functional implications of the above 

described “myofibrosis phenotype” using transthoracic echocardiography and surface ECG 

recordings. In comparison to their WT littermates, 4 months old PLK2 KO mice showed 

significant systolic and diastolic dysfunction with lower stroke volume (WT: 43 ± 1.7 µl; PLK2 

KO: 28 ± 2.6 µl) and lower enddiastolic volume (WT: 82 ± 3.1 µl; PLK2 KO: 60.7 ± 3.7 µl), 

respectively. Thus the cardiac output was also significantly reduced in the KO animals (WT: 

17.1 ± 0.66 ml/min; PLK2 KO 10.6 ± ml/min). However, the ejection fraction and heart rate 

remained unaltered. These result are in line with the hypothesis that PLK2 KO leads to fibrosis 

which contributes to cardiac wall stiffening and thereby impairs the diastolic fillability. This 

hypothesis is supported by clinical investigations on patients with magnetic resonance proven 

cardiac fibrosis which revealed a strong correlation between the degree of fibrosis and the left 

ventricular diastolic dysfunction (Moreo Antonella et al., 2009). Surface ECG recordings 

revealed a prolongation of the PQ interval and of the QRS duration in PLK2 KO mice compared 

to their WT littermates. In patients, PQ prolongation indicating first degree atrioventricular block 

increases the risk of AF development significantly (Cheng et al., 2009; Tekkeşin et al., 2017). 

There is also clinical evidence that QRS prolongation can contribute to AF development and 

to increased mortality in patients (Whitbeck et al., 2014; Gigliotti et al., 2017). Taken together, 

genetic KO of PLK2 causes diastolic dysfunction and ECG abnormalities which are either 

typically found in AF or can contribute to AF development in patients. These results strengthen 

the hypothesis that cardiac PLK2 could be a valuable target in fighting cardiac fibrosis and 

subsequent heart failure and AF development. Since the animals tested so far were relatively 

young and AF as well as heart failure are generally present in elderly patients (Kazemian et 

al., 2012), follow-up experiments have to clarify whether heart rate and ejection fraction will 

deteriorate with age indicating a HFpEF phenotype.  
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4.2.5 PLK2 KO induces an inflammatory fibroblast secretome  

The secretome analysis of PLK2 WT and KO fibroblasts revealed marked differences 

in the secreted proteins. Among the 3 most regulated proteins (see 3.4.1) macrophage 

metalloelastase (also known as MMP12) and OPN are known as mediators of atherosclerosis, 

inflammation and fibrosis (Goncalves et al., 2015; Zhao et al., 2016). We further focused on 

OPN since there are published associations of OPN with heart failure and most interesting with 

AF (Zhao et al., 2016; Güneş et al., 2017). To rule out the chance that elevated OPN is a cell 

culture artifact we confirmed the finding in human right atrial tissue lysates from AF patients 

compared to SR and thus found elevated OPN protein in AF tissue (Figure 26 b). This finding 

further supports the current opinion that AF is an inflammatory process (Hadi et al., 2010; Hu 

et al., 2015) plus it offers a potential therapeutic target in AF therapy.  

4.2.6 PLK2 KO affects protein expression on the posttranscriptional level 

The transcriptome analysis surprisingly revealed no significant differences in mRNA 

expression between PLK2 WT and KO fibroblasts except for the absence of PLK2 mRNA in 

the KOs. This finding suggests that PLK2 exerts its physiological functions predominantly on 

a posttranscriptional level e.g. RasGRF2 phosphorylation.  

 

4.3 From bench to bedside – OPN in the peripheral blood 
4.3.1 Selection of the study population  

In previous studies we compared SR and AF patients concerning their fibroblast 

properties (Poulet). For electrophysiological experiments this criterion is reasonable and 

applicable. However, studying fibrosis mechanisms it has to be considered that AF is not the 

only stimulus leading to fibroblast activation and fibrosis. Although treated as control group SR 

patients are by no mean healthy. Our samples were obtained from patients who had to undergo 

open-heart surgery usually with the indication coronary artery disease. SR patients also suffer 

from hypertension and/ or diabetes and are equally treated with drugs like ACE inhibitors which 

are known for their antifibrotic effects (Pfeffer et al., 1995). For this reason, it is evident that 

SR and AF are no optimal criteria to distinguish patient groups to study fibrosis. For the 

analysis of OPN in the peripheral blood we chose to introduce new patient groups. Since we 

wanted to elucidate the extent to which activated fibroblasts contribute to OPN secretion into 

the peripheral blood, we compared AF patients without fibrosis and AF patients that displayed 

atrial fibrosis in electrophysiological mapping examinations (Piorkowski et al., 2018). This 

grouping is based on the assumption that fibrosis is the correlate of fibroblast activation. The 

SR control group was recruited from healthy volunteers who did not suffer from relevant 

disease.  
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4.3.2 OPN is elevated in the blood of AF patients with fibrosis  

With a quantitative ELISA analysis, we were able to proof our hypothesis that AF with 

fibrosis goes alongside with elevated plasma OPN. We further found that age and plasma OPN 

do not correlate. Normalization of OPN to the fibrotic area would be very interesting to 

determine whether there is a direct correlation of fibrotic area size representing pathological 

fibroblast activation and the measured OPN. Right now these clinical data are not available for 

all patients so we cannot draw a conclusion yet. Although we hypothesize that the observed 

increase in OPN is mediated by myofibroblasts or senescent fibroblasts because of PLK2 

downregulation that we found in other AF patients, we can only speculate about this 

mechanism in the OPN patients. Since these patients underwent minimal invasive ablation of 

the pulmonary veins, no tissue samples could be collected to determine PLK2 expression. A 

possibility would be a long-term follow-up to monitor these patients and acquire samples if they 

have to undergo cardiac surgery. Despite of these limitations, this novel finding demonstrates 

that AF patients with fibrosis might carry a higher risk for systemic complications like 

atherosclerosis (Zhao et al., 2016), fibrosis in other organs (Pardo et al., 2005) or even cancer 

(Rittling und Chambers, 2004; Zhao et al., 2018). Yet, beside those potentially increased risks, 

the finding also offers a new therapeutic target in AF patients with elevated plasma OPN.  

4.4 A proposed mechanism of PLK2-OPN interaction  
We intended to clarify the mechanistic link between loss of PLK2 function (either due 

to inhibition or genetic downregulation/ KO) and enhanced OPN secretion that was observed 

in PLK2 KO fibroblasts and AF patients whose tissue and fibroblast samples were shown to 

express less PLK2 than SR controls. We identified RasGRF2 as a novel substrate of PLK2 

and that inhibition of PLK2 increased the expression of the RasGRF2 downstream target 

p42/44 MAPK (ERK1/2). So far, there is no experimental data focusing on the mechanisms of 

cardiac PLK2 function and protein interaction. It has been experimentally shown that PLK2 

phosphorylates RasGRF1 leading to its degradation in the proteasome. Thereby the 

subsequent Ras-pathway is inhibited because RasGRF1 is an intrinsic activator of Ras (Lee, 

Lee et al., 2011; Lee, Hoe et al., 2011). Anyway, there is evidence supporting the claim that 

the Ras-pathway and p42/44 MAPK are important mediators of OPN transcription (Hickey et 

al., 2005; El-Tanani et al., 2006). Our study provides the first experimental data in favor of the 

claim, that inhibition of PLK2 increases RasGRF2 presence presumably due to diminished 

phosphorylation-dependent degradation of RasGRF2. RasGRF2 like RasGRF1 is known to 

stimulate the Ras pathway (Ruiz et al., 2007) resulting in higher expression of p42/44 MAPK 

(Alberola‐Ila und Hernández‐Hoyos, 2003) and increased phosphorylation of p42 MAPK which 

then stimulates OPN expression and secretion. A proof-of concept experiment using 10 nM of 
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the specific p42/44 MAPK inhibitor SCH772984 confirmed this theory with a significant 

reduction of OPN protein abundance (Figure 33). Additional experiments with phospho-specific 

RasGFR2 antibodies might help to further clarify this mechanism in future experiments.  

4.5 Study limitations 

4.5.1 The influence of fibroblast subpopulations  

The embryonic origin of fibroblast populations within the organs of the human body is 

diverse. Current state-of-the-art lineage-tracing techniques allow to follow the cells traces 

throughout processes like tissue repair after myocardial infarction (Kanisicak et al., 2016). 

Kanisicak and colleagues elegantly revealed that myofibroblasts involved in post myocardial 

infarction processes originate from resident cardiac fibroblasts (Tcf21 lineage) and not from 

either endothelial, immune/myeloid or smooth muscle cells(Kanisicak et al., 2016). This is the 

argument in favor of a discussion which goes on for decades, that fibroblasts from different 

organs differ distinctly in their functions and cultural behavior. Still a distinct cardiac fibroblast 

marker protein is missing but there is experimental evidence that e.g. skin- and heart-derived 

fibroblasts are not as comparable as previously assumed since they differ in terms of 

morphology and cultural behavior (Conrad et al., 1977). In previous studies we found marked 

differences in proliferation, differentiation and migration between SR and AF right atrial 

fibroblasts (Poulet). There is even further evidence that the localization of a cell within the 

same organ can already influence it’ s properties. Recent research focused on the molecular 

identities of atrial and ventricular iPS-cardiomyocytes revealing chamber-specific differences 

in e.g. ion channel expression or ECM production (Cyganek et al., 2018). Based on these 

findings it can be assumed that similar concepts apply for fibroblasts as well. Therefore, the 

choice of fibroblast subtype should be considered when comparing recent research to previous 

or when developing fibroblast-specific therapeutic approaches. In the present study we used 

only fibroblasts of cardiac origin. In human we preferably used primary right atrial fibroblasts 

but due to their limited availability and relatively long primary culture duration of about 3 weeks 

we also had to use human immortalized ventricular fibroblasts. We are aware that the results 

obtained in those ventricular fibroblasts have to be verified in primary atrial fibroblasts for best 

comparability. The experiments on the influence of PLK2 KO were performed on whole heart 

cardiac fibroblasts. These cells were isolated from the supernatant after the heart was digested 

enzymatically via Langendorff perfusion (El-Armouche et al., 2008). With this method it is not 

possible to obtain exclusively right atrial fibroblast in sufficiently large numbers to perform 

experiments.  
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4.5.2 Patient-based confounding variables 

There is general consent about the confounding potential of patient demographics 

when doing research on human specimen. Factors like age, sex, race, comorbidities and 

medication can influence the obtained results considerably. Common disease like arterial 

hypertension, diabetes, hyperlipidemia or obstructive sleep apnea (OSAS) can have direct 

influence on e.g. epigenetic modifications, immune response or fibroblast function (Shamhart 

et al., 2014; Keating et al., 2016). Detailed patient data can be found in Table 5, 6 and 7. Due 

to the limited availability of patient samples a matching process as performed in clinical trials 

could not be applied to every set of experiments. Limited availability is also the reason for 

relatively small n-numbers in some experiments. We are aware of the fact that larger numbers 

of patients need to be tested to draw firm conclusions about clinical implications. Anyway, for 

the analysis of OPN in the peripheral blood a strict matching algorithm was applied since blood 

samples were easier to obtain than heart tissue. The patients were matched according to age, 

sex and comorbidities (Table 5). Matching for medication was not possible and matching for 

race was omitted because all patients were of Caucasian origin.  

4.6 Clinical relevance – putative therapeutic targets 

4.6.1 PLK2 modulation as therapeutic target  

Over the past couple of years, the PLK family drew attention to itself as novel treatment 

target. The main focus of research has been in the oncological or neurodegenerative field 

(Burns et al., 2003a; Syed et al., 2006; Shen et al., 2012; Liu, 2015). The best described and 

analyzed PLK family member is PLK1 which has been identified as potential oncogene and 

drug target in several neoplasia (Cholewa et al., 2013; Liu, 2015; Jeong et al., 2018). PLK 

overexpression has been associated with excessive cell proliferation and resistance to 

chemotherapy. Volasertib, a promising specific PLK1 inhibitor was tested until phase 2 of 

clinical trials. However, the hoped-for translation of the extremely promising in vitro results 

failed (Rudolph et al., 2009; Gutteridge et al., 2016). In the heart there are currently no 

approaches to target PLKs. Based on our data we can state that cardiac PLK2 downregulation 

plays a critical role in fibroblast activation and therefore it could be a useful target to develop 

novel antifibrotic therapies. The results we obtained thus mimicked the pathophysiological 

finding of PLK2 downregulation in AF. We were able to reproduce the AF-specific fibroblast 

properties of reduced proliferation and increased myofibroblast differentiation (Poulet et al., 

2016). For this reason, PLK2 inhibition in order to prevent fibrosis is no reasonable treatment 

option. In contrast our data suggest that stimulation, upregulation or overexpression of PLK2 

could be able to reverse fibroblast dysfunction. Anyway, there are obstacles which must be 

overcome before treatment options can emerge. First, there are currently no specific PLK2 



Discussion 

78 

 

activators available. Upregulation of PLK2 was noticed when breast cancer cells were exposed 

to celastrol, a flavonoid found in different plants (Kim et al., 2013). We also performed 

experiments with celastrol on ventricular fibroblasts (data not shown). We noticed a trend 

towards PLK2 upregulation accompanied by substantial cytotoxicity. Further research is 

needed to assess the therapeutic value of celastrol to fight fibrosis. Second, PLK2 activation 

or upregulation has to be cardio-fibroblast-specific to be applied therapeutically. Unspecific 

upregulation which could be caused by celastrol administration, can potentially be dangerous 

for the patient since various neoplasia have been shown to express excessive PLK2 (Coley et 

al., 2012a). The novel findings that Tcf21 determines cardiac fibroblast fate during embryonic 

development and that cardiac myofibroblasts were found to express specifically periostin 

(Kanisicak et al., 2016) could serve as attack points to deliver a PLK2 activator directly to 

cardiac fibroblasts. The last therapeutic option we can suggest is the restoration of the 

physiological methylation state of the PLK2 promoter. Since promoter methylation was absent 

in SR control samples, we conclude that methylation is related to pathological remodeling in 

AF. For this reason, the application of de- or hypomethylating agents like the DNMT inhibitor 

5-azacytidine could be a treatment option (Plumb et al., 2000). This approach was tested in a 

murine kidney fibrosis model. Folic acid-induced kidney fibrosis could be attenuated after 

application of 5-azacytidine (Bechtel et al., 2010). However, it must be considered that 

treatment with 5-azacytidine results in global non-specific hypomethylation (Issa und 

Kantarjian, 2009) of the DNA and thereby interferes substantially in the patient’s methylome 

which could cause unpredictable side effects. Until targeted and specific modulation of PLK2 

expression or function is safely applicable, we suggest to focus on the as well promising targets 

of the cardiac PLK2 signaling cascade.  

4.6.2 p42/44 MAPK (ERK1/2) inhibition as therapeutic target  

Similar to the PLK family, p42/44 MAPK (ERK1/2) also regulate cell proliferation and 

are therefore in the focus of oncological research. A recently published study revealed data on 

an orally administered ERK1/2 inhibitor given to patients with melanoma. The compound was 

tolerated by the patients and displayed antitumor activity in BRAFV600-mutant melanoma 

(Moschos et al., 2018). We found that basal phosphorylation of p42 MAPK was significantly 

elevated in KO fibroblasts and that pharmacological inhibition of p42/44 MAPK with 10 nM 

SCH772984 led to significantly reduced OPN protein abundance in PLK2 KO fibroblasts 

(Figure 33). Although p42/44 MAPK in the heart were shown to play a role in the response to 

pathological stimuli, the genetic inhibition of p42/44 MAPK had rather adverse effects in mice. 

The p42/44 MAPK-deficient animals were more prone to decompensation or heart failure due 

to pressure overload (Purcell et al., 2007). For this reason, the degree of p42/44 MAPK 
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inhibition in AF to prevent adverse effects of PLK2 downregulation must be well titrated and 

further explored to become a suitable treatment option. 

4.6.3 OPN inhibition as therapeutic target  

In contrast to PLK2 and ERK1/2, the elevated plasma OPN in AF appears to be a 

promising therapeutic target. In an approach of reverse translation, already existing and 

approved compounds could be tested in regard of counteracting OPN expression. Currently 

there are 2 available candidate groups. 1) Soluble guanylate cyclase stimulators (sGCSs) like 

Riociguat® are a novel group of compounds relevant for the treatment of heart failure and 

cardiac fibrosis (Geschka et al., 2011; Sandner et al., 2017; Rai et al., 2018). Soluble guanylate 

cyclase stimulators enhance the availability of the second messenger cGMP which in turn 

stimulates antifibrotic pathways that are important for patients with heart failure (Gheorghiade 

et al., 2013). Experimental data has shown that Riociguat® reduces OPN expression in a heart 

failure animal model (Geschka et al., 2011). The positive effects of sGCSs are beyond doubt 

(Gheorghiade et al., 2013) and the indications for those new compounds are continuously 

being expanded (Gheorghiade et al., 2013; Sandner et al., 2017; Rai et al., 2018). If patients 

with newly diagnosed AF would receive testing of plasma OPN levels, pleiotropic sGCSs which 

can be orally administered could prevent the OPN-mediated contribution to cardiac fibrosis 

and diastolic dysfunction in AF. 2) A second promising treatment option for OPN overload 

could be salicylic acid and its derivatives. Mesalazine which is approved for the treatment of 

chronic inflammatory bowel disease like foremost ulcerative colitis, was recently shown to be 

a potent inhibitor of OPN-release. Furthermore, it significantly reduced αSMA and TGF-β 

protein expression (Ramadan et al., 2018). The compound was tested in a model of 

pharmacologically induced liver fibrosis and it succeeded in reducing the expanse of fibrosis 

compared to control treatment (Ramadan et al., 2018). These findings support the existing 

knowledge about the antifibrotic properties of salicylates like acetyl salicylic acid (Aspirin®) 

(Abouzed et al., 2016). A great benefit of Mesalazine compared to other compounds 

counteracting OPN expression and release are the years of clinical experience and a profile 

of only moderate side effects such as gastrointestinal complaints (Shire Pharmaceutical 

Contracts Ltd, 2018). For all these reasons application of salicylates like Mesalazine appears 

to be a worthwhile and clinically relevant approach to counteract OPN-driven fibrosis in the 

heart.  

4.7 General relevance of the PLK2-p42/44MAPK-OPN-axis in (non-cardiac) fibrosis 

 In order to draw conclusions about a general validity and importance of the newly 

identified PLK2-p42/44MAPK-OPN-axis in fibrosis in general, dermal fibroblasts from Control 

and RIM patients were characterized. We put particular emphasis on cellular functions such 
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as proliferation, migration and differentiation and the molecular pathways identified in the heart. 

Comparably to AF- and PLK2 KO-fibroblasts we found reduced proliferation and migration but 

increased differentiation into myofibroblasts in RIM cells. The PLK2 mRNA and protein 

expression were reduced, although the results did not reach the level of statistical significance. 

However, the protein abundance of OPN and αSMA were significantly elevated in RIM which 

was in line with significantly increased phosphorylation of p42 MAPK and SMAD2/3 being 

crucial for myofibroblast differentiation and OPN expression (Renault M.-A. et al., 2003; Ruiz 

et al., 2007; Lugenbiel et al., 2017). These findings are novel and clinically interesting, since 

there is no functional data on fibroblasts in RIM available, yet. For this reason, the therapeutic 

options are limited and unsatisfying (Spalek et al., 2015).  

The similarities between cardiac and dermal fibroblasts imply that the PLK2 signaling cascade 

could be of general interest in dysregulated fibroblasts. Since OPN was so clearly elevated in 

RIM fibroblasts we wanted to test the potential of Mesalazine as OPN inhibitor as suggested 

by Ramadan and colleagues. The application of 10 mM Mesalazine markedly reduced OPN 

and αSMA protein abundance. In this respect the results confirmed the claim of Ramadan and 

colleagues. To clarify which molecular mechanism led to the reported antifibrotic effect of 

Mesalazine, we found evidence in the literature that Mesalazine can act as PPARγ stimulator 

(Schwab et al., 2008). There is evidence that selective PPARγ stimulation caused by amino 

salicylates such as Mesalazine inhibits fibrosis and inflammation (Mastrofrancesco et al., 

2014). The selective activation of PPARγ inhibits the NFƘB pathway and the AP1-regulated 

transcription of OPN (Renault M.-A. et al., 2003; Scirpo et al., 2015). So far we could show that 

10 mM Mesalazine induced PPARγ protein expression (Figure 48 c) and contrariwise reduced 

p42 MAPK and SMAD2/3 phosphorylation significantly (Figure 48 a – b) which are 

requirements for myofibroblast differentiation and OPN expression. The cells tolerated the 

treatment well and displayed good viability and improved morphology. 

In summary we identified several parallels between cardiac and dermal fibrosis mechanisms 

which refined our working hypothesis about the molecular PLK2-fibrosis-mechanism and a 

potential therapeutic intervention with Mesalazine (Figure 49).  
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Figure 49. Working hypothesis about the PLK2-fibrosis-axis and therapeutic intervention with 
Mesalazine. Under physiological conditions, PLK2 phosphorylates RasGRF2, which is then degraded 
in the proteasome. With decreased PLK2 activity, RasGRF2 accumulates and stimulates the Ras 
signaling pathway. The Ras-pathway can also be stimulated via TGF-β. The central element of this 
cascade is p42/44 MAPK (ERK1/2) activation. ERK induces gene expression of osteopontin, αSMA, 
collagen as well as TGF-β via AP1 and SMAD phosphorylation, so that an autocrine amplification of this 
signaling pathway is possible. By selective modulation of the PPARƔ receptor with Mesalazine, AP1 is 
inhibited, thus preventing osteopontin transcription. As a result, the application of Mesalazine can 
potentially have an anti-fibrotic and anti-inflammatory effect in our experimental context. Images of 
Servier medical Art were used to create this graphic (https://smart.servier.com/; Creative Commons 
License). 

4.8 Synopsis - the role of PLK2 in AF pathophysiology 

Based on our experimental in vitro and ex vivo data we suggest the following role for 

PLK2 in AF pathophysiology: AF is accompanied by tissue hypoxia and ER stress. Chronic 

hypoxia leads to methylation of the PLK2 promoter which corresponds with reduced PLK2 

protein expression. ER stress on the other hand leads to upregulation of PRKRA expression 

and subsequent p53 downregulation. Lower p53 expression further lowers then PLK2 

expression. Loss of PLK2 function activates fibroblasts that differentiate into myofibroblasts 

secreting various inflammation mediators such as OPN. Chronic OPN overload induces local 

inflammation and activates more fibroblasts resulting in interstitial fibrosis development. 
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Fibrosis worsens the cardiac performance of the patient mirrored in foremost diastolic 

dysfunction which can result in heart failure. The fibrotic remodeling disturbs coordinated 

excitation propagation in the atria and promotes AF maintenance in turn. Prolonged AF leads 

to further reduced PLK2 expression and the vicious circle continues (Figure 50).  

 

Figure 50. The role and regulation of PLK2 in AF pathophysiology. This scheme illustrates our 
suggested mode of PLK2 regulation and the downstream effects of PLK2 in the control of cardiac 
fibroblast activity, subsequent fibrosis development and AF maintenance. Continuous boxes indicate 
strong experimental evidence or strong support from primary literature sources. Hatched boxes indicate 
weaker experimental evidence from the Affymetrix® array only.  
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4.9 Experimental outlook 

Further research on PLK2 and its regulation in the heart is required to fully understand 

this promising target to develop fibroblast-specific antifibrotic drugs. Modifying the PLK2 gene 

in primary human fibroblasts using CRISPR/cas could confirm the findings we obtained in the 

PLK2 KO mouse model. This model could be further improved by creating a heart-specific or 

even cardiac fibroblast specific KO of PLK2 using a Cre/loxP system (Bouabe und Okkenhaug, 

2013). Similar fibroblast-specific KOs have recently been published (Jain et al., 2016; Woodall 

et al., 2016). Such a model could deliver useful information about the interplay between 

fibroblasts and cardiomyocytes and could clarify to which extent cardiac fibroblasts contribute 

to systemically elevated OPN. In contrast cardiac fibroblast-specific PLK2 overexpression 

would clarify the question whether PLK2 activation is desirable in preventing and treating 

fibrosis.  

The next step to further characterize the PLK2 KO mouse model has to be a comprehensive 

functional analysis of the heart using echocardiography and implantable ECG telemetry. Our 

preliminary experiments already revealed a phenotype with diastolic dysfunction in PLK2 KO 

mice at 4 months of age. Higher numbers of experiments at 4 months and experiments in older 

animals (e.g. 8 months) will reveal whether the PLK2 KO mice develop a HFpEF like phenotype 

comparably to AF patients. Particular emphasis will be put on the development of the heart 

rate and arrhythmia induction. Subcutaneously implanted ECG telemeters can be used to 

record the ECG continuously over 2 weeks to gain insight on how PLK2 KO affects the cardiac 

electrophysiology. 

Finally, in vivo interventions in mice could help to elucidate the therapeutic potential of either 

PLK2 activation or OPN inhibition. To test the effects of PLK2 activation, wild type mice could 

be given orally administered celastrol which was shown to enhance PLK2 expression (Kim et 

al., 2013, S. 2). A control group of littermates would be solely exposed to the physiological 

process of aging without drug application. Frequent echocardiography performed after e.g. 2, 

4, 6 and 8 months could deliver data about the cardiac performance of the animals. After 

sacrificing the animals by bleeding out, histological sections could prove whether fibrosis was 

attenuated in the drug-treated group. The peripheral blood samples could deliver useful data 

about circulating OPN or other inflammation mediators. Further molecular biological analysis 

focusing on PLK2, αSMA, collagen and OPN expression would complete the experiments. 

Additionally, fibroblasts could be isolated from the tissue of both control and drug-treated 

animals to compare the extent of myofibroblast differentiation and the proliferation rates, 

respectively. Analogous experiments could be performed using PLK2 KO and Mesalazine to 

assess the effects of attenuated OPN expression on fibroblast function, cardiac performance 

and fibrosis. Mesalazine could be administered orally without retardation via the drinking water 
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of the animals over a prolonged period of several months. Mesalazine could be the most 

promising compound to test in the PLK2 KO animals since it is approved, well tolerated and 

cost-effective. In the course of reverse translation, this compound could be a promising 

candidate to effectively fight cardiac fibrosis that either causes or accompanies AF and heart 

failure.  

  



Discussion 

85 

 

4.10 Conclusions 

Initially, the following 4 questions were addressed. The latter paragraph shall provide brief 

answers to them: 

a) What is the physiological function of PLK2 in cardiac fibroblasts and how is it altered 

in atrial fibrillation?  

 

We found that PLK2 is a key mediator of cardiac fibroblast properties such as 

proliferation, differentiation and senescence induction. In the course of AF, PLK2 is 

downregulated likely due to chronic tissue hypoxia, leading to fibroblast dysfunction 

and fibrosis. 

 

b) Which molecular pathways are involved in the signaling of cardiac PLK2 and are 

there putative drug targets up- or downstream of PLK2? 

 

Upstream of PLK2 we found hypoxia-dependent promoter methylation, leading to 

reduced transcription of the PLK2 gene. Downstream of PLK2, we identified the 

RasGRF2-p42/44 MAPK-pathway to be involved in excessive cardiac OPN 

expression which constitutes the most promising therapeutic target resulting from 

diminished PLK2 expression.  

 

c) Are there putative clinical implications by targeting PLK2 or its signaling cascade? 

 

Based on the data obtained in this study, there are several potential options to 

influence PLK2 or its effectors like OPN to counteract fibrosis in the heart. 

Restoration of the physiological PLK2 promoter methylation status with 

demethylating agents, or blockade of OPN using orally administered Mesalazine 

appear to be plausible approaches for further studies.  

 

d) Is the PLK2-signaling axis generally relevant in (non-cardiac) fibrotic remodeling? 

 

This study identified a relevance for PLK2 and its signaling cascade in dermal 

fibrosis. Treating dysfunctional fibroblasts with Mesalazine resulted in significant 

improvement in fibroblast function, morphology and protein expression. 
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5 Summary 

 

 

Background and aim. Atrial fibrillation (AF) is the most common and relevant arrhythmia in 

the clinical routine. AF is predicted to affect 6–12 million patients in the USA by 2050 and 18 

million patients in Europe by 2060. Cardiac fibrosis and inflammation decisively determine the 

course of the disease and the clinical outcome of the patients. Despite the tremendous impact 

on human health, detailed understanding on the molecular mechanisms that contribute to 

fibrosis in AF is limited. This study provides further evidence for the current paradigm shift that 

atrial fibrillation is more of a systemic-inflammatory disease than a mere ion-channel 

dysfunction. The aim of this study was to investigate the role of polo-like kinase 2 (PLK2) and 

the pro-inflammatory cytokine osteopontin (OPN) with respect to fibroblast (dys)function and 

fibrosis formation in order to derive novel targets for targeted, fibroblast-specific 

pharmacotherapy. 

Material and methods. All patients who participated in this study gave their written informed 

consent in accordance to the declaration of Helsinki. The study was approved by the local 

bioethics committee (Ethikkommission an der Technischen Universität Dresden). Human 

fibroblasts were isolated by outgrowth culture from right atrial biopsies of patients suffering 

from sinus rhythm (SR) and AF. Murine fibroblasts were isolated by whole-heart Langendorff-

perfusion. Quantitative PCR and western blot were used to detect PLK2 transcript expression 

and protein abundance, respectively. Functional assessment of cardiac function was done with 

transthoracic echocardiography and surface ECG recordings. Cell culture experiments were 

performed to evaluate the effects on functional fibroblast properties such as proliferation and 

differentiation after changing PLK2 activity by genetic knockout (KO) or pharmacological 

inhibition. A mass spectrometry based secretome analysis was performed by our collaborating 

laboratory of Prof. Manuel Mayr at King’s College London. An enzyme-linked immunosorbent 

assay (ELISA) was done to measure OPN in the peripheral blood of patients in SR and with 

permanent AF.  

Results. Right atrial appendage tissue and fibroblasts from AF patients displayed significantly 

lower expression of PLK2 mRNA and protein due to increased DNA-methylation of the PLK2 

promotor when compared to sinus rhythm (SR) control patient atria or fibroblasts. This 

methylation was induced in cardiac fibroblasts by chronic hypoxia (1% O2) exposure for 96 h. 

Pharmacological inhibition as well as global KO of PLK2 in cardiac fibroblasts resulted in 

elevated myofibroblast differentiation and reduced fibroblast proliferation. PLK2 KO mice 
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displayed vast interstitial fibrosis areas as observed from histological cross sections stained 

either with Sirius red or with Masson’s trichrome staining. Transthoracic echocardiography 

revealed systolic and diastolic dysfunction in PLK2 KO mice and AF-typical ECG alterations 

such as prolonged PQ interval and QRS duration. Mass spectrometry proteomics revealed de 

novo expression of OPN in the PLK2-KO-fibroblast secretome. Furthermore, we found higher 

OPN plasma levels in AF patients correlated with electrophysiologically determined fibrosis 

compared to non-fibrosis control patients. Finally, we identified that the p42/44 MAPK signal 

transduction cascade is linking to reduced PLK2 expression and enhanced OPN release. 

Specifically, we found that KO of PLK2 increase p42 MAPK phosphorylation which is known 

to stimulate OPN transcription. Thus inhibition of p42/44 MAPK resulted in diminished OPN 

expression. In a dermal fibrosis model the administration of Mesalazine in vitro resulted in 

reduced p42 MAPK and SMAD2/3 phosphorylation and thereby reduced OPN and αSMA 

expression. To explore the general validity and relevance of the PLK2 signaling pathway for 

fibrosis, a dermal model of radiation-induced fibrosis was used. This approach a) confirmed 

the observations that were made in the heart and b) showed that the use of Mesalazine in vitro 

led to a reduced p42 MAPK and SMAD2 / 3 phosphorylation and thus to a significantly reduced 

OPN and αSMA expression. 

Conclusions and clinical significance. Fibroblasts from patients with permanent AF express 

less PLK2 than cells from SR control patients. The loss of physiological PLK2 activity coincides 

with marked changes in the proliferation and differentiation of cardiac fibroblasts. These 

changes favor fibrosis in the atrial tissues, which is further enhanced by the local and systemic 

increase of OPN. The present study identifies PLK2 as a novel regulator of cardiac fibroblast 

function and fibrosis. Restoration of the physiological methylation status of the PLK2 promoter 

or the inhibition of OPN with Mesalazine could be of particular clinical interest. The tangible 

clinical and pharmacological feasibility will be subject of future investigations. 
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6 Zusammenfassung 

 

 

Hintergrund und Zielstellung. Vorhofflimmern (VHF) ist die häufigste und bedeutsamste 

Arrhythmie in der täglichen klinischen Praxis. VHF wird bis 2050 voraussichtlich 6 -12 Millionen 

Menschen in den USA und bis 2060 zirka 18 Millionen Menschen in Europa betreffen. Fibrose 

und Entzündungsprozesse bestimmen entscheidend den Krankheitsverlauf und das klinische 

Outcome der Patienten. Trotz dieser großen Relevanz sind detaillierte Informationen zu den 

beteiligten molekularen Pathomechanismen weitgehend unklar. Diese Studie liefert weitere 

Evidenz für den aktuellen Paradigmenwechsel, dass Vorhofflimmern eher eine systemisch-

entzündliche Erkrankung als eine bloße Ionenkanaldysfunktion ist. Ziel dieser Arbeit war es 

die Rolle der polo-like Kinase 2 (PLK2) und des proinflammatorischen Zytokins Osteopontin 

(OPN) im Hinblick auf Fibroblasten(dys)funktion und Fibroseentstehung zu untersuchen, um 

neuartige Angriffspunkte für zielgerichtete, Fibroblasten-spezifische Pharmakotherapie 

abzuleiten. 

Material und Methoden. Alle Patienten wurden über die Teilnahme an der Studie aufgeklärt 

und gaben ihr schriftliches Einverständnis. Die vorliegende Studie ist konform mit der 

Deklaration von Helsinki und enthaltene Tierversuche erhielten ein positives Votum der lokalen 

Tierschutzbehörde. Humane Vorhoffibroblasten wurden mit der „Outgrowth“-Methode aus 

Gewebeproben von Patienten im Sinusrhythmus (SR) und im permanenten Vorhofflimmern 

isoliert. Murine Herzfibroblasten wurden aus dem Überstand nach Langendorff-Perfusion 

durch mehrere Zentrifugationsschritte gewonnen. Zur Detektion von PLK2 und anderen 

Markerproteinen wurden (quantitative) PCRs und Western Blots durchgeführt. Zur Beurteilung 

der Herzfunktion in vivo, wurde transthorakale Echokardiografie mit Oberflächen-EKG-

Ableitung genutzt. Nachfolgende Zellkulturexperimente beleuchteten die Auswirkungen 

pharmakologischer PLK2 Inhibition oder genetischen Knock-Outs auf Fibroblasten im Hinblick 

auf Proliferation, Differenzierung, Seneszenzentwicklung und Sekretion. Eine 

Massenspektrometrie-basierte Untersuchung des Sekretoms PLK2-defizienter Fibroblasten 

wurde im Labor unseres Kollaborationspartners Prof. Manuel Mayr am King’s College London 

durchgeführt. OPN im peripheren Blut von Vorhofflimmerpatienten wurde mittels eines ELISAs 

gemessen. Ob die betreffenden Patienten Fibrose der Vorhöfe aufwiesen oder nicht, wurde in 

klinisch-elektrophysiologischen Untersuchungen, dem sogenannten Mapping, bestimmt.  

Ergebnisse. Im Vergleich zu SR-Kontrollen, war die PLK2 mRNA-  beziehungsweise Protein-

Expression in isolierten Fibroblasten und auf Gewebeebene in VHF-Proben signifikant 
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erniedrigt. Dies korrelierte mit PLK2-Promotermethylierung in der Hälfte der VHF-Proben. In 

SR-Kontrollen konnten wir keine Methylierung des PLK2 Promoters nachweisen. Die 

Herunterregulation der PLK2 mRNA-Expression bzw. die Induktion der Promotermethylierung 

konnten in humanen kardialen Fibroblasten durch Exposition gegenüber chronischer Hypoxie 

(1% O2) experimentell herbeigeführt werden. Pharmakologische Inhibition und der genetische 

Knockout (KO) von PLK2 gingen in vitro mit erniedrigter Proliferation aber gesteigerter 

Differenzierung in Myofibroblasten einher. PLK2-KO-Mäuse entwickelten im Gegensatz zu 

ihren Wildtyp-Geschwistertieren ausgeprägte Areale interstitieller ventrikulärer Fibrose. Dies 

spiegelte sich in einer ausgeprägten systolischen und Diastolischen Funktionsstörung des 

Herzens bei 4 Monate-alten PLK2 KO Tieren wider. Die Sekretomanalyse deckte eine de novo 

Sekretion von OPN in PLK2-KO-Fibroblasten auf. Im Einklang mit diesem Ergebnis konnten 

wir höhere OPN-Plasmaspiegel auch bei VHF-Patienten messen, die mit dem Vorhandensein 

von elektrophysiologisch bestimmten Fibrosearealen korrelierte. Abschließend konnte der 

p42/44-MAPK-Signalweg als Bindeglied zwischen erniedrigter PLK2-Expression und erhöhter 

OPN-Freisetzung identifiziert werden. Verminderte PLK2 Expression beziehungsweise 

Aktivität gehen mit einer gesteigerten Proteinexpression und Phosphorylierung von p42/44 

MAPK einher. P42/44 MAPK wiederum stimuliert dann die OPN-Transkription. Folgerichtig 

führte die Inhibition von p42/44 MAPK zu einer signifikant verminderten OPN-Expression. Um 

die Allgemeingültigkeit des PLK2-Signalweges für die Entstehung von Fibrose zu erforschen, 

wurde ein dermales Modell strahleninduzierter Fibrose benutzt. Darin bestätigten sich zum 

einen die Beobachtungen, die am Herzen gemacht wurden, und zum anderen führte der 

Einsatz von Mesalazin in vitro zu einer reduzierten p42 MAPK- und SMAD2 / 3-

Phosphorylierung und damit zu einer deutlich verringerten OPN- und αSMA-Expression. 

Schlussfolgerung. Fibroblasten von Patienten im permanenten Vorhofflimmern exprimieren 

weniger PLK2 als Fibroblasten aus SR-Kontrollpatienten. Der Verlust der physiologischen 

PLK2-Aktivität geht mit ausgeprägten Veränderungen der Proliferation und Differenzierung 

von Fibroblasten im Herzen einher. Diese Veränderungen begünstigen eine profibrotische 

Situation auf Gewebeebene, welche durch die lokale als auch systemische Erhöhung des 

Plasmaosteopontins weiter begünstigt wird. Die vorliegende Studie identifiziert erstmalig PLK2 

als neuen Regulator der Fibroblastenfunktion und Fibrose. Gleichzeitig stellen die 

Wiederherstellung des physiologischen Methylierungstatuses des PLK2 Promoters oder die 

Inhibition von OPN mittels Mesalazin vielversprechende therapeutische Optionen im Kampf 

gegen die Fibrosierung des Herzmuskels dar. Die konkrete pharmakotherapeutische 

Umsetzbarkeit muss in künftigen Forschungsvorhaben überprüft werden. 
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Table 6 Patient data for OPN ELISA 

 Healthy (n=4) AF no fibrosis 
(n=8) 

AF with fibrosis 
(n=9) 

Average age (years) 54 71,3 71,4 

Gender       

Male 2 5 5 

Female 2 3 4 

Disease       

Hypertension 1 8 9 

Diabetes mellitus 0 4 3 

Hyperlipidemia 0 5 5 

Chronic kidney disease (GFR 
40 – 90 ml/min) 0 2 3 

Chronic lung disease 0 1 2 

Thyroid disease 0 0 2 

Adipositas 0 1 0 

Current smoking 0 1 1 

Atrial fibrillation 
characteristics       

Persistent AF 0 4 7 

Paroxysmal AF 0 3 1 

Atrial flutter 0 1 1 

Drugs       

ACE inhibitors 1 0 6 

AT1 receptor blockers 0 5 1 

β-AR blockers 0 7 9 

Calcium channel blockers 
(nifedipine) 0 2 4 

Calcium channel blockers 
(verapamil) 0 1 0 

Antiarrhythmic drugs 0 0 3 

Glycosides 0 2 1 

Statin 1 5 5 
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Allopurinol 0 1 3 

Diuretics 0 5 6 

Aldosterone inhibitor 0 1 1 

Oral anticoagulants 0 7 9 

Antidepressant 0 1 1 

Oral antidiabetic drugs 0 3 2 

α-AR blocker 0 1 0 

PPI 1 7 9 

NSAID 0 2 1 

Insulin 0 3 1 

Average osteopontin (ng/ml) 9,65 16,78 25,99 
 

Table 7 Patient data for cell isolation, western blots and methylation analysis 

 SR (n = 27) AF (n = 20) 

Average age (years) 68,8 72,4 

Gender     

Male 21 12 

Female 6 8 

Average BMI 29,9 28,4 

Disease     

Hypertension 24 15 

Diabetes mellitus 9 7 

Hyperlipidemia 18 6 

Chronic kidney disease (GFR 40 - 
90) 7 7 

Chronic lung disease 5 2 

Current smoking 11 4 

Alcohol addiction 1 0 

OSAS 2 2 

Diagnosis     

ACB 18 7 

Valvular replacement 11 16 

Ablation 0 13 

Echocardiography     

Ejection fraction 54,0 50,6 

LV hypertrophy 12 7 

Drugs     
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ACE inhibitors 12 7 

AT1 receptor blockers 6 4 

β-AR blockers 15 17 

Calcium channel blockers 4 2 

Antiarrhythmic drugs 0 2 

Glycosides 0 9 

Statin 21 6 

Allopurinol 2 5 

Diuretics 12 11 

Aldosterone inhibitor 1 3 

Oral anticoagulants 3 14 

Antidepressant 2 1 

Oral antidiabetic drugs 4 2 

α-AR blocker 2 2 

PPI 2 3 

ASS 14 1 

Insulin 2 1 
 

Table 8 Patient data for Affymetrix® RNA analysis and qPCR analysis 

 SR (n = 7) AF (n = 5) 

Average age (years) 68,0 69,2 

Gender     

(Male) 7 4 

(Female) 0 1 

Average BMI 28,0 30,2 

Disease     

Hypertension 6 5 

Diabetes mellitus 1 1 

Hyperlipidemia 6 4 

Chronic kidney disease (GFR 40 - 
90) 2 2 

Chronic lung disease 0 1 

Current smoking 3 3 

Epilepsy 1 0 

OSAS 1 0 

Diagnosis     

ACB 7 3 



Supplemental Data 

108 

 

Valvular replacement 2 5 

Ablation 0 3 

Echocardiography     

Ejection fraction 47,3 36,3 

LV hypertrophy 2 2 

Drugs     

ACE inhibitors 5 4 

AT1 receptor blockers 2 1 

β-AR blockers 6 5 

Nitrates 1 1 

Calcium channel blockers 2 3 

Antiarrhythmic drugs 0 1 

Glycosides 1 2 

Statin 6 4 

Diuretics 2 4 

Aldosterone inhibitor 0 1 

Oral anticoagulants 1 3 

Antidepressant 1 1 

Oral antidiabetic drugs 1 1 

PPI 2 1 

ASS 4 3 
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Ultrasonic-augmented primary adult fibroblast isolation 
 

1. Getting started – Preparing the setup, material and media 
1.1. Prepare cell culture medium, PBS solution, Liberase stock solution (reconstitute 50 mg 

of lyophilized Liberase in 12 ml of sterile ultrapure water) and 0.25% trypsin solution. 

1.2. Warm up the medium, the PBS and the trypsin solution to 37°C. 

1.3. Preheat the ultrasonic water bath to 37°C. 

1.4. Disinfect forceps, a stainless steel spatula, scalpels (2x scalpels per organ) and 2 glass 

beakers with 70% ethanol and place these materials under the cell culture hood.  

1.5. Fill one beaker with 70% ethanol and the other with sterile water or PBS solution. These 

beakers are required to disinfect and wash the instrument after each organ procession. 

1.6. Place sterile 15 ml plastic tubes containing cold PBS on wet ice. (The number of tubes 

depends on the number of organs you want to isolate fibroblasts from.) 

2. Mouse dissection and organ removal 
2.1. Wear two pairs of gloves one above the other, so the first pair can be removed as soon 

as the animal has been dissected. Attention: This procedure prevents bacteria from the 

animal’s fell and skin from spreading over the organs. 

2.2. Euthanize the mouse (e.g. via cervical dislocation) and pin the carcass with needles to 

every limb to a Styrofoam pad.  

2.3. Disinfect the mouse carcass using 70% ethanol spray. Make sure the fur is soaked in 

ethanol so the hair will not swirl up. 

2.4. Cut the fur right above the urogenital tract using surgical forceps and atraumatic 

scissors. Cut the skin alongside the middle line from the point of the initial incision to the 

neck (3 – 4 cm) and add relief cuts at the limbs. Attention: Do not perforate the 

muscular layer at this step to avoid bacterial contamination! 

2.5. Pin the skin to the Styrofoam pad to have optimal access to the musculature covering 

the abdominal cavity. 

2.6. Disinfect the abdominal musculature twice using 70% ethanol. Let the ethanol dry before 

continuing to the next step. 

2.7. Remove the first pair of gloves. Use a new, sterile set of forceps and scissors.  

2.8. Open the abdominal cavity and the thorax by incising the muscular layer with surgical 

scissors to gently remove the organs of choice. 

2.9. Put the organs into the sterile tubes containing cold PBS. Close the tubes tightly. Place 

the tubes on wet ice until you continue with step 3.1. 
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3. Tissue mincing, digestion and cell extraction 
3.1. Transfer the tubes under the sterile cell culture hood. Attention: Wear a fresh pair of 

gloves and disinfect the tubes with 70% ethanol before transferring them under the 

hood! 

3.2. Take the organ out of the 15 ml tube using sterile forceps. Place the organ onto one half 

of a sterile 6 cm Petri dish and wash the organ briefly with PBS to remove excess blood. 

Transfer the organ to the second half of the Petri dish, remove excess PBS.  

3.3. Mince the tissue using two sterile scalpels. The remaining tissue fragments should not 

be larger than 1 – 2 mm. 

3.4. Transfer the minced tissue into a new sterile 15 ml tube using the sterile spatula and add 

2 ml of 0.25% trypsin solution. Place the tube into a cell culture incubator at 37°C for 5 

min. 

3.5. Vortex the tube gently (circa 1400/ min) for 10 s. 

3.6. Stop the trypsin reaction under the cell culture hood by adding 4 ml FCS-containing cell 

culture medium (Dulbecco’s Modified Eagle Medium (DMEM), e.g.).  

3.7. Add 250 µl of Liberase solution to each tube containing heart or lung tissue and 100 µl 

for kidney or liver, respectively.  

3.8. Place the tubes into an ultrasound water bath (37°C) and activate the ultrasonic for 

10 min.  

3.9. Vortex the tubes gently (circa 1400/ min) for 10 s. 

3.10. Place the tubes again into the ultrasonic water bath for 10 min.  

3.11. Vortex gently (circa 1400/ min) for 10 s. 

3.12. Disinfect the tubes with 70% ethanol and transfer them under the sterile cell culture 

hood.  

3.13. Filter the solution with a 40 µm mesh into a new sterile 15 ml tube. 

3.14. Centrifuge the tube at 500xg for 5 min. 

3.15. Remove the supernatant and resuspend the pellet in 1 ml fresh medium. 

3.16. Transfer the cells into a suitable cell culture vessel (6-well plate, e.g.) and place the 

vessel into the cell culture incubator overnight at 37°C and 5% CO2. 

3.17. The next day, remove the medium, wash 3 times with PBS, then add fresh medium (the 

added volume depends on the cell culture vessel of choice, 2 ml per well of a 6-well 

plate e.g.). 

3.18. Change the medium every other day. 

3.19. Fibroblasts can be splitted after reaching optical confluence of 90% (usually after 5-7 

days). 
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Table 9 Material list for ultrasonic-augmented primary adult fibroblast isolation 

Position Company 

0.25% Trypsin-EDTA Sigma-Aldrich, St. Louis, USA 

Antibiotics Gibco-Life Technologies, Carlsbad, USA 

Cell culture hood Thermo Fisher Scientific, Waltham, USA 

Cell culture incubator Thermo Fisher Scientific, Waltham, USA 

Cell culture plates Thermo Fisher Scientific, Waltham, USA 

Cell culture suction VACUUBRAND GMBH + CO KG, Wertheim, Germany 

Cell strainer (mesh) Corning, Tewksbury, USA 

Centrifuge Thermo Fisher Scientific, Waltham, USA 

Cordless pipetting controller Hirschmann, Eberstadt, Germany 

Disposable pipette tips Sigma-Aldrich, St. Louis, USA 

Disposable plastic pipettes Sigma-Aldrich, St. Louis, USA 

Disposable sterile scalpel Myco Medical, Cary, USA 

Dulbeccos Modified Eagle 

Medium (DMEM) 
Thermo Fisher Scientific, Waltham, USA 

Eppendorf tubes Eppendorf, Hamburg, Germany  

Fetal calf serum (FCS) Sigma-Aldrich, St. Louis, USA 

Liberase Sigma-Aldrich, St. Louis, USA 

Petri dish 6 cm Sigma-Aldrich, St. Louis, USA 

Phosphate Buffered Saline 

(PBS) Sigma-Aldrich, St. Louis, USA 

Senescence detection kit Abcam, Cambridge, UK 

Shaker/ Vortex IKA, Staufen im Breisgau, Germany 

Sterile plastic tubes Thermo Fisher Scientific, Waltham, USA 

Ultrasonic water bath BANDELIN electronic GmbH & Co. KG, Berlin, Germany 
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Surgical scissors (atraumatic) Aesculap AG, Tuttlingen, Germany 

Surgical scissors  Aesculap AG, Tuttlingen, Germany 

Surgical forceps Aesculap AG, Tuttlingen, Germany 
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