
	

Technische Universität Dresden 
DFG-Center for Regenerative Therapies Dresden 

Direktor Prof. Ezio Bonifacio, PhD (CRTD) 
 

The Human Pancreas in Type 1 Diabetes 
 
 

Dissertationsschrift 
 

zur Erlangung des akademischen Grades 
 

Doctor rerum medicinalium  
 

(Dr. rer.medic.) 
 

vorgelegt 
 

der Medizinsichen Fakultät Carl Gustav Carus 
 

der Technischen Universität Dresden 
 
 

von 
 
 

Clive Henry Wasserfall, M.S. 
 
 

aus Südafrika 
 
 
 
 
 

Dresden 2018 

 
 
 
 
 
 
 
 
 



	 	

	 	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



	

 
 
 
 
 
 
 
 
 
 
 
 

1. Gutachter: Prof. Dr. E. Bonifacio 
 
 
 

2. Gutachter: Prof. Dr. S. Speier 
 
 
 
 
 

Tag der mündlichen Prüfung: 
 

 
 
 
 
 
 

gez.: _________________________________ 
       Vorsitzender der Promotionskommission 
 





	

	 I	

 
Table of Contents 
 

TABLE OF CONTENTS         II 
LIST OF ABBREVIATIONS         IV 
LIST OF FIGURES          V 
SUMMARY           1 
1  MOTIVATION          1 
2  STATE OF THE ART         6 
2.1 Type 1 diabetes is an autoimmune disease     6 
2.2 Models of type 1 diabetes        6 
2.3 Humoral immune responses in type 1 diabetes     7 
2.4 Genetics and Cell mediated immunity in type 1 diabetes   8 
2.5 The lesion in type 1 diabetes       11 
2.6 Prediction of type 1 diabetes in the general human population   14 
3  OBJECTIVES          17 
4  OWN RESEARCH RESULTS       19 
4.1 Screening organ donors for type 1 diabetes autoantibodies is feasible 19 
4.2 The insulitis lesion in humans reveals the heterogeneity of type 1 diabetes 20 
4.3 Complement deposition in the human pancreas is not specific  

to islet blood vessels        22 
4.4 The pancreas of individuals with type 1 diabetes shows progressive 

 loss of insulin, but proinsulin persists      22 
5  DISCUSSION          26 
5.1 Even with a low prevalence disease such as T1D it is possible to  

screen organ donors for the presence of disease specific autoantibodies 26 
5.2 Insulitis in the natural history of T1D      26 
5.3 Complement deposition in the natural history of T1D    28 
5.4 Presence of endocrine hormones in the natural history of T1D   29 
6  RESUME          31 
SUMMARY GERMAN         33 
BIBLIOGRAPHY          35 
LIST OF PUBLICATIONS         53 
 



	 	

	 	II	

[CW1] Validation of a rapid type 1 diabetes screening assay for community-based  
screening of organ donors to identify subjects at increased risk for the disease 54 
[CW2] Insulitis and β-Cell Mass in the Natural History of Type 1 Diabetes  66 
[CW3] Increased Complement Activation in Human Type 1 Diabetes Pancreata 82 
[CW4] Persistence of Pancreatic Insulin mRNA Expression and Proinsulin  
Protein in Type 1 Diabetes Pancreata       87 
CURRICULUM VITAE         101 
ACKNOWLEDGEMENTS         121 
SELBSTSTÄNDIGKEITSERKLÄRUNG       124 
ANLAGE 1           125 
ANLAGE 2           127 
  



	

	 III	

List of Abbreviations 
 

ADCC  Antibody Dependent Cellular Cytotoxicity 

AIRE  Autoimmune Regulator 

APC   Antigen Presenting Cell 

BBDP  Bio-Breeding Diabetes-Prone 

BMI  Body Mass Index 

CALM1 Calmodulin 1 

C4d  Complement component 4d 

CTRC  Chymotrypsin C 

CPE  Carboxypeptidase E 

DASP  Diabetes Autoantibody Standardization Program 

DKA  Diabetic Keto-Acidosis 

ELISA  Enzyme Linked Immuno-Sorbant Assay 

FFPE  Formalin Fixed Paraffin Embedded 

FOXP3 Forkhead Box P3 

GADA  Glutamic Acid Decarboxylase Autoantibodies 

GCG  Glucagon 

HbA1c  Hemoglobin Alpha 1 fraction c 

HLA  Human Leucocyte Antigen 

hnRNA  heterogeneous nuclear RNA 

IAA  Insulin Autoantibodies 

IAPP  Islet Amyloid PolyPeptide 

IASP  Islet Autoantibody Standardization Program 

IA-2A  Insulinoma Associated -2 Autoantibodies 

ICA  Islet Cell Autoantibodies 

IF  Immunofluorescence 

INS  Insulin 

INS-IGF2 Insulin – Insulin Like Growth Factor 2 read through 

ISH  In Situ Hybridization 

MHC  Major Histocompatibility Complex 

mRNA  messenger RNA 

NK  Natural Killer cell 

NOD   Non Obese Diabetic mouse 



	 	

	 	IV	

nPOD  Network for Pancreatic Organ donors with Diabetes 

OPO  Organ Procurement Organizations 

PCSK1 Proprotein Convertase Subtilisin/Kexin Type 1 

PCSK2 Proprotein Convertase Subtilisin/Kexin Type 2 

PPIA  Peptidylprolyl Isomerase A or cyclophilin A 

RIA  Radioimmunoassay 

RNA  Ribonucleic Acid 

RT-qPCR Real-Time quantitative Polymerase Chain Reaction  

ROC  Receiver Operating Characteristic 

SOP  Standard Operating Procedure 

SST  Somatostatin 

SPINK1 Serine Protease Inhibitor Kazal-type 1 

TCR  T-Cell Receptor 

T1D  Type 1 Diabetes 

T2D  Type 2 Diabetes 

VNTR  Variable Number of Tandem Repeats 

ZnT8A  Zinc Transporter-8 Autoantibodies 

  



	

	 V	

List of Figures 
 

Figure 1.1-1 ORGANIZATIONAL CHART OF NPOD OPERATIONS.   3 

 

Figure 1.1-2. MODEL OF PROGRESSION TO T1D.     5  

 
Figure 2.5-1 PROHORMONE PROCESSING.      13 
 





	

	 1	

Summary 
 
1 Motivation 
In ancient times, diabetes was described as literally the flow through of urine and was further 

stratified as either diabetes insipidus (urine tasted insipid) or mellitus (urine tasted like honey) 

(Karamanou, et al., 2016; Qureshi, et al., 2014). Moving centuries forward (i.e., 1920s), the 

landmark discovery by Banting and Best (Banting, et al., 1922) that insulin regulated glucose 

and was produced in the endocrine pancreas set the stage for the treatment of diabetes 

mellitus. Today we recognize multiple forms of diabetes mellitus, with type 1 diabetes (T1D) 

and type 2 diabetes (T2D) forming the majority of cases (Kharroubi and Darwish, 2015). There 

are also multiple other types, including those that are now termed monogenic forms or where 

diabetes occurs as part of a syndrome, that are beyond the scope of this thesis (Kharroubi and 

Darwish, 2015) . 

The diabetes nomenclature has undergone several iterations with idiopathic, juvenile, 

adult, non-insulin requiring and insulin-dependent all being qualifiers in the classification of 

either what we today call T1D or T2D. We now understand that T1D is autoimmune in nature 

and our knowledge base has rapidly expanded (Atkinson, et al., 2014). Nonetheless critical 

knowledge voids exist in research efforts for this disease and we have yet to fully comprehend 

the etiology let alone find a cure for this disorder. Much of this knowledge has arisen from both 

human studies and animal models of T1D. The community has been fortunate to have 

spontaneous models of disease such as the Non Obese Diabetic (NOD) mouse (Anderson 

and Bluestone, 2005). This is somewhat unique to T1D as most other autoimmune conditions 

require induced models of disease for experimentation (Yu, et al., 2015). There are, however, 

many caveats to these models, and a rich literature exists with both detractors and supporters 

of this particular mouse model (Leiter and von Herrath, 2004; Roep and Atkinson, 2004). Much 

of this debate centers on the success in preventing and reversing T1D in the NOD mouse 

(Bowman, et al., 1994; Roep, et al., 2004; Shoda, et al., 2005) while disappointingly, such 

efforts have not translated into therapeutic efficacy for human T1D (Greenbaum and Atkinson, 

2011; Haller, et al., 2010; Herold and Bluestone, 2011; Herold, et al., 2013; Staeva, et al., 

2013; van Belle, et al., 2011). This translational inefficiency is not limited to T1D research, with 

calls for reproducibility and rigor in animal models of human diseases increasing (Landis, et 

al., 2012). Some of our own efforts have, however, yielded progress in this regard (Gill, et al., 

2016), yet it is most important to note that even under the best of circumstances, animal models 

will obviously not fully replicate all aspects of the human disease. 
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In terms of human T1D, researchers are to a large extent handicapped by the need for 

non-invasive research techniques since the pancreas, as the target organ, is not amenable to 

biopsy. This said, there have been autopsy materials studied (Foulis and Stewart, 1984; Gepts, 

1965; Willcox, et al., 2009) and some work on biopsies (Imagawa, et al., 1999; Krogvold, et 

al., 2014), but neither of these are widely used anymore for logistical and ethical reasons. This 

then forms the motivation of my work to study human tissue taking advantage of the JDRF 
sponsored Network for Pancreatic Organ donors with Diabetes (nPOD) program. This effort 

was established to obtain transplant grade human tissue for research (Campbell-Thompson, 

et al., 2012a). Specifically, we contracted with organ procurement organizations (OPO) 

throughout the United States to obtain tissue from donors with T1D, those that were T1D 

associated autoantibody positive without diabetes, and those without diabetes. As this program 

evolved, donors with T2D, cystic fibrosis, pregnancy and other cases were obtained as 

additional controls or as interests arose (www.jdrfnpod.org). The tissues procured include 

pancreas, pancreatic draining lymph nodes, mesenteric lymph nodes, spleen, thymus, bone 

marrow and peripheral blood (for isolation of both leucocytes and serum), wherever possible. 

These organs are shipped under specialized conditions to maximize viability and integrity. 

Once received, standard operating procedure (SOP) protocols are applied (Figure1.1-1) 

(Campbell-Thompson, et al., 2012c; Campbell-Thompson, et al., 2012d).  
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This ensures high quality samples for live cell analysis, standard histology, 

immunohistochemistry, immunofluorescence and downstream “omic” analyses (Kusmartseva, 

et al., 2017; Philips, et al., 2017; Pugliese, et al., 2014; Wasserfall, et al., 2016). 

 

Figure 1.1-1. Organizational chart of nPOD operations. Organ procurement organizations 

offer the nPOD organ-processing center cases. Screening laboratories around the United 

States while testing for HLA and infectious diseases also screen under 30 year old donors for 

T1D associated autoantibodies. Positive autoantibody donors are then offered as cases to the 

nPOD program. Cases obtained are then processed by nPOD, with standard operating 

procedures and quality control processes in place as indicated in the chart. 

 

In order to obtain at risk pre-T1D donors, we had to establish a network of screening 

laboratories to capture this population across the United States. A pilot effort (2005) had been 

undertaken (Gianani, et al., 2006) using the gold standard radioimmunoassay (RIA) for T1D 

associated autoantibodies.  However, it became clear in 2006 with nationwide roll-out that this 

would not be feasible in laboratories that are not set up to handle radioactivity. This led me to 

pursue an enzyme linked immuno-sorbant assay (ELISA) for these autoantibodies; this, for the 

Organ	

Procurement	

Organization 

Screening	

Laboratories	 

nPOD 
Organ	

Processing 

Donors	<30	yr	old 
	

T1D

T2D

Control 
Other 

Pancreas 
Spleen 

Lymph	Nodes 
Blood 
Other 

Formalin	Fixed 
Single	cell	(PBMC) 

Fresh	Frozen 
RNAlater 
Serum 

Donors	<30	yr	oldDonors	<30	yr	oldDonors	<30	yr	old	 	

nPOD	autoantibodies 
HLA 
Infectious	disease 
	serology 

OtherOther

T1D

T2D

Control

	

Positive 
Autoantibodies 

nPOD	autoantibodiesnPOD	autoantibodies

HLAHLA

Infectious	diseaseInfectious	disease
	

Evaluation 

QC	autoantibody	

Radioimmunoassay 

Research	Data 

Classification

T1D,	T2D	Control T1D,

QC	autoantibody	

RadioimmunoassayRadioimmunoassay
nPOD	database 



	 	

	4	

purpose of both validation and implementation of an SOP based protocol (Wasserfall, et al., 

2016), [CW 1].   

To date, we have screened over 6,000 samples from organ donors and procured 32 

autoantibody positive cases from individuals without T1D into the nPOD program. nPOD has 

also acquired 174 controls, 151 T1D, 41 T2D and 41 miscellaneous (pregnancy, monogenic 

diabetes, cystic fibrosis, etc.) cases. The nPOD group is set up as collaborative project and 

open to the T1D research community, which has led to approximately 170 publications using 

this sample resource. With these valuable tissues in hand, we have been able to address a 

number of long standing dogmas and ideas regarding human T1D. One of these notions is is 

in regard to insulitis and the immune attack on β-cells. This is well characterized in the NOD 

mouse model (Anderson and Bluestone, 2005) but remains elusive in human T1D (In't Veld, 

2011; In't Veld, 2014). Much of the previous work on this lesion has been derived from autopsy 

material, pancreatic biopsies or isolated islets (Dotta, et al., 2007; Foulis and Stewart, 1984; 

Gepts, 1965; Graham, et al., 2012; In't Veld, 2011; In't Veld, 2014; Kent, et al., 2017; Krogvold, 

et al., 2014; Richardson, et al., 2014). We therefore undertook a more comprehensive study 

of human insulitis within the nPOD collection. Of note and to our advantage, we have: a) the 

whole pancreas, b) donors covering the natural history from higher-risk (i.e., autoantibody 

positive) through onset, and c) into established disease. Thus, we were able to not only 

evaluate potentially pre-diabetes pancreatic tissue but also, address issues surrounding 

disease duration in terms of insulitis, as well as characterization of the infiltrates. Furthermore, 

with immunostaining, we were able to enumerate α- and β-cell mass (Campbell-Thompson, et 

al., 2016a) [CW 2].  

Given the relative differences in T1D infiltrates between humans and rodent models, 

we questioned afresh the presumed role of autoantibodies in the disorder’s pathogenesis. It is 

well established that autoantibodies are excellent biomarkers of T1D either in diagnosis or in 

prediction of future disease (Kupila, et al., 2001; LaGasse, et al., 2002; Pinhas-Hamiel, et al., 

1998; Schatz, et al., 1994; Siljander, et al., 2007). There are autoantibody mediated diseases 

such as Grave’s disease where transplacental passage of IgG autoantibodies transfer 

transient hypo- or hyperthyroidism (Brown, 1996) as an example, and while transplacental 

passage of T1D associated autoantibodies has been documented, this does not appear to 

impact β-cell function (Hamalainen, et al., 2001; Ziegler, et al., 1993). The traditional role of 

antibodies in the immune system is in the neutralization of toxins and viruses as well as the 

opsonization of bacteria and protozoans; however, by activation of: a) the classical 

complement pathway; or b) natural killer (NK) cell mediated antibody dependent cellular 
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cytotoxicity (ADCC), cells may be killed by antibody driven events. Taken together, while 

evidence for autoantibody initiation of T1D is lacking, it may still be possible that participation 

in ongoing pathology occurs. There is at least one report of NK cell involvement by in situ 

staining for these cells in recent onset disease (Dotta, et al., 2007). We decided, however, to 

investigate the role that complement may have in T1D as an alternative hypothesis for 

autoantibody involvement in T1D progression (Rowe, et al., 2013) [CW-3]. 

 Another longstanding dogma of T1D is that the clinical diagnosis of disease is made 

when hyperglycemia occurs because the functional β-cell mass has declined to a point where 

about 10-20% is left, and this continues to absolute loss of these cells (Figure 1.1-2). 

Therefore, the islets are insulin deficient and insulinopenia follows with progressive loss of C-

peptide (a marker of endogenous insulin production) (Eisenbarth, 1986). While this has come 

under challenge and subject to modification in recent years, we were motivated to use the 

nPOD samples to investigate the endocrine pancreas, in particular the pathways of mature 

insulin production from the proinsulin molecule using immunostaining, protein extraction and 

gene expression studies (Wasserfall, et al., 2017) [CW 4].  

 

 
Figure 1.1-2. Model of progression to T1D.  This model describes T1D as the progressive 
loss of beta cells following genetic and environmental events that initiate an autoimmune 

attack. It proposes the absolute loss of beta cells to occur in T1D. (From Eisenbarth, GS, NEJM 

1986)  
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2 State of the Art 
 

2.1 Type 1 diabetes is an autoimmune disease 
 

The two major forms of diabetes account for about 5-10% (T1D) and 80-90% (T2D) of cases, 

respectively(Kharroubi and Darwish, 2015) . T1D is absolutely insulin requiring to sustain not 

only blood glucose levels but also life (Atkinson, et al., 2014). The next major event in the effort 

to understand etiopathogenesis was the discovery of leukocytic infiltration into the insulin 

producing β-cells in the islets of Langerhans within the pancreas of individuals who died at the 

onset of disease (Gepts, 1965). Shortly thereafter, the discovery of islet cell autoantibodies 

(ICA) (Bottazzo, et al., 1974) and then, the association with the human leucocyte antigen (HLA) 

complex (Cahill and McDevitt, 1981) set the stage for ultimately ascribing an autoimmune 

etiology for T1D. Subsequently, the establishment of T1D as an autoimmune disease has been 

corroborated by a large number of studies through the present and in part, is described in the 

following sections 2.2 through 2.6. Nonetheless, there is also a growing body of evidence to 

suggest that the end organ, in this case the β-cells of the islets, may also contribute to their 

own demise (Atkinson, et al., 2011; Bottazzo, 1986; Bottazzo, et al., 1988), and this is further 

discussed in section 2.5. 

 
2.2 Models of type 1 diabetes 
 

Contemporaneously to the initial findings in humans, several animal models emerged that 

allowed for experimentation not possible in humans. Some of these models are induced by β-

cell toxicity (streptozotocin or alloxan, for example) (Yoon, et al., 1987); however, these 

replicate the loss of insulin but not necessarily the autoimmune nature of T1D. Others for 

example, the viral antigen induced model (von Herrath, 2002), are models of immune attack 

of the β-cells. Spontaneous models, such as the Bio-Breeding Diabetes-Prone (BBDP) rat 

(Yale and Marliss, 1984) and the aforementioned NOD mouse (Anderson and Bluestone, 

2005), have made up the majority of the knowledge base about animal T1D and have been 

extensively studied (Lenzen, 2017). As discussed earlier, there are caveats and concerns 

regarding animal models (Landis, et al., 2012; Leiter and von Herrath, 2004; Roep and 

Atkinson, 2004); however, the NOD mouse in particular has served as a guide to dissect 

human T1D. In the NOD, autoantibodies to insulin predominate; T-lymphocytes cause 

destruction of β-cells; T-lymphocytes can transfer T1D into a recipient immune deficient NOD 
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animal; the major histocompatibility complex (MHC) is critical; insulitis begins early and leads 

to complete loss of insulin production; and a number of immune defects in regulation exist in 

this model (reviewed in (Anderson and Bluestone, 2005)). So collectively and with a critical 

appraisal of this model, wherein genetic manipulation can test hypotheses, we can also use 

this as a roadmap to address human T1D.  Ultimately though, human studies have to be 

undertaken to understand clinical T1D. 

 

2.3 Humoral immune responses in human type 1 diabetes 
 

The landmark discovery of ICA (Bottazzo, et al., 1974) led to a search for the nature of the 

autoantigens that comprise the ICA reaction. This largely followed on from increased 

understanding of both physiology and technological advancements in assay design. Since 

radiolabelled insulin existed (Yalow and Berson, 1960) for competitive measurement of insulin, 

a reagent like this was used to detect autoantibodies in humans with T1D prior to the treatment 

with insulin (Palmer, et al., 1983). These insulin autoantibodies (IAA) along with ICA were the 

first to be used in both diagnosis and prediction of T1D and set the stage for some of the largest 

T1D prevention studies ever undertaken (Schatz and Bingley, 2001) While this was occurring, 

the search for other autoantigens continued, and these too were subsequently used in 

prediction studies (discussed in 2.6 below). The use of radioactively labeled methionine in 

pulse chase experiments with isolated β-cells followed by immunoprecipitation of the 

radiolabelled extracts with human T1D sera led to identification of autoantibodies initially called 

by their molecular weights (e.g., 64k, 40k or 37k) on gel electrophoresis (Atkinson and 

Maclaren, 1988; Christie, et al., 1990; Christie, et al., 1994; Gerling, et al., 1986; LaGasse, et 

al., 1997). The 64kD autoantigen was subsequently identified as glutamic acid decarboxylase 

(GAD) (Baekkeskov, et al., 1990), and the autoantibody (GADA) was found to be another 

effective marker for T1D. Phage display library approaches discovered ICA512 (Rabin, et al., 

1994), while an insulinoma mRNA subtraction approach identified insulinoma associated-2 (IA-

2) (Lan, et al., 1996) as autoantigens, and the autoantibody is commonly referred to as IA-2A. 

Upon sequencing these two autoantigens it turned out that not only were these two molecules 

identical, but as fragments, they were also related to the aforementioned 40kD and 37kD 

autoantigens (Bonifacio, et al., 1995; Payton, et al., 1995). Using an array coupled with a 

bioinformatics type approach, zinc transporter 8 autoantibodies (ZnT8A) were found to be 

present in sera from T1D subjects (Wenzlau, et al., 2007). The aforementioned molecules are 

considered the major targets of autoantibodies and are currently the ones used in 
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epidemiological studies. The specificities for these when comparing new onset T1D to control 

subjects are typically in the range of 95-99% while sensitivities are approximately 50% for IAA, 

70-80% for GADA, 60-70% for both IA-2A and ZnT8A (Bingley, et al., 2003; Bingley and 

Williams, 2013; Bingley, et al., 2010; Lampasona, et al., 2011; Miao, et al., 2013; Xie, et al., 

1997). However, there certainly have been a number of other autoantigens identified and 

probably more remain to be discovered (Mansson, et al., 2001; Roep and Peakman, 2012; 

Winter and Schatz, 2011). These, however, typically have lower than 40% sensitivity and are 

not usually included in standard screening or diagnostic applications. 

 Antibody mediated effector functions (Quast, et al., 2017; Valenzuela and Reed, 2017) 

include neutralization of toxins and viruses, opsonization of bacteria and protozoans for 

phagocytosis (Lu, et al., 2017), complement fixation for killing of cells (Shokal and 

Eleftherianos, 2017) and NK cell mediated ADCC. Another possibility is for antibodies to 

behave as either an agonist or antagonist as for anti-thyroid stimulating receptor 

autoantibodies (Brown, 1996). The potential pathogenic role of autoantibodies in T1D is 

unresolved, and the question remains: are they simply markers of ongoing autoimmunity or do 

they have a pathological significance beyond the potential role of B-lymphocytes, which not 

only produce antibodies but also can present antigen (Ilonen, et al., 2007; Knip and Siljander, 

2016)? 

 These humoral responses to insulin, GAD and IA-2 have been shown to be of the IgM 

or IgG classes, with additional subclasses of IgG (Fuchtenbusch, et al., 2000; Hawa, et al., 

2000; Hillman, et al., 2009; Hoppu, et al., 2004a; Hoppu, et al., 2004b; Ng, et al., 2002; Oak, 

et al., 2011; Omar, et al., 1987; Piquer, et al., 2005; Ronkainen, et al., 2006). This argues for 

B-lymphocyte class switching and hence, for a thymic dependent antigen (den Haan, et al., 

2014). Collectively, this is a demonstration of an immune response to these autoantigens. In 

order for this response to occur, these autoantigens have to be presented to the effector cells 

of the immune response by antigen presenting cells (APC). Furthermore, CD4+ T cell help is 

required for the class switching aspect, and this cell-mediated response is discussed in section 

2.4 (den Haan, et al., 2014). 

 

2.4 Genetics and cell mediated immunity in human type 1 diabetes 
 

Similar to the autoantibody discoveries, the role of cellular immune responses followed 

technological innovations along with insights and progress into unraveling mechanisms of the 

overall immune response. In terms of T1D, firstly, the descriptions of cellular infiltrates into the 
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islets of langerhans essentially laid the foundation of cellular immune responses being involved 

in T1D (Foulis and Stewart, 1984; Gepts, 1965; Karamanou, et al., 2016). Secondly, the 

association of the MHC or HLA with T1D (Cahill and McDevitt, 1981) and the discovery that 

this set of molecules dictates the presentation of antigen peptides to the immune system firmly 

cemented the relationship of cell-mediated immunity with this disorder (Doherty and 

Zinkernagel, 1975; Zinkernagel and Doherty, 1974a; Zinkernagel and Doherty, 1974b). It is 

known that in the thymus HLA class I restricts the immune response of CD8 positive T-

lymphocytes while HLA class II restricts the response of CD4 positive T-lymphocytes (Kondo, 

et al., 2017). Following this process of positive selection, the CD4+ or CD8+ T cells undergo a 

round of negative selection. This entails promiscuous self antigen presentation to these 

emerging T cells and the subsequent deletion of cells reacting to self, or in another pathway 

the development of T regulatory cells (Treg) (Kondo, et al., 2017). Outside of this central 

tolerance program there exist multiple ways in which tolerance occurs in the periphery. This 

so-called peripheral tolerance involves checkpoints in the immune response, cytokines and 

soluble mediators, peripherally induced Treg, apoptosis mechanisms and others (Danikowski, 

et al., 2017; Frydenlund and Mahalingam, 2017; Theofilopoulos, et al., 2017). 

 How then collectively do T cells arise that recognize β-cell specific antigens? Part of 

the answer lies in decades of work implicating failures in both central and peripheral tolerance 

mechanisms, yet the complete story has not been revealed. Why particular MHC alleles 

associate with risk from a functional standpoint is largely unknown and mostly speculative; 

however, a genetic region known as the insulin variable number of tandem repeats (VNTR) 

has been shown to modulate proinsulin expression in the thymus, potentially pointing to a 

failure in central tolerance as well as explaining some antigenic specificity for T1D (Pugliese, 

et al., 1997). Approximately 50 loci in the human genome appear to be associated with T1D 

(Cooper, et al., 2012; Onengut-Gumuscu, et al., 2015; Rich, et al., 2012), and these are largely 

found to be immune-centric, implying perhaps, amongst other things, peripheral tolerance 

defects in immune responses. However, the functional link of these putative loci to causation 

of T1D remains elusive.  

 The immune response culminates in an effector phase, and we classify these according 

to the pathway used. The entire immune response is usually involved in all responses, but it is 

the effector phase that leads to elimination of a foreign invader or in some instances, pathology 

to the host. For example Type 1 hypersensitivity is the IgE mediated release of mast cell 

contents leading to allergic responses (Reber, et al., 2017). In T1D, it is thought that Type IV 

(delayed hypersensitivity) effector CD8+ T-lymphocytes mediate responses that lead the death 
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of β-cells (Knight, et al., 2015; Zaldumbide, et al., 2013). Unlike B-lymphocytes, which produce 

antibodies that recognize whole protein in native configuration, T-lymphocytes recognize small 

peptides presented by MHC. As described earlier, CD8+ T-lymphocytes are restricted by MHC 

class I, while the major risk allele in T1D is MHC class II which implicates CD4+ T-lymphocytes. 

The role of CD4+ T-lymphocytes in providing signals to B-lymphocytes to effect class switching 

(den Haan, et al., 2014) is one possibility, or it is possible that CD4+ T-lymphocytes produce 

cytokines (Amrani, et al., 2000; Calderon, et al., 2006; Padgett, et al., 2013) that are toxic to 

β-cells. The evidence for these as well as CD8+ T-lymphocytes is discussed in the following 

section 2.5. 

 The vast majority of studies on human cell mediated immunity in T1D have been 

conducted on peripheral blood leukocytes. This has proven much more challenging than the 

autoantibody assays. The parallels to these efforts include development of blinded workshops 

for T-lymphocyte assays (Brooks-Worrell, et al., 2011; James, et al., 2011; Mallone, et al., 

2011a; Mallone, et al., 2011b), and while this has helped standardize aspects of these assays, 

they are still not as robust as the autoantibody assays. This limitation has been attributed to 

several reasons, one of which is that serum can be stored and shared much more readily than 

T-lymphocytes for workshops. However, more compelling is that a) the nature of the 

antigen/peptide is not known, and b) the frequency of these cells in the periphery is very low 

(Roep, 1996). Nonetheless, progress has been made in these directions, and with more 

modern approaches in assay technology, such as dye dilution assays, tetramer analyses, and 

cytokine secretion in response to autoantigen(s), have revealed specific T-lymphocytes in the 

peripheral blood of T1D patients (Mannering, et al., 2010). More recently, notions of altered 

peptide processing for presentation by APC have come to the fore, including post-translational 

modification (Mannering, et al., 2005), hybrid peptide formation (Delong, et al., 2016), and 

other means (Kracht, et al., 2017; McLaughlin, et al., 2016). 

 To date, several peptide antigens including hybrid peptides have been shown to either, 

stimulate or by tetramer staining, enumerate T-lymphocytes from T1D subjects, and they 

indeed are in low frequency in the periphery. The list includes but is not limited to, for CD4+ 

cells: preproinsulin, GAD65, GAD67, IA-2, phogrin, islet cell antigen 69, 38k antigen and heat 

shock protein 60; for CD8+ cells: GAD65, IA-2, islet amyloid polypeptide (IAPP) and islet-

specific glucose-6-phosphatase catalytic subunit-related protein (Roep and Peakman, 2012).  

 On the other side of these effector mechanisms is immunoregulation. This similarly has 

been the subject of intense research with some conflicting results. In particular, CD4+CD25+ 

Treg cells have either been found to be in reduced frequency (Brusko and Atkinson, 2007; 
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Tree, et al., 2006), reduced function (Garg, et al., 2012; Lindley, et al., 2005; McClymont, et 

al., 2011; Visperas and Vignali, 2016) or not different at all (Brusko, et al., 2007; Hamari, et al., 

2016), while others have found increased resistance of effector cells to immunoregulation 

(Schneider, et al., 2008), when comparing blood from controls and T1D subjects. Yet other 

studies have found B-lymphocyte regulation (Kleffel, et al., 2015), myeloid derived suppressor 

cell regulation (Whitfield-Larry, et al., 2014), checkpoint type defects (Andre, et al., 1996; Dai, 

et al., 2014; Paterson, et al., 2011) and other immunoregulatory issues (Fuhrman, et al., 2015; 

Roep and Tree, 2014) in T1D subjects.  

There are, as described, multiple lines of evidence for humoral and cellular immune 

events in the progression to T1D. Some of these have been documented or confirmed by using 

islets, biopsies, autopsies and organ donor tissue of pancreas and pancreatic draining lymph 

nodes, which will be discussed in the following section 2.5.  

 

2.5 The lesion in human type 1 diabetes 
 

Ultimately, the effector phase of this autoimmune response must take place in the pancreas 

with the killing of islet cells and in particular, β-cells. In fact, the remarkable precision of this 

process with α- and δ- cells being largely left unscathed is further evidence of a specific 

autoimmune event. While animal models have informed us of some of the events in the demise 

of β-cells, it has been controversial and perhaps sometimes misleading, as has been described 

earlier. The number of T1D human pancreas cases examined is astonishingly small, relatively 

speaking. However, between earlier autopsy (Foulis and Stewart, 1984; Gepts, 1965), limited 

biopsy (Imagawa, et al., 1999; Krogvold, et al., 2014), islet isolation (Kent, et al., 2017) and 

organ donor (Campbell-Thompson, et al., 2012a; Gianani, et al., 2006) efforts, there is 

sufficient number to begin addressing events in the actual lesion of T1D. 

Collectively, these results have yielded that in general, insulitis occurs in younger 

donors, closer to onset of disease, and in those with multiple autoantibodies (Foulis, et al., 

1986; Gianani, et al., 2006; In't Veld, 2011; In't Veld, et al., 2007; Krogvold, et al., 2014; Wiberg, 

et al., 2015). The nature of this insulitis has been addressed a few different ways. By tetramer 

staining of pancreas from nPOD cases (Coppieters, et al., 2012) at the inception of the 

program, it was discovered that CD8 positive cells specific for insulin, IGRP and IA-2 could be 

found in distinct islets from individuals with T1D. Along with the CD8 positivity, this group also 

demonstrated MHC class I as being highly expressed on islets in T1D pancreata, which 

suggests that these infiltrates are in all likelihood, effector cells killing β-cells. This finding of 
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MHC class I increased expression in T1D pancreas has been replicated in other studies 

(Richardson, et al., 2016) while yet others dispute this finding (Skog, et al., 2015). The reason 

for increased expression of MHC class I on islets is unresolved, and it is speculated that a 

virus (Rodriguez-Calvo, et al., 2016) or elements of the viral response pathway may initiate 

this response (Newby, et al., 2017; Newby and Mathews, 2017). Another way this has been 

interrogated is by cloning T cells out of islets isolated from T1D donors (Kent, et al., 2017; 

Pathiraja, et al., 2015). The advantage of this approach is the ability to then perform live cell 

assays (Newby, et al., 2017) by growing these clones of cells. The antigen specific receptors 

on these cells can also be sequenced (Michels, et al., 2017) and then, for example, the T cell 

receptor (TCR) can transgenically be recreated for additional experiments (Babad, et al., 2015; 

Sprouse, et al., 2016). APCs, CD4+ or CD8+ T cells may also produce cytotoxic cytokines and 

contributing to β-cell dysfunction/loss in this manner (Eizirik, et al., 2012). 

 The presence of insulitis, while not near the intensity of that found in animal models, 

begs the question of what functional/effector pressure is exerted on the β-cell? Included in this 

equation then also is the question of how the milieu and β-cell contribute to the overall outcome 

of loss of insulin leading to loss of glucose homeostasis? 

 The primary function of β-cells is to react to an increase in blood glucose (Jouvet and 

Estall, 2017). This is achieved by integrating actual glucose levels by receptor-mediated events 

along with incretin signals from the gut and neuronal signals from the brain (Hussain, et al., 

2016). An increase in ATP from glucose metabolism in the cytosol of the β-cell allows 

potassium channels to open, and along with calcium influx, this leads to exocytosis of granules 

with stored insulin, C-peptide and IAPP secreted into circulation (Yang, et al., 2014). This 

allows rapid release of insulin followed by a period of replenishing these molecules. Proinsulin 

and pro-IAPP, once translated from mRNA on ribosomes, are passaged through the 

endoplasmic reticulum and are then both processed by the Proprotein Convertase 

Subtilisin/Kexin Type 1 (PCSK1) and Proprotein Convertase Subtilisin/Kexin Type 2 (PCSK2) 

enzymes into insulin and C-peptide from proinsuilin and IAPP from ProIAPP (Figure 2.5-1 (A)). 

The enzyme carboxypeptidase E (CPE) then cleans up lysine and arginine residues on the 

ends of the mature insulin and IAPP molecules post convertase cleavage (Alarcon, et al., 2012; 

Hutton, 1994; Smeekens, et al., 1992; Steiner, 2011; Steiner, et al., 1969). Insulin and C-

peptide then are logically in equivalent molar amounts while IAPP is independently co-secreted 

with insulin. This is useful for us in that C-peptide is often measured as a surrogate for insulin 

in β-cell function assays, especially in T1D subjects, since the exogenous therapeutic 

recombinant insulin does not contain C-peptide (Steiner, 2011). In α-cells, proglucagon is 
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processed by only the PCSK2 and CPE enzymes to form mature glucagon (Figure 2.5-1 (B)). 

If PCSK1 is present, as in the L-cells of the intestine, proglucagon will be processed into 

glucagon like peptide 1, glicentin and oxyntomodulin (Figure 2.5-1 (C)) (Tucker, et al., 1996). 

Figure 2.5-1 Prohormone processing of (A) Proinsulin or ProIAPP to either insulin and C-

peptide or IAPP respectively in β cells. (B) Proglucagon into glucagon in α cells. (C) 

Proglugagon into glucagon like peptide 1, glicentin and oxyntomodulin in L cells. 

 

 In T2D, it is thought with increasing insulin resistance the output of the β-cells is greater 

than processing and this leads to increased proIAPP and proinsulin in circulation. ProIAPP 

acts as a nidus to attract IAPP with tangles of this protein then forming amyloid leading to 

further β-cell failure (Jaikaran and Clark, 2001; Montane, et al., 2012; Raleigh, et al., 2017). 

Stress in the endoplasmic reticulum has also been noted as a feature in T2D (Herbert and 

Laybutt, 2016; Liu, et al., 2007; Ozcan and Tabas, 2016; Wang, et al., 2016). Whether this is 

something that occurs in T1D is unclear but certainly is a concept getting increasing attention 

(Brozzi and Eizirik, 2016; Engin, 2016; Zhong, et al., 2012). This potentially creates a complex 

milieu of β-cell stress/dysfunction and autoimmunity collaborating to result in T1D 
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2.6 Prediction of type 1 diabetes in the general human population 
 

Since the discovery of autoantibodies (Bottazzo, et al., 1974) in T1D, decades of work have 

gone into using these markers as a means to predicting this disorder (Bonifacio, 2015). Starting 

with ICA (Bottazzo, et al., 1974) and IAA (Palmer, et al., 1983), these have been used to predict 

T1D in first-degree relatives as well as in the general population. As GADA (Baekkeskov, et 

al., 1990), IA-2A (Rabin, et al., 1994) and ZnT8A (Wenzlau, et al., 2007) were discovered, they 

too were used in prediction. As a number of cohorts have now been followed from birth to 

onset of T1D, various prediction strategies can be both prospectively and retroactively tested 

(Bonifacio, et al., 2004; Krischer, et al., 2017; Rewers, et al., 1996a; Rewers, et al., 1996b; 

Vehik, et al., 2016; Ziegler and Bonifacio, 2012). In general, seroconversion to autoantibody 

positivity usually occurs after maternal antibodies have waned at around 6 months of age 

(Stanley, et al., 2004; Ziegler, et al., 1993). The order in which these autoantibodies appear is 

IAA, then GADA, while IA-2A and ZnT8A are very specific and increase closer to onset 

(Bonifacio, 2015). However, this is a generalization and not always the case. The affinity titer 

and number of different autoantibodies also matter in terms of predicting future T1D. Here, 

increased titer (Bonifacio, et al., 1990), higher affinity (Achenbach, et al., 2004) and greater 

number (Ziegler, et al., 2013) of different specificities of autoantibodies serve to enhance the 

specificity of prediction at the cost of decreased sensitivity (Giannopoulou, et al., 2015). Using 

orthogonal assays usually also improves specificity (Bonifacio, 2015).  

 While 80-90% of individuals with an incident diagnosis of T1D do not have a family 

history of the disease, having a family member does elevate risk for disease (Bonifacio, 2015). 

This has led to the use of family cohorts to enrich study cohorts to find pre-diabetes subjects. 

Clearly there is genetic involvement, but this is of a polygenic nature and not that of simple 

Mendelian inheritance. As mentioned earlier, HLA has the highest predictive value genetically 

for T1D, and around 50 or more genomic polymorphisms have been identified to be associated 

with risk for this disease (Cooper, et al., 2012). While HLA is predominant in these risk 

assessments, it has been possible to mathematically weight the other genetic polymorphisms 

to devise and improve a risk score (Frohnert, et al., 2017; Oram, et al., 2016; Patel, et al., 

2016; Winkler, et al., 2014; Winkler, et al., 2012a).  

 It is worth mentioning that mutations in forkhead box P3 (FOXP3) (Verbsky and Chatila, 

2013) and autoimmune regulator (AIRE) (Bruserud, et al., 2016) while rare, are involved in 

tolerance induction and lead to T1D with high certainty along with multiple other 
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autoimmunities. These particular defects are part of syndromes and not part of this discussion.  

Secondly, environment clearly plays a part in T1D progression and maybe even initiation, but 

this has been difficult to pin down let alone use for prediction. The evidence is several fold: for 

example, concordance for T1D in identical twins was initially thought to be about 34% (Olmos, 

et al., 1988) but may reach 70% with sufficiently long follow-up (Redondo, et al., 2008), 

implying that environmental factors may effect rates of progression. Another example would 

be the different prevalence and incidence in neighboring countries such as Finland and Estonia 

(Tuomilehto, et al., 1991), which are genetically similar but differ in environment and 

socioeconomics, with the implication that environmental factors modulate T1D initiation and/or 

progression. Agents such as Vacor (Esposti, et al., 1996) that are β-cell toxic will also lead to 

insulinopenia although through toxicity without autoimmune involvement. These are all not 

commonly useful for prediction especially in sporadic T1D. Similarly, the increased use of 

checkpoint inhibitors in cancer immunotherapy has increased the risk of autoimmunity, 

including T1D, in subjects receiving this therapy, and this is useful to know in these particular 

instances but not a factor in prediction of regular autoimmune T1D (Yoest, 2017). 

 The use of T-lymphocytes in specific predictive assays has yet to yield efficacy in 

screening assays for future T1D. This is an area that is actively being researched with, for 

example, direct typing  and then imputation of the amino acid sequences of the TCR (Seay, et 

al., 2016) which may prove predictive of T1D in the future by finding these rare cells in the 

periphery. 

 On the metabolic side, factors like rising glycation of proteins such as hemoglobin alpha 

1 fraction c (HbA1c) levels and alterations β-cell function are specific but not sensitive for 

prediction of impending T1D (Vehik, et al., 2012). How best to incorporate these in to predictive 

scores would seem to be a composite score of oral glucose challenge test results with glucose 

and C-peptide levels (Greenbaum, et al., 2011; Sosenko, et al., 2015a; Sosenko, et al., 2015b). 

Ongoing work is suggestive of altered ratios of proinsulin to either insulin or C-peptide may 

precede the onset of T1D (Sims, et al., 2016; Van Dalem, et al., 2016). Markers of β-cell death 

such as a so-called liquid biopsy of serum measuring the ratio of demethylated to methylated 

insulin DNA may offer another marker once validated (Akirav, et al., 2011; Lehmann-Werman, 

et al., 2016). Additional serum markers are continuously being sought, and again a composite 

score of multiple serum markers (e.g., metabolomics, proteomics, etc.) may be beneficial in 

improving the prediction of future T1D (Overgaard, et al., 2016; von Toerne, et al., 2017). 

 The importance of predicting T1D lies in the eventual goal of preventing this disorder. 

Secondly it has also been shown that an awareness of potentially impending T1D has 
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improved timely diagnosis if and when the disease declares itself (Chan, et al., 2015; Winkler, 

et al., 2012b). While most of the work described above is within families with a T1D proband, 

for the most part, the same findings hold true for general population screening. The difference 

being the population prevalence is even lower than in families, and this adds to the difficulty in 

terms of positive predictive values. However, with a multiplicity of factors we can predict future 

T1D in the general population (Batstra, et al., 1997; Batstra, et al., 2001; Bingley, et al., 1993; 

Gianani, et al., 2006; Knip, et al., 1998; Knip, et al., 2010; Kupila, et al., 2001; LaGasse, et al., 

2002; Maclaren, et al., 2003; Schatz, et al., 1994; Ziegler, et al., 2013). We have used this 

collective understanding of prediction to attempt to find pre-diabetes in the general organ 
donor population. This is in order to obtain and study the pancreas of individuals who may be 
truly pre-T1D. This represents a challenge on several fronts but primarily, because the 

prevalence of T1D in the USA general population is 1:250 and since these are organ donors, 

we are looking at a cross-section without being able to monitor conversion to additional 

autoantibodies or metabolic changes to know if T1D would ever occur (Atkinson, et al., 2014). 

So we rely on the natural history studies, including those from the general population, in 

assessing risk. Currently, logistically the best we can use is HLA (used for tissue matching in 

transplant and hence available for organ donors), a screen for multiple autoantibodies and 

sometimes HbA1c (if available) to recover pancreata from organ donors at presumptive 

increased risk for T1D. Post hoc additional genetic scoring, perhaps histology and orthogonal 

autoantibody assays can be applied to confirm risk for T1D. Ultimately, we also hope that pre-

diabetes, T1D and control tissues obtained by the nPOD program can not only find targets for 

therapeutic intervention but also, provide information relevant to future risk assessments. 
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3 Objectives 
 
The study of human pancreas at various stages of the progression to T1D is the overall 

objective of this study. In order to achieve that, access to relevant tissues is required, as well 

as having appropriate protocols established to evaluate the hypothesis that T1D is 

autoimmune in nature but that the β-cells may contribute to their own demise. The following 

specific aims were used to achieve that goal. 

 

Specific Aims 
1. Establish a screening program to acquire human tissue from organ donors with type 
1 diabetes associated autoantibodies. 
The overall structure of the nPOD program (Fig 1-1), as originally planned, included the 

establishment of autoantibody screening in order to acquire pancreas from individual donors 

at risk for T1D, who do not have a diagnosis of hyperglycemia or diabetes.  

(1) I modified a commercially available ELISA to measure GADA, IA-2A and ZnT8A in 

three hours so that results would be available in a time frame suitable for decisions to 

be made about organ placement. 

(2) I set up and trained laboratories around the USA to cover a large pool of potential 

organ donors. 

(3) I implemented screening and quality control programs which we used to fine-tune the 

reporting and performance of the assay. 

(4) We acquired pancreas samples from donors that were controls without diabetes, 

autoantibody positive donors without diabetes, and those who had T1D or T2D. 

 

2. Evaluate the role of insulitis and complement in human type 1 diabetes. 
While the progression of insulitis is well characterized using animal models of disease this is 

less so in the case in human T1D. This aim addressed both the frequency/extent of insulitis 

throughout the natural history of T1D and the potential role of humoral immune responses in 

T1D. 

(1) We set up staining protocols to evaluate immune cell infiltrates in control, autoantibody 

positive without diabetes, and T1D organ donor pancreas samples. 

(2) We used standardized criteria from a pathology consensus manuscript. 

(3) Imunohistochemistry stains were used to quantify α-cell (glucagon) and β-cell (insulin) 

mass. 
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(4) Metadata associated with each case, such as age of disease onset, disease duration, 

number and type of autoantibodies, HLA and diabetic ketoacidosis (DKA) were 

correlated with insulitis or α- or β-cell mass. 

(5) We stained pancreas cryosections for complement component 4d (C4d) from control, 

autoantibody positive without diabetes, T1D and T2D donors. 

(6) We evaluated the C4d staining in the context of disease, HLA and autoantibody type 

and frequency. 

3. Address the loss of endocrine hormones in the pancreas of humans with type 1 
diabetes. 

(1) We stained human pancreas by both immunofluorescence and 

immunohistochemistry techniques for proinsulin, insulin and glucagon. 

(2) We performed in situ hybridization for insulin mRNA on cryosections of human 

pancreas. 

(3) We measured total protein, proinsulin, insulin, C-peptide, glucagon and IAPP 

following acid ethanol extractions of thick (3x50μm) pancreas cryosections. 

(4) We designed primers and performed real-time quantitative polymerase chain 

reaction (RT-qPCR) on extracted Ribonucleic Acid (RNA) from flash frozen pancreas 

blocks of tissue.  

(5) We analyzed and annotated immunostained pancreas tissue slides to semi- quantify 

the number of β-cells in islets and in isolated clusters or single cells in the whole 

section. 
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4 Own Research 
 
4.1 Screening organ donors for type 1 diabetes autoantibodies is feasible. 
 
The nPOD program, as previously described (Campbell-Thompson, et al., 2012a; Pugliese, et 

al., 2014), was set up to obtain human tissue from organ donors with T1D, those at risk for 

T1D, and matched controls. The goals of my effort were to specifically optimize and implement 

the autoantibody-screening (Wasserfall, et al., 2016) [CW1] program to find organ donors at 

risk for T1D. The logistics of this program entailed a) finding screening partners and b) 

choosing an assay format that could be widely used. The screening partners that made most 

sense were laboratories already screening serological samples from OPOs; however, this 

decision eliminated the gold standard radioimmunoassay for autoantibodies (Bingley, et al., 

2003; Bingley and Williams, 2013; Bonifacio, et al., 1988; Brooking, et al., 2003; Gianani, et 

al., 1995). I therefore tested at that time a newly available ELISA for GADA (Brooking, et al., 

2003) and IA-2A (Chen, et al., 2005) autoantibodies and then, subsequently ZnT8A 

(Petruzelkova, et al., 2014). We used Receiver Operating Characteristic (ROC) analysis to set 

cutoffs for each ELISA that were highly specific (Fig 1 [CW1]). This was done for reasons of 

reducing false positives so as to maximize nPOD resources and to avoid potentially removing 

organs from the transplant pool.  

 With these assays established, we transferred the technology to OPO screening 

laboratories across the United States of America. As the program grew, we made adjustments 

to these assays and training procedures, and as shown in (Fig 2 [CW1]), we improved 

concordance with the ELISA and the gold standard RIA along with increasing the number of 

individuals screened. We reported this effort in 2016, but the program continues and thus far 

as of 2017, we have screened approximately 6000 samples and have 32 confirmed 

autoantibody positive donors. 

 An important aspect of this effort is one of quality control. We have entered these ELISA 

assays into the Diabetes Autoantibody Standardization program (DASP) (Bingley, et al., 2003), 

subsequently renamed Islet Autoantibody Standardization Program (IASP) (Amoroso, et al., 

2016), over the entire course of the nPOD project. The ELISA assays have maintained a high 

level of specificity 99-100% for each analyte as well as good sensitivity 62-82% (Table 1 

[CW1]).  Additionally, the screening assay is confirmed with an orthogonal RIA, which is also 

the gold standard. Direct comparison of these two formats in autoantibody positive subjects 

with or without T1D reveals a majority concordance, yet there remain some differences (Fig 3 
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[CW1]). This is attributed speculatively to differences in epitopes or simply false positives. 

Nonetheless, the nPOD program has decided to maintain the RIA as the gold standard and as 

the confirmatory assay. 

 Finally, we have access to the screening assay serum sample as well as the serum 

sample obtained at the time of recovery of the organs for research (Campbell-Thompson, et 

al., 2012a). The amount of time that has elapsed between screening and recovery varies form 

hours to days.  We found in two cases that the screening serum sample was positive but the 

recovery sample was negative in both the ELISA and RIA autoantibody assays (Fig 4 [CW1]). 

This we attributed to management of the patient in the ICU with drugs, fluids and transfusions 

and concluded that these parameters could potentially impact results of the autoantibody 

analyses. In the majority of cases we have confirmed autoantibody screening results and have 

obtained high quality human pancreas tissue for study by the wider diabetes community. The 

ELISA format is suitable for these screening efforts. 

 

4.2 The insulitis lesion in humans reveals the heterogeneity of type 1 diabetes. 
 
The nPOD project opens up studies of the human T1D condition in the modern era; however, 

not to be overlooked are earlier efforts (Foulis and Stewart, 1984; Gepts, 1965; Richardson, et 

al., 2014). These efforts aided in establishing T1D as a condition of infiltrating leukocytes and 

together with the discovery of autoantibodies (Bottazzo, et al., 1974) and HLA (Cahill and 

McDevitt, 1981) associations, suggested an autoimmune origin for this disease. These earlier 

efforts were performed on cadaveric post mortem subjects whereas nPOD obtains transplant 

grade tissues (Campbell-Thompson, et al., 2012a). Additionally, nPOD enables study of 

tissues available from autoantibody positive subjects without T1D, who may have been pre-

diabetic. Some pressing questions surround the extent of insulitis throughout the natural 

history of the disease; therefore, our aims for this project were to conduct an extensive survey 

of the nPOD tissues for insulitis and β-cell mass ((Campbell-Thompson, et al., 2016a) [CW 2]). 

 We first determined insulitis frequency (islets with insulitis / total islets) as described 

elsewhere (Campbell-Thompson, et al., 2013). A total of 80 organ donors with T1D, 18 

autoantibody positive donors without diabetes and 61 autoantibody negative control donors 

were evaluated (Supplementary Table 1 [CW2]). Of these 23% of T1D and 11% of the 

autoantibody positive without T1D had evidence of insulitis while none of the autoantibody 

negative donors had insulitis (Table 1 [CW2]).  
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 We noted variability in the lobular distribution of both insulin positive islets and insulitic 

islets within the T1D cohort (Fig 1 [CW 2]); furthermore, the number of CD3+ cells per islet 

varied in a given donor (Fig 2 and Supplementary Fig 2 [CW 2]). Of interest in the autoantibody 

positive subjects, insulitis was restricted to primarily insulin containing islets (Supplementary 

Fig 1 [CW2]), while all 18 T1D donors with insulitis had insulin containing islets in at least one 

section.  

 Not unexpectedly prevalence of insulitis correlated with T1D duration in those with the 

disease, but not with age of onset or age at demise (Fig 3 A-C [CW2]). Additionally, no 

correlations of insulitis with body mass index (BMI), ethnicity or sex could be found 

(Supplementary Table 3 [CW 2]. As far as hospital management, length of stay did not 

correlate with insulitis, but there was a significantly higher proportion of donors with insulitis 

who had DKA during the course of their management (47% vs. 7%, p=0.04) [CW2]. The high 

risk HLA genotypes DR3/DR4 were noted to occur with higher frequency in the T1D donors 

compared to both autoantibody negative and positive donors without diabetes. This is not 

unexpected, and no relationship could be found with insulitis (Supplementary Table 3 [CW2]). 

Interestingly, one T1D subject had the protective HLA DQ06 allele and had insulitis. The two 

autoantibody positive donors without diabetes with insulitis had intermediate to higher risk HLA 

DR7/18 DQ02/04 and DR4/- DQ8/-, respectively. 

 In evaluating the characteristics of the infiltrating leukocytes by multi-color 

immunofluorescence (Fig 4 [CW2]), we found that the lymphoid series of T and B cells (CD45+, 

CD3+, CD4+, CD8+ and CD20+) were proportionate to each other and proportionate to the 

insulitis frequency (Fig 5 [CW2]). There was, however, variability when comparing islet to islet 

and donor to donor, highlighting the heterogeneity of these infiltrates. Additionally, the myeloid 

series of cells (CD68+ and CD11c+) did not correlate with insulitis frequency (Supplementary 

Fig 4 and Supplementary Table 4 [CW2]). 

 Since pancreatic weight data were available and we had stained for insulin and 

glucagon, we could estimate α- and β- cell mass. Similar to our previous findings (Campbell-

Thompson, et al., 2016b), the weight of the pancreas was decreased in T1D subjects relative 

to growth (age) and compared to those without T1D (Fig 6 and supplementary Fig 5 [CW2]). 

Not unexpectedly, β-cell mass was decreased in donors with T1D compared to those without 

T1D; however, within the T1D donor group those with insulitis had higher β-cell mass than 

those without insulitis (Fig 6 [CW 2]). We found no differences in α-cell mass across all donor 

groups tested (Fig 6D and E [CW2]). 
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4.3 Complement deposition in the human pancreas is not specific to islet 
vasculature. 

 

While the general consensus is that autoantibodies are excellent biomarkers of T1D, they are 

not considered pathogenic (Ziegler, et al., 1993). However, given the observed relative paucity 

of insulitis we decided to investigate aspects of humoral immunity in human pancreas of T1D 

donors. We took the approach used by the transplant community (Jen, et al., 2012) with the 

goal of investigating antibody-mediated complement activation ((Rowe, et al., 2013) [CW 3]). 

Specifically, we immunostained C4d in pancreatic cryosections from 11 T1D, 16 autoantibody 

positive without T1D, 11 autoantibody negative without diabetes, and 7 T2D subjects.  

 In all of these groups if C4d staining was detected, it was either on the endothelium of 

small blood vessels or on the endothelium/extracellular matrix of larger vessels or adventitia 

of ductal structures (Fig 1A [CW 3]). Total C4d was expressed as percentage pixels positive 

using image analysis software. This was independently confirmed by an expert pathologist, 

and the Spearman rank correlation between the automated pixel count versus the pathologist 

rank was r=0.86, p<0.001. A significant difference between the groups was found, with T1D 

subjects having more C4d deposition (Fig 1B [CW 3]). Furthermore, ROC analysis yielded a 

sensitivity of 81.8% and specificity of 94.4% in discriminating autoimmune diabetes from T2D 

and no diabetes (Fig 1B [CW 3]).  

 We observed lower mean C4d deposition in T1D subjects with insulitis (17.8 ± 4.3%, 

n=5) than those without insulitis (31.4 ± 5.7%, n=6); however, this did not reach statistical 

significance (p=0.08). While as a group the autoantibody positive without diabetes did not differ 

from either the T2D or autoantibody negative without diabetes, (Fig 1B [CW 3]) there were two 

autoantibody positive subjects with higher C4d deposition one of whom also had insulitis. 

There were no correlations with either a) frequency or b) type of autoantibodies for any of the 

studied groups nor any hospital management metadata (ICU time, downtime or cause of death) 

[CW 3]. 

 

4.4 The pancreas of individuals with type 1 diabetes shows progressive loss of 
insulin, but proinsulin persists 

 

The standard model of T1D (Eisenbarth, 1986) posits that a steady decline in β-cell mass over 

time eventually leads to clinical diagnosis of diabetes with loss of glucose homeostasis. Our 

aims in this project were to investigate the endocrine hormones and processing pathways 
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throughout the natural history of T1D ((Wasserfall, et al., 2017) [CW 4]). A total of 106 pancreas 

samples from organ donors comprising 50 controls without diabetes, 16 autoantibody positive 

without diabetes, and 40 T1D subjects were used in this study (Table 1, [CW 4]).  

 We performed multicolor immunofluorescence (IF) for proinsulin, insulin and glucagon 

(Fig 1 [CW 4]) on representative formalin fixed paraffin embedded (FFPE) pancreas sections 

from control and T1D subjects with 1, 2 and 7 years of disease duration. The control sections 

not only revealed abundant islets with proinsulin, insulin and glucagon staining (Fig 1A, F, K 

and P [CW4]) but also, random single cells in the exocrine regions also staining for these 

hormones (Fig 1A inset [CW 4]). In the case of T1D with varying durations, these sections 

reveal heterogeneity in progression of disease with glucagon dominant islets along with single 

cells positive for each hormone individually (Fig 1 [CW4]). 

 We followed this with acid-ethanol extractions of thick (3x50μm) cryopreserved 

pancreatic sections from 31 controls, 16 autoantibody positive without diabetes, and 24 T1D 

subjects. We measured proinsulin, insulin, C-peptide and glucagon by ELISA and islet amyloid 

polypeptide (IAPP) by Luminex magnetic bead based assays. Within the autoantibody positive 

group, there were 12 single and 4 multiple autoantibody positive subjects (Table S2 [CW 4]). 

The extracted proinsulin, C-peptide and insulin levels were not related to frequency of 

autoantibodies and therefore, these subjects were grouped together and analyzed as an 

autoantibody positive cohort.   

 In the T1D group 5/24 individuals had extracted insulin levels similar to control levels, 

but 17/24 samples were at the lower end of the standard curve, and a further 2/24 had no 

detectable insulin. By comparison, the controls and autoantibody positive without diabetes 

tissues had significantly higher levels of insulin (Fig 2A [CW4]). Proinsulin levels, however, 

were detectable in all extracts from each group including the T1D subjects. The median 

proinsulin levels were significantly lower in the T1D group relative to controls but still 

measurable (Fig 2B [CW]). C-peptide levels were significantly lower in T1D pancreas 

extractions compared to control and autoantibody positive samples (Fig 2C, [CW 4]). Taken 

together, when analyzing a ratio of proinsulin to insulin or proinsulin to C-peptide, a significant 

difference was revealed between T1D and controls or autoantibody positive subjects (Fig S1B-

C [CW 4]).  

 IAPP is co-secreted with insulin from the β-cells. The levels of this peptide hormone 

were undetectable in 13/18 T1D samples and dramatically reduced in the remaining 5 subjects 

relative to both control and autoantibody positive samples (Fig 2D [CW4]). In contrast glucagon 

was present in similar levels between T1D and control subjects (Fig 2E [CW4]). An analysis of 
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proinsulin with insulin showed a correlation in controls but not T1D or autoantibody positive 

without diabetes subjects for these two analytes (Fig 2F-H [CW4]). 

 We next assayed by RT-qPCR expression levels of heterogeneous nuclear RNA 

(hnRNA) for insulin (INS), calmodulin 1 (CALM1), serine protease inhibitor Kazal-type 1 

(SPINK1), cyclophilin A (PPIA) and chymotrypsin C (CTRC). Similarly, mRNA for INS, insulin-

insulin like growth factor 2 read through (INS-IGF2), IAPP, glucagon (GCG) and somatostatin 

(SST) were measured. Consistent with the protein levels of proinsulin, we found low but 

reproducible levels of insulin mRNA in T1D pancreas (Fig 2I [CW 4]); however, the hnRNA for 

INS was not detectable in most T1D samples (Fig 2J [CW4]). The hnRNA for CALM1, SPINK1, 

PPIA and CTRC were present and comparable between control and T1D pancreas samples 

(Fig S2 [CW4]). The INS-IGF2 read through mRNA was largely undetectable in T1D subjects 

(Fig 2K [CW 4]). Taken together, this suggests the insulin promoter is largely silent in T1D. 

The mRNA expression levels for IAPP were, for the most part, very low or undetectable in T1D 

subjects while control pancreas had detectable IAPP in all cases, which corroborates the IAPP 

protein data. (Fig 2D and L [CW4]). Data for GCG and SST mRNA show that the levels for 

these two analytes are similar between control and T1D samples (Fig 2M-N [CW 4]). 

 To better understand the location of and distribution of insulin and glucagon positive 

cells and based on previous observations, we performed a semi-quantitative analysis of these 

hormones in a subset of controls (n=5), short duration T1D (0-7 years, n=5) and longer duration 

T1D (8-35 years, n=6).  

 Representative images of a control and two T1D subjects (one with 7 years of duration 

and one with 35 years of duration) double stained for insulin and glucagon (Fig 3A-E and insets 

[CW 4]) showed the distribution of islets and hormone positive single cells in control pancreas 

and through the progression of disease. Of note, T1D subjects have a lobular distribution of 

islets that are termed pseudoatrophic, meaning glucagon positive in the absence of insulin, as 

also shown in ((Campbell-Thompson, et al., 2016a) [CW3]). Both control and T1D subjects 

had single cells staining for insulin protein and also INS mRNA as exemplified by INS in situ 

hybridization (ISH) stained sections (Fig 3F-J [CW4]).  

 The presence of insulin within islet cells was diminished in T1D samples from short 

duration compared to controls and absent in longer duration T1D subjects (Fig 3K [CW 4]). 

This was additionally supported by increasing counts of pseudo-atrophic (insulin+glucagon-) 

islets, with a concomitant decrease in the counts of double positive (insulin+glucagon+) islets 

(Fig 3L-M [CW4]) with increasing duration of disease. We also observed insulin positive cells 

in small clusters (2-5 cells) or as single cells in the acinar areas. These were abundant in the 
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control pancreata but also present, albeit in reduced numbers, in both short and long duration 

T1D samples (Fig 3N-O [CW4]). 

 We next investigated whether the enzymes involved in the processing of proinsulin 

were altered in T1D pancreata. To that end mRNA for PSCK1 was reduced in T1D samples 

relative to controls, while mRNA for PCSK2 and CPE were not different between the groups 

(Fig 3P-R [CW4]). Finally, we measured IFNγ, IL-1β and TNFα expression by RT-qPCR in 

control and T1D pancreata (Fig S4 [CW 4]). We found that IFNγ was undetectable in all cases, 

but IL-1β was present in similar levels between the two groups (Fig S4A [CW4]). TNFα was 

not detectable in approximately one third of the T1D and half of the control samples (Fig S4B 

[CW 4]). 
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5 Discussion 
 

5.1 Even with a low prevalence disease such as T1D, it is possible to screen organ 
donors for the presence of disease specific autoantibodies. 

 
Our experience has been that with practice and refining the cutoffs for positivity, adjustments 

to the assay preparations and training of screening laboratories, we have been able to detect 

the frequency of autoantibodies in the published literature. Meaning for any given single 

autoantibody, we have about 3% of the screens being positive and approximately 0.2% of 

samples are positive for multiple (i.e., two or more) autoantibodies [CW 1]. This push for a 

higher threshold also means we have a higher specificity for nPOD borne out in the IASP 

proficiency challenge testing, where we have consistently scored at around 100% specificity. 

While not usual for a screening program to emphasize specificity, we have done so for ethical 

(not removing false positive organs from transplant pool) and logistical reasons in terms of 

manpower and cost to recover organs. We currently have no way of knowing for sure that 

these organs were truly from a subject that would ultimately progress to T1D, but together with 

high-risk HLA and multiple autoantibody positive status, we are reasonably certain that these 

are true pre-T1D cases. This is consistent with multiple studies using these tissues showing 

differences between the autoantibody positive cases and control cases. For example changes 

in proinsulin to insulin ratios in autoantibody positive cases (Rodriguez-Calvo, et al., 2017), 

differential proteomic changes in autoantibody positive pancreas (Burch, et al., 2015), and 

others (Kaddis, et al., 2015). It is therefore reasonable to speculate that future studies and 

increase in knowledge will allow us to better stratify these subjects. 

 The use of an orthogonal RIA for confirmation of these ELISA screening results has 

shown that the two assay formats were for the most part in agreement. The few discordant 

results are speculated to be epitope specific differences or format differences, but this remains 

unknown. Nonetheless, we have confidence in the overall ability to obtain true autoantibody 

positive organ donor samples for the nPOD program.  

 

5.2 Insulitis in the natural history of T1D 
 

The ability to analyze pancreas samples across the spectrum of pre-T1D, new onset T1D and 

established T1D is unique and an invaluable aspect of nPOD. Our study using standardized 

protocols, high quality tissue and access to the whole organ has allowed us to address insulitis 
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frequency, leukocyte subtypes, pancreatic weights and hence α- and β-cell mass. This we 

believe adds much to the collective understanding of cellular infiltrates in human T1D.  

 Firstly, we have agreement that insulitis occurs in 23% of our cases [CW 2] versus 21% 

in other studies (In't Veld, 2011). However, we found 100% insulitis in subjects with duration 

of less than one year and 19% in those with a duration greater than one year, while the 

published literature suggests 51% and 3%, respectively (In't Veld, 2011). We would note that 

given the marked heterogeneity in the insulitic lesion, perhaps one reason for this discrepancy 

is that nPOD has the whole pancreas with multiple blocks available and screened, while others 

have had smaller pieces of tissue to examine. We are also in agreement regarding the 

proportion of insulin-containing islets with insulitis (33%) versus 2% of those that do not contain 

insulin, when compared with the Foulis et al. study (Foulis, et al., 1986) where they found 

insulitis in 28-35% of insulin-containing versus 1-5% of insulin-absent islets. The notion of 

insulitis being present in an antigen specific manner and the presence of insulitis in insulin 

negative islets could imply other autoantigens (which have not been stained for in this case) 

such as GAD or IA-2 or in ongoing bystander type reactions, which will need to be addressed 

in future studies. 

 Secondly, we also found insulitis in 2 out of 5 autoantibody positive subjects without 

T1D and none of the single autoantibody positive subjects. The two subjects with insulitis both 

had the combination of GADA and IA-2A. This is consistent with a published study 

demonstrating insulitis in 2 out of 7 multiple autoantibody positive subjects (In't Veld, et al., 

2007). This is also further demonstration that the nPOD screening process is potentially finding 

true pre-T1D subjects.  

 Another finding of note was the similarities in leukocyte subtypes in both pre-T1D and 

diagnosed cases. We found that each insulitic islet was heterogeneous in ratios of various 

leukocyte subsets, but when compared to overall frequency of insulitis, each subtype in the 

lymphoid compartment increases linearly. This implies a broad immune response to both 

insulin containing and insulin deficient islets. This is similar to the findings of others (Bottazzo, 

et al., 1985; Coppieters, et al., 2012; Dotta, et al., 2007; Foulis, et al., 1986; Hanafusa and 

Imagawa, 2008; Hanninen, et al., 1992; In't Veld, et al., 2007; Itoh, et al., 1993; Leete, et al., 

2016; Richardson, et al., 2011; Somoza, et al., 1994); however, some have an emphasis on 

finding predominantly CD8+ and macrophage infiltrates. Whether this reflects differences in 

protocols and/or donor demographics remains to be seen. Once again our study has looked 

at this question with a greater number of sectional areas of the pancreas studied and at 

different stages of the disease process. More recently, studies have highlighted potential for 
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higher CD20+ B-lymphocyte infiltrate frequencies to potentially differentiate those with early 

onset T1D (Leete, et al., 2016).  

 Pancreatic mass was found to be significantly smaller in individuals with T1D 

independent of age or duration. While autoantibody positive individuals did not show this 

difference when compared to controls, this was in contrast to our previous smaller study of 

autoantibody positive subjects, where we did see a difference in pancreas size compared to 

controls; however, the notion of a smaller pancreas in T1D subjects continues to be upheld 

(Campbell-Thompson, et al., 2012b; Campbell-Thompson, et al., 2016b). Indeed, this has 

been noted before (Gaglia, et al., 2011; Goda, et al., 2001; Philippe, et al., 2011; Williams, et 

al., 2012) in living subjects. We hypothesize that since we don’t exactly know where 

autoantibody positive donors are in their potential progression/staging to T1D, that the question 

of pancreas volume will be best resolved by either an appropriate increase in the number of 

donors studied or in longitudinal radiological assessments of those at risk for and through onset 

of disease. 

 Since we had the whole organ along with pancreatic weights, we were able to provide 

a metric of α- and β-cell area and mass. Not surprisingly, β-cell area and mass are significantly 

reduced in T1D subjects. Also of note, the β-cell mass was higher in those with insulitis 

compared to those without, potentially implying an association of autoantigenic load or these 

sample reflecting an earlier stage in the process of infiltration. 

 

5.3 Complement deposition in the natural history of T1D 
 

In our study of C4d staining in the pancreas, the initial goal was to test an alternative potential 

mechanism of β-cell death [CW 3]. This was partly in response to the initial findings of lower 

than expected frequency of insulitis in T1D cases, but also in response to an earlier literature 

that had defined complement fixing ICA autoantibodies (Bottazzo, et al., 1980; Mustonen, et 

al., 1983).  However, we found that C4d deposition occurred throughout the pancreas in T1D 

subjects and in 2 autoantibody positive subjects, 1 of which also had insulitis. The distribution 

of C4d on mostly exocrine vasculature and extra-cellular matrix components does not implicate 

islets directly. We therefore cannot conclude that the observed C4d deposition was due to 

complement fixing ICAs. Future efforts should not only look directly at other aspects of 

complement biology but also must address what may be occurring in the exocrine pancreas, 

in terms of inflammation and the aforementioned smaller pancreas in T1D. 
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5.4 Presence of endocrine hormones in the natural history of T1D 
 

Our analysis of the endocrine parameters throughout the natural history of T1D led to several 

observations [CW 4]. Collectively, we noted the presence of proinsulin as protein in a large 

proportion of T1D pancreata, by both immunostaining and specific ELISA methodologies on 

cryopreserved samples and extracts. We also found mRNA for proinsulin by ISH and by RT-

qPCR, but mature insulin and C-peptide proteins were mostly undetectable. We interpret the 

finding of lower PCSK1 in T1D as one possible reason that we detect proinsulin in the near 

absence of insulin and C-peptide, which may imply partial processing in the maturation of these 

analytes. We also found near absence of IAPP and would note that a recently developed assay 

to measure pro-IAPP revealed a higher pro-IAPP to IAPP ratio in T1D with the authors 

concluding that the processing machinery may be impaired (Courtade, et al., 2017). Together 

these two observations are consistent with there being a defect in processing of both proinsulin 

and pro-IAPP since these utilize the same proconvertases and pathways (Alarcon, et al., 

2012). Another potential explanation could be rapid secretion of both pro-hormones, as has 

been described in T2D (Alarcon, et al., 2016), leaving minimal time to process, this would have 

to be tested functionally on live tissue. 

 Isolated islets from control and T1D organ donors have been tested for glucose 

responsiveness, so functional assays have been possible. However, we would note our other 

findings herein, namely that of single cells in the acinar regions testing positive for insulin. 

These single cells exist in abundance in control pancreata and progressively decrease in 

number with duration of T1D. Importantly, in longer duration T1D, islets are mostly depleted of 

insulin, but some of these single cells remain. In that light, isolating islets and testing them, will 

not capture the functionality of these single cells. Also, we do not have sufficient information 

on these hormone positive single cells to conclude whether these are de-differentiated cells 

(Accili, et al., 2016; Talchai, et al., 2012) or potentially stem cells (Moin, et al., 2017; van der 

Meulen, et al., 2017), and this will be pursued in future studies. 

 We also found similar levels by extraction and mRNA for glucagon consistent with our 

earlier [CW 2] observations on α-cell mass. The same was also true for levels of mRNA for 

somatastatin, but we have not formally quantified δ-cells. We did not find any significant 

differences in any of these endocrine compartments in autoantibody positive pancreas 

samples; this is in contrast to a recent observation of higher proinsulin by immunofluorescence 

staining in subjects at risk for T1D (Rodriguez-Calvo, et al., 2017). The immunostaining reagent 

antibodies used in these two studies may not be able to distinguish the various intermediate 
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forms of proinsulin, and this would have to be finally resolved by alternative assays 

(radiolabelling or mass spectrometry) to identify the various partially processed proinsulin 

molecules (Rhodes, et al., 1992).  

 Finally, we also found that hnRNA (unspliced nuclear RNA) for insulin was 

undetectable as was mRNA for the INS-IGF2 read-through product, and this coupled with INS 

mRNA being present we interpret as the insulin promoter being inactive with long lived INS 

mRNA explaining the persistence of proinsulin. It is possible that there is insufficient hnRNA 

for our detection especially if this is mostly in single cells rather than in islets. This remains 

unresolved and would be subject of future studies with functional access to live cells from the 

pancreas, as had been pioneered in mouse pancreas (Marciniak, et al., 2014; Speier, et al., 

2013).  
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6 Resume 
 

The study of human T1D as an autoimmune disease of the pancreas started, it could be 

argued, with the discovery of insulin using pancreatectomized animals. This followed a period 

of studies of insulin replacement refinements, improvements in technologies and studies in 

blood samples of metabolic and autoimmune phenomena. While animal models allowed end 

organ analysis, the study of human pancreas was severely limited in comparison to studies of 

peripheral blood. It is therefore fitting that what was learned from these peripheral blood studies 

allowed us to assemble, via nPOD, a human pancreas bank including samples from those 

deemed at higher risk for T1D by peripheral blood autoantibody analysis (Wasserfall, et al., 

2016) [CW 1]. 

 The main goal of my thesis was, with these samples in hand and still continuing to 

accrue, to address several fundamental questions in human T1D biology. Firstly my colleagues 

and I were able to study insulitis in autoantibody positive subjects and in those with a diagnosis 

of T1D (Campbell-Thompson, et al., 2016a) [CW 2].  Herein we found insulitis in 2 of 5 

autoantibody positive subjects’ pancreas samples, both having the combination of GADA and 

IA-2A. In pancreas samples from T1D donors with less than a year of disease duration, 100% 

had insulitis. While, in those with greater than one year of disease duration, 23% had insulitis. 

This implies that insulitis occurs closer to onset of disease and then wanes thereafter. This is 

in stark contrast to the NOD mouse model where insulitis occurs very early and in 100% of 

these inbred mice whether they progress to T1D or not. Also in stark contrast to the NOD, 

while β-cell mass was reduced in T1D pancreas samples it was not completely absent. We 

also confirmed findings of reduced overall mass of human T1D pancreas samples that are not 

explained by missing β-cells, which make up only a small fraction of the organ. This implicates 

loss of exocrine tissue in some manner that remains unresolved.  

 Next, we tested whether complement plays a potential role in T1D using C4d deposition 

as a marker of (auto)antibody mediated events (Rowe, et al., 2013) [CW 3]. Unexpectedly, we 

found that while there was increased C4d staining in T1D pancreas samples, the distribution 

implied potential exocrine inflammation and not necessarily islet specific events. Whether this 

is tied into the findings of smaller pancreata in T1D is an obvious question for future study. 

 In then compiling these notions together, I used a technique to extract proteins from 

whole frozen sections of pancreas and found persistence of proinsulin while insulin and C-

peptide levels were low to undetectable by ELISA in T1D samples (Wasserfall, et al., 2017) 

[CW 4]. In further teasing this apart, we discovered INS mRNA was present by ISH and RT-
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qPCR along with both proinsulin and insulin by immunohistochemistry. We also were able to 

semi-quantify the progression of T1D, by the loss of insulin in islets but the persistence of 

insulin positive single cells with longer disease duration. The PCSK1 enzyme was also reduced 

in T1D samples by RT-qPCR, suggesting a possible mechanism for incomplete processing of 

proinsulin into mature insulin and C-peptide. Resolving this pathway and addressing whether 

the single insulin positive cells can be rescued as a therapeutic option or whether they are 

dedifferentiating β-cells will be pursued in future endeavors.  

 In conclusion, my thesis work has demonstrated that insulitis appears closer to T1D 

onset, is evident at onset, and wanes after a year of duration. It is also true that not every islet 

is infiltrated, but those that are have T-, B-, dendritic cells and macrophages in a 

heterogeneous distribution. The loss of β-cells is lobular, and proinsulin can be found in T1D 

pancreata. Proinsulin, insulin and glucagon can be found in single cells long after the 

disappearance of β-cells within islet structures in T1D pancreas samples. The overall pancreas 

is smaller, and by deduction, this must be a loss of exocrine tissue since β-cells make up a 

tiny fraction of the overall mass. C4d is deposited in exocrine areas and others have found 

exocrine leukocytic infiltrates (Campbell-Thompson, et al., 2015; Rodriguez-Calvo, et al., 

2014). There is an older literature as well as emerging studies, including some from our group, 

corroborating findings of diminished exocrine secreted products and function (Frier, et al., 

1976; Kondrashova, et al., 2017; Lankisch, et al., 1982; Li, et al., 2017). Taken together, there 

appears to be involvement of the exocrine pancreas in T1D and it remains to be seen if this is 

part of the autoimmune process or in response to the loss of insulin (Campbell-Thompson, et 

al., 2015). 
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Summary [German] 
 
Die Studie des menschlichen T1D (Type 1 Diabetes), als eine Autoimmunerkrankung der 

Bauchspeicheldrüse, könnte man mit der Entdeckung von Insulin unter Verwendung von 

pankreatectomisierten Tieren argumentieren. Es folgten Studien zur Verfeinerung des 

Insulinersatzes, Verbesserung der Technologien und zur Untersuchung von Stoffwechsel- und 

Autoimmunphänomenen in Blutproben. Während Tiermodelle eine Endorgananalyse 

erlaubten, war die Untersuchung der menschlichen Bauchspeicheldrüse im Vergleich zu 

Studien mit peripherem Blut stark eingeschränkt. Anhand der so genannten peripheren 

Blutstudien, die nPOD (Network for Pancreatic Organ Donors with Diabetes), konnte eine 

menschliche Bauchspeicheldrüsenbank mit Proben von Personen zusammenzustellt werden, 

die durch die Analyse peripherer Blut-Autoantikörper (Wasserfall, et al., 2016) für T1D als 

risikoreich eingestuft wurde [CW 1]. 

Das Hauptziel meiner Dissertation bestand darin, mit diesen noch immer ansteigenden 

Proben, einige grundlegende Fragen der menschlichen T1D-Biologie zu beantworten. Zuerst 

konnten meine Kollegen und ich Insulitis bei Autoantikörper-positiven Probanden und bei 

Patienten mit T1D-Diagnose (Campbell-Thompson, et al., 2016a) studieren [CW 2].  Dabei 

fanden wir in 2 von 5 Pankreasproben Insulitis von Autoantikörper-positiven Probanden, beide 

mit der Kombination GADA und IA-2A. In Pankreasproben von T1D-Spendern mit weniger als 

einem Jahr Krankheitsdauer hatten 100% der Patienten eine Insulitis. Während, in denen mit 

mehr als einem Jahr Krankheitsdauer, 23% der Insulitis aufzeigten. Dies impliziert, dass die 

Insulitis vorwiegend zum Krankheitsbeginn auftritt und danach abnimmt. Das steht im 

extremen Gegensatz zum NOD-Mausmodell, bei dem Insulitis sehr früh auftritt und bei 100% 

der Inzuchtmäuse, unabhängig davon, ob sie T1D entwickeln oder nicht. Auch im Gegensatz 

zum NOD, während β-Zellmasse in T1D-Pankreasproben reduziert wurde, fehlte es nicht 

ganz. Wir bestätigten ebenfalls die Ergebnisse einer reduzierten Gesamtmasse menschlicher 

T1D-Pankreasproben, die nicht durch fehlende β-Zellen erklärt werden, da die nur einen 

kleinen Teil des Organs ausmachen. Dies impliziert den Verlust von exokrinem Gewebe in 

einer Art und Weise, die bis heute ungeklärt bleibt.  

Weiterhin haben wir getestet, ob Komplement eine potenzielle Rolle in T1D spielt, indem die 

C4d-Deposition als Marker für (Auto) Antikörpervermittelte Ereignisse verwendet wurde 

(Rowe, et al., 2013) [CW 3]. Unerwarteterweise fanden wir heraus, dass es erhöhte C4d 

Antikörperfärbung in T1D Pankreasproben gab. Dies implizierte die Verteilung potentieller 

exokriner Entzündungen und nicht unbedingt Insel-spezifische Ereignisse. Ob dies mit den 
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Befunden der kleineren Bauchspeicheldrüse in T1D zusammenhängt, ist eine naheliegende 

Frage für zukünftige Studien. 

Bei der Zusammenstellung dieser Begriffe verwendete ich eine Technik, um Proteine 

aus gefrorenen Abschnitten der Bauchspeicheldrüse zu extrahieren und fand die Persistenz 

von Proinsulin, während die Insulin- und C-Peptid-Konzentrationen niedrig bis nicht 

nachweisbar durch ELISA in T1D-Proben waren (Wasserfall, et al., 2017) [CW 4]. Weiterhin 

konnten wir zeigen, dass INS mRNA durch ISH und RT-qPCR zusammen mit Proinsulin und 

Insulin durch Immunhistochemie anwesend war. Wir waren ebenfalls in der Lage, die 

Progression von T1D semi-quantifizieren, durch den Verlust von Insulin in Inselchen, sondern 

die Persistenz von Insulin-positiven Einzelzellen mit längerer Krankheitsdauer. Das Enzym 

PCSK1 wurde außerdem in T1D-Proben durch RT-qPCR reduziert, was auf einen möglichen 

Mechanismus für die unvollständige Verarbeitung von Proinsulin zu reifem Insulin und C-

Peptid hindeutet. Die Aufklärung dieses Prozesses und die Frage, ob die einzelnen 

insulinpositiven Zellen als therapeutische Option gerettet werden können oder ob sie die Zellen 

von β dedifferenzieren, werden in Zukunft weiterverfolgt.  

Zusammenfassend hat meine These gezeigt hat, dass Insulitis näher am T1D-Einstieg 

erscheint, dass sie zu Beginn offensichtlich ist und nach einem Jahr nachlässt. Es ist zudem 

nachgewiesen, dass nicht jede Insel infiltriert wird, sondern diejenigen, die T-, B-, dendritische 

Zellen und Makrophagen in einer heterogenen Verteilung haben. Der Verlust von β-Zellen ist 

lobulär, und Proinsulin kann in T1D Pankreas gefunden werden. Proinsulin, Insulin und 

Glukagon sind in Einzelzellen zu finden, lange nach dem Verschwinden von β-Zellen innerhalb 

von Inselstrukturen in T1D-Pankreasproben. Die gesamte Bauchspeicheldrüse ist kleiner, und 

durch Abzug muss dies ein Verlust an exokrinem Gewebe sein, da β-Zellen einen winzigen 

Bruchteil der Gesamtmasse ausmachen. C4d wird in exokrinen Bereichen deponiert und 

andere haben exokrine Leukozyteninfiltrate gefunden (Campbell-Thompson, et al., 2015; 

Rodriguez-Calvo, et al., 2014). Es gibt zurückliegende sowie aktuelle Studien, darunter einige 

aus unserer Gruppe, die die Ergebnisse verminderter exokriner Sekretprodukte und 

Funktionen bestätigen (Frier, et al., 1976; Kondrashova, et al., 2017; Lankisch, et al., 1982; Li, 

et al., 2017). Hypotetisch ist eine Beteiligung der exokrinen Bauchspeicheldrüse an T1D 

möglich, und es bleibt abzuwarten, ob dies ein Teil des Autoimmunprozesses ist oder als 

Reaktion auf den Verlust von Insulin (Campbell-Thompson, et al., 2015). 
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