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Abstract

Below vegetation, throughfall kinetic energy (TKE) is an important factor to express the potential of rainfall

to detach soil particles and thus for predicting soil erosion rates. TKE is affected by many biotic (e.g. tree

height, leaf area index) and abiotic (e.g. throughfall amount) factors because of changes in rain drop size and

velocity. However, studies modelling TKE with a high number of those factors are lacking.

This study presents a new approach to model TKE. We used 20 biotic and abiotic factors to evaluate

thresholds of those factors that can mitigate TKE and thus decrease soil erosion. Using these thresholds, an
optimal set of biotic and abiotic factors was identified to minimize TKE. The model approach combined

recursive feature elimination, random forest (RF) variable importance and classification and regression trees

(CARTs). TKE was determined using 1405 splash cup measurements during five rainfall events in a sub-

tropical Chinese tree plantation with five-year-old trees in 2013.
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Our results showed that leaf area, tree height, leaf area index and crown area are the most prominent

vegetation traits to model TKE. To reduce TKE, the optimal set of biotic and abiotic factors was a leaf area

lower than 6700 mm2, a tree height lower than 290 cm combined with a crown base height lower than 60 cm,

a leaf area index smaller than 1, more than 47 branches per tree and using single tree species neighbourhoods.

Rainfall characteristics, such as amount and duration, further classified high or low TKE. These findings are

important for the establishment of forest plantations that aim to minimize soil erosion in young succession

stages using TKE modelling.
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I Introduction

Soil erosion by water is a major threat to natural

ecosystems and agricultural land in many

regions of the world (Cao et al., 2013; Cerdá

et al., 2009; Lieskovský and Kenderessy,

2014; Seutloali and Beckedahl, 2015). Besides

slope, slope length, soil erodibility and vegeta-

tion, rainfall erosivity is another important

driver in predicting soil erosion rates by empiri-

cal (Renard et al., 1997) or process-based mod-

els (Morgan et al., 1998). Higher rainfall and

rainfall erosivity are negatively related to soil

conservation and thus soils can lose important

ecosystem services, e.g. filtering water (Kees-

stra et al., 2012), secure food production and

plant diversity (Brevik et al., 2015), while con-

versely plant diversity can also affect soil con-

servation (Berendse et al., 2015). Rainfall

erosivity is most commonly expressed by the

EI30, which combines rainfall energy (E) and

rainfall intensity per 30 minute interval (I30).

While there are numerous studies investigating

rainfall intensity and related processes (van Dijk

et al., 2002), research on the determining pro-

cesses of rainfall energy is limited. Few studies

deal with the discussion of a proper erosivity

index of rainfall energy (Goebes et al., 2014),

while others investigate seasonal and temporal

trends of rainfall energy (Nunes et al., 2014;

Taguas et al., 2013). This lack of studies is par-

ticularly true when rainfall energy is examined

below tree canopies as throughfall kinetic

energy (TKE). Here, the size distribution of rain

drops is changed because of biotic factors (e.g.

leaf traits), potentially resulting in higher TKE

than rainfall energy at open field sites (Geißler

et al., 2010; Geißler et al., 2012; Nanko et al.,

2004; Nanko et al., 2015). In addition, rain drop

size is positively related to rainfall intensity

(Cerdá, 1997). This strengthens the influence

of TKE on inducing soil erosion processes

below tree canopies. Hence, if a litter cover at

the soil surface is missing, TKE is directly influ-

encing soil erosion (Seitz et al., 2015) indicating

the definite role of vegetation for soil erosion

control (Cerdá, 1998).

Reflecting the relevance of TKE for soil ero-

sion, TKE has been measured in different

regions, under different rainfall conditions and

below different vegetation in the past 15 years

(Nanko, 2007; Nanko et al., 2008, 2011;

Sanchez-Moreno et al., 2012; Zhou et al.,

2002). In addition, several studies investigated

the influence of biotic (single leaf and tree

architectural traits) and abiotic factors (rainfall

characteristics) on TKE separately. For instance,

a positive effect on TKE has been reported for

leaf area (Goebes et al., 2015a), tree height

(Foot and Morgan, 2005; Geißler et al., 2013),

crown area (Brandt, 1988; Nanko et al., 2008),

crown base height (Brandt, 1990; Nanko et al.,

2008) and throughfall amount (Brandt, 1988;

Geißler et al., 2012; Scholten et al., 2011). TKE

is negatively influenced by leaf area index

(LAI) (Nanko et al., 2006; Nanko et al., 2008)

and the number of branches (Herwitz, 1987).
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In addition, TKE shows spatial variability (Fin-

ney, 1984; Nanko et al., 2011) and deciduous

tree species can cause higher TKE than ever-

greens (Goebes et al., 2015a).

There are some studies that modelled TKE

with biotic and abiotic factors to evaluate its

role in erosion processes. However, these stud-

ies are limited in their number of biotic and

abiotic factors. For instance, Moss and Green

(1987) reported a maximum crown base height

of 30 cm below which TKE is non-erosive.

Brandt (1990) developed a model incorporating

tree height as the most important vegetation

variable while Calder (1996) used interception

processes to model TKE by evaluating the drop

size distribution. Foot and Morgan (2005) sug-

gested to model TKE by only using tree height

and canopy area. Type and intensity of a rainfall

event determine whether TKE is erosive or not

(Brandt, 1989; Zhou et al., 2002). Furthermore,

several studies used modelling approaches to

determine the role of rainfall kinetic energy in

soil erosion at open sites in different regions

of the world (Assouline, 2009; Assouline and

Mualem, 1989; Salles and Poesen, 2000; van

Dijk et al., 2002). As a consequence, literature

onmodelling TKE patterns and potential thresh-

olds for a variety of biotic and abiotic factors in

the context of erosivity are scarce. It also

remains unclear if thresholds exist for biotic and

abiotic factors that lead to a specific TKE. This

motivated us to model TKE by using a variety of

biotic and abiotic predictor variables to clarify

their influence, interaction and importance.

This, in turn, helps to better understand mechan-

isms that underlie and mediate soil erosion

processes.

In the past decades, statistical and machine-

learningmethodologies havemade hugeprogress.

Random forest (RF) is such a machine-learning

technique, representing an ensemble of rando-

mized classification and regression trees (CART)

(Breiman, 2001). The final estimation is derived

by aggregating the individual trees. A single

CART uses a set of binary rules to compute

a target variable. The binary rules are based

on independent variables and the observed

response variable (Breiman et al., 1984). In

RF, estimations are derived from multiple

CART-like trees, adapted by using rando-

mized subsets of the input data (Grimm

et al., 2008). As a consequence, RF is increas-

ingly applied in ecological studies. Peters

et al. (2007) estimated the occurrence of vege-

tation types, while Kuz’min et al. (2011) esti-

mated aquatic toxicity. With regard to soil

erosion research, Märker et al. (2011) used

RF to model erosional response units and to

identify major controlling factors of soil ero-

sion. While RF provides a variable importance

measure, the estimations exhibit limited inter-

pretability. Since in RF the final estimation is

derived from aggregated results of multiple

decision tree models, the relation between

predictors and estimations cannot be assessed

easily. This can, however, be accomplished by

single CART models (Breiman et al., 1984;

Cutler et al., 2007).

In this study we propose a step-wise decision

tree approach to establish a rule-based system

for estimating TKE. We combined the RF fea-

ture importance measure and recursive feature

elimination (RFE) to determine a feature subset

as input for estimating TKE using a single

CART modelling approach. Subsequently, we

analysed the CART with regard to biotic and

abiotic factors to detect erosion-relevant thresh-

olds of those factors in the context of TKE. We

used this methodological frame to evaluate

three objectives:

1. To describe and model TKE with

a distinct set of biotic and abiotic

factors.

2. To identify relevant biotic and abiotic

factor thresholds for predicting TKE in

order to find an optimal predictor subset

that minimizes TKE.

3. To evaluate those predictions using a lit-

erature comparison.
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II Data collection and modelling

1 Study site and experimental design

The study was conducted within the framework

of the large-scale biodiversity-ecosystem func-

tioning experiment ‘BEF-China’ (Bruelheide

et al., 2014) at Xingangshan, Jiangxi Province,

PR China (N29�08-11, E117�90-93). The cli-

mate in Xingangshan is typical of subtropical

summer monsoon regions with a mean annual

temperature of 17.4�C and an average annual

rainfall of 1635 mm. The experimental area

holds 70 ha with a plot-based tree diversity

treatment including 24 tree species on 261 plots.

Tree individuals were planted after harvest of

the previous stand in 2009 and they were five

years old at the time of TKE measurements. For

this study, 40 plots were selected at random,

including 17 monocultures, 10 2-species mix-

tures, six 4-species mixtures, four 8-species

mixtures, one 16-species mixture and two

24-species mixtures to cover a wide range of

different species richness levels and composi-

tions.Within one plot, eight measurements were

taken by selecting eight different positions in

order to cover a wide range of spatial variability

(Goebes et al., 2015b). Positions (1), (4), (6) and

(8) were influenced by one tree individual

(1, 15 cm from the stem; 4, 45 cm from the stem;

6, first branch; 8, 30 cm from the stem), (2), (5)

and (7) were influenced by two tree individuals

(2, middle of two; 5, 45 � 120 cm intersection;

7, 75 � 75 cm intersection) and (3) was

influenced by four tree individuals (3, middle

of four).

2 Measurement of TKE and rainfall

TKE was measured using Tübingen Splash

Cups (Scholten et al., 2011) filled with uniform

fine sand (diameter 0.125 mm). Sand loss in

grams (ds) in splash cups (sc) was used to calcu-

late TKE (standardized by gross rainfall; J m�2

mm�1) by the function given by Scholten et al.

(2011) with a modified slope, a correction to 1

m2 and the gross rainfall amount in mm (rf) of

each rainfall event

KErainfall

J

m2mm

� �

¼
dssc½g� � 0:1455 � 10;000cm2

prsc2

� �

rfevent
:

ð1Þ

In total, 1600 splash cups were measured dur-

ing five rainfall events from May to July 2013.

Table 1 shows rainfall characteristics. These

rainfall events covered a broad range of all rain-

fall events. In 2013, our climate station regis-

tered 33 erosive events (Renard et al., 1997;

Wischmeier and Smith, 1978) ranging from

13 mm to 185 mm with a total rainfall amount

of 1205 mm. In 2012, 49 erosive events ranging

from 13 mm to 211 mm were measured. Mean

rainfall amount per event was 40 mm in 2012

and 30 mm in 2013.

By reviewing literature on TKE measure-

ments (measured in J m�2 mm�1) of the past

Table 1. Rainfall characteristics of five rainfall events. Rainfall amount (RA), intensity (I) and duration (D)
were measured at the climate station of BEF-China using a tipping bucket. Mean throughfall (TF) was mea-
sured at each TKE measurement position using rainfall gauges.

Rainfall events RA (mm) D (h)
I (5 min peak

intensity, mm h�1)
I (total event,
mm h�1) TF (mm)

Mean TKE [J m�2 mm�1]
(standard deviation)

Event 1 23.3 10.16 12.1 2.29 28.3 11.00 (7.90)
Event 2 39.3 11.50 22.8 3.42 47.9 9.02 (7.66)
Event 3 61.2 14.50 44.4 4.25 73.8 9.05 (5.15)
Event 4 6.6 2.33 25.2 2.83 5.0 11.93 (8.36)
Event 5 185.7 30.58 127.2 6.07 192.7 6.96 (3.23)
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30 years (Table 2), and classifying those results

into four different categories using k-means

clustering with 1000 iterations (MacQueen,

1967), we evaluated our TKE measurements

according to these categories. The cluster means

appeared in a multiplicative way using standard

deviations (SD) from the mean TKE across

all studies (20.7 J m�2 mm�1, Table 2). Thus,

category 1 was calculated by subtracting 2 SD

from mean (hereafter referred to as low TKE,

range ¼ 0–11.3 and mean ¼ 7.5), category 2

by subtracting 1 SD frommean (moderate TKE,

range ¼ 11.3–17.4 and mean ¼ 14.1), category

3 by representing the mean (average TKE,

range ¼ 17.5–24.0 and mean ¼ 20.7) and cate-

gory 4 by adding 1 SD to the mean (high TKE,

range¼ 24.1–70 and mean¼ 27.3). The studies

cover a wide range of rainfall amounts (300–

2478 mm a�1) and intensities (0.4–372 mm

h�1). They confirm that rainfall characteristics

of our study (rainfall amount of 1635 mm a�1

and intensities of 12–127 mm h�1) are close

to the mean of the literature review and thus

can be considered representative. This allows

the comparison and categorization of our TKE

measurements to the categories resulting from

the literature review.

3 Measurement of biotic and abiotic factors

With regard to biotic factors, plot-level diver-

sity was evaluated based on the experimental

design. Neighbourhood diversity was specified

by the composition of direct neighbouring tree

individuals of a measurement position. In addi-

tion, we used the binary contrast mono-mixture

to differ betweenmonoculture plots andmixture

plots. Tree height, LAI, crown area, ground cov-

erage, number of branches, ground diameter,

crown base height, leaf habit (deciduous, ever-

green and in mixtures both), leaf area (mean leaf

area per one leaf of one species) and specific

leaf area (Goebes et al., 2015b; Kröber et al.,

2014; Kröber and Bruelheide, 2014; Li et al.,

2014) were measured as biotic factors.

As abiotic factors, we measured throughfall

at each TKE measurement position using rain-

fall gauges. The number of individuals was

determined by counting direct tree neighbours

that were influencing one splash cup. Spatial

variability was assessed using the different posi-

tions of the sampling design. All splash cup

positions were covered by vegetation. If a

splash cup was influenced by more than one tree

individual, mean values of biotic factors of the

respective tree individuals were used. Tree

Table 2.Mean, minimum and maximum throughfall kinetic energy (TKE in J m�2 mm�1) measured in differ-
ent studies. Rainfall characteristics show amount of annual precipitation or simulated rainfall intensity and
type of rainfall. Abbreviations: TF ¼ throughfall, FF ¼ freefall, art ¼ artificial, SD ¼ standard deviation.

Study
Rainfall characteristics of either
study site or experiment Mean Min Max

Sanchez-Moreno et al., 2012 300–500 mm, FF *21 4 70
Nanko, 2007 2300 mm, TFþ(FF) 27 (11) 23.8 31.2
Finney, 1984 61 mm h�1 (art.), TF 7 0.4 10.5
Brandt, 1987 n/a mm, TF 21.8 3 40
Nanko et al., 2008 39.8 mm h�1 (art.), TFþ(FF) 17.5 (12.7) 15.9 20.7
Nanko et al., 2011 40 and 85 mm h�1 (art.), TF 16.2 11.8 21.2
van Dijk et al., 2002 0.4–372 mm h�1, FF 21 3.4 36.8
Brandt, 1988 2478 mm, TFþ(FF) 27 (18) 13.6 40.2
Zhou et al., 2002 1454 mm, TF 28 21 33
All nine studies combined 20.7 (SD 6.6) 0.4 70
Present study 1642 mm a�1, TF 9.6 0.3 54.8
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species richness and the number of individuals

were included as categorical and continuous

predictors to avoid under parameterization of

categorical predictors. Altogether we used a set

of five categorical and 15 continuous predictors

to model TKE (Table 3).

4 Data modelling

Leaf and tree architectural thresholds on which

TKE was evaluated were finally derived by

using CART. Instead of pruning the final

CART, we decided to use RFE followed by

variable importance selection of RF to decrease

the number of input variables before the con-

struction of the final CART. This (i) allows us

to reduce noise in the CART if we exclude less

important features prior to the CART, (ii)

enables a rule-based interpretation of the con-

structed trees and (iii) limits over-fitting. For

instance, noise could be reduced as a result of

exclusion of unimportant input variables if a

very large number of uninformative predictors

were collected and one such predictor would

randomly correlate with the outcome.

Recursive feature elimination. RFE with incorpo-

rated resampling was used to identify model

performance related to the numbers of input

variables (Kuhn, 2014). The model approach

is based on the following steps (Kuhn, 2014):

1. Split data in training and validation set.

2. Train the model on the training set

using all predictors.

3. Calculate model performance.

4. Calculate variable importance.

5. For each subset size Si, i ¼ 1 . . . S do.

6. Keep the Si most important variables.

7. Train the model on the training set

using Si predictors.

8. Calculate model performance.

9. Calculate the performance profile over

all Si.

10. Determine the appropriate number of

predictors.

Table 3. Predictors used as independent variables in the CART models. Mean values (and standard devia-
tion, SD) were calculated using all five rainfall events. c ¼ categorical variable and n ¼ numerical variable.

Indicators Abbr. Mean (SD) Min Max Unit

Biotic factors Tree species richness (c and n) A, B 4.00 (5.63) 1 24 –
Neighbourhood tree species richness C 1.24 (0.55) 1 4 –
Mono-mixture contrast D – –
Tree height E 271.60 (156.42) 30 831 cm
Leaf area index (LAI) F 1.43 (1.07) 0.02 4.56 –
Crown area G 24,132 (26,462) 192 173,590 cm2

Ground coverage H 0.62 (0.28) 0.01 0.99 –
Number of branches I 21 (16) 1 110 –
Ground diameter J 3.92 (2.03) 0.65 12.60 cm
Crown base height K 56.74 (75.10) 0.5 603.5 cm
Leaf habit (deciduous vs evergreen) L – –
Leaf area M 13,898 (13,214) 1121 37,038 mm2

Specific leaf area N 11.61 (1.27) 8.61 15.23 g mm�2

Abiotic factors Throughfall amount O 69.55 (73.97) 0.8 303.5 mm
Position P – –
Number of individuals (c and n) Q, R 1.73 1 4 –
Rainfall event intensity S 46.3 (46.7) 12.1 127.2 mm h�1

Rainfall event duration T 13.8 (10.4) 2.3 30.6 h
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11. Determine the final ranks of each

predictor.

12. Fit the final model based on the opti-

mal Si.

Variables occurring after the optimal input vari-

able number were dismissed in the subsequent

RF models.

This approach leads to a distinct number of

input variables for CART. Therefore, it limits

input variables in the final CART and simplifies

subsequent rule-based model interpretation.

However, RFE cannot give information on what

the most important variables have been and thus

a second approach is needed.

Variable importance using RFs. The variable

importance of RFs was used to detect the most

important variables. RFs are optimally suited

to identify relevant features (Breiman, 2001)

based on mean increased modelling perfor-

mance (%IncMSE) via randomized feature and

instance sampling. This is calculated by using

the inherent structure of the RF approach as an

ensemble of multiple decision trees where each

individual tree is based on a bootstrap sample

(random sampling with replacement; Efron and

Tibshirani, 1994) of the data. Additionally, at

each split only a random subset of all features

is tested to find the parameter, which is best

suited to further split the node (see Rule con-

struction using CART).

All single trees are evaluated using the out-

of-the-bag data. OOB is the portion of the data

that is left out in each bootstrap replicate to

build one tree of the ensemble. For the mean

increased modelling performance each feature

is randomly permuted at each split and the rate

of change of the mean square error, compared

with the original feature, is used as an indicator

for its importance (Breiman, 2001; Grimm

et al., 2008). This measure does not over-fit

because it is tested against the independent

OOB data (Prasad et al., 2006).

As a consequence, RF allows for analysis of

non-parametric and non-linear effects and gives

no need to transform data before modelling.

They provide high prediction accuracy by fit-

ting an ensemble of CARTs to a data set and

combining the predictions from all CARTs

(Cutler et al., 2007). The major drawback is that

the resulting models are often black boxes and

not able to obtain leaf and tree architectural

thresholds for specific TKE measurements.

Therefore, the variable importance of RF was

only used to dismiss all input variables that do

not lead to a better model performance based

on the results of the RFE.

Rule construction using CART. Classification rules

to evaluate biotic and abiotic factor thresholds

on TKE were constructed using CART. CARTs

build rules by splitting the continuous response

into two groups (resulting in two nodes, which

are the sample means of each group) by using

an optimal threshold of a predictor (splitting)

variable. The optimal split (threshold) is defined

as the largest drop to reduce the residual sum of

squares between the two groups of the target

variable fitted with an ANOVA to the predictor

evaluated at this split. The splitting process is

iterated in a recursive way for each of the two

sub-regions and for each of the predictor vari-

ables (Breiman et al., 1984). The vertical loca-

tion of a predictor defines its importance in

predicting the target variable TKE. CARTs

were constructed using the ANOVA method.

Because of the simplification of the model

structure by dismissing none/or less relevant

input variables, no tree pruning was applied.

Modelling setups and validation. We used TKE as

dependent target variable and the variables listed

in Table 3 as independent variables according to

RFE andRF results. Sixmodelswere constructed

for each approach: onemodel of each single rain-

fall event to obtain rainfall-specific TKE models

and one model of all rainfall events to obtain

rainfall-independent TKEmodels. Rainfall event
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intensity and duration were used as input variable

only in the models constructed out of all rainfall

events. Model performance of the RFE was eval-

uated using the root mean square error (RMSE)

and the explained variance (R2). To evaluate the

optimal number of input variables based on RFE,

wecalculated theweightedmeanofall sixmodels

(themodel combining all rainfall eventswas dou-

ble-weighted). We only used one number of dis-

missed variables so that every rainfall event was

treated identically with the same number of input

variables, resulting in equal CART starting posi-

tions considering tree growth and importance

evaluation. This equal number of input variables

allows a comparison between different models.

Mean increased modelling performance (%Inc-

MSE)was used to obtain themost important vari-

ables within the RFs. The number of randomly

selected predictors to test at each node (mtry) and

the number of instances/data points in the final

node (nnodesize) were tested with 1, 2, 3 and 4 and

finally set to 3. We constructed 1500 trees per

model using regression. Five-fold repeated

10-fold cross-validation was used to validate

the CARTs by RMSE and R2, as well as the

model stability/robustness. All models were

analysed using R 2.15.3 (R Core Team, 2013)

with the packages randomForest (Liaw and

Wiener, 2002) and rpart (Therneau et al.,

2013) and were validated using the caret pack-

age (Kuhn, 2014).

III Results

RFE resulted in dismissing the least important

four variables (mean of dismissed variables of

the six models; Figure 1).

Variable importance of all input predictors of

all single rainfall events and the model combin-

ing all rainfall events is shown in Figure 2. The

least five important variables of each model

were dismissed in further analysis. A detailed

list of the dismissed variables may be found in

Table A1.

Figure 1. Results of the recursive feature elimination (RFE) with data from each event and combining all
events (full model, which had two additional variables characterizing the rainfall event). Large symbols indi-
cate the best variable set for each subset (five single events and one combining all events). Dashed line
indicates the best variable set by calculating the weighted mean of all subsets.
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The final CART model including all rainfall

events is displayed in Figure 3 (Figures A1, A2,

A3, A4 and A5 of rainfall event 1, 2, 3, 4 and 5,

respectively; see Appendix). Considering non-

standardized TKE, CART model performance

was R2 ¼ 0.65, 0.45, 0.37, 0.46, 0.41 and 0.43

and RMSE ¼ 32.0, 16.0, 25.7, 26.5, 4.9 and

52.7 for the model including all rainfall events

and single rainfall events 1, 2, 3, 4 and 5, respec-

tively. Considering standardized TKE, CART

model performance was R2 ¼ 0.30, 0.27, 0.21,

0.32, 0.25 and 0.31 and RMSE ¼ 6.09, 7.31,

7.30, 4.64, 7.85 and 2.83 for the model includ-

ing all rainfall events and single rainfall events

1, 2, 3, 4 and 5, respectively.

Leaf area and throughfall amount occurred in

all six CARTs. Tree height and LAI were sec-

ond prominent with five times occurrence.

Ground coverage, specific leaf area, ground dia-

meter and neighbourhood diversity occurred

only once though. Leaf area was the most

prominent variable in first splits. Throughfall

amount, tree height and LAI were most promi-

nent in second splits, while leaf area, throughfall

amount, LAI, number of branches and crown

base height were most prominent in third splits.

The thresholds of each biotic and abiotic pre-

dictor varied slightly between different rainfall

events. Summarizing biotic and abiotic thresh-

olds of CARTs of all single rainfall events and

the CART including all rainfall events (for

details see Figures 3 and A1–A5), leaf area

showed prominent thresholds of approxi-

mately 35,000mm2 and 6,700mm2. Throughfall

amount splits were found at 2.8 mm, 24 mm,

70 mm and 220 mm. Tree height showed promi-

nent thresholds at 289 and 330 cm. Crown base

height showed the most prominent thresholds

at 60 cm. Thresholds for the number of branches

were found at 14 and 47. LAI showed prominent

Figure 2. Variable importance (%IncMSE) of 20 biotic and abiotic factors on throughfall kinetic energy for six
rainfall event models. For statistical descriptions of the factors, see Table 3.
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thresholds at 1 and 1.8, while crown area splits

were found at 37,000 cm2.

To monitor low TKE, thresholds were set by

leaf area, throughfall and tree height as the

most prominent variables. Leaf area, through-

fall, LAI and crown area were most prominent

in building splits to yield moderate TKE, while

thresholds of leaf area, throughfall, crown area,

number of branches and crown base height led

to average TKE. High TKE was monitored

with splits occurring by leaf area, throughfall

and LAI.

The CART model including all rainfall

events showed six different predictor vari-

ables, five split levels and 12 terminal nodes

(Figure 3). Similarly, the CARTs of rainfall

event 2 and 4 showed eight different variables,

five split levels and 13 and 12 terminal nodes,

respectively.

IV Discussion

We investigated the influence of 20 biotic

and abiotic factors on TKE using a step-wise

approach of RF and CART. We showed rules

induced by those factors to obtain low, moder-

ate, average or high TKE compared to nine stud-

ies which investigated TKE in different regions.

Leaf area, throughfall, tree height and LAI

affected TKE as most prominent variables in the

CART models.

1 Ensemble approach using RF variable

importance and CART to predict TKE

We detected effects of biotic and abiotic factors

on TKE that are consistent with previous studies

(objective 1). CARTs showed the influence of

leaf area (Goebes et al., 2015a), throughfall

Figure 3. CART across all events. Target variable was throughfall kinetic energy (TKE) and predictor
variables are listed in Table 3. TKE was measured as J m2 mm�1 (n ¼ 1405).
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amount (Brandt, 1988; Geißler et al., 2012;

Scholten et al., 2011), tree height (Foot and

Morgan, 2005; Geißler et al., 2013), LAI

(Nanko et al., 2006; Nanko et al., 2008), crown

area (Brandt, 1988; Nanko et al., 2008), number

of branches (Herwitz, 1987), crown base height

(Brandt, 1990; Nanko et al., 2008), spatial varia-

bility (Finney, 1984; Nanko et al., 2011) and

duration as well as intensity of rainfall event

(Brandt, 1989; Zhou et al., 2002) on TKE.

Furthermore, feature elimination and selection

before using CART left no need for pruning or

modifying the final trees. A typical pruned

CART has 3–12 terminal nodes (Cutler et al.,

2007), which was in the range of 9 to 14 termi-

nal nodes in this study. Prediction results of

R2 ¼ 0.68 for the non-standardized models

emphasized the suitability of this approach. In

addition, the approach was able to detect a

non-linear effect of throughfall on TKE due to

interactions with biotic factors such as leaf area.

2 Thresholds of biotic and abiotic factors to

model TKE

In general, results obtained from data across all

rainfall events can be found in the results of

each rainfall event, though in less detail (Fig-

ures A1–A5). Thus, we used the CART that

combined all rainfall events as a major source

of interpretation in the following discussion.

Since TKE was standardized using rainfall

amount, rainfall duration was the major rainfall

event characteristic that changed the optimal

set of biotic and abiotic factors and their

thresholds.

Leaf area was the most important predictor in

our CARTs to describe different TKE. Leaf area

was of major importance to yield low, moderate,

average or high TKE. Leaf areas beyond 35,000

mm2 caused average to high TKE whereas leaf

areas below 6700 mm2 led to low TKE (Figures

3, A1–A5). The latter size was most prominent

for all species and showed that species with

large leaf area cannot function as erosion

inhibitors. A higher leaf area might create a

larger surface for rain drop gathering as well

as confluence, and hence a release of larger rain

drops (Herwitz, 1987). For instance, leaves of

Schima superba (38,090 mm2) increased sand

loss in splash cups by 30% compared to leaves

of Castanopsis eyrei (12,920 mm2), which led

to TKE (converted out of sand loss with a linear

function by Scholten et al. (2011)) within the

range of 1 SD of natural rainfall (Geißler

et al., 2012). This shows that the erosion poten-

tial below vegetation can be distinctly reduced

compared to that of natural rainfall using small

leaf sizes.

Our study showed a non-linear effect of

throughfall on TKE and thus contradicts a pos-

itive linear effect reported in previous studies

(Brandt, 1988; Levia and Frost, 2006; Scholten

et al., 2011). Throughfall amount as abiotic

factor was second prominent to describe TKE

differences, but with a positive and negative

effect on TKE (see Figure 3). Our approach was

particularly dedicated to investigate non-linear

relationships that can be caused by interaction

with other factors. In this case, throughfall

mainly interacted with leaf area (see Figure 3).

Throughfall amounts (see Figure A5) below

229mm led to moderate TKE, whereas through-

fall amounts higher or lower than 185 mm led to

low TKE during high rainfall amounts per

event. However, low throughfall amounts such

as 2.8 mm can also lead to high, average or

moderate TKE. It is likely that biotic factors

emerged as a result of the standardization of

TKE by rainfall amount at each event, suggesting

the importance of interaction effects between

biotic and abiotic factors with regard to TKE.

The non-linear effect of throughfall on TKE was

especially visible when data of all events entered

the analyses (Figure 2).

A tree height below 290 cm resulted in low to

moderate TKE (7.5–14.1 J m�2 mm�1, Figures

3 and A3) because of shorter falling heights and,

hence, reduced rain drop velocities (Gunn and

Kinzer, 1949). This threshold led to TKE of
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about 2 J m�2 mm�1, which is below values

reported by Brandt (1990) and Nanko et al.

(2008). Brandt (1990) emphasized in her model

that effects on TKE were more pronounced for

tree height shifts of small trees. Figure 3 indi-

cates that only tree heights above 389 cm led

to high TKE, while lower heights (of about

60 cm) led to low to moderate TKE. This sug-

gests that there is a ‘critical tree height’, at

approximately 330 cm, above which TKE

becomes highly erosive. However, this height

is close to the mean of all species and indicates

that young tree individuals in particular are non-

erosive.

Crown base height was the fourth most

important predictor of TKE. Rain drops falling

from trees with crown base heights below

60 cm had a low to moderate TKE (Figures 3,

A2 and A4). Moss and Green (1987) showed

that the height–velocity relationship for rain

drops increased rapidly over the first two

metres, and that under drop heights of 30 cm

no soil erosion took place. This threshold repre-

sented the mean crown base height of trees in

the present study, and is a further argument to

consider slow- and low-growing tree species

in plantations that aim to minimize soil erosion.

The importance of the number of branches in

affecting TKE was moderate. While fewer than

14 branches at low rainfall amounts (events 3

and 4) led to average or high TKE, more than

47 branches led to low and moderate TKE.

We ascribe this negative effect to the higher

probability for raindrops to split up at branches

thus decreasing drop size and velocity, resulting

in low TKE (Herwitz, 1987).

A LAI larger than 1 led to average or high

TKE, whereas a lower LAI caused a low or

moderate TKE (Figures A2, A4 and A5). This

threshold resulted in a positive effect of LAI

on TKE, which is contrary to previous studies

(Geißler et al., 2013; Nanko et al., 2008). How-

ever, these studies dealt with LAI ranging from

1.5 to 11. Therefore, the positive effect of LAI

might occur only for low LAI, when values are

closely related to canopy openness or crown

area. Within these low values, a higher LAI

represents a higher coverage and throughfall

creation without creating more rainfall intercep-

tion and breaking points by different canopy

layers. LAI did not influence TKE variation

across all rainfall events.

A crown area below 37,000 cm2 always led to

low or moderate TKE and thus indicates an

upper threshold below which TKE can be seen

as less-erosive (Figures A2 and A3). We ascribe

this positive effect on TKE to rain drop gather-

ing and the creation of a higher area at which

throughfall occurred. However, low rainfall

intensities (rainfall event 1) counteract this

effect when TKE is analysed at distances of

15 cm, 30 cm and 60 cm from the tree stem (see

Figure A1). Nanko et al. (2008) showed this

negative effect of crown area on TKE by inves-

tigating crown areas larger than 85,000 cm2.

Nevertheless, the effect shift remains non-

predictable and crown area did not influence

TKE variation across all rainfall events.

The effect of spatial variability on TKE

remains inconclusive as its importance in the

CART was low and effects became evident only

in combination with crown area. Thus, it remains

unclear below which spatial positions low or

moderate TKE appeared. This absence of a spa-

tial variability of TKE is in agreement with find-

ings of Nanko et al. (2011). Nevertheless, at a

stem-distance of 30 cm high TKE may appear

belowor atmargins of the canopy (Finney, 1984).

If all neighbouring trees belong to one

species, low TKE occurred. Species mixtures,

however, led to moderate TKE. A diverse

neighbourhood might lead to more complex tree

structures, which can positively affect through-

fall by creating different canopy layer height at

which drops can confluence (Getzin et al., 2008;

Schröter et al., 2012). Nevertheless, a classifica-

tion by neighbourhood tree diversity as well as

ground diameter and specific leaf area was not

prominent (low importance in CART and not

occurring in CART of all rainfall events).
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3 TKE comparisons with previous studies

In this study, TKE was two-fold lower com-

pared to the mean of other studies investigating

rainfall kinetic energy in open fields and below

vegetation (see Table 2). The age of the subtro-

pical tree plantation can be considered as the

main reason for this finding. Many tree individ-

uals have not yet reached full tree height, which

leads to low fall velocities and thus lower TKE

(Gunn and Kinzer, 1949). Furthermore, a dense

and thick crown cover was not developed in

some plots in the previous six years that this

plantation existed. LAI and number of branches

as major predictors for high TKE emphasized

the importance of a dense crown cover (see

Figure A3). To our knowledge, only one study

measured similar TKE (Finney, 1984); com-

pared to our study, the relatively low vegetation

heights there prevented rain drops from achiev-

ing their terminal velocity. In contrast, Nanko

et al. (2008), Nanko et al. (2011) and Sanchez-

Moreno et al. (2012) measured average to high

TKE, which might be caused by high-intensity

rainfall above 40 mm h�1. These intensities

exceed those of four events measured in our

study. Since throughfall amounts are similar to

or lower than our measurements, rainfall inten-

sity might function as the major abiotic factor

leading to high TKE throughout all studies

(Levia and Frost, 2006). However, TKE can

be stable among different rainfall intensities

ranging from 1 to 46 mm h�1 (Zhou et al.,

2002). In this case, throughfall amount might

be a better predictor for TKE differences.

V Conclusions

We successfully applied a rule-based analysis to

model TKE and to compare our findings with

literature results. The present study linked biotic

and abiotic factors to TKE and set thresholds

below which low TKE and above which high

TKE occurred (Figure 4). Planting new forests

or plantations, these factors should be consid-

ered as they constrain the extent of soil erosion.

With the set of species and the biotic and abiotic

factors used in this study the erosive potential of

TKE can be mitigated by: a smaller leaf area than

Figure 4. Graphical compilation of relevant biotic and abiotic factors that affect TKE based on CART.
Factors in bold were most important in explaining TKE.
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6700mm2, a lower tree height than 290 cm com-

bined with a crown base height lower than 60

cm, a LAI smaller than 1, more than 47 branches

and by using a single tree species neighbour-

hood, while the amount of throughfall can vary.

Although these models have been calibrated

with data of a young tree plantation, they are,

nevertheless, another step towards identifying

the importance of biotic and abiotic factors and

most of all, setting thresholds for erosion occur-

rence based on TKE. However, further research

is needed in mature forests.

Appendix

Figure A1. CART of rainfall event 1. Target variable was throughfall kinetic energy (TKE) and predictor
variables are listed in Table 3. TKE was measured as J m�2 mm�1 (n ¼ 279).
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Figure A2. CART of rainfall event 2. Target variable was throughfall kinetic energy (TKE) and predictor
variables are listed in Table 3. TKE was measured as J m�2 mm�1 (n ¼ 281).

Figure A3. CART of rainfall event 3. Target variable was throughfall kinetic energy (TKE) and predictor
variables are listed in Table 3. TKE was measured as J m�2 mm�1 (n ¼ 282).
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Figure A4. CART of rainfall event 4. Target variable was throughfall kinetic energy (TKE) and predictor
variables are listed in Table 3. TKE was measured as J m�2 mm�1 (n ¼ 281).

Figure A5. CART of rainfall event 5. Target variable was throughfall kinetic energy (TKE) and predictor
variables are listed in Table 3. TKE was measured as J m�2 mm�1 (n ¼ 282).
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Geißler C, Kühn P, Shi X, et al. (2010) Estimation of

throughfall erosivity in a highly diverse forest ecosys-

tem using sand-filled splash cups. Journal of Earth

Science 21(6): 897–900.
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Kröber W and Bruelheide H (2014) Transpiration and

stomatal control: a cross-species study of leaf traits in

39 evergreen and deciduous broadleaved subtropical

tree species. Trees 28(3): 901–914.
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