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1 General Introduction

Cancer is one of the leading causes of death and morbidity worldwide (Steward and Wild,

2014). While incidence has been rising, the mortality rate has been decreasing over the

last decades for most tumour sites, which can be attributed to improvements in diagnosis

and treatment (American Cancer Society, 2017). Radiation therapy is, next to surgery and

chemotherapy, one of the main modalities used for cancer treatment, and is used to treat

about half of all cancer patients (Rosenblatt and Zubizarreta, 2017).

The goal of radiotherapy is to impede proliferation of tumour cells by damaging the ge-

netic material through ionising radiation (Baskar et al., 2012). This technique can be ap-

plied with either curative or palliative intent, either solely or in combination with surgery or

chemotherapy, with either external or internal ionising radiation sources, and using different

types of radiation (Baskar et al., 2012). Current developments are targeted on increasing

tumour control rates while sparing healthy tissue in order to reduce inadvertent side effects

(Baumann et al., 2016).

Proton therapy is a type of external beam radiation treatment that uses high-energy pro-

tons to treat cancer. As compared to conventional, photon-based radiotherapy, its main

advantage lies in a pronounced dose maximum, the Bragg peak, which can be tailored to

a predefined tumour volume while sparing healthy tissue behind the tumour (Jäkel, 2009).

However, the steep gradient of this maximum and the dependence of its position on the

traversed material make the dose distribution very sensitive to inter- and intrafractional

uncertainties resulting from setup errors and anatomical variations (i.e. organ motion and

deformation), which gives rise to considerable range uncertainties (Lomax, 2008). About

75 % of cancer cases worldwide involve solid tumours situated in the thorax and abdomen

(Bray et al., 2018), which makes them prone to motion uncertainties due to respiration,

cardiac motion, and digestion.

The aim of real-time image-guided radiotherapy is to reduce these uncertainties by imag-

ing essential parts of the patient anatomy in treatment position during irradiation. Ideally,

tissue motions and deformations shall be tracked in real-time, such that dynamic beam de-
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1 General Introduction

livery with enhanced dose conformality and reduced safety margins is rendered possible.

Magnetic resonance imaging (MRI) has been suggested to be a promising candidate for

this task, offering a fast real-time imaging modality with excellent soft tissue contrast without

using ionising radiation for image formation (Lagendijk et al., 2014a). The concept feasibil-

ity to integrate MRI with photon-based radiotherapy into a hybrid system has been shown

by several research groups (Lagendijk et al., 2014b; Fallone, 2014; Keall et al., 2014).

Because of the increased sensitivity of proton therapy to anatomical variations, this tech-

nique is expected to profit even more from an integration with MRI than photon-based

radiotherapy. However, as of the beginning of this work in 2015, MR-integrated proton ther-

apy (MRiPT) has only been described as a hypothetical modality in simulation studies,

since there are specific technological and physical problems that need to be solved be-

fore clinical implementation (Schippers and Lomax, 2011; Oborn et al., 2017). Specifically,

the therapeutic protons, being charged particles, will be deflected by the magnetic field of

the MR scanner (Raaymakers et al., 2008) and, vice versa, the MR image quality may be

affected by the electromagnetic fields of the proton therapy facility and by the beam itself.

So far, the accuracy of deflection predictions has not been evaluated, and no experimen-

tal data exists on either the deflection or MR image quality in an integrated setup. In order

to assess the technical feasibility of MRiPT, the aim of this thesis is therefore to quantify

and improve the accuracy of magnetic-field induced proton beam deflection calculations in

media (chapter 3), and to analyse and quantify the effects of the proton therapy facility and

the proton beam on MR images in a first experimental MRiPT setup (chapter 4).

In preparation to this, the physical principles of proton therapy, MR imaging and MR-

integrated radiotherapy are outlined in sections 2.1 to 2.3. On this basis, the rationale

and challenges for MR-integrated proton therapy are specified, the state of the art is sum-

marised, and the research objectives of this work are defined (section 2.4). The advances

in knowledge and implications for future research of this work are discussed in section 5.

The work is concluded in section 6 by a summary in English and German language.

2
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2 State of the Art: Proton Therapy and Magnetic Resonance Imaging

2.1 Proton Therapy

Proton beams have gained increasing interest for radiotherapeutic applications in the last

years. Since the first treatment in 1954, about 150 000 patients have been treated world-

wide, and there are 81 proton facilities in operation and further 73 in a planning stage or

under construction (Particle Therapy Co-Operative Group, 2018). The main reason for this

development in spite of the increased costs lies in the energy deposition mechanism of pro-

tons, which differs from the one of uncharged particles such as conventionally used X-rays.

This mechanism, as well as the beam generation principle and the role of organ motion in

proton beam therapy are discussed in the following.

2.1.1 Physical Principle

Protons with kinetic energies E of up to 250 MeV are typically used for radiotherapeutic

applications. Their most important physical interactions with the electrons and nuclei of the

human body and material in the beam path are outlined in this section, namely inelastic

Coulomb interactions with electrons, elastic Coulomb scattering on nuclei, and inelastic

nuclear interactions.

Interactions with Target Electrons

The primary mechanism of energy transfer from the proton beam to the target material

are multiple inelastic Coulomb interactions between the proton and the electrons in the

target. In these interactions, target electrons are excited and may leave the atomic shell,

and the traversing proton loses a small amount of energy. This way, the particle deposits

its energy to the medium almost continuously, leading to a deceleration until stopping at

a certain depth referred to as the proton range. The ionisation can damage the affected

molecules in the body, especially the DNA, which can lead to cell death or impeded cell

division (Paganetti, 2011).

The mean energy loss of a proton dE per path length dx due to its inelastic collisions

with electrons is called stopping power S. It can be approximated for therapeutic energies

using the Bethe-Bloch formula (Bethe, 1930; Bloch, 1933; Ziegler, 1999; Gottschalk, 2011)

S = −dE
dx ≈ K · ρ

Z

A
· z

2

β2 ·
[
ln( 2mec

2β2

I(1− β2))− β2
]

(2.1)
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2.1 Proton Therapy

with the speed of light c, the electron massme and the prefactorK = 0.3072 MeVcm2 g−1.

Thus, the energy loss depends not only on the projectile (charge z = 1 in multiples of the

electron charge, and velocity v = βc), but also strongly on the target material (density ρ,

charge number Z and mass number A of the nuclei, and mean excitation energy of the

electrons I). The linear energy transfer (LET) describes the energy locally transferred to

the medium per path length and is defined as the stopping power restricted to secondary

electrons in the vicinity of the proton track.

The stopping power is proportional to the most prevalent physical quantity in radiation

therapy, the dose. The dose D describes the mean energy dEbeam transferred by the beam

to matter per unit mass dm

D = dEbeam
dm = 1

ρ

dE
dx

dN
dA = S · Φ

ρ
(2.2)

with the particle fluence Φ = dN
dA , i.e. the number of protons dN crossing the area ele-

ment dA (Gottschalk, 2011). This quantity is known to correlate with cell death and tumour

control in a sigmoid form (Holthusen, 1936), and therefore commonly used to generate

and evaluate treatment plans in radiotherapy. Its SI unit is the Gray (1 Gy = 1 J kg−1 =

6.24 · 1012 MeVkg−1). About 1011 protons are needed to generate a dose of 1 Gy inside a

volume of 1 liter. The proton treatment is typically applied in about 30 fractions of 2 Gy per

day with a dose rate of about 1 Gy min−1, which latter translates into an effective proton

current of about 0.3 nA.

From equation 2.1 it follows that the proton deposits an increasing amount of energy

to the medium per path length while slowing down, since the electrons stay longer in the

vicinity of the Coulomb field of the passing proton. The typical depth-dose distribution profile

of a mono-energetic proton beam therefore shows a plateau region in the entrance region

of the material and a sharp maximum at the end of its range, the so-called Bragg peak,

shortly before the protons stop (see Fig. 2.1). This sharp dose maximum is used in proton

radiotherapy to selectively destroy tissue identified as malignant on a CT or MRI scan while

sparing healthy tissue behind the tumour volume.

The fluctuation of energy loss of a particle follows a Landau distribution (Landau, 1944;

Vavilov, 1957). Events with a very low energy deposition as compared to the particle energy

(in the order of 10 eV) are most probable (Pimblott and LaVerne, 2007). Thus, the energy is

transferred to a quite small volume around the track of the primary proton, as compared to

5



2 State of the Art: Proton Therapy and Magnetic Resonance Imaging

Figure 2.1: Relative dose as a function of depth in water for photons and protons. (a) Proton beams
show a distinguished maximum (Bragg peak) at the end of their range, which can be spread out
to cover a predefined tumour volume (blue), whereas photon beams deposit extra dose in front
of and behind the tumour. (b) Tumour motion (in this example by 1 cm) can cause strong tumour
underdosage (orange) and healthy tissue overdosage in proton therapy if not accounted for. Data
courtesy of Jan Eulitz (OncoRay, Dresden, Germany).

therapeutic X-rays with a mean secondary electron energy in the order of 1 MeV (Jursinic

and Mackie, 1996).

The mean range R of a proton with initial energy E can be calculated using the continu-

ous slowing down approximation (CSDA)

R(E) = −
0ˆ

E

1
S(E′)dE′ . (2.3)

In practice, range tables as a function of energy (Berger et al., 2005) or analytical approx-

imations (Bortfeld, 1997) can be used for range estimation. To cover the whole tumour

volume, usually several beams with different initial energies, and therefore different ranges

inside tissue, are applied. By optimising their relative intensities (i.e. their weights) and

adding up the resulting energy deposition, a so-called spread-out Bragg peak (SOBP, see

Fig. 2.1) is created, covering the tumour extent in depth.

Interaction with Target Nuclei

In contrast to the target electrons, the target nuclei have a rest mass comparable to that of

a proton. Due to multiple elastic Coulomb interactions with the target nuclei, the traversing

protons therefore undergo lateral scattering in a medium (Molière, 1947; Molière, 1948;
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2.1 Proton Therapy

Rutherford, 1911). Scattering leads to a setup-dependent broadening of the beam, whose

central lateral shape can be approximated by a Gaussian (Gottschalk, 2011). The result-

ing full width at half maximum (FWHM) of the beam can range up to the order of 4 cm for

250 MeV at the end of range (Mertens et al., 2010). In contrast to the depth-dose distribu-

tion, the lateral dose distribution can be less sharp for protons than for therapeutic X-rays

due to scattering (Suit et al., 2003).

In addition to the beam broadening, the different paths of the scattered protons lead

to fluctuations in the range as projected on the initial beam direction. Combined with the

statistical fluctuations in the number of interactions between the proton and the material

and in the energy transferred per collision, this results in a broadening of the Bragg peak

(range straggling) to about 1 % of the proton range (Gottschalk, 2011).

Furthermore, nuclear target fragmentation processes can occur in inelastic interactions

of the proton beam with the target nuclei (Serber, 1947). Uncharged particles (neutrons

and γ-rays), charged fragments (such as secondary protons and α-particles), as well as

excited and radioactive nuclei can be produced in this and subsequent processes. Their

dose contributions are orders of magnitude smaller than those of the primary particles and

therefore negligible for most applications (Gottschalk, 2011). However, the radioactivation

of material, especially metal, in the beam path can become relevant for radiation protection

(Faßbender et al., 1997). Both radioactive decay and prompt de-excitation processes of the

nuclear fragments are under research to be used for quality assurance, i.e. to verify the

proton range in the patient (Maccabee et al., 1969; Stichelbaut and Jongen, 2003).

2.1.2 Beam Delivery

In order to accelerate and guide the proton beam to the patient, a number of electromag-

netic fields are applied. This process is outlined in the following.

Acceleration and Energy Selection

Free protons are typically generated in a proton source from hydrogen gas by ionisation via

free electrons (Penning, 1927) or microwaves (Brown, 2004). They are then accelerated to

the necessary kinetic energy by either a cyclotron or a synchrotron (Schippers, 2009).

A cyclotron mainly consists of four electrodes arranged like wind mill vanes, and an elec-

tromagnet producing a 2 T to 4 T transversal magnetic field (Schippers, 2011). A radio-
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2 State of the Art: Proton Therapy and Magnetic Resonance Imaging

frequency (RF) generator induces an oscillating voltage at the electrodes, which switches

polarity with a frequency of 50 MHz to 100 MHz. While being guided on a spiral trajectory

by the magnetic field, the protons are thus accelerated from one electrode to the next until

being extracted at their final energy. The magnetic flux density increases from the centre

of the magnet with increasing radius to account for relativistic effects. The time required for

one turn in the cyclotron is as a result independent from the proton velocity, which allows for

quasi-continuous beam extraction and fast intensity adjustments. A cyclotron has a typical

diameter of 2 m to 5 m (Cheng et al., 2016; Schippers, 2009).

A synchrotron is a ring accelerator consisting of a series of magnets with a flux density

of about 1.5 T and an RF acceleration cavity, which subsequently deflect and accelerate

a proton bunch on a circular path (Schippers, 2011). An initial energy of 2 MeV to 7 MeV

is required, which is achieved by a linear accelerator placed in an injection system which

precedes the synchrotron. Protons are accelerated in bunches within about a second, and

can be extracted in spills in the order of seconds. A proton synchrotron has a typical diam-

eter of 5 m to 8 m, and the injection system has a typical length of 3 m to 10 m (Wang et al.,

2012; Schippers, 2009).

While the final proton energy can be adjusted at a synchrotron, a cyclotron only deliv-

ers a fixed energy, which is suitable for deep-seated tumours. When lower energies are

required, the proton beam is decelerated downstream the cyclotron using a degrader, such

as a graphite wedge and a subsequent arrangement of dipole magnets to reduce the en-

ergy spread (Reist et al., 2001). As a result, the beam intensity decreases with decreasing

energy (by up to 99.9 %), and the activation of the stopping material increases, which is a

disadvantage of cyclotrons as compared to synchrotrons. On the other hand, a cyclotron is

more compact than a synchrotron and allows for faster beam energy and intensity adjust-

ment (Schippers, 2009).

Beam Guidance and Gantry

The patient is positioned in a neighbouring room which is shielded from ionising radia-

tion emerging from activation of the material in and around the accelerator. The beam is

guided to this treatment room by a beam line, i.e. vacuum pipes which are surrounded by

quadrupole and dipole magnets designed to focus and direct the beam with a magnetic flux

density of approximately 0.5 T and 2 T, respectively.
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2.1 Proton Therapy

The beam can then be delivered immediately to the patient in a fixed horizontal beam

line, or rotated around the patient by a beam line mounted onto an isocentric gantry, which

allows irradiation of the patient from different directions without rotating the patient. A gantry

is a rotatable, usually ferromagnetic construction with a typical diameter and radius of 10 m

and 5 m, respectively, a weight of about 100 tons, and a rotation speed below 10◦ per sec-

ond (Weinrich, 2006; Schippers, 2009). The distance between the patient and the closest

magnet in the gantry, which is a dipole magnet, is usually about 2 m. Although many pa-

tients may be treated without a gantry (Yan et al., 2016), most proton therapy centres are

equipped with at least one (Particle Therapy Co-Operative Group, 2018).

Field Formation

By optimizing the fluence and energy of the charged particles, the shape of the spread-

out Bragg peak can be modulated according to the tumour volume (see Figure 2.1). This

is realized in the treatment facilities in two different ways (Wiedemann, 2007; Schippers,

2009; Engelsman et al., 2013).

During the classically used passive beam delivery (Engelsman et al., 2009), a large beam

field is created by means of one or more scatterers made up of lead and polycarbonate,

and adjusted to the tumour cross-section by either individually designed solid brass or multi-

leaf collimators. For the creation of the SOBP, rotating modulator wheels or ridge filters are

placed in the beam line. An individually manufactured compensator is used to tailor the

range of the beam to the distal end of the tumour.

An increasingly used alternative technique is active beam scanning (Kanai et al., 1980).

Here, the target volume is divided into slices of equal beam range. For each of these slices,

a beam of an energy corresponding to the specific range is created. It is then deflected

laterally by two pairs of magnets of 1 T to 2 T in two dimensions. This way, the beam is

scanned subsequently over each slice. Depending on the system design and the treatment

field, the scanning time is usually in the order of tens to hundreds of milliseconds per line

and hundreds of milliseconds to few seconds per slice, and changing the beam energy

takes about one to two seconds (Seco et al., 2009; Flanz, 2011; Shen et al., 2017). Con-

sequently, the magnetic field of the scanning magnets changes dynamically during beam

delivery. Ionisation chambers and multi-wire proportional chambers (MWPCs) provide on-

line feedback on the beam fluence and position, respectively. This setup does not require
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patient-specific hardware and enables improved proximal normal tissue sparing as com-

pared to the passive setup (Engelsman et al., 2013), but is also more sensitive to organ

motion, as discussed in the following section.

2.1.3 Motion Management and the Role of Image Guidance

One of the key challenges of proton therapy is the treatment of moving organs (Engelsman

et al., 2013; De Ruysscher et al., 2015; Mori et al., 2018; Landry and Hua, 2018). Res-

piration, cardiac motion, peristalsis, muscle relaxation, bowel, rectum and bladder filling,

and spontaneous motion such as swallowing during irradiation can compromise targeting

precision, especially of tumours in the thorax and abdomen, such as lung and liver tu-

mours (Landry and Hua, 2018). The applied dose distribution is not only blurred or shifted

by motion, but can be significantly distorted due to the steepness of the Bragg peak and

the strong dependence of its position on the traversed material composition (De Ruyss-

cher et al., 2015; Landry and Hua, 2018). Furthermore, when using the active scanning

technique, the motion patterns of the pencil beam and the patient organs can interfere (in-

terplay effect), which can cause tumour underdosage or healthy tissue overdosage (Seco

et al., 2009). Current strategies to mitigate these effects are summarised in the following.

Treatment Planning

Methods to manage motion during the planning stage previous to the treatment include:

• Motion minimisation. Respiratory motion can be minimised for example by an ab-

dominal corset (Heerkens et al., 2017) or by voluntary breath-hold (Boda-Heggemann

et al., 2016). However, not all patients are eligible for this practice, and residual motion

remains (Mori et al., 2018).

• Margins. Treatment margins can be added to the target volume delineation to cover

the target in each stage of the respiratory cycle based on a retrospectively recon-

structed four-dimensional CT or MRI scan (Engelsman and Kooy, 2005; Kang et al.,

2007). While assuring tumour coverage in spite of regular respiration, this approach

increases the dose to healthy tissue, does not account for aperiodic movements, pa-

tient variability and the interplay effect.
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• Robust planning. The uncertainties introduced by setup and range uncertainties,

breathing motion, and interplay effects can be incorporated into the treatment plan-

ning process to effectively render the treatment more robust (Inoue et al., 2016).

More sophisticated but similar to the margin approach, this method leads to increased

healthy tissue dosage (Engelsman et al., 2013).

Interfractional Treatment Adaption

Anatomical changes occurring between treatment fractions, such as weight loss or gain,

tumour shrinkage, inflammatory swelling, and setup fluctuations may severely alter the dose

distribution and can be accounted for by acquiring anatomical images immediately before

treatment fractions and adapting the patient position or treatment plan if necessary (Cheung

et al., 2013; Mori et al., 2018). Possible imaging modalities include:

• Orthogonal X-ray. The current standard in proton therapy is the acquisition of two

orthogonal kV X-ray radiographs for pre-fraction position verification, with or without

implanted fiducial markers (Bolsi et al., 2018). Its main disadvantage is the lack of

soft-tissue contrast and of volumetric information on the material in the proton path.

• In-room CT. Cone-beam CT (Jaffray et al., 2002) and CT-on-rails (Ma and Paskalev,

2006) allow for volumetric in-room X-ray imaging. They are the standard of care in

conventional X-ray therapy (Engelsman et al., 2013) and are becoming increasingly

available for proton therapy (Veiga et al., 2016; Mori et al., 2018). While in-room CT

scanners provide better image quality, flexibility and acquisition speed, only cone-

beam CT scanners allow for imaging in treatment position at the beam isocentre. The

effective ionising dose exposure to the patient ranges up to about 10 mSv and the in-

dividual organ dose up to 30 mGy per acquisition for frequent imaging (Marchant and

Joshi, 2016). Organ visibility is very limited in these modalities due to a low soft-tissue

contrast, such that position verification has to be performed based on surrogates such

as the bony anatomy or surgically implanted fiducial markers (Noel et al., 2015; Chan-

darana et al., 2018).

• Proton radiography. Using the proton beam for imaging could allow for direct proton

attenuation measurements, thus removing the uncertainty-prone step of converting

X-ray-based images to stopping power (Schneider and Pedroni, 1995; Schulte et al.,
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2004). This technique is still in a research state due to the need for high energy

beams and due to limitations in image quality caused by scattering (Poludniowski et

al., 2015).

Intrafractional Treatment Adaption

It has been shown that the proton beam irradiation needs to be adapted to intrafractional

motion in real-time in cases involving a high dose per fraction, motion perpendicular to the

beam direction, irregular motion, or motion amplitudes above 5 mm (Knopf et al., 2011;

Jakobi et al., 2018; Mori et al., 2018). Such an adaption can be realised by gating the

beam depending on the tumour position (Ohara et al., 1989; Mori et al., 2010), by tracking

the tumour volume with the beam (Grozinger et al., 2006; Bert et al., 2007; Riboldi et al.,

2012), by rescanning the tumour volume multiple times to smoothen out the interplay effect

(Phillips et al., 1992; Zhang et al., 2015), or a combination thereof. For this, the position of

the tumour, or ideally the three-dimensional patient geometry, has to be acquired in real-

time, which can be realised by the following techniques:

• External tracking. Cameras monitoring the patient surface (Gilles et al., 2016), on-

body infrared-visible markers (Dong et al., 2012), gauge sensors (Bengua et al.,

2010), and spirometers (Hanley et al., 1999) can generate respiratory signals of the

patient during irradiation (Mori et al., 2018). They are non-invasive and easily imple-

mented but do not correlate reliably with the tumour and organ motion (Gierga et al.,

2005; Korreman et al., 2008).

• Ultrasound imaging. The use of ultrasound for real-time image guidance has been

proven feasible in principle for the diaphragm, liver, prostate and lung surface (O’Shea

et al., 2016). This method is cost-effective and provides high contrast and resolution

images without applying ionising irradiation, but volumetric imaging, speed of sound

aberration artefacts, the placement of the transducer, and lung imaging remain prob-

lematic (Camps et al., 2018; Mori et al., 2018).

• Fluoroscopy. The process of monitoring the tumour position or the bony anatomy by

continuous planar X-ray imaging, with or without fiducial markers, is called fluoroscopy

(Shirato et al., 1999; Li et al., 2010). While being easy to implement, this technique

suffers from a limited correlation of the markers with the tumour position, size and
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shape (Shirato et al., 2006; Newhauser et al., 2007), a lack of volumetric information

of the tissue traversed by the beam, and additional dose to the patient (Mori et al.,

2018).

In conclusion, current image guidance possibilities have critical limitations such as the

lack of volumetric imaging data of the beam path, insufficient soft-tissue contrast, poor cor-

relation of markers and organ motion, and the use of ionising radiation. However, a detailed

understanding of intra- and interfractional changes is essential for accurate treatment plan-

ning and delivery. While image guidance is less developed for proton than for X-ray based

radiotherapy, the imaging requirements are more stringent for protons since the depth-dose

distribution is steeper, less beam directions are used, and morphological changes in the

beam path directly affect the proton range.

An integration with MRI could allow for high-contrast on-line imaging in treatment position

without additional dose to the patient, but such integrated systems do not exist for proton

therapy (Liney et al., 2018b). This possibility is therefore further discussed in the following

sections.

13



2 State of the Art: Proton Therapy and Magnetic Resonance Imaging

2.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) appears to be an ideal candidate for inter- and intrafrac-

tional image guidance, as it offers excellent soft-tissue contrast, a high spatio-temporal res-

olution and absence of ionising radiation. The physical principle and application of MRI are

therefore summarized in the following.

2.2.1 Physical Principle

MRI is predicated on the manipulation of magnetic moments in the patient body via three

distinct types of electromagnetic fields: a homogeneous static magnetic field ~B0, a radio-

frequency (RF) pulse ~B1, and magnetic gradient fields ~Gx, ~Gy and ~Gz. The basics of this

process which are necessary to comprehend mutual effects of the proton therapy and the

MRI system in an MRiPT setting are described in this section.

Energy separation in a static magnetic field

Hydrogen nuclei (i.e. protons) possess a nuclear spin ~I and a resulting magnetic dipole

moment ~µ = γ~I, which are proportional via the gyromagnetic ratio γ ≈ 2.7 · 108 rad s−1T−1

(Estermann et al., 1933). When placed in an external magnetic field ~B0 = B0~ez, their

components Iz and µz oriented parallel to ~B0 are quantised at two energy levels (Iz =

±1
2~ and µz = ±1

2γ~ with the reduced Planck constant ~ ≈ 6.6 · 10−34 Js) with an energy

separation of ∆E = γ~B0.

This quantum-mechanical effect can be understood semi-classically as a torque ~T0 =

~µ × ~B0 exhibited on the proton magnetic moment ~µ, which forces it into a precession on a

cone around ~B0, comparable to a spinning top in gravity. The precession frequency, also

called Larmor frequency,

f0 = γ

2πB0 ≈ 42.6 MHz T−1 ·B0 (2.4)

then follows from its equation of motion d~I
dt = ~T0. The two energy states correspond to a

precession parallel and antiparallel to ~ez.

The ratio of occupation of these two states N+ and N− at body temperature T ≈ 36 ◦C

is given by the Boltzmann factor N−
N+

= e
∆E
kBT ≈ 1 + 6 · 10−6 T−1B0 with the Boltzmann
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constant kB ≈ 1.4 · 10−23 J K−1. As an example, the total number of protons in a water-

filled volume of V = 1 l is N = N− + N+ = 2NAρV
M ≈ 6.7 · 1025 with Avogadro’s constant

NA ≈ 6.0 · 1022 mol−1 and the molar mass of water M = 18 g mol−1. Thus, the number of

excess protons in the lower energy state is N− − N+ = N (N−/N+)−1
(N−/N+)+1 ≈ 2.0 · 1020∗. Due

to these excess protons, the vector sum of the magnetic moments per unit volume, the

magnetisation ~M0 = M0~ez, is non-zero and points along the direction of the magnetic field

with M0 = Nγ2~2

4kBT
B0 per litre (Gultekin and Gore, 2005).

The buildup of ~M0 in ~B0 is not instantaneous, but increases proportionally to the differ-

ence of the longitudinal magnetisation Mz to its equilibrium value M0 with a time constant

denoted as T1 (Bloch, 1946):

dMz

dt = −(Mz −M0)/T1 . (2.5)

T1, also called spin-lattice or longitudinal relaxation time, depends on the material-specific

probability of transitions between the two spin states.

Excitation by radio-frequency pulses

A short RF pulse with a time-varying magnetic component ~B1(t), which rotates exactly with

the Larmor frequency ω0 around ~B0, can be used to manipulate the magnetisation built up

by ~B0 (Bloch et al., 1946; Purcell et al., 1946). ~B1(t) induces a torque ~T1(t) = ~M × ~B1(t)

on the magnetisation ~M and tips it towards the xy-plane perpendicular to ~B0 (Bloch, 1946).

The component of ~M rotating in the plane perpendicular to ~B0, denoted as Mxy, then

produces a periodic electromagnetic signal S(t) ∝ Mxye
−2πif0t that can be detected via

induction in a suitable receiver coil.

Since the local Larmor frequency slightly fluctuates due to material-specific molecular

rotations, translations and vibrations, groups of proton spins of different frequency, and

thus the components of ~M , start to dephase after the excitation. Furthermore, ~M relaxes

back to its equilibrium orientation ~M0. As a result of both effects, Mxy decreases with a time

constant T2 (lateral or spin-spin relaxation time), with T2 < T1. The motion of ~M can then

be described by (Bloch, 1946)
dMxy

dt = −Mxy/T2 . (2.6)

∗i.e. nine orders of magnitude larger than the number of protons of a therapeutic proton beam in the same
volume (see section 2.1.1)
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This phenomenon is known as nuclear magnetic resonance (NMR), and equations 2.5

and 2.6 are the so-called Bloch equations (Bloch, 1946)†. Under the initial condition that

the magnetisation is tipped by the flip angle α after the RF pulse, i.e. Mz(t = 0) = M0 cosα

and Mxy(t = 0) = M0 sinα, their solution is

Mz(t) = M0 e
−t/T1 cosα+M0(1− e−t/T1) and Mxy(t) = M0 e

−t/T2 sinα (2.7)

Thus, Mxy decreases while Mz increases back to the equilibrium value M0. Since both

time constants T1 and T2 are highly material specific, they can be used for tissue discrim-

ination with a high soft-tissue contrast. This way, T1, T2 and therefore ~M depend on the

material at each position (x, y, z). The periodic signal of decreasing amplitude picked up by

the receiver coil is called free induction decay (FID).

From a quantum-mechanical point of view, ~B1(t) can be understood as photons of fre-

quency ω0 = 2πf0, whose energy is identical to the energy separation between the two

states ∆E = γ~B0 = ~ω0 and therefore allow for a spin state transition. The described

effects occur analogously for all nuclei with an odd number of protons or neutrons, but hy-

drogen nuclei are most commonly used in MRI since their high abundance in the human

body and their large gyromagnetic ratio lead to the largest NMR signal (Brix et al., 2008).

Spatial encoding by magnetic gradient fields

To create an MR image, the Larmor frequency is rendered position-dependent by introduc-

ing a linearly increasing magnetic gradient field ~Gx(x) = Gx · x · ~ez (Lauterbur, 1973). The

superposition with ~B0 leads to a spatially dependent Larmor frequency (see equation 2.4)

f(x) = γ

2π (B0 +Gx · x) ⇔ x = 2πf(x)
γGx

− B0
Gx

. (2.8)

This method is called frequency encoding. The bandwidth of the resulting signal is ∆frec =
γ
2πGxLx with Lx the size of the field-of-view (FOV) to be covered in x-direction.

The second dimension of the image, y, can be encoded in the spin precession by apply-

ing a second gradient ~Gy(y) = Gy · y · ~ez for a short period of time TPE at time point tPE

after applying the excitation pulse (i.e. ~Gy(y, t) = Gy(t) · y · ~ez = Gy · y · rect( t−tPE
TPE

) · ~ez with

†Both the Bethe-Bloch formula in proton therapy (equation 2.1) and the Bloch equations in MRI (equations
2.5 and 2.6) are named after the physicist Felix Bloch (1905-1983).
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the rectangular function rect). During the application of ~Gy(y), the proton spins experience

a y-position-dependent phase shift φ due to the temporary change in Larmor frequency

∆f(y):

φ(y, t) = e2πi∆f(y)·TPE = eiγGy ·y·TPE = eiγ
´ t
0 Gy(y,t′)dt′ (2.9)

After the application of this gradient, the Larmor frequency is restored, but the relative

phase differences remain dependent on y. This process is called phase encoding and was

developed by Mansfield et al. (1976) and Edelstein et al. (1980).

Typically, the third dimension is encoded by a third gradient ~Gz(z) = Gz ·z ·~ez which is only

switched on during the RF pulse (Mansfield et al., 1976). By matching the RF frequency

fRF to the local frequency at a slice position z, i.e.

fRF = γ

2π (B0 +Gz · z) , (2.10)

the slice z is selectively excited. The thickness of the slice dz is determined by the gradi-

ent amplitude Gz and the spectral bandwidth ∆fRF of the RF pulse as dz = 2π∆fRF
γGz

. The

sum of the magnetisation in the z-direction of one slice M̄xy(x, y) =
´

∆fRF
Mxy(x, y, z)dz

determines the NMR signal of the excited slice. This method is often referred to as slice

encoding.

The resulting FID signal S picked up by the receiver coil

S(t) ∝
¨

FOV
M̄xy(x, y, t)e−2πif0teiγ·x

´ t
0 Gx(t′)dt′eiγ·y

´ t
0 Gy(t′)dt′dxdy

= e−2πif0t

¨
FOV

M̄xy(x, y, t)eiγ·(x
´ t
0 Gx(t′)dt′+y

´ t
0 Gy(t′)dt′)dxdy

= e−2πif0t

¨
FOV

M̄xy(x, y, t)eiγ·(x·kx+y·ky)dxdy

∝ e−2πif0t · F(M̄xy(x, y, t)) = e−2πif0t ·K(kx, ky, t)

can be converted back into the spatial distribution of the magnetisation M̄xy(x, y, t) by an

inverse two-dimensional Fourier transform F−1 (Mansfield et al., 1976). The function K =

F(M̄xy) depending on the variables kx =
´ t

0 Gx(t′)dt′ and ky =
´ t

0 Gy(t
′)dt′ is called k-

space. k-space is conventionally sampled by acquiring the time-resolved FID signal during

the application of Gx and repeating this acquisition for different phase encoding gradient

amplitudes Gy (see Figure 2.2). This sampling defines the image resolution, and the time
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(a) (b)

Figure 2.2: Simplified sequence diagram for a spin echo (a) and a gradient echo (b) sequence, i.e.
the amplitude of the gradient fields ~Gx, ~Gy and ~Gz, the RF pulse, and the signal generated by the
magnetisation, as a function of time. The image acquisition phase is denoted as "AQ".

between repeated acquisitions is called repetition time TR.

Following equations 2.8 to 2.10, it can be concluded that external changes in ~B0 can

induce image shifts in the frequency and slice encoding directions, whereas the phase

encoding direction is unaffected. Typical clinical values for B0 and Gx,y,z are 0.2 T to 7 T

and 1 mT/m to 80 mT/m, respectively (Brix et al., 2008; Ansorge and Graves, 2016).

2.2.2 Image Generation by Pulse Sequences

A commonly used alternative to measuring the FID signal immediately after the RF exci-

tation is the creation of so-called echoes by pulse sequences. This way, a large variety of

contrasts can be achieved (McRobbie et al., 2017). The sequences which are most relevant

for this thesis are introduced in the following.

Spin echo (SE)

Due to machine- and patient-related inhomogeneities in B0, spin dephasing and thus the

decrease of the FID signal occur rapidly with a time constant T ∗2 which is smaller than the

idealised constant T2 ( 1
T ∗2

= 1
T2

+ 1
T ′2

with the static inhomogeneity-induced dephasing time

T ′2). To counterbalance this, the spin echo (SE) technique can be applied (Carr and Purcell,

1954; Hahn, 1980). Here, another RF pulse with α = 180◦ is applied at time τ after the first

pulse, which inverts the dephased components of ~M (see Figure 2.2a). Since the frequency
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differences remain, the components point again in the same direction (i.e. they rephase) at

time TE = 2τ , yielding a measurable signal maximum (a so-called echo), which does not

depend on T ∗2 but on T2. Thus, Mxy can be measured at the so-called echo time t = TE

(cf. equation 2.7). In a dual echo (DE) sequence, the 180◦ RF pulse and acquisition are

repeated before the next 90◦ excitation pulse, such that two images are acquired.

Gradient echo (GE)

The second commonly used sequence is called gradient echo (GE) (Edelstein et al., 1980;

Markl and Leupold, 2012). Here, instead of a second RF pulse, an inverted frequency-

encoding gradient −Gx is applied, which dephases the components of ~M . The gradient is

then reverted to +Gx, which causes a spin rephasing at the echo time TE (see Figure 2.2b).

Here, only the dephasing caused by −Gx is counterbalanced, and not that of T ∗2 -related

effects. Therefore, GE sequences are more sensitive to magnetic field inhomogeneities,

but faster than SE sequences since the echo is formed immediately when applying +Gx
and since flip angles α below 90◦ can be used.

Inversion recovery (IR)

In an inversion recovery sequence, the magnetisation is inverted by applying an additional

RF pulse with α = 180◦ before a regular SE or GE sequence (Doyle et al., 1981). This

way, the magnetisation component induced by all spins with a common relaxation time T1

is relaxed back to zero at the inversion time TI ≈ 0.7 T1. Since the following RF pulse of the

standard image sequence cannot tip this magnetisation component, no signal is detected

from this group of spins (i.e. their signal is "nulled"). This method can be used either to

increase the T1-contrast or to selectively suppress the signal of specific tissue types, such

as fat or fluids. It is one of the most commonly used sequences for musculoskeletal imaging.

Spoiling

For fast imaging, gradient echo sequences with a repetition time TR which is considerably

smaller than the lateral relaxation time T2 are often used. Since TR� T2, a remaining trans-

verse magnetisation Mxy is transferred into the next repetition cycle, which can accumulate

and adulterate the image. Possibilities to avoid this include applying a gradient with variable
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amplitude at the end of each cycle, which causes a spin dephasing due to varied Larmor

frequencies, or incrementally increasing the phase of the RF pulse. These techniques are

called gradient-spoiling and RF-spoiling, respectively (Epstein et al., 1996).

Weighting

The above mentioned sequences can be used to generate different types of tissue contrast

by varying the sequence parameters TR and TE. The longer the echo time TE, the more

pronounced are differences in the lateral magnetisation decrease described by T2 (i.e. the

more is the sequence T2-weighted). On the other hand, the longer the repetition time TR

is chosen, the smaller are remaining differences in the T1-related longitudinal recovery

(i.e. the less is the sequence T1-weighted). If both a short TE and a long TR are applied,

the influence of differences in both relaxation mechanisms is minimised and the signal

mainly depends on the number of excited protons (i.e. the sequence is proton density (PD)-

weighted). Typical echo and repetition times are in the order of 50 ms and 1 s, respectively‡.

Motion in MRI

Organ motion, especially due to respiration, is commonly handled by two different strategies

depending on the imaging purpose. One strategy is to acquire four-dimensional image

sets by acquiring a train of three-dimensional images over multiple breathing cycles and

retrospectively correlating these to the respiratory phase as indicated by a surrogate signal

such as the lung-liver interface (Stemkens et al., 2018). The resulting dataset can then be

used for motion characterisation and radiation treatment planning.

If real-time MR images are required, such as is the case in tumour tracking in MR-

integrated radiotherapy, commonly two-dimensional so-called cine MR images are acquired.

The most often used sequence for this is the balanced steady-state free precession (bSSFP)

gradient echo sequence (Bieri and Scheffler, 2013), which applies very short repetition

times (TR ≤ 5 ms) to make use of remaining transverse magnetisation from previous rep-

etition cycles (as opposed to spoiling them). The two-dimensional cine MR images ac-

quired of a single or three orthogonal slices can be registered to previously acquired four-

dimensional image sets to generate quasi-four-dimensional image sets at a high speed

(Paganelli et al., 2015).

‡which is comparable to the time constants of proton pencil beam scanning (see section 2.1.2).
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Another common source of motion are flowing liquids. If a liquid, e.g. blood, flows out of

the excited slice during image acquisition, it creates either a hyper- or a hypointense sig-

nal, depending on the pulse sequence. In a SE image, only those protons that experience

both pulses create a signal. Material which flows out of the plane between both RF pulses

therefore creates less signal. In a GE sequence, all spins excited by the initial RF pulse

contribute to the signal. In each repetition cycle, a new volume of the fluid is excited, which

is at that point fully relaxed and therefore produces a high signal. Furthermore, the move-

ment of the protons along the gradient fields can lead to phase differences which cause a

spatial misencoding in the phase encoding direction.

2.2.3 Image Quality

The image quality of MRI can be quantified for system characterisation and quality as-

surance by a number of standardised parameters (Price et al., 1990; American College

of Radiology, 2017; National Electrical Manufacturers Association, 2014). These are sum-

marised in the following.

Geometrical parameters

The accuracy of geometrical lengths and distances depicted on an MR image is described

by a parameter called ’spatial linearity’, ’distortion’ or ’geometric accuracy’ in different stan-

dard protocols. It is defined as the difference of lengths measured on the image to the

actual lengths of an imaged object.

Another important parameter is the spatial resolution, which is used to quantify the min-

imum size of objects that can be detected in the image. It is mainly influenced by the pixel

dimensions and can be measured by line pairs or grid structures in an imaging phantom.

The position and width of the excited slice depend on the accuracy of the peak frequency

and bandwidth of the RF pulse, respectively. They can only be measured indirectly by ramps

or wedges placed at a defined angle to the imaging slice in dedicated phantoms.

Signal parameters

The signal-to-noise ratio (SNR) describes the mean signal intensity relative to the sur-

rounding noise in a homogeneous phantom. It is approximately proportional to B0√
∆frec

and
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therefore considerably smaller for low-field scanners than for high-field scanners (Trattnig

et al., 1997) due to the low number of excess protons in the lower energy state (see sec-

tion 2.2.1). A low SNR is often counteracted by using large receiver bandwidths ∆frec and

correspondingly large frequency-encoding gradient amplitudes (cf. equation 2.8). Further

strategies to improve the SNR include averaging over multiple image acquisitions (i.e. in-

creasing the number of excitations and thus the acquisition time), increasing the voxel vol-

ume (i.e. degrading image resolution), and reducing the distance between receiver coil and

imaged object. A similar parameter is the image uniformity, which describes the difference

of the highest and lowest signal in a homogeneous phantom divided by their sum.

The signal-to-noise ratio is considered to be less important for MR-guided radiotherapy,

specifically for tumour delineation, position verification and tracking, than for diagnostic

imaging. On the other hand, the contrast-to-noise ratio (CNR), i.e. the difference between

the mean signal of two tissue types divided by their standard deviation, is considered to be

more relevant for this purpose, and this parameter is not directly correlated with B0 (Wa-

chowicz et al., 2016). Furthermore, the geometrical accuracy of MR images is rated more

important for MR-guided radiotherapy than for diagnostic imaging. A geometrical accuracy

of ≤ 2 mm has been recently suggested for real-time MRI-guided X-ray radiotherapy, which

is rather challenging for conventional systems due to gradient nonlinearities which do not

need to be compensated for in diagnostic imaging (Chandarana et al., 2018). However,

standardised image quality parameters are only established for diagnostic imaging so far.

Artefacts

If the scanned object is larger than the FOV in the phase encoding direction, shifted images

of the object (so-called image ghosts) can appear overlaid on the image due to spatial

misencoding. Similar, but more blurred ghosting artefacts can also be caused by motion

and by mechanical vibrations induced by the gradient coils. The ghosting ratio of an image

is defined by the mean signal difference of two regions with and without ghosting (i.e. next

to the object in the phase and frequency encoding direction, respectively), divided by the

mean signal in a homogeneous image phantom.

Another common artefact is the chemical shift. Due to differences in the surrounding

electron distribution, protons in large molecules, such as fat, experience a slightly different
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magnetic field B0 than protons in small molecules, such as water. The resulting difference

in Larmor frequency of 3.5 ppm can lead to spatial misencoding in the frequency encoding

direction. This effect is is proportional to B0 and therefore less pronounced in low-field

scanners. The same is true for susceptibility artefacts, which are signal voids caused by

differences in the magnetisation of different tissues that cause a spin dephasing at tissue

borders.

Magnets and scanners

MR scanners mainly differ in their construction type (i.e. open or closed-bore), the used

magnet (i.e. permanent, resistive or superconducting), and the resulting value of theB0 field

(Overweg, 2006). Typically, open scanners comprise a permanent magnet producing a rela-

tively low magnetic field (≤ 0.4 T), whereas high-field scanners (≥ 1.0 T) have a closed bore

design based on superconducting electromagnets. In general, open low-field designs pro-

vide better access to the patient and objects in the field-of-view, a lower heat transfer to the

patient (as expressed by the specific absorption rate, SAR), and lower costs as compared to

closed-bore high-field scanners (Hayashi et al., 2004; Simonetti and Ahmed, 2017), but are

more prone to temperature-dependent field drifts (Paciok and Blümich, 2015). The image

quality for MR-guided radiotherapy purposes is not clearly superior for either low- or high-

field scanners (see above). The question whether high or low-field scanners are preferable

for MR-guided radiotherapy is therefore to date not answered (Wachowicz et al., 2016).
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2.3 MR-Guided Radiotherapy

The aim of radiotherapy to increase tumour control while reducing side effects on healthy

tissue is being pursued by applying dose distributions with increasingly steep gradients be-

tween the tumour and healthy organs at risk. As a consequence, these dose distributions

are increasingly sensitive to delineation uncertainties as well as organ motion and defor-

mation during treatment, which has given rise to the increasingly important role of image

guidance (Mackie et al., 2003). Generally, image guidance in proton therapy lags behind

that of X-ray radiotherapy due to the historically delayed commercial development and the

system complexity (Engelsman et al., 2013; Bolsi et al., 2018). This is especially the case

for MRI-guidance, which is considered one of the most promising tools for image guidance

due to its high and versatile soft-tissue contrast, the high achievable imaging speed, and

the absence of ionising radiation (Mori et al., 2018; Liney et al., 2018b; Paganelli et al.,

2018; Landry and Hua, 2018; Chandarana et al., 2018). The current status of MR image

guidance in X-ray based radiotherapy is outlined in this section as a basis to discuss the

possibility of MR-integrated proton therapy in section 2.4.

2.3.1 Offline MR Guidance

MR guidance is currently used in clinical routine mainly before and after the radiation treat-

ment course. Here, the high and versatile soft-tissue contrast, which allows for both struc-

tural and functional imaging, is utilised to increase the accuracy of CT-based target volume

identification an delineation for many tumour sites (Lagendijk et al., 2014a; Schmidt and

Payne, 2015; Paganelli et al., 2018). After completion of the radiation treatment, the treat-

ment response can furthermore be monitored by use of MRI (Chandarana et al., 2018).

For research purposes, the absence of ionising radiation enables repeated and longer

image acquisitions, which allow for example to quantify the variation of tumour motion over

different breathing cycles (Menten et al., 2017; Thomas et al., 2018), the uncertainties

induced by motion surrogates (Liu et al., 2004; Feng et al., 2009), or the probability density

functions of the tumour position for robust planning (Cai et al., 2006). Furthermore, the use

of MRI for treatment adaption based either on the tumour size or on physiological factors

such as hypoxia, neural activity, and permeability is being investigated (Liney et al., 2018b).
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2.3.2 On-line MR Guidance

Apart from these offline applications, on-line image guidance during irradiation has gained

increasing research interest in the last decade (Paganelli et al., 2018). Targeting accuracy

is expected to be significantly improved by synchronising the beam delivery to the patient

anatomy, which changes during irradiation due to respiration, digestion, muscle relaxation

and cardiac motion. For this purpose, MR-integrated X-ray therapy (MRiXT) devices are

necessary.

Electromagnetic interference

The main challenges for the design of such systems are mutual electromagnetic interac-

tions between the MR and the radiotherapy system.

The typical magnetic field tolerance of a linear accelerator and the magnetic encoders

driving the leafs of multi-leaf collimators is 0.1 mT and 45 mT, respectively (Liney et al.,

2018b). Furthermore, electrons in the linear accelerator are deflected if the magnetic fringe

field of the MR scanner is too high, such that beam loss occurs between 1 and 60 mT

(Liney et al., 2018b). Therefore, passive or active magnetic shielding systems are required

to shield the linac from the magnetic field of the MR scanner. Moreover, the secondary elec-

trons generated in the patient are affected by the magnetic field of the MR scanner. In an

inline system, i.e. with a parallel beam and main magnetic field direction, they are focussed

by the field leading to increased skin dose if they are not shielded (Bielajew, 1993; Oborn

et al., 2010). In a perpendicular setting, the secondary electrons are deflected in the mag-

netic field, which leads to a widened beam penumbra and asymmetric dose distributions,

and they may return to the patient (electron return effect), leading to an increased exit dose

(Raaijmakers et al., 2005). This effect can be partly mitigated by applying opposing fields or

by incorporating the magnetic field in the treatment planning system (Liney et al., 2018b).

Vice versa, the X-ray system also affects the MRI scanner. Electromagnetic shielding

must be applied to avoid MR image artefacts induced by the linear accelerator (Liney et

al., 2018b). While the static influence of the linear accelerator on the homogeneity of the

magnetic field of the MR scanner can be compensated for by passive shimming, dynamic

alterations such as a change of the gantry angle or of the distance between the X-ray

source and the magnet can only be compensated for by active shimming using dedicated

shimming coils (Liney et al., 2016). Furthermore, the interaction of the beam with the MR
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Table 2.1: Existing MR-integrated X-ray therapy (MRiXT) systems. The systems mainly differ in the
magnetic flux density of the main field of the MR scanner B0 and the orientation of the magnetic
field relative to beam direction.

Name B0 / T Field orientation Current status Reference

ViewRay MRidian 0.35 perpendicular clinical since 2014 Mutic and Dempsey (2014)

Elekta Unity 1.5 perpendicular clinical since 2017 Raaymakers et al. (2017)

AuroraRT 0.5 inline working prototype Fallone (2014)

Australian MR-Linac 1.0 inline working prototype Keall et al. (2014)

receiver coil can lead to beam attenuation, increased skin dose, and image artefacts (Liney

et al., 2016; Burke et al., 2012) such that dedicated radiotranslucent or radiotransparent

receiver coils are required (Hoogcarspel et al., 2018; Liney et al., 2018a).

System design

Four MRiXT systems have been realised so far (see Table 2.1). Two of these are commer-

cially available, namely the ViewRay MRidian (Mutic and Dempsey, 2014) and the Elekta

Unity (Raaymakers et al., 2017), and two are in a working prototype phase, namely the

AuroraRT (Fallone, 2014) and the Australian MR-Linac (Keall et al., 2014).

The magnetic flux density of the MR scanner in these systems ranges from 0.35 T

(MRidian) to 1.5 T (Elekta Unity). MR scanners with a lower magnetic flux density have the

advantage of interfering less with the radiotherapy unit, a lower SAR, and lower costs, but

the potential disadvantage of a lower signal-to-noise ratio (see section 2.2.3). The systems

furthermore differ in the orientation of the main magnetic field of the MR scanner relative

to the beam direction, which can be either parallel (AuroraRT, Australian MR-Linac) or per-

pendicular (ViewRay MRidian, Elekta Unity). While a gantry can rotate the linac around the

patient independently of the MR scanner in perpendicular systems, either the MR scanner

(AuroraRT) or the patient (Australian MR-Linac) need to be rotated to irradiate treatment

fields with different beam directions in the inline systems (Whelan et al., 2016). For all sys-

tems, the treatment couch is either fixed or movable by only small amounts (Paganelli et al.,

2018), such that patient shifts for interfractional adaption need to be replaced by shifting the

treatment field via adjusting the multi-leaf collimator (Ruschin et al., 2017) or by replanning
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(Raaymakers et al., 2017). None of these four systems has been shown to be superior so

far regarding beam delivery, image quality or targeting accuracy.

Clinical workflow

In clinical practice, a treatment plan is generated based on CT images before treatment.

Before each irradiation fraction, the acquisition of high-quality volumetric MR images in

treatment position and subsequent deformable image registration to the planning CT allows

for position verification and, if necessary, treatment plan adaption to the anatomy of the day

(Bohoudi et al., 2017; Henke et al., 2018). Replanning is performed by means of Monte

Carlo based dose calculation, which currently takes between 5 minutes (Raaymakers et

al., 2017) and 12 minutes (Bohoudi et al., 2017).

During irradiation, the patient breathes with intermittent breath-hold and two-dimensional

cine MR images are acquired with a frequency of about 5 frames per second (Henke et al.,

2018). Several methods exist to convert these images into a motion signal to be used for

gated beam delivery, including template matching, neural networks, and image registra-

tion (Paganelli et al., 2018). Since MR image acquisition and reconstruction can lead to a

considerable time delay, motion prediction models are applied (Seregni et al., 2016).

In the near future, motion models are expected to be useful to extract out-of-plane mo-

tion from the cine images (McClelland et al., 2017; Paganelli et al., 2018). Furthermore,

beamlets which were delivered suboptimally due to motion could be corrected for on-line

by adapting upcoming beamlets of the irradiation plan (Kontaxis et al., 2015). However, the

conversion of MR images to electron density, as required for X-ray dose calculation, is cur-

rently not performable in real-time but only retrospectively (Bohoudi et al., 2017; Stemkens

et al., 2017).

First clinical findings have shown that organ motion description can be substantially im-

proved by MR-based motion tracking relative to external surrogates (Stemkens et al., 2015)

and that the overall survival of inoperable pancreatic cancer patients can be improved by

dose escalation and daily treatment adaption via MR-guidance (Rudra et al., 2017). More

extensive, prospective studies on the treatment outcome of MRiXT are currently being con-

ducted (Henke et al., 2018).
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2.4 MR-Integrated Proton Therapy

Because of the high sensitivity of proton therapy to anatomical variations (see section 2.1),

the integration of MRI into proton therapy (MRiPT) is expected to be even more beneficial

than for X-ray radiotherapy and thus has gained interest in the last years (Oborn et al.,

2017; Landry and Hua, 2018; Lomax, 2018). The overall workflow is expected to be trans-

ferable from MR-integrated photon therapy (Oborn et al., 2017). However, since a number

of technical and physical challenges need to be overcome, MRiPT has only been studied

on a conceptual level thus far. To investigate the technological feasibility and exploit the po-

tential of MRiPT, mutual interactions between both systems have to be taken into account.

These include:

1. Beam deflection. If components of the magnetic field of the MR scanner are di-

rected perpendicularly to the direction of the incident beam, Lorentz force-induced

deflection of the proton beam occurs. Magnetic field components directed parallel to

the direction of the incident beam rotate the radiation field around the central beam

axis (Oborn et al., 2015).

This affects both the beam transport to the treatment volume and the dose deposition

inside the patient. For the deflection inside the patient, the simultaneous anatomy-

dependent energy loss and energy-dependent deflection of the beam and its con-

sequences on the Bragg peak position and the dose distribution have been approx-

imated analytically (Wolf and Bortfeld, 2012; Hartman et al., 2015) and calculated

by Monte Carlo simulations (Raaymakers et al., 2008; Moteabbed et al., 2014; Hart-

man et al., 2015). However, neither the structural differences of these studies nor

their degree of accordance have been analysed in a systematic way. Furthermore, a

ground truth of experimental benchmark data is lacking, hindering the verification and

comparison of these simulation studies.

Outside of the patient, energy loss can be mostly neglected for beam deflection,

whereas the setup-specific magnetic fringe field has to be taken into account (Oborn

et al., 2015). It has been suggested to generate machine- and field-specific look-up-

tables for the deflection in air and use the resulting phase space as a starting point

for patient-specific dose deflection inside the patient (Oborn et al., 2017). The deflec-

tion both inside and outside of the patient produces dose distortions that need to be
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quantified and either compensated for or directly implemented in treatment planning

systems, and both calculation parts need dedicated procedures for commissioning

and quality assurance.

2. System design. For an acceptable magnetic field strength and homogeneity in the

FOV of the MR scanner, the MR magnets need to closely surround the patient. At the

same time, the proton beam needs to be transported to the patient, preferably from

different directions, without interacting with the MR scanner. This leads to geometrical

restrictions and challenges in the construction of MRiPT systems, and a number of

layouts have been suggested (Overweg, 2009; P Forthmann, 2016; Oborn et al.,

2017). No integrated systems have been realised so far.

To facilitate unattenuated beam transmission to the patient, a split-bore or open MR

scanner construction appears necessary. Isocentric irradiation with different beam

directions can be facilitated either by mounting the beam line magnets on a rotat-

ing gantry or by installing a rotating patient couch (Oborn et al., 2017). The main

problems of a rotating couch are the setup reproducibilty and gravity-induced organ

deformations hampering an accurate registration to the planning CT (Whelan et al.,

2016). For a gantry construction, the weight of the MR scanner, which is in the order

of tens of tons, needs to be accounted for. An alternative is to use a setup with a fixed

beam direction, which has been shown to be sufficient for a large number of patients

treated with proton therapy (Yan et al., 2016). Either way, the use of lasers, markers

or phantoms needs to be studied to determine the position of the isocentre of the MR

scanner relative to the isocentre of the proton beam.

Furthermore, since external RF signals can interfere with the MR imaging process

and lead to image artefacts, the MR scanner must be surrounded by a Faraday cage,

typically made of a thin copper foil. The proton beam needs to enter into the cage

either through this foil, leading to increased beam stopping and scattering, or through

a dedicated hollow tube used as waveguide port (Oborn et al., 2017).

3. Magnetic field effects on MR image quality. The magnetic fields of the proton fa-

cility may interfere with MR image acquisition and compromise the MR image quality.

While the magnetic field of the cyclotron is expected to be manageable by proper

shimming and by installing the MR scanner at an adequate distance (Hofman et al.,
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2013; Cheng et al., 2016), the influence of the beam line and scanning magnets clos-

est to the MR scanner is expected to be relevant, since their magnetic fields change

dynamically and can have large components parallel to B0 (Oborn et al., 2016). Ex-

perimental data on the influence of the beam line magnets, the beam scanning mag-

nets, and gantry rotation is lacking so far, but necessary to determine whether mag-

netic shielding is required in addition to RF shielding.

4. Beam effects on MR imaging. The proton beam itself may alter the MR signal, for

example by current-induced magnetic fields, local heating, formation of radicals or by

interaction with the electronics of the MR receiver coil. This can be regarded both as

a risk for MR image quality and as a potential opportunity to verify the proton range

using the MR scanner. A number of patent applications exist on this issue (Kuhn

and Overweg, 2009; Field and Bryning, 2013; Hoffmann and Speck, 2016; Prieels

et al., 2017a; Prieels et al., 2017b), but quantitative simulation studies as well as

experimental evidence are lacking.

5. Dosimetry. The response of dosimetry equipment used to characterise the beam

during commissioning and quality assurance is expected to be distorted by the mag-

netic field of the MR scanner, as is the case in MR-integrated X-ray therapy (MRiXT)

(Reynolds et al., 2014; Spindeldreier et al., 2017). Generally, signal distorting effects

such as the electron return effect are expected to be smaller for MRiPT than for

MRiXT due to the reduced range of secondary electrons (Raaymakers et al., 2008;

Lühr et al., 2018). However, studies on the suitability of dosimeters and phantoms for

proton dose measurements in the presence of magnetic fields and on necessary cor-

rection factors are lacking so far, except for one study on radiochromic films in a 1 T

magnetic field, which mainly focussed on the electron return effect (Lühr et al., 2018).

Furthermore, there is no data in literature on the effect of the magnetic field of the MR

scanner on the multiwire ionisation chamber arrays in the proton beam nozzle, which

are used for beam monitoring (Oborn et al., 2017). Since beam deflection and mag-

netic field effects on dosimetry equipment are expected to affect the procedures for

beam commissioning and quality assurance, these procedures need to be adjusted

and redefined.

6. Adaptive planning on MR images. For adaptive treatment planning on MR images
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acquired in treatment position at the beginning of each treatment fraction, the stop-

ping power and dose distribution need to be calculated from MR images.

The conversion of MR images to stopping power distributions can be achieved by

a deformable image registration of the planning CT on the daily MR image (Dolde

et al., 2018). While this gives the possibility to make use of the various MR contrast

possibilities, the image registration process introduces uncertainties, especially if the

changes between the patient anatomy during acquisition of the planning CT and the

daily MR are large (Brock et al., 2017). Another possibility is the direct translation

of MR image information into electronic stopping power, for which purpose a num-

ber of algorithms are being developed and tested (Rank et al., 2013b; Rank et al.,

2013a; Edmund et al., 2013; Maspero et al., 2017; Koivula et al., 2016; Uh et al.,

2018). Here, clinically acceptable levels of dosimetric accuracy have been achieved

in homogeneous tissue, but considerable uncertainties remain in heterogeneous re-

gions of bone and air (Koivula et al., 2016). Experimental evidence for a dosimetric

comparison of both methods is lacking so far.

After conversion of the MR image to a stopping power distribution, a fast dose calcula-

tion algorithm is required (Giantsoudi et al., 2015; Tseung et al., 2015; Marmitt et al.,

2018), which needs to be adapted to take into account beam deflection (see above).

An alternative first approach would be to avoid the dose calculation by only extracting

a motion signal from the real-time MR images, as is current practice in many MRiXT

facilities (Stemkens et al., 2015).

7. Gating and motion interplay. To synchronise the proton irradiation to the moving

patient anatomy acquired on the real-time MR images via gating or tracking, a close

integration of the MR system and the beam control system is required including the

conversion of MR images to a gating or tracking signal (Yun et al., 2016). As for all

motion-adaptive treatments, the interplay between pencil beam scanning treatment

and tumour motion may become an issue, and various strategies exist to mitigate this

effect (Dowdell et al., 2013; Grassberger et al., 2015; Zhang et al., 2014). The use

of the acquired real-time MR images has been suggested to further improve these

mitigation strategies (Oborn et al., 2016). In general, tracking is more complex for

proton than for photon therapy, since the proton range has to be adapted in addition

to the beam position, which requires an adaption of the energy layers.
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8. Radiation damage. Radiation-induced demagnetisation by direct irradiation with ion

beams and secondary neutron fluxes is a known phenomenon for permanent mag-

nets, which is thought to be due to thermal effects and alterations in the microstructure

of the magnet materials (Ito et al., 2001; Blackmore, 1985; Danly et al., 2014; Samin

et al., 2015). Furthermore, radiation damage to components of electronic equipment

present in the treatment room is of concern when neutrons are produced by high-

energy radiation beams. This has been shown for in-room CT scanners (Kry et al.,

2011) and is expected to be an issue for in-room MR scanners as well. Studies that

quantify these effects for an MRiPT setup are lacking so far, and procedures for qual-

ity assurance of the magnetic field and electronic performance of the MR scanner

need to be developed.

In addition to these physical and technical challenges, the benefit and area of application

of MR-integrated proton therapy need to be determined clinically. For this, the definition of

imaging requirements (geometric accuracy, contrast, spatial and temporal resolution) and

treatment sites, and extensive planning studies as well as clinical studies will be necessary.

While the clinical translation will most likely start with static and hardly moving tumours (e.g.

brain, extremities, head and neck), it is expected that the more challenging moving organs

(e.g. lung, liver, pancreas, esophagus) will benefit most from MRiPT.

2.4.1 Aims of this Thesis

To summarise the current status of MR-integrated proton therapy, its development has only

just begun. The work described in this thesis focusses on the first four challenges, namely

(1) proton beam deflection, (2) MRiPT system design, (3) MR image quality, and (4) proton

beam effects on the MR images. More specifically, the following research objectives are

addressed:

1. Beam deflection (chapter 3). Previously published analytical and Monte Carlo cal-

culations to predict the magnetic field induced displacement of the Bragg peak are

compared to assess the current level of consensus. On this basis, it is hypothesised

that a method can be developed that overcomes shortcomings of these methods with

respect to accuracy, speed, and applicability to inhomogeneous magnetic fields and

target geometries. Such a method is developed, and the prediction of Bragg peak

32



2.4 MR-Integrated Proton Therapy

displacement by existing analytical methods and the newly developed method are

compared against Monte Carlo based results to rate their accuracy.

In a second step, the hypothesis that Monte Carlo simulations can accurately predict

experimentally measured beam deflection is tested. For this purpose, radiochromic

film measurements are acquired on the proton beam and Bragg peak deflection in a

tissue-mimicking slab phantom in a 1 T magnet and compared against Monte Carlo

simulations in order to verify their applicability as a gold standard for dose calculation

in magnetic fields.

2. System design (chapter 4.1). It is hypothesised that a low-field MR scanner can be

combined with a static proton beam line, and that simultaneous proton beam irradi-

ation and MR imaging of a phantom is feasible without visible distortions of the MR

image and beam profile. To test this, a C-shaped 0.22 T MR scanner is placed at a

fixed horizontal research proton beam line while accounting for RF interference and

beam deflection during system design. The feasibility of simultaneous irradiation and

imaging is evaluated qualitatively on anatomical MR images and lateral beam profiles.

3. Magnetic field effects on MR image quality (chapter 4.2). In the next step, the

dynamic magnetic influences of the proton therapy facility on the MR scanner are

evaluated. The hypothesis that motion of a gantry in the neighbouring treatment room

does not relevantly affect the MR imaging process is tested by magnetic field cam-

era measurements in the FOV of the MR scanner. Furthermore, the hypothesis is

tested that the magnetic field of the proton beam line magnets do show a significant

but manageable effect on the MR image quality. This is accomplished by measuring

standardised image quality parameters both with and without simultaneous irradiation

and statistically testing the resulting parameter distributions for equivalence.

4. Beam effects on MR imaging (chapter 4.3). The last hypothesis of this thesis is that

proton beam irradiation of a water phantom induces a visible effect in MR images,

from which the proton beam range can be deduced. To test this, MR images for six

different sequences are acquired during high-current proton beam irradiation. An ef-

fect is observed, and its dependence on the proton current and energy and on the

target material are assessed in order to determine its possible cause and area of

application.
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The main findings are then discussed in the general context of MR-integrated proton

therapy in chapter 5, and the work is summarised in chapter 6. The contents of sections 3.1,

3.2 and 4.1 have been published by Schellhammer and Hoffmann (2017), Schellhammer

et al. (2018b), and Schellhammer et al. (2018a), respectively.
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3 Magnetic Field-Induced Beam Deflection and

Bragg Peak Displacement

Being charged particles, the therapeutic protons will be deflected in an MRiPT setup if a

component of their velocity is transversal to the magnetic field of the MR scanner. As this

deflection is energy-dependent, the quasi-continuous energy loss of protons interacting

with the human body will affect the local curvature of the beam as it penetrates the body. A

number of theoretical studies have been performed using Monte Carlo simulations (Raay-

makers et al., 2008; Moteabbed et al., 2014; Li, 2015; Hartman et al., 2015) and analytical

models (Wolf and Bortfeld, 2012; Hartman et al., 2015) to investigate deflected beam tra-

jectories of mono-energetic beams in a water phantom placed in a uniform magnetic field.

Four studies have extended this work to Monte Carlo simulations in a patient geometry

(Hartman et al., 2015; Moteabbed et al., 2014; Kurz et al., 2017; Burigo, 2018), and one

has included the three-dimensional magnetic fringe field of the MR scanner (Oborn et al.,

2015).

As pointed out by Oborn et al. (2015), the general consensus from these works is that

the proton beam deflection within a patient or water phantom is relevant but predictable and

therefore in principle correctable during treatment planning stages. However, different ap-

proaches have been introduced to assess this effect, and neither their structural differences

nor their degree of accordance have been analysed in a systematic way. Differences can be

expected, since all approaches are subject to their respective shortcomings. For instance,

previously published analytical models imply critical assumptions, and are only applicable

to the simplified case of a uniform (i.e. unrealistic) magnetic field. Monte Carlo simulations

are potentially more accurate, but very time-consuming, which inhibits their use for rou-

tine treatment plan optimisation and real-time treatment plan adaptation. Thus, a method is

required to quantify and correct for the deflection, which is accurate, applicable to inhomo-

geneous targets and magnetic fields, and fast. Furthermore, experimental benchmark data

for a verification of these simulation studies is lacking.

35



3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement

The aim of this chapter is, therefore, three-fold. Firstly, studies published so far on the

beam deflection are analysed and compared, and the limitations of the different methods

are discussed (section 3.1.1). On this basis, a new model is developed to estimate the

trajectory of a mono-energetic proton beam traversing a slab phantom inside a uniform

transverse magnetic field, and its performance is evaluated against results of the previous

models and Monte Carlo simulations (sections 3.1.2 to 3.1.4). Thirdly, the Monte Carlo-

based prediction of beam deflection is verified experimentally by radiochromic film mea-

surements for 80 to 180 MeV protons in a magnetic field of 1 T (section 3.2). The contents

of this chapter have been published in similar form by Schellhammer and Hoffmann (2017)

and Schellhammer et al. (2018b).

3.1 Analytical Description

To help understand the limitations of previously published analytical models, a condensed

review and analysis thereof is given in section 3.1.1. On this basis, a new model to esti-

mate and compensate for the magnetic field induced proton beam deflection is presented

in section 3.1.2. The subsequent evaluation and comparison of this model in relation to

existing approaches is presented in section 3.1.3. In section 3.1.4, the main findings and

most important implications are discussed, and a short conclusion and outlook to further

investigations are provided.

3.1.1 Review of Analytical Models

Previously published analytical models are shortly reviewed in this section. Being first or-

der approaches, the methods model a monoenergetic proton beam traversing a water/air

phantom inside a uniform transverse magnetic field.

General considerations

Let us consider a uniform magnetic field in vacuum of flux density ~B = B0 · ~ez which is

aligned parallel to the z-axis and translation invariant. Let a monoenergetic proton pencil

beam of kinetic energy E0 with an initial velocity ~v0 = v0 · ~ex perpendicular to ~B traverse

the field (see Figure 3.1a). The entrance velocity v0 = c ·
√

E0(E0+2m0c2)
(E0+m0c2)2 is connected to E0
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3.1 Analytical Description

(a) (b)

Figure 3.1: Setup geometry with omnipresent uniform transverse magnetic field ~B. Starting from
the beam nozzle, the proton beam (orange) traverses an air gap of length dair before entering a
water phantom. It is deflected by the magnetic field resulting in a deflection and retraction from its
intended Bragg peak position T to the position U (a). The geometrical representation of the beam
trajectory (b) is discussed in the text. Figure adapted from Schellhammer and Hoffmann (2017).

through the proton rest mass m0 and the speed of light c. Carrying the elementary electric

charge q = 1e, the equation of motion of the proton is governed by the Lorentz force

~F = d~p
dt = γm0

d~v
dt +m0~v

dγ
dt = q(~v × ~B) (3.1)

with the relativistic momentum ~p = γm0~v and the Lorentz factor γ = 1√
1−( v0

c
)2

. As v0 is

constant, which yields dγ
dt = 0, this differential equation has a simple analytical solution

vx = v0 cos( qB0
γm0

t), vy = −v0 sin( qB0
γm0

t), vz = 0 (3.2)

for the velocity components vx, vy and vz in x-, y- and z-direction, respectively. The protons

thus move in a circular course with an angular frequency ω0 = qB0
γm0

. The radius of this

course, the gyroradius, is given by

r = v0
ω0

= γm0v0
qB0

. (3.3)

Now let us consider a setup geometry with a water phantom placed inside a virtual

gantry-based MRiPT system. The distance between the proton beam nozzle and the sur-

face of the water phantom is denoted by dair. As opposed to the vacuum situation, protons

deposit energy when traversing media until stopping at a finite range R0. The range in water
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3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement

can be approximated by a power-law range-energy relationship (Bortfeld, 1997)

R0 = αEp0 (3.4)

with p ≈ 1.75 and α ≈ 2.43 · 10−3 MeV−pcm (Wolf and Bortfeld, 2012). The protons slow

down quasi continuously (ICRU, 1993) and hence the gyroradius decreases with increasing

depth according to equation 3.3, which leads to a curled-up beam trajectory. Consequently,

the Bragg peak experiences both a lateral deflection ∆y from the entrance direction of the

beam ~ex and a longitudinal retraction ∆x from its expected depth (see Figure 3.1a).

Analytical integration model

Wolf and Bortfeld (2012) have assessed the Bragg peak deflection and retraction by ana-

lytical integration (AI) of geometrical deflection steps. In accordance with Figure 3.1b and

equation 3.3, they have described the deflection angle φ between the particle motion and

the x-axis by
dφ
ds = 1

r(s) = qB0
γ(s)m0v(s) (3.5)

with the gyroradius r(s), the velocity v(s) and the Lorentz factor γ(s) = 1√
1−( v(s)

c
)2

as

functions of the travelled distance s along its curved path. A small angle approximation
dy
ds = sinφ(s) ≈ φ(s) has been applied, yielding the lateral deflection as a function of s

y(s) =
ˆ s

0
φ(s′)ds′ . (3.6)

The deflection at the end of the trajectory in a water phantom without air gap (i.e. dair = 0)

has thus been obtained by analytical integration as

∆y = y(s = R0) (3.7)

= 7
30
qB0α

2
√

2m0
(2m0c

2)3


√

1 + E0
2m0c2

3
(

E0
2m0c2

)2

− 4
(

E0
2m0c2

)
+ 8

− 8

 .
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In an analogous manner, the longitudinal position x(s) has been obtained by assuming
dx
ds = cosφ(s) ≈ 1− φ(s)2

2 which yields

x(s) = s− 1
2

ˆ s

0
φ2(s′)ds′ . (3.8)

This term has been treated non-relativistically
(

i.e. γ = 1 and v(s) =
√

2E(s)
m0

)
and thus the

overall retraction length was quantified by

∆x = R0 − x(R0) = q2B2
0α

3E3p−1
0

2m0

2p2

(4p− 1)(3p− 1) . (3.9)

The model was stated to be applicable to slab phantom geometries of arbitrary material

thickness and composition by addition of the deflections obtained in each layer. For air

gaps, energy loss has been assumed to be negligible, yielding

dair = xair(s) = s− q2B2
0s

3

12m0E0
and yair(s) = qB0s

2

2
√

2m0E0
. (3.10)

An advantage of the AI model is that the whole curved beam trajectory can be calculated

from x(s) and y(s), which is important for treatment planning and dosimetric verification.

However, the model cannot be easily adapted to realistic, inhomogeneous magnetic fields

due to the pathlength parametrisation and the need for an analytical description of the

magnetic flux density distribution.

Trigonometric model

In the work of Wolf and Bortfeld (2012), no concrete compensation strategy for the beam

deflection has been proposed. This problem has been addressed by a more recent paper

(Hartman et al., 2015). Here, a simplified trigonometric (TG) model has been introduced

in order to propose a beam deflection correction strategy. Several assumptions have been

made to enable a direct trigonometric quantification of the proton beam deflection without

the use of more complex methods such as integration. Firstly, the change of the gyroradius

due to energy loss in matter has been neglected, i.e. r(s) = r0. Secondly, longitudinal beam

retraction was not taken into account, i.e. ∆x = 0 and x(s = R0) = R0. Following these

approximations and Figure 3.1b, the lateral deflection in the water phantom (with dair = 0)
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3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement

has been expressed as

∆y = r0

1− cos

arcsin
(
R0
r0

)
 , (3.11)

which can be simplified to

∆y = r0 −
√
r2

0 −R2
0 . (3.12)

As a third approximation, the proton motion was assumed to be non-relativistic (γ = 1 and

v(s) =
√

2E(s)
m ), which yields a constant gyroradius of

r0 =
√

2mE0
qB0

≈ 14.4
√
E0
B0

T cm (MeV)−1/2 . (3.13)

The airgap of thickness dair in front of the water phantom has been accounted for by re-

placing R0 with (R0 + dair), assuming that energy loss in air is negligible.

A correction strategy for the deflection has been proposed by applying an angle correc-

tion to the entrance direction ~v0 of the beam. According to Figure 3.1b, it was obtained by

∆ϑ = arctan
(
y(R0)
x(R0)

)
= arctan

(
∆y
R0

)
. (3.14)

The authors stated that this angle correction could be implemented either by pencil beam

scanning magnets or by an isocentric gantry rotation around the phantom. This will be

discussed in section 3.1.3.

Summary

Although both the AI and the TG model offer a reasonable first approach to the problem

of magnetic proton beam deflection in a transverse uniform magnetic field, they have their

respective shortcomings. The AI model relies on a small angle approximation which is prob-

lematic for large deflection angles, treats retraction non-relativistically and does not offer a

compensation strategy for the Bragg peak deflection. The TG model neglects relativistic

effects, beam retraction and the decreasing gyroradius as a function of penetration depth.

Neither the AI nor the TG model seem applicable to a realistic, i.e. non-uniform, magnetic

field and patient anatomy. Aiming to provide a solution which is more accurate and versa-

tile than these two models, but faster than Monte Carlo approaches, an alternative model
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3.1 Analytical Description

(a) (b)

Figure 3.2: Geometrical representation of the proposed model (RAMDIM). The proton beam de-
flection in air is calculated trigonometrically assuming no energy loss (a), whereas a changing gy-
roradius due to energy loss is taken into account in water (b). Symbols are explained in the text.
Figure reprinted from Schellhammer and Hoffmann (2017).

is therefore presented and verified in the following sections.

3.1.2 New Model Formulation

The model proposed in this thesis is an iterative analytical method to reconstruct the trajec-

tory of a monoenergetic proton beam based on simple physics principles and geometrical

considerations. It contains less critical approximations than currently available analytical

models and offers a correction strategy for the predicted beam deflection and retraction. It

is called Raytracing Algorithm for Magnetic Deflection of Ions in Media (RAMDIM).

Incremental reconstruction of the proton beam trajectory

Let us consider the geometry presented in section 3.1.1 and Figure 3.2 and let the entry

position of the proton beam to the magnetic field be ~x0 = (x0, y0, z0). The initial gyroradius

caused by the magnetic field is (cf. equation 3.3)

r0 = γm0v0
qB0

=

√
2m0E0(1 + E0

2m0c2
)

qB0
. (3.15)

The first relevant point of the trajectory is the entrance position of the proton beam at

the surface of the water phantom ~x1. Energy loss inside the airgap is considered to be
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3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement

negligible, therefore ~x1 is obtained by

~x1 = R(∆φ0) · ~x0 , (3.16)

with the rotation matrix R(∆φ0) rotating the point ~x0 counterclockwise through an angle

∆φ0 about the center of rotation ~O0 = (x0, y0 + r0, z0) (see Figure 3.2a). ∆φ0 satisfies

∆φ0 = arcsin(dair
r0

) . (3.17)

Inside the water phantom, the energy loss is modeled by the continuous slowing down

approximation (ICRU, 1993) and discretised into small steps of constant energy and hence

constant gyroradius (analogous to Figure 3.2b). The energy step size ε is chosen for every

simulation such that the studied parameters, i.e. ∆y, ∆x and the correction parameters,

are independent of ε within the decimal precision they are given in. Following equation 3.4,

for each energy step i (i = 1, ..., n with n = bE0
ε c) the travelled path length in water, si, can

be calculated from (see eq. 3.4)

si = R0 − αEpi , (3.18)

which results in an incremental deflection angle of

∆φi = si+1 − si
ri

= ∆si
ri

(3.19)

with the energy-dependent gyroradius ri =

√
2m0Ei(1+ Ei

2m0c2 )

qB0
(in analogy to equation 3.15).

The next particle position ~xi+1 is obtained by applying the rotational matrix of angle ∆φi to

~xi, i.e. ~xi+1 = R(∆φi) ·~xi. Here, the center of rotation ~Oi is determined by (cf. Figure 3.2a)

~Oi = ri

| ~Oi−1 − ~xi|
( ~Oi−1 − ~xi) . (3.20)

Thus, the proton trajectory is fully reconstructed until reaching the Bragg peak at step i =

n. The overall deflection ∆y and retraction ∆x are then obtained as the projections of

the difference between the Bragg peak positions ~xn with and without magnetic field. It

was verified that the total travelled pathlength is equal to the proton range within 0.1 mm

accuracy, i.e. sn −R0 < 0.1 mm.

The algorithm has been realised in MATLAB (Release 2015b, The MathWorks, Inc., Nat-
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3.1 Analytical Description

Figure 3.3: The proposed correction algorithm includes a correction of the proton energy ∆E0 and
entrance angle ∆ϑ such that the actual Bragg peak location U coincides with the intended position
T. Figure adapted from Schellhammer and Hoffmann (2017).

ick, Massachusetts, United States).

Correction strategy

As an advancement to the TG model, a correction strategy is proposed that simultane-

ously adjusts the proton beam entrance angle and energy (see Figure 3.3). The angle

correction ∆ϑ compensates for the lateral deflection of the Bragg peak and can only be

applied by pencil beam scanning magnets. The energy correction ∆E0 accounts for the

retraction caused by the path curvature and has not been considered before. Both cor-

rection parameters are optimised such that the distance to agreement (DTA) between the

corrected Bragg peak position ~xn,corr = ~xn( ~B, ϑ0 +∆ϑ,E0 +∆E0) and the intended position

~xn,0 = ~xn(0 T, ϑ0, E0)

DTA = |~xn,corr − ~xn,0| (3.21)

is minimised. This bi-parameter optimisation is performed numerically using the MATLAB

Optimisation Toolbox function fminsearch, which implements the simplex search method

(Lagarias et al., 1998).

As an alternative to the angle correction, a patient shift has been suggested by Mote-

abbed et al. (2014). However, the deflection of a single Bragg peak strongly depends on the

beam energy, entrance angle and the irradiated geometry, and therefore cannot completely

be compensated for by a constant shift. Another alternative is the direct implementation of

the magnetic field-induced beam deflection into the treatment planning system.
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3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement

3.1.3 Evaluation of Analytical and Numerical Models

Setup and parameters

The RAMDIM method, as described in section 3.1.2, has been used to predict the trajecto-

ries of monoenergetic proton pencil beams of energies E0 between 60 MeV and 250 MeV

in a uniform transversal magnetic field of magnetic flux density B0. Selected example val-

ues for B0 were 0.5 T as a commonly used flux density in open MRI systems, and 1.5 T

and 3 T as typical values for diagnostic imaging (Lagendijk et al., 2014a). The trajectories

were studied in two different geometries: one with a water phantom alone, and one with

an air gap between the phantom and the beam nozzle of thickness dair. The parameter

dair = 25 cm was chosen by way of example as a typical distance between the beam noz-

zle and the patient.

The lateral deflection ∆y and longitudinal retraction ∆x were calculated as functions of

E0 andB0 with both the new model (RAMDIM) and the two analytical models (AI and TG, as

discussed in section 3.1.1). Currently being the most accurate method for proton trajectory

prediction, published values obtained by Monte Carlo particle tracking (Raaymakers et al.,

2008; Moteabbed et al., 2014; Li, 2015; Moser, 2015) were compared to the results gained

with the three models. Furthermore, the capability of RAMDIM to handle anatomical het-

erogeneities was tested exemplarily by calculating the proton beam trajectory in a phantom

consisting of both bone and water. Correction parameters ∆ϑ and ∆E0 were calculated and

compared to the TG method, and beam trajectories obtained with both correction methods

were reconstructed in order to evaluate whether a distance remains to the intended Bragg

peak position.

The required decimal precision of results was chosen to be 0.1 mm for ∆x and ∆y,

0.1◦ for ∆ϑ, and 0.1 MeV for ∆E0. Accordingly, the energy step size ε was reduced until

these parameters were constant on the first decimal place, yielding a required step size of

ε = 0.1 MeV. This corresponds to a steplength in water ∆s (see eq. 3.18 and 3.19) of up to

0.3 mm for high proton energies (Ei = 250 MeV) and down to 4 · 10−4 mm for low energies

(Ei = 0.1 MeV).

Calculations were carried out on a PC workstation with 8 GB RAM and a 64 Bit Intel

Core i3-3220 dual core processor running at 3.3 GHz. The calculation for one experiment

(defined by E0, B0 and dair) took less than 0.07 s for ∆x and ∆y, and less than 28 s for ∆ϑ

and ∆E0 for all studied energies and magnetic flux densities.
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3.1 Analytical Description

(a) (b)

Figure 3.4: Euclidean distance of positions calculated with the two previously published analytical
models to those calculated with RAMDIM. (a): Distance in water between Bragg peak positions
inside the phantom alone, (b): distance in air of beam entrance position to the water phantom behind
an airgap of dair = 25 cm. Figure adapted from Schellhammer and Hoffmann (2017).

Bragg peak deflection and retraction

First, the results obtained with RAMDIM are compared to those of the two analytical models

discussed in section 3.1.1. A discussion of differences and an interpretation of results follow

in section 3.1.4.

Figure 3.4a depicts the Euclidean distance of Bragg peak positions obtained by the AI

and TG model to those obtained with RAMDIM in water. As can be appreciated from this

figure, the distance increases with increasing energy and magnetic flux density from 0 cm

for 60 MeV and 0.5 T up to 2.1 cm for the TG model and 0.4 cm for the AI model at 250 MeV

and 3 T.

For a comparison of the models inside the air gap, the difference in water phantom en-

trance positions behind an air gap of thickness dair = 25 cm are depicted in Figure 3.4b.

The distance to the results of the TG model increases with increasing proton energy up to

2.8 mm for 250 MeV and 3 T. As opposed to that, for the AI model it increases with decreas-

ing energy up to 4.8 mm at 60 MeV and 3 T.

In the next step, the AI, TG and RAMDIM are compared to published results obtained

by Monte Carlo particle tracking in a water phantom (dair = 0). An overview of calculated

deflection and retraction values ∆y and ∆x in water is given for different uniform magnetic

flux densities and beam energies in Table 3.1. Differences of the three analytical models to

the reference results are displayed in Figure 3.5.
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Table 3.1: Predicted lateral deflection ∆y and longitudinal retraction ∆x of a monoenergetic proton
beam with initial energy E0 at the Bragg peak. The beam traverses a water phantom (dair = 0)
in a uniform transverse magnetic field of flux density B0. Results are given for the new method
(RAMDIM) and the AI and TG models (eq. 3.7, 3.9 and 3.11) in relation to published Monte Carlo
results (ref.).

B0/ E0/ ∆y / mm ∆x / mm Reference
T MeV RAMDIM AI TG ref. RAMDIM AI ref. (ref.)

0.35 60 0.2 0.2 0.2 0.2 0.0 0.0 0.0 Moser et al. 2015
150 2.7 2.7 2.4 2.5 0.0 0.0 0.1 Moser et al. 2015
250 12.4 12.4 11.2 11.8 0.3 0.3 1.2 Moser et al. 2015

0.5 90 0.9 0.9 0.8 1.0 Raaymakers et al. 2008
90 1.2 Moteabbed et al. 2014
200 9.2 9.2 8.2 10.0 Moteabbed et al. 2014

1.0 60 0.5 0.5 0.4 0.5 0.0 0.0 0.0 Moser et al. 2015
150 7.8 7.8 6.9 7.3 0.3 0.3 1.5 Moser et al. 2015
250 35.4 35.5 32.3 32.8 2.3 2.6 3.5 Moser et al. 2015

1.5 90 2.6 2.6 2.2 3.0 Moteabbed et al. 2014
200 27.4 27.5 24.8 28 Moteabbed et al. 2014

3.0 60 1.5 1.5 1.3 1.4 0.1 0.1 0.1 Moser et al. 2015
90 5.1 5.1 4.5 5.0 Raaymakers et al. 2008
120 12.0 12.1 10.7 11.0 1.0 1.0 2.0 Li 2015
150 23.2 23.5 21.1 22.8 2.5 2.6 3.5 Moser et al. 2015
180 39.7 40.3 36.9 38 5.3 5.7 6.0 Li 2015
250 103.4 106.6 103.1 98.9 20.7 23.1 20.5 Moser et al. 2015

For all the models, the differences increase with increasing proton energy and magnetic

flux density. This can be expected, as ∆x and ∆y increase with increasing path length

and Lorentz force, so that differences due to approximations become more pronounced.

However, deviations of the three models behave differently from each other.

For the AI model, the lateral deflection ∆y agrees within 2.5 mm with Monte Carlo refer-

ence results up to proton energies of 200 MeV for all B0 considered, except for 250 MeV

at 3 T (8 mm). The calculated longitudinal retraction ∆x agrees within 1.5 mm with the ref-

erence for all studied setups, except for 250 MeV at 3 T (3 mm). Here, the lateral deflection

tends to be overestimated, whereas retraction by trend seems to be underestimated by the

AI model.

For the TG model, the deflection ∆y agrees with Monte Carlo results within 2 mm for all

setups except for 200 MeV and 1.5 T, and 250 MeV and 3 T, where the deviations amount

to 3.2 mm and 4.2 mm, respectively. The TG model tends to underestimate ∆y. The full

neglection of the longitudinal retraction of the Bragg peak leads to differences in ∆x of up
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Figure 3.5: Difference in Bragg peak deflection ∆y and retraction ∆x between results of the an-
alytical models and Monte Carlo results for the studied set of proton energies and magnetic flux
densities (see Table 3.1). Positive values indicate an overestimation of the three models in rela-
tion to the particle tracking results, and negative values indicate an underestimation. Colored bars
individually span from zero (i.e., no stacking). Figure reprinted from Schellhammer and Hoffmann
(2017).

to 2.1 cm for 250 MeV and 3 T.

Results obtained with RAMDIM show an agreement with the reference results in ∆y

within 2 mm for all studies setups, except for 250 MeV at 1.5 T (2.6 mm) and 3 T (4.6 mm).

The retraction ∆x agrees within 1.5 mm for all studied energies and magnetic flux densities.

RAMDIM shows a trend of overestimating lateral deflection and underestimating longitudi-

nal retraction.

A statistical comparison of the accuracy of the three models in relation to the Monte

Carlo results is displayed in Figure 3.6. Regarding the lateral deflection ∆y, the three mod-

els show only small differences in both median and average deviation, which amount to

0.5 mm and 1 mm, respectively. However, the upper percentiles (i.e. 75 % and 91 %) devi-

ate stronger from zero for the TG model than for the other two models, and the AI model

shows a strong outlier of 8 mm at 250 MeV and 3 T. For the longitudinal retraction ∆x, the

median and average deviation of the new model and the AI model are comparably low (be-

low 1 mm), but RAMDIM shows a smaller 91 %-percentile and no outlier. As retraction is

neglected in the TG model, all studied statistical measures are highly increased as com-

pared to the two other models. The sample size for this inter-model comparison has been
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Figure 3.6: Boxplots of absolute differences in Bragg peak deflection ∆y and retraction ∆x be-
tween the different models and Monte Carlo reference results (see Table 3.1). Figure reprinted from
Schellhammer and Hoffmann (2017).

Air Water WaterBone

Figure 3.7: 250 MeV proton beam trajectory in a magnetic field of 3 T through different phantoms
behind an airgap of dair = 25 cm calculated with RAMDIM. Blue: homogeneous water phantom,
orange: slab phantom with bone insert of 10 cm thickness. The Bragg peak position is indicated by
the arrowhead of the trajectory.

limited to 11 and 16 data points for retraction and deflection, respectively.

The capability of RAMDIM to predict the proton beam trajectory in heterogeneous media

is shown in Figure 3.7. As a demonstration case, a 250 MeV proton beam traversing a

water phantom with a 10 cm bone insert has been modelled in a field of B0 = 3 T. As

expected, the proton range is reduced according to equation 3.4. Additionally, for the same

depth, the curvature of the beam behind the bone insert is stronger than in a homogeneous

water phantom due to the increased energy loss in bone. In the same manner, arbitrary

geometries can be studied using this model.
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Table 3.2: Beam energy and angle correction parameters for different initial energies and magnetic
flux densities for a distance between the phantom surface and the entrance position of the beam to
the magnetic field of dair = 25 cm.

B0/ E0 / RAMDIM TG model
T MeV ∆E0 / MeV ∆ϑ/◦ ∆ϑ/◦

0.5 60 0.1 3.6 3.3
100 0.1 3.2 3.3
150 0.1 3.3 3.3
200 0.1 3.6 3.6
250 0.1 4.0 4.0

1.5 60 0.5 10.7 11.1
100 0.5 9.6 10.0
150 0.6 9.8 10.1
200 0.8 10.7 11.0
250 1.1 12.0 12.3

3 60 2.0 21.5 24.6
100 2.1 19.3 21.5
150 2.5 19.7 21.9
200 3.3 21.6 24.3
250 4.7 24.4 28.2

Beam correction parameters

To compensate for the deflection of the Bragg peak, the calculated correction parameters

∆ϑ and ∆E0 are presented for different proton energies E0 and magnetic flux densities B0

in Table 3.2. The beam energy correction calculated with our model ranges from ∆E0 =

0.1 MeV (0.2 %) for 60 MeV and 0.5 T up to ∆E0 = 4.7 MeV (2 %) for 250 MeV and 3 T.

The angle correction ranges from ∆ϑ = 3.6◦ for 60 MeV and 0.5 T up to ∆ϑ = 24.4◦ for

250 MeV and 3 T. The difference to the correction angle from the TG model is smaller than

0.5◦ for magnetic flux densities up to 1.5 T, but exceeds to 3.8◦ (16 %) at 250 MeV and 3 T.

As an example, proton trajectories modelled with RAMDIM for both correction parameter

sets are depicted for E0 = 200 MeV and B0 = 3 T in Figure 3.8. As the correction method

of the TG model does not include an energy correction, the Bragg peak retraction is not

compensated for. Additionally, the lateral deflection ∆y is overcompensated by a too large

correction angle. Therefore, the DTA between the intended Bragg peak position without a

magnetic field and its corrected position inside the field (see equation 3.21 and Figure 3.9)

is non-zero. It ranges from 0.3 mm for 60 MeV and 0.5 T up to 4.3 cm for 250 MeV and 3 T.

With the new correction method presented here, the calculated DTA is below 0.1 mm for all
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Figure 3.8: 200 MeV proton beam trajectory through an airgap of thickness dair = 25 cm and a water
phantom calculated with RAMDIM. Grey: without magnetic field, orange: B0 = 3 T. The RAMDIM
correction method (∆ϑ = 21.6◦, ∆E0 = 3.3 MeV, solid line) and that of the TG model (∆ϑ = 24.3◦,
∆E0 = 0, dotted line) have been applied to the beam. The Bragg peak position is indicated by the
arrowhead of the trajectory. Figure reprinted from Schellhammer and Hoffmann (2017).

Figure 3.9: Remaining distance, DTA, between intended and achieved Bragg peak positions when
the correction of the TG model is applied. Trajectories were calculated with the new model for a
water phantom behind an airgap of dair = 25 cm. With the new correction method, DTA is less than
0.1 mm for all studied E0 and B0 configurations. Figure reprinted from Schellhammer and Hoffmann
(2017).

studied E0 and B0 configurations.

In addition to these differences, it is debatable whether the beam angle correction can be

implemented by a gantry rotation, as stated by Hartman et al. (2015). To see this, assume

for example the intended Bragg peak position (indicated by "T" in Figure 3.1a) to coincide

with the isocenter of rotation of the gantry. A gantry rotation will then result in a concentric

displacement of the actual Bragg peak position U around T, but it will not compensate for

the deflection, i.e. render U = T. Transferring this consideration to arbitrary positions of T,

it follows that a gantry rotation alone around a fixed isocenter cannot compensate for the

proton Bragg peak deflection. Hence it is concluded that a full compensation can only be

realised by a pencil beam scanning system, which adjusts the entrance angle of the beam.
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3.1.4 Discussion

Bragg peak deflection and retraction

The differences found between the calculated beam deflection ∆y and retraction ∆x at the

Bragg peak can be attributed to the principles of the models as described in sections 3.1.1

and 3.1.2.

Wolf and Bortfeld (2012) applied a small angle approximation to quantify ∆y and ∆x in

their AI model (see chapter 3.1.1). This approximation becomes inaccurate for large path-

lengths. For example, the deflection angle at the phantom entrance position behind the air

gap (dair = 25 cm) is for 200 MeV and 3 T already as high as 41◦ (see eq. 3.17). Thus, the

assumptions of dy
ds = sinφ(s) ≈ φ(s) and dx

ds = cosφ(s) ≈ 1− φ(s)2

2 constitute a systematic

overestimation of the lateral deflection ∆y = y(R0) and an underestimation of the longitu-

dinal retraction ∆x = R0 − x(s). The deflection angle in water increases with increasing

beam energy and magnetic flux density, giving rise to increasing discrepancies relative to

the reference data. In addition, the neglection of relativistic effects for the calculation of

∆x contributes to an increasing uncertainty with increasing energy. These trends can be

clearly observed in Figures 3.4a and 3.5a. In air, the effect of a decreasing gyroradius with

decreasing energy dominates, therefore the travelled pathlength and deflection angle in-

crease with decreasing energy. As the accuracy of the model decreases with increasing

deflection angle, this leads to an opposite trend as compared to the lateral deflection, as is

appreciated from Figures 3.4b and 3.5a.

Similarly, one can observe how the approximations brought forward by Hartman et al.

(2015) affect the accuracy of the predictions of the TG model. The model neglects retrac-

tion, the changing gyroradius due to energy loss and relativistic effects. The accuracy of

these approximations decreases with increasing magnetic flux density and proton energy,

as is depicted in Figure 3.4. Note that differences in Figure 3.4b are solely due to the

neglection of relativistic effects, which leads to an underestimation of the gyroradius. The

trend to underestimate the deflection in water, as depicted in Figure 3.5a, can be ascribed

to the overestimation of the gyroradius by assuming r(s) = r0. In addition, it was shown

that the assumption of a negligible longitudinal Bragg peak retraction exceeds an accuracy

of 2 mm already at intermediate energies (see Figure 3.5a). Both methods are therefore

mainly applicable for low to intermediate uniform magnetic flux densities and proton ener-

gies.
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The RAMDIM model presented in the current work does not rely on these assumptions

and shows an equally good or better agreement to Monte Carlo results over the whole

energy range from 60 MeV to 250 MeV. The remaining differences can be attributed to

the approximations of the model, i.e. neglecting scattering, energy-loss fluctuations, range

straggling, generation of secondary particles, and energy loss in air. Those simplifications

were applied to reduce calculation time, but can in principle be included due to the structure

of the model being a simplified particle tracking method. The tendency of overestimating

lateral deflection and underestimating longitudinal retraction might result from the spectral

dispersion of the proton beam due to the magnetic field (Moser, 2015), which is not in-

cluded in the model. Another factor of uncertainty is the proton range R0, which has been

approximated by equation 3.4 and used as an estimate for the position of the Bragg peak.

R0 deviates from measured Bragg peak positions (Paul, 2013; Schardt et al., 2008) by less

than 0.4 mm up to proton energies of 200 MeV.

On the other hand, results obtained by Monte Carlo particle tracking were used in this

publication as reference data. However, this approach is theoretical in nature and its ac-

curacy strongly depends on the choice of input parameters and physics models. Conse-

quently, dosimetric measurements have to be carried out for a reliable evaluation of the

different models. While this study primarily aimed to introduce the new method, this will be

subject to future studies.

A pencil beam algorithm has recently been introduced for dose calculation in magnetic

fields (Padilla-Cabal et al., 2018), which is based on an algorithm similar to RAMDIM (Fuchs

et al., 2017). Here, a Runge-Kutta method is used for each particle step instead of the

analytical solution as implemented in RAMDIM. As the proton velocity is considered to be

constant in each calculation step, the analytical solution applies not only in vacuum but also

in media. The Runge-Kutta method is therefore expected to yield equivalent results while

being slightly more time-consuming.

Beam correction

The proposed strategy for a compensation of the Bragg peak deflection includes an ad-

justment of the initial proton beam energy and entrance angle. It was shown that this

method effectively repositions the Bragg peak to the intended spot for all studied beam

energies and magnetic flux densities. The range difference corresponding to ∆E0 ranges
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between 0.01 cm (0.3 %) for 60 MeV and 0.5 T and 1.27 cm (3.3 %) for 250 MeV and 3 T

(see Table 3.2 and equation 3.4). The main factor of uncertainty for the proton range in a

well-defined geometry is statistical pathlength straggling, and the standard deviation of the

range due to this effect ranges between 1.2 % for 60 MeV and 1.1 % for 250 MeV (Janni,

1982; Gottschalk, 2011). Being comparably high, the energy correction should therefore not

be neglected in MRiPT, especially for higher proton energies and magnetic flux densities.

The reason for the remaining discrepancy of the Bragg peak position corrected by the

TG model is seen in the approximations mentioned above. The neglection of retraction con-

stitutes an overestimation of the total path length, and the neglection of relativistic effects

leads to an underestimation of the gyroradius and thus an overestimation of the beam de-

flection. Both approximations result in an overcompensation of the beam deflection.

The calculation time of RAMDIM is strongly decreased as compared to Monte Carlo mod-

els. It can be further reduced by using a higher-performing computer and by reducing the

required accuracy, which was chosen conservatively in this study. It is expected to be pos-

sible to renounce the beam correction if the influence of the magnetic field will be directly

implemented in an MRiPT treatment planning system.

It should be noted that the Bragg peak deflection and correction parameters given in this

work are merely exemplary and will most likely be different in a realised MRiPT setup. It is

expected that the distance to the scanning magnets will be larger to make room for the MR

scanner, and that the non-uniform magnetic fringe field of the MR scanner will have to be

taken into account. RAMDIM was presented here in a simplistic form for a first approach to

the problem of magnetic deflection of the proton beam. However, the structure of the model

allows for an easy extension to more realistic cases, especially including inhomogeneous

magnetic fields and material compositions and range straggling. Magnetic flux density vec-

tors of arbitrary distribution and phantom/patient geometries can be included due to the full

reconstruction of the trajectory, which provides knowledge of the proton position at every

iteration step. In addition to its reduced amount of approximations, the presented model

thus offers a critically enhanced applicability compared to existing analytical models.
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(a) (b)

Figure 3.10: Schematic sagittal view (a) and photograph (b) of the experimental setup. The proton
beam passed through collimators (C) and a slab phantom (P) placed inside the field of a permanent
magnet (M). The dose in the phantom was measured using a Gafchromic film detector. A left-
handed coordinate system is used. Photo edited for clarity. Figure adapted from Schellhammer et
al. (2018b).

3.2 Monte Carlo Simulation and Experimental Verification

As shown in section 3.1, considerable distortions of the dose distribution of a proton beam

in a magnetic field have been predicted. Particularly, the Bragg peak is expected to be

laterally displaced by a few millimeters up to several centimeters, depending on the beam

energy and magnetic flux density distribution. However, there is no clear consensus in

literature on the exact amount of magnetic field-induced Bragg peak displacement to be

expected (see section 3.1.3), and experimental benchmark data does not exist. Therefore,

a first measurement thereof and a comparison against Monte Carlo-based predictions is

presented in the following.

3.2.1 Verification Setup

The experimental setup developed for the validation measurement is depicted in Figure

3.10. It consists of a collimated proton beam, a slab phantom containing a horizontally

placed film dosimeter, and a permanent magnet assembly.

The proton beam was generated by an isochronous cyclotron (C230, IBA, Louvain-La-

Neuve, Belgium) at University Proton Therapy Dresden (UPTD). The horizontal static beam

line was used and defined the x-axis of the setup. The beam was collimated to a cylindrical

pencil beam of 10 mm diameter in order to prevent the magnet from being damaged by
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direct radiation exposure. The collimated beam diameter at the phantom entrance was

smaller than 1.5 cm (full width tenth maximum) thus sparing the magnet assembly. The two

magnet poles had a size of xpole × ypole × zpole = 20× 15× 5.9 cm3 each.

The slab phantom was produced from polymethyl methacrylate (PMMA) and mounted

horizontally in the 4 cm wide air gap between the poles of a C-shaped permanent magnet

assembly. It consisted of two slabs, such that a film dosimeter was placed horizontally in the

central plane parallel to the beam, allowing to measure the full deflected beam trajectory.

The contact area of the slabs was bevelled by α = 1◦ around the y-axis to reduce the

dependence of the dose distribution on the film material and on possible air gaps between

the phantom and the film (Zhao and Das, 2010). Two vertically oriented pins in the phantom

and corresponding holes in the films ensured a reproducible alignment of the film relative

to the phantom.

A self-developing Gafchromic EBT3 film detector of 280 µm thickness (Ashland, Coving-

ton, USA) was used to measure the planar dose distributions in the central plane of the

proton beam. This dosimeter type was chosen over alternatives such as ionisation cham-

bers, scintillators, thermoluminescent (TLD), optically stimulated luminescent (OSL) and

gel dosimeters, because it provides a continuous two-dimensional measurement with sub-

millimeter spatial resolution, that is well-established, easy to handle and readily available.

As shown in a precedent study, Gafchromic films are largely unaffected by magnetic fields

(Lühr et al., 2018).

The phantom incorporating the film detector was placed inside a transversal magnetic

field (see Appendix, Figure B.4) produced by a magnet assembly comprising two Nd2Fe14B

permanent magnet poles and a yoke. The maximum magnetic flux density of B0 = 0.95 T

was comparable to that of existing MR-integrated photon therapy systems with flux densi-

ties between 0.35 T and 1.5 T (Mutic and Dempsey, 2014; Fallone, 2014; Lagendijk et al.,

2014b; Keall et al., 2014). The main field component defined the z-axis of the setup (point-

ing downwards), and caused a deflection of the proton beam in the positive y-direction. In

order to measure the whole trajectory of the protons slowing down inside the main mag-

netic field, the beam energy was limited to 180 MeV. The experiment was performed with

and without the magnet present.

Two-dimensional dose distributions D(x, y) were obtained on the film plane. From these,

the beam trajectory and Bragg peak displacement were extracted as follows. For each

depth x, a univariate Gaussian function was fitted to the lateral beam profile and the max-
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imum position yT(x) was extracted. This yielded the beam trajectory yT(x). To mimic a

depth-dose curve measured by an ionisation chamber of 8 cm diameter, for each depth the

predicted dose was integrated radially around yT(x) with an integration radius of r = 4 cm.

This resulted in the integral depth-dose curve,

IDD(x) =
ˆ 2π

0

ˆ r

0
D(x, ρ, φ)ρdρdφ = π

ˆ r

−r
D(x, y)|y − yT(x)|dy , (3.22)

where ρ and φ are the polar coordinates (radius and polar angle, respectively). Both yT(x)

and IDD(x) were smoothed to reduce statistical noise using a univariate spline fit. The

mean of the first proximal 10 values of yT (x) were subtracted from yT (x) to achieve yT (0) ≈

0. The range R80 was calculated from IDD(x) as the depth of the beam at the 80 % distal

end of the IDD maximum. The longitudinal Bragg peak retraction was defined as the differ-

ence between R80 with and without magnetic field. The lateral Bragg peak deflection was

determined from the beam trajectory obtained with magnetic field as yT(R80).

Details on the experimental setup, film handling, and an uncertainty estimation are given

in Appendix A.

3.2.2 Monte Carlo Simulation

The measured data allowed for a verification of Monte Carlo based particle tracking simula-

tions, being considered as the gold standard for dose calculation in radiation therapy plan-

ning (Paganetti, 2012). The measurement setup was simulated using the Geant4 toolkit

version 10.2.p02 (Agostinelli et al., 2003; Allison et al., 2006).

Beam model definition

As the experimental proton beams were not monoenergetic, beam energy distributions cor-

responding to the nominal beam energies Enom of the facility needed to be determined. For

this purpose, in-water depth-dose curves were measured for 24 energies between 100 MeV

and 215 MeV using a multi-layer ionisation chamber with 6 cm radius and an effective depth

resolution of 1 mm (Giraffe, IBA Dosimetry, Schwarzenbruck, Germany) (Wohlfahrt et al.,

2018). An analytical approximation of the Bragg curve (Bortfeld, 1997) was fitted to the

measured data, yielding the proton range R80 and its energy spread σE . Ranges R80 were

converted to mean initial proton energies E0 using tabulated stopping power data (Berger

56



3.2 Monte Carlo Simulation and Experimental Verification

Table 3.3: Extract of the beam energies E0 and energy spreads σE obtained from fit to depth-dose
measurements for the nominal energies Enom.

Enom / MeV E0 / MeV σE / MeV
100 101.8 0.8
120 121.9 1.0
140 141.8 1.2
160 161.9 1.2
180 181.8 1.3

et al., 2005). E0 and σE are given in Table 3.3 for all studied energies.

The obtained energies E0 exceeded the nominal energies Enom by 1–2 MeV, as the

nominal energies serve only as labels in the facility. The measured energy spread σE

ranged between 0.8 MeV and 1.3 MeV. For 80 MeV, this data was extrapolated yielding

E0(80 MeV) = 81.9 MeV and σE(80 MeV) = 1.2 MeV. E0 and σE were used to define the

beam for the Monte Carlo simulations.

If not stated differently, energies mentioned throughout this work refer to the nominal

energies.

To acquire a realistic model of the beam, 2D beam profiles were measured close to

the beam exit window (in a distance of 8 cm) using a pixelated scintillation detector with a

resolution of 0.5 mm (Lynx, IBA Dosimetry, Schwarzenbruck, Germany) for seven energies

between 100 MeV and 215 MeV. A fit of a two-dimensional Gaussian function to the data

yielded a mean lateral spread of σ0
(yz) = (4.7± 0.7) mm with a small trend of decreasing

σ0
(yz) with increasing energy and a slightly higher spread in vertical (z) direction than in

horizontal (y) direction.

Due to the collimators and the long air gap between the beam exit and the phantom,

varying the initial beam spot size σ0
(yz) in the simulation between 0 and 8 mm showed no

influence on the beam spot size at the phantom entrance larger than 0.1 mm. For simplicity,

the initial beam profile was therefore modelled as an energy-independent Gaussian with a

fixed unilateral spread of σ0
(yz) = 4.7 mm.

A number of different recommendations for physics lists for proton therapy have been

made in previous studies and by the Geant4, TOPAS and GATE collaborations:

QGSP_BIC_HP_EMY (Almhagen, 2015), QGSP_BIC_HP_EMZ, QGSP_BERT_HP_EMY and
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Figure 3.11: 3D representation of the deflection experiment as simulated by Geant4 Monte Carlo
simulations.

QGSP_BERT_HP_EMZ, (Geant4 collaboration, 2013), HADRONTHERAPY_1 (Geant4 collaboration,

2014; J. Perl et al., 2016) and HADRONTHERAPY_2 (Geant4 collaboration, 2014), and QBBC_EMY

and QBBC_EMZ (Grevillot et al., 2010; GATE collaboration, 2017). Since there is no clear

consensus within these recommendations for a single superior physics list, all mentioned

physics lists were included and tested in this study.

The mean excitation energy of water was set to 78 eV, which is the default value for

Geant4 version 10 and higher, and is consistent with the revised ICRU report 73 (ICRU,

2009). Note that this value differs from the one used in tabulated stopping-power data

(Berger et al., 2005) by 3 eV. Parameters defining the resolution of the simulation, i.e. sec-

ondary particle production threshold, maximum step length and dose scorer resolution,

were defined by a convergence study: the parameter values were reduced until no change

in the observables was found within a required precision. Observables were the proton

range and energy spread with a required precision of 0.1 mm and 0.1 MeV, respectively.

For increased simulation efficiency, the secondary particle production threshold was de-

termined independently inside and outside of the phantom (the latter being referred to as

world).

The RANMAR random number generator was chosen, as it provides 9 · 108 disjoint se-

quences with a length of 1030 numbers (James, 1990). The magnetic field was implemented

using a corrected version (Schellhammer et al., 2017) of the Geant4 class

HadrontherapyMagneticField3D given in the HADRONTHERAPY application example of Geant4.

58



3.2 Monte Carlo Simulation and Experimental Verification

Table 3.4: Geant4 simulation parameters.

Geant4 version 10.2.p02
Physics list QGSP_BERT_HP_EMZ
Production threshold in world 5 mm
Production threshold in phantom 0.1 mm
Step limiter 0.1 mm
Scorer resolution 0.1 mm
Water mean excitation energy 78 eV
Random number generator RANMAR

Beam model verification

As a verification for the thus defined beam model, depth-dose curves were scored in a

water phantom (size xwp × ywp × zwp = 35× 12× 12 cm3). For 24 energies, the range R0

and energy spread σE were obtained by fitting the analytical Bragg curve (Bortfeld, 1997) to

these depth-dose curves (as in section 3.2.2). These were then compared to those obtained

from the experimental data.

Furthermore, two-dimensional beam profiles were measured at the phantom entrance

position behind the collimators using the pixelated scintillation detector. Profiles were scored

in the simulation at the same position. Spatial spreads at the phantom entrance position

σph
(yz) were extracted by fitting a bivariate Gaussian function to the obtained experimental

and simulated planar dose profiles.

The physics model QGSP_BERT_HP_EMZ showed the smallest deviation to the experimental

data and was thus chosen for the simulation, although differences between all studied mod-

els in range and energy spread were smaller than 0.2 mm and 0.05 MeV, respectively. The

minimum required production threshold for the world was found to be 5 mm and the mini-

mum required production threshold for the phantom, step limiter and scorer resolution were

found to be 0.1 mm. This corresponds well with values found in previous studies (Grevillot

et al., 2010; Kurosu et al., 2014).

Mean differences between the model and reference measurements were 0.2 mm in range

(max. 0.5 mm), 0.23 MeV in energy spread (max. 0.35 MeV) and 0.1 mm in spatial spread

(max. 0.2 mm). The beam model was thus accepted for the simulations. Relevant simulation

parameters are summarised in Table 3.4.
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Main simulation

For the deflection study (see Figure 3.11), the convergence study for the simulation resolu-

tion parameters was repeated with the range and the Bragg peak deflection as observables

and a required accuracy of 0.1 mm. The same parameters were found as in the model build-

ing phase (5 mm for the world production threshold, and 0.1 mm for the phantom production

threshold, step limiter and scorer resolution).

Dose was scored in the PMMA phantom at the position of the film detector, on a

20× 15 cm2 plane with a thickness of 30 µm corresponding to that of the active layer of an

EBT3 film dosimeter. Beam trajectories and Bragg peak displacement were extracted from

the dose distribution as described in section 3.2.1. The film dosimeter was not explicitly

simulated to avoid boundary artefacts. PMMA was defined in the simulation by its mea-

sured density and its atomic composition, enabling Geant4 to calculate the mean excitation

potential using tabulated data. The magnet assembly was included into the simulation to

account for possible generation of secondary particles.

The magnetic field map for the simulation was generated using finite-element modelling

(COMSOL Multiphysics, COMSOL AB, Stockholm, Sweden) and validated in all three mag-

netic field components by measurements at 5 mm resolution using an automated magne-

tometry setup (Gantz, 2017). Details on the magnetic model and an uncertainty estimation

are given in Appendix B.

3.2.3 Experimental Verification

Measured beam deflection and Bragg peak dislocation

The influence of the magnetic field on the proton dose distribution could be observed on

the film dosimeter signal, as depicted in Figure 3.12. The characteristic shape of the proton

dose distribution was visible both with and without magnetic field. However, with magnetic

field the beam followed a deflected trajectory resulting in a laterally shifted Bragg peak

position.

The measured lateral deflection of the Bragg peak ranged from 1 mm for 80 MeV up

to 10 mm for 180 MeV. Bragg peak retraction was within measurement uncertainty and

≤ 0.5 mm for all studied energies. As expected, the deflected beam trajectories (see Figure

3.13a) did not coincide for different energies, but fanned out energy-dependently, as the
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(a) (b)

Figure 3.12: Dose distribution relative to the maximum Dmax of a 140 MeV (a) and a 180 MeV (b)
proton beam in PMMA measured with the film dosimeter, without (bluescale) and with (redscale)
magnetic field. Figure adapted from Schellhammer et al. (2018b).

radius of beam path increases with increasing proton energy (Wolf and Bortfeld, 2012). No

magnetic-field induced change in the absolute measured dose was observed.

Comparison of simulation and experiment

The predicted and measured deflected central beam trajectories agreed within 0.8 mm for

all studied beam energies (see Figure 3.13a). To quantify the accuracy of the calculated

Bragg peak positions, their retraction and deflection were compared (see Figure 3.13b).

The uncertainties of the measured and simulated Bragg peak displacement were within

0.5 mm and 0.3 mm, respectively (see Appendix A.3 and B.2). Predicted and measured

Bragg peak retraction and deflection agreed within these uncertainties for all studied en-

ergies. There was no systematic difference in both quantities between the simulation and

measurement data.

3.2.4 Discussion

The obtained range in Bragg peak displacement of 1 mm to 10 mm corresponds well with

previous theoretical studies in a homogeneous magnetic field in water (Fuchs et al., 2017;

Schellhammer and Hoffmann, 2017). Due to the LET-dependent dose saturation of EBT3

films, no direct dose comparison was made between measurements and Monte Carlo sim-

ulations. While this study aimed to quantify the accuracy of the predicted beam deflection

and Bragg peak displacement (which was found to be affected by this saturation by 0.2 mm

or less, see Appendix B.2), commissioning procedures of future MRiPT systems will need
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(a) (b)

Figure 3.13: (a): Monte Carlo calculated (solid lines) and measured (dashed) deflected central
beam trajectories. (b): Calculated and measured magnetic field-induced Bragg peak displacement in
lateral (deflection, solid) and longitudinal (retraction, dashed) direction. Error bars refer to systematic
and statistical uncertainties given in Tables A.1 and B.1. Individual data points are interconnected
for visualisation only. Figure adapted from Schellhammer et al. (2018b)

to include extensive three-dimensional dose measurements corrected for such effects.

This study has been confined to a homogeneous medium. For inhomogeneous media,

a magnetic field induced dose enhancement at medium-air material boundaries in the or-

der of 2 % has been predicted for 250 MeV and 3 T caused by electrons returning to the

material boundary after being deflected by Lorentz force in air (Fuchs et al., 2017; Lühr

et al., 2018). For media other than PMMA, changes in stopping power affect the range

and the local beam curvature and thus the displacement of the Bragg peak (Schellham-

mer and Hoffmann, 2017). Therefore, future measurements in inhomogeneous media are

desirable. However, the conclusions drawn in this study are expected to be transferable to

other tissue-like media, as the underlying particle interactions do not differ substantially.

Another limitation of this study is its confinement to beam energies up to 180 MeV and a

magnetic flux density of 1 T. Follow-up studies may include a magnet assembly with a larger

main field extension to allow for higher beam energies, or an electromagnet with adjustable

flux density. This would enable the experimental verification of proton beam deflection for

all therapeutically relevant energies and magnetic flux densities.
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3.3 Summary

Although previous work has indicated that there is general consensus that the trajectory

of a slowing down proton beam in a water phantom inside a transverse magnetic field is

predictable, the quantitative comparison of the different methods presented in this chapter

has shown that predictions of different models only agree for certain proton beam ener-

gies and magnetic flux densities. Therefore, shortcomings of previously published analyti-

cal methods have been analysed and quantified. The inclusion of critical assumptions and

the lack of applicability to realistic, i.e. inhomogeneous, magnetic flux densities and patient

anatomies have been identified as main problems. To overcome these deficiencies, a new

model called RAMDIM has been developed and shown to be both less assumptive and ap-

plicable to more realistic setups than existing analytical approaches, and faster than Monte

Carlo models.

Thus, RAMDIM is useful to get a fast and accurate estimate for the beam deflection and

retraction that is to be expected in MRiPT, and for the correction parameters needed for

a compensation thereof. It can help in the planning of experimental setups for dosimetric

studies in MRiPT, and its simple structure helps to understand the underlying physical

mechanisms. Furthermore, it can be used as reference solution when setting up a Monte

Carlo model or an experimental study. As pointed out by Hartman et al. (2015), intensity-

modulated MRiPT planning can be realised by two Monte Carlo calculation steps - one for

selection of beamlets whose deflected Bragg peaks lie inside the target, and one for dose

calculation. Thus, another possible application of RAMDIM is to replace the first Monte

Carlo step in order to reduce the overall calculation time.

In a second step, the proton beam deflection has been measured for the first time in a

tissue-mimicking medium by film dosimetry and compared against Monte Carlo simulations.

It was experimentally shown in a transverse magnetic field of 0.95 T that the lateral Bragg

peak displacement ranges between 1 mm and 10 mm for proton energies between 80 and

180 MeV in PMMA. Range retraction was found to be within 0.5 mm. The measured Bragg

peak displacement was shown to agree within 0.8 mm with Monte Carlo based particle

tracking simulations.

This work has shown that and how the magnetic field induced proton beam deflection and

Bragg peak displacement are both measurable and accurately predictable in a tissue-like

beam stopping medium. Within the given uncertainties and over the studied range of proton
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energy and magnetic flux density, the presented verification of Monte Carlo based trajec-

tory prediction justifies its use as a gold standard for treatment planning and to compare

analytical and numerical models. As RAMDIM has been shown to cause the smallest devi-

ations to Monte Carlo simulations, this underlines its applicability for the above mentioned

purposes.
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MRiPT requires the operation of both a proton therapy system and an MR scanner in the

presence of an electromagnetically contaminated environment produced by their respec-

tive electromagnetic fields. To date the integration of a proton therapy and an MR system

has not been realised. Simulation studies exist, but do not cover the effect of simultaneous

irradiation and MR imaging on the beam and MR image quality. Since the different electro-

magnetic fields of the proton facility and the MR scanner can be expected to interfere, an

identification and quantification of these effects is required.

The aim of this work is to build the first integrated in-beam MR setup, to test the feasibility

of simultaneous proton beam irradiation and MR imaging, and to assess the mutual effects

on the beam and the MR images. For this purpose, an open MR scanner was placed in

the isocentre of a horizontal fixed proton research beam line while accounting for radio-

frequency (RF) interference and beam deflection (section 4.1). On this basis, the influence

of the static and dynamic magnetic fields of the MR scanner on the beam profile as well

as that of the magnetic fields of the proton facility on the B0 homogeneity and MR image

quality are quantified (section 4.2). Lastly, the possibility of MR-based range verification is

tested in a simple setup (section 4.3). Sections 4.1.1 to 4.2.1 and 4.2.3 have been published

in similar form by Schellhammer et al. (2018a).

4.1 Integration of a Low-Field MR Scanner and a Static

Research Beamline

Both the MR and the proton therapy system generate static and dynamic magnetic fields

as well as RF waves. Their characteristics are identified and discussed in the following.
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4.1.1 Proton Therapy System

The proton beam was generated at the University Proton Therapy Dresden (UPTD) facil-

ity (Figure 4.1a) by an isochronous cyclotron (C230, Ion Beam Applications SA, Louvain-

la-Neuve, Belgium). The cyclotron had a mass of 210 t and produced two main electro-

magnetic fields: (1) the static magnetic field (Bcyclo ≤ 3.09 T) keeping the protons in a

spiral trajectory while being accelerated and (2) the RF wave of the acceleration voltage

(fcyclo = 106 MHz). According to the vendor’s specifications, the cyclotron had a resistive

electromagnet with passive magnetic shielding that produced a magnetic fringe field of

75 µT at a distance of 8 m, i.e. at the isocentre of the experimental room (see below).

The beam travelled to the experimental room through a beam line, comprising a horizon-

tal vacuum pipe, a series of magnets that can both deflect (dipole magnets, Bdipol ≈ 2 T)

and shape (quadrupole magnets, Bquad ≈ 0.5 T) the beam, an energy selection system to

modulate the beam energy between 70 and 230 MeV, and a beam exit window at the end

of the horizontal beam line in the experimental room.The distance between the beam exit

window and the closest upstream quadrupole magnets was 2.7 m, while the closest dipole

magnet was at 6 m. The beam isocentre was 1.1 m downstream of the beam exit, 2.8 m

downstream of the last beam line magnet, 8.2 m away from the cyclotron, and 18.6 m away

from the gantry in the neighbouring treatment room (see Figure 4.1a).

After passing through the beam exit window, the beam was collimated by two cylindri-

cal brass collimators of 3.3 cm thickness each having a circular shaped aperture of 10 mm

diameter to reduce primary radiation exposure of the in-beam MR scanner (see section

4.1.2). In the neighbouring treatment room, a beam line mounted on a 360 degree rotat-

able isocentric gantry with a ferromagnetic mass of about 110 t and multiple dipole and

quadrupole magnets was present. The magnetic field of the beam line is dynamic, as the

beam line magnets are only energised when the beam is transported into one of the two

rooms, and depends on the beam energy. The earth magnetic field at the facility was about

50 µT(National Centers for Environmental Information, 2018).

4.1.2 MR Scanner

An open low-field MR scanner was chosen for this study because, as compared to high-

field MR scanners, it provides larger flexibility to transport the beam to the field-of-view

(FOV) and position study objects and dosimetry equipment in the FOV, smaller suscep-
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tibility artifacts, a lower specific absorption rate (SAR) allowing for real-time imaging and

tumour tracking without flip angle restrictions, and lower costs (Hayashi et al., 2004; Si-

monetti and Ahmed, 2017). Although the signal-to-noise ratio of low-field scanners is lower

than in high-field scanners, it is expected to be sufficient for anatomical imaging and organ

motion tracking in radiation therapy (Fallone et al., 2009). Furthermore, on-board low-field

MR imaging has been shown to outperform on-board computed tomography imaging in

MRiXT regarding organ visibility (Noel et al., 2015).

The MR scanner comprised a C-shaped permanent magnet (MrJ2200, Paramed Med-

ical Systems, Genova, Italy). It generated three different types of electromagnetic fields:

a vertically upwards oriented static magnetic field (B0 = 0.22 T), three pulse sequence-

dependent, dynamic gradient fields for spatial encoding (typical gradient amplitude 0.5 mT/m

≤ Gx,y,z ≤ 20 mT/m) and a pulsed RF wave for proton spin excitation at the Larmor reso-

nance frequency (B1 ≤ 30 µT and fNMR = 9.49 MHz) (Paramed S.r.l, 2010). The scanner

was equipped with a set of six receive coils dedicated to different body regions (hand, knee,

shoulder, hip, upper and lower spine). The scanner was designed for musculoskeletal imag-

ing and was not capable of real-time imaging.

4.1.3 Potential Sources of Interference

Effects of the MR Scanner on the Proton Beam

Since the proton beam was directed perpendicularly to the magnetic field of the MR scan-

ner, it was expected to experience the Lorentz force and thereby be deflected (see chapter

3). Since the main magnetic field B0 was permanent (i.e. always on), it needed to be taken

into account for positioning the scanner. On the other hand, both the pulsed RF wave and

the dynamic gradient fields were small (up to 30 µT and 20 mT/m, respectively) in com-

parison and only present during MR image acquisition. Their influence on the beam was

assessed by beam profile measurements.

Effects of the Proton Therapy System on the MR Image

An alteration inB0 results in a Larmor frequency shift that can translate into an off-resonance

voxel shift in the frequency and slice encoding directions of the MR image (see equations

2.8 to 2.10). For the used scanner, a difference in the B0 field of 0.5 µT ≤ ∆B0 ≤ 20 µT
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can induce a voxel displacement of 1 mm, depending on the pulse sequence-dependent

amplitude Gx,y,z of the dynamic gradient fields (see equation 2.8). A spatially uniform per-

turbation of B0 can cause a global uniform image shift, whereas a non-uniform perturbation

can lead to local image deformations, which are harder to correct for than a global image

shift. Magnetic fields that change during image acquisition can lead to non-linear image

artefacts such as ghosting.

A change in B0 can be induced in the proton therapy facility by changes in the status and

current settings of the beam line magnets and in the position of the gantry in the neigh-

bouring treatment room. Since the beam line magnets to the treatment room are always

switched off during irradiation in the experimental room, these cannot interfere with in-beam

MR imaging. However, perturbations in the environmental magnetic field due to rotation of

the ferromagnetic gantry in the adjacent treatment room cannot be excluded a priori. Fur-

thermore, energising the beam line magnets to the experimental room for irradiation can

be expected to cause an alteration of B0 due to the magnetic fringe field of the beam line.

These effects were studied by characterising the B0 magnetic field homogeneity and the

MR image quality at different gantry angle positions, and with and without energised beam

line magnets, respectively.

In addition to this, RF signals produced in the facility with a frequency interfering with

fNMR can appear as line or zipper artefact on the MR images. The conventional way to

mitigate this, i.e. placing the MR scanner in a copper-shielded room, is not applicable here

due to the size of the experimental room and the variety of technical equipment therein. A

compact Faraday cage surrounding the MR scanner had therefore to be fabricated.

4.1.4 Integration of Both Systems

Beam Deflection: Alignment of MR Scanner and Beam Isocentre

The MR scanner was elevated to the level of the beam line (127 cm above floor level)

using a trolley and initially placed such that its magnetic isocentre coincided with the beam

isocentre.

To determine the lateral position of the scanner relative to the central beam axis, beam

deflection in the horizontal plane needed to be taken into account. For this purpose, the

central plane of its B0 field was mapped with a high-linearity Hall probe (HHP-VU, Arepoc

s.r.o., Bratislava, Slovak Republic) from the isocentre of the magnet up to a distance of
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(a) (b)

Figure 4.1: (a) Schematic floor plan of the UPTD proton therapy facility comprising a therapy room
with rotating gantry (left) and an experimental room with a horizontal static research beam line
(middle). The 5 G (0.5 mT) lines of the cyclotron, MR scanner and the last beam line magnet are
indicated by green circles. (b) Experimental setup with horizontal static beam line and in-beam MR
scanner (upper front panel of Faraday cage removed). Figure adapted from Schellhammer et al.
(2018a).

±140 cm in steps of 5 cm (see Figure C.1 in Supporting Information). This field map was

then used as input for Monte Carlo simulations (Geant4 toolkit version 10.2.p02, Agostinelli

et al. (2003) and Allison et al. (2006)) to calculate the lateral beam deflection at the beam

isocentre for beam energies between 70 and 230 MeV. A mean lateral beam deflection of

2 cm relative to the central beam axis was found at the isocentre, ranging between 2.4 cm

and 1.3 cm for 70 MeV and 230 MeV, respectively. Thus, the MR scanner was moved by

2 cm from the central beam line axis in the direction of the beam deflection.

To verify that the beam was well within the FOV of the MR scanner, a water-filled cylin-

drical phantom of 10 cm length and 10 cm diameter (ACR Small MRI Phantom, New-

matic Medical, Grand Rapids, USA) was placed centrally in the FOV. A radiochromic film

(Gafchromic EBT3, Ashland, USA) was affixed vertically to the front face of the phantom

prior to irradiating it with a 125 MeV proton beam that was fully stopped inside the phantom.

The dose distribution deposited on the film confirmed that the beam was centrally incident

on the phantom, with a vertical and horizontal deviation from the phantom centre of 0.01 cm

and 1.00 cm, respectively, and a spot size (1 sigma) of 5 mm.

69



4 Integrated In-Beam MR System: Proof of Concept

RF Interference: Faraday Cage

The scanner was shielded from the RF sources of the facility, mainly the cyclotron acceler-

ating high voltage, by a compact Faraday cage made of wood and 0.12 mm copper sheets

(Ion Beam Applications SA, Louvain-la-Neuve, Belgium). The low-power RF attenuation

of the cage was 75 dB at 9.5 MHz, as measured by Holland Shielding Systems BV (Dor-

drecht, The Netherlands). With the cage closed, external RF interference was therefore not

expected to degrade the performance of the MR scanner or the proton therapy system.

To transport the beam to the FOV of the MR scanner, a cylindrical aluminium beam guide

(20 cm length, 8 cm diameter) was installed into the wall of the cage at the point where the

beam was incident on the wall. The beam guide protruded to both sides of the wall by

10 cm. No magnetic shielding was applied.

After installation, the magnet was mechanically shimmed to generate a homogeneous

B0 field by Paramed Medical Systems (Genova, Italy).

4.2 Beam and Image Quality in the Integrated Setup

The beam and MR image quality in the in-beam MR scanner are assessed in the following.

For this purpose, firstly the beam deflection due to the static and gradient magnetic field

of the MR scanner is quantified by beam profile measurements. Secondly, the magnetic

field homogeneity of the scanner placed in the proton therapy facility is determined, and

its dependence on the angular rotation of the gantry in the neighbouring treatment room

is quantified. Thirdly, the image quality of MR images acquired of a healthy volunteer, a

sarcoma patient, and a tissue phantom is assessed qualitatively. Lastly, MR image quality

is quantified by a standardised imaging phantom with and without simultaneous proton

beam irradiation.

4.2.1 Beam Profile

While the proton range is not expected to be affected by a 0.22 T magnetic field (see section

3), the Lorentz force can affect the lateral beam profile. Therefore, beam profiles were

acquired behind the MR scanner to test whether the the in-room beam stopper at the wall

opposite to the beam line was sufficient to absorb the deflected beam, and whether the

magnetic gradient fields of the MR scanner affected the beam quality.
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(a) (b)

Figure 4.2: Transverse beam profile of a 72 MeV proton beam measured behind the MR scanner,
normalised to the maximum intensity. (a): Two-dimensional profile. The 10 % isoline is marked in
white as a point of orientation. (b) Vertical and horizontal central line profiles measured during
acquisition of a coronal spin echo image (orange) and without simultaneous imaging (blue, left
ordinate). The difference between the profile with and without simultaneous imaging is displayed in
percentage points (grey, right ordinate). Figure adapted from Schellhammer et al. (2018a).

Material and Methods

Transverse beam profiles were acquired (with the top of the Faraday cage removed) with

and without MR scanner in place for proton beams of three different energies (E0 =72 MeV,

125 MeV and 219 MeV) using a pixelated scintillation detector (Lynx, IBA Dosimetry, Schwar-

zenbruck, Germany) positioned 110 cm downstream of the isocentre (i.e. at 220 cm down-

stream of the beam exit window). Bivariate Gaussian functions were fitted to the beam

profiles to determine the beam centre and width (i.e. standard deviation) in both horizontal

(i.e. parallel to the floor level) and vertical (i.e. parallel to gravity) direction.

To assess the effect of the dynamic gradient fields on the beam quality, the beam pro-

file measurements were repeated for the most magnetic field-sensitive beam energy (i.e.

72 MeV) during acquisition of three sequences varying in pulse sequence technique and

gradient orientation: a vertical (transverse) and a horizontal (coronal) spin echo image and

a vertical gradient echo image (gradient amplitude 0.7 mT/m ≤ Gx,y,z ≤ 6.1 mT/m). Differ-

ence images were acquired between beam profiles measured with and without simultane-

ous imaging (i.e. gradient fields) for all three sequences, and between three repeated beam

profile measurements acquired without simultaneous MR imaging. Beam rotation was not

assessed as this was only expected to occur in configurations where the B0 field is oriented

parallel to the beam (Oborn et al., 2015).
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Results and Discussion

With the MR scanner in place, the beam showed a horizontal deflection of 22, 16 and 11 cm

for 72, 125 and 219 MeV, respectively, and a vertical deflection below 0.6 mm relative to

the central beam axis at 220 cm downstream of the beam exit. Therefore, the beam was

expected to miss the in-room beam stopper in the opposite wall, which was another 6 m

downstream of the measurement point. As a consequence, a water tank was installed as a

mobile beam stopper at the distal end of the scanner.

No relevant difference was observed between the beam profiles acquired with and with-

out image acquisition for all tested sequences (Figure 4.2). The beam centres and widths

agreed within 0.02 mm for all image acquisitions relative to those acquired without simulta-

neous imaging. This suggests that the beam quality can be expected not to be deteriorated

during MR image acquisition, and that treatment planning can be performed without taking

into account the dynamic MR fields. However, positive and negative components of the Gx

gradient of the MR scanner may have evened out along the beam path, such that future

dose measurements in the FOV of the MR scanner are required to fully confirm this.

4.2.2 MR Magnetic Field Homogeneity

The static magnetic field of the proton therapy facility, which is governed by the fringe field

of the cyclotron, may limit the achievable spatial homogeneity of the B0 field of the MR

scanner. Furthermore, the rotating ferromagnetic mass of the gantry in the neighbouring

treatment room may affect both the spatial homogeneity and the absolute value ofB0, which

can lead to image deformations and shifts, respectively. The homogeneity and absolute

value of B0 were therefore quantified at different gantry angles and during gantry rotation,

and compared to the vendor’s specifications.

Material and Methods

The magnetic field on a 22 cm diameter spherical volume (DSV) was mapped three times by

a vertically rotatable magnetic field camera placed in the centre of the FOV (MFC3045/3048,

Metrolab, Geneva, Switzerland). The camera comprised 16 individual NMR probes ar-

ranged in a semicircle at an angle θ (see Figure 4.3). The magnetic field at the position

of a probe was measured by irradiating a range of radio-frequencies to the probe and de-
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(a) (b) (c)

Figure 4.3: Magnetic field camera. (a) Schematic representation of the half-moon shaped camera
with 16 individual NMR probes. (b) A 3D field map on a spherical surface is acquired by rotation of
the camera. (c) Setup of the camera inside the FOV of the MR scanner.

tecting its Larmor frequency by resonance (METROLAB Instruments SA, 2004). By rotating

the camera to 12 angular positions ϕ, a three-dimensional map of the magnetic field on a

spherical surface of 22 cm diameter was acquired (see Figure 4.3b). The mean Larmor

frequency and the peak-to-peak homogeneity, i.e the difference between the lowest and

highest Larmor frequency on the sphere, were extracted. The gantry in the neighbouring

room was at 0◦ during these measurements.

To quantify the influence of the gantry angle, this measurement was repeated three times

each with three further static gantry positions (90◦, 180◦, 270◦) and once during a full

gantry rotation at low speed (1◦ per second) and high speed (6◦ per second) in clockwise

and counter-clockwise direction, respectively (see Figure 4.4a). The measured frequen-

cies were corrected for their temperature-dependent temporal drift with a linear function

(Riemann, 2018).

Results and Discussion

The reference magnetic field homogeneity was 88 ppm relative to the mean Larmor fre-

quency f̄NMR = 9.496 19 MHz (see Figure 4.4b). This homogeneity was within the vendor’s

specifications and therefore accepted. Differences between the three repeated measure-

ment of f̄NMR and the homogeneity were smaller than 1 Hz and 1 ppm, respectively, indi-

cating a high measurement reproducibility (see Figure 4.4a).

All differences in f̄NMR and the homogeneity for the different gantry angles and during
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(a)
(b)

Figure 4.4: NMR frequencies measured by the magnetic field camera in a 22 cm diameter spherical
volume in the FOV of the MR scanner. (a) Central frequency (top) and peak-to-peak magnetic field
homogeneity (bottom) for different gantry angles and during clockwise (cw) and counter-clockwise
(ccw) rotation. The average of the central frequency and homogeneity is depicted as orange dashed
line. (b) Polar representation of the magnetic field map as measured at 16 probe angles θ and 12
rotation angles ϕ at a static gantry angle of 0◦.

the gantry rotation were within 2 Hz and 2 ppm, respectively. With the gradient amplitudes

of the MR scanner (0.5 mT/m ≤ Gx,y,z ≤ 20 mT/m), the differences in f̄NMR and the ho-

mogeneity translate into pixel shifts below 0.1 mm and 1 µm, respectively (see equation

2.8), which is negligible for radiotherapy applications. This implies that MR imaging at the

beamline in the experimental room is not affected by a rotation of the gantry in the neigh-

bouring treatment room. Therefore, in-beam MR images can be acquired with the in-beam

MR scanner regardless of the patient treatment-dependent gantry position. However, it is

noted that irradiation in the experimental room is technically not possible when the beam

line magnets to the treatment room are energised, such that activities in the treatment

room cannot fully be neglected during experiments being performed with the in-beam MR

scanner in the experimental room.

4.2.3 MR Image Quality - Qualitative In Vivo and Ex Vivo Test

As a first test of the MR image quality of the in-beam MR system, images were acquired of

a healthy volunteer, a sarcoma patient and a sausage phantom, and evaluated qualitatively.
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(a) (b) (c)

Figure 4.5: MR images acquired with the beam line to the MR system switched off. (a) STIR gradient
echo image of a knee, (b) T1-weighted gradient echo image of a hand palm, and (c) T1-weighted
spin echo image of an upper arm, with a soft-tissue sarcoma marked by arrows. Figure adapted
from Schellhammer et al. (2018a).

Material and Methods

Since the MR scanner was mainly designed for musculoskeletal images of the extremities,

the initial test consisted of images of the knee and hand palm of a healthy volunteer and

of a soft-tissue sarcoma of the right upper arm of a patient. Common pulse sequences

for extremities were used: a short inversion-time inversion recovery (STIR) gradient echo

image of the knee, a T1-weighted gradient echo image of the hand palm, and a T1-weighted

spin echo image of the sarcoma (see Table C.2 for sequence parameters). For these three

scans, the knee, hand and knee coil were used, respectively. The observed image quality

was rated qualitatively by a radiation oncologist with expertise in treating extremity soft

tissue sarcoma. For safety reasons, these scans were performed while the beam line in the

experimental room was switched off.

To assess the effect of the beam line magnets and the proton beam on the MR images, a

mixed sausage phantom was placed in the knee coil of the MR scanner. MR images were

acquired under three scenarios: (a) without beam, (b) with energised beam line magnets

and (c) during irradiation at a high proton current and energy (5 nA and 215 MeV, respec-

tively). A T1-weighted spin echo sequence was used as it represents a commonly used

pulse sequence. To ensure that MR imaging in (b) was started after the current energising

the beam line magnets had reached a stable level, the environmental magnetic field in the

experimental room was monitored using a fluxgate magnetometer (TFM1186, Metrolab,
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: T1-weighted spin echo image of a mixed sausage without beam (a), with energised
beam line magnets (b) and during proton irradiation at 215 MeV and 5 nA (c). Difference images
(d-f) show a submillimetre uniform shift in (vertical) frequency-encoding direction. Figure adapted
from Schellhammer et al. (2018a).

Geneva, Switzerland). The measured time delay between switching on the magnets and

the magnetic field change was less than ten seconds.

Results and Discussion

The anatomical images showed the expected image quality for a 0.22 T musculoskeletal

MR scanner and enabled the discrimination of relevant anatomical structures, i.e., muscles,

tendons, vessels, fat, bone, and tumour (Figure 4.5). The observed image quality was rated

to be sufficient for target volume definition and positioning by the radiation oncologist. The

acquisition times ranged between 4 and 5.5 minutes.

In the images of the sausage phantom (see Figures 4.6a-c), no visible beam influence

or image deformation was detected. However, a submillimetre, spatially uniform shift of
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(a) (b)

Figure 4.7: ACR Small Phantom. (a) Front and side view. (b) The phantom placed inside the knee
coil, the holder and the MR scanner in front of the beam exit.

the phantom in frequency-encoding direction was observed in the difference images (see

Figures 4.6d-f).

These results show that simultaneous imaging and irradiation with a static beam is possi-

ble with the in-beam MR scanner without major image distortion. The image shift can most

likely either be explained by statistical fluctuations in the pre-scan frequency calibration of

the MR scanner, or by alterations in the Larmor frequency due to the fringe field of the

beam line magnets. Therefore, a systematic analysis of the MR image quality, especially of

image shifts, is required.

4.2.4 MR Image Quality - Quantitative Phantom Tests

To analyse the image quality of the in-beam MR scanner and its behaviour under simultane-

ous irradiation with energised beam line magnets, a multi-parameter study was performed

by adapting a standardised MR quality assurance protocol.

Material and Methods

Phantom

The American College of Radiology (ACR, Reston, USA) has established phantoms and

guidelines for standardised MR image quality assurance (American College of Radiology,
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Table 4.1: MR sequence parameters for the image quality tests. Parameters marked with a cross
(+) deviate from the ACR protocol due to limitations of the MR scanner. The GE sequences were
added to the ACR protocol for this study.

Sequence Locator T1 SE T2 DE SE T1 GE T ∗2 GE
FOV diameter / cm 12 12 12 12 12
Number of slices 1 7 7 7 7

Interslice space / mm - 3 3 3 3
Slice thickness / mm 10+ 5 5 5 5

Matrix size (192,152) (192,152) (192,152) (192,152) (192,152)
Number of excitations 1 1 1 1 1

Echo time / ms 20 20 28+,93+ 8 30
Repetition time / ms 200 500 2000 30 80

Flip angle / o 90 90 90 20 20
Acquisition time (min:s) 0:35 1:21 3:01 1:10 1:52

2017). The image quality of the in-beam MR scanner was studied following these guide-

lines, and using the ACR Small Phantom (see Figure 4.7a). This phantom is a hollow

cylinder of PMMA equipped with a number of contrast structures enabling the quantita-

tive analysis of different image quality parameters. It consists of acrylic plastic and is filled

with a water-based solution containing 10 mM nickel chloride and 0.45 mass percent aque-

ous sodium chloride to mimic tissue-like magnetic susceptibility, electrical conductivity and

relaxation times. The inner length and diameter are 100 mm.

The phantom was used in combination with the knee coil of the MR scanner (see Figure

4.7b). Both were placed in an in-house designed, dedicated holder ensuring a reproducible

positioning in the centre of the FOV of the scanner. PMMA plates were affixed to the upper

and lower front of the phantom to generate a flat entrance surface for the proton beam.

MR sequences

Following the ACR Small Phantom protocol (American College of Radiology, 2017), a

sagittal locator scan and a set of seven axial T1- and T2-weighted spin echo (SE) images

were acquired for each measurement (see Table 4.1). Since gradient echo (GE) sequences

are commonly used for real-time imaging and more sensitive to magnetic field inhomo-

geneities than SE sequences, two GE sequences were added to the protocol, with seven

axial slices each: first, a fast T1-weighted GE sequence using the shortest possible rep-

etition time of the MR scanner, and second, a magnetic field-sensitive T ∗2 -weighted GE

sequence using the highest possible echo time. A subsequent acquisition of the locator
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(a)

1

(b)

3

(c)
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7

(e)

Figure 4.8: MR images of the ACR Small Phantom used for image quality analysis. (a): Sagittal lo-
cator. (b)-(e): Axial slices, with slice number in the bottom left. The shown examples are T1-weighted.

and the four SE and GE sequences is called ’imaging set’ in the following.

Imaging and irradiation

To separate statistical fluctuations from systematic differences in the image quality, 24

imaging sets were acquired each with (a) the beam line magnets switched off and (b)

during simultaneous proton beam irradiation. Image sets with and without irradiation were

acquired alternately to minimise the influence of possible temporal dependencies which

could be caused for example by the temperature-dependence of the permanent magnet

material.

The proton beam energy (125 MeV) was chosen such that the beam traversed all axial

imaging planes and stopped at the distal region of the phantom behind the last imaging

plane. This energy was calculated by a simple Geant4 Monte Carlo simulation of monoen-

ergetic, parallel proton pencil beams of different energies through a simplified phantom

without inner structure. The beam current was set to the maximum (5.4 nA at the beam

exit) to obtain a worst-case estimate of any beam-related effects. Since the gantry position

did not affect the magnetic field inside the FOV of the MR scanner (see section 4.2.2), it

was not taken into account during this experiment. All images were acquired with the beam

line to the treatment room switched off.

Before each imaging set, a calibration of the transmission RF frequency f0 was per-

formed by determining f0 from the maximum of the frequency distribution as measured

from an FID signal, and a scout scan, i.e. a set of three orthogonal SE localiser images,

was acquired with the beam line switched off. On the scout scan, the position of the imaging

slices in the phantom was visually verified according to the ACR protocol.
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Image analysis

Image parameters were evaluated semi-automatically using the in-house developed and

internally validated AMRIQA software tool (Czernohorsky, 2016). A detailed description of

the image parameter acquisition from the image slices 1-7 (see Figure 4.8) can be found

in literature (Davids et al., 2014; Czernohorsky, 2016; Dünger, 2017) and in the ACR Small

Phantom protocol (American College of Radiology, 2017). A summary is given below.

The geometric accuracy of the images was tested by comparing the phantom diameter

in image slices 1 and 3 and the phantom length in the localiser image to their known value.

The horizontal and vertical spatial resolution were determined by the size of the smallest of

three array structures that could be distinguished in slice 1. The ghosting ratio was deduced

from the difference between the signal of elliptical regions next to the phantom in phase

and frequency encoding direction on slice 4. The image uniformity was defined as the

percentual difference between the brightest and darkest 1 cm2 region in the fluid in slice

4. The slice position was determined from the length difference of two crossing wedges in

slice 1. The low contrast object detectability was determined as the combined number of

detectable low-contrast spokes in slices 6 and 7, and the slice thickness was determined

from the length of two horizontal bars in slice 1 produced by crossing tilted capillaries.

In addition to these ACR criteria, the signal-to-noise ratio (SNR) was deduced from the

mean phantom fluid signal and the standard deviation of the signal in a region outside of

the phantom (Dünger, 2017).

Since a uniform phantom shift was detected in the preceding study (see section 4.2.3),

the position of the centre of the phantom in both frequency and phase encoding direction

was analysed as additional parameter. These parameters were added to the software for

this study by implementing a circular Hough transform (Duda and Hart, 1972) in slice 4.

This transform replaced the originally implemented fit procedure of two half circles to the

phantom outline, which was shown to be less effective (see Figure 4.9a).

The automated analysis was supervised visually to detect any implausible results. Two

parameters, the slice thickness and the low-contrast detectability, were found to be not

reliably quantified by the software due to the low SNR of the MR images. These were

therefore evaluated manually according to the ACR Small Phantom protocol (American

College of Radiology, 2017).

The median and interquartile range of all 13 image quality parameters and 5 sequences

were calculated for the images acquired with and without simultaneous irradiation. As a first
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external reference, these results were compared to the ACR criteria. It should be noted,

however, that these criteria were designed for diagnostic applications, which typically use

high-field (≥ 1.5 T) scanners with a strongly increased SNR in comparison to a 0.22 T

scanner. No dedicated criteria exist for low-field musculoskeletal scanners and radiotherapy

applications.

To compare the images acquired with and without simultaneous irradiation, the medians

and interquartile ranges of all image quality parameters were calculated for both scenar-

ios. To test the hypothesis that the image quality with and without simultaneous irradiation

was equivalent, an equivalence test (Walker and Nowacki, 2011) was applied for all im-

age quality parameters and sequences. Since no criteria have been established so far, the

equivalence margins were based on the phantom- and image-specific discretisation: one

pixel width for the geometrical parameters (i.e. 0.47 mm along phase and frequency en-

coding direction and 5 mm along slice encoding direction), one spoke for the low-contrast

object detectability, 0.1 mm for the resolution, and 10 % of the median for the SNR, im-

age uniformity, and ghosting ratio. As the statistical analysis of this amount of parame-

ters (12× 4 + 1 = 49) would yield an unacceptable amount of random false-positives, a

Bonferroni-Holm correction (Holm, 1979) was applied to achieve a family-wise false pos-

itive error rate of α = 5 %. An image quality parameter was considered equivalent if the

corresponding equivalence test was significant. Otherwise, the statistical difference in the

parameter was tested by an inferiority t-test with a significance level of α = 5 %. Since the

parameter distributions were monomodal and fairly symmetric, a normal distribution was

assumed for the statistical tests.

Results and Discussion

All measured image quality parameters are given in Tables C.3 to C.7 in the Supplementary

Information section and will be summarised in the following.

ACR image quality with the beam line switched off

The geometrical image quality parameters showed very good agreement with the ACR

criteria. The geometric accuracy, spatial resolution, slice position, and spatial resolution

tests were passed by all four axial sequences, and the sagittal geometric accuracy test was

passed by the sagittal locator sequence.

As common for low-field MR scanners, the median SNR of the MR images was low,
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(a) (b) (c)

Figure 4.9: (a) Image analysis on slice 4. Regions used for the SNR test (orange), the ghosting
test (blue), and the phantom centre determination (crosses) using the originally implemented fitting
procedure (yellow) and the newly added Hough transform (green) to detect the phantom contour. (b-
c) Example for the observed image shift along the vertical (frequency-encoding) direction between
two subsequently acquired T ∗

2 -weighted GE images in slice 1. (b) is a difference image between the
two images and (c) is a composite image showing the two images overlaid in complementary color
bands (green and magenta).

especially for the T1-weighted GE sequence (46, 48, 14 and 52 for the T1- and T2-weighted

SE and the T1- and T ∗2 -weighted GE sequences, respectively). This resulted in a low image

uniformity, a high ghosting ratio, and a small low-contrast object detectability in comparison

to the ACR test criteria. Consequently, the image uniformity test was failed by all sequences.

The ghosting test was failed by all sequences except for the T1-weighted GE sequence. The

low-contrast detectability test was failed by the GE sequences and only partly passed by

the SE sequences. As signal noise obscured the slice thickness test bars, the test was

failed by the T1 SE and T ∗2 GE sequences and was not performable for the T1- weighted

GE sequence. This test was only passed by the T2-weighted SE sequence.

Phantom position with the beam line switched off

The median position of the phantom centre agreed between the four SE and GE se-

quences within 0.3 mm. However, the variability of the phantom centre showed a sequence-

dependence in vertical (frequency-encoding) direction, with an interquartile range increas-

ing from 0.5 to 1.5 mm, and a maximum deviation increasing from 1.0 to 3.5 mm (see

Figure 4.10 and 4.9). The spread increased with increasing gradient amplitude Gx of the

sequences, which was 2.6 mT/m, 1.5 mT/m, 5.7 mT/m and 0.7 mT/m for the T1- and T2-

weighted SE and the T1- and T ∗2 -weighted GE sequences, respectively, according to the
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Figure 4.10: Measured positions of the phantom centre relative to the centre of the FOV in the
(vertical) frequency-encoding direction in MR images for different sequences, acquired with and
without simultaneous irradiation.

manufacturer.

This effect can be understood by fluctuations in the pre-scan frequency calibration, which

are in the order of 50 Hz, according to the manufacturer. An error in the resonance fre-

quency ∆f results in a spatial off-resonance misencoding of (see equation 2.8)

∆x = 2π∆f
γGx

(4.1)

in the frequency-encoding direction. Thus, a frequency fluctuation in the order of 50 Hz

leads to image shifts in the order of 1.7 mm for Gx = 0.7 mT/m. This has to be taken into

account for image-guided proton therapy, since an alignment of the isocentres of the proton

beam and the MR scanner has to be ensured.

The phase-encoding direction of an MR image is not affected by uniform frequency shifts

(see equation 2.9). Accordingly, the variability was smaller in the horizontal direction and

no sequence-dependence was observed (see Figure 4.11). The interquartile range was

between 0.4 and 0.5 mm (i.e. one pixel) for all sequences.

Image quality during irradiation

For most image quality parameters, the results were statistically equivalent with and with-

out simultaneous irradiation, and no relevant median differences were observed (see Ta-

bles C.3 to C.6). Four exceptions were not statistically equivalent for all sequences and are

discussed in the following.

The vertical position of the phantom centre showed a sequence-dependent median shift

∆x into the negative direction of up to 0.7 mm for the T ∗2 -weighted GE sequence (see Ta-

ble C.6 and Figure 4.9). The same trend was observed for all sequences. The inferiority
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Figure 4.11: Measured positions of the phantom centre relative to the centre of the FOV in the (hor-
izontal) phase-encoding direction in MR images for different sequences, acquired with and without
simultaneous irradiation.

test showed that the reduction of the vertical phantom position with and without simulta-

neous irradiation was significant for the T1-weighted SE and the T1- and T ∗2 -weighted GE

sequences (with p = 0.04, p = 0.01 and p = 0.04, respectively).

This indicates that a frequency shift in the order of 20 Hz was induced by the beam line

magnets, corresponding to a change of the magnetic field of about 0.5 µT (see equation

4.1). This effect has recently been confirmed in magnetometry measurements (Riemann,

2018) and may possibly be counterbalanced by performing the pre-scan frequency calibra-

tion while the beam line magnets are already energised.

Since the slice encoding gradient amplitude Gz was higher than Gx of the T ∗2 -weighted

GE sequence (≥ 4.2 mT/m for all sequences), this direction, represented by the slice po-

sition parameter, was less sensitive to magnetic field changes and showed no relevant dif-

ference in images acquired with and without simultaneous irradiation (median differences

were ≤ 0.2 mm). The phase-encoding direction is not affected by uniform magnetic field

changes (see equation 2.9) and therefore showed no relevant changes (≤ 0.2 mm). Its me-

dian position showed a systematic deviation of 1.5 mm from the centre of the FOV, which

can be attributed to imperfections in the phantom holder design.

The SNR was the second parameter which was not statistically equivalent for all se-

quences, with a median difference of up to 1.5 for the T ∗2 -weighted GE sequence (see Ta-

ble C.6). A decrease of SNR was observed for all sequences during proton irradiation. This

decrease was statistically significant for the T1- and T2-weighted SE and the T ∗2 -weighted

GE sequences (with p = 0.01, p = 0.01 and p = 0.02, respectively). This effect is consis-

tent with a beam line-induced resonance frequency gradient, which leads to an imperfect

slice excitation and therefore a reduced RF signal picked up by the receiver coils, and is
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therefore expected to also be compensable by performing the pre-scan frequency calibra-

tion with energised beam line magnets. Another possible cause may be electronical noise

induced in the receiver coils by the beam.

Furthermore, the phantom diameter in slice 1 of the T ∗2 -weighted GE sequence showed

no statistical equivalence. Here, no consistent trend was observed between the sequences.

A high fluctuation was observed as compared to the other sequences, and consequently

the inferiority test was not significant. This can be understood from geometrical distortions

due to magnetic field inhomogeneities, which deformed the phantom from its circular shape

inducing uncertainties to the Hough transform (see Figure 4.9). Since this effect was spe-

cific to the T ∗2 -weighted GE sequence, which applied the lowest gradient amplitude, this

indicates that the range of applicable MR sequences is limited in the context of the environ-

mental magnetic field of the proton facility.

The ghosting ratio showed no statistical equivalence for three of the four sequences. No

consistent trend was observed between the sequences, but a high fluctuation as compared

to the median. The inferiority test was not significant. This indicates that the fluctuations

in the ghosting ratio were higher than the statistical analysis allowed. Future studies are

necessary to understand this effect in detail.

The gradient amplitudes applied by the used MR scanner were small compared to those

used in most common MR scanners. It is expected that sequences with larger gradient am-

plitudes, and correspondingly high receiver bandwidths, will be more robust against mag-

netic field perturbations induced by the proton therapy facility, as voxel displacement is

inversely proportional to gradient amplitude (see equation 2.8).

This setup did not comprise a beam line with a nozzle for pencil beam scanning, and the

influence of the scanning magnets therein is expected to be larger than that of the beam

line magnets, since the former are closer to the beam isocentre and have less steeply

decreasing fringe fields. It is therefore mandatory to address this influence in future studies.

Initial work on this issue has been commenced by Riemann (2018).
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4.3 Feasibility of MRI-based Range Verification

The combination of anatomical imaging and proton range verification based on the same

device appears desirable, and the developed in-beam MR setup allowed for a first ex-

ploratory feasibility test. This study therefore aimed to provide a qualitative proof of concept

for MR-based range verification in a setup of low complexity.

4.3.1 MR Sequences

Material and Methods

A cylindrical plastic bottle filled with deionised water was used as a phantom. The bottle

had a diameter of 9.4 cm and a length of 15 cm. A high proton energy was selected to allow

for a high proton current (Enom = 200 MeV, corresponding to an energy at the beam exit of

E0 = 201.9 MeV, see section 3.2). The beam collimator was removed and a proton current

of 9 nA was applied, which approximately corresponded to twice the maximum current used

for clinical pencil beam scanning (Farr et al., 2008). A PMMA slab of 17.1 cm thickness

was placed at about 40 cm in front of the phantom to stop the beam inside the phantom

at a residual range of approximately 6.4 cm. This range was estimated by (Zhang and

Newhauser, 2009)

Rres,H2O = RH2O(E0)− (S/ρ)air · ρair
(S/ρ)H2O · ρH2O

· dair −
(S/ρ)PMMA · ρPMMA

(S/ρ)H2O · ρH2O
· dPMMA . (4.2)

Tabulated stopping-power data (Berger et al., 2005) was used for the initial proton range

in water RH2O and the material-specific mass stopping-powers (S/ρ)material. The thickness

of the wall of the bottle was 0.1 cm, yielding an overall PMMA thickness of dPMMA =

17.2 cm. The combined thickness of the air between the beam exit window, the PMMA slab

and the phantom was dair = 83.8 cm. The densities of PMMA, air and water were estimated

as ρPMMA = 1.19 g cm−3, ρair = 0.001 g /cm−3 and ρH2O = 1.00 g /cm−3, respectively. The

overall uncertainty of the residual range in the phantom due to these approximations and

setup uncertainties was estimated to be about 3 mm.

Six different basic MR sequences were used, which differed in image contrast and ac-

quisition technique: two SE sequences (one T1-weighted and one T2-weighted), two GE
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sequences (proton density (PD) and T ∗2 -weighted), and two inversion recovery (IR) se-

quences (IRSE and IRGE). The sequence parameters are given in Table 4.2.

All image acquisitions, including the pre-scan frequency calibration and scout acquisition,

were performed with energised beam line magnets in order to take into account their fringe

field-induced perturbation in B0. For each sequence, a reference image was first acquired

without beam. For the second image, proton beam irradiation and MR imaging were started

at the same time, and irradiation was stopped immediately after the end of image acqui-

sition. The two images were compared visually to detect any beam-induced effects. Three

further images were acquired immediately after irradiation was stopped to detect residual

effects after irradiation.

The sequences were set up to acquire a single horizontal slice (i.e. parallel to the floor

level) in the central plane of the beam. The position of this plane in the coordinate system

of the MR scanner was determined as follows. A transversal EBT3 film was attached to

the front face of the phantom placed in the MR scanner, and the phantom and film were

irradiated by the proton beam (at 200 MeV and 0.136 nA for 60 s). The central plane of the

beam, as visible on the film, was marked by attaching two spherical MR-markers of 6 mm

diameter (PinPoint, Beekley Medical, Bristol, USA) to both sides of the beam spot. A T1-

weighted SE sequence was acquired comprising five horizontal slices of 5 mm thickness

with an interslice spacing of 1 mm. The two markers were only visible in one of these slices.

This slice position was therefore saved and chosen for all subsequent sequences. The

overall uncertainty of the slice position was estimated to about 4 mm.

The mean dose measured on the film dosimeter in a circular region of 1 cm diameter

around the beam centre was 4 Gy. Assuming that the dose rate scales linearly with the

proton beam current, the dose rate in the plateau region was about 30 Gy/min per nA for

the setup, i.e. 270 Gy/min for 9 nA. The spot size (full-width half maximum) was determined

by fitting a two-dimensional Gaussian distribution to the film optical density and was 2.7 cm

in both directions.

Results

A beam-induced effect was clearly visible in the GE and IRGE sequences (see Figure

4.12). Without simultaneous irradiation, the GE sequences showed a hyperintense central

vertical line. During irradiation, this straight line developed a lightning-shaped curvature
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Table 4.2: MR sequence parameters for the range verification tests. The cumulative dose applied
during the sequences was calculated as the product of the acquisition time and the proton beam
dose rate at a proton beam current of 1 nA.

Sequence T1 SE T2 DE SE PDGE T ∗2 GE IRGE IR SE
FOV diameter / cm 18 18 18 18 18 18
Number of slices 1 1 1 1 1 1

Slice thickness / mm 5 5 5 5 5 5
Matrix size (192,152) (192,152) (192,152) (192,152) (192,152) (192,152)

Number of excitations 1 1 1 1 1 1
Echo time / ms 20 28, 93 8 30 8 20

Repetition time / ms 500 2000 200 80 200 500
Inversion time / ms - - - - 150 75

Flip angle / o 90 90 90 90 90 90
Acquisition time (min:s) 1:21 2:53 0:36 0:18 0:35 1:21
Cumulative dose / Gy 41 87 18 9 18 41

with a maximum amplitude at the expected proton range, especially in the PD-weighted GE

sequence (see Figure 4.12c). In the IRGE image acquired during irradiation, a hypointense

region in the shape of a proton beam dose distribution was clearly visible (see Figure

4.12e). The SE sequences showed small to no beam-induced signal alterations. As the

PD-weighted GE and the IRGE sequence showed the strongest beam-induced effect, these

were studied in more detail in the following.

In the three images acquired directly after irradiation, a decreasing beam-induced signal

was observed. The third image acquired after irradiation was visually indistinguishable from

the image acquired before irradiation. Hence, the beam-induced effect was reversible and

faded with a time constant in the order of tens of seconds after irradiation.

4.3.2 Proton Beam Parameters

Material and Methods

To test whether the beam-induced signal depended on the proton current, the above exper-

iment was repeated for the PD-weighted GE and the IRGE sequence at five different beam

currents. The currents were 1 nA, 3 nA, 9 nA, 27 nA, and the maximum current (43 nA).

To study the range-dependence of the effect, the proton range in the phantom was varied

in a second step by changing the proton energy (at a fixed proton current of 9 nA). The

proton energies Enom were 190 MeV, 200 MeV, 210 MeV and 225 MeV. The residual proton
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: MR images for different sequences acquired during proton beam irradiation (200 MeV,
9 nA). (a) T1-weighted SE, (b) T2-weighted SE, (c) proton density-weighted GE, (d) T ∗

2 -weighted
GE, (e) IR SE, and (f) IR GE sequence. The expected range in the phantom (6.4 cm) is marked by
a horizontal dotted line at the y-axis. Reference images acquired without irradiation can be found in
the Appendix (Figure C.2).

range in water as calculated from equation 4.2 was 4.2 cm (190 MeV), 6.4 cm (200 MeV),

8.6 cm (210 MeV), and 12.2 cm (225 MeV). The resulting range differences relative to the

reference energy of 200 MeV are given in Table 4.3.

To compare the expected proton range to the range on the MR images, the range was

measured on the images as follows (cf. Figure 4.12). For the GE sequence, the measured

range was defined as the depth of the maximum amplitude of the inflected central curve.

For the IRGE sequence, it was defined as the depth of the white line distal to the beam-

shaped hypointense region. These definitions were chosen not for physical reasons but to

reduce observer-dependence and increase the reproducibility of the measurement.

Results

As depicted in Figure 4.13, a current-dependence of the beam-induced signal was ob-

served. The signal decreased with decreasing beam current for both the GE and the IRGE
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.13: GE (top row) IRGE (bottom row) images acquired during irradiation with proton beam
currents of 1 nA, 3 nA, 9 nA and 27 nA (from left to right) at 200 MeV. The expected range in the
phantom (6.4 cm) is marked by a horizontal dotted line at the y-axis.

sequence. The influence of the beam was hardly visible at 1 nA for both sequences, but

clearly visible for 3 nA and higher. The amplitude of the lightning-shaped inflected curve

increased with increasing proton current in the GE sequence. In the IRGE sequence, a hy-

perintense region was visible in the Bragg peak region for the highest currents (27 nA and

43 nA).

The range-dependence of the beam-induced signal was visible in the GE and the IRGE

sequence (see Figure 4.14). The measured ranges are given in Table 4.3. For both se-

quences, both absolute ranges and range differences agreed with the calculated values

within 2 mm, except for 200 MeV in the IRGE sequence (3 mm). Measured ranges for both

sequences tended to be smaller than the calculated ranges.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.14: GE (top row) and IRGE (bottom row) images acquired under simultaneous irradiation
with an expected proton range (marked by horizontal dotted line) of 4.2 cm, 6.4 cm, 8.6 cm and
12.2 cm (from left to right) at 9 nA.

4.3.3 Target Material Dependence

Material and Methods

To test the dependence of the effect on the target material, further images were acquired

during irradiation of six other target materials, which varied in composition and viscosity:

ethanol, petroleum, sugar syrup, mayonnaise, gelatine, and smoked pork chop. All materi-

als except for the pork chop were filled in identical cylindrical bottles as described above.

The pork chop had a dimension of approximately (10× 14× 6) cm3. The beam energy and

Energy / MeV 190 (a) 200 (b) 210 (c) 225 (d) (a) - (b) (c) - (b) (d) - (b)
Calculated 4.2 6.4 8.6 12.2 - 2.2 + 2.2 5.8

GE 4.0 6.3 8.7 12.2 - 2.3 + 2.4 5.9
IRGE 4.0 6.1 8.4 12.0 - 2.1 + 2.3 5.8

Table 4.3: Proton ranges in cm calculated from equation 2 and measured on the GE and IRGE
MR sequences for different proton energies, and corresponding range differences relative to the
reference energy (200 MeV).
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(a) (b) (c) (d)

Figure 4.15: GE (a,c) and IRGE (b,d) images acquired under simultaneous irradiation at the max-
imum current (43 nA) of materials with visible beam-induced signal: ethanol (a,b) and petroleum
(c,d).

current were set back to 200 MeV and 9 nA, respectively. An additional image was acquired

at the maximum current (43 nA).

Results

Both effects were observed for both 9 nA and the maximum current in deionised water,

ethanol and petroleum (see Figure 4.15). In mayonnaise, sugar syrup, gelatine, and pork

chop, which are more viscose than the former three materials, no beam-induced effect was

observed for both 9 nA and the maximum current (43 nA) in both sequences (see Figure

4.16).

4.3.4 Discussion

The experiments have shown that an influence of the beam on the MR image is mea-

surable in a GE and a IRGE sequence. The influence was shown to be beam current-

and range-dependent, with an agreement of expected and measured range differences of

2 mm. Deviations can most likely be attributed to setup uncertainties, uncertainties in range

prediction, and uncertainties in the range measurement on the MR images.

A hyperintense vertical line was visible in the GE sequences without irradiation, which is

a known effect for gradient-spoiled GE sequences (Epstein et al., 1996). Here, an additional

phase encoding gradient field is used as a spoiler gradient to eliminate echoes arising from

the remaining transverse magnetization of preceding repetition cycles by spin dephasing

(see section 2.2.2). Since the magnetic field of the gradient is zero in the centre, the trans-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.16: GE (top row) IRGE (bottom row) images acquired under simultaneous irradiation at
the maximum current (43 nA) of materials without visible beam-induced signal: mayonnaise, sugar
syrup, gelatine, and pork chop (from left to right).

verse magnetisation is not spoiled at this position and builds up with each excitation. This

is visible as a line in the centre of the image, which is perpendicular to the phase encoding

direction.

In deionised water, the proton beam induced a deformation of this line at the end of the

beam range, and a beam-shaped signal in the IRGE sequence. Both effects did not disap-

pear immediately after irradiation, but faded with a time constant in the order of tens of sec-

onds after irradiation. Furthermore, they were observed in three liquids of different chem-

ical composition, but not in four materials of higher viscosity. Therefore, a beam-induced

local magnetic field change as well as chemical reactions depending on a specific ion or

molecule, as is the case in Fricke and polymer gel dosimeters (Fricke and Morse, 1927;

Lepage et al., 2001), appear to be improbable causes for the effect. A local increase in

proton density can also be excluded as a possible cause, since this effect is expected to

induce a signal increase, as opposed to the observed effect. Furthermore, the number of

extra protons introduced by the beam is small relative to the number of protons in the target
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material (see section 2.2.1 in Background chapter).

One possible explanation for the observed phenomenon is that the proton beam induced

a local temperature increase in the target, which lead to heat convection inside the target.

To estimate this effect, the temperature increase induced by a proton beam per Gray is

approximated from the heat capacity of water cw ≈ 4.2 kJ /(kg K) as ∆T = ∆E
mcw

= D
cw
≈

0.000 24 K/Gy. For this experiment, i.e. at 18 Gy (corresponding to 9 nA during 35 seconds

of image acquisition) in water at room temperature T0 = 20 ◦C, this translates into a

temperature after irradiation of T1 = 20.004 32 ◦C, which leads to a density decrease of

∆ρ = ρ(T0) − ρ(T1) ≈ ρ(T0)(1 − e−Γ(T1−T0)) ≈ 10−3 kg /m3, with the expansion coefficient

Γ ≈ 0.2 · 10−3 K−1 (Demtröder, 2006). This density difference results in a buoyancy. When

approximated as a sphere of r ≈ 1.5 cm, the heated volume moves upwards with a speed

of v ≈ 2gr2

9η ∆ρ ≈ 0.5 mm/s, with η ≈ 1 mPa s the viscosity of water and g ≈ 10 m/s2 the

gravitational acceleration (Stokes, 1951). This speed is fast enough for a considerable sig-

nal loss during image acquisition, as visible in the IRGE sequence. Since the protons move

in the magnetic field gradient Gz, their phase may be altered relative to that expected for

in-plane protons, which may lead to a local shift in phase-encoding direction, as visible in

the GE sequence. Convection is impeded in viscose materials, which is consistent with the

observation of no beam-induced effect in these materials.

To test the above hypothesis, further studies are necessary involving a phantom with

either mechanically inhibited or controlled convection behaviour. This way, convection can

be excluded or verified as a source of signal displacement. Furthermore, a comprehensive

and systematic analysis of the influence of the different sequence parameters, especially

for the materials which showed no beam-induced effects in this study, is expected to fa-

cilitate a better understanding of the phenomenon. Other influencing factors such as the

timing of irradiation relative to the different MR imaging phases, the direction of the phase

and frequency encoding gradients, the slice position and orientation, and the use of GE

sequences with different spoiling techniques could be investigated.

k-space data is currently not accessible through the software of the used MR scanner

but appears desirable since the contained phase data could be more informative and more

sensitive to detect beam-induced changes. Spatial saturation pulses could allow to reduce

the phantom signal in order to increase the relative beam signal. Moreover, an algorithm

that automatically extracts the proton range from the MR images is expected to be able to

reduce observer-dependent uncertainties.
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Another possibility to detect the proton range via MRI may be dynamic nuclei polarisation

(DNP). Here, the high polarisation of the target electrons is transferred to the protons via the

introduction of radicals, which act as paramagnetic centres, and subsequent irradiation of a

microwave pulse. This way, the proton polarisation is increased by a factor of approximately

100 (Gerfen et al., 1995). Since most radicals are produced in the Bragg peak, this could

enable MR-based range verification. However, DNP is usually performed at low tempera-

tures, and with a microwave pulse of high magnetic flux density. The technical feasibility in

an MRiPT setup has not been investigated yet.

Once these issues have been addressed, this could allow for a further reduction of the

proton current necessary to detect the proton range. If the effect will be transferable to vis-

cose materials as present in the human body, it could possibly be used for in-vivo range

verification. Otherwise, consistency tests of the proton range during machine-specific qual-

ity assurance could be an area of application. As this study showed that MR-based range

verification is feasible in liquids, further research towards this aim is justified.
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4.4 Summary

For the first time, an MR scanner has been integrated with a proton beam line. For this

purpose, an open low-field MR scanner has been placed at the static proton research

beam line of a proton therapy facility. The beam deflection induced by the static magnetic

field of the scanner was taken into account for alignment of the beam and the FOV of the

scanner. The pulse sequence-dependent dynamic gradient fields did not measurably affect

the beam profile behind the MR scanner. The MR magnetic field homogeneity was within

the vendor’s specifications and not influenced by the rotation of the proton gantry in the

neighbouring treatment room. No magnetic field compensation system was required for

simultaneous operation of the MR scanner and the proton therapy system.

MR image quality was shown to be acceptable for the in-beam MR scanner both with and

without simultaneous proton beam irradiation with energised beam line magnets. All geo-

metrical parameters agreed with the mechanical dimensions of the used phantom within

one pixel width, and most image quality parameters of the ACR were shown to be equiva-

lent with and without simultaneous irradiation. However, as common for low-field MR scan-

ners, the SNR of the MR images was low, which resulted in a low image uniformity and

a high ghosting ratio in comparison to the ACR test criteria. A strong fluctuation of the

vertical phantom position due to uncertainties in the pre-scan frequency calibration was

observed, with an interquartile range of up to 1.5 mm. T ∗2 -weighted GE images showed

relevant nonuniform deformations due to magnetic field inhomogeneities. A significant in-

fluence of simultaneous irradiation was observed as a shift of the vertical phantom position

and a decrease in the SNR, both of which can be explained by a change in the B0 field

induced by components of the fringe field of the beam line magnets directed parallel to B0.

While the decrease in SNR is not expected to be relevant (median differences were within

1.5 ), the sequence-dependent phantom shift (median differences of up to 0.7 mm) must be

corrected for.

These results indicate that simultaneous MR imaging and proton beam irradiation is fea-

sible without severe compromises to image or beam quality, but MR sequences need to be

chosen with care in MRiPT. Sequences with strong gradients (i.e. high receiver bandwidths)

are to be preferred due to a decreased risk of off-resonance voxel dislocation. Alternatively,

since phase encoding is unaffected by changes in B0, this method could be used in two

instead of one of the image directions. These two approaches could, however, compromise
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image quality due to increased spin dephasing (i.e. decreased SNR) and acquisition time,

respectively. Another possibility would be a fixed MR-visible frame or markers surrounding

the imaging object, which could be detected automatically on the image to define an image

translation vector. The systematic beam line-induced image shifts can possibly be mitigated

by performing the MR pre-scan calibration with energised beam line magnets. T ∗2 -weighted

sequences should only be applied with care due to the observed risk of geometrical dis-

tortions. Furthermore, future studies should include the effect of switching on the beam

line magnets during MR image acquisition, which could deteriorate the acquired image in

a non-trivial way, for example as ghosts in the frequency encoding direction.

Lastly, a current- and range-dependent influence of the beam on the MR image was

shown to be measurable in fluids for two MR sequences. The effect was not observed in

solid and viscose materials and presumably induced by convection. This method could be

used for consistency tests of the proton range during machine-specific quality assurance in

MRiPT. Further methods to be investigated in future studies, which could allow for in vivo

MR-based range verification, include spatial saturation pulses, the definition of a beam-

induced signature in k-space, and dynamic nuclei polarisation.

Overall, this proof of concept shows the feasibility and potential of in-beam MR imaging

and justifies further research towards the development of a first prototype for MRiPT.
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5 Discussion and Future Perspectives

The main findings of this thesis in the general context of MR-integrated proton therapy and

their implications for future work are discussed in the following.

Magnetic-field induced beam deflection

The deflection of a proton beam slowing down in a medium inside a magnetic field is a

problem unique to MRiPT. Consequently, this basic physics issue has only been picked

up in the last years, with the aim to quantify the dosimetric consequences of magnetic

field-induced beam deflection on the dose distribution in a patient. Monte Carlo particle

tracking simulations are considered the gold standard for dose calculation in radiotherapy

(Paganetti, 2012). However, prior to this work, Monte Carlo-based dose simulations inside

magnetic fields had not been benchmarked with experimental data, which limited the valid-

ity of MRiPT treatment planning studies such as those performed by Hartman et al. (2015)

and Moteabbed et al. (2014).

This work has confirmed experimentally that the deflected beam trajectory and Bragg

peak position can be accurately predicted by Monte Carlo simulations within the measure-

ment uncertainties (0.8 mm) for proton beam energies up to 180 MeV at 1 T. In comparison

to the proton range uncertainties in the patient, which amount to about 8 mm at a proton

range of 15 cm (Paganetti, 2012), the quoted measurement uncertainty appears accept-

able.

These results suggest that proton beam deflection in a static transverse magnetic field

is accurately predictable in a homogeneous medium for intermediate proton energies and

magnetic flux densities, and therefore not impeding the feasibility of MRiPT. The deflection

is a source of uncertainty which adds to the existent uncertainty sources of proton therapy,

but may be further reduced in future studies. Furthermore, the deflection-induced uncer-

tainty is expected to be more than compensated for by the potential of MRiPT to reduce

motion-induced uncertainties.
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At the same time, a future full commissioning of an MRiPT system must include abso-

lute dose, beam profile and depth-dose measurements for the whole proton energy range,

which were beyond the scope of this work, as well as measurements in heterogeneous

media. Regarding the dosimetry devices to be used for this purpose, it is expected that

correction procedures accounting for the magnetic field will be largely transferable from

MRiXT, and probably even less complex due to the range of secondary electrons of proton

beams being several orders of magnitude lower than for photon beams. First studies have

recently shown a limited and dose-proportional effect of a magnetic field on film dosimeters

(Lühr et al., 2018).

Even though this work has shown that Monte Carlo simulations can be used to accu-

rately estimate beam deflection, this is still a time-consuming approach. High-performance

computers are becoming more widely used and fast Monte Carlo dose calculations are un-

der development (Giantsoudi et al., 2015; Tseung et al., 2015). Fast solutions are however

required for real-time image-guided beam tracking as well as for simple estimates of beam

deflection, e.g. to position dosimetry equipment such that the beam traverses it in spite of

the deflection. Furthermore, as suggested by Hartman et al. (2015), it would be favourable

for treatment planning in a magnetic field to perform the first steps of treatment plan optimi-

sation with an analytical model and use Monte Carlo simulations only to finalise the dose

calculation, in order to reduce the overall calculation time. For these purposes, analytical

models had been proposed, which rely on approximations in order to reduce calculation

time.

However, prior to this work, these methods had not been evaluated, compared against

each other or benchmarked with Monte Carlo-based data, which rendered their applicabil-

ity questionable. The analysis presented in this work has revealed that these models are

indeed inaccurate for intermediate to high proton energies and magnetic flux densities, and

not applicable to non-uniform, i.e. realistic patient anatomies or magnetic field distributions.

The model that has been developed in this work, RAMDIM, overcomes these limitations

and is therefore expected to be useful for fast and accurate MRiPT deflection estimation,

treatment plan optimisation and beam tracking.

Notably, the RAMDIM algorithm is not capable of direct dose prediction but can only pre-

dict the central beam trajectory. A pencil beam dose calculation method has been recently

introduced based on a similar algorithm and was shown to yield acceptable agreement to

Monte Carlo simulations both in homogeneous and in slab geometries (Padilla-Cabal et al.,
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2018; Fuchs et al., 2017). Further testing in patient geometries and realistic (non-uniform)

magnetic fields against Monte Carlo simulations or experimental measurements appears

to be the next step to verify this promising approach.

System design

Prior to this work, MRiPT has only been studied as a theoretical modality, without experi-

mental evidence of its technical feasibility. The first in-beam MR system has been presented

in this thesis, consisting of a low-field open MR scanner and a static research proton beam

line. It has been shown that the magnetic field homogeneity and image quality of the in-

beam MR scanner are sufficient for target volume identification in spite of the electromag-

netically contaminated environment of the proton facility.

Two main reasons for this finding can be identified. Firstly, the magnetic field of the sys-

tem, which is governed by the cyclotron and the beam line magnets, did not relevantly

change during image acquisition, as discussed below. Secondly, the distance to the cy-

clotron (8 m) resulted in a small remaining magnetic field gradient at the position of the MR

scanner, which could be compensated for by shimming. This distance was mainly deter-

mined by the diameter of the cyclotron, the thickness of the radiation shielding wall between

the cyclotron vault and the experimental room where the MR scanner was positioned, and

the space required to access the cyclotron and the MR scanner. If these dimensions are

not strongly reduced in future MRiPT systems, this observation is expected not to be limited

to the presented setup but transferable to such systems.

In line with previously published suggestions made by Schippers (2009) and Raaymakers

et al. (2008), a low-field, open MR scanner was selected for the reasons of lower costs and

a better accessibility of objects to be placed in the field-of-view. Furthermore, the deflection

of the proton beam in the magnetic field of the scanner was limited and more easily pre-

dictable than for high-field scanners. Since image quality for the purpose of patient position

verification and tumour tracking is not inherently better for high-field systems (see section

2.2.3), there is currently no clear indication that low-field systems should not be preferred

for future MRiPT systems. The rise time and spatial linearity of the gradient fields, which

are required for real-time and distortion-free imaging, respectively, are expected to be more

important than the nominal magnetic flux density.

Another aspect of the system design is the choice of beam delivery, i.e. passive scatter-
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ing versus active scanning (see section 2.1.2). While it has been shown in this work that

an ex post correction of the proton beam deflection after treatment planning can only be

implemented by the use of scanning beam magnets, the implementation of beam deflec-

tion into a treatment planning system may render such a correction unnecessary and thus

allow for both modalities. Treatment planning studies are necessary to determine whether

distortion-free dose distributions can be generated by adjusting the compensator and colli-

mator used in the passive scattering technique. An important potential difference between

the two modalities, which is specific to MRiPT, is the interference of the scanning magnets

in an active scanning setup with MR image acquisition, as discussed below.

Magnetic field effects on MR image quality

In addition to the case of a static proton therapy facility, it was shown in this work that the

magnetic field of the MR scanner was not relevantly affected by rotations of the beam line

gantry in the neighbouring treatment room. This indicates that future studies using the pre-

sented in-beam system do not need to monitor the gantry angle, which frequently changes

during a day of patient treatment. On the other hand, it is expected that activities in the

treatment room may not fully be neglected, since the repeated switching of the beam line

on and off for patient treatment may induce image artefacts. In this work, the status of the

beam line magnets to the treatment room was not altered during image acquisition. The ef-

fects of switching the beam line magnets during MR image acquisition are to be included in

future studies in order to assess the necessity of synchronised beam line magnet switching

and MR image acquisition.

It has furthermore been shown in this work that simultaneous MR imaging and static

proton beam irradiation is feasible without severe compromises to image or beam quality,

which can be considered an important milestone for MRiPT. However, it was also found

that three effects must be handled with care for in-beam image acquisition. Firstly, T ∗2 -

weighted sequences with a small gradient amplitude showed relevant image deformations

due to inhomogeneities in the B0 field. It is expected that this problem can be handled

in MRiPT by applying this type of sequence only if high spatial accuracy is not required,

or by fully avoiding it. Secondly, a small but significant reduction of the signal-to-noise ratio

was observed during proton irradiation, most probably since the beam-line magnets slightly

shifted the Larmor frequency distribution, which resulted in less proton spins being excited
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by the RF pulse. Future studies will be necessary to evaluate how this decrease (of up to

3 %) translates into contrast-to-noise ratio and whether it is relevant for automated tumour

tracking.

Thirdly, the accurate representation of the position of a static phantom on the MR image

was identified as a problem in the in-beam MR system. Both a statistically fluctuating offset

and a systematic shift during simultaneous irradiation were observed. The former can most

likely be attributed to uncertainties in the pre-scan RF calibration procedure and should in

the future be mitigated by optimising this calibration regarding robustness. This can be done

by reducing the excited volume for acquisition of the FID signal and using a Gaussian fit to

the resulting frequency distribution in order to determine the mean resonance frequency,

instead of simply using the frequency with the maximum intensity, as currently implemented

at the used MR scanner.

The systematic image shift during irradiation of up to 0.7 mm, on the other hand, can

most likely be attributed to the magnetic fringe field of the beam line magnets altering the

Larmor frequencies. This finding suggests that the pre-scan frequency calibration shall be

performed in MRiPT only when the beam line magnets are already energised. Future stud-

ies are required to confirm this hypothesis, and, since the magnetic field of the beam line

magnets is energy-dependent, to quantify the dependence of this method on the employed

proton beam energy. Both the statistical and systematic object offset can furthermore be

reduced by sequence design, i.e. by choosing strong gradients, high receiver bandwidths,

or two-dimensional phase encoding, or by an MR-visible reference construction, such as a

frame or markers, defining an image translation vector by rigid image registration. The geo-

metrical accuracy may be investigated in more detail in future studies using larger distortion

phantoms with three-dimensional grid structures.

These results, as established for four different sequences, are expected to be transfer-

able to real-time MR sequences, which are however currently not available on the used

scanner. Future studies may confirm this as a next step towards real-time MR-based image

guidance.

An important limitation of this work is that the setup did not include a nozzle for pencil

beam scanning, nor a close-by bending magnet as present in a gantry. Both are closer

to the beam isocentre, and therefore the FOV of the MR scanner, and have less steeply

decreasing fringe fields than the beam line magnets studied in this thesis. Furthermore,

the magnetic field induced by the scanning magnets is not static, but changes dynamically
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during irradiation with time constants in the same order as the MR image acquisition pro-

cess (see section 2.1.2). Therefore, significant image distortions can be expected, and it

is mandatory to address this influence in detail in future studies. Possible mitigation strate-

gies include a well-conceived MR and beam pulse design with alternating irradiation and

imaging phases. In an in-beam MRI system that is integrated into a proton gantry, the in-

fluence of the magnets mounted on the gantry is expected to make the B0 field dependent

on the gantry angle. As a result, active shimming coils may be necessary to adjust B0 after

each gantry rotation. A static but more cost-intensive alternative to reduce the effects of the

scanning and gantry magnets on the MR scanner is building a magnetic shielding cage,

which is made of ferromagnetic material such as carbon steel, silicon steel or Mu-metal

(Turner, 2007).

MR-based range verification

MR-based range verification had been limited so far to retrospective methods, which were

dependent on specific material compositions (Yuan et al., 2013; Bäck et al., 1999), and

therefore could not be applied for on-line applications. This work has shown for the first

time that fast MR-based range verification is feasible in various liquids, such as water, with

standard MR sequences. The presented method can potentially be used in MRiPT for con-

sistency tests of the proton range during machine-specific quality assurance. The question

whether in vivo MR-based range verification will be feasible remains to be answered in

future studies. This work has outlined possible strategies which can be pursued for this

purpose, such as spatial saturation pulses, k-space signatures, and dynamic nuclei polari-

sation. The next steps towards this aim involve analytical and simulation-based predictions

on the feasibility of these methods and an experimental verification thereof.

Conclusion

Overall, the work described in this thesis has improved and quantified the accuracy of beam

deflection predictions and has shown the feasibility and potential of in-beam MR imaging.

Further research towards the development of a first clinical prototype for MR-integrated

proton therapy is clearly justified in order to optimise targeting accuracy in radiotherapy.
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6.1 Summary

The integration of magnetic resonance imaging (MRI) into proton therapy is expected to

strongly increase the targeting accuracy in radiation therapy for cancerous diseases (Oborn

et al., 2017). Especially for tumours situated in mobile organs in the thorax and abdomen,

MR-integrated proton therapy (MRiPT) could enable the synchronisation of irradiation to the

tumour position, resulting in less dose to normal tissue and reduced side effects. However,

such an integration has been hindered so far by a lack of scientific studies on the potential

mutual interference between the two components (Schippers and Lomax, 2011). This thesis

was dedicated to two of these sources of interference, namely the deflection of the proton

beam by the magnetic field of the MR scanner and, vice versa, alterations of the MR image

induced by the electromagnetic fields of the proton therapy facility and by the beam itself.

Although previous work has indicated that there is general consensus that the trajectory

of a slowing down proton beam in a homogeneous phantom inside a transverse magnetic

field is predictable, a quantitative comparison of the published methods, as presented in

the first part of this thesis, has shown that predictions of different models only agree for

certain proton beam energies and magnetic flux densities. Therefore, shortcomings of pre-

viously published analytical methods have been analysed and quantified. The inclusion

of critical assumptions and the lack of applicability to realistic, i.e. non-uniform, magnetic

flux densities and patient anatomies have been identified as main problems. To overcome

these deficiencies, a new semi-analytical model called RAMDIM has been developed. It

was shown that this model is both applicable to more realistic setups and less assumptive

than existing analytical approaches, and faster than Monte Carlo based particle tracking

simulations. This model is expected to be useful in MRiPT for fast and accurate deflection

estimations, treatment plan optimisation, and MR-guided beam tracking.

In a second step, the magnetic field-induced proton beam deflection has been measured

for the first time in a tissue-mimicking medium by film dosimetry and has been compared
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against Monte Carlo simulations. In a transverse magnetic field of 0.95 T, it was experimen-

tally shown that the lateral Bragg peak displacement ranges between 1 mm and 10 mm for

proton energies between 80 and 180 MeV in PMMA. Range retraction was found to be

≤ 0.5 mm. The measured Bragg peak displacement was shown to agree within 0.8 mm

with Monte Carlo simulations. These results indicate that proton beam deflection in a ho-

mogeneous medium is accurately predictable for intermediate proton beam energies and

magnetic flux densities by Monte Carlo simulations and therefore not impeding the feasibil-

ity of MRiPT.

In the second part of this thesis, an MR scanner has been integrated into a proton beam

line for the first time. For this purpose, an open low-field MR scanner has been placed at

the end of a fixed horizontal proton research beam line in a proton therapy facility. The

beam deflection induced by the static magnetic field of the scanner was taken into account

for alignment of the beam and the FOV of the scanner. The pulse sequence-dependent dy-

namic gradient fields did not measurably affect the transverse beam profile behind the MR

scanner. The MR magnetic field homogeneity was within the vendor’s specifications and

not relevantly influenced by the rotation of the proton gantry in the neighbouring treatment

room. No magnetic field compensation system was required for simultaneous operation

of the MR scanner and the proton therapy system. These results proof that simultaneous

irradiation and imaging is feasible in an in-beam MR setup.

The MR image quality of the in-beam MR scanner was then quantified by an adapted

standard protocol comprising spin and gradient echo imaging and shown to be acceptable

both with and without simultaneous proton beam irradiation. All geometrical parameters

agreed with the mechanical dimensions of the used phantom within one pixel width. As

common for low-field MR scanners, the signal-to-noise ratio (SNR) of the MR images was

low, which resulted in a low image uniformity and a high ghosting ratio in comparison to

the standardised test criteria. Furthermore, a strong fluctuation of the vertical phantom

position due to uncertainties in the pre-scan frequency calibration was observed, with an

interquartile range of up to 1.5 mm. T ∗2 -weighted gradient echo images showed relevant

nonuniform deformations due to magnetic field inhomogeneities.

Most image quality parameters were shown to be equivalent with and without simulta-

neous proton beam irradiation. However, a significant influence of simultaneous irradiation

was observed as a shift of the vertical phantom position and a decrease in the SNR, both of

which can be explained by a change in the ~B0 field of the MR scanner induced by compo-
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nents of the fringe field of the beam line magnets directed parallel to ~B0. While the decrease

in SNR is not expected to be relevant (median differences were within 1.5 ), the sequence-

dependent phantom shift (median differences of up to 0.7 mm) can become non-negligible.

These results show that the MR images are not severely distorted by simultaneous irradia-

tion, but a dedicated optimisation of the pre-scan RF calibration and the MR sequences is

required for MRiPT.

Lastly, a current-dependent influence of the proton beam on the MR image was shown to

be measurable in water in two different MR sequences, which allowed for range verification

measurements. The effect was observed in different liquids but not in highly viscose and

solid materials, and most probably induced by heat convection. This method is expected

to be useful in MRiPT for consistency tests of the proton range during machine-specific

quality assurance.

In conclusion, this work has improved and quantified the accuracy of beam deflection

predictions and shown the feasibility and potential of in-beam MR imaging, justifying further

research towards a first MRiPT prototype.
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6.2 Zusammenfassung

Es wird erwartet, dass die Integration der Magnetresonanztomografie (MRT) in die Proto-

nentherapie die Treffgenauigkeit bei der Strahlentherapie für Krebserkrankungen deutlich

verbessern wird (Oborn et al., 2017). Besonders für Tumoren in beweglichen Organen des

Thorax oder des Abdomens könnte die MRT-integrierte Protonentherapie (MRiPT) eine

Synchronisierung der Bestrahlung mit der Tumorposition ermöglichen, was zu einer ver-

minderten Normalgewebsdosis und weniger Nebenwirkungen führen könnte. Bis heute

ist solch eine Integration jedoch aufgrund fehlender Studien zu potenziellen gegensei-

tigen Störeinflüssen dieser beiden Systeme nicht vollzogen worden (Schippers and Lo-

max, 2011). Diese Arbeit widmete sich zwei solcher Störeinflüsse, und zwar der Ablenkung

des Protonenstrahls im Magnetfeld des MRT- Scanners, und umgekehrt, dem Einfluss der

elekromagnetischen Felder der Protonentherapieanlage und des Protonenstrahls selbst

auf die MRT-Bilder.

Obwohl vorangegangene Studien den derzeitigen Konsens aufgezeigt haben, dass die

Trajektorie eines abgebremsten Protonenstrahls im homogenen Phantom in einem transver-

salen Magnetfeld vorhersagbar ist, zeigte sich im quantitativen Vergleich der publizierten

Modelle, der im ersten Teil dieser Arbeit vorgestellt wurde, dass die Vorhersagen dieser

Modelle nur für eine begrenzte Anzahl von Kombinationen aus Magnetfeldstärke und Pro-

tonenenergie übereinstimmen. Die Schwächen bestehender analytischer Modelle wurden

deshalb analysiert und quantifiziert. Kritische Annahmen und die mangelnde Anwend-

barkeit auf realistische, d.h. inhomogene Magnetfeldstärken und Patientengeometrien wur-

den als Hauptprobleme identifiziert. Um diese zu überwinden, wurde ein neues semian-

alytisches Modell namens RAMDIM entwickelt. Es wurde gezeigt, dass dieses auf re-

alistischere Fälle anwendbar und genauer ist als existierende analytische Modelle und

dabei schneller als Monte-Carlo-basierte Teilchenspursimulationen. Es wird erwartet, dass

dieses Modell in der MRiPT Anwendung findet zur schnellen und genauen Ablenkungsbe-

rechnung, zur Betrahlungsplanoptimierung und bei der MRT-geführten Strahlnachführung.

In einem zweiten Schritt wurde die magnetfeldinduzierte Protonenstrahlablenkung in

einem gewebeähnlichen Material durch Filmdosimetrie erstmalig gemessen und mit Monte-

Carlo-Simulationen verglichen. In einem transversalen Magnetfeld einer Flussdichte von

0,95 T wurde experimentell gezeigt, dass die laterale Versetzung des Bragg-Peaks für

Protonenenergien zwischen 80 und 180 MeV in PMMA zwischen 1 und 10 mm liegt. Die
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Retraktion des Bragg-Peaks war ≤ 0,5 mm. Es wurde gezeigt, dass die gemessene Ver-

setzung des Bragg-Peaks innerhalb von 0,8 mm mit Monte-Carlo-basierten Vorhersagen

übereinstimmt. Diese Ergebnisse weisen darauf hin, dass die Protonenstrahlablenkung

durch Monte-Carlo-Simulationen genau vorhersagbar ist und damit der Realisierbarkeit der

MRiPT nicht im Wege steht.

Im zweiten Teil dieser Arbeit wurde erstmalig ein MRT-Scanner in eine Protonenstrahl-

führung integriert. Hierfür wurde ein offener Niederfeld-MRT-Scanner am Ende einer stati-

schen Forschungsstrahlführung einer Protonentherapieanlage platziert. Die durch das stati-

sche Magnetfeld des MRT-Scanners hervorgerufene Strahlablenkung wurde bei der Aus-

richtung des MRT-Scanners berücksichtigt. Die sequenzabhängigen, veränderlichen Gradi-

entenfelder hatten keinen messbaren Einfluss auf das transversale Strahlprofil hinter dem

MRT-Scanner. Die Magnetfeldhomogenität des Scanners lag innerhalb der Herstellervor-

gaben und zeigte keinen relevanten Einfluss von Rotationen der Protonengantry im be-

nachbarten Bestrahlungsraum. Eine magnetische Abschirmung war zum gleichzeitigen Be-

trieb des MRT-Scanners und der Protonentherapieanlage nicht notwendig. Dies beweist die

Machbarkeit gleichzeitiger Bestrahlung und Bildgebung in einem ersten MRiPT Aufbau.

Die MRT-Bildqualität des Aufbaus wurde darauffolgend anhand eines angepassten Stan-

dardprotokolls aus Spin-Echo- und Gradienten-Echo-Sequenzen quantifiziert und es wurde

gezeigt, dass die Bildqualität sowohl ohne als auch mit gleichzeitiger Bestrahlung hinrei-

chend ist. Alle bestimmten geometrischen Parameter stimmten mit den physikalischen

Abmessungen des verwendeten Phantoms innerhalb eines Bildpixels überein. Wie es für

Niederfeld-MRT-Scanner üblich ist, war das Signal-Rausch-Verhältnis (SNR) der MRT-Bilder

gering, was im Vergleich zu den Standardkriterien zu einer geringen Bildhomogenität und

zu einem hohen Geisterbildanteil im Bild führte. Außerdem wurde aufgrund von Unsicher-

heiten in der Hochfrequenzkalibrierung des MRT-Scanners eine starke Schwankung der

vertikalen Phantomposition mit einem Interquartilabstand von bis zu 1,5 mm beobachtet.

T ∗2 -gewichtete Gradientenechosequenzen zeigten zudem aufgrund von Magnetfeldinho-

mogenitäten relevante ortsabhängige Bildverzerrungen.

Es wurde gezeigt, dass die meisten Bildqualitätsparameter mit und ohne gleichzeitige

Betrahlung äquivalent sind. Es wurde jedoch ein signifikanter Betrahlungseinfluss in Form

von einer vertikalen Bildverschiebung und einer Verminderung des SNR beobachtet, die

durch eine Änderung im Magnetfeld des MRT-Scanners erklärt werden können, welche

durch zu diesem Feld parallel ausgerichtete Komponenten im Fernfeld der Strahlführungs-
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magneten hervorgerufen wird. Während das verminderte SNR vermutlich irrelevant ist (Dif-

ferenz im Median ≤ 1,5), ist die sequenzabhängige Bildverschiebung (Differenz im Median

bis zu 0,7 mm) nicht immer vernachlässigbar. Diese Ergebisse zeigen, dass die MRT-

Bilder durch gleichzeitige Bildgebung nicht schwerwiegend verfälscht werden, dass aber

eine dedizierte Optimierung der Hochfrequenzkalibrierung und der MRT-Bildsequenzen

notwendig ist.

Im letzten Teil der Arbeit wurde gezeigt, dass ein stromabhängiger Einfluss des Protonen-

strahls auf MRT-Bilder eines Wasserphantoms durch zwei verschiedene MRT-Sequenzen

messbar gemacht und zur Reichweiteverifikation genutzt werden kann. Der Effekt war in

verschiedenen Flüssigkeiten, jedoch nicht in viskosen und festen Materialen, nachweisbar

und wurde auf Hitzekonvektion zurückgeführt. Es wird erwartet, dass diese Methode in

der MRiPT für Konstanztests der Protonenreichweite bei der Maschinenqualitätssicherung

nützlich sein wird.

Zusammenfassend hat diese Arbeit die Genauigkeit der Vorhersage der Strahlablenkung

quantifiziert und verbessert, sowie Potenzial und Realisierbarkeit einer gleichzeitigen MRT-

Bildgebung und Protonenbestrahlung gezeigt. Die weitere Entwicklung eines ersten MRiPT-

Prototyps ist demnach gerechtfertigt.
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Supplementary Information

A Beam Deflection: Experimental Measurements

A.1 Setup

Protons were accelerated in the isochronous cyclotron to 235 MeV and then decelerated to

the requested energy by a degrader (graphite wedge) and an energy selection system. The

used beam current was 20 nA to 3 nA at the cyclotron for 80 MeV to 180 MeV, respectively,

in this experiment.

The two brass collimators had a cylindrical shape with an outer radius of 9 cm and a

combined thickness of 6.6 cm. This thickness allowed to fully stop peripheral protons for

all used energies. They were placed in the beam line such that a symmetric beam profile

was achieved behind the collimators. The distance between the beam exit window and the

surface of the first collimator was 1.63 m, and that between the two collimators was 2 cm.

The large air gap between the beam exit and the collimators was defined by the in-room

laser system and improved the lateral beam homogeneity by scattering.

The phantom measured xph × yph × zph = 30× 15× 3 cm3. Its density was (1.186

± 0.002) g cm−3 as measured by density determination scales. It was mounted into the air

gap of the magnet assembly by an L-shaped holder (see Figure 3.10b). The two magnet

poles had a density of 7.6 g cm−3 (Vacuumschmelze, 2014).

The tilt angle of the film (α = 1◦) was chosen as it rotated the measurement plane

minimally out of the central beam plane whilst suppressing air gap effects as good as

larger angles (Zhao and Das, 2010). With this angle, the inclination lead to differences in

x below 0.02 mm. The air gap between the phantom and the film was minimized by four

plastic screws pressing the slabs together.

Due to saturation of the film signal caused by the particles’ increasing energy deposition

per path length (LET), dose differences between predicted and measured dose increased

towards the Bragg peak. The difference in the absolute Bragg peak dose was consistent
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with the findings of previous studies (Zhao and Das, 2010; Arjomandy et al., 2012; Perles et

al., 2013), and was not increased by the magnetic field. Thus, the introduction of a magnetic

field did not compromise the dose prediction accuracy. However, simulated and measured

dose was not directly comparable due to this effect.

A.2 Film Handling and Evaluation

Gafchromic EBT3 films (Ashland, Covington, USA; lot 05201501) cut in pieces of

20× 15 cm2 were used to measure the planar dose distribution of the beam. They

were scanned with a flat-bed document scanner (Expression 11000XL, Epson America,

Long Beach, CA) in landscape orientation, transmission mode, 24-bit color mode, and a

resolution of 300 dpi. A stencil was used to ensure a reproducible positioning of the films on

the scanner. Scanned images were analysed using in-house developed software written

in the Python programming language (Python Software Foundation, www.python.org).

The net optical density (netOD) was computed from the red channel pixel intensity I and

background intensity I0 for each pixel i as

netODi = log10
I0
Ii
, (1)

and converted to dose using the calibration Di = k1(netODi)+k2(netODi)k3 with k1 = 8.36,

k2 = 10.71 and k3 = 1.84. The calibration had been performed in analogy to a previous

study (Zeil et al., 2009). The values of the first 30 pixels (2.55 mm) around film cutting

edges were omitted.

Pixels were converted to x-y-coordinates as follows. Pixels were scaled with the image

resolution, yielding a distribution on the film plane in x′ and y′. The film tilt angle of α = 1◦

yielded x = cos(α)x′ and y = y′ (as mentioned above, x − x′ < 0.02 mm within the film).

The pinholes on the scanned images, whose x-y-positions are given by the manufacturer,

were automatically detected on the scanned images and hence defined a translation and

rotation of the dose distribution.

A.3 Uncertainty Estimation

The influence of the measurement uncertainties on the Bragg peak lateral deflection ∆y80

and range retraction ∆R80 was assessed as follows (see Table A.1).



Statistical uncertainties such as the reproducibility of the determination of ∆R80 and

∆y80, and possible remaining displacement of the film relative to the phantom and to the

scanner have been assessed by repeating the measurement for 180 MeV three times.

Mean absolute deviations between the measurements were used as statistical uncertain-

ties.

Film-to-film variations and the film calibration are subject to percentual dose uncertain-

ties. The calibration has a relative dose uncertainty of 5 % (Zeil et al., 2009). Dose uncer-

tainties due to film and scanner variations add up to 0.5 % (Sorriaux et al., 2012). Being

proportional to the dose, these uncertainties were considered to have negligible influence

on ∆R80 and ∆y80, which only depend on the relative dose difference between the mea-

surement with and without magnetic field.

To assess the uncertainty of ∆y80 and ∆R80 introduced by the LET-dependent saturation

of the film response a polynomial correction function (Zhao and Das, 2010) was applied to

the depth-dose curves. The uncertainty was estimated as the difference in ∆R80 and ∆y80

between the corrected and uncorrected curves.

Systematic setup uncertainties are related to translational and rotational degrees of free-

dom. A rotation of the beam axis relative to the in-room laser system has a direct impact

on the measured peak deflection. The alignment of the axes of the beam and the laser

positioning system was energy-dependent and uncertain to within 0.1 o. The impact of this

angle on Bragg peak retraction and deflection was assessed by purposefully rotating the

dose distribution by this angle.

The reproducibility of the alignment of the magnet relative to the laser and of the phantom

relative to the magnet were assessed by repeating the setup and irradiation procedure. For

these two repeated experiments, the beam trajectory was determined for each depth as the

mean of the two lateral positions receiving 10 % of the maximum dose. As no systematic

dependence on the beam energy was observed in the deviations between the two experi-

ments, mean absolute deviations were used as an estimate for this uncertainty. Rotations

of the film relative to the phantom are statistical and therefore already covered.

Translational uncertainties of the setup in x-direction were considered to be negligible,

as they mostly lead to uncertainties in the amount of air traversed. An exception to this is

the uncertainty of the pin positions (see section 2), which was below 10 µm and therefore

negligible. Translational uncertainties in y-direction were suppressed by subtracting the

mean of the first proximal 10 values of the trajectory from yT (x). Proton beam deflection in



the magnetic fringe field outside of the magnet assembly was considered to be negligible.

Another factor of uncertainty was introduced by the spatial achromaticity of the incident

beam, i.e. a y-z-dependent energy spectrum, caused by the beam line design. The initial

proton energy spectrum at the beam exit tends to be higher-energetic in positive y-direction

than in negative y-direction. This resulted in a kink towards the end of the trajectory yT (x),

which lead to a small overestimation of the beam deflection. This effect was observed both

with and without magnetic field. The kink was about 3 mm in x- and 0.2 mm in y-direction,

translating into an uncertainty of the Bragg peak displacement below 0.01 mm in x- and of

0.2 mm in y-direction.

Relevant sources of uncertainty are summarized and quantified in Table A.1. The total

uncertainty was estimated as the square root of the quadratic sum of the individual contri-

butions.

Table A.1: Uncertainties of the measured lateral deflection ∆y80 and longitudinal retraction ∆R80
of the Bragg peak. Lower and upper limits are given for energy-dependent effects, where lower
energies are related to smaller uncertainties.

Source of uncertainty ∆R80/mm ∆y80/mm
Statistical 0.4 0.2
Systematic 0.3 ... 0.4 0.4
Thereof:

LET dependence 0.0 ... 0.2 0.0 ... 0.2
Setup axis alignment 0.3 0.3
Beam achromaticity < 0.01 0.2

Total 0.5 0.4 ... 0.5



(a) (b)

Figure B.1: Central plane of the measured magnetic field (a) and central field profiles (b) along the
x-(blue) and y-(orange) axes. Values for y > 7.5 cm are not displayed due to the presence of the
magnet yoke.

B Beam Deflection: Monte Carlo Simulations

B.1 Magnetic Field Model

A model of the magnetic field was generated using finite-element modelling (COMSOL Mul-

tiphysics, COMSOL AB, Stockholm, Sweden). The geometry of the magnet assembly was

implemented as given by the manufacturer (Vacuumschmelze GmbH, Hanau, Germany)

and surrounded by the pre-defined material ’Air’. The remanent field strength of the mag-

netic poles was set to Br = 1.37 T, as specified for the VACODYM 764 TP material by the

manufacturer (Vacuumschmelze, 2014). The hysteresis curve B(H) for the yoke was in-

herited from the COMSOL material library using the predefined material ’Soft Iron (without

losses)’.

In air, the field of the magnet was mainly limited to the gap between its two poles, and

had a maximum magnetic flux density of 0.95 T (see Figure B.1). A look-up-table (LUT) of

the magnetic field was exported from the finite-element model with a grid spacing of 5 mm

in a volume of xB × yB × zB = 70× 40× 20 cm3. The LUT covered the three magnetic

field components in the volume of x ∈ [−50 cm, 20 cm] and y ∈ [−20 cm, 20 cm] and z ∈

[−10 cm, 10 cm] and thus contained the whole fringe field necessary to accurately predict

beam deflection (Oborn et al., 2015).

The magnetic flux density maps of the main magnetic field predicted by the finite-element

model and determined by the Hall probe measurements agreed within 2 %. The experimen-



tal verification of the modelled magnetic flux density maps is described in detail in Gantz

(2017).

To monitor the temporal stability of the main field component, point measurements along

the central x-axis at 5, 10 and 15 cm depth relative to the front face of the phantom were per-

formed after each irradiation experiment. Deviations were within 3 mT, which was smaller

than the measurement precision (4 mT), not systematic, and therefore considered negligi-

ble.

B.2 Uncertainty Estimation

To assess the influence of the different uncertainties of the simulations, a number of sep-

arate simulations were performed while varying the input parameters. For each of these

uncertainty simulations, ∆y80 and ∆R80 were extracted and compared to the original sim-

ulations (i.e. a sensitivity study was performed). All uncertainties were calculated for the

lowest (80 MeV) and highest (180 MeV) energy used and interpolated linearly for interme-

diate energies.

Relevant systematic uncertainties of the input parameters were those of the initial pro-

ton energy E0, of the density of the PMMA phantom ρ and of the main magnetic field

component Bz. Each of these parameters was separately increased by its uncertainty (i.e.

E0 +∆E0, ρ+∆ρ and Bz +∆Bz) in an additional simulation to assess its influence on ∆y80

and ∆R80. It was assumed that the influence of the parameter uncertainties was equally

large in positive and negative direction.

The uncertainty of the range measurements performed for section 3.2.2 amounted to

0.25 mm (Wohlfahrt et al., 2018). Using tabulated stopping-power data (Berger et al., 2005),

this corresponded to an uncertainty of the beam energy E0 of ∆E0(80 MeV) = 0.25 MeV

to ∆E0(180 MeV) = 0.15 MeV. The absolute uncertainty of the measured PMMA density

amounted to ∆ρ = 0.002 g cm−3, and that of the simulated magnetic field map to ∆Bz =

0.02 T.

Furthermore, there is an influence of systematic uncertainties which are inherent to the

Monte Carlo simulation, for example in the physical process models and the mean excita-

tion energy applied. As an estimate for this uncertainty, the range differences of the model

to the reference measurements (section 3.2.2) of ∆R = 0.2 mm was used. The influence

of this range uncertainty on ∆y80 and ∆R80, was assessed by varying the initial energy



accordingly, i.e. with ∆ER0 (80 MeV) = 0.20 MeV to ∆ER0 (180 MeV) = 0.12 MeV.

The statistical uncertainty of the simulation was estimated by repeating the original simu-

lation five times with different random number seeds and calculating the standard deviation

of ∆y80 and ∆R80. It was found that all simulations needed to be performed with 2.048 · 107

primary particles each to acquire a statistical uncertainty of the Bragg peak position of

0.1 mm or smaller.

The total uncertainty was estimated as the square root of the quadratic sum of the indi-

vidual contributions.

Table B.1: Uncertainties of the predicted lateral deflection ∆y80 and longitudinal retraction ∆R80
of the Bragg peak. Lower and upper limits are given for energy-dependent effects, where lower
energies are related to smaller uncertainties.

Source of uncertainty ∆R80/mm ∆y80/mm
Systematic 0.1 ... 0.2 0.1 ... 0.3
Thereof:

Beam energy 0.1 0.0 ... 0.1
Phantom density 0.0 0.1
Magnetic field 0.0 ... 0.1 0.0 ... 0.2
Physics modelling 0.0 ... 0.1 0.0 ... 0.1

Statistical 0.0 ... 0.1 0.0 ... 0.1
Total 0.1 ... 0.2 0.1 ... 0.3



C Integrated MRiPT Setup

C.1 Magnetic Field Map

The measured magnetic field map in the central horizontal plane of the MR scanner is

depicted in Figure C.1.

Figure C.1: Measured central horizontal plane of the static magnetic field of the MR scanner. y = 0
demarks the central beam axis. The black line demarks the homogeneous region of the field with a
radius of about 25 cm.

C.2 Sequence Parameters

The MR sequence parameters for beam alignment and profile measurement are given in

Table C.1. Sequence parameters for the qualitative in vivo and ex vivo tests are given in

Table C.2.

Table C.1: MR spin echo (SE) and gradient echo (GE) sequence parameters for beam alignment
(section 4.1.4) and beam profile measurement (section 4.2.1).

Beam alignment Beam profile
Sequence SCOUT SE vertical SE horizontal SE vertical GE

FOV 26 12 12 12
Slice thickness / mm 8 5 5 5

Number of slices 1 1 1 1
Matrix 160× 128 192× 152 192× 152 192× 152

Number of excitations 1 1 1 1
Echo time / ms 18 20 20 8

Repetition time / ms 100 500 200 30
Flip angle / o 90 90 90 20

Acquisition time (min:s) 0:18 1:21 0:35 0:10
Pixel bandwidth / Hz 79 68 68 153



Table C.2: Pulse sequence parameters for extremity imaging and phantom irradiation (section
4.2.3).

Anatomical images Phantom irradiation
Sequence STIR GE T1 GE T1 SE T1 SE

FOV 20 18 20 16
Interslice space /mm 5 4 4.5 3
Slice thickness / mm 4.5 3.5 4 5

Number of slices 14 11 20 3
Matrix 192× 160 320× 224 320× 208 192× 152

Number of excitations 1 1 1 4
Echo time / ms 16 16 24 20

Repetition time / ms 1003 510 962 500
Inversion time / ms 65 - - -

Flip angle / o 90 80 90 90
Acquisition time (min:s) 4:54 4:03 5:25 5:18

Pixel bandwidth / Hz 45 45 45 54



Table C.3: Image quality parameters for T1-weighted SE sequence with and without simultaneous proton beam irradiation. Statistically equiv-
alent parameters are marked by eq. Statistically significant differences are marked by an asterisk (*).

ACR criterion Without irradiation During irradiation Difference
median (interquartile range) median (interquartile range) of medians

Phantom diameter in slice 1 / mm 100± 2 99.8(99.7− 100.0) 99.9(99.8− 100.0) −0.1 eq

Phantom diameter in slice 3 / mm 100± 2 100.0(100.0− 100.0) 100.0(100.0− 100.0) 0.1 eq

Horizontal phantom centre / mm 61.6(61.4− 61.9) 61.4(61.4− 61.8) 0.2 eq

Vertical phantom centre / mm 60(59.6− 60) 59.7(59.5− 60) 0.3 eq,∗

Slice position error / mm ≤ 4 0.8(0.2− 1.4) 0.9(0.3− 1.4) −0.2 eq

Slice thickness / mm 5.0± 0.7 5.4(5.2− 5.6) 5.5(5.2− 5.6) −0.1 eq

SNR 45.4(45.0− 46.3) 44.8(43.7− 46.0) 0.6 eq,∗

Image Uniformity / % ≥ 87.5 83.2(82.9− 83.7) 83.1(82.3− 83.5) 0.1 eq

Ghosting Ratio / % ≤ 0.025 0.054(0.053− 0.057) 0.055(0.053− 0.056) −0.001 eq

Number of detected low-contrast spokes ≥ 9 13(10− 13) 12(11− 13) 1 eq

Resolution horizontal / mm ≤ 0.8 0.7(0.7− 0.7) 0.7(0.7− 0.7) 0.0 eq

Resolution vertical / mm ≤ 0.8 0.7(0.7− 0.7) 0.7(0.7− 0.7) 0.0 eq



Table C.4: Image quality parameters for T2-weighted SE sequence with and without simultaneous proton beam irradiation. Statistically equiv-
alent parameters are marked by eq. Statistically significant differences are marked by an asterisk (*).

ACR criterion Without irradiation During irradiation Difference
median (interquartile range) median (interquartile range) of medians

Phantom diameter in slice 1 / mm 100.0± 2 99.8(99.7− 100.0) 99.8(99.6− 99.9) 0.0 eq

Phantom diameter in slice 3 / mm 100.0± 2 100.0(100.0− 100.0) 100.0(99.9− 100.0) −0.1 eq

Horizontal phantom centre / mm 61.6(61.4− 61.9) 61.6(61.4− 61.9) 0.0 eq

Vertical phantom centre / mm 59.8(59.5− 60.3) 59.8(59.3− 60.1) 0.0
Slice position error / mm ≤ 4 0.9(0.4− 1.4) 0.9(0.4− 1.3) −0.1 eq

Slice thickness / mm 5.0± 0.7 4.8(4.7− 5.0) 4.8(4.7− 4.9) 0.0 eq

SNR 47.3(46.6− 47.6) 46.4(45.6− 47.1) 0.9 eq,∗

Image Uniformity / % ≥ 87.5 76.5(75.9− 77.1) 76.2(75.7− 76.9) 0.3 eq

Ghosting Ratio / % ≤ 0.025 0.044(0.037− 0.050) 0.045(0.036− 0.052) −0.001
Number of detected low-contrast spokes ≥ 9 11(10− 12) 10(9− 12) 1 eq

Resolution horizontal / mm ≤ 0.8 0.7(0.7− 0.7) 0.7(0.7− 0.7) 0.0 eq

Resolution vertical / mm ≤ 0.8 0.7(0.7− 0.7) 0.7(0.7− 0.7) 0.0 eq



Table C.5: Image quality parameters for T1-weighted GE sequence with and without simultaneous proton beam irradiation. Statistically
equivalent parameters are marked by eq. Statistically significant differences are marked by an asterisk (*).

ACR criterion Without irradiation During irradiation Difference
median (interquartile range) median (interquartile range) of medians

Phantom diameter in slice 1 / mm 100± 2 99.8(99.7− 99.8) 99.7(99.5− 99.8) 0.1 eq

Phantom diameter in slice 3 / mm 100± 2 99.9(99.8− 100.0) 99.9(99.7− 100.0) 0.0 eq

Horizontal phantom centre / mm 61.6(61.4− 61.9) 61.4(61.3− 61.7) 0.2 eq

Vertical phantom centre / mm 60.0(59.9− 60.2) 59.8(59.5− 60.0) 0.2 eq,∗

Slice position error / mm ≤ 4 0.4(−0.1− 1.0) 0.3(−0.2− 0.6) 0.1 eq

SNR 14.2(13.3− 15.3) 13.4(12.6− 14.3) 0.8
Image Uniformity / % ≥ 87.5 88.0(83.8− 92.7) 86.0(83.9− 94.5) 2.0 eq

Ghosting Ratio / % ≤ 0.025 0.016(0.013− 0.019) 0.015(0.013− 0.017) 0.000
Number of detected low-contrast spokes ≥ 9 0(0− 0) 0(0− 0) 0 eq

Resolution horizontal / mm ≤ 0.8 0.8(0.8− 0.8) 0.8(0.8− 0.8) 0.0 eq

Resolution vertical / mm ≤ 0.8 0.8(0.7− 0.8) 0.8(0.8− 0.8) 0.0 eq



Table C.6: Image quality parameters for T ∗
2 -weighted GE sequence with and without simultaneous proton beam irradiation. Statistically

equivalent parameters are marked by eq. Statistically significant differences are marked by an asterisk (*).

ACR criterion Without irradiation During irradiation Difference
median (interquartile range) median (interquartile range) of medians

Phantom diameter in slice 1 / mm 100± 2 99.9(99.6− 100.0) 99.9(99.7− 100.0) 0.0 eq

Phantom diameter in slice 3 / mm 100± 2 100.0(99.3− 100.0) 100.0(99.9− 101.0) 0.1
Horizontal phantom centre / mm 61.9(61.6− 62.0) 61.9(61.7− 62.0) 0.0 eq

Vertical phantom centre / mm 59.6(58.7− 60.2) 58.9(58.1− 59.8) 0.7 ∗

Slice position error / mm ≤ 4 0.8(0− 1.2) 0.9(0.1− 1.1) −0.1 eq

Slice thickness / mm 5.0± 0.7 5.7(5.5− 5.9) 5.7(5.5− 5.9) 0.0 eq

SNR 53.2(50.9− 54.4) 51.7(49.2− 52.6) 1.5 ∗

Image Uniformity / % ≥ 87.5 82.8(79.7− 86.6) 82.6(81.0− 85.1) 0.2 eq

Ghosting Ratio / % ≤ 0.025 0.097(0.080− 0.111) 0.092(0.078− 0.10) 0.005
Number of detected low-contrast spokes ≥ 9 1(1− 2) 2(1− 3) −1 eq

Resolution vertical / mm ≤ 0.8 0.8(0.8− 0.8) 0.8(0.8− 0.8) 0.0 eq

Resolution horizontal / mm ≤ 0.8 0.8(0.8− 0.8) 0.8(0.8− 0.8) 0.0 eq

Table C.7: Image quality parameter for the Locator SE sequence. The phantom length was statistically equivalent with and without irradiation
(as indicated by eq).

ACR criterion Without irradiation During irradiation Difference
median (interquartile range) median (interquartile range) of medians

Phantom Length / mm . 100± 2 99.9(99.9− 100) 100(99.9− 100) −0.1 eq



C.3 Image Quality Parameters

The image quality parameters measured with and without simultaneous irradiation for the

four sequences are given in the Tables C.3 to C.7.

C.4 Range Verification Sequences

The MR images acquired with the six tested sequences without simultaneous irradiation

are given in Figure C.2.

(a) (b) (c)

(d) (e) (f)

Figure C.2: Reference MR images for different sequences acquired without proton beam irradiation.
(a) T1-weighted SE, (b) T2-weighted SE, (c) proton density-weighted GE, (d) T ∗

2 -weighted GE, (e)
IR SE, and (f) IR GE sequence.
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