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Abstract

Data orientation is a common design principle in distributed data management sys-
tems. In contrast to process-oriented or transaction-oriented system designs, data-
oriented architectures are based on data locality and function shipping. The tight
coupling of data and processing thereon is implemented in different systems in a
variety of application scenarios such as data analysis, database-as-a-service, and
data management on multiprocessor systems. Data-oriented systems, i.e., systems
that implement a data-oriented architecture, bundle data and operations together
in tasks which are processed locally on the nodes of the distributed system. Alloca-
tion strategies, i.e., methods that decide the mapping from tasks to nodes, are core
components in data-oriented systems. Good allocation strategies can lead to bal-
anced systems while bad allocation strategies cause skew in the load and therefore
suboptimal application performance and infrastructure utilization. Optimal alloca-
tion strategies are hard to find given the complexity of the systems, the complicated
interactions of tasks, and the huge solution space. To ensure the scalability of data-
oriented systems and to keep them manageable with hundreds of thousands of tasks,
thousands of nodes, and dynamic workloads, fast and reliable allocation strategies
are mandatory.
In this thesis, we develop novel allocation strategies for data-oriented systems

based on graph partitioning algorithms. Therefore, we show that systems from dif-
ferent application scenarios with different abstraction levels can be generalized to
generic infrastructure and workload descriptions. We use weighted graph represen-
tations to model infrastructures with bounded and unbounded, i.e., overcommited,
resources and possibly non-linear performance characteristics. Based on our gen-
eralized infrastructure and workload model, we formalize the allocation problem,
which seeks valid and balanced allocations that minimize communication. Our al-
location strategies partition the workload graph using solution heuristics that work
with single and multiple vertex weights. Novel extensions to these solution heuris-
tics can be used to balance penalized and secondary graph partition weights. These
extensions enable the allocation strategies to handle infrastructures with non-linear
performance behavior. On top of the basic algorithms, we propose methods to
incorporate heterogeneous infrastructures and to react to changing workloads and
infrastructures by incrementally updating the partitioning.
We evaluate all components of our allocation strategy algorithms and show

their applicability and scalability with synthetic workload graphs. In end-to-end–
performance experiments in two actual data-oriented systems, a database-as-a-
service system and a database management system for multiprocessor systems, we
prove that our allocation strategies outperform alternative state-of-the-art methods.
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1. Introduction

The term data-oriented architecture is not fixed and does not refer to a single sys-
tem layout. In the context of data management systems, data orientation is com-
monly used to describe distributed data processing systems that make the data a
first class citizen and drive the processing based on data locality. Unlike process-
oriented or transaction-oriented architectures, where a single process is assigned to
acquire the necessary data, perform the operations, and return the results, in data-
orientated architectures the data drives the processing. Figure 1.1 shows the two
different execution strategies, data-orientated and process-orientated, side by side.
In data-oriented systems, i.e., systems that implement a data-oriented architecture,
transactions1 are split into self contained units of work. Data and the operations
performed thereon are bundled in tasks and tasks are processed locally on the nodes
of the distributed system. The term allocation in data-oriented systems refers to the
mapping of tasks to nodes. Data locality is a key design principle in data-oriented
systems, i.e., tasks are executed where the data resides instead of moving the data
to the processing. In other words, a data-oriented architecture uses function ship-
ping while process-oriented architectures are based on data shipping. Data can still
be moved in data-oriented systems, but only explicitly when tasks communicate to
coordinate or perform complex workloads.
Data orientation is a key design principle in various data management systems

with very different abstraction levels. The following three exemplary application
scenarios use data-oriented systems:

Data Analysis Several data analysis platforms were developed in recent years. Ex-
amples are MapReduce at Google, the open-source alternative Hadoop, or
Microsoft’s Cosmos. Advanced data processing capabilities, e.g., SQL pro-
cessing, are either integral part of the system (e.g., Scope in Cosmos, Zhou et
al., 2012) or have been added on top (e.g., Impala on Hadoop, Impala, 2015).
Data in these distributed analysis platforms is always processed locally and
only intermediate results are transferred between tasks.

Database-as-a-Service Providers like Amazon (Amazon, 2015) or Microsoft (Mi-
crosoft, 2015) offer relational databases as a service in their respective cloud
infrastructures. A relational database (task) comprises the actual data and
the operations, i.e., SQL statements. Databases are stored on a single server
(node) or distributed across multiple servers.

Database Management on Multiprocessor Systems Database management sys-
tems (DBMSs) on modern multiprocessor systems face the challenge of ef-
ficiently utilizing the available resources. Cores and memory controllers are

1The term transaction here refers to any query, statement, or data-processing code

1
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data operations hardware resources

transaction
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Process-Oriented Execution
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Figure 1.1.: Execution Schemes in Distributed Data Processing Systems

distributed among the processors. The best performance can be achieved by
treating the multiprocessor system as a distributed system. Optimized storage
engines like the one in the in-memory DBMS ERIS execute portions of a query
locally on a single core (Kissinger et al., 2014). Parts of the query execution
plan and the involved data form a task that is assigned to a multiprocessor
(node). Only intermediate data is transferred between tasks if necessary.

In this thesis, we investigate allocation strategies for systems that implement data-
oriented architectures in general. We demonstrate the applicability of our solutions
in two exemplary systems from the second and the third category, respectively.
Although the two scenarios are very different, they base on common principles and
we show that a unified allocation strategy can be used for both.

Given that the location of data determines where processing is performed, the
allocation is crucial in any data-oriented system. The allocation can lead to a bal-
anced or a severely skewed system and has therefore several implications on global
system characteristics, e.g., the utilization of the nodes and the performance of
the tasks. Consolidation, i.e., co-location and concurrent execution of (possibly
unrelated) tasks on single nodes is a central means to optimize utilization, hence
cost-effectiveness, and performance in data-oriented systems (Curino et al., 2011).
Consequently, the decision on where data resides in data-oriented systems, i.e., the
allocation strategy, is commonly taken from the user and optimized by the system.
This optimization is workload-driven, i.e., based on the actual tasks. Figure 1.2
shows an abstract data-oriented architecture. Knowledge about both the tasks of
the workload and their characteristics as well as the infrastructure is used by an
allocation strategy that decides the initial data layout as well as periodic data mi-
grations, which are required to balance the load across the nodes. The location of
the tasks is transparent to the users of actual data-oriented systems.

Finding an optimal allocation is an inherently difficult problem. The allocation
actually comprises two problems, (1) determining a partitioning of the data, i.e., a
granularity of the tasks, and (2) finding a mapping of tasks to nodes. Even on a
small scale, solving the allocation problem is hard, given the complex interactions

2
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that tasks may have (Ahmad and Bowman, 2011). Contention on hardware or
operating system resources may lead to performance characteristics that are hard to
predict. The presence of heterogeneous hardware, dynamic workloads, and dynamic
infrastructures add to the complexity of the problem. To ensure the scalability of
data-oriented systems and to keep them manageable with hundreds of thousands
of tasks and thousands of nodes, fast and reliable algorithms for the allocation
problem are mandatory. However, distributed data processing systems and complex
workloads are hard to model and system behavior is hard to predict (Ahmad and
Bowman, 2011; Curino et al., 2011). Even with the models, the allocation problem
has a huge solution space and the problem itself is NP-hard (e.g., Curino et al.,
2011; Schaffner et al., 2013).
An ideal allocation strategy can be used for optimizing different objectives like

minimizing the required number of nodes or maximizing task performance. Fur-
thermore, it is scalable to thousands of nodes and hundreds of thousands of tasks,
flexibly reacts to dynamically changing workloads and infrastructures, and deals
with complex, heterogeneous components.

Summary of Contributions

The contribution of this thesis is a set of allocation strategies for data-oriented sys-
tems. We thereby assume an existing partitioning and focus on the mapping part
of the allocation problem. Our allocation strategies model workload and infrastruc-
ture information in weighted graphs and solve the allocation problem based on graph
partitioning and mapping algorithms. In detail, our contributions are:

• We analyze data-oriented systems in different application scenarios, specifically
database-as-a-service systems and DBMSs for multiprocessor systems. We
identify core characteristics of the systems and abstract them to a generic data-
oriented system. We formulate the allocation problem based on the abstract
data-oriented system.

3



1. Introduction

• We abstract from the infrastructures in the example systems to a generic
graph-based representation of available resources. Thereby, we account for
non-linear performance caused, e.g., by contention. Furthermore, we intro-
duce the notion of bounded and unbounded resources to be able to model
commonly oversubscribed resources and resources that render an allocation
invalid if overused.
• We abstract from the workloads in the example systems to a generic graph-
based representation of the resource requirements. Each task can consume
multiple resources that will be treated individually by the allocation strategy.
• We present allocation strategies based on balanced k-way min-cut graph par-
titioning. We extend known heuristics for graph partitioning and multi-
constraint graph partitioning by methods to account for non-linear resource
behavior. Thereby, we introduce the notion of penalized weights and secondary
weights. We show how to balance these penalized and secondary weights dur-
ing graph partitioning. To the best of our knowledge, our method is the first to
partition a graph with vertex weights that do not combine linearly to partition
weights.
• We show that our basic allocation strategies can be extended to fulfill dif-
ferent requirements. We present ways to modify the allocation strategy to
account for heterogeneous hardware. Furthermore, we show how an allocation
can incrementally be updated after changes to handle dynamic workloads and
infrastructures.
• We experimentally evaluate our method using synthetic scenarios. In addition,
we implement our allocation strategies in two actual data-oriented systems and
evaluate their benefit in end-to-end–performance experiments.

Outline

The structure of this thesis is illustrated in Figure 1.3. Chapter 2 presents foun-
dations of data-oriented systems with a focus on database-as-a-service systems and
DBMSs for multiprocessor systems. Different implementation strategies and prop-
erties of the corresponding systems are described together with existing solutions in
this field. Chapter 3 abstracts from actual systems and details all necessary com-
ponents of the allocation problem before the problem itself is formulated. First, the
infrastructure and the workload model used in the allocation problem are abstracted
from actual systems. Second, the allocation problem is defined and variations are
discussed. Third, requirements for allocation strategies are derived from the pro-
posed models and the problem formulation.
Chapters 4 and 5 present allocation strategies, i.e., solutions for the allocation

problem, based on the abstract data-oriented system. Chapter 4 details our allo-
cation strategies, which are based on balanced k-way min-cut graph partitioning.
Starting from existing graph partitioning algorithms, we propose new methods for
graph partitioning with penalized and secondary weights. In Chapter 5, we extend
and modify the graph partitioning algorithms to relax previously made assumptions.
Details are provided that make the allocations strategies applicable to heterogeneous

4
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infrastructures and systems with dynamic workloads and infrastructures. All aspects
of the allocations strategies are experimentally evaluated in the corresponding chap-
ters.
The allocation strategies in their entirety are experimentally evaluated in two

actual data-oriented systems in Chapters 6 and 7. Chapter 6 presents the database-
as-a-service system MTM and evaluates our allocation strategies in this system. In
Chapter 7, we analyze properties of multiprocessor systems and introduce ERIS, a
DBMS that is optimized for multiprocessor systems. Furthermore, we show details
of the implementation and evaluation of our allocation strategies in ERIS.
We finally conclude this thesis in Chapter 8 with a summary and a discussion of

future work.
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2. Foundations of Data-Oriented Systems
In this chapter, we present foundations of data-oriented systems to provide necessary
basics for the subsequent chapters. Related work that is relevant to the topic will be
presented throughout the three parts of this chapter. We first present two application
scenarios that implement data-oriented architectures in Sections 2.1 and 2.2. The
two scenarios result in two classes of data-oriented systems, namely database-as-a-
service systems and DBMSs for multiprocessor systems. A variety of actual systems
exist in both classes that differ in the implementation or in the degree of data
orientation, i.e., the granularity of tasks and the degree of data locality. By giving an
overview of these systems, we show that although being different in many aspects,
they follow common principles that allow for a unified allocation strategy. Two
example systems, one from each class, are described and evaluated in detail in the
experiments Chapters 6 and 7.
Second in this chapter, in Section 2.3, we regard the relation of data-oriented sys-

tems to classic distributed relational DBMSs and revisit related work in this field.
Distributed DBMSs have been studied at least since the late 1980s and some of
the early problems sound surprisingly familiar to our allocation problem. For in-
stance, Apers (1988) formulated almost 30 years ago the following problem: “Given
the queries and updates, the frequencies of their usage, and the sites where the re-
sults have to be sent, determine (1) the fragments to be allocated, and (2) allocate
these fragments, possibly redundant, and the operations on them to the sites of
the computer network such that a certain cost function is minimized.” While many
principles of distributed DBMSs apply to the data-oriented systems in this thesis,
the latter add several challenges. Existing commercial distributed DBMSs provide
the means for partitioning and distributed processing of data but keep the deci-
sions on partitioning and placement to the domain expert. We aim for system sizes
that make an automated and possibly fine-grained allocation strategy mandatory.
Furthermore, the main focus of distributed DBMSs has traditionally been to scale
out huge database applications that would either not fit on a single node or benefit
from the parallel data processing. The goal of many data-oriented systems is to also
provide and optimize scale-in scenarios to economically run a large number of tasks
on a small number of nodes. At last, allocation strategies in data-oriented systems
must be able to deal with heterogeneous infrastructures and dynamic workloads,
conditions not always found in distributed DBMS scenarios. Nevertheless, related
work especially on physical database design advisors and work on automated par-
titioning and partition placement provide helpful insights and will be presented in
the second part of this chapter.
Two more topics that are important foundations of this thesis are not discussed in

this chapter, but later in the thesis. Related work on the allocation problem is best
understood after preliminaries like the infrastructure and workload model have been

7
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workload infrastructure database-as-a-service system

relational database (task) DBMS server (node) virtualized DBMS server

… …

allocation strategy

Figure 2.1.: Database-as-a-Service Platform Depicted as Data-Oriented System

detailed and will hence be presented in Section 3.5 in the next chapter. Foundations
of graph partitioning will be given in the context of our new partitioning methods
in Chapter 4.

2.1. Data Orientation in Database-as-a-Service Systems

Cloud computing has become a valid usage model for different kinds of applica-
tions and a successful business model for several service providers. Using a resource,
e.g., the infrastructure (Infrastructure-as-a-Service, IaaS), an application platform
(PaaS), or the software itself (SaaS), as a service has several advantages. The re-
source can be used flexibly and it is scalable to accommodate different or shifting
application needs. Resources can be quickly provisioned in the cloud to offer appli-
cations a short time to market. The shift from capital expenditure to operational
expenditure and the pay-as-you-go billing model foster start-ups and experimen-
tal applications. For service providers, the economy of scale, enabled by resource
sharing, renders cloud computing interesting.
Offering (relational) databases as a service transfers the advantages of cloud com-

puting to the data storage layer of an application and allows applications that rely
on a storage layer to run in the cloud. All major cloud service providers offer rela-
tional databases as part of their product portfolio (Amazon, 2015; Microsoft, 2015;
Oracle, 2015).

2.1.1. Allocation Problem in Database-as-a-Service Systems

Database-as-a-service systems implement data-oriented architectures, the analogies
are shown in Figure 2.1. Relational databases comprise the actual data in form
of tables and the operations thereon in form of SQL statements. Hence, relational
databases form the tasks in the data-oriented system where database objects rep-
resent the data. Relational databases can be partitioned which leads to tasks that
communicate to execute a workload. The nodes of the system are connected database
management system servers, which together build the infrastructure.
Conceptual, the database-as-a-service system offers a virtual DBMS server

wherein the service customers create and use their databases. These virtual DBMS
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database
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Figure 2.2.: Database System Stack

servers are internally mapped to actual server machines. Which layers of the system
stack belong to the abstract task and which to the abstract node depends on the
actual implementation of the system and will be detailed in the next section.
The allocation problem is of high interest in database-as-a-service systems (e.g.,

Curino et al., 2011; Schaffner et al., 2013). The allocation strategy can for instance
be used to minimize the number of nodes and thereby reduce resource consumption
and operational costs. Furthermore, the allocation strategy can help to improve
performance, to guarantee service levels, and to ensure availability.

2.1.2. Implementation Classes of Database-as-a-Service Systems
Database-as-a-service systems are implemented by virtualizing the database server
and consolidating multiple virtual servers on a single physical server. However, the
multi-layered system stack of a database management system, ranging from the
hardware layer up to the database schema (shown in Figure 2.2) allows for vir-
tualization of different levels with different characteristics of the resulting system.
Understanding the individual characteristics is mandatory to be able to extract the
necessary workload and infrastructure information to solve the allocation problem
(details follow in Chapter 3). Especially, understanding how resources are moni-
tored, concurrently used by tasks, and isolated between tasks is important for the
infrastructure model. Assuming that only one layer is virtualized in any solution,
the stack leads to the five classes that are shown in Figure 2.3 (Hui et al., 2009;
Jacobs and Aulbach, 2007; Kiefer and Lehner, 2011; Wang et al., 2008):

1. Private OS (Figure 2.3 on the left),
2. Private Process,
3. Private Database,
4. Private Schema, and
5. Shared Schema (Figure 2.3 on the right).

The data-oriented systems differ among the implementation classes. Especially,
the granularity of tasks and nodes depends on the layer that is virtualized and
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Figure 2.3.: Classification of Database-as-a-Service Systems

consequently on the portion of the system stack that is shared and the portion
that is private. Figure 2.4 exemplarily illustrates what comprises a task and what
comprises a node in the Private OS and the Private Schema implementation classes,
respectively. In general, layers of the system stack above the virtualized layer belong
to the task (and are described in the workload model) whereas layers of the systems
stack below the virtualized layer belong to the node (and are hence described in the
infrastructure model).

Private OS

With Private OS, hardware is virtualized with the help of virtual machines. Each
database application, i.e., each task, comprises the stack from the operating system
upward. Hence, for each task the platform has to deploy and maintain an operating
system and a database management server with the respective database. This class
offers the highest degree of isolation with respect to security, performance, and
availability. At the same time, the resource requirements per database are the
highest which leads to a rather small number of tasks that can share a single node.
Resource usage of each task can be monitored in the database system, in the guest

operating system, or by means of the virtual machine monitor.

Private Process

In the Private Process class, the operating system is virtualized. Each task is repre-
sented by a database server process and several such processes share the operating
system. Since the operating system is only needed once, this class can support
a higher number of tasks per node. However, a large number of concurrent pro-
cesses may harm the system performance and the individual processes must request
resources responsibly, e.g., only the amount of memory that they actually need.
With private processes, operating system facilities can be used to monitor and

isolate certain system resources. The operating system scheduler assigns CPU time

10



2.1. Data Orientation in Database-as-a-Service Systems

HW-virtualization

hardware resources

virtual machine

Private OS

DB-virtualization

physical database

virtual database

Private Schema

task

node

allocation

Figure 2.4.: Task and Node Granularity in Database-as-a-Service Systems

to the various competing processes and priority levels and sometimes quotas can
be used to increase or decrease the share of any process. The main memory is per
default not limited by the operating system. Each process can use the same virtual
address space. The operating system only takes care of mapping the virtual memory
to physical memory and of paging in case of memory shortage.
Lightweight application containers like Docker (Docker, 2015) can be used to

further control execution of and increase isolation between the various tasks.

Private Database

The third system class shown in Figure 2.3 implements private databases. Here, a
single server process hosts a number of private databases, i.e., tasks.
The database management system needs to provision resources and balance loads

between different tasks. The different tasks share a database process and hence
are usually indistinguishable by the operating system. The only way to isolate the
tasks’ performances is by means of managing and isolating DBMS resources. In
our experience, buffers (e.g., for pages or sorts) can usually be split and assigned to
different databases. Other resources, such as the logging facility, are usually shared
and can hence lead to contention.
The detailed isolation options in currently available systems depend on the DBMS

implementation and are usually very limited. In the research community, Das et al.
(2014) and Narasayya et al. (2013) investigate the problem of performance isolation
in shared-process database-as-a-service systems. They present SQLVM, an abstrac-
tion for performance isolation in the DBMS. Furthermore, they implement and test
a prototype of SQLVM in Microsoft Azure.

Private Schema

With Private Schema, the database itself is virtualized. Each task can access a
virtual database, i.e., a schema, that is mapped to an actual physical database.

11



2. Foundations of Data-Oriented Systems

(a) 4-Node Machine (b) 8-Node Machine (c) 64-Node Machine

Figure 2.5.: Memory Access Benchmark Results

Several schemas can share a single database, which leads to a very low overhead per
task (schemas can be added to a database almost indefinitely).

The private schema class is similar to the private database class with respect to
the performance isolation characteristics. However, some resources like page buffers
may be even harder or impossible to isolate in a shared database.

Shared Schema

In the Shared Schema class, database applications share all layers of the database
system stack. The database schema is virtualized such that each task sees a private
schema, which is internally mapped to a single system schema (for schema mapping
techniques refer to, e.g., Aulbach et al., 2009, 2011).

This class provides the least isolation, because even access structures like indexes
are shared. However, the resource overhead per task is the smallest among all
classes. This class lends itself to applications where different users share a common
(or similar) schema. The loss of any separation of the databases leads to high
maintenance costs for operations such as backup or migration.

2.1.3. Summary and Discussion

Concluding this section, there is a variety of possible implementations for database-
as-a-service systems. Different characteristics and tradeoffs lead to valid use-cases for
all classes. Depending on the implementation, the workload model has to consider
different cost factors for a single task. Likewise, the infrastructure model has to
analyze the layers of the systems stack that comprise a node. The implementation of
the system dictates the infrastructure behavior, e.g., by introducing shared resources
that are prone to contention. However, we will show that once the workload and the
infrastructure are modeled, the allocation problem remains the same for the abstract
data-oriented system that covers all classes.
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2.2. Data Orientation in DBMSs for Multiprocessor Systems
The second category of data-oriented systems considered in this chapter are database
management systems for modern multiprocessor systems. Multi-socket-multi-core
systems with eight or more sockets and 64 cores are commonly found in data centers.
Larger machines exist and the trend points towards even more cores in a single
system. However, classic DBMSs face countless challenges with these systems. The
software (not being optimized for these systems) contains many critical sections and
central data structures that quickly lead to contention and hinder scalability (e.g.,
Huber and Freytag, 2009; Johnson et al., 2008, 2009; Pandis et al., 2010; Salomie
et al., 2011).
As a consequence of the high main memory capacities in today’s servers, modern

database systems are very often in the position to store their entire data in main
memory. Latency and bandwidth of the main memory are the major bottlenecks of
such in-memory DBMSs. The significance of these bottlenecks increases with the
trend towards tera-scale multiprocessor systems that exhibit non-uniform memory
access (NUMA). On NUMA platforms, each multiprocessor has its own local main
memory that is accessible by other multiprocessors via a communication network.
Database systems running on NUMA platforms face several issues such as the in-
creased latency and the decreased bandwidth when accessing remote main memory.
Our experiments with three NUMA systems of different sizes show that mod-

ern database management systems can achieve the highest performance by treating
shared-memory NUMA systems like distributed systems. The results in Figure 2.5
show a factor of up to ten for both latency (10x higher) and bandwidth (10x lower)
when comparing local to remote memory accesses (the experiment is presented in de-
tail in Section 7.1). Understanding sockets as individual nodes, which are connected
by a fast network and equipped with dedicated memory controllers, and design-
ing for memory locality avoids costly remote memory accesses and yields higher
throughputs.

2.2.1. Allocation Problem in DBMSs for Multiprocessor Systems
Database management systems on multiprocessor systems can leverage the data-
oriented execution principle to account for the character of the machine as dis-
tributed system. Relations are partitioned and partitions together with the opera-
tions thereon form tasks. Tasks are mapped to multiprocessors of the machine, i.e.,
the nodes of the data-oriented system. One way of thinking is to see the storage
component in the DBMS as the data-oriented system that offers data containers
to the query execution component. Data containers are transparently mapped to
actual memory by the allocation strategy. Figure 2.6 sketches data processing on a
multiprocessor system depicted as a data-oriented system.
The next section will present various approaches to data management on multi-

processor systems with varying degrees of data orientation. It turns out that not
all approaches provide the means to enforce locality of data accesses, e.g., some ap-
proaches only partition the logical data organization but not the physical data. The
allocation strategy is not that significant in these systems because it only affects a
small part of the actual processing.
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Figure 2.7.: Data Access Stack in Database Management Systems

For systems that provide the means for data locality, solving the allocation prob-
lem can be used to achieve various objectives. The throughput can be optimized
by balancing load and by co-locating tasks that heavily communicate. The power
consumption of the system can be optimized, e.g., in low load phases, by using a
smaller number of multiprocessors and sending idle multiprocessors to power-saving
modes.

2.2.2. Implementation Classes of DBMSs for Multiprocessor Systems

Different approaches have been proposed to deal with the characteristics of modern
hardware in database management systems. To our knowledge, there is no classifica-
tion of the different systems based on data orientation. We propose a classification
based on the abstract data access stack in database management systems shown in
Figure 2.7. The classification, shown in Figure 2.8, distinguishes classes based on
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the step in the data access stack, where the data or the access is partitioned. For
instance, in the second class (Logical Partitioning), the data, more specifically the
logical data access, is partitioned. This classification scheme leads to the following
five classes:

1. Shared-Everything (Figure 2.8 on the left),
2. Logical Partitioning,
3. Physiological/Physical Partitioning,
4. Partition Locality, and
5. Process Partitioning (Figure 2.8 on the right).

Details about all five classes are presented in the following paragraphs.

Shared-Everything

The first class, shared-everything, is not actually data-oriented. However, since
there are systems that try to tackle the challenges of modern hardware without
data orientation, they are shown for the sake of completeness. In shared-everything
systems, parallel transactions (threads) access all data concurrently. The data is
not partitioned and accesses are not separated. An example for a shared-everything
system is the Shore-MT storage manager by Johnson et al. (2009), a multithreaded
advancement of the Shore storage manager. Shore-MT improves scalability by op-
timizing locks, latches, and synchronization (critical sections) and thereby reducing
contention on storage manager components like the bufferpool manager or the free
space and transaction management. Shore-MT does not consider partitioning the
data or the access to the data, the memory layout, or memory locality.
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The HyPer system by Kemper and Neumann (2011) is a shared-everything in-
memory system written from scratch that uses processor-inherent lazy copy-on-write
and virtual memory management to support OLTP and parallel OLAP transactions.
Multiple read-only queries can be executed at a time, but writing requests are ex-
ecuted sequentially to ensure consistency without synchronization. This approach
obviates the need for locking and latching of data objects or index structures, an
otherwise constant source for contention and bottlenecks. HyPer also considers par-
titions of data to increase the possible degree of parallelism. Partition allows for
one writer and multiple readers per partition as well as multiple readers (but no
writers) in a shared data partition. However, updating transactions that span mul-
tiple partitions require exclusive access to the system like in the initial sequential
approach.

Logical Partitioning

Systems that use logical partitioning are the second class of systems in our clas-
sification, shown second from the left in Figure 2.8. To our knowledge, Pandis
et al. (2010) were the first to use the term data-oriented architecture (DORA) in
the context of database management systems (we use the same term but under-
stand it more generally and for a wider class of systems). The authors argue that
the execution of transaction processing contains a high number of critical sections
and that database management systems face significant performance and scalability
problems on highly-parallel hardware. They further argue that the primary cause of
the contention problem are the uncoordinated data accesses that are characteristic
for conventional transaction processing systems. Based on these observations they
propose to couple each thread with a disjoint subset of the database (thread-to-data
assignment, or task in our terminology) instead of the classic coupling of a thread
with a transaction. As a consequence, each thread can use a light-weight thread-local
locking mechanism and contention on global locking structures is severely reduced.
Another consequence of the thread-to-data assignment is that load needs to be bal-
anced whenever there is skew in the data or the accesses. Since data is only logically
partitioned, i.e., only the access to the data is partitioned and assigned to different
threads but the data remains without physical partitioning or alignment, changing
the partitioning is a light-weight operation. The authors describe the load balanc-
ing mechanism briefly but omit details on the decision making process that leads
to balancing actions. Keeping the data physically unpartitioned does not prevent
contention on page latches or false page sharing.

Physiological/Physical Partitioning

In a follow-up paper, Pandis et al. (2011) recognize the problem of the overhead and
complexity of page latching protocols as well as of conflicts due to false sharing. As
a solution, the authors propose the use of multi-rooted B+Trees as a way to enhance
logical partitioning and capture most types of physical data accesses as well. This
data organization scheme is called physiological partitioning (PLP) by the authors
and systems that follow this approach form the third class in our classification in
Figure 2.8. Under PLP, a thread is assigned to a sub-tree root of the multi-rooted
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B+Tree and it is ensured that requests distributed to each thread reference only the
corresponding sub-tree. As a result, threads can bypass the partition mapping and
their accesses to the subtree are entirely latch-free. At the same time, the underlying
multi-rooted B+Tree supports fast repartitioning and does not require distributed
transactions when requests span partitions. Together with the partitioning of the
access structures (B+Trees), the authors discuss different partitioning strategies for
the underlying heap data. The different partitioning strategies lead to different
characteristics with respect to access synchronization and balancing costs.
In contrast to the following class, the various partitions in the PLP system are

spread out in memory, agnostic to the NUMA characteristics of multiprocessor sys-
tems.

Partition Locality

The fourth class in Figure 2.8, Partition Locality, adds memory partitioning and par-
tition locality to the already partitioned data containers. The ATraPos system by
Porobic et al. (2014) uses logical and physical partitioning and relies on data parti-
tioning and placement to maximize locality of data accesses. Adaptive repartitioning
is used to maintain data locality under changing workloads. ATraPos furthermore
keeps the system state (e.g., locks and lists of transactions) in hardware-aware data
structures that require only socket-local data accesses.
The ERIS system (Kissinger et al., 2014) is an in-memory database management

system written from scratch that also belongs in this class. ERIS applies many of
the aforementioned principles, e.g., logical partitioning, physical data partitioning,
and socket-local data structures. We use ERIS for the experimental evaluation of
our allocation strategies and will hence describe it in detail in the corresponding
Chapter 7.
Leis et al. (2014) present a NUMA-aware query evaluation framework for the pre-

viously mentioned HyPer system. The framework is based on the notion of a morsel,
a partition of data. The size of a morsel is a tuning parameter, experimentally de-
termined to be 100,000 tuples in the paper. Tasks, i.e., units of a pipeline job and a
particular morsel to execute on, are distributed at runtime based on utilization and
locality (favoring locality but allowing work-stealing).

Process Partitioning

Naturally, classic shared-nothing distributed database management systems can also
be deployed on multiprocessor systems. Multiple processes with separate address
spaces simulate the various nodes of the network and the multiprocessor intercon-
nects are used for explicit communication. Process Partitioning systems form the
fifth class in Figure 2.8.
Distributed shared-nothing databases have been research topics as early as in the

1980s. It is beyond the scope of this thesis to provide a comprehensive overview of
all the results. Dewitt and Gray (1992) make a case for shared-nothing architectures
and against database machines back in 1992. The article explains many concepts
of parallel databases that are still valid today, e.g., scaleup, speedup, data and pro-
cessing skew, pipeline and partition parallelism, range and hash partitioning. The
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authors furthermore give an overview of back then state-of-the-art shared nothing
database management systems like Teradata, Tandem, Bubba, and Gamma. Despite
using the same principles, the emphases and bottlenecks were different when I/O was
dominating, main memory was comparably small and networks slow. For instance,
the article states that loading a terabyte database would take 12 days and nights at
a megabyte-per-second speed. Apers et al. (1992) even propose PRISMA/DB, a dis-
tributed main-memory database. Although having a prototype with 100 processing
nodes and a combined main memory of 1.6 GiB, the idea was certainly ahead of its
time.

Stonebraker et al. (2007) revisit the idea of shared-nothing database architectures
in the context of grids of multi-core systems. The proposed H-Store system deploys
an independent instance (i.e., with own indexes, tuple storage, and a disjoint par-
tition of the main memory) on each core of the system. The data is partitioned
horizontally and transactions are executed single-threaded and sequentially on each
core. Hence, there is no synchronization of access like locks or latches to a data par-
tition needed. However, depending on the data that is accessed, multiple partitions
need to communicate and coordinate distributed transactions.

As multi-socket machines with NUMA characteristics gained popularity, re-
searchers played with shared-nothing setups to circumvent remote memory accesses.
In Porobic et al. (2012), the authors perform a detailed analysis of different shared-
nothing (and shared) deployments in NUMA systems. To show the performance im-
pact of the NUMA architecture on a DBMS, they use multiple instances of ShoreMT.
We have previously investigated memory access characteristics and cache effects in
NUMA systems based on a synthetic benchmark that mimics a database system’s
behavior as well as a shared-nothing setup using the MySQL database system (Kiefer
et al., 2013).

2.2.3. Summary and Discussion

We showed in this section that many approaches to data management systems on
modern multiprocessor systems can be understood as data-oriented systems. We
attempted to provide a concise classification for the variety of research prototypes
and implemented systems. The classification is based on the step of the access
stack where the data access is partitioned and concurrent accesses are isolated. The
classification does not fit all systems perfectly, but gives an orientation how the
various systems behave. Given the allocation problem, which is the core of this
thesis, only systems that provide means for data locality, i.e., systems from the
two rightmost classes in Figure 2.8, are good candidates for further investigation.
Only when tasks can clearly be separated and assigned to nodes, can the allocation
strategy be used to optimize for a given objective. From our experiences and our
experiments on NUMA systems, it seems that database management systems that
focus on data locality will outperform systems that ignore the physical data layout.
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Figure 2.9.: Physical Design Automation Overview

2.3. Physical Design Automation for Data-Oriented Systems

The physical design of a database traditionally comprises several aspects of its actual
setup like the creation of indexes or materialized views. In the context of distributed
databases, the partitioning of relations and the placement of partitions, hence the
allocation, also belong to the physical design. The physical database design greatly
influences application performance as it is commonly a tradeoff between performance
and storage or maintenance overhead. Also, favoring certain queries in the expected
workload over others is a tradeoff to be made by the physical design. Hence, auto-
mated or assisted tuning of the physical database design has been a vast research
area for decades.
Classic advisors recommend indexes and materialized view (e.g., Agrawal et al.,

2000; Zilio, 1997). These advisors frequently use the database system’s query opti-
mizer and the underlying cost model in a so-called what-if mode where query execu-
tion costs are estimated without the need to physically deploy the setup. Together
with an algorithm that searches the solution space, the optimizer’s estimations can
help to find beneficial indexes and materialized views. Index advisors are used at
design time (or in certain intervals) and need the expected query workload as input.
Like all workload-based design advisors, index advisors assume that the expected
workload is known or that a trace can be collected that resembles the actual work-
load well enough.
Regarding distributed databases, two aspects of the physical design are especially

important. First, partitioning decides how to split up data. In the field of automated
data partitioning, we further distinguish between partition advisors that are used at
design time with an expected workload and partition balancers which react to the
actual workload at runtime and try to adapt the partitioning accordingly. Second,
placement decides where to put each partition and consequently the partitions that
are co-located.
Many researchers investigate both aspects, partitioning and placement, but focus

on one in particular. Some articles that investigate partitioning also cover placement,
often with simplifying assumptions like: (1) always spread data to all nodes, (2) load
from different partitions adds up linearly, (3) nodes are all equal, or (4) the network
is homogeneous and fully connected. Other works assume the partitioning to be
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fixed and only investigate the placement. We point out related work that focuses
on the aspects of partitioning and partition placement in the subsequent sections.
Figure 2.9 shows the different problems addressed by physical design automation in
distributed database management systems. Furthermore, the figure highlights some
challenges in each area.

2.3.1. Automated Data Partitioning

The framework of using the query optimizer’s cost estimates without physically
deploying the setup has been extended to propose data partitioning schemes as well.
Zilio et al. (1994) use a simple heuristic to select partitioning keys: attributes

that have the highest weight based on operation type and frequency in the workload
(e.g., a join has a higher weight than a group-by). An extension of the algorithm
considers the top ranked partitioning key candidates and exhaustively probes all
combinations against the optimizer to find the best partition keys. The first author
of the paper later substantially extends the algorithms and also considers concurrent
reorganization in his thesis (Zilio, 1997).
First to solely use the cost model of the optimizer, as opposed to heuristics or

a separate cost model, were Rao et al. (2002). Based on a given workload of SQL
statements, the authors seek to determine how to partition the base data across mul-
tiple nodes in a shared-nothing parallel database management system. A rank-based
enumeration method is used to find candidate solutions and so-called interesting par-
titionings are considered, i.e., partitionings that are not optimal for certain queries
but benefit the global cost. Replication of tables is not considered by the authors.
Agrawal et al. (2004) extended the idea to incorporate vertical and horizontal

partitioning into automated physical database design. The authors propose an inte-
grated solution to partitioning, indexes, and materialized views again based on the
expected SQL workload and costs estimated by the optimizer. A similar approach
was proposed by Zilio et al. (2004), a continuation of the author’s previous work.
A more recent approach by Nehme and Bruno (2011) considers partitioning and

replication of tables. Given a database, a query workload, and a storage bound, the
authors’ method tries to find a partitioning strategy such that the size of replicated
tables does not exceed the storage bounds and the overall cost for the workload is
minimized. Unlike previous approaches, this algorithm is deeply integrated in the
query optimizer to improve the search for candidate solutions, e.g., by early pruning
of partial configurations.
A slightly different approach by Pavlo et al. (2012) is based on a separate analytical

cost model and large neighborhood search to explore the solution space. The au-
thors try to minimize distributed transactions in the shared-nothing system H-Store
while mitigating effects of temporal skew. The developed tool, Horticulture, con-
siders horizontal partitioning, replication, replicated secondary indexes, and stored
procedure routing. The authors specifically target OLTP workload and make strong
assumptions on the database schema and workload, e.g., a hierarchical schema.
A project called Schism by Curino et al. (2010) aims at minimizing the number

of distributed transactions by assigning each tuple individually to a partition such
that the number of transactions that span multiple partitions is minimized. The
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authors use graph partitioning techniques to come up with an assignment of tuples
to partitions based on the workload, which is modeled as a graph. The idea of
modeling the workload as a graph and using graph partitioning algorithms to find a
partitioning is picked up by Kumar et al. (2013, 2014) in the SWORD project. Both
Schism and SWORD will be revisited in Section 3.5 where we present an in-depth
analysis of closely related approaches to the allocation problem for data-oriented
architectures.

2.3.2. Automated Partition Balancing

Partition balancers are based on the simplifying assumption that balancing load
across all partitions leads to the best physical setup. Unlike partitioning advisors,
balancers try to improve the partitioning at runtime. Partition balancers can be used
with any initial partitioning to eventually find a balanced partitioning. Furthermore,
partition balancers can naturally react to changing workloads. The main challenges
are (1) to monitor the system behavior with minimal impact on performance to
be able to detect imbalances and (2) to quickly react to imbalances with (ideally
incremental) new partitioning rules.
Early work on load balancing in shared-nothing database systems, e.g., by Rahm

and Marek (1993), assumes that in parallel join processing, relations would by dy-
namically redistributed to the actual join processors. Based on the current CPU
utilization and a cost model, the number of join processors as well as the active join
processors are selected dynamically.
Scheuermann et al. (1998) investigate load balancing in shared memory parallel

disk systems. The authors introduce a notion of disk heat based on inter-arrival times
of requests. An online greedy heuristic tries to dynamically balance load (referred
to as disk cooling) by migrating data away from the hottest disks. The migration
mechanism is invoked at fixed intervals and only if certain conditions are met.
The abovementioned ATraPos system (Porobic et al., 2014) dynamically re-

partitions data to balance resource utilization while minimizing transaction syn-
chronization overhead. Based on monitored metrics, e.g., costs for actions on sub-
partitions, and a cost model, an iterative algorithm tries to improve the partitioning
by moving work to the most under-utilized core. ATraPos uses thread-local moni-
toring data structures and eventual global aggregation to reduce the impact of the
monitoring on performance. Once a set of repartition actions, i.e., split or merge, is
found, the regular executions is paused to migrate the data. The balancing algorithm
is invoked at flexible intervals, depending on the characteristics of the workload.
The morsel-driven query evaluation framework introduced before (Leis et al.,

2014) does not balance the partitioning in the classic sense by invoking a separate
balancing algorithm. Instead, each worker is able to steal work from other sockets
in the absence of local tasks. By writing results to local memory, a worker that
steals work implicitly changes the partitioning of the data. A lock-free meta data
structure, i.e., a list of available and executable tasks (referred to as dispatcher in
the paper), is maintained and used by workers to determine the next task to execute
and hence the next data partition to work on.
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2.3.3. Automated Data Placement
Besides data partitioning, data placement is the second big challenge in distributed
databases. Once data is split into a given number of partitions, each of the partitions
needs to be assigned to a node in the system. A simplification of the problem is to
assume equal nodes and a homogeneous topology. Then, the problem is reduced to
building as many subsets of partitions as there are nodes.
Mehta and Dewitt (1997) analyze data placement in shared-nothing parallel

database systems. The authors state that in the absence of remote access, the data
placement determines the distribution of data and the corresponding operators. The
paper considers declustering to balance load across the nodes of the shared-nothing
system. A method, based on simulations of the DBMS as closed queuing system, is
presented to determine the degree of declustering and the subset of nodes to store
the data. The quality of the method depends on the ability to model the DBMS
and the underlying hardware and the accuracy of the simulator.
Schaffner et al. (2013) propose the Robust Tenant Placement (RTP) problem that

assigns tenants to nodes in a multi-tenancy database-as-a-service system. The RTP
and the methods used to solve it will be revisited in Section 3.5.
Curino et al., 2011 investigate workload-aware database consolidation. The pre-

sented Kairos system consolidates databases based on the predicted combined re-
source utilization. The Kairos system will also be revisited in Section 3.5.

2.4. Summary
In this chapter, we presented foundations of data-oriented systems. We introduced
two application scenarios, database-as-a-service and DBMSs for multiprocessor sys-
tems, that use data-oriented systems. Classifications of systems, based on the extent
of data locality and the proportion of private and shared resources, were proposed in
both scenarios. Different characteristics and tradeoffs of the various different imple-
mentations lead to valid use-cases for all classes. Depending on the implementation,
the workload model has to consider different cost factors for a single task. Likewise,
the infrastructure model has to analyze the layers of the systems stack that comprise
a node. We will show in the next chapter that all systems can use a unified alloca-
tion strategy once the workload and the infrastructure of the data-oriented systems
are abstracted in the corresponding models.
Second in this chapter, we recapitulated related work in the field of physical design

automation in distributed database management systems. Approaches to automatic
data partitioning, partition balancing, and partition placement are important foun-
dations to better understand the allocation problem in data-oriented systems.
In the next chapter, we present the allocation problem for data-oriented systems.

We first abstract from specific data-oriented systems to generic infrastructures and
workloads and then formulate the actual allocation problem.
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Systems

In this chapter, we introduce the allocation problem for data-oriented systems. We
showed in the previous chapter that a wide variety of actual systems with different
characteristics implement data-oriented architectures. The allocation strategy to
solve the allocation problem in this thesis is applicable to data-oriented systems
in general. However, to use the allocation strategy, specific data-oriented systems
have to be generalized to an abstract data-oriented system. The abstract system
is a common denominator of all data-oriented systems and acts as an interface to
the actual allocation strategy. Figure 3.1 sketches the generalization of a (class of)
database-as-a-service system(s) to the abstract data-oriented system. The hardware
resources of the system are collected in the infrastructure. The infrastructure model,
detailed in Section 3.1, describes system abstractions and necessary information to
derive from the actual system. The applications that run in the database-as-a-
service system are collected in the workload. The workload model in Section 3.2
details how to describe a workload and provides hints on how to obtain the workload.
Since actual data-oriented systems differ greatly, methods to obtain workload and
infrastructure information for a given system have to be provided by domain experts.
Given the infrastructure and workload information, the allocation problem it-

self is formalized and variations thereof are discussed in Section 3.3. In general,
the allocation problem is to find a mapping from workload tasks to infrastructure
nodes. Assuming that there are considerably more tasks than nodes, several tasks
share nodes and the mapping determines the overall system performance as well as
other system properties. Consequently, the allocation strategy, which provides that
mapping, is used to optimize the system. Different objectives, e.g., performance or
resource consumption, and corresponding constraints, e.g., given resources or per-
formance guarantees but also availability, maintainability, or isolation, are discussed
in Section 3.3.
In the simplest case, the workload is static and the infrastructure is fixed. In

this case, the allocation strategy can be used to find a mapping at compile time
(offline) that is once implemented and never changed. When the workload or the
infrastructure change dynamically, the allocation strategy has to adapt the mapping
at runtime (online) to compensate for the changes. In this thesis, we assume dynamic
workloads and infrastructures1 and our allocation strategy is able to incrementally
update a mapping.

1In our models, workload and infrastructure are constant for (possibly short) intervals of time and
may change between these intervals. This approach differs from, e.g., modeling the workload as
a continuous time series.
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Figure 3.1.: Abstracting a Specific Data-Oriented System

Data Partitioning Problem The allocation problem takes workload tasks and as-
signs them to infrastructure nodes. Another problem, the data partitioning prob-
lem, is closely related to the allocation problem and sometimes the two problems
are treated together. The data partitioning problem is to decide whether or not
and into how many pieces to partition a database object. Depending on the specific
data-oriented system, this may include the selection of partition keys, key ranges,
or individual tuple-to-partition mappings. In this thesis, we mostly assume that the
data partitioning problem is solved separately before the workload is abstracted in
the workload model. However, we briefly discuss the data partitioning problem here
and again later in this chapter to highlight the correlation to and the interactions
with the allocation problem.
Both, the data partitioning problem and the allocation problem are loosely con-

nected because decisions made in solving one problem may influence the solution of
the other problem. If, for instance, a relation is partitioned into many small pieces,
each piece may fit on a processing node that is too small to hold the entire parti-
tion. Therefore, the solution space for the allocation problem changes. The other
way around, assigning a relation to a node with very limited scan performance may
encourage the partitioning algorithm to split the relation and scan it in parallel.
The data partitioning problem has been of interest ever since the first partitioned

databases were available (e.g., Ries and Epstein, 1978). Aspects to consider in the
solution are the size of the relations and the capacities of the nodes, i.e., relations
that do not fit on a single node always have to be partitioned. When partitioning is
optional, it is a tradeoff between costs induced by communication and distributed
protocol overhead and gains caused by the use of additional resources. Depending on
the workload it may be beneficial to decluster, i.e., spread out, a relation to utilize
the combined bandwidth of several nodes in a large scan operation. When relations
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are joined in the workload, selecting the appropriate partition keys is crucial to
enable the allocation algorithm to co-locate partitions of relations based on join
keys to avoid costly communication.
As stated previously, we focus on the allocation problem, i.e., we compute an

initial partitioning based on simple heuristics or assume the existence of initial par-
titions. For instance, existing partitioning advisors can be used to provide an initial
partitioning. However, we will point out how the partitioning impacts the alloca-
tion and vice versa and we will describe basic strategies to incrementally update the
partitions.

Chapter Outline The infrastructure model and the workload model are detailed in
Sections 3.1 and 3.2 respectively. In Section 3.3, the allocation problem is formalized
and possible objectives and constraints are discussed. From the problem description,
we derive and detail requirements for allocation strategies in Section 3.4. Last, in
Section 3.5, we discuss related approaches proposed in the literature for variations
of the allocation problem.

3.1. Infrastructure Model

In this section, we describe the model that abstracts from the actual hardware
of the execution environment to a generalized infrastructure. Characteristics of the
execution environment that are needed to solve the allocation problem are subsumed
in the infrastructure. The infrastructure model contains the hardware resources that
are captured in the infrastructure (Section 3.1.1) as well as their types (Section 3.1.2)
and their models for combining loads (Section 3.1.3).

Definition 3.1 (Infrastructure). An infrastructure is an undirected graph of nodes
connected by links. Nodes have bounded and unbounded resources and weight func-
tions map each node to either an absolute or a relative capacity per resource. In
the case of equal nodes, the relative capacities for unbounded resources can be omit-
ted. Each unbounded resource additionally has a model for combining loads. Link
capacities in the infrastructure are given by an edge-weight function. To solve the al-
location problem, an infrastructure must also provide a routing function that maps

25



3. Allocation Problem for Data-Oriented Systems

any two nodes to a set of links that connect the two nodes. For fully connected
networks, the routing function can be omitted.

All components of an infrastructure are visualized in Figure 3.2. Although not
explicitly stated, the infrastructure definition implies that the infrastructure can
be heterogeneous with respect to the nodes and the links. Nodes and links in the
infrastructure can have different capacities. Additionally, the network can be sparse,
i.e., nodes may not be fully connected.
The granularity of a node in the infrastructure depends on the implementation of

the data-oriented system, e.g., it may be a single core or all combined multiprocessors
in a system. Likewise, a link may refer to an internal link between multiprocessors
or a network connection between servers.

3.1.1. Modeled Resources

The infrastructure in Definition 3.1 can be used to model different kinds of actual
hardware resources. The allocation strategy finds mappings based on the abstract
infrastructure instead of any specific resource. To illustrate the infrastructure, we
exemplarily describe three main resources:

Processing Resources: CPUs in each node are abstracted to processing resources.
Processing resources can, e.g., be characterized by and measured in instruction
throughput, i.e., retired instructions per second. Depending on the actual
system and the granularity of the data allocation, processing resources can
refer to anything from a single core in a multi-core processor to all combined
multiprocessors in a system.

Memory Resources: Main memory attached to a node is abstracted to a memory
resource. Again, the memory resources can abstract a single memory con-
troller or several memory controllers based on the granularity of a node in the
infrastructure. Memory can, e.g., be characterized by a capacity and an access
bandwidth.

Network Resources: The network that connects nodes is also modeled in the in-
frastructure. The network can be characterized by link bandwidths.

Since the actual data-oriented systems that we use in this thesis are based on
in-memory database management systems, we omit disks and disk I/O in the in-
frastructure. However, the infrastructure definition does not explicitly exclude I/O,
which can be modeled as a resource if needed.

3.1.2. Bounded and Unbounded Resources

The infrastructure model distinguishes between bounded resources and unbounded
resources.

Bounded Resources have a hard limit that cannot be exceeded. Bounded resources
cannot be overcommited and overloading a node’s bounded resources leads to
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invalid allocations. The infrastructure must provide capacities, i.e., upper
bounds, for all bounded resources. For homogeneous nodes, a single global
upper bound is sufficient. For heterogeneous nodes, the upper bound has to
be provided per node.

Unbounded Resources are not literally unbounded but unlike bounded resources
they can (and usually will) be overcommited. Overcommitting an unbounded
resource still leads to a valid allocation, even if the performance degrades.
The infrastructure does not contain upper bounds for unbounded resources.
However, relative capacities need to be provided in the case of a heterogeneous
nodes to account for individual nodes’ capacities.

We assume that bounded resources show constant behavior up to the upper bound.
For instance, we assume that access performance does not depend on the size of the
data in memory. Unbounded resources on the other hand show degrading perfor-
mance with increasing load and overcommitment (with a possibly non-linear depen-
dency). The goal of our allocation strategy will be to respect the upper bounds of
bounded resources and to balance unbounded resources. The intuition behind this
strategy will be discussed in Section 3.3.
A given hardware resource rarely is strictly a bounded or an unbounded re-

source. Each resource considered in the previous section can equally be modeled as
a bounded or an unbounded resource and the decision affects the workload model,
the allocation strategy, and the resulting allocation. For instance, the main memory
capacity can either be considered a bounded resource or an unbounded resource in
the presence of paging mechanisms. However, the expensive I/O operations caused
by paging decline performance drastically and it may be better to model the main
memory capacity as a bounded resource. Consequently, any allocation that over-
loads a single node’s main memory is considered invalid. In contrast, we model
processing resources, memory bandwidth, and the network as unbounded resources
where overcommitment still leads to valid allocations. All these resources can also
be modeled as bounded resources. Taking the example of CPU instructions, there
is an upper bound for the number of instructions that a given CPU can retire per
unit time. If the number of CPU instructions is known for the workloads, modeling
CPU instructions as a bounded resource can lead to tight performance guarantees
where either each workload is able to retire a given number of CPU instructions or
(if not) the allocation of workloads to the CPU is considered invalid and rejected.
Modeling resources as being bounded or unbounded depends on the intention of the
model and the availability of resource capacity and workload requirement informa-
tion. Bounded resources only require relative capacities, which are usually easier to
obtain.

3.1.3. Models for Combined Load

Several tasks commonly share a single node in data-oriented systems. To be able
to evaluate a given allocation, the global load of a node, i.e., the combined load
induced by all tasks that are executed on the node, needs to be estimated. A
node’s load determines it’s performance and is hence used to achieve the objective
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of the allocation problem and to formulate constraints of the allocation strategy (the
correlation of load and performance is discussed in Section 3.3).
In the simplest case, loads induced by tasks are combined by summing them up

to derive a node’s global load. This method is referred to as the linear model as
it models an ideal system where performance scales linearly with the amount of
work that needs to be done. However, in practice, performance often depends on
all kinds of workload parameters like request rates, request types, request sizes, and
the concurrent execution of requests. Contention on resources caused by concurrent
execution may lead to performance the does not scale linearly with the amount of
work. Therefore, in addition to the linear model, we propose a non-linear model to
combine the individual loads induced by tasks that share a node.
Note that this section discusses how loads, i.e., tasks, are combined. Consequently,

this discussion could arguably also be part of the workload model in the following
section. In fact, the later allocation strategy will apply the non-linear model to the
workload (by increasing the load induced by all tasks) in contrast to applying it to
the infrastructure (by reducing a node’s capacity depending on the tasks). However,
since the non-linear performance is caused by contention in the infrastructure, we
consider it a property of the same and decided to discuss it here.
We casually refer to resources that use non-linear models to combine loads as non-

linear resources and in general we refer to non-linear resource usage and non-linear
resource behavior. When using these short (though not entirely correct) terms, we
refer to the non-linear performance (non-linear in the amount of work) that results
from using the resources, e.g., caused by contention.

Non-Linear Resource Usage

A major reason for sub-linear scalability with the number of tasks is contention
on resources. Contention can happen on the hardware itself, on operation system
resources, or on DBMS components. Disk I/O, as a prime example, has always
been considered a non-linear resource caused by characteristics of the underlying
hardware. With our focus on in-memory technology, disk I/O is beyond the scope
of this thesis. However, other resources like CPU and memory that are sometimes
considered to be linear resources for simplification also show non-linear behavior
under high load.
Depending on the implementation, high request rates can lead to a high number

of context switches in the operating system (process or thread switches). Li et al.
(2007) measure direct costs of context switches, e.g., caused by saving and restoring
registers and by system calls, and indirect costs of context switches caused by cache
pollution. With a tool provided and discussed by Sigoure (2010) in a blog post,
we measured the direct costs of a context switch on a current Intel Xeon E7 to
be about 32 µs. With a high degree of parallelism, this can add up and deteriorate
performance. A high request rate also causes contention on other resources. We have
investigated the effect of cache sharing between database workloads in a NUMA
system in a previous article (Kiefer et al., 2013). Tözün et al. (2013) investigate
cache misses that occur when executing an OLTP system. The authors break down
the cache misses and identify components of the system that cause certain types
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Figure 3.3.: Non-Linear Response Time Behavior, from Schaffner et al. (2011)

of cache misses. Blagodurov et al. (2010) conduct detailed experiments on memory
controller contention, memory bus contention, and prefetching hardware contention.
The data-oriented system itself is another source for contention. As shown in

Section 2.1.2 for database-as-a-service systems, the layers of the system stack that
belong to the node and are hence captured in the infrastructure model depend on the
implementation of the system. For instance, given the Private Database class, the
database server is part of the node and contention on DBMS resources is captured
in the non-linear behavior of the infrastructure. Different components of relational
database management systems like logging facilities, free space management or trans-
action management can congest under high load. Johnson et al. (2008) investigate
contention on various components of the DBMS that lead to bad scalability. In a
related work (Johnson et al., 2009), the authors analyze the storage manager Shore
and identify several components, e.g., buffer pool manager, log manager, and lock
manager, that cause bad scalability. The optimized Shore-MT improves scalability
by optimizing locks, latches, and critical sections. Pandis et al. (2010) use bad scala-
bility caused by contention on DBMS resources as motivation for their data-oriented
architecture. Although data-oriented systems aim at localizing work and avoiding
central data structures, there always remains a portion of central code that may
cause contention.
In summary, the detailed behavior of the system strongly depends on details of the

hardware, implementation details of the operating system, and on the data-oriented
system itself. To grasp the general behavior of the complex system, we assume a
simplified resource consumption model that reflects the non-linear performance of
the system. In our infrastructure model, each resource has a (relative) capacity
and a (possibly non-linear) model to combine loads. We distinguish two types of
non-linear behavior, (1) penalized resource usage and (2) general non-linear resource
usage. The first type, which is a special case of the second type, is intuitive and
leads to optimizations in the allocation strategy.

Penalized Resource Usage The penalized resource usage model is a combination of
the linear model and a non-linear penalty function. Up to a certain load or degree
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of parallelism, the linear usage assumption often holds and the performance can
be predicted accurately. However, when a certain load level is reached, contention
occurs and the performance does not scale linearly beyond this load level. To account
for this contention and the non-linear performance, a penalty is introduced that adds
to the resource usage based on the number of concurrent tasks.
Schaffner et al. (2011) did an experiment with the in-memory column database

TREX. The authors increase the abstract workload, a combination of data size
and request rate, and measure the 99th percentile value of the response time of all
requests. Based on multiple experiments, the response time is approximated as a
function of the workload. The results of the experiment are shown in Figure 3.3.
Figure 3.3a shows the results from the paper for a fixed data size, i.e., when the
workload is only a function of the request rate. Figure 3.3b shows that the function
for the response time can be split into a linear component and a penalty that starts
to affect the response time above a certain load level. The authors in the paper
avoid load above this point and argue in favor of a linear performance model. We
assume overcommited resources and argue in favor of incorporating the penalty in
the infrastructure model.

General Non-Linear Resource Usage In the general case, non-linear resource usage
can be modeled as an arbitrary function2 of one or more linear resources. In contrast
to penalized resources usage, the non-linear function here does not have to be a
composition of the linearly combined load and a penalty. Furthermore, multiple
resources together can be used to describe and thereby influence a single non-linear
resource.
Note that the non-linear usage model of resources in the infrastructure model

is still a simplification of the actual system behavior. However, given the various
sources for contention, we consider it more accurate than the simpler linear model.
Given the dependency of the resource behavior on the underlying system, we do
not detail any particular non-linear model here but assume the existence of penalty
functions or general non-linear resource usage functions. In an actual system, these
functions have to be determined from manufacturer manuals, operating system doc-
umentation, or experimentally based on low-level experiments using the monitoring
capabilities of the system.

3.2. Workload Model
In this section, we describe the model that abstracts from the actual tasks to a
generalized workload. Characteristics of the tasks that need to be available to solve
the allocation problem are subsumed in the workload. Workload and infrastructure
are similar in structure, i.e., modeled as a graph, to enable later allocation strategies.

Definition 3.2 (Workload). A workload is an undirected graph of data partitions
connected by data transfers. Data partitions and operations executed on them are

2The non-linear function must be positive and monotonic increasing. This requirement does not
impose a strict limitation, as the resource usage usually increases when load is added. The reason
for the requirement will be detailed when the allocation strategy is described in Chapter 4.
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bundled in tasks. Tasks consume bounded and unbounded resources and vertex
weight functions map each task to either an absolute or a relative cost, i.e., load,
per resource. An edge weight function quantifies data transfer costs.

In this thesis, we exemplarily assume tasks to induce a relative processing cost
and a relative memory transfer cost (unbounded resources). Furthermore, data
partitions consume an absolute memory capacity (bounded resource). Edge weights
in the workload represent amounts of data being transferred between data partitions.
The granularity of a data partition in the workload depends on the implementation
of the data-oriented system, e.g., it may be a single tuple, a relation or parts thereof,
or a whole database. Likewise, a task is a generalization of a query, a transaction,
or any complex set of operations on the data.
Note that we use the terms cost and load interchangeably when referring to a

task’s activity. Most precisely, a task’s load refers to the best-case resource con-
sumption of that task. For instance, if a task is executed under ideal conditions
(i.e., isolated in a dedicated environment) and is there able to read from memory at
a rate of 5 GiB/s, then this is the task’s load with respect to the memory controller
bandwidth. Recall that for unbounded resources, relative costs are sufficient and
usually easier to obtain. For instance, it is sufficient to know that a certain task
induces twice as much load as another task.
The abstract workload is a generalization of the work done in the data-oriented

system. The workload graph acts as an interface between the actual tasks performed
in the system and the allocation strategies. Data-oriented systems may look differ-
ently and it heavily depends on the actual system how the workload graph can be
derived from the performed tasks. In fact, the workload does not even have to be in
the form of SQL statements. A program, written in a high-level language, that con-
tains data manipulating operations may as well be transformed to a workload graph.
Related, though in detail different examples of modeling workloads in data-oriented
systems can for instance be found in Curino et al. (2010, 2011) and Schaffner et al.
(2013).

3.2.1. Obtaining the Workload

In this section, we present an exemplary scenario using the data-oriented in-memory
DBMS ERIS (see Chapter 7). We detail the steps and necessary information to
transform a list of SQL statements to a workload graph. The steps to obtain the
workload graph may be different for other systems.
In this scenario, the workload information is provided as a list of SQL statements

and execution frequencies, e.g., obtained from a recorded trace. It is furthermore as-
sumed that the database can be deployed and the statements can be executed in the
DBMS to gather execution information and statistics (otherwise, these information
have to be provided together with the input). Collecting the necessary information
induces minimal overhead and can either be done in a dedicated staging area of the
system, where workloads are evaluated before entering the system, or directly in the
productive system. Along the way, obtaining the workload graph requires to assign
resource usage costs to basic DBMS operations. These costs can either be derived
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select
sum(lo_extendedprice * lo_discount)

from
lineorder, date

where
lo_orderdate = d_datekey and
d_year = 1993 and
lo_discount >= 1 and
lo_discount <= 3 and
lo_quantity < 25

LINEORDER

SCAN DATE

LOOKUP

SUM

d_datekey = ?lo_discount >=1
...

lo_orderdate = d_datekey

d_year = 1993

Figure 3.4.: Transforming the SQL Statement to the QEP

from an analytical cost model or from sandbox experiments (or a combination of
both).
Given these preconditions, a workload graph is derived from a single SQL state-

ment in three steps. Multiple workload graphs from individual statements are ag-
gregated to the global workload graph by summing up vertex and edge weights. The
three steps to obtain a workload graph in ERIS are:

1. Transform the SQL statement to the Query Execution Plan (QEP),
2. Transform the QEP to an intermediate graph representation, and
3. Transform the intermediate graph representation to the workload graph.

All three steps are detailed in the following paragraphs. An example of the inter-
mediate representations is shown in Figures 3.4, 3.5, and 3.6. The example uses
query 1.1 from the Star Schema Benchmark (O’Neil et al., 2009).

SQL Statement to QEP In the first step, shown in Figure 3.4, a query execution
plan (QEP) is built from the SQL statement. The QEP is a DBMS specific internal
representation of the statement that shows several execution details of the state-
ment. The QEP contains all input relations (or partitions of relations) and their
access strategies. Additionally, the QEP contains relational operators like joins,
aggregations, or selections.

QEP to Intermediate Graph In the second step, shown in Figure 3.5, the QEP is
transformed to an intermediate workload graph. To process the QEP, it has to be
annotated with cardinality information obtained during a statement execution (or
estimates based on statistics). In Figure 3.5, the required information is marked with
encircled numbers, i.e., the sizes of the input relations and cardinality information
along the execution tree. From the annotated QEP, an intermediate workload graph
representation is derived where each relation (or partition) is a vertex. Relations,
which are connected by join or union operators, are connected by edges in the graph.
In ERIS, the leftmost relation in the QEP drives the execution, i.e, it collects all data
from other relations and returns the final result. Vertices in the intermediate graph
representation are annotated with sizes and operator lists containing intermediate
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Figure 3.5.: Transforming the Annotated QEP to an Intermediate Workload Graph

cardinalities from the QEP. In the example shown in Figure 3.5, let C1 be the
cardinality of the intermediate result at the position marked with ¬ (likewise for all
intermediate results). It follows that OPS(L) of vertex L is a list of operators that
contains scanning C1 tuples from the lineorder relation and applying predicates to
C1 tuples. Furthermore, C3 keys have to be sent to vertex D for lookup, a predicate
has to be applied to C5 tuples, and the remaining C6 tuples have to be aggregated
in a sum. The operations list OPS(D) of vertex D only contains looking up C3 keys
and returning C4 matches. The edge {L,D} is annotated with a size that comprises
C3 lookup keys and C4 tuples from the date relation. The graph annotations in the
example are:3

SIZE(L) = (TUPLE(C1)),
SIZE(D) = (TUPLE(C2)),
OPS(L) = (SCAN(C1),SELECT(C1),SEND(C3),SELECT(C5),SUM(C6)),
OPS(D) = (LOOKUP(C3),RETURN(C4)),

SIZE({L,D}) = (KEY(C3),TUPLE(C4)).

In this simplified notation, TUPLE(C1) for instance denotes the size of a tuple of
the lineorder relation multiplied with the cardinality C1.

Intermediate Graph to Workload In the last step, shown in Figure 3.6, the inter-
mediate workload graph is transformed to the actual workload graph by mapping
vertex and edge annotations to resource usage costs. The sizes of the input relations
together with intermediate data are bounded resources and are mapped to S(·). The
operations lists of the intermediate graph are mapped to processing costs P (·) and
memory transfer costs M(·) using a cost model. The cost model can be the inter-
nal cost model of the DBMS, a separate cost model that reflects the DBMS, or a

3Note that this is a simplified representation for readability purposes. For instance, to derive the
actual size of the lineitem relation, not only the cardinality C1 but also the size of an individual
tuple is required. Similarly, other operators require additional information to derive costs.
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Figure 3.6.: Transforming the Intermediate Workload Graph to the Final Workload
Graph

generic cost model (e.g., Manegold and Boncz, 2002). Since processing and memory
access are unbounded resources, the corresponding costs can be provided as relative
costs. Network cost N(·) are derived from the edge annotation of the intermediate
graph. To complete the example, assuming a cost model, the (normalized) costs of
the workload may be:

S(L) = 567 MiB P(L) = 13.3 M(L) = 48.4
S(D) = 225 KiB P(D) = 1 M(D) = 1

S({L,D}) = 94 MiB.

The relative costs denote that executing all operators that comprise the vertex L
is 13.3 times more expensive with respect to processing compared to executing ver-
tex D. Likewise, vertex L is 48.4 times more expensive than vertex D with respect
to memory access.

3.2.2. Maintaining the Workload

We assume the workload to be dynamic in nature. Hence, part of the system and
the allocation strategy is to maintain workload information in presence of changing
tasks to be able to adapt the allocation accordingly. Maintaining the workload is a
twofold problem, (1) detecting the changes and (2) incorporating the changes in the
workload graph.
How changes in the workload can be detected strongly depends on the imple-

mentation of the data-oriented system. Monitoring facilities must be provided that
detect changes of the incoming tasks as well as changes in the data characteristics,
e.g., cardinalities or data skew.
Adding and removing tasks can be accomplished by adding or subtracting the

corresponding vertex and edge weights. Once detected, a change in the incoming
workload may be incorporated in the workload graph in different ways. The ver-
tex and edge weights that belong to the task have to be removed from the global
workload. Then, the task’s workload graph can either be updated, e.g., when cardi-
nalities have changed, or built from scratch. The modified workload for the changed
query can then be added again to the global workload.
When the partitioning of a data object is modified, e.g., when a relation is split

or two partitions are merged, the workload graph can be incrementally updated
by splitting or merging, respectively, the corresponding vertex. Vertex and edge
weights have to be assigned to the newly generated vertex (or vertices) and edges
accordingly.
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3.3. Allocation Problem
With Definitions 3.1 and 3.2 for an infrastructure and a workload, respectively, the
allocation problem can now be discussed and finally formulated.

3.3.1. Possible Objectives

The allocation problem can be formulated differently to optimize for different ob-
jectives (see also Section 3.5 with related approaches). Two basic formulations are:

1. Minimize the number of used resources without violating performance con-
straints!

2. Maximize performance with a given amount of resources!

Both formulations can be extended and customized to further specify the allo-
cation problem. Performance constraints and objectives can for instance refer to
different performance metrics like throughput or response time. Furthermore, per-
formance goals can be formulated for average or worst case behavior and different
performance levels can be requested to offer different service levels. Resource con-
straints and objectives can for instance refer to the number of nodes, the network
communication, or the total energy consumption (e.g., Dargie et al., 2011).
In this thesis, the objective of the allocation problem is to find a valid mapping

from the workload to the infrastructure that optimizes the workload performance
with a given and fixed number of nodes. Details about the performance metrics used
in our experiments are provided in the corresponding Chapters 6 and 7.

Meta-Objectives Given the complexity of the underlying systems, certain behav-
ior may be hard to evaluate without actually materializing a setup and executing
the workload. Especially, predicting the performance of a system with respect to
response times and throughput is close to impossible due to the complex interactions
of concurrently executed tasks. Instead, meta-objectives that can be evaluated are
used in practice to achieve the actual goals. For instance, the Schism project (Curino
et al., 2010) uses the number of distributed transactions, i.e., the message count4, as
a meta-objective. Minimizing the number of transactions that have to communicate
is shown to improve performance. Likewise, Quamar et al. (2013) optimize for the
query span, i.e., the average number of machines involved in the execution of a query.
By minimizing this meta-objective, which can easily be evaluated, the authors hope
to indirectly reduce communication overhead, total resource consumption, and en-
ergy footprint. However, there is an obvious side-effect (discussed by the authors)
of the query span objective that leads to higher response times for analytical queries
that would benefit from a higher degree of parallelism.
The objective that we use to optimize performance is to minimize costly com-

munication and to balance oversubscribed unbounded resources. The assumption is
that network communication is a major cost factor that, given a partitioning, can

4Optimizing for communication volume is another valid meta-objective that is related but not
identical to the message count.
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be optimized by the allocation strategy5. The second assumption is that balancing
load, especially for oversubscribed resources, leads to the best performance across
all tasks. When the load is not balanced, single nodes receive more load than others
and the tasks assigned to these nodes are bound to suffer from worse than possible
performance.

3.3.2. Possible Constraints

The two basic formulations of the allocation problem focus on performance and
resources. One formulation optimizes performance under the constraint of given
resources. The other formulation optimizes required resources under performance
constraints. On top of the basic formulations of the allocation problem, additional
constraints can be incorporated, e.g., to guarantee availability or fault-tolerance
(e.g., in Schaffner et al., 2013). Isolation, either from a security point of view or
a performance point of view (e.g., Kiefer et al., 2014), may be another constraint.
Aspects of maintainability and manageability may also be of importance and incor-
porated as constraints in the allocation problem.
Replication is often used to enforce some of the possible constraints, e.g., fault-

tolerance. Curino et al. (2011), Kumar et al. (2014), and Schaffner et al. (2013)
model replication in their variations of the allocation problem (details in Section 3.5).
Replication of data has several aspects to consider. First, it needs to be decided
which objects to replicate. Second, the number of replicas needs to be determined.
Third, the execution platform needs to support replication (including read and write
strategies). The first and the second decision are tradeoffs between the gain of
additional replicas and the increased costs for update operations. If modeled in the
workload graph, replication is almost independent of the allocation strategy with
the only exception that it must be ensured that replicas of the same object are not
mapped to the same node. We do not explicitly consider replication in this thesis
because it is an orthogonal problem and because it is not a common feature found
in all systems that we consider.

3.3.3. Problem Formulation

Given these preconditions, we use the following definition for an allocation and a
corresponding formulation for the allocation problem that we try to solve in this
thesis.

Definition 3.3 (Allocation). An allocation is a mapping from a workload to an
infrastructure. The mapping assigns vertices of the workload graph to vertices of
the infrastructure graph. For each resource, a node’s load is the combined weight
(including non-linear behavior) of all workload vertices assigned to that node. An
allocation is valid if the load is not greater than the capacity for all bounded resources
and for all nodes. An allocation is balanced if the load is equal (within a tolerance)
to the average load for all unbounded resources and for all nodes. An allocation’s

5Note that the tradeoff between parallelism overhead and gain is part of the partitioning problem,
not the allocation problem.
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communication costs are the sum of all edge weights of edges between vertices that
are assigned to different nodes.

Allocation Problem

Given a workload and an infrastructure, the allocation problem is to find a valid
and balanced allocation that minimizes communication costs.

Allowing a node’s load to be within a tolerance of the average load is necessary
because it may not always be possible to find an allocation that perfectly balances
the load. The acceptable degree of imbalance is a tuning parameter of the allocation
strategy that has to be provided or empirically determined.
Our proposed solutions to the allocation problem are based on balanced k-way

min-cut graph partitioning strategies and will be described in detail in Chapters 4
and 5.

3.3.4. Relations to the Partitioning Problem
Given an allocation strategy, the question remains how to address the partitioning
problem. With a workload, an infrastructure, and an allocation, we sketch how
to incrementally update the partitioning. Incremental updates to the partitioning
are based on two basic operations: (1) splitting of partitions and (2) merging of
partitions (both operations can easily be applied to the workload graph). The costs
assigned to vertices in the workload graph help to determine candidates for the split
operation. Partitions that consume high amounts of processing or memory resources
may benefit from a higher degree of parallelism. On the other hand, partitions from
the same relation that are assigned to the same node by the allocation strategy
are candidates for the merge operation. Given the fact that the allocation strategy
tries to minimize communication, the co-location of partitions of the same relation
happens implicitly if the degree of parallelism is high. Other candidates for merges
are workload vertices that are connected by edges with high edge costs.
Given the candidates, whether or not it is beneficial to perform a split or merge

operation is a challenging decision in the partitioning problem.

3.3.5. The Case for Individual Resources
Our infrastructure model contains multiple resources and the allocation problem is
formulated such that resources are treated individually, i.e., checked for capacity
or balance. Other approaches to the allocation problem propose to combine all re-
sources in a single resource that can then be optimized (e.g., Curino et al., 2011,
detailed in Section 3.5). However, system resources like CPU or memory are only
loosely coupled. Tasks may have a high processing cost with virtually no mem-
ory access costs, e.g., when the working set of the task fits in the cache. On the
other hand, tasks that perform scans have high memory transfer costs but low pro-
cessing costs. To illustrate the problem with combining resources, we conduct an
experiment with two resources and show the results in Figure 3.7 (details about the
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(a) Node Utilization According to the Sum of Weights

(b) Node Utilization (Weight 1) (c) Node Utilization (Weight 2)

Figure 3.7.: Relative Node Utilizations for the Sum of Weights and Individual
Weights (Node Utilization Normalized to the Average Node Utilization)

experiment are presented in Section 4.5.2). The workload in the experiment contains
two resources, i.e., two weights, and the allocation strategy balances the sum of both
resources. Figure 3.7a shows the resulting node utilization according to the sum of
both resources. However, as shown in Figures 3.7b and 3.7c, the node utilizations
are skewed with respect to the individual resources.

As a consequence, an allocation strategy must be able to handle multiple resources
individually.

3.4. Requirements for Allocation Strategies
The allocation strategy tries to find a mapping that solves the allocation problem.
Given the workload model and the infrastructure model, a number of requirements
can be derived for allocation strategies.

Non-Linear Performance The infrastructure model assumes that performance does
not scale linearly with the amount of work. The allocation strategy must be able to
handle this non-linear infrastructure behavior.

Heterogeneous Infrastructure The allocation strategy must consider heteroge-
neous nodes in the infrastructure, i.e., nodes with different capacities. Furthermore,
the infrastructure may be heterogeneous with respect to the communication net-
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work, i.e., the network graph may not be fully connected and the links may have
different capacities.

Multiple Individual Resources The allocation strategy must be able to handle
multiple resources individually.

Bounded and Unbounded Resources The allocation strategy must be able to
handle bounded resources, i.e., produce valid allocations, and unbounded resources.

Processing and Communication Costs The allocation strategy must consider pro-
cessing costs, i.e., vertex weights, and communication costs, i.e., edge weights. Com-
munication costs occur when tasks communicate to execute the workload.

Incremental Updates The allocation strategy must be able to incrementally up-
date a solution after changes in the workload or the infrastructure occurred. The up-
date strategy must consider and minimize migration costs induced by moving tasks
between nodes. Naïvely computing a new allocation from scratch is prohibitively
expensive with respect to migration costs. In presence of frequently changing work-
loads or infrastructures, incremental updates to the allocation should be cheap to
compute.

3.5. Related Approaches to the Allocation Problem
In this section, we discuss closely related approaches to the allocation problem.
Several authors have proposed variations of the allocation problem. Each formu-
lation uses different objectives and constraints as well as different assumptions on
workload and infrastructure. Consequently, the respective solution strategies use dif-
ferent algorithms. Given the different assumptions, a direct comparison with other
approaches ranges from unfair to impossible. Instead, we try to identify the major
differences in each approach that separate it from our work. Table 3.1 summarizes
our findings.

Relational Cloud (Kairos) As part of the Relational Cloud Project6, Curino et
al. (2011) investigate workload-aware database monitoring and consolidation. The
presented Kairos system consolidates databases based on the predicted combined
resource utilization. The problem is termed differently by the authors (consolida-
tion problem), but they seek a mapping from workloads to physical nodes that is
comparable to the goal of the allocation problem.
In the Kairos system, CPU, memory, and I/O load are modeled and non-linear

behavior is captured in a combined load predictor that is used for combining I/O
load. A linear combination of the three resources, possibly weighted to indicate the
relative importance, is used in the objective function of the consolidation problem.
Kairos models the workload as a time-series and seeks a mapping that is optimal
for several time intervals, thereby avoiding costly migration. However, Kairos does

6http://relationalcloud.com/
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Kairos Schism SWORD RTP SharedDB

Non-Linear
Performance

3 7 7 3 7

Heterogeneous
Infrastructures

3 7 7 3 7

Individual Resources 7 7 7 7 (3)

Communication Costs 7 3 3 7 7

Incremental Updates 7 7 3 3 7

Table 3.1.: Overview of Related Approaches to the Allocation Problem

not provide means to incrementally update a partitioning after the workload has
changed.
Unlike the allocation problem in this thesis, Kairos does not consider distributed

databases and hence completely omits communication costs. A second major dif-
ference is that Kairos tries to minimize the number of machines with the constraint
of not overcommitting any single machine. To achieve this goal, the consolida-
tion problem is modeled as a mixed-integer non-linear optimization problem and a
general-purpose global optimization algorithm is used to solve the problem. The
authors admit that this general approach is expensive and propose domain specific
optimizations. With their improvements, the authors still report optimization times
in the range of minutes for the test workloads.
The Kairos system has no notion of unbounded resources and overcommitting

certain resources cannot easily be accomplished in the given problem formulation.

Relational Cloud (Schism) Schism (Curino et al., 2010) is also part of the Rela-
tional Cloud Project. Schism and our work share the idea of using graph partitioning
methods for the allocation problem. Both works model the workload as a weighted
graph and seek balanced partitions that minimize the communication.
In Schism, the workload graph contains single tuples and it is decided on a per-

tuple basis whether or not to replicate the tuple and which partition(s) to assign the
replicates to. A major contribution of Schism focuses on the routing mechanism, i.e.,
Schism uses machine learning algorithms to compress the lookup table that maps
tuples to partitions into more efficient range predicates.
The infrastructure model in Schism is simpler compared to this thesis, hetero-

geneous or non-linear hardware are not considered. The authors discuss balancing
data size or data accesses. However, the presented solution has no notion of bounded
or unbounded resources and all balanced partitionings are considered valid. Follow-
ing the assumptions made by the authors, Schism does not consider balancing more
than one resource at a time.
With respect to the workload model, Schism assumes a static workload and does

not provide any means to incrementally update a partitioning.
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SWORD: Scalable Workload-Aware Data Placement and Replication Quamar
et al. (2013) picked up the idea of Schism and present a project called SWORD. The
authors propose a number of techniques to achieve higher scalability and to increase
tolerance in presence failures and workload changes. For instance, the authors use
hypergraph compression techniques to reduce the overhead of the graph partitioning
step and propose incremental repartitioning to mitigate performance degradation
due to workload changes.
In a follow-up to SWORD (Kumar et al., 2013, 2014), the authors introduce

the notion of the query span, i.e., the average number of machines involved in the
execution of a query. By minimizing the query span, the authors aim at reducing (1)
communication overhead, (2) total resource consumption, (3) energy footprint, and
(4) cost of distributed transactions. It should be noted that SWORD reduces the
degree of parallelism and consequently may increase response times for analytical
queries. The authors’ argument is that response times are not critical in batch-
executions of analytical workloads and that resource consumption is the metric that
should be optimized.
The infrastructure model in SWORD does not consider heterogeneous or non-

linear hardware.

Robust Tenant Placement and Migration (RTP) Schaffner et al. (2013) introduce
the Robust Tenant Placement and Migration Problem (RTP). Unlike the allocation
problem in thesis, the RTP tries to minimize the number of servers required by
consolidating in-memory databases. The constraint is a guaranteed performance
perceived by the user, measured in query response times. Additional constraints that
are modeled into the RTP are that each database is replicated and that a single server
may fail without violating performance guarantees. Unlike static approaches to data
placement, the authors make the case for incremental tenant placement. Migration
costs are modeled and quantified in the RTP and performance is guaranteed even
while a database is being migrated.
The authors present multiple heuristics for the static RTP based on greedy algo-

rithms and tabu search. The incremental RTP is solved by repeatedly solving the
static RTP.
In the formalization of the RTP, tenants are modeled with size, i.e., required

DRAM capacity, and load. The latter is a combined metric for CPU and memory
bandwidth consumption. The authors argue that a single combined load metric can
sufficiently model in-memory databases. As a consequence, the proposed solution
algorithms for the RTP cannot easily be modified to handle individual resources.
Distributed databases are intentionally not considered in the RTP and communica-
tion costs are omitted with the exception of migration costs. Heterogeneous servers
are inherently supported in the problem formalization and the authors state that
non-linear behavior can be respected given the availability of an estimator for com-
bined resources consumption.

Deployment of Query Plans on Multicores (SharedDB) Giceva et al. (2014) in-
vestigate the deployment of query plans in a multicore machine. Although the
results are presented for the shared-works system SharedDB (Giannikis et al., 2012)
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which has a fundamentally different query execution model, they are interesting as
they consider the allocation problem on a NUMA architecture. Some of the pro-
posed modeling and solution approaches are interesting in a more general context.
SharedDB uses a dataflow of shared, always-on relational operators. These oper-
ators are active throughout the whole execution of the workload and are shared
among the concurrently executing queries. The goal of the plan deployment is to
find a mapping of plan operators to cores (considering NUMA characteristics) that
minimizes the amount of resources used while maintaining performance guarantees.
The means of the plan deployment are temporal and spatial scheduling. Temporal
scheduling tries to co-locate operators that (given the dataflow) cannot interfere
with one another. Spatial scheduling tries to co-locate operators that use different
resources (CPU or memory bandwidth) and operators that heavily communicate.
The authors introduce the notion of resource activity vectors to model CPU uti-

lization and memory bandwidth utilization. The solution strategy proposed by the
authors uses a two-step bin-packing algorithm where operators are first combined
based the CPU utilization and in a second step, clusters of operators are combined
based on memory bandwidth utilization.
The solution is interesting because it individually optimizes for the two modeled

resources considering the characteristics of the underlying system. However, the bin-
packing approach cannot easily be generalized to a higher number of resources or
to the notion of unbounded resources. Furthermore, non-linear and heterogeneous
hardware are additional characteristics of our infrastructure model that cannot easily
be added to the proposed solution framework.

3.6. Summary
In this chapter, we first abstracted from actual data-oriented systems. A weighted
graph was used to describe the infrastructure, which models individual bounded and
unbounded resources with possibly non-linear behavior. Accordingly, we proposed
to use a weighted graph to model the workload, which consisting of tasks that are
connected by data transfers.
Based on the infrastructure and the workload model, we formulated the allocation

problem and discussed different objectives and constraints. The allocation problem
in this thesis seeks a valid and balanced allocation that minimizes communication
costs.
Given the allocation problem, we derived several requirements for an ideal alloca-

tion strategy and evaluated related approaches with respect to these requirements.
The next chapter presents our proposed solution for the allocation problem. Our

allocation strategy uses balanced k-way min-cut graph partitioning to partition the
workload graph and assigns graph partitions to infrastructure nodes.
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In this chapter, we describe the balanced k-way min-cut graph partitioning problem
(GPP)1 and methods to solve it. We furthermore show that the GPP can be used
to partition the previously introduced workload graph. The workload partitions
can be mapped to the infrastructure graph to create a solution for the allocation
problem. Throughout the chapter, we detail necessary modifications that enable
graph partitioning methods to solve variations of the allocation problem.
The general goal of the balanced k-way min-cut problem is to partition a given

graph into k parts such that the sum of edges that are cut is minimized while keeping
the sizes of all parts within balance. Applied to the workload graph, a balanced min-
cut partitioning minimizes communication and at the same time balances load across
the nodes.
To develop a solution strategy for the allocation problem, we start with simplified

formulations of infrastructure, workload, and allocation. Initially, in the GPP in
Section 4.1, we assume a homogeneous infrastructure with only a single unbounded
resource that behaves linearly. These limitations will be relaxed throughout this
chapter and the following chapter. Section 4.2 adds multiple individual resources
to the graph partitioning in the Multi-Constraint GPP (MC-GPP). Both problems,
GPP and MC-GPP, are known and have been studied elsewhere and are here pre-
sented as foundations for our own modifications of the problem. Sections 4.3 and 4.4
present the Penalized GPP (P-GPP) and the Secondary Weight GPP (SW-GPP),
which extend the graph partitioning algorithms to reflect non-linear resources. In
Section 4.5, we experimentally evaluate benefit and applicability of an allocation
strategy that is based on multi-constraint and penalized graph partitioning. We
present results from synthetic partitioning experiments and a number of scalability
experiments to support our approach.
Extensions to the core graph partitioning algorithms, which will be presented in

Chapter 5, further relax limitations of the allocation strategy. Section 5.1 proposes
methods to incrementally update an allocation. Section 5.2 deals with heterogeneous
infrastructures and Section 5.3 proposes modifications to handle bounded resources.

4.1. Graph Partitioning
Partitioning a graph into k partitions of roughly equal size such that the total cut
is minimized is NP-complete (Hyafil and Rivest, 1973). There exist approximation

1Note that the graph partitioning problem is different from the previous data partitioning problem.
The data partitioning problem seeks a partitioning of a relation while the graph partitioning
problem seeks subsets of the vertices of a graph.
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algorithms with proven boundaries for variations of the problem. However, these
results and the implementations of the methods are only of theoretical interest due to
extremely long runtimes (Andreev and Racke, 2004; Buluç et al., 2013). Heuristics
are used in practice to solve the GPP. Given the various applications, e.g., in scientific
computation, road networks, or VLSI physical design, graph partitioning methods
are well studied and have matured in the last two decades. A comprehensive overview
of different graph partitioning methods can for instance be found in Buluç et al.
(2013) or Bichot and Siarry (2011).
We formalize the graph partitioning problem in Section 4.1.1 before we describe

the multilevel partitioning framework, a widely recognized solution heuristic, in Sec-
tion 4.1.2. We concentrate on an instance of the multilevel partitioning framework
that (1) provides good solutions very fast and (2) lends itself to being modified to
solve the allocation problem (e.g., Buluç et al., 2013; Karypis and Kumar, 1995).
Other variations of the framework, e.g., ones that combine multi-level partitioning
with evolutionary algorithms, can provide better solutions at the price of increased
complexity (Buluç et al., 2013; Sanders and Schulz, 2013). Global partitioning al-
gorithms, i.e., algorithms that are not based on multilevel partitioning, such as the
spectral partitioning algorithm, only work for small graphs and are hence not further
discussed (Buluç et al., 2013).

4.1.1. Prerequisites

Problem 4.1 (GPP). Given an undirected, weighted graph, the balanced k-way
min-cut graph partitioning problem (GPP) refers to finding a k-way partitioning of
the graph such that the total edge cut is minimized and the partitions are balanced
within a given tolerance.

Minimizing the edge cut can be considered the objective in the GPP while the
requirement that partitions are of similar size can be considered the constraint. The
following definitions are used to formalize the problem and to describe its solution
heuristics in detail. The definitions are accompanied by examples.

Definition 4.1 (Weighted Graph). Let G = (V,E,wV , wE) be an undirected,
weighted graph with a set of vertices V , a set of edges E, and weight functions
wV and wE . Vertex and edge weights are positive real numbers:

wV : V → R>0 and
wE : E → R>0.

The weight functions are naturally extended to sets of vertices and edges:

wV (V ′) :=
∑

v∈V ′

wV (v) for V ′ ⊆ V and

wE(E′) :=
∑

e∈E′

wE(e) for E′ ⊆ E.
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Figure 4.1.: Example of an Undirected Weighted Graph

v wV (v)
1 1
2 1
3 1
4 1

v wV (v)
5 1
6 3
7 1
8 3

e wE(e)
{1, 2} 2
{1, 3} 1
{1, 5} 1
{2, 4} 1

e wE(e)
{3, 5} 1
{3, 6} 1
{4, 5} 4
{4, 7} 3

e wE(e)
{5, 8} 1
{6, 8} 1
{7, 8} 1

Table 4.1.: Weight Functions wV and wE of Example Graph G1

Graph Example. Let G1 = (V,E,wV , wE) be an exemplary graph. A visual
representation of V1 is shown in Figure 4.1. For G1, the sets V and E are as follows:

V = {1, 2, 3, 4, 5, 6, 7, 8} and

E = {{1, 2} , {1, 3} , {1, 5} , {2, 4} , {3, 5} , {3, 6} , {4, 5} , {4, 7} , {5, 8} , {6, 8} , {7, 8}} .
The weight functions wV and wE are listed in Table 4.1.

Definition 4.2 (Graph Partitioning). Let Π = (V1, . . . , Vk) be a partitioning of V
into k partitions V1, . . . , Vk such that:

V1 ∪ · · · ∪ Vk = V and
Vi ∩ Vj = ∅ ∀i 6= j.

Definition 4.3 (Cut). Given a partitioning, an edge that connects partitions is
called a cut edge. The set Eij is the set of cut edges between two partitions Vi and
Vj :

Eij := {{u, v} ∈ E|u ∈ Vi, v ∈ Vj , i 6= j}.

The set Ec is the set of all cut edges in a graph:

Ec :=
⋃
i<j

Eij .

The objective of the GPP is to minimize the total cut wE(Ec), i.e., the aggregated
weight of all cut edges.

Definition 4.4 (Balance Constraint). A balance constraint demands that all parti-
tions have about equal weights. Let µ be the average partition weight:

µ := wV (V )
k

.
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For a graph partitioning to be balanced it must hold that

∀i ∈ {1, . . . , k} : wV (Vi) ≤ (1 + ε) · µ,

where ε ∈ R≥0 is a given imbalance parameter.

Perfectly balanced partitions (i.e., ε = 0) are in many applications hard or even
impossible to obtain. Therefore, ε is a parameter that can be used in the partition-
ing algorithm and hence in the allocation strategy to specify a tolerable degree of
imbalance. The exact value of ε depends on the application and must be provided
or empirically determined. Even with a larger imbalance parameter, there may not
always exist a solution to the GPP. Especially small graphs can leave too few degrees
of freedom to find a balanced partitioning.2

Graph Example (continued). Figure 4.1d shows an example partitioning Π1 of
G1 into two partitions that minimizes the cut and balances the partitions. The
partitioning Π1 = (V1, V2) of G1 is given by:

V1 = {1, 2, 3, 4, 5, 7} and
V2 = {6, 8} .

Cut edges in G1 under partitioning Π1, i.e., edges that connect partitions, are {1, 3},
{5, 8}, and {7, 8}. Since there are only two partitions, the total edge cut wE(Ec) is
3 given that:

Ec = E12 = {{1, 3} , {5, 8} , {7, 8}} .

The average partition weight in G1 is 6: µ = wV (V )/k = 12/2 = 6. Since, wV (V1) =
wV (V2) = µ = 6, the balance constraint is fulfilled for any ε ≥ 0.

Definition 4.5 (Neighborhood and Boundary Vertex). The neighbors Γ of a vertex v
are all the vertices connected to v via an edge:

Γ(v) := {u|{u, v} ∈ E}.

Given a partitioning, the internal neighbors Γ′ of v ∈ Vi are the neighbors of v that
belong to the same partition:

Γ′(v) := Γ(v) ∩ Vi.

Given a partitioning, the external neighbors Γj of v ∈ Vi with respect to Vj are the
neighbors of v that belong to a different partition Vj :

Γj(v) := Γ(v) ∩ Vj .

A vertex v ∈ Vi is called a boundary vertex if it has a neighbor in a different partition,
i.e., ∃j : Γj(v) 6= ∅.

2Our partitioning algorithms still yield partitionings in these cases and warn about the higher
than expected imbalance. However, during all our experiments using ε = 0.03 (i.e., at most 3%
imbalance), we never encountered a graph that could not be balanced.
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Graph Example (continued). Let v be the vertex with identifier 5 in G1, then
the neighbors of v are Γ(v) = {1, 3, 4, 8}. Given Π1, the internal neighbors of v are
Γ′(v) = {1, 3, 4} and the external neighbors with respect to V2 are Γ2(v) = {8}. The
boundary vertices in G1 under Π1 are {3, 5, 6, 7, 8}.

Definition 4.6 (Vertex Degree and Gain). Given a partitioning, the internal degree
id(v) of a vertex v ∈ Vi is the accumulated edge weight of all edges that connect v
to vertices in the same partition:

id(v) := wE({{u, v} ∈ E|u ∈ Γ′(v)}).

Given a partitioning, the external degree edj(v) of a vertex v ∈ Vi with respect to
partition Vj is the accumulated edge weight of all edges that connect v to vertices
in partition Vj :

edj(v) := wE({{u, v} ∈ E|u ∈ Γj(v)}.

The gain of a vertex v ∈ Vi with respect to partition Vj is the reduction in cut when
v is moved from Vi to Vj :

gj(v) := edj(v)− id(v).

Note that the gain may be negative, which implies that moving the vertex increases
the cut.

Graph Example (continued). Given Π1, the internal degree of v in G1 is id(v) = 6
and the external degree of v with respect to V2 is ed2(v) = 1. The gain of v with
respect to V2 is g2(v) = −5, hence moving v from V1 to V2 would increase the total
cut by 5.

4.1.2. Multilevel Graph Partitioning Framework

Multilevel graph partitioning is rather a strategy or framework than a concrete
method because it allows the use of different methods in its various steps. Mul-
tilevel graph partitioning consists of three phases: (1) coarsening the graph, (2)
finding an initial partitioning of the coarse graph, and (3) uncoarsening the graph
and projecting the coarse solution to the finer graphs. Different strategies and opti-
mizations exist for all three phases. Figure 4.2 shows an overview of the steps.
The idea of multilevel graph partitioning is to reduce the initial problem to a

much smaller problem with similar characteristics, then to solve the small problem
using a (potentially expensive) method, and last to project the solution of the small
problem to the initial problem. To improve the quality of the final solution, each
uncoarsening step is followed by a refinement step. The motivation of this refinement
step is to improve the partitioning, e.g., by local vertex swapping heuristics, that
was projected from the coarse graph before it is projected to the next finer level.
There are several intuitive reasons why the multilevel approach leads to very good

results. First, one can use very expensive algorithms or a variety of algorithms on
the coarse level without increasing the overall execution time by a lot. Second,
coarsening broadens the scope of local optimization algorithms, i.e., moving vertices
between partitions in the coarse graph leads to potentially long distance moves of
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Figure 4.2.: Multilevel Graph Partitioning Framework

many vertices in the finest graph. Third, local improvements during the uncoarsen-
ing are fast because they start with an already good solutions.
Two general strategies exist for computing a k-way partitioning using the multi-

level paradigm, (1) direct k-way partitioning and (2) recursive bisection (Karypis
and Kumar, 1998a). The first strategy directly partitions the graph into the desired
number of partitions, while the second approach repeatedly partitions a (sub)graph
into two partitions. A major difference between the two strategies is that for direct
k-way partitioning coarsening and uncoarsening are only performed once while these
steps have to be performed multiple times (once for each bisection) in the second
strategy. A second difference is that refinement operations have global knowledge
when used on a k-way partitioning while they can only see a subgraph in all but
the topmost bisection steps. Experiments showed that multilevel k-way partitioning
produces partitionings with a quality that is comparable to partitionings produced
by multilevel recursive bisection while requiring substantially less time (Karypis
and Kumar, 1998a). The greatest drawback of direct k-way partitioning is that
refinement algorithms are usually more complicated compared to the corresponding
algorithms for bisection. The initial partitioning of the coarsest graph (step 2 in the
framework) is independent of the global multilevel partitioning strategy. A heuristic
can use direct k-way partitioning globally but less complicated recursive bisection
algorithms to find an initial partitioning.
The following paragraphs describe the three phases of the multilevel graph parti-

tioning framework in more detail.

Graph Coarsening

In the coarsening phase, a series of smaller graphs is derived from the input graph
by collapsing adjacent pairs of vertices such that cuts in the coarse graph reflect
cuts in the fine graph. The goal is to gradually approximate the original problem
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and the input graph with fewer degrees of freedom.
Coarsening is commonly implemented by contracting a subset of vertices U ⊂ V

and replacing it with a single vertex u′ having the weight
wV (u′) :=

∑
u∈U

wV (u).

Contraction might produce parallel edges which are replaced by a single edge with
the accumulated weight of the parallel edges, i.e., for any given v in V \ U :

wE({u′, v}) :=
∑

u∈U,{u,v}∈E

wE({u, v}).

Contracting vertices like this implies that balanced partitions on the coarse level
represent balanced partitions on the fine level with the same cut value.
Different strategies exist to select matchings of vertices to be contracted during a

coarsening step. The minimalistic approach is to contract a single pair in every step,
leading to almost |V | levels. Another strategy is to contract maximal matchings,
given that each vertex can be used at most once per matching. This leads to a
logarithmic number of levels. Finding a matching is a tradeoff between using heavy
edges (and hence reducing the final cut) and keeping uniform vertex weights (and
hence improving partition balance). Different heuristics are used in practice to
select vertices to be contracted, e.g., heavy edge matching, random matching, or
path growing algorithm (Buluç et al., 2013; Drake and Hougardy, 2003).
The coarsening ends when the coarsest graph has at most a few hundred vertices

and is hence sufficiently small to be initially partitioned.

Initial Graph Partitioning

Many different algorithms exist to find an initial partitioning (Buluç et al., 2013).
Like the global multilevel partitioning strategy, methods for the initial partition-
ing are either based on direct k-way partitioning or on recursive bisection. For
some algorithms there exist both implementations, a direct k-way partitioning and
a bisection-based partitioning.
A simple but effective method to find an initial partitioning is greedy graph-

growing. For bisection, the algorithm starts with a random vertex. This start vertex
is grown using breadth-first-search, adding the vertex that increases the total cut the
least in each step. The search is stopped as soon as half of the total vertex weight
is assigned to the growing partition. Because the quality of the bisection strongly
depends on the randomly selected start vertex, multiple iterations with different
starts are used and the best solution is kept. The k-way extension of graph-growing
starts with k random vertices and grows them in turns. In this thesis, we focus on
graph-growing for the initial partitioning as it is simple yet effective and it can be
modified to the needs at hand.
A number of evolutionary methods and metaheuristics have been proposed that

yield better initial partitioning at the price of long runtimes (e.g., Buluç et al., 2013).
The method that finds an initial partitioning can be used together with any num-

ber of refinement strategies that try to improve that partitioning. Different refine-
ment strategies are introduced in the next paragraph where they are used during
the uncoarsening phase.
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Graph Uncoarsening and Refinement

When the initial partitioning is found, the solution can repeatedly be mapped to
the next finer graph and ultimately to the initial problem. At each level, the coarse
graph is transformed to a finer graph by assigning previously contracted vertices
to the same partition. The extraction of vertices is followed by a refinement step.
Uncoarsening and refinement are repeated until the finest graph, i.e., the initial
graph, is reached.
A variety of refinement methods are used in practice (Buluç et al., 2013). Methods

range from fine-grained local vertex swapping heuristics to methods that try to
globally improve the partitioning. Refinement methods can be used to improve the
total cut or the balance of the partitions. Ideally, one metric is improved while
the other one does at least not degrade. However, to leave local minima it may
be beneficial to accept temporary decline in one of the metrics. Interleaving and
repeatedly executing refinement methods that try to improve balance and such that
try to improve the total cut can also increase the quality of the final partitioning.
Local vertex swapping is a refinement metaheuristic that can be parameterized

with different strategies to select vertices to move. Kernighan and Lin (1970) pro-
posed to move the vertex with the highest value of the gain function, i.e., the vertex
that yields the largest decrease in total cut. Each vertex is considered only once per
round and rounds are repeated until there is no further improvement. The method
is known as Kernighan-Lin (KL) method. Fiduccia and Mattheyses (1982) improved
the KL method with carefully designed data structures. Also, they allow sequences
of moves as long as the entire sequence improves the total cut. This method, known
as KL/FM, is widely used in practice as it is simple and hence fast while leading
to very good results, especially when starting from an already good partitioning.
Karypis and Kumar (1998b) further accelerated KL/FM by only allowing boundary
vertices to move and by stopping a round when the total cut does not improve after
a number of moves. They also introduce random tie breaking and additional rounds
even when no improvements have been found to further improve the result. Sanders
and Schulz (2013) allow local moves to even degrade the balance as long as a com-
bination of moves globally improves balance. Helpful sets, introduced by Diekmann
et al. (1995) extend the vertex swapping to sets of vertices.
All vertex-swapping techniques are originally proposed to improve a bisection.

However, all have been extended to directly improve a k-way partitioning as well.
Other improvement strategies like tabu search, flow-based improvement, random-

walk, or methods based on diffusion are beyond the scope of this thesis since they
are often too complex to be modified as needed (see Buluç et al. (2013) for further
references).

4.2. Multi-Constraint Graph Partitioning

The GPP seeks a partitioning of the graph that minimizes the total cut and balances
the partition weights. However, a single weight per vertex is insufficient to partition
workloads that model various resources. Solving the GPP with the intention of
balancing multiple resources, i.e., vertex weights, individually has been studied as
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Figure 4.3.: Example of a Graph Partitioning with Multiple and Combined Vertex
Weights

Multi-Constraint Graph Partitioning Problem, e.g., by Karypis and Kumar (1998a).
The necessary definitions and a solution strategy for the multi-constraint graph
partitioning problem are presented in the subsequent sections.

4.2.1. Prerequisites
Problem 4.2 (MC-GPP). The Multi-Constraint Graph Partitioning Problem (MC-
GPP) is a generalization of the GPP where each vertex has m weights assigned and
the goal is to compute a k-way partitioning with minimal cut such that each one of
the m weights is individually balanced within a specified tolerance.

A tempting approach, using the existing solutions for the GPP, is to sum up all
resources (i.e., vertex weights) to get a single vertex weight that can be balanced.
A linear combination of weights can be used instead of the sum to prioritize certain
resources over others. However, as will be shown in an example shortly, balancing
the combined weight can still lead to significant skew in the individual components
which violates the requirement of individually balanced weights in the MC-GPP.

Multi-Constraint Graph Example. Figure 4.3a shows a graph with two weights
per vertex (vertex identifiers and edge weights remain the same as in the previous
Graph Example shown in Figure 4.1). Solving the MC-GPP leads to the partitioning
with the total cut of 8 shown in Figure 4.3b. Both partitions have a weight of
(8, 8) and are hence perfectly balanced. Figure 4.3c shows the same graph where
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4. Balanced K-Way Min-Cut Graph Partitioning

the individual vertex weights are summed up to get a single weight per vertex.
Figure 4.3d shows that partitioning this graph leads to different partitions. Although
this partitioning has a smaller total cut of 6, when applied to the original graph, it
leads to partition weights (4, 12) and (12, 4) respectively. Hence, the partitions are
individually skewed by a factor of 3.

To formalize the MC-GPP, two of the previous definitions need to be modified to
reflect the arbitrary number of balancing constraints.

Definition 4.7 (MC Weighted Graph). Let G = (V,E, (w1
V , . . . , w

m
V ), wE) be an

undirected, weighted graph as in Definition 4.1. The single vertex weight function
is replaced by a vector of size m of vertex weight functions wi

V . Vertex weights are
positive real numbers:

wi
V : V → R>0 for i = 1, . . . ,m.

The weight of a single vertex is a vector of size m:

wV (v) := (w1
V (v), . . . , wm

V (v)).

The weight functions are naturally extended to sets V ′ ⊆ V of vertices:

wi
V (V ′) :=

∑
v∈V ′

wi
V (v) for i = 1, . . . ,m,

wV (V ′) := (wi
V (V ′), . . . , wi

V (V ′)).

Definition 4.8 (MC Balance Constraint). A balance constraint for multiple vertex
weights demands that for all weights individually all partitions have about equal
weights. For i = 1, . . . ,m, let µi be the average partition weight of the i-th con-
straint:

µi := wi
V (V )
k

.

For a graph partitioning to be balanced it must hold that

∀i ∈ {1, . . . ,m}∀j ∈ {1, . . . , k} : wi
V (Vj) ≤ (1 + εi) · µi,

where εi ∈ R≥0 is a given imbalance parameter for the i-th constraint. A balanced
partitioning with m weights is sometimes referred to as being m-balanced.

Multi-Constraint Graph Example (continued). For the graph and the corre-
sponding partitioning shown in Figures 4.3a and 4.3b respectively, the average par-
tition weights are

µ1 = w1
V (V )
k

= 1
k

∑
v∈V

w1
V (v) = 16/2 = 8 and

µ2 = w2
V (V )
k

= 1
k

∑
v∈V

w2
V (v) = 16/2 = 8.
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Furthermore,

w1
V (V1) =

∑
v∈V1

w1
V (v) = 8,

w2
V (V1) =

∑
v∈V1

w2
V (v) = 8,

w1
V (V2) =

∑
v∈V2

w1
V (v) = 8, and

w2
V (V2) =

∑
v∈V2

w2
V (v) = 8.

Hence, the balance constraint is fulfilled for arbitrary imbalance parameters ε1 ≥ 0
and ε2 ≥ 0.

4.2.2. Multi-Constraint Graph Partitioning Algorithm

The multilevel graph partitioning framework can be used to find good solutions
of the MC-GPP (Karypis and Kumar, 1998a). However, the building blocks of the
framework, i.e., algorithms for coarsening, initial partitioning, and uncoarsening and
refinement, need to be modified to reflect the multiple balancing constraints.

Graph Coarsening

To coarsen the graph, a matching of vertices is built and vertices are contracted
according to the matching. The heavy-edge heuristic which successfully reduces
exposed edge weight in the GPP can also be used in the MC-GPP to minimize
the total cut of the initial partitioning and therefore the final solution. However,
balancing multiple weights is hard to accomplish even in the small coarsest graph
used for the initial partitioning. Therefore, the coarsening can also be used to
balance the different weights of the vertices. The intuition is that if every vertex v has
equal weights w1

V (v) = · · · = wm
V (v), then the m-weight balancing problem becomes

balancing a single weight, a known problem from the GPP. Therefore the balanced-
vertex heuristic tries to contract pairs of vertices that minimize the difference among
the weights of the contracted vertex.
Studies show (Karypis and Kumar, 1998a) that using the heavy-edge heuristic

leads to good total cuts but often fails to meet the balance constraints. Using
the balanced-vertex heuristic on the other hand leads to balanced partitions but
potentially bad total cuts. A combination of both can be used to find a solution
with a good total cut that meets the balance constraint. For example, the heavy-edge
heuristic is used to find candidates for collapsing and the balanced-vertex heuristic
is used as tie breaker for edges of the same weight.

Initial Graph Partitioning

For the initial partitioning in the MC-GPP, recursive bisection is used as it is con-
siderably easier to balance multiple weights in just two partitions than to balance
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multiple weights in multiple partitions. Karypis and Kumar (1998a) propose a mod-
ified version of the greedy region-growing algorithm followed by additional balancing
and refinement steps to find an m-balanced bisection.
The algorithm starts by assigning all but a random start vertex to partition V1

and the random start vertex to V2. Then, m priority queues are used (ordered by the
decreasing value of the gain function) and each vertex is added to just one priority
queue based the vertex’ largest weight. Specifically, a vertex v ∈ V1 is added to the
i-th queue, if and only if wi

V (v) = max(wV (v)). To grow partition V2, the priority
queue to pick a vertex from is selected depending on the relative weights of partition
V1, i.e., the algorithm tries to reduce the highest weight by moving a vertex to the
other partition. Precisely, it picks the i-th priority queue if wi

V (V1) = max(wV (V1)).
Should this queue be empty, the queue according to the second highest weight in V1
is picked. The algorithm stops when more than half of a single weight is assigned
to partition V2.

Graph Uncoarsening and Refinement

The KL/FM method can be modified to balance or refine multi-constraint graph
partitionings. Here, we describe the KL/FM method for refining a bisection, the
generalization to k-way refinement uses the same principles.
The m-weight KL/FM method uses 2m priority queues, ordered by the decreasing

value of the gain function. Similar to the algorithm for the initial partitioning, a
vertex v belongs to the i-th queue if the i-th weight is the highest weight of the vertex,
i.e., wi

V (v) = max(wV (v)). To move a vertex from one partition to the other, a queue
is picked depending on the highest partition weight of both partitions. Should this
queue be empty, then the queue according to the second highest weight of the same
partition is used.
As in the original KL/FM method, a series of vertex moves is performed. When

no more vertices can be moved, the point in the series of moves that has the lowest
total cut (for refinement) or that has the best partition balance (for balancing) is
selected and all moves up to this point are materialized.

4.3. Penalized Graph Partitioning

Solving the GPP or the MC-GPP yields an allocation in data-oriented systems.
Partitioning the workload graph with minimal cut reduces costly communication
and balancing the partitions leads to evenly utilized nodes. However, there is a
mismatch between the graph partitioning problem and the actual behavior of the
infrastructure. A fundamental assumption in the graph partitioning problem is
that vertex weights (individually) sum up to reflect the weight of a partition. The
implication is that, no matter how many vertices comprise a partition, the weight of
the partition is the sum of all participating vertices. Translated to the infrastructure,
this means that no matter how many tasks are executed on a node, the combined
load of the node is the sum of all loads caused by the tasks. As we have shown in
the infrastructure model in Section 3.1, performance on actual hardware resources
usually does not scale linearly with the number of concurrent tasks. To account
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Figure 4.4.: Example of Graph Partitionings with Different Penalty Functions

for the non-linear behavior, we propose the Penalized Graph Partitioning Problem
(P-GPP). The idea is to introduce a penalized partition weight and to modify the
graph partitioning problem accordingly to balance the penalized partition weights.
The P-GPP assumes the special case of non-linear performance, i.e., a penalty

function on top of the performance yielded by a linear model. Arbitrary non-linear
performance models will be discussed in the Secondary Weight Graph Partitioning
Problem in Section 4.4.

4.3.1. Prerequisites
Problem 4.3 (P-GPP). The P-GPP is a generalization of the GPP or the MC-GPP
where each vertex has one or m weights assigned and the goal is to find a k-way
partitioning with minimal cut such that each one of them penalized partition weights
is individually balanced within a given tolerance.

Penalized Graph Example. Figure 4.4a shows again the graph from the first ex-
ample (vertex identifiers and edge weights remain the same as in the Graph Example
shown in Figure 4.1). Solving the GPP leads to the partitioning with the total cut
of 3 shown in Figure 4.4b. When the cardinality of a partition is penalized linearly,
the solution of the P-GPP having a total cut of 4 is shown in Figure 4.4c. However,
when the penalty of a partition grows with the square of the partition cardinality,
the partitioning with the total cut of 4 shown in Figure 4.4d is the solution to the
P-GPP. The partitioning obviously depends on the given penalty function.

To formulate the P-GPP, previous definitions need to be modified to reflect the
penalized partition weights. For the sake of readability, we assume a single weight
per vertex (i.e., m = 1) throughout this section to be able to omit the superscript
in every formula. However, the definitions and operations translate naturally to
multiple vertex weights.

Definition 4.9 (P Weighted Graph). Let G = (V,E,wV , wE , p) be an undirected,
weighted graph as in Definition 4.1. Furthermore, let p be a positive, monotonic
increasing penalty function that penalizes a partition weight based on the partition
cardinality3:

p : N→ R≥0 with
3In the case of multiple vertex weights, a vector of penalty functions (p1, . . . , pm) is used instead
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p(n1) ≤ p(n2) for n1 ≤ n2.

The vertex weight function is extended to sets V ′ ⊆ V such that it incorporates the
penalty:

wV (V ′) :=
∑

v∈V ′

wV (v) + p(|V ′|).

Penalized Graph Example (continued). The example partitioning in Figure 4.4c
uses a linear penalty function, i.e.,

p(|V |) := |V |.

Accordingly, using Definition 4.9, the partition weights are

wV (V1) =
∑

v∈V1

wV (v) + p(|V1|) = 5 + 5 = 10 and

wV (V2) =
∑

v∈V2

wV (v) + p(|V2|) = 7 + 3 = 10.

The example partitioning in Figure 4.4d uses a square penalty function, i.e.,

p(|V |) := |V |2.

Accordingly, using Definition 4.9, the partition weights are

wV (V1) =
∑

v∈V1

wV (v) + p(|V1|) = 6 + 16 = 22 and

wV (V2) =
∑

v∈V2

wV (v) + p(|V2|) = 6 + 16 = 22.

The simple example shows that the square penalty function, which grows quickly
with the number of vertices in a partition, leads to evenly distributed vertices. The
penalty in this example outweighs the actual partition weights.

Adding penalties to partition weights invalidates some of the assumptions made
in the GPP and its solution algorithms. Most fundamentally, the combined weight
of two or more partitions is not equal to the weight of a partition containing all the
vertices. Specifically, using definition 4.9 for two partitions V1 and V2:

wV (V1 ∪ V2) =
∑

v∈V1∪V2

wV (v) + p(|V1 ∪ V2|)

=
∑

v∈V1

wV (v) +
∑

v∈V2

wV (v) + p(|V1 ∪ V2|)

= wV (V1) + wV (V2) + p(|V1 ∪ V2|)− p(|V1|)− p(|V2|).

For arbitrary penalty functions it holds that

of p. The individual weights can be penalized independently with possibly different penalty
functions.
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p(|V1 ∪ V2|) 6= p(|V1|) + p(|V2|).

It follows that in general

wV (V1 ∪ V2) 6= wV (V1) + wV (V2). (4.1)

Under condition 4.1, the total weight of all vertices is in general not equal to the
total weight of all partitions. We therefore introduce the following definition of the
two weights.

Definition 4.10 (Total Vertex Weight, Total Partition Weight). Given a graph and
a partitioning, the total vertex weight wV is the penalized weight of all vertices, i.e.,

wV :=
∑
v∈V

wV (v) + p(|V |).

The total partition weight wΠ on the other hand is the sum of the weights of all
partitions, i.e.,

wΠ :=
k∑

i=1
wV (Vi).

Penalized Graph Example (continued). The example partitioning in Figure 4.4d
illustrates a case where the total vertex weight is not equal to the total partition
weight. Using the definition,

wV =
∑
v∈V

wV (v) + p(|V |) = 12 + 64 = 76 and

wΠ =
k∑

i=1
wV (Vi) = 22 + 22 = 44.

It follows from the definition that the total partition weight of the graph is not
constant anymore but depends on the partitioning, specifically the cardinalities of
the partitions. This observation has implications in all steps of the graph partitioning
algorithm, e.g., the definition for a balance constraint needs to be modified.

Definition 4.11 (P Balance Constraint). A balance constraint for penalized parti-
tions demands that all penalized partitions have about equal weights. Let µ be the
average partition weight:

µ := wΠ
k

= 1
k

k∑
i=1

wV (Vi).

For a graph partitioning to be balanced it must hold that

∀i ∈ {1, . . . , k} : wV (Vi) ≤ (1 + ε) · µ,

where ε ∈ R≥0 is a given imbalance parameter.
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4.3.2. Penalized Graph Partitioning Algorithm
We propose modifications of the multilevel graph partitioning algorithm to solve
the P-GPP. First, we describe how basic operations that are used throughout the
algorithm need to be modified to reflect partition penalties. Then, we will detail
the necessary modifications to the three building blocks of the multilevel graph
partitioning framework, namely coarsening, initial partitioning, and uncoarsening
and refinement.
During graph partitioning and refinement, it is often necessary to move a vertex v

from one partition (V1) to another partition (V2). For the sake of computational
efficiency, the partition weights of the resulting partitions should be computed in-
crementally instead of from scratch.

Operation 4.1 (Moving a Vertex). When a vertex v is moved from partition V1
to partition V2, the partition weights of the resulting partitions V ′1 := V1 \ v and
V ′2 := V2 ∪ v are as follows:

wV (V ′1) = wV (V1 \ v) =
∑

u∈V1\v
wV (u) + p(|V1 \ v|)

=
∑

u∈V1

wV (u)− wV (v) + p(|V1| − 1)

= wV (V1)− wV (v)− p(|V1|) + p(|V1| − 1).

Using the same intermediate steps, it follows for V ′2 :

wV (V ′2) = wV (V2 ∪ v) = wV (V2) + wV (v)− p(|V2|) + p(|V2|+ 1).

Operation 4.2 (Combining Partitions). When two partitions V1 and V2 are com-
bined, the partition weight of the resulting partition V ′ := V1∪V2 can be calculated
as follows:

wV (V ′) = wV (V1 ∪ V2) =
∑

v∈V1∪V2

wV (v) + p(|V1 ∪ V2|)

=
∑

v∈V1

wV (v) +
∑

v∈V2

wV (v) + p(|V1|+ |V2|)

= wV (V1) + wV (V2) + p(|V1|+ |V2|)− p(|V1|)− p(|V2|).

Graph Coarsening

To coarsen the graph, a matching of vertices has to be determined and vertices have
to be contracted accordingly. The previously introduced heavy-edge heuristic and
the balanced-vertex heuristic can both be used to coarsen a graph with penalized
partition weights. However, the vertex weight of the contracted vertex has to cor-
rectly incorporate the penalty to ensure that a balanced partitioning of the coarse
graph will lead to a balanced partitioning during the uncoarsening steps. Therefore,
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contracted vertices are treated like partitions themselves and the weight of a con-
tracted vertex is calculated as in Operation 4.2. From the implementation point of
view this implies that the number of vertices comprising a contracted vertex needs
to be maintained. The number of vertices being contracted is referred to as the
cardinality of a contracted vertex.

Initial Graph Partitioning

We propose a modified version of recursive bisection and greedy region-growing to
find an initial k-way partitioning of graphs with penalized partition weights. In the
region growing algorithm, moving a vertex from one partition to the other partition
has to use Operation 4.1 to calculate the partition weights after the vertex has
been moved. Moreover, the stop condition of the region growing algorithm has to
be modified to account for the new balance constraint (Definition 4.11). In the
previous formulation, the algorithm stopped when the growing partition reached at
least half of the total vertex weight. To achieve balanced partitions and because the
total vertex weight is in general not equal to the total partition weight, the latter
has to be used in the stop condition. Furthermore, since the total partition weight
depends on the partitioning it repeatedly has to be recalculated after vertices have
been moved (again using Operation 4.1).

Graph Uncoarsening and Refinement

The penalties have to be considered during the uncoarsening and refinement of the
graph. Similar to the modifications of the region growing algorithm, the KL/FM
method has to use Operation 4.1 whenever a vertex is moved between partitions.
Furthermore, when the KL/FM method is used to balance a partitioning, the mod-
ified balance constraint in Definition 4.11 has to be used. This implies that stop
conditions and checks use the total partition weight instead of the total vertex
weight. Since the total partition weight depends on the partitioning, it has to be
recalculated after a vertex has been moved.

4.4. Secondary Weight Graph Partitioning

In our infrastructure model in Section 3.1, we introduced two types of non-linear
behavior. The penalized resource usage assumes that the basic resource usage can
be combined linearly and that contention causes a non-linear penalty above a certain
load level. The penalized resource usage is covered in the P-GPP. The second type
of non-linear behavior in the infrastructure model is general non-linear resource
usage. Here, the assumption is that the non-linear performance can be modeled
as an arbitrary function of underlying (linear) resources. To model this general
non-linear behavior, we introduce the notion of secondary weights and propose the
Secondary Weight Graph Partitioning Problem (SW-GPP). Secondary vertex weights
are derived from primary vertex weights. Arbitrary non-linear functions (positive
and monotonic increasing) can be used to derive secondary weights from one or
multiple primary weights. The restriction to positive and monotonic increasing
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functions is reasonable given the application. Adding more work to a partition
should in general increase to induced load.

4.4.1. Prerequisites
Problem 4.4 (SW-GPP). The SW-GPP is a generalization of the GPP or the
MC-GPP where each vertex has one or multiple primary weights assigned and the
goal is to find a k-way partitioning with minimal cut such that each of the derived
secondary partition weights is individually balanced within a given tolerance.

To solve the SW-GPP, secondary weights need to be defined. For the sake of
readability, we assume only a single secondary weight in the graph. However, the
definitions extend naturally to multiple secondary weights.4

Definition 4.12 (Secondary Weight). Let G = (V,E,wV , wE) be an undirected,
weighted graph as in Definition 4.1. Furthermore, let f be a positive, monotonic
increasing function:

f : R→ R≥0 with
f(x1) ≤ f(x2) for x1 ≤ x2.

The secondary weight wf,V of a vertex is defined as:

wf,V (v) := (f ◦ wV )(v) = f(wV (v)).

The secondary vertex weight function is extended to sets V ′ ⊆ V :

wf,V (V ′) := f(wV (V ′)).

In the case of multiple primary vertex weights, secondary weights can also be
derived from more than one primary weight.

Definition 4.13 (Secondary Weight, continued). Let G = (V,E, (w1
V , . . . , w

m
V ), wE)

be a weighted graph with multiple weights per vertex as in Definition 4.7. Further-
more, let f be a function with N real arguments:

f : RN → R≥0.

For the sake of readability, let N be equal to 2, i.e., the secondary weight is based on
two primary weights. Given two primary weights wi

V and wj
V , the secondary weight

wf,V of a vertex is then defined as:

wf,V (v) := f(wi
V (v), wj

V (v)).

The secondary vertex weight function is extended to sets V ′ ⊆ V :

wf,V (V ′) := f(wi
V (V ′), wj

V (V ′)).

The function f must be such that the secondary weight wf,V is monotonic increasing:

wf,V (V1) ≤ wf,V (V2) for V1 ⊆ V2.
4Multiple secondary weights are comparable to multiple primary weights and the necessary changes
in the definition are comparable to the changes in the definitions from using a single primary
weight to using multiple primary weights in the GPP and the MC-GPP.
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4.4.2. Secondary Weight Graph Partitioning Algorithm
Given the prerequisites, it becomes clear that the P-GPP is subsumed by the SW-
GPP. Assume that w1

V is the original vertex weight and that w2
V is a trivial vertex

weight that reflects the vertex’ cardinality, i.e., w2
V (v) = 1 for all v ∈ V . Defining a

secondary weight wf,V based on the function

f(w1
V (v), w2

V (v)) := w1
V (v) + p(w2

V (v))

resembles the penalized graph partitioning problem. However, having the P-GPP as
a special case is useful from a computational point of view. The P-GPP has prop-
erties that were used in Operations 4.1 and 4.2 to efficiently compute the weights of
partitions that result from frequent operations, i.e., moving a vertex and combining
partitions. Given the arbitrary nature of secondary weights, these optimizations
cannot be used for the SW-GPP. The generalization of Operations 4.1 and 4.2 are
as follows.

Operation 4.3 (Moving a Vertex with Secondary Weights). When a vertex v is
moved from partition V1 to partition V2, the secondary partition weights of the
resulting partitions V ′1 := V1 \ v and V ′2 := V2 ∪ v are as follows:

wf,V (V ′1) = wf,V (V1 \ v) = f(wV (V1 \ v)) = f(
∑

u∈V1\v
wV (u))

= f(
∑

u∈V1

wV (u)− wV (v))

= f(wV (V1)− wV (v)).

Using the same intermediate steps, it follows for V ′2 :

wf,V (V ′2) = wf,V (V2 ∪ v) = f(wV (V2) + wV (v)).

Operation 4.4 (Combining Partitions with Secondary Weights). When two par-
titions V1 and V2 are combined, the secondary partition weight of the resulting
partition V ′ := V1 ∪ V2 can be calculated as follows:

wf,V (V ′) = wf,V (V1 ∪ V2) = f(
∑

v∈V1∪V2

wV (v))

= f(
∑

v∈V1

wV (v) +
∑

v∈V2

wV (v))

= f(wV (V1) + wV (V2)).

The operations can be optimized by maintaining the primary as well as the sec-
ondary weight for each partition. However, the function f still needs to be evaluated
every time a partition changes.5

5In contrast, the penalty function in the P-GPP has natural numbers between zero and |V | as
argument. Thus, all possible values of the penalty function can be pre-computed and stored to
speed up frequent operations.
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The solution to the SW-GPP is similar to the one for the P-GPP. The difference
is that Operations 4.1 and 4.2 are replaced with Operations 4.3 and 4.4 in all steps
of the multilevel graph partitioning framework.

4.5. Experimental Evaluation

In this section, we evaluate graph partitioning as an allocation strategy. We sketch
our implementation of the penalized graph partitioning, which is based on the
METIS graph partitioning tools. Furthermore, we evaluate the benefit of multi-
constraint and penalized graph partitioning over standard graph partitioning in two
experiments that use a synthetic workload and infrastructure. Last in the section,
we confirm the applicability of graph partitioning as a solution for the allocation
problem by presenting results of various scalability experiments.

4.5.1. Penalized Graph Partitioning in METIS (PenMETIS)

METIS is a well known set of serial programs that, among other things, can be used
for graph partitioning. METIS is developed by the research group of George Karypis
at the University of Minnesota.6 The algorithms implemented in METIS are based
on multilevel recursive bisection, multilevel k-way partitioning, and multi-constraint
partitioning.
For this thesis, we modified METIS (version 5.1) to support penalized graph par-

titioning (we termed the resulting tool PenMETIS). We decided to focus on penal-
ized partitioning over secondary weight partitioning because it fits the infrastructure
models in our example systems and because of the optimizations, e.g., incrementally
updating partition weights, that are only possible with penalized graph partitioning.
A number of modifications were necessary to support penalized partition weights
in METIS. For instance, partition weights are assumed to be natural numbers in
METIS. Using penalized partition weights, which can be arbitrary real numbers,
required changing vertex and partition weights to real data types throughout the
program. Furthermore, we added methods to provide and maintain a penalty func-
tion and modified the routines that calculate a partition’s weight. We also added
code to maintain vertex and partition cardinalities throughout the multilevel parti-
tioning algorithm. The latter was necessary to implement new methods to move a
vertex and to combine partitions, both using the total partition weight instead of
the total vertex weight.
For PenMETIS, we focus on the serial version of METIS. Our scalability exper-

iments show that the serial version is fast enough to partition even large workload
graph. However, there is no reason why the same modifications that went into
PenMETIS may not be incorporated in the parallel versions of METIS in the fu-
ture.

6http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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4.5. Experimental Evaluation

(a) Vertex Weight Distribution (b) Neighbor Count Distribution

Figure 4.5.: Workload Characteristics of the Synthetic Workload Graph

4.5.2. Synthetic Multi-Constraint Partitioning Experiment

In this experiment, we analyze the potential of the multi-constraint graph partition-
ing algorithm to generate partitionings that are superior to partitionings generated
by the standard (single-weight) graph partitioning algorithm.

To run the experiments, we generate a synthetic workload graph that contains
1,000 vertices with two weights each. The vertex weights independently follow a
Zipf distribution with the exponent s = 1. Thereby, we simulate a workload with
a few large tasks and many small tasks. Comparable workloads can for instance be
found in database-as-a-service systems (e.g., Schaffner et al., 2013). Each vertex in
the workload graph is connected to a random number of neighbors. The number of
neighbors is between 0 and 10 and again Zipf distributed (s = 3). The distribution
of vertex weights (shown for a single weight) and neighbor counts in the workload
graph are summarized in Figure 4.5. The resulting workload graph has 350 edges
and an average vertex degree of 0.7.

All results of this experiment are shown in Figure 4.6. The graphs show eight
relative node utilizations for four different partitionings and the two vertex weights.
The first two graphs (Figures 4.6a and 4.6b) show the relative node utilizations re-
garding the first weight and the second weight when both are partitioned (and hence
balanced) only using the first weight. Consequently, all partitions are balanced in
the first weight but highly skewed in the second weight. Similarly, balancing the
partitions with respect to the second weight leads to skew in the first weight (Fig-
ures 4.6c and 4.6d). When both weights are combined and then balanced, the result-
ing partitioning leads to skew in both weights (Figures 4.6e and 4.6f). Only when
both weights are balanced individually in the multi-constraint graph partitioning
algorithm are all nodes equally utilized (Figures 4.6g and 4.6h).

The experiments show that multi-constraint graph partitioning is able to individu-
ally balance multiple vertex weights while other strategies that rely on single-weight
graph partitioning lead to skew in either one or both weights.
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(a) Weight 1 Balanced wrt. Weight 1 (b) Weight 2 Balanced wrt. Weight 1

(c) Weight 1 Balanced wrt. Weight 2 (d) Weight 2 Balanced wrt. Weight 2

(e) Weight 1 Balanced wrt. Sum of Weights (f) Weight 2 Balanced wrt. Sum of Weights

(g) Weight 1 Balanced Individually (h) Weight 2 Balanced Individually

Figure 4.6.: Relative Node Utilizations in the Multi-Constraint Partitioning Exper-
iment (Node Utilization Normalized to the Average Node Utilization)
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(a) Exponential Penalty Function

(b) Node Utilization Using METIS (c) Node Utilization Using PenMETIS

Figure 4.7.: Partitioning Experiment 1 using an Exponential Penalty Function
(Node Utilization Normalized to the Average Node Utilization)

4.5.3. Synthetic Penalized Partitioning Experiment

To analyze the potential of penalized graph partitioning to balance load in presence
of non-linear resources, we ran two synthetic partitioning experiments. The exper-
iments use a synthetic workload graph and two different penalty functions. The
motivation of these experiments is to compare partition weights (i.e., node utiliza-
tion) computed by the unmodified graph partitioning algorithms in METIS to those
computed by the penalized graph partitioning algorithm in PenMETIS.

To run this experiment, we re-use the workload graph from the previous experi-
ment (we use just the first vertex weight of each vertex). Recall that the workload
graph contains 1,000 vertices with vertex weights that follow a Zipf distribution.
Furthermore, each vertex has a random number of neighbors. The workload graph
in this experiment is partitioned into 32 balanced partitions using METIS. After-
ward, to estimate the actual load for each node, the penalty function is applied to
each partition based on the partition cardinality. The resulting partition weights
are compared to a second partitioning of the workload graph that was generated by
the penalized graph partitioning algorithms in PenMETIS.

Exponential Penalty Function

In the first experiment, we assume an exponential penalty function. Thereby, we
assume that the underlying resources can execute 16 parallel tasks, i.e., there is no
penalty for smaller partitions. Starting with a cardinality of 17, the penalty grows
with the square of the cardinality. The penalty function together with the node
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(a) Linear Penalty Function

(b) Node Utilization Using METIS (c) Node Utilization Using PenMETIS

Figure 4.8.: Partitioning Experiment 2 using a Linear Penalty Function (Node Uti-
lization Normalized to the Average Node Utilization)

utilizations resulting from both partitioning methods are shown in Figure 4.7. The
unmodified partitioning algorithm, which is unaware of the penalty, tries to balance
the partition weights. The resulting relative weights (i.e., utilization) after applying
the penalty are shown in Figure 4.7b. The node with the highest utilization receives
3.1 times the load of the node with the lowest utilization. The performance of this
setup is bound to be suboptimal. In contrast, Figure 4.7c shows the utilization of all
nodes based on the partitioning computed by the penalized partitioning algorithm.
Here, all partitions are balanced within a tolerance of 3%.

Linear Penalty Function

In the second experiment, shown in Figure 4.8, we use a more conservative assump-
tion for the penalty function. Here, the penalty grows linearly with the cardinality
for partitions with 17 or more tasks. The resulting penalty function is shown in
Figure 4.8a. The node utilization in both setups, using the unmodified and the
penalized graph partitioning, are shown in Figures 4.8b and 4.8c. Even with the
more conservative linear penalty function, partitioning the load without respecting
the penalty leads to a difference in utilization of factor 1.7 between the most and
least utilized nodes.

4.5.4. Scalability Experiments

In this section, we evaluate the overhead that penalized partition weights introduce
in the partitioning process. Furthermore, we investigate how penalized graph parti-
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tioning scales with the size of the graph, the number of partitions, and the number
of constraints.

Walshaw Benchmark

We use example graphs from the Walshaw Benchmark (Soper et al., 2004) to ana-
lyze the overhead and scalability of penalized graph partitioning. Created in 2000
and maintained by Chris Walshaw, the Graph Partitioning Archive7 is hosted at
the School of Computing & Mathematical Sciences at the University of Greenwich.
The archive contains 34 graphs together with their best known partitionings into
different numbers of partitions (2, 4, 8, 16, 32, and 64) and with different imbalance
parameters (0%, 1%, 3%, and 5%). New algorithms can be tested with the exam-
ple graphs and better partitionings (regardless of the runtime) can be submitted to
the archive. Currently, solutions of over 40 algorithms have been submitted, which
makes the Walshaw Benchmark the most popular graph partitioning benchmark
in the literature (Buluç et al., 2013). The example graphs in the archive are real
world graphs from applications such as finite element computation, matrix compu-
tation, VLSI design, and shortest path computations. The graphs together with
statistics on size and vertex degree are listed in Table 4.2. The graphs in the Wal-
shaw Benchmark are per se no workload graphs of data-oriented systems. However,
the performance of the penalized graph partitioning algorithms on these standard
graphs yields valuable insights and indicates the capabilities of the method.

Penalized Partitioning Overhead

In this experiment, we investigate the overhead of penalized partition weights.
Therefore, we first use the unmodified METIS to partition all example graphs into
different numbers of partitions (21 to 210). Then, we use PenMETIS with penal-
ized partition weights to partition the same graphs. The penalty function in this
experiment is a simple constant function that adds a penalty of 1 to each partition.
Regardless of the simplicity of the penalty function, the modified code path is used
and balancing the penalized partition weights introduces an overhead. Figure 4.9
shows the absolute partitioning time in milliseconds needed for the unmodified graph
partitioning and the penalized graph partitioning for each example graph.8 The fig-
ure shows execution times for a partitioning into 64 partitions with an imbalance
parameter of 3% (i.e., the heaviest partition may be 3% heavier than the average
partition weight). The partitioning times for the other parameter values are similar
in nature, i.e., the absolute partitioning times differ but only a small overhead for
penalized partitioning can be seen.
As shown in Figure 4.9, partitioning the benchmark graphs takes less than a

second in all but one cases. The largest graph (auto) contains 448,695 vertices
and 3,314,611 edges and can be considered large in the context of workload graphs.
Even this graph can be partitioned in about 1.4 seconds. The figure furthermore
shows that penalized partition weights introduce a small overhead in the partitioning

7http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/
8We use a fairly moderate AMD Opteron (Istanbul) CPU running at 2.6 GHz for this experiment.
As mentioned before, PenMETIS runs single-threaded.
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Size Vertex Degree
Graph V E Min Max Avg
144 144,649 1,074,393 4 26 14.9
3elt 4,720 13,722 3 9 5.8
4elt 15,606 45,878 3 10 5.9
598a 110,971 741,934 5 26 13.4
add20 2,395 7,462 1 123 6.2
add32 4,960 9,462 1 31 3.8
auto 448,695 3,314,611 4 37 14.8
bcsstk29 13,992 302,748 4 70 43.3
bcsstk30 28,924 1,007,284 3 218 69.7
bcsstk31 35,588 572,914 1 188 32.2
bcsstk32 44,609 985,046 1 215 44.2
bcsstk33 8,738 291,583 19 140 66.7
brack2 62,631 366,559 3 32 11.7
crack 10,240 30,380 3 9 5.9
cs4 22,499 43,858 2 4 3.9
cti 16,840 48,232 3 6 5.7
data 2,851 15,093 3 17 10.6
fe_4elt2 11,143 32,818 3 12 5.9
fe_body 45,087 163,734 0 28 7.3
fe_ocean 143,437 409,593 1 6 5.7
fe_pwt 36,519 144,794 0 15 7.9
fe_rotor 99,617 662,431 5 125 13.3
fe_sphere 16,386 49,152 4 6 6.0
fe_tooth 78,136 452,591 3 39 11.6
finan512 74,752 261,120 2 54 7.0
m14b 214,765 1,679,018 4 40 15.6
memplus 17,758 54,196 1 573 6.1
t60k 60,005 89,440 2 3 3.0
uk 4,824 6,837 1 3 2.8
vibrobox 12,328 165,250 8 120 26.8
wave 156,317 1,059,331 3 44 13.6
whitaker3 9,800 28,989 3 8 5.9
wing_nodal 10,937 75,488 5 28 13.8
wing 62,032 121,544 2 4 3.9

Table 4.2.: Walshaw Benchmark Graphs Overview
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Figure 4.9.: Partitioning Time Comparison between Unmodified and Penalized
Graph Partitioning (64 Partitions, 3% Imbalance)
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(a) Scalability with the Number of Vertices (b) Scalability with the Number of Edges

Figure 4.10.: Execution Times of Penalized Graph Partitioning Charted by the Num-
ber of Vertices and Edges (64 Partitions, 3% Imbalance)

process that is usually negligible. On average, penalized graph partitioning takes
28% (42 ms) more time than the unmodified graph partitioning. The overhead is
caused by the need to maintain vertex and partition cardinalities and the total
partition weight. Furthermore, the frequent operation of moving a vertex from
one partition to another partition is slightly more computationally expensive with
penalized partition weights.9

Besides partitioning times, the comparison of unmodified and penalized graph par-
titioning also yields that PenMETIS achieves comparable total edge cuts and im-
balance factors such that all balance constraints are met. A comprehensive overview
of all experiment results is shown in Tables A.1 and A.2 in Appendix A.

Scalability with Graph Size

To use the allocation strategies based on graph partitioning with ever growing work-
load graphs, it is mandatory that the graph partitioning methods scale well with the
size of the graph. Since penalized partition weights only induce a small overhead to
the partitioning algorithm, the scalability of penalized graph partitioning is bound to
the scalability of the underlying multilevel graph partitioning algorithms in METIS.
Figure 4.10 shows the execution times of the penalized graph partitioning charted
by the number of vertices (Figure 4.10a) and by the number of edges (Figure 4.10b).
The charts indicate that the graph partitioning algorithms scale linearly with the
number of vertices and the number of edges.

Scalability with Partition Count

In a second scalability experiment, we investigate how penalized graph partition-
ing scales with the number of partitions. Again, the scalability of the penalized

9Given that our implementation of penalized graph partitioning is only a proof of concept, there
is room for code optimization that will bring the partitioning times closer to the unmodified
graph partitioning.
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Figure 4.11.: Scalability of Graph Partitioning with the Number of Partitions
(Graph auto)

partitioning method is closely related to the scalability of the underlying multilevel
graph partitioning algorithm in METIS. For this experiment, we selected the largest
benchmark graph (auto). However, results from other graphs are similar (all parti-
tioning times are listed in Tables A.3 and A.4 in Appendix A). In Figure 4.11, we
show partitioning times and memory usage for the unmodified graph partitioning
(METIS) and the penalized graph partitioning (PenMETIS) for various partition
counts. For small partition counts up 32, there is no increase in partitioning time
or memory usage. The fixed parts (i.e., independent of the partition count) of the
partitioning algorithms dominate the resource usage and execution time. Beyond
64 partitions, the partitioning time scales linearly with the number of partitions.
The memory usage also increases beyond 64 partitions but seems to reach a plateau
at about 200 MiB. With linear scalability in graph size and partition count, the
balanced k-way min-cut allocation strategy is well suited to solve today’s and future
allocation problems.

Scalability with the Number of Constraints

In the last scalability experiment, we analyze the quality trend and scalability of the
graph partitioning algorithm under different numbers of constraints. Our infrastruc-
ture model contains possibly multiple independent resources that are individually
balanced in the multi-constraint graph partitioning problem. Hence, in this experi-
ment, we evaluate the ability of allocation strategies based on graph partitioning to
handle multiple resources.

For this experiment, we augment the graphs of the Walshaw Benchmark with
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(a) Partitioning Quality (b) Partitioning Time

Figure 4.12.: Scalability of Graph Partitioning with the Number of Constraints (64
Partitions, 3% Imbalance)

vertex weights. Since the original graphs in the benchmark only have unit weights,
we generate random weights. For each graph, we generate versions with 1 to 5 vertex
weights per vertex. The weights are independently distributed uniformly between 1
and 100.10

To evaluate graph partitioning with different numbers of constraints, we partition
each of the generated graphs into 64 partitions, measure the partitioning time and
report the total cuts as quality measure. The graph partitioning algorithm was in
all cases able to fulfill the balance constraints of 3% for all individual constraints.
The results of our measurements are shown in Figure 4.12. Here, we present the
results for three of the larger benchmark graphs in the Wahlshaw Benchmark, namely
auto, m14b, and wave. However, all partitioning times and total cuts are listed in
Tables A.5 and A.6 in Appendix A. Figure 4.12a shows that the total cut slightly
increases with the number of constraints. This is to be expected since the algorithm
has to fulfill more constraints, which in turn leaves fewer degrees of freedom to
optimize the total cut. At the same time, partitioning time increases with the
number of constraints (Figure 4.12b). This can be explained by the more complex
routines to find matchings of vertices in the coarsening phase as well as by the
increased number of balance steps in the uncoarsening phase.

Both, the decrease in quality and the increase in partitioning time are within small
boundaries and we consider the graph partitioning method applicable to infrastruc-
ture and workload graphs with multiple resources. We conduct our experiments with
up to five resources and we expect that adding resources will eventually cause the
partitioning algorithm to fail in meeting a balance constraint. However, modeling
considerably more than five resources seems unlikely in the targeted data-oriented
systems.

10We also experimented with Zipf distributed weights and the results are similar.
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4.6. Summary
In this chapter, we presented the balanced k-way min-cut graph partitioning prob-
lem. We showed how to solve the graph partitioning problem for single vertex
weights (GPP) and multiple vertex weights, i.e., multiple resources in the infras-
tructure (MC-GPP). To reflect the non-linear behavior in our infrastructure model,
we proposed new modifications of the graph partitioning problem (P-GPP and SW-
GPP) to balance non-linear partition weights.
An evaluation of the different methods in synthetic experiments showed their po-

tential to find balanced allocations in presence of multiple and non-linear resources.
We furthermore showed in this chapter, that the graph partition algorithms scale
well with the number of vertices, edges, partitions, and constraints and are hence
applicable to a wide range of today’s and future data-oriented systems.
The graph partitioning problem and its modifications presented in this chapter

can be used as allocation strategies for a class of data-oriented systems. For systems
with homogeneous nodes and a homogeneous network, an allocation is given by the
partitioning of the workload graph together with an arbitrary mapping of partitions
to infrastructure nodes.
Methods to further relax the assumptions made in this chapter, i.e., allocation

strategies for heterogeneous infrastructures, are presented in the next chapter. In
Chapter 5, we furthermore propose methods to incrementally update an allocation
and to incorporate bounded resources in the graph partitioning problem.
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The algorithms for the graph partitioning problems in the previous Chapter 4 solve
the allocation problem for a class of data-oriented systems with static workloads
and homogeneous infrastructures. Furthermore, the partitioning algorithms always
balance resources, i.e., they assume unbounded resources. In this chapter, we present
existing and propose new extensions and modifications to the basic algorithms from
the previous chapter to relax the restrictions and to ensure that our allocation
strategies fulfill all requirements collected in Section 3.4.
Incremental updates to the graph partitioning after changes in the workload or the

infrastructure are covered in Section 5.1. In the subsequent Section 5.2, we discuss
the challenges for the allocation strategies related to heterogeneous infrastructures.
In Section 5.3, we present a method to incorporate capacity constraints, which are
used to implement bounded resources, in graph partitioning algorithms. All our
extensions are evaluated individually in synthetic experiments in Section 5.4.

5.1. Incrementally Updating the Graph Partitioning

Whenever the workload graph or the infrastructure changes, the partitioning needs
to be re-evaluated. Changes in the workload graph can either be weights that change
or vertices that are added or removed. These changes can be caused by merging
or splitting vertices or by adding tasks to or removing tasks from the workload.
Though not the focus of this thesis, we also consider changes in the infrastructure.
Future systems may use adaptive hardware configurations to achieve performance
goals or power consumption requirements (Fettweis et al., 2012). Changes in the
infrastructure graph may manifest in changing vertex weights or changing edges.
Communication links may be added or removed or the bandwidth may change. A
special case needs to be considered when the infrastructure is dynamic: nodes that
are removed from the system. On the one hand, the data stored on these nodes
needs to be moved to other nodes before the node is deactivated (e.g., by setting
vertex weights to zero first, which implicitly models no resource capacities on the
node). On the other hand, the new infrastructure may not be able to accommodate
all tasks which results in the allocation strategy not finding a valid solution.
Changes in the workload or the infrastructure may lead to an invalid partitioning,

to partitions that are not balanced anymore, or to a suboptimal total cut. In this
section, we describe strategies to incrementally update the partitioning to overcome
these problems.
Once implemented, a partitioning of the workload graph is mapped to the in-

frastructure, i.e., each partition of the workload graph is mapped to a node in the
infrastructure graph. Every vertex that is moved between partitions to compensate
for the changes in the graph induces migration costs. Therefore, the new partition-
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ing should be similar to the current partitioning to minimize the migration costs.
Updating the partitioning after changes is a tradeoff between the quality of the new
partitioning and the migration costs induced by implementing the new partitioning.
Optimizing for both goals simultaneously makes the partitioning problem a multi-
objective optimization problem. Instead, a combination of both goals is commonly
used in practice (Buluç et al., 2013).

5.1.1. Incremental Update Strategies

Here, we present and discuss basic incremental update strategies and heuristics that
combine them. A more detailed discussion of the topic can be found in related
articles on graph partitioning (e.g., Schloegel et al., 1997, 2000).

Local Refinement Strategy

One way to incrementally update a partitioning is to use the local refinement strate-
gies already implemented in the multilevel graph partitioning framework. First, each
vertex in the graph is assigned to its current partition. New vertices are assigned to
the same partition as one of their randomly chosen neighbors. Then, the KL/FM
method is used repeatedly to try to balance and refine the partitioning. Thereby,
vertices from overloaded partitions are moved to underloaded ones. Depending on
the extent of changes, local refinement strategies may not be able to fix the parti-
tioning. If successful, refinement strategies commonly leads to good migration costs
but the partitioning, i.e., the total cut, can deteriorate over time (e.g., Buluç et al.,
2013).

Complete Repartitioning Strategy

A second method to account for graph changes is to partition from scratch. Here,
the graph is partitioned without any knowledge of the previous partitioning. The
new solution is then mapped to the previous one such that the migration costs are
minimized. For instance, a greedy strategy maps heavy vertices first, i.e., vertices
that would cause the highest migration costs. This complete repartitioning strategy
commonly leads to good total cuts but high migration costs which may outweigh
the benefit of the new partitioning (e.g., Buluç et al., 2013).

Virtual Vertices Strategy

A third strategy to incrementally update a partitioning is to introduce virtual ver-
tices. A vertex with no weight that cannot be moved is added to each partition.
Every other vertex is connected to the virtual vertex in the same partition. The
edge weight on the edge that connects a vertex to the virtual vertex reflects the
migration costs of this vertex. When the new graph, including the virtual vertices,
is partitioned, the migration costs are accounted for in the total cut and therefore
minimized by the partitioning algorithm (Hendrickson et al., 1996; Walshaw, 2010).

76



5.2. Mapping Graph Partitions to Heterogeneous Infrastructures

5.1.2. Update Cost Considerations

Deciding on whether or not or when to update the partitioning is an optimization
problem by itself that depends on many details of the system and the application.
Unless the current partitioning is rendered invalid by the changes in the workload
or the infrastructure (e.g., by overloading a node’s bounded resources or violating
a balance constraint), the allocation strategy needs to decide whether updating the
partitioning is beneficial. This decision is a tradeoff between the gain of the new
partitioning in terms of better balance or lower total cut and the costs of migrating
data to achieve the new partitioning.
Migration costs depend on the implementation of the data-oriented system and

have, e.g., be investigated for whole virtual machines, that are used in private OS
database-as-a-service systems (Rybina and Dargie, 2013; Rybina et al., 2014; Strunk,
2012). The costs can generally be quantified as the amount of data that needs to
be moved. Schaffner et al. (2011) furthermore analyze the impact on other tasks’
performances when data is migrated to or from a node. However, given the abstract
infrastructure model in this thesis, it is hard to generally quantify the benefit of one
partitioning over another partitioning. The assumption is that minimal communi-
cation and balanced unbounded resources lead to optimal performance. How much
performance degrades when communication is added or partitions are not balanced
cannot be predicted from the model.
Another aspect to consider is the frequency of workload changes. When the work-

load changes infrequently, migration costs will amortize eventually. With frequent
workload changes, the decision on when to perform migrations is even harder.

Summary

We propose a hybrid strategy to incrementally update the graph partitioning. When-
ever the graph changes such that the partitioning becomes invalid or the balancing
constraint is violated, balancing and refinement steps based on the KL/FM method
try to move vertices such that the partitioning is valid again. If no valid partitioning
can be found using the local search strategy, the graph is partitioned from scratch
and the new partitioning is mapped to the previous partitioning. To prevent the
total cut in the graph to slowly deteriorate, every few local refinement operations, a
new partitioning is computed in the background (even when the partitioning is still
valid). The new partitioning replaces the current one only if the new total cut is
considerably lower than the current total cut.
To address the challenging tradeoffs of migration, we propose to experimentally

analyze the gain of migrations in the actual system and to use heuristics to decide
when to migrate tasks.

5.2. Mapping Graph Partitions to Heterogeneous
Infrastructures

When used as an allocation strategy, the GPP assumes a homogeneous infrastruc-
ture where each partition can equally well be assigned to any node. Precisely, the

77



5. Extensions to Graph Partitioning

GPP assumes homogeneous nodes in the infrastructure and a communication net-
work in the shape of a complete graph with homogeneous links. However, our
infrastructure model allows heterogeneous nodes with different capacities as well as
heterogeneous communication networks. Heterogeneous nodes and different network
connections between servers and between racks are often found in data centers that
host database-as-a-service systems. Today’s multiprocessor systems with NUMA
characteristics commonly have homogeneous nodes, but a heterogeneous communi-
cation network (an overview and analysis of different NUMA systems is presented
in Section 7.1). However, the trend towards heterogeneous processing elements like
CPUs and GPUs in single server systems supports the need for allocation strategies
that consider heterogeneous nodes (e.g., Borkar and Chien, 2011). In the presence
of a heterogeneous infrastructure, finding an optimal mapping from partitions to
infrastructure nodes becomes part of the GPP.
To describe algorithms that partition a workload graph and map it to a heteroge-

neous infrastructure, we need two additional definitions. For simplicity, we assume a
single unbounded resource but all definitions naturally extend to multiple resources
and bounded resources (bounded resources are covered in Section 5.3).

Definition 5.1 (Infrastructure Graph). Given is an infrastructure as in the infras-
tructure model introduced in Section 3.1 (Definition 3.1). Let I = (N,L,wN , wL)
be the undirected, weighted infrastructure graph. The vertices N (|N | = k) in the
graph are nodes of the infrastructure with capacities given by the node capacity
function wN . The edges L are communication links between nodes and the link
capacities are expressed in wL as per-unit communication costs. The node capacity
and link cost functions are naturally extended to sets of nodes and links:

wN (N ′) :=
∑

n∈N ′

wN (n) for N ′ ⊆ N and

wL(L′) :=
∑
l∈L′

wL(l) for L′ ⊆ L.

Furthermore, let ρ be the routing table of the infrastructure, i.e., a mapping from
each pair of nodes to a set of links that connect the nodes:

ρ : (N ×N)→ P(L).

Definition 5.2 (Mapping). Given a partitioning Π, let π be a mapping from par-
titions to the infrastructure nodes.

π : {V1, . . . , Vk} → N.

5.2.1. Heterogeneous Nodes

We first consider an infrastructure with heterogeneous nodes, but a homogeneous
communication network. The homogeneous communication network implies that
wL(ρ(Ni, Nj)) = 1 for any given Ni, Nj ∈ N (i 6= j).
The balance constraint of the GPP can be modified to account for different node

capacities. A partitioning that fulfills the new balance constraint contains partitions
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according to the node capacities. The relative capacities of the target partitions (i.e.,
nodes in the infrastructure) need to be available as input parameter to the graph
partitioning algorithm. The balance constraint of the GPP is modified as follows.

Definition 5.3 (Heterogeneous Balance Constraint). The heterogeneous balance
constraint demands that all partitions have weights proportional to their capacities.
Let (c1, . . . , ck) be a vector of normalized relative partition capacities such that:

1
k

k∑
i=1

ci = 1.

Let µ be the average partition weight:

µ := wV (V )
k

.

For a graph partitioning to be balanced according to the partition capacities it must
hold that

∀i ∈ {1, . . . , k} : wV (Vi) ≤ (1 + ε) · µ · ci,

where ε ∈ R≥0 is a given imbalance parameter.

Given an infrastructure I, the relative partition capacities can be derived from
the infrastructure nodes:

ci = k · wN (Ni)
wN (N) , for i = 1, . . . , k.

Using the heterogeneous balance constraint in the partitioning algorithm leads to
a partitioning Π = (V1, . . . , Vk) and a mapping π with π(Vi) = Ni.

5.2.2. Heterogeneous Links and Sparse Networks
In the second case, we consider infrastructures with homogeneous nodes but hetero-
geneous links and sparse networks, i.e., networks that are not fully connected graphs.
In this case, the mapping of partitions to nodes influences the communication costs
and should therefore be part of the optimization process. The goal of the mapping is
to assign high communication volumes between partitions (i.e., cut edges with high
weights) to wider links and short connection paths, ideally direct connections.
Different approaches have been proposed in the past to solve the GPP with het-

erogeneous communication networks (e.g., Buluç et al., 2013, give an overview). One
strategy, e.g., by Walshaw and Cross (2001), is to incorporate the cost of communi-
cating data between nodes directly into the objective function during the partitioning
process. Given a mapping π, the communication cost wc between partitions needs to
incorporate the workload graph edge weight (i.e., the communication volume) and
the communication cost per unit (i.e., the communication distance):

wc(Eij) := wE(Eij) · wL(ρ(π(Vi), π(Vj))).

This approach requires the knowledge and availability of the pairwise communica-
tion costs. Depending on the size of the infrastructure, the size of the cost matrix
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which is proportional to the square of the number of nodes may be large. Further-
more, it may not be feasible to evaluate these pairwise communication costs. Using
the multilevel graph partitioning framework, incorporating the communication costs
only applies to direct k-way partitioning algorithms. Using recursive bisection, it is
not obvious what the communication cost between the two partitions is since they
do not represent actual nodes of the infrastructure.
To overcome the problem with bisection, Pellegrini (1994) simultaneously bisects

the workload and the infrastructure graph in the SCOTCH mapping library. In
each step of the dual recursive bipartitioning algorithm, the workload graph and
the infrastructure graph are partitioned in two parts with minimal cut and each
workload partition is assigned to one of the infrastructure partitions. The bisection is
recursively repeated until only one node remains in the partition of the infrastructure
graph. All remaining vertices of the workload graph are assigned to this node.
A different strategy, termed predictor-corrector, was proposed by Moulitsas and

Karypis (2008). Their approach is to first partition the graph without considering
the infrastructure. In a second step, the partitioning is modified (corrected) accord-
ing to the network characteristics. The correction step uses greedy strategies based
on the same principles as the KL/FM method.
A last set of strategies that we like to mention also partition the workload graph

without considering the infrastructure. In an attempt to minimize communication
costs, these strategies then try to find a communication-optimal mapping from work-
load graph partitions to infrastructure nodes. An implementation of this strategy
was, for instance, proposed by Brandfass et al. (2013). The authors use a greedy
heuristic and map the partition with the highest total communication cost with
respect to the already mapped partitions onto the node with the smallest total
distance.

5.2.3. Heterogeneous Nodes and Links

The graph partitioning and mapping problem becomes even more complicated in
presence of heterogeneous nodes and a heterogeneous network. Any of the strate-
gies introduced in the previous section can be modified to account for heterogeneous
nodes as well. However, the smaller degree of freedom makes it harder to find solu-
tions. If, e.g., the workload graph was partitioned according to the node capacities,
a communication-optimal mapping can only assign partitions to nodes that have the
appropriate capacity. Assuming that there are classes of nodes with identical capac-
ities, there may still be a choice, but the algorithm is more restricted compared to
the case with homogeneous nodes. Partitioning methods and refinement strategies
can be modified to take the different node capacities and communication costs into
account. However, local vertex swapping heuristics may not always find optimal
solutions.

Summary

Given the restrictions in the fully heterogeneous case, we focus on systems that either
have heterogeneous nodes (and a homogeneous network) or have a heterogeneous
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network (but homogeneous nodes). For the latter case, we implement the predictor-
corrector method inspired by Moulitsas and Karypis (2008). The modifications of
the refinement strategies based on the KL/FM method fit with the modifications
already required in the same methods to enable penalized and secondary weight
graph partitioning.

5.3. Capacity Constraints
The infrastructure model distinguishes bounded and unbounded resources. Bounded
resources on the one hand impose a strict limit on their usage. Unbounded resources
on the other hand can be overcommited and are transparently multiplexed by the
system. While performance improves when unbounded resources are balanced across
partitions, we assume that performance does not change depending on the balance of
bounded resources. However, even when not balanced, usage of bounded resources
must stay below the capacity or otherwise the partitioning is invalid.
To model both kinds of resources, bounded and unbounded, we propose an ex-

tension to the GPP. We add a capacity constraint to the already existing balance
constraint. The capacity constraint is mainly for modeling purposes and we will
show that partitioning algorithms can use the existing balance constraint with a
carefully chosen imbalance parameter to also enforce capacity constraints.
In addition to Definition 4.4 (Balance Constraint), a capacity constraint is de-

fined as follows. For the sake of readability, we assume a single vertex weight.
However, the definition naturally extends to multiple weights and multiple capacity
constraints.

Definition 5.4 (Capacity Constraint). A capacity constraint demands that all par-
tition weights are below a given absolute capacity. Let wmax be a function that maps
each partition to its maximum partition weight. For a graph partitioning to fulfill a
capacity constraint it must hold that

∀i ∈ {1, . . . , k} : wV (Vi) ≤ wmax(Vi).

The total capacity is the sum of all maximum partition weights:

wmax(V ) :=
k∑

i=1
wmax(Vi).

The total requirement is the total partition weight of the graph wΠ.1

Given an infrastructure I, the maximum partition weights wmax are given in the
node weights wN .
Capacity constraints can be modeled with the already existing balance constraints

and carefully selected imbalance parameters. Thereby, the existing solution heuris-
tics for the GPP (also MC-GPP, P-GPP, and SW-GPP) can be used to partition
graphs with balance and capacity constraints. The nature of capacity constraints

1Note that the total partition weight wΠ equals the total vertex weight wV if partition weights
are not penalized.
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1
1

1

1
1

11

1

(a) Vertex Weights (b) Valid Suboptimal Partitioning
(Total Cut = 4)

(c) Invalid Partitioning
(wV (V1) > wmax(V1))

(d) Optimal Partitioning (Total Cut = 3)

Figure 5.1.: Example of Graph Partitioning with Capacity Constraint

implies that the corresponding weights are usually not penalized. However, with
the described solution, graphs with capacity constraints and penalized balance con-
straints can be partitioned.
A naïve approach to enforcing a capacity constraint would be to use a balance con-

straint with a tight imbalance parameter (ε = 0). As long as the total requirement
is smaller than the total capacity, this leads to a valid solution (there is no solu-
tion otherwise). However, forcing tight balance severely reduces the solution space,
which may lead to a suboptimal total cut. There may even be no valid solution at
all.

Capacity Constraint Graph Example. Figure 5.1 shows an example graph
where a too conservative imbalance parameter leads to a suboptimal partitioning.
The vertex weights are shown in Figure 5.1a, edge weights are all equal to one. The
maximum partition weights in the example are wmax(V1) = wmax(V2) = 6. Fig-
ure 5.1b shows a perfectly balanced partitioning (ε = 0) with a total cut of 4 (not
optimal). Figure 5.1c shows an invalid partitioning where the first partition contains
more weight than the maximum weight. Figure 5.1d shows the optimal partition-
ing of the example graph with a total cut of 3. The capacity constraint is fulfilled
although the partition weights are skewed (wV (V1) = 6, wV (V2) = 2).

Capacity Constraint Graph Example (continued). Figure 5.2 shows an exam-
ple graph with a capacity constraint (first weight) and a balance constraint (second
weight). The imbalance parameter for the balance constraint is ε2 = 0.2. The max-
imum partition weights are again wmax(V1) = wmax(V2) = 6. Figure 5.2b shows
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(1,1)
(1,1)

(1,1)

(1,7)(1,1)

(1,1)(1,1)

(1,1)

(a) Vertex Weights (b) Invalid Partitioning
(Balance Constraint)

(c) Invalid Partitioning
(Capacity Constraint)

(d) Optimal Partitioning (Total Cut = 3)

Figure 5.2.: Example of Graph Partitioning with Capacity and Balance Constraint

an invalid partitioning. Although the first weight is perfectly balanced, the balance
constraint of the second weight is violated. Figure 5.2c shows an invalid parti-
tioning where the first partition contains more weight than the maximum weight.
Figure 5.1d shows the optimal partitioning of the example graph with a total cut of
3 and the capacity and the balance constraint fulfilled.

To enforce the capacity constraint without restricting the solution space, a flexible
imbalance parameter based on the available resources can be used. The imbalance
parameter ε can be large when the resource requirements are considerably smaller
than the total capacity and approaches 0 as the requirements approach the capacity.

Lemma 5.1. In the case of homogeneous nodes, i.e, wmax(V1) = · · · = wmax(Vk), a
partitioning that fulfills a balance constraint with

ε = wmax(V )
wV (V ) − 1

also fulfills the capacity constraint.

Proof. The partitioning fulfills the balance constraint. Using the definitions, it fol-
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lows that for all i ∈ {1, . . . , k}:

wV (Vi) ≤ (1 + ε) · µ

≤ (1 + wmax(V )
wV (V ) − 1) · µ

≤ wmax(V )
wV (V ) ·

wV (V )
k

≤ wmax(V )
k

From wmax(V1) = · · · = wmax(Vk), it follows that wmax(V ) = k · wmax(Vi) for any
given i.

Capacity Constraint Graph Example (continued). In the example graphs
shown in Figures 5.1 and 5.2, the imbalance parameter ε needs to be set to
12/8 − 1 = 0.5 (i.e., at most 50% imbalance) to enforce the capacity constraint
without restricting the solution space.

In the case of heterogeneous nodes, the imbalance parameter can be chosen simi-
larly to replace the capacity constraint with a heterogeneous balance constraint (see
Definition 5.3).

Lemma 5.2. In the case of heterogeneous nodes, let the normalized partition capac-
ities be

ci := k · wmax(Vi)
wmax(V )

A partitioning that fulfills a heterogeneous balance constraint with

ε = wmax(V )
wV (V ) − 1

also fulfills the capacity constraint.

Proof. The partitioning fulfills the heterogeneous balance constraint. Using the
definitions, it follows that ∀i ∈ {1, . . . , k}:

wV (Vi) ≤ (1 + ε) · µ · ci

≤ (1 + wmax(V )
wV (V ) − 1) · µ · k · wmax(Vi)

wmax(V )

≤ wmax(V )
wV (V ) ·

wV (V )
k

· k · wmax(Vi)
wmax(V )

≤ wmax(Vi)

To use capacity constraints in the GPP, either the total capacity wmax(V ) (for
homogeneous nodes) or the vector of partition capacities (wmax(V1), . . . , wmax(Vk))
needs to be given as an input parameter to the partitioning algorithm.
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5.4. Experimental Evaluation

In this section, we experimentally evaluate the methods proposed in this chapter.
The extensions for graph partitioning algorithms that enable incremental updates,
heterogeneous infrastructures, and capacity constraints are tested with synthetic
workloads.

5.4.1. Incremental Update Experiment

In the first experiment in this section, we evaluate the ability of our allocation
strategies to react to changes in the workload. We therefore simulate a repeat-
edly changing workload and investigate the performance of our incremental update
strategies described in Section 5.1.
We start our experiment with a random workload graph containing 1,000 vertices.

The vertex weights follow a Zipf distribution between 1 and 100. Similar to the
previous synthetic workload graphs (see Section 4.5.2), each vertex has a random
number (between 0 and 10) of random neighbors. For this experiment, we also
generate random edge weights (between 1 and 100) to get a more realistic evaluation
of the total cut. The workload graph is initially partitioned into 32 partitions with
an imbalance parameter of 3% (we use the same imbalance parameter throughout
the experiment).
To simulate a changing workload, we define two workload graph modifications:

Minor Change A minor change is implemented by updating the vertex and edge
weights of 1% of all vertices and all edges. The vertex weights are updated
relative to their current weight, either increased or decreased by 10%. The
edge weights are always increased by 20%.

Major Change A major change is implemented by updating the vertex and edge
weights of 10% of all vertices and all edges. The vertex weights are updated
relative to their current weight, either increased or decreased by 80%. The
edge weights of the randomly selected edges are doubled.

The complete experiment consists of 100 workload changes and the corresponding
incremental updates to the partitioning. After 20 minor changes, one major change
is simulated. The results of the experiment are shown in Figure 5.3.
After each workload change, the current partitioning is evaluated against the new

workload graph. The update mechanism is triggered when the evaluation yields that
the balance constraint is violated, i.e., when there is more than 3% imbalance. The
update strategy first tries to regain a balanced partitioning using local refinement
strategies. A complete repartitioning is only triggered when the local refinement
fails. In either case, the new partitioning is then evaluated against the workload
graph and the imbalance as well as the total cut are logged. In addition, the update
strategy repartitions the workload graph in the background after every ten changes.
However, the new partitioning is only implemented when it leads to a total cut
that is better by more than 10% of the old total cut. The evolution of the graph
imbalance and the total cut are summarized in Figures 5.3a and 5.3b. The results
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(a) Imbalance of the Graph in Percent (Before and After Refinements/Repartitionings)

(b) Total Cut of the Graph in Thousands (Before and After Refinements/Repartitionings)

(c) Migration Cost for the Refinements/Repartitionings

Figure 5.3.: Incremental Update Experiment (32 Partitions, 3% Imbalance)
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(a) Relative Partition Weights (Normalized
to the Average Partition Weight)

(b) Relative Node Utilization Adjusted for In-
dividual Node Capacities (Normalized to
the Average Node Utilization)

Figure 5.4.: Partitioning Experiment with Heterogeneous Nodes (32 partitions, 3%
Imbalance)

show that minor changes eventually and major changes always lead to violations of
the balance constraint. However, in many cases (21 in the experiment) the local
refinement algorithm is able to regain a balanced partitioning. Only in two cases, a
complete repartitioning is triggered, which in both cases leads to considerably better
total cuts.

Next to the imbalance and the total cut, the experiment reports the migration
costs induced by the updates to the partitionings. We report the sum of all vertex
weights of vertices that are moved between partitions as the total migration cost
for an update. The migration costs are shown in Figure 5.3c. The figure clearly
shows that partitioning the workload graph from scratch causes considerably higher
migration costs than refining an existing partitioning. The latter is true despite the
fact that we implemented a greedy strategy to match previous partitions as good as
possible to new partitions in an attempt to reduce the migration costs.2

5.4.2. Heterogeneous Infrastructure Experiment

In the second experiment, we test the ability of our allocation strategy to consider
heterogeneous nodes in the infrastructure. Heterogeneous nodes lead to imbalance in
the system if all workload partitions are equal in size. Hence, to achieve a balanced
system, the allocation strategy must incorporate the relative node capacities in the
balance constraint.

We again use a synthetic workload graph with 1,000 vertices for this experiment.
The vertices have a single weight that follows as Zipf distribution and a random
number of neighbors (see Section 4.5.2).

To simulate a heterogeneous infrastructure, we subdivide the 32 nodes in the
infrastructure in 4 classes with 8 nodes each. With the capacity of the fastest nodes
as a baseline, the second class of nodes has three quarters of the baseline capacity,

2Migration costs for complete repartitionings are higher without this additional matching step.
Our experiments showed cost reductions through the matching by as much as a factor of two in
many cases.
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(a) Partitioning Quality (b) Partitioning Time

Figure 5.5.: Ability of the Graph Partitioning Algorithm to Fulfill Capacity Con-
straints (64 Partitions)

the third class has half of the capacity, and the fourth class has only one quarter of
the baseline capacity.

The workload graph is partitioned using PenMETIS and the relative node ca-
pacities are provided as an input parameter. Figure 5.4 shows the results of the
experiment. Figure 5.4a on the left shows the relative partition weights yielded by
the partitioning algorithm. The partitions are obviously skewed in size. However,
as Figure 5.4b on the right shows, the node utilization is balanced across all nodes
once the partition weights are adjusted for the node capacities.

5.4.3. Capacity Constraint Experiment

In the last set of experiments in this chapter, we evaluate the ability of our allocation
strategy to fulfill capacity constraints. We showed in Section 5.3 that capacity con-
straints, though important for the concept, are implemented as balance constraints
in the actual graph partitioning algorithm. The imbalance parameter needs to be
carefully chosen to be restrictive enough to yield a valid partitioning without reduc-
ing the solution space. Hence, the experiments in this section evaluate the ability of
PenMETIS to generate partitionings with different imbalance parameters.

For the capacity constraint experiments, we use the graphs in the Walshaw Bench-
mark. Since the vertices in the benchmark graphs have only unit weights, we add
random vertex weights for the experiment. The vertex weights are uniformly dis-
tributed between 1 and 100. To evaluate the partitioning algorithm, we generate
partitions with five different imbalance parameters, namely 50%, 10%, 5%, 1%, and
0.1%. We report the total cut as the quality measure and the partitioning time for
each of the parameters. The results are summarized in Figure 5.5. Here, we present
the results for three of the larger benchmark graphs in the Wahlshaw Benchmark,
namely auto, m14b, and wave. However, all partitioning times and total cuts are
listed in Tables A.7 and A.8 in Appendix A. Figure 5.5a on the left shows that
the total cut increases with smaller imbalance parameters. This result is to be ex-
pected since the smaller imbalance parameter reduces the solution space and leaves
the partitioning algorithm fewer options to balance. However, the increase in the

88



5.5. Summary

total cut from 50% imbalance to 0.1% imbalance is less than 10% in the worst of
our experiments. Figure 5.5b on the right shows that the partitioning time only
marginally increases for thighter imbalance parameters.
From an application point of view, it is more likely to have capacity constraints

with a reasonable buffer which lead to imbalance parameters that are significantly
higher than 0.1%. However, as the experiments show, our allocation strategies are
able to fulfill even tight capacity constraints.

5.5. Summary
In the previous Chapter 4, we presented basic partitioning algorithms for variations
of the graph partitioning problem. The strategies presented there can be used to
partition graphs with single or multiple vertex weights, penalized vertex weights, and
secondary vertex weights. In this chapter, we presented existing and proposed new
modifications to the basic partition algorithms that (1) incorporate heterogeneous
infrastructures, (2) react to changing workloads and infrastructures by incrementally
updating a partitioning, and (3) enable bounded resources in the infrastructure
model. Our experimental evaluation of the presented methods showed that they are
able to overcome the challenges posed by the allocation problem.
The basic partitioning algorithms together with the proposed extensions fulfill

all our requirements for an allocation strategy (see Section 3.4). Optimizing for
communication costs is an inherent property of all min-cut partitioning algorithms.
Non-linear performance is covered in the penalized and secondary weight graph
partitioning algorithms. Multiple individual resources are enabled by the multi-
constraint graph partitioning algorithm. Also recall that the two can be combined.
Heterogeneous infrastructures are covered by the extensions in this chapter. Like-
wise, as shown in this chapter, bounded resources are respected in the allocation
strategy. The last requirement, the ability to incrementally update an allocation, is
fulfilled by the update strategies proposed in this chapter.
After the allocation strategies have been elaborated and evaluated in this chapter

and the previous chapter, we present implementations of the strategies in actual
data-oriented systems in the next two chapters. Unlike the experiments so far,
which tested basic applicability and scalability of the methods, the next chapters
contain experiments regarding end-to-end performance in two different systems. In
Chapter 6, we implement and evaluate the allocation strategies in the database-as-a-
service system MTM. Afterward, in Chapter 7, we do the same in the ERIS DBMS
for multiprocessor systems.
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6. Experimental Evaluation in the MTM
Database-as-a-Service System

In this chapter, we experimentally evaluate our allocation strategies in a database-
as-a-service system. The intention of the experiments is to implement and evaluate
the allocation strategies presented in the previous chapters in a concrete system
environment. The experiments are used to test whether the allocation strategies are
applicable in an actual data-oriented system. Furthermore, the experiments help to
evaluate the benefit of our new allocation strategies over existing strategies.
To implement and test the allocation strategies, we built a fully functional

database-as-a-service system called Multi-Tenancy Middleware (MTM).1 The MTM
system is described in Section 6.1. To evaluate the performance of the database-as-
a-service system under different allocation strategies, we need to generate, deploy,
and query a large number of databases. As part of this thesis, we developed the
multi-tenancy benchmark framework MulTe, which is described in Section 6.2. The
setups, methodology, and results of our experiments are presented in Section 6.3.

6.1. Multi-Tenancy Middleware (MTM)

To evaluate our allocation strategies in a data-oriented system, we implemented a
database-as-a-service system called Multi-Tenancy-Middleware (MTM). Our MTM
system is in general similar to commercial database-as-a-service systems like Amazon
RDS (Amazon, 2015) or Microsoft Azure (Microsoft, 2015). Databases can flexibly
be provisioned on demand and the system takes transparently care of the physical
representation of the databases. For our experiments, we use the MTM system
with the ERIS in-memory database management system as backend (ERIS will be
described in detail in Chapter 7). Here, we use a modified version of ERIS that is
optimized towards running multiple instances in one server machine. The backend
DBMS in MTM can be replaced with moderate effort (we did in fact implement the
necessary components for MySQL and PostgreSQL as well). Our exemplary MTM
system implements the private process class of database-as-a-service systems, i.e.,
each database provided by the system is backed by an instance of the ERIS DBMS
containing a single database.
The MTM system has three major components, which are shown in Figure 6.1:

(1) frontend tools, (2) a middleware, and (3) backend nodes. A sequence diagram for
common database operations (i.e., create the database, connect to the database, and
execute SQL statements) is shown in Figure 6.2. The actual database application

1Note that we use the terms database-as-a-service system and multi-tenancy database management
system interchangeably.
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Figure 6.1.: System Architecture of the MTM System

does not have to be modified and can communicate transparently with the logical
database provided by the MTM system.2

Frontend

The frontend tools are the interface between the client application and the mid-
dleware or backend node. Frontend tools in our exemplary system are modified
versions of the ERIS Command-Line-Tool (CLT) and the ERIS JDBC driver. The
modifications of the tools are to not directly connect to the database using the pro-
vided connection parameters (i.e., server IP address, port, and database). Instead,
the frontend tools first communicate with the middleware using network protocols.
Depending on the task, the frontend tools either delegate the task to the middle-
ware (e.g., to create or drop a database) or request connection parameters for the
actual backend node where the desired database resides (e.g., to execute SQL state-
ments). The sequence of actions to create a logic database is shown in operation 1
in Figure 6.2. When the application tries to connect to the database, the frontend
tools retrieve the connection information from the middleware and then directly and
transparently connect to the correct backend node. Hence, the middleware is not in-
volved in any subsequent communication between the application and the database
and does therefore not impose a bottleneck. The sequences of actions to connect
to the database and issue SQL statements is shown in the operations 2 and 3 in
Figure 6.2.

2We refer to the database provided by the middleware as a logical database. Depending on the
implementation class of the database-as-a-service system, this may be an actual database or just
a schema in a database. The MTM system supports multiple modes, depending on the selected
backend DBMS.
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Figure 6.2.: Sequence Diagram for Basic Operations in the MTM System
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Middleware

The middleware is the core component of the MTM system. The middleware main-
tains a directory of available backends (including connection information) and regis-
tered logical databases. When a frontend tool requests to create a logical database,
the corresponding database (or schema) is created in the backend node and the log-
ical database is registered in the directory. When a frontend tool wants to connect
to a logical database, the connection parameters of the actual backend are returned.
The middleware is also responsible for collecting load statistics and workload infor-
mation as well as for implementing the allocation strategy. Based on the workload,
the middleware assigns new logical databases to the appropriate backend node. Fur-
thermore, the middleware issues migration tasks to backend nodes to balance load
by moving databases between backends.3

Backend

The backend nodes in the MTM system host one or multiple instances of the back-
end database management system. In our exemplary system, we provide an instance
of the ERIS DBMS for each logical database. Hence, our exemplary system is a pri-
vate process implementation of a database-as-a-service system.4 To start and stop
ERIS instances on behalf of the middleware and to keep track of the used ports of
the various instances, we use a lightweight administration daemon. This adminis-
tration daemon also acts as distributed transaction coordinator in our performance
experiments since ERIS does not support distributed transactions across multiple
instances.

6.2. Multi-Tenancy Database Benchmark Framework
(MulTe)

To evaluate the performance of the data-oriented system and to compare different
allocation strategies, we need to generate, deploy, and query up to 1,000 databases.
To enable our experiments, we developed the multi-tenancy benchmark framework
MulTe as part of this thesis. We sketch the general architecture of the framework
in this section while a more detailed description of the framework is provided in a
dedicated paper (Kiefer et al., 2012). The framework itself is publicly available.5

6.2.1. Benchmark Framework Concepts
As shown in Figure 6.3, our approach in MulTe is to re-use existing benchmarks,
including their schemas, data, and queries/statements. MulTe generates instances
of these benchmarks to represent different tenants. Each tenant is given an individ-
ual, time-dependent workload that reflects a user’s behavior. A workload driver runs
all tenants’ workloads against any multi-tenancy database management system and

3In our performance experiments, we provide the allocation from outside the MTM system using
the benchmark tool to be able to easily compare different allocation strategies.

4We also implemented and experimented with a private database version of the MTM system.
5https://wwwdb.inf.tu-dresden.de/research-projects/projects/multe/
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collects all execution statistics. All steps are supported with tools which together
form the multi-tenancy benchmark framework MulTe.
The workflow of MulTe is shown in Figure 6.4. A set of Python scripts is used

to define, generate, and populate tenants. The tenant definition contains the bench-
mark type (the Star Schema Benchmark in our experiments), the database size, the
workload, and workload parameters such as the think time between query execu-
tions. In the second step, each tenant’s database and workload are materialized using
query and workload templates as well as the legacy data generator provided with
the selected benchmark. In the third step, all databases are created and populated.
Since MulTe operates against the MTM system in our experiments, a modified ver-
sion of the ERIS command line tool is used that consults the middleware to create
and populate databases (see previous Section 6.1 for details). Given the workload
description, MulTe uses a Java workload driver to execute transactions in parallel
and to collect statistics such as execution times (step 4 in Figure 6.4). In the last
step, the results of a benchmark run can be summarized by MulTe. For the ex-
periments presented in this chapter, we extended MulTe by additional scripts to
compute the performance metrics that we are interested in.

6.2.2. Benchmark Framework Implementation

Our intention is to provide MulTe as a benchmark framework that will be used
and extended by the community. We committed our work to a number of design
principles that shall help to increase the value of the framework.

Easy-to-use: We provide example implementations to create tenants that run the
TPC-H or the SSB benchmark against MySQL or PostgreSQL databases. A user
only needs to provide a small number of configuration parameters (e.g., host, port,
and paths) and a workload definition. The framework then generates and loads
tenants. The workload driver can be used with a provided example configuration.
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Component Re-use: We re-use existing components wherever possible. From the
given database benchmark, we re-use, e.g., data generators and schema definitions.
The Java workload driver in MulTe is a modification of the workload driver of the
TPoX database benchmark (TPoX, 2015).

Extensibility: The framework components to generate and load tenants can be re-
placed such that both, other benchmarks and other database management systems,
can easily be supported.6 The Python language allows users to quickly adopt our
example implementations and modify them to fit their needs. The workload driver is
designed to be able to run a wide variety of workloads, thus supports different bench-
marks. Extending the workload driver to support different database management
systems is also possible as long as they provide a JDBC interface.

Python Scripts—Define, Generate, and Load Tenants

The Python scripts/classes to define, generate, and load tenants follow the struc-
ture shown in Figure 6.5. The full Python functionality can be used to define a
tenant’s set of activity parameters. We provide two implementations that either
specify the parameters’ values explicitly or pick them randomly (following a distri-
bution) but independent from one another. Given the tenants’ definitions, instances
of the respective database benchmarks are generated using both, provided data
generators and templates. Other instance generators for other benchmark types
can be added by implementing the methods generateData, generateSchema, and
generateWorkload. A DBMS-specific database executor is used to load all tenants’
data into the databases. Our example implementation uses the command line inter-
faces of MySQL and PostgreSQL to execute SQL statements and to bulk-load data
from CSV files.

6We proved the extensibility of the framework by adding support for the MTM system to MulTe.
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Java Workload Driver

The Java workload driver, which executes all tenants’ workloads against a database-
as-a-service system, is a modification and extension of the workload driver provided
with the TPoX database benchmark. A detailed documentation of the original
workload driver and its capabilities can be found on the TPoX website7. Here,
we would like to only mention some of the modifications that we made. Fig-
ure 6.6 shows an overview of all changes. The class structure is closely coupled
to the framework conception. The WorkloadSuite uses GlobalSuiteParameters
for a benchmark, taken from a simple configuration file (here suite.xml). The
WorkloadSuite furthermore drives multiple tenants (WorkloadInstance) that in
turn use multiple ConcurrentUsers to execute statements in the database. All of a
tenant’s parameters—stored in WorkloadInstanceParameters—are taken from an
XML configuration file that is automatically generated by MulTe.

6.3. System Performance Experiments

In the following experiments, we test our allocation strategies in the MTM database-
as-a-service system. The goal of the experiments is to evaluate whether allocation
strategies based on graph partitioning lead to better system balance (and hence
worst-case performance) than a greedy baseline allocation strategy. Furthermore,
the experiments test whether penalized graph partitioning outperforms the unmod-
ified graph partitioning in our system.

6.3.1. Hardware Setup

We conduct our experiments using Amazon Web Services8. Multiple EC2 instances
are used as backend nodes. Additional EC2 instances are used to host the benchmark

7http://tpox.sourceforge.net/
8http://aws.amazon.com

97

http://tpox.sourceforge.net/
http://aws.amazon.com


6. Experimental Evaluation in the MTM Database-as-a-Service System

Setup Frontend & Middleware Backend Nodes Database Count
Setup40 1 x c4.2xlarge 4 x m4.xlarge 40
Setup1k 4 x c4.2xlarge 32 x m4.xlarge 1,000

Table 6.1.: Performance Experiment Setups

Instance Type vCPU Memory
(GiB)

Physical Processor Clock
Speed
(GHz)

m4.xlarge 4 16 Intel Xeon E5-2676 v3 (Haswell) 2.4
c4.2xlarge 8 15 Intel Xeon E5-2666 v3 (Haswell) 2.9

Table 6.2.: Amazon EC2 Instance Details

application, frontend tools, and the middleware.9
We deploy two different setups, summarized in Tables 6.1 and 6.2, for our ex-

periments. The first setup (Setup40) consists of 4 instances as backend nodes
(m4.xlarge) and a single instance to run the benchmark (c4.2xlarge). 40
databases in total are hosted in this first setup. In the second setup (Setup1k), 32
instances are used as backend nodes and 4 instances drive the benchmark. In this
second setup, we host a total of 1,000 databases with an aggregated size of 120 GiB.

6.3.2. Workload/Workload Model

We use the Star Schema Benchmark (SSB) (O’Neil et al., 2009) as the basis to gener-
ate our experiment workloads.10 Prior to the experiments, we evaluated the cost of
each of the 13 queries in the SSB based on a cost model that uses the ERIS execution
model and query execution plans generated by ERIS. For the experiments, we de-
cided to model a single processing cost. Databases are generated in 28 different sizes
ranging from 10 MiB to 1 GiB. This results in 364 different basic database workloads
with different workload intensities (28 sizes times 13 queries in the benchmark11).
Together with a think time between queries, we are able to generate databases with
any given intensity/cost.
To run the experiments, we generate a workload graph with random vertex weights

and random edges. The graph consists of either 40 or 1,000 vertices, depending on
the setup. The vertex weights represent processing costs and follow a Zipf distri-
bution with exponent s = 1 (Schaffner et al. (2013) observed similarly distributed
tenants in an actual database-as-a-service system). Each vertex has a number of
(randomly selected) neighbors. The number of neighbors also follows a Zipf distri-

9Frontend and middleware in the MTM system are separate components that communicate via
network protocols and can hence be deployed on different machines. However, to reduce the total
cost of the experiments (without compromising its results), we decided to run the benchmark
tool, frontend tools, and the middleware on the same EC2 instance in our setup.

10One reason to use the Star Schema Benchmark is that all queries proposed in the benchmark can
be executed in the ERIS prototype, although it does not yet support the full SQL standard.

11To keep the setup as simple as possible, each database runs only a single query type.
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(a) Vertex Weight Distribution (b) Neighbor Count Distribution

Figure 6.7.: Workload Characteristics (Setup40)

(a) Vertex Weight Distribution (b) Neighbor Count Distribution

Figure 6.8.: Workload Characteristics (Setup1k)

bution between 0 and 6 with an average number of neighbors of 0.5. The distribu-
tions of vertex weights and neighbor counts for both workload graphs are shown in
Figures 6.7 and 6.8.

Neighbors (or edges in the workload graph) can result in distributed transactions
in the actual workload, depending on the allocation. For each vertex, a database
(i.e., a database size and a query type) is selected that matches the vertex’ weight
best. A think time is added to match the database’s processing cost exactly to the
generated vertex weight. The database size is added as a second weight to the vertex.
Consequently, our workload model contains two resources: (1) processing cost as an
unbounded resource and (2) database size as a bounded resource. The resulting
workload consists of a list of databases and the transactions that are executed on
them (either single-sided or distributed).

6.3.3. Infrastructure Model

The infrastructure model in our experiments is based on the Amazon EC2 instances
and the ERIS database management system. Following the workload, we model two
resources in our infrastructure: processing capacity and memory capacity. Since
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processing is an unbounded resource, only relative capacities are needed in the in-
frastructure model. Given that all backend nodes run on the same instance type,
we assign a capacity of 1 (with respect to processing) to each node in the infras-
tructure graph. Additionally, each backend node has 16 GiB main memory which is
added as the second (bounded) capacity to each node in the infrastructure graph.
Due to the lack of detailed network information, we assume that all instances can
communicate equally well with all other instances. Hence, the infrastructure graph
in our experiments is a fully connected graph with unit capacities on all links.
To investigate the non-linear resource usage of the infrastructure nodes, we con-

ducted a number of synthetic experiments using the EC2 instances and ERIS. As a
result, for our penalized graph partitioning allocation strategy we model a non-linear
resource usage with a penalty that is applied when more than 4 workload vertices
share a node (note that each backend node contains 4 vCPUs). The penalty func-
tion is carefully handcrafted for the given setup and is best approximated with a
function that is linear in the size of a small workload vertex (i.e., running 5 workload
vertices on one node results in a combined load that is equal to the 5 vertices plus
an additional 6th small vertex).

6.3.4. Allocation Strategies

We compare three different allocation strategies in our experiments: (1) First Fit
(FF), (2) Unmodified Graph Partitioning (UGP), and (3) Penalized Graph Parti-
tioning (PGP).
Distributing the databases across all backend nodes using a round-robin strat-

egy seems to be a simple (though naïve) approach to get a baseline. However,
round-robin allocation does not consider memory capacities and this strategy might
therefore produce invalid allocations where nodes are not able to keep all databases
in memory. To avoid this problem, we use a greedy method (first fit) as a baseline
allocation strategy instead. The First Fit method sorts all databases by their de-
scending size and allocates each database to the least utilized backend node that is
able to accommodate it. Using this strategy leads (in most cases) to valid alloca-
tions. Furthermore, using the least utilized backend in each step tries to balance the
load across all nodes.
The second allocation strategy in our experiments (UGP) is based on the unmod-

ified graph partitioning algorithm in METIS. Here, we partition the workload graph
(without penalty) to get a balanced allocation with minimal communication.
The third allocation strategy (PGP) uses our penalized graph partitioning algo-

rithm in PenMETIS. The penalty function of the infrastructure model is used to
describe the infrastructure behavior and to produce a better balanced allocation
with minimal communication.

6.3.5. Performance Metrics

To evaluate the performance of the database-as-a-service system in the various setups
and hence to evaluate the quality of the allocation strategies, we introduce the
Relative Response Time (RRT) as a performance metric and look at three statistical
measures: (1) Average Relative Response Time (AvgRRT), (2) Median Relative
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Response Time (MedRRT), and (3) Maximum Relative Response Time (MaxRRT).
Computing the performance metrics is done in three steps. First, each absolute
response time collected by the workload driver is transformed into a relative response
time using a previously performed baseline run (i.e., the relative response time is
relative to the best-case execution). Thereby, we are able to compare different
transactions with different absolute response times. Second, the 95% quantile of
all relative response times for a given database is computed to get a single quality
measure for each database. Using the quantile assumes that the user is interested
in acceptable performance for the majority of executions. The 95% quantile is also
more robust to small numbers of outliers compared to, e.g., the maximum relative
response time per database. Given one relative response time for each database,
AvgRRT, MedRRT, and MaxRRT across all databases can be computed in the
third step as the quality measures for the whole data-oriented system.

6.3.6. Experiment Results

Having all the building blocks, the experiments are run using the following work-
flow. First, the setup is prepared based on the allocation strategy that is to be
evaluated. To prepare the setup, a list of databases including the workload pa-
rameters is provided to the MulTe framework. Since the goal of our experiments
is to compare different allocation strategies, the allocation (i.e., the backend node
for each database) is also part of the MulTe input.12 MulTe then creates and
loads all databases in the MTM database-as-a-service system. Once created, a base-
line run is conducted where each database workload is executed individually to get
best-case response times for each database. This baseline is later used to compute
relative response times for the performance metrics. After the baseline run, the
actual experiments run for 30 minutes. In these experiment runs, the MulTe work-
load driver executes all workloads repeatedly and in parallel and collects execution
statistics. The workload driver logs all executed transactions together with the re-
spective response times. In a last step, we use different scripts to analyze the log of
the experiment run and to compute the performance metrics.
The results of our experiments using Setup40 are summarized and visualized in

Figure 6.9. Figures 6.9a to 6.9c show the relative response times for all 40 databases
for the First Fit allocation strategy, the Unmodified Graph Partitioning allocation
strategy, and the Penalized Graph Partitioning allocation strategy respectively. Fig-
ure 6.9a confirms that the First Fit strategy is unaware of the distributed transac-
tions. While balancing most of the databases’ response times in this experiment, FF
leads to bad response times for some databases (MaxRRT=23.6). The allocation
strategies based on graph partitioning are able to reduce communication which leads
to better response times for distributed transactions, which are now co-located in
most cases (MaxRRT=12.9 and 11.5 respectively). However, the Unmodified Graph
Partitioning strategy only balances the vertex weights and fails to account for the
infrastructure behavior. This leads to one node hosting 16 of the 40 databases.
12In an actual database-as-a-service system, the middleware controls the allocation based on load

statistics and the implemented allocation strategy. The allocation is then transparent to the
user.
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(a) First Fit Allocation Strategy (FF)

(b) Unmodified Graph Partitioning Allocation Strategy (UGP)

(c) Penalized Graph Partitioning Allocation Strategy (PGP)

Figure 6.9.: Relative Response Times, Setup40
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Consequently, the actual performance on this node is worse than predicted by the
allocation strategy. The best overall system performance in all three performance
metrics is achieved by the Penalized Graph Partitioning strategy that both reduces
communication and balances load.
Given the small setup, the performance gain (MaxRRT and AvgRRT) can be

considered good. However, as can be seen in Figure 6.9c, even PGP fails to perfectly
balance the performance of all databases. We are not able to pinpoint the exact
reasons for the remaining performance skew in this complex system setup. System
behavior that we are unaware of or assumptions that we make in the workload
model, the infrastructure model, or the allocation strategy may have led to the skew
in response times shown in the figure.
In the second setup, which contains 1,000 databases on 32 backend nodes, we

investigate whether the allocation strategies are able to improve the balance in larger
systems. The results of our experiments using Setup1k are summarized as box-
whisker plots in Figure 6.10. Figure 6.10b shows the same results as Figure 6.10a
on a differently scaled x-axis (UGP and PGP only). The plots in Figure 6.10a
show that the First Fit allocation strategy fails to balance the load, which leads to
many outliers and a MaxRRT of 252. Comparing the allocation strategies that are
based on graph partitioning, it can be seen in Figure 6.10b that Penalized Graph
Partitioning leads to better overall system performance in all metrics. PGP causes
fewer outliers than UGP and has better maximum, average, and median relative
response times. As a reference, computing the PGP allocation for the workload
graph in Setup1k takes 6 ms using PenMETIS.

6.4. Summary
In this chapter, we presented MTM, our fully functional private-process database-
as-a-service system. Based on a Java middleware and modified frontend connection
tools, MTM is able to flexibly and transparently provide databases as a service
to the user. The physical representation of the databases is implemented using
the ERIS DBMS. Furthermore, we presented MulTe, our multi-tenancy database
benchmark framework which can be used to generate, deploy, and query a large
number of databases.
The experiments to test the end-to-end performance showed the applicability of

our allocation strategies in an actual data-oriented system. Based on Amazon Web
Services and the Star Schema Benchmark, we deployed and analyzed two setups
with 40 and 1,000 databases respectively. The results demonstrated the benefits of
the penalized graph partitioning allocation strategy over other allocation strategies.
In the next chapter, we continue our performance experiments in a different data-

oriented system, namely the ERIS DBMS for multiprocessor systems.
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(a) Relative Response Time Distribution, All Allocation Strategies

(b) Relative Response Time Distribution, Only Graph Partitioning Strategies

Figure 6.10.: Relative Response Time Distribution, Setup1k (Note Different X-
Axes)

104



7. Experimental Evaluation in the ERIS
DBMS for Multiprocessor Systems

In this chapter, we evaluate our allocation strategies in the ERIS database manage-
ment system. ERIS is an in-memory DBMS that is optimized for the challenges of
multiprocessor systems, i.e., systems with multiple sockets and multiple cores. A
defining characteristic of these systems is the non-uniform memory access (NUMA)
caused by the main memory being directly attached to the various sockets and hence
distributed across the system. Differences in latency and bandwidth up to a factor
of 10 between local and remote memory accesses lead to the conclusion that NUMA
systems should be treated as distributed systems. We show in this chapter that our
allocation strategies can be used to optimize the mapping of data (containers) to
the various NUMA nodes.
To gain a deeper understanding of the NUMA characteristics of modern multi-

processor systems, we conduct a series of low-level benchmarks on three different
machines. The results as well as the conclusions from the experiments are presented
in Section 7.1. The ERIS system, which is designed and built based on the findings
of the low-level experiments, is described in Section 7.2. There, we present the sys-
tem architecture and core components of the ERIS system. In Section 7.3, we detail
our performance experiment with the full ERIS system and the allocation strategies
developed in this thesis. The results of our experiments are presented towards the
end of this chapter.

7.1. NUMA Characteristics in Multiprocessor Systems

In this section, we briefly introduce NUMA system architectures and present low-
level–benchmark results of three different NUMA machines. The presented results
yield important insights in designing scalable database management systems in the
presence of non-uniform memory access and are fundamental for the ERIS DBMS.
As a reference, the tested NUMA systems and their main characteristics are de-

picted in Figure 7.1.

7.1.1. NUMA System Architecture

NUMA systems consist of multiple interconnected multiprocessors (also referred
to as nodes), where each multiprocessor contains multiple processing units (cores)
and an integrated memory controller (IMC). The multiprocessors can transparently
access all memory locations, although the installed memory is distributed among
the IMCs in different multiprocessors. Latency and bandwidth of memory accesses
depend on the distance between the requesting multiprocessor (source node) and the
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Figure 7.1.: NUMA Machines used for Evaluation
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multiprocessor that contains the data (home node). The local memory associated
with each multiprocessor is accessed with low latency at a high bandwidth. In
contrast, remote memory is accessed via point-to-point connections (Hypertransport
Technology Consortium, 2010; Intel, 2009) between the multiprocessors that add
latency and limit the achievable bandwidth. In the worst of the tested cases the
latency of a remote access is approximately 10 times higher and the bandwidth is
limited to about 11% in comparison to local accesses.
Multiple levels of caches are commonly used to mitigate the performance impact of

the above-mentioned latency and bandwidth constraints. The caches are distributed
over the multiprocessors as well and all currently available NUMA systems enforce
cache coherence to maintain a consistent view of all processing units on the shared
address space. Hackenberg et al. (2009) showed that the overhead of the coherence
protocol caused by accesses to shared data can be severe in large systems.
Naturally, data placement is an important aspect to consider with NUMA systems

and data should be located close to the multiprocessor that accesses it frequently.
The default data placement policy of Linux is called first touch. Newly allocated
memory is placed local to the thread that actually writes (touches) it for the first
time. It is, however, possible that memory is allocated on remote memories. More-
over, the default thread scheduler in Linux operating systems may migrate threads
frequently to different multiprocessors, although it prefers intra-node thread mi-
grations to inter-node migrations (Blagodurov and Fedorova, 2011). This leads to
remote memory accesses, even when the memory was allocated locally in the first
place. Hence, the operating system leaves many opportunities for suboptimal (i.e.,
remote) memory access patterns. This is especially true when many threads ac-
cess a large portion of the main memory as it commonly happens in main memory
database management systems.

7.1.2. Low-Level–Benchmark Results

For the low-level–performance experiments, we use three different NUMA systems
ranging from 4 multiprocessors and 64 GiB of main memory to 64 multiprocessors
and a total of 8 TiB of main memory. The hardware specifications of the Intel ma-
chine with 4 multiprocessors, the AMD machine with 8 multiprocessors (on 4 sock-
ets), and the SGI machine with 64 multiprocessors are summarized in Figure 7.1.
To gain deeper insights in the performance of the three different NUMA machines,
we conduct several low-level benchmarks. The best-case bandwidth and latency are
upper bounds for the achievable performance and help to reason about the perfor-
mance of in-memory DBMSs. All measurements are performed with the BenchIT
tool (Hackenberg et al., 2009). The results are shown in Table 7.1.

Intel Machine

The nodes of the Intel machine are fully connected via QPI links (Intel, 2009) as
depicted in Figure 7.1a. The results of our experiments show that the latency of
remote memory accesses is only 50% higher compared local accesses. The impact
of the QPI link on the achievable bandwidth is more severe as it results in 2.5
times lower data rates. However, the effects of the non-uniform memory access
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distance bandwidth (GiB/s) latency (ns)
local 26.7 129
1 hop QPI 10.7 193

(a) Results on the Intel Machine

distance (link width) bandwidth (GiB/s) latency (ns)
local 16.4 85
1 hopHT (full link) 5.8 136
1 hopHT (split,single) 4.2 152
1 hopHT (split,dual) 2.9 152
2 hopsHT (split,single) 3.7 196
2 hopsHT (split,dual) 1.8 196

(b) Results on the AMD Machine

distance bandwidth (GiB/s) latency (ns)
local 36.2 81
2nd processor 9.5 400
1 hopNUMALink 7.5 510
2 hopsNUMALink 7.5 620
3 hopsNUMALink 7.1 740
4 hopsNUMALink 6.5 870

(c) Results on the SGI Machine

Table 7.1.: Low-Level–Benchmark Results of NUMA Machines

are small compared to the other two machines as communication between any two
multiprocessors requires only one hop via QPI.

AMD Machine

The second machine in our setup is an AMD machine. As shown in Figure 7.1b, it is
actually a 4-socket system where each socket houses a dual node package. The two
nodes in a package communicate via HyperTransport (Hypertransport Technology
Consortium, 2010) which practically results in a system with 8 multiprocessors. Each
multiprocessor has 4 HyperTransport ports to connect to either the I/O subsystem or
to other multiprocessors. As a unique feature of the AMD machine, HyperTransport
links can be split into sublinks to connect a node with two other nodes with just one
HyperTransport link. However, this results in different link bandwidths for different
links. Additionally, even with split links, the AMD machine is not fully connected
and certain routes require two hops.
As indicated in Figure 7.1b, the two nodes that share a socket are connected via

a dedicated (not split) HyperTransport link and can therefore utilize the full 16-bit
link width. Connections between other nodes are implemented with 8-bit sublinks
and hence have a lower connection bandwidth. Furthermore, some of the split links
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only have one sublink populated (denoted by split,single in Table 7.1) while both
sublinks are occupied on other links (denoted by split,dual). Our experiments mirror
these characteristics; depending on the distance of memory and accessing thread,
we measure six different bandwidths and four different latencies. The disparities
between local access and the furthest remote access are a factor of 9.1 in bandwidth
and 2.3 in latency. Given the interesting properties of this system, it has been
analyzed in a dedicated performance analysis paper. We refer to Molka et al. (2014)
for additional in-depth performance results for the AMD machine.

SGI Machine

The third machine in the setup is an SGI UV 2000 with 64 multiprocessors and a
total of 8 TiB main memory. An overview of the topology is shown in Figure 7.1c.
The system consists of 1 rack that houses 4 Individual Rack Units (IRUs). Each
IRU consists of 8 Compute Blades, that in turn contain 2 multiprocessors each.
Each socket is equipped with an 8-core Intel Xeon CPU with 128 GiB of local main
memory.
The two multiprocessors in a Compute Blade are connected via QPI to a com-

munication hub called HARP. The HARPs are NumaLink hubs that connect the
multiprocessors in a Compute Blade to other Compute Blades in the same as well
as in other IRUs. As shown in Figure 7.1c, each blade in the system has 8 connec-
tions to other blades. Each connection consists of two NUMALink6 links, one for
each multiprocessor in the blade. The 8 blades in an IRU are connected as a 3D
enhanced hypercube (SGI, 2012). Each blade in an IRU is additionally connected to
two blades in other IRUs. This topology leads to connections with up to four hops
and six different bandwidths.
Measuring all possible distances reveals that the differences in bandwidth and

latency between local access and the furthest remote access are as high as factor 5.5
and 10.7, respectively.

7.1.3. Design Principles for NUMA-Aware DBMSs

From the general NUMA architecture as well as our benchmark results, we derive
that scalable in-memory database management systems must be designed for mem-
ory locality. On the one hand, explicitly reading or writing remote memory suffers
from up to ten times higher latency and significantly lower bandwidths. On the other
hand, remote and concurrent memory accesses lead to cache concurrency as well as
worse cache locality and hence higher cache coherence overhead. As a conclusion,
scalable database management systems for multiprocessor systems with non-uniform
memory access must provide adaptive partitioning of the data. Moreover, by means
of data and thread placement, the data management system must minimize remote
memory accesses by primarily accessing local data objects. In turn, this leaves suffi-
cient link capacities for remote accesses caused by inevitable communication during
analytical query processing and by load balancing. The operating system cannot
provide sufficient locality due to its insufficient knowledge about the application
and its partitioning.
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7.2. ERIS System Architecture
In this section, we describe the architecture of the ERIS in-memory DBMS. ERIS
is optimized towards modern multiprocessor systems with non-uniform memory ac-
cess. In this thesis, we describe the major component of ERIS. For a more detailed
description of ERIS, e.g., of the implementation of the efficient command routing
facility, we refer to Kissinger et al. (2014).

7.2.1. AEUs and Memory Management
The architecture of ERIS and individual components are visualized in Figures 7.2
and 7.3.
ERIS employs a data-oriented architecture where each data object is logically and

physically partitioned. The central components of the storage engine are the worker
threads, which are called Autonomous Execution Units (AEUs) in ERIS. Each avail-
able core of the system runs an AEU, which is bound to be only executed on this
single core or hardware context respectively. Every single AEU gets assigned a set
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of disjoint partitions—each belonging to a different data object—and is exclusively
responsible for that portion of the individual data object. Figure 7.2 shows two
multiprocessors with multiples cores, each running an AEU. An AEU’s processing
and data organization is depicted in Figure 7.3. The AEU’s main task is to man-
age its partitions and to process incoming data commands (i.e., scans, lookups, and
inserts/upserts) on these partitions. This approach restricts memory accesses of an
AEU to the multiprocessor’s local main memory and data objects do not have to be
protected against concurrent accesses via latches.
ERIS primarily uses range partitioning to split data objects into partitions. We de-

cided against hash partitioning because it is not order preserving and thus disallows
efficient range scans and hinders efficient load-balancing techniques. In scenarios
where a table is solely completely scanned, we employ physical data size partitioning
instead of range partitioning, because there is no suitable attribute as partitioning
criterion available. Here, ERIS only keeps track of the AEUs that actually store a
partition of the corresponding data object and uses the multicast capabilities of the
routing layer to distribute data commands (the routing layer is detailed in the next
section).
Regarding the memory management, ERIS deploys one memory manager per

multiprocessor as it is shown in Figure 7.2. Per-multiprocessor memory managers
help to reduce the contention on the memory management subsystem, which is often
the bottleneck during writing operations to a data object. Moreover, this approach
limits allocations of AEUs to the local main memory and enables the load balancer
to perform an efficient intra-node balancing (the load balancing strategy in ERIS
will be revisited in a following section).
In Figure 7.3, we illustrate the AEU loop as well as the local memory organization

of an AEU. The AEU keeps local data command buffers and the actual data object
partitions (either stored as a column-store or an index). In the first stage of the
processing loop, the AEU scans its data command buffer, which is periodically filled
by the routing layer, and groups commands by the accessed data object and the
command type. This optimization step is beneficial to coalesce the same type of
access to the same partition. Moreover, the command grouping allows us to execute
multiple index lookup or insert/upsert operations in a single batch operation to
hide the main memory latency. Following the grouping step, the AEU actually
processes its data command buffer, which is the most time-consuming part of the
loop. Afterwards, the AEU checks its command buffer for pending balancing or
transfer commands. Such commands force an AEU to grow or shrink its partition
or to transfer a range of its partition to another AEU (we refer to Kissinger et al.
(2014) for a detailed evaluation of the load-balancing mechanisms in ERIS).

7.2.2. High-Throughput Data Command Routing

The data command routing is an essential part of ERIS because only one AEU can
answer a request for certain data and the responsible AEU has to be supplied with
the according data command quickly. A data command contains, e.g., the storage
operation type (i.e., scan, lookup, or insert/upsert) and necessary parameters for
the storage operation (e.g., a batch of keys for the lookup or filters for a scan). The
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Figure 7.4.: NUMA-Optimized High-Throughput Data Command Routing

data command routing mechanism is shown in Figure 7.4. The core components are
the partition tables, which keep track of the partitioning of individual data objects.
As already mentioned, a data object is either clustered on one or more of its

attributes or it is distributed without any partitioning criterion. In the clustered
case, the routing table stores the attribute range to AEU mapping (range partition
table). If the data object is not partitioned on any attribute, the routing table
only saves whether or not an AEU stores a partition of that data object (bitmap
partition table). Since the routing tables are small data structure that are rarely
updated (only during load balancing) and are frequently read, they usually fit in the
caches of all multiprocessors and are thus not causing any remote memory accesses.
Every time an AEU generates a data command during the processing stage, it

starts with a batch lookup of the responsible AEUs for that data command in the
corresponding routing table of the target table (step 1 in Figure 7.4). As soon as
the target AEUs are determined, the routing layer splits the command into smaller
pieces, for instance, if a lookup data command contains keys that belong to different
partitions. Data commands for a single AEU are written to the corresponding outgo-
ing buffer of the source AEU (step 2 in Figure 7.4). If multiple AEUs are responsible
for a data command (e.g., a scan that needs to be distributed to different AEUs),
the command itself is written to the multicast buffer and references are added to the
corresponding buffer. If an outgoing buffer is either full or the AEU starts over its
processing loop, the specific outgoing buffer including its multicast data commands
is copied to the incoming buffer of the target AEU (step 3 in Figure 7.4). This local
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pre-buffering dramatically increases the data command routing throughput, because
the contention on the incoming buffers is reduced and multiple data commands can
be copied sequentially. Thus, the high latency of remote memory accesses on the
NUMA platform does not become the bottleneck.
While outgoing buffers are private to an AEU and thus do not require any concur-

rency control, incoming buffers are written by different AEUs and are read by the
host AEU at the same time. Hence, incoming buffers need an efficient and ideally
latch-free concurrency control mechanism. We employ an adapted version of the
latch-free multi-buffer proposed by Levandoski et al. (2013). For further implemen-
tation details regarding the command routing as well as an isolated performance
evaluation, we refer to Kissinger et al. (2014).

7.2.3. Query Processing

In this section, we sketch the principles of NUMA-aware query processing in ERIS.
Since the ERIS storage engine only supports basic storage operations (i.e., scan,
lookup, and insert/upsert), a query processing model is necessary to orchestrate
these storage operations and allow the execution of queries. For a more detailed
description of the ERIS query processing, we again refer to Kissinger et al. (2014).
The AEUs deployed by ERIS act as data command generators as well as data

command processors. Figure 7.5 visualizes an exemplary join of the tables R and S.
An I/O thread has to start the query plan by issuing the scan operation. The main
difference in processing a join compared to a simple scan is that an AEU does not
route a result back to the operator. Instead, it invokes the callback function of
the data command and is thus interleaving the execution of operator code as well
as storage operations locally on the AEU. The called code directly generates new
data commands, lookups in the example, which are routed to the corresponding
AEUs. The newly generated data commands lookup the keys and perform the join.
Furthermore, they may also directly include a callback to the successive operator,
e.g., to group the result of the join. ERIS is able to execute composed operators (e.g.,
a 2-way-join-group-by) as proposed by the QPPT query processing model (Kissinger
et al., 2013).
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7.2.4. Load Balancing Strategy
Load balancing is a fundamental mechanism in ERIS given the fact that the data is
partitioned and a single AEU is responsible for certain data. Skew in either the data
or the accesses can cause an unbalanced system with idle resources and suboptimal
performance.
If the load needs to be balanced, each participating AEU receives a balancing

command. Whenever data needs to be transferred to an AEU on the same node and
thus in the same memory management domain, the cheap link mechanism is used.
The receiving AEU simply links (e.g., in case of a tree-based index) respectively
appends (in case of a column-store) the new data to its own partition. In contrast,
inter-node transfers use the copy mechanism for the partition transfer. Such a copy
operation requires a cooperation between source and target AEU. The source AEU
flattens the partition to an exchange format and streams it sequentially to the target
AEU. The target AEU converts the data stream back to an index and links it to
its existing partition. If the data object is already stored in a flat format such as a
column store, the target AEU directly copies the data from the source AEU.
For our experiments, we implemented a two-step load balancing strategy. The

allocation strategies that are investigated in this thesis see each NUMA node as
a whole and assigns data objects to all AEUs that share a NUMA node. The
distribution of the data objects among the AEUs of each node is up to the ERIS
system and based on the observed load. Changing the data distribution inside a node
uses the lightweight intra-node balancing mechanism and is constantly performed.
However, changing the allocation requires the inter-node balancing mechanism and
is driven by the allocation strategy.

7.3. System Performance Experiments
To evaluate the end-to-end performance of our allocation strategies, we deploy the
full system, i.e., multiple parallel workloads executed in ERIS. We use two different
multiprocessor systems for these experiments. We enable ERIS to deploy allocations
based on different allocation strategies. Similar to the previous experiments with the
MTM system, we are interested in the benefits of the penalized graph partitioning
allocation strategy over a baseline and over the unmodified graph partitioning alloca-
tion strategy. The benefit will be evaluated in the overall system balance, measured
in relative response times. Details about the used workloads and infrastructures
as well as the performance metrics are presented in the following paragraphs. The
experiment results conclude this section.

7.3.1. Workload
We again use the Star Schema Benchmark (SSB) (O’Neil et al., 2009) as a basis for
our experiment workloads. Based on the database schema, we use different synthetic
scan and join queries to generate typical data access and data communication pat-
terns. The queries are evaluated using a cost model that is based on ideas from the
generic database cost model for hierarchical memory systems proposed by Manegold
and Boncz (2002). The authors assume perfect knowledge about the data volumes,
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(a) Memory Access Cost Distribution (b) Partition Count Distribution

Figure 7.6.: Workload Characteristics

i.e. cardinalities, to which they refer as the logical cost component. We provide this
information to our cost model by actually executing the queries in ERIS and collect-
ing input and intermediate data statistics. Based on these statistics, the cost model
quantifies the physical cost component of the implementations of the various oper-
ators. The physical cost depends on different characteristics of the cache/memory
hierarchy, which we gathered in our low-level experiments, and the memory access
patterns of the operators. Since the execution times of our benchmark queries are
dominated by their memory accesses, we decided to model memory access cost as
a resource in our workload model (and consequently in the infrastructure model as
well).

For the experiment workload, database tables are generated in 28 different sizes
ranging from 10 MiB to 1 GiB. Together with a think time between query executions,
we are able to generate workload entities with any given intensity/cost. To generate
a more controllable environment for our experiments, we run a static workload and
each workload entity (i.e., table) executes a single benchmark query repeatedly.

To run the experiment, we generate 120 tables with random vertex weights. The
vertex weights represent memory access costs and follow a Zipf distribution (expo-
nent s = 1). Each table is partitioned into a random number of parts which follows
a Zipf distribution between 1 and 8. The distribution of memory access costs and
partition counts across the 120 tables is shown in Figure 7.6. The resulting workload
graph consists of the table partitions, which are connected by edges if they belong
to the same table. This graph has, depending on the actual degree of parallelism,
approximately 180 vertices. Edges in the workload graph can result in distributed
transactions in the actual workload, depending on the allocation. Given the vertex
weights, for each vertex, a database table and benchmark query are selected that
match the vertex weight best. A think time is added to match the table’s memory
access cost to the generated vertex weight. The table’s size is added as a second
weight to the vertex. Consequently, our workload model contains two resources: (1)
memory access cost as an unbounded resource and (2) database size as a bounded
resource.

The total size of all tables in the experiment is approximately 12 GiB.
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7.3.2. Infrastructure

We use the previously introduced Intel machine and the AMDmachine for the system
performance experiments.1 The same workload with 120 tables is used on both ma-
chines. The infrastructure model in our experiment is based on low-level–benchmark
results. Following the workload, we model two resources in our infrastructure: (1)
memory access bandwidth and (2) memory capacity. Since memory access is an
unbounded resource, only relative capacities are needed in the infrastructure model,
i.e., they are all equal to 1 given the identical NUMA nodes. Additionally, each node
has 32 GiB (Intel machine) or 8 GiB (AMD machine) main memory which is added
as the second (bounded) capacity to each node in the infrastructure graph. For
the Intel machine, which is fully connected, we model a homogeneous infrastructure
graph with unit capacities on all links. For the AMD machine, we model a hetero-
geneous infrastructure graph which is also fully connected but has link capacities
according to the measured point-to-point bandwidths.2 To minimize communication
cost, we greedily map heavy edges in the partitioned workload graph to wide links
in the infrastructure (see Section 5.2).
To investigate the non-linear resource usage of the infrastructure nodes, we con-

ducted a number of synthetic scalability experiments on both machines. The ERIS
system, being optimized for multiprocessor systems, scales well with the number of
tasks. Consequently, only a small (linear) penalty is added to the workload cost.
For the Intel machine, which has more cores per node, this penalty starts at about
20 tasks. For the AMD machine, the penalty already shows with 10 or more tasks.

7.3.3. Allocation Strategies

In this experiment, we compare the three different allocation strategies already used
in the MTM experiments: (1) First Fit (FF), (2) Unmodified Graph Partitioning
(UGP), and (3) Penalized Graph Partitioning (PGP).
The First Fit method (FF) acts as a simple baseline allocation strategy that (in

contrast to a round-robin strategy) does not overallocate a node’s memory. The
First Fit method sorts all database tables by their descending size and allocates
each database to the least utilized infrastructure node that is able to accommodate
it. Using this strategy leads (in most cases) to valid allocations. Furthermore, using
the least utilized node in each step tries to balance the load across all nodes.
The second allocation strategy (UGP) in our experiment is based on the unmodi-

fied graph partitioning algorithm in METIS. Here, we partition the workload graph
(without penalty) to get a balanced allocation with minimal communication.
The third allocation strategy (PGP) uses our penalized graph partitioning algo-

rithm in PenMETIS. The penalty function of the infrastructure model is used to
describe the infrastructure behavior and to produce a better allocation.

1We were not able to deploy the necessary software components for the experiment on the SGI
machine, which is used as a production machine in the Center for Information Services and High
Performance Computing (ZIH) at the TU Dresden.

2Note that modeling a fully connected graph is only an approximation of the actual infrastructure.
The model ignores, e.g., congestion on links that are used in multiple two-hop connections in
the actual communication network.
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7.3.4. Performance Metrics

To evaluate the balance of the various setups and hence to evaluate the quality of
the allocation strategies, we again use the Relative Response Time (RRT) as perfor-
mance metric. We use the distribution of relative response times across all database
tables to evaluate an allocation strategy. Specifically, we concentrate on three statis-
tical measures: (1) Average Relative Response Time (AvgRRT), (2) Median Relative
Response Time (MedRRT), and (3) Maximum Relative Response Time (MaxRRT).
Ideally, MaxRRT should be the lowest in a balanced system while MedRRT and
AvgRRT are not worse compared to other allocation strategies.
Computing the performance metrics is done in several steps. First, each absolute

response time is transformed into a relative response time using a separately per-
formed baseline run (i.e., relative to the best-case execution). Thereby, we are able
to compare different transactions with different absolute response times. Second,
the 95% quantile of all relative response times for a given table is computed to get
a single quality measure for each database table. Using the quantile assumes that
the user is interested in acceptable performance for the majority of executions. The
95% quantile is also more robust to small numbers of outliers compared to, e.g., the
maximum relative response time (per database). Given one relative response time
for each table, AvgRRT, MedRRT, and MaxRRT across all tables can be computed
as quality measures for the whole data-oriented system.

7.3.5. Experiment Results

To run the experiments, we modified ERIS to accept different allocations as param-
eters. For any of the three tested allocation strategies, we first load the 120 tables
from raw files to (partitioned) in-memory database tables (i.e., approximately 180
partitions). Given the 4 and 8 nodes in the Intel machine and the AMD machine
respectively, each node hosts on average 45 or 22.5 table partitions. Next in the
workflow follows a baseline run where each benchmark query is run individually to
record the best-case execution time. Finally, all benchmark queries are executed
repeatedly and in parallel for 30 minutes and response times are logged for the later
analysis. Using the response time log, all performance metrics are calculated.
The results of the experiments on the Intel machine are visualized in Figure 7.7 as

box-whisker plots. Figure 7.7b shows the same results as Figure 7.7a on a differently
scaled x-axis for a better visualization of the UGP and PGP allocation strategies.
The plot in Figure 7.7a shows that the First Fit allocation strategy (FF) leads to a
wide range of response times for the various benchmark queries. Consequently, while
leading to a valid allocation, First Fit is unable to balance the load across the nodes.
Only comparing the allocation strategies that are based on graph partitioning, it
can be seen in Figure 7.7b that Penalized Graph Partitioning (PGP) leads to better
overall system performance in all metrics. PGP causes fewer outliers than UGP and
has better maximum, average, and median relative response times. The allocation
computed by PGP is overall more balanced than the allocation computed by the
UGP strategy. However, with relative response times still ranging from 21.4 to 52.8
when using the best allocation strategy, there is room for improvement. Given that
the allocation is supposedly balanced, the skew in the response times is likely caused
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(a) Relative Response Time Distribution, All Allocation Strategies

(b) Relative Response Time Distribution, Only Graph Partitioning Strategies

Figure 7.7.: Relative Response Time Distribution, Intel-Machine (Note Different X-
Axes)

(a) Relative Response Time Distribution, All Allocation Strategies

(b) Relative Response Time Distribution, Only Graph Partitioning Strategies

Figure 7.8.: Relative Response Time Distribution, AMD-Machine (Note Different
X-Axes)
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by inaccuracies in the workload and the infrastructure model.
The results of the experiments on the AMD machine are visualized in Figure 7.8.

Again, Figure 7.8b shows the same results as Figure 7.8a on a differently scaled x-
axis for the UGP and PGP allocation strategies. The results on the AMD machine
are in general similar to the ones on the Intel machine. The relative response times
are lower compared to the Intel machine which can be explained by the higher
number of nodes in the AMD machine (i.e., fewer tables share a node). The First
Fit allocation strategy leads to a few particularly bad outliers and again to an overall
unbalanced system. Figure 7.8b confirms that Penalized Graph Partitioning (PGP)
leads to better overall system performance in all metrics compared to Unmodified
Graph Partitioning (UGP).
Beyond the presented results, the experiments with the ERIS system showed that

the performance is (in some cases) sensitive to small changes. Given the highly
optimized code of ERIS, small skew in data or accesses quickly leads to suboptimal
performance or unexpected results. Furthermore, experiments with very few tables
showed that the assumption of the allocation problem, i.e., that minimizing com-
munication yields best performance, does not always hold. With a few scan-heavy
queries and sufficient capacities on the links, spreading the data out and effectively
increasing the communication volume leads to the best performance. However, this
behavior cannot easily be accounted for in the proposed workload and infrastructure
model. It remains to future work to constantly re-evaluate the assumption on any
new system and under different workloads.

7.4. Summary
We showed in this chapter, that non-uniform memory access is a defining characteris-
tic of modern multiprocessor systems. Using low-level benchmarks on three different
systems, we measured up to ten times higher latencies when accessing remote mem-
ory compared to local memory. Likewise, memory access bandwidth is up to ten
times smaller on remote memory compared to local memory. Resulting from this
analysis, we presented the ERIS in-memory database management system which is
designed and implemented with multiprocessor systems in mind. ERIS treats the
NUMA system like a distributed system and enforces fast local memory accesses.
Furthermore, ERIS uses an optimized command routing mechanism to deliver data
commands to the various (local) worker threads.
Our performance experiments showed that the allocation strategy, i.e., the map-

ping of data to NUMA nodes, strongly influences the balance of the system and
consequently the worst-case performance over all tables. The allocation strategy
based on penalized graph partitioning achieved the best results in our experiments.
However, given the variance in the relative response times, there is still room for
improvement before the system is well balanced. The allocation strategy is only as
good as the workload and the infrastructure models are accurate.
Following the evaluation of our allocation strategies in the second data-oriented

system in this chapter, we conclude our thesis and point out interesting directions
for future work in the next chapter.
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8. Conclusion

Data orientation is a common design principle in distributed data management sys-
tems. The abstract data-oriented architecture, which is based on data locality, is
implemented in different systems in a variety of application scenarios. In this thesis,
we presented two such scenarios, namely database-as-a-service systems and DBMSs
for multiprocessor systems as well as a classification of systems therein. We later
introduced the two actual data-oriented systems MTM and ERIS, one system in
each of the two application scenarios. Allocation strategies are core components in
any data-oriented system. Good allocation strategies can lead to balanced systems
while others cause skew in the load and therefore the application performance and
the infrastructure utilization. Optimal allocation strategies are hard to find given
the complexity of the systems, the complicated interactions of tasks, and the huge
solution space.
We showed in this thesis that data-oriented systems from different application

scenarios and with different abstraction levels can be generalized to generic in-
frastructure and workload descriptions. We used weighted graph representations
to model infrastructures with bounded and unbounded resources and possibly non-
linear performance characteristics. Based on our workload and infrastructure model,
we formalized the allocation problem, which seeks a valid and balanced allocation
that minimizes communication costs.
Our unified allocation strategies for the generalized data-oriented system are based

on the balanced k-way min-cut graph partitioning problem and the corresponding
multilevel graph partitioning solution heuristic. We showed methods to solve the
graph partitioning problem for single and multiple resources and proposed methods
for resources with non-linear performance characteristics. On top of the basic al-
gorithms, we proposed extensions to (1) incorporate heterogeneous infrastructures,
(2) react to changing workloads and infrastructures by incrementally updating a
partitioning, and (3) enable bounded resources in the infrastructure model.
Experimental evaluations of all components of our allocation strategies on syn-

thetic workload graphs confirmed the applicability and scalability of the methods.
In end-to-end–performance experiments in MTM and ERIS, we were able to prove
that our allocation strategies can be used in actual data-oriented systems and that
they outperform alternative allocation strategies.
To summarize our contributions we revisit the overview of related allocation strate-

gies from Section 3.5 and compare our solution to previous approaches. As summa-
rized in Table 8.1, our allocation strategies, which are based on the Graph Parti-
tioning Problem (GPP), fulfill all requirements that we collected during the analysis
of the allocation problem.
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8. Conclusion

Kairos Schism SWORD RTP SharedDB GPP

Non-Linear
Performance

3 7 7 3 7 3

Heterogeneous
Infrastructures

3 7 7 3 7 3

Individual
Resources

7 7 7 7 (3) 3

Communication
Costs

7 3 3 7 7 3

Incremental
Updates

7 7 3 3 7 3

Table 8.1.: Comparison of Allocation Strategies

Future work

In this thesis, we built a foundation for graph-partitioning based allocation strate-
gies for generic data-oriented systems. Given the complexity of the problem, we
made many assumptions in the process and sometimes only scratched complex sub-
problems. Therefore, we see a lot of open challenges and list a few of them that we
consider most interesting to look at:

• Non-linear Links: Our infrastructure model is based on non-linear performance
with the number of tasks. Many tasks may cause contention across the system
stack, i.e., in the hardware components, the operating system, or the data-
oriented system itself. However, our model and hence our allocation strategy
only considers non-linearity in the nodes, not the communication network. We
assume that the links of the network also congest and hence show non-linear
behavior with increasing load. It will be interesting to extend the capabilities of
the graph partitioning algorithms to deal with non-linearity in the links. This
task is especially challenging given that edges and communication costs are
treated differently compared to vertices in the graph partitioning algorithms.
• Pro-active Balancing: Our allocation strategies are able to react to changes in
the workload or the infrastructure by incrementally updating a partitioning.
Depending on the frequency of changes, the delay between the changes and the
reorganization may lead to suboptimal performance. An interesting approach,
though orthogonal to the allocation strategy, will be to model the workload
(i.e., the tasks) as time series and to predict workload changes. The predicted
changes can then pro-actively be incorporated in the allocation strategy.
• Replication: Replication in data-oriented systems can be used to enforce some
of the possible constraints, e.g., fault-tolerance and availability. Replication
of data has several aspects to consider. First, it needs to be decided which
objects to replicate. Second, the number of replicas needs to be determined.
Third, the execution platform needs to support replication, which includes
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read and write strategies. Incorporating replication in the proposed allocation
strategies will be challenging but may extend the applicability of the method
to a wider set of systems and application scenarios.
• Service Classes: Many data-oriented systems, especially systems that imple-

ment some form of as-a-service system, have requirements to offer different
service classes for different customers. Different such service classes may be
incorporated in the allocation strategy, e.g., by assigning tasks to faster nodes
or by artificially increasing vertex costs in the workload graph and thus re-
questing more resources for these tasks. Incorporating service classes in the
proposed allocation strategies is a challenge for future extensions.

• Workload and Infrastructure Model Maintenance: The allocation strategy in
a data-oriented system is only as good as the workload and the infrastructure
models are accurate. Since our focus was on the allocation strategy itself, we
manually built and experimentally evaluated the models in this thesis. How-
ever, improved methods to gather more precise models, possibly in an auto-
mated fashion, are challenging research topics themselves. Given the dynamics
in workload and infrastructure, future work can also be based on improved
methods to maintain the corresponding models in the presence of changes.
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A. Additional Graph Partitioning Results

Additional results that we acquired during the experimental evaluation of
PenMETIS are summarized in the tables in this Appendix.
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A. Additional Graph Partitioning Results

Graph V E Total Cut Balance Time [ms] Mem [MB]
144 144,649 1,074,393 85,454 1.03 446 50.7
3elt 4,720 13,722 1,641 1.01 54 1.4
4elt 15,606 45,878 2,796 1.02 55 3.2
598a 110,971 741,934 61,630 1.03 339 37.5
add20 2,395 7,462 3,301 1.01 74 1.4
add32 4,960 9,462 547 1.01 47 1.4
auto 448,695 3,314,611 188,817 1.03 1,158 155.0
bcsstk29 13,992 302,748 63,518 1.02 117 16.0
bcsstk30 28,924 1,007,284 189,324 1.02 220 46.0
bcsstk31 35,588 572,914 65,126 1.02 186 27.3
bcsstk32 44,609 985,046 103,789 1.02 214 38.2
bcsstk33 8,738 291,583 111,771 1.02 211 18.5
brack2 62,631 366,559 28,804 1.03 187 20.4
crack 10,240 30,380 2,731 1.02 54 2.4
cs4 22,499 43,858 4,616 1.03 93 4.9
cti 16,840 48,232 6,552 1.03 94 4.5
data 2,851 15,093 3,316 1.01 56 1.2
fe_4elt2 11,143 32,818 2,699 1.02 53 2.5
fe_body 45,087 163,734 5,392 1.04 97 9.5
fe_ocean 143,437 409,593 24,143 1.02 260 34.2
fe_pwt 36,519 144,794 8,786 1.02 91 8.4
fe_rotor 99,617 662,431 51,467 1.03 300 34.8
fe_sphere 16,386 49,152 3,964 1.02 66 3.5
fe_tooth 78,136 452,591 38,813 1.03 201 25.4
finan512 74,752 261,120 11,056 1.03 174 20.0
m14b 214,765 1,679,018 107,395 1.03 573 80.5
memplus 17,758 54,196 17,828 1.02 137 5.8
t60k 60,005 89,440 2,448 1.02 81 10.6
uk 4,824 6,837 479 1.02 42 1.3
vibrobox 12,328 165,250 53,729 1.02 172 9.8
wave 156,317 1,059,331 93,678 1.03 437 56.9
whitaker3 9,800 28,989 2,672 1.02 55 2.3
wing_nodal 10,937 75,488 16,976 1.03 109 5.2
wing 62,032 121,544 8,864 1.03 159 12.9

Table A.1.: Partitioning Statistics METIS (64 Partitions, 3% Imbalance)
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Graph V E Total Cut Balance Time [ms] Mem [MB]
144 144,649 1,074,393 87,901 1.03 493 58.0
3elt 4,720 13,722 1,636 1.01 70 1.6
4elt 15,606 45,878 2,744 1.02 71 3.5
598a 110,971 741,934 62,748 1.03 379 39.8
add20 2,395 7,462 3,280 1.01 93 1.5
add32 4,960 9,462 542 1.01 61 1.5
auto 448,695 3,314,611 187,926 1.03 1,409 164.7
bcsstk29 13,992 302,748 60,826 1.02 201 17.8
bcsstk30 28,924 1,007,284 187,856 1.02 239 46.6
bcsstk31 35,588 572,914 64,745 1.02 205 28.3
bcsstk32 44,609 985,046 107,893 1.02 246 40.4
bcsstk33 8,738 291,583 114,597 1.02 377 21.0
brack2 62,631 366,559 28,743 1.03 224 21.6
crack 10,240 30,380 2,765 1.02 75 2.9
cs4 22,499 43,858 4,604 1.03 114 5.5
cti 16,840 48,232 6,520 1.03 118 5.1
data 2,851 15,093 3,157 1.01 101 2.0
fe_4elt2 11,143 32,818 2,677 1.02 84 2.8
fe_body 45,087 163,734 5,585 1.02 101 10.4
fe_ocean 143,437 409,593 24,290 1.02 318 37.5
fe_pwt 36,519 144,794 8,785 1.02 111 9.2
fe_rotor 99,617 662,431 51,432 1.03 344 36.6
fe_sphere 16,386 49,152 3,981 1.02 84 3.9
fe_tooth 78,136 452,591 38,941 1.03 256 27.1
finan512 74,752 261,120 11,293 1.03 207 21.8
m14b 214,765 1,679,018 108,573 1.03 641 84.8
memplus 17,758 54,196 18,160 1.02 141 6.1
t60k 60,005 89,440 2,419 1.02 101 11.7
uk 4,824 6,837 476 1.02 61 1.4
vibrobox 12,328 165,250 52,726 1.02 251 11.3
wave 156,317 1,059,331 92,312 1.03 468 60.4
whitaker3 9,800 28,989 2,680 1.02 76 2.6
wing_nodal 10,937 75,488 16,949 1.03 155 5.3
wing 62,032 121,544 9,049 1.03 193 14.3

Table A.2.: Partitioning Statistics PenMETIS (64 Partitions, 3% Imbalance)
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A. Additional Graph Partitioning Results

Number of Partitions
Graph 4 8 16 32 64 128 256 512 1024
144 277 300 335 377 446 599 960 1,571 2,912
3elt 4 6 11 23 54 114 173 243 311
4elt 13 14 19 30 55 115 226 463 665
598a 192 219 228 256 339 508 790 1,309 2,352
add20 6 10 20 40 74 98 125 151 171
add32 4 6 10 19 47 105 151 208 260
auto 878 932 964 1,126 1,158 1,462 2,056 2,878 4,739
bcsstk29 34 37 50 72 117 228 490 1,139 1,439
bcsstk30 93 99 117 158 220 361 729 1,587 3,631
bcsstk31 74 81 90 127 186 315 599 1,283 2,822
bcsstk32 110 120 132 158 214 319 545 1,101 2,736
bcsstk33 37 46 69 112 211 460 943 1,159 1,617
brack2 87 100 115 133 187 316 521 917 1,778
crack 11 12 19 31 54 108 238 440 621
cs4 24 29 36 56 93 169 311 550 967
cti 18 23 31 53 94 181 348 678 925
data 4 6 11 24 56 132 204 264 314
fe_4elt2 9 10 16 29 53 104 208 405 632
fe_body 41 44 48 67 97 174 299 709 1,269
fe_ocean 149 170 189 229 260 404 648 1,122 1,989
fe_pwt 32 36 41 59 91 166 293 644 1,358
fe_rotor 157 174 185 213 300 438 711 1,206 2,202
fe_sphere 14 17 24 37 66 124 250 515 703
fe_tooth 116 131 143 165 201 333 553 1,004 2,198
finan512 89 90 96 105 174 298 599 1,089 2,060
m14b 386 423 438 483 573 803 1,084 1,833 3,013
memplus 34 38 51 84 137 225 341 564 684
t60k 39 42 47 55 81 133 250 485 946
uk 3 5 10 19 42 93 137 182 233
vibrobox 38 48 73 110 172 292 564 1,205 1,638
wave 242 271 283 354 437 582 950 1,531 3,017
whitaker3 8 10 16 27 55 137 262 385 537
wing 74 80 94 111 159 254 460 799 1,411
wing_nodal 18 21 35 62 109 203 385 773 1,121

Table A.3.: Partitioning Times in Milliseconds for Various Partition Counts
(METIS, 3% Imbalance)
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Number of Partitions
Graph 4 8 16 32 64 128 256 512 1024
144 306 330 368 414 493 700 1,113 1,967 3,703
3elt 5 7 15 32 70 149 245 365 562
4elt 14 16 22 36 71 196 330 687 1,231
598a 216 232 261 307 379 564 921 1,703 4,145
add20 6 12 30 49 93 127 166 208 268
add32 6 7 12 25 61 127 196 295 405
auto 997 1,046 1,085 1,182 1,409 1,680 2,264 3,508 6,129
bcsstk29 35 39 52 79 201 463 1,051 1,547 2,235
bcsstk30 97 105 126 167 239 409 1,497 3,319 4,615
bcsstk31 78 86 95 130 205 354 1,094 1,609 3,969
bcsstk32 119 127 139 164 246 427 876 2,024 5,124
bcsstk33 39 51 71 118 377 555 1,158 1,634 2,342
brack2 98 110 121 148 224 346 625 1,348 2,540
crack 12 14 21 37 75 180 412 620 925
cs4 28 32 40 64 114 231 515 927 1,378
cti 19 25 35 61 118 297 457 946 1,793
data 4 7 18 43 101 167 251 358 477
fe_4elt2 11 12 19 35 84 180 370 602 1,036
fe_body 48 50 57 70 101 201 421 952 2,555
fe_ocean 173 190 218 256 318 509 819 1,532 2,920
fe_pwt 37 42 47 70 111 200 438 917 2,133
fe_rotor 174 194 204 252 344 489 841 1,896 3,986
fe_sphere 17 20 28 45 84 216 359 704 1,150
fe_tooth 131 146 154 188 256 411 673 1,445 2,977
finan512 99 99 108 114 207 388 954 1,602 3,151
m14b 433 468 486 562 641 860 1,286 2,170 4,177
memplus 36 41 55 92 141 307 422 687 1,021
t60k 46 50 56 67 101 175 341 854 1,654
uk 4 6 11 28 61 117 176 273 399
vibrobox 45 53 76 119 251 467 954 1,390 1,935
wave 273 302 309 384 468 661 1,091 2,025 3,920
whitaker3 9 12 19 35 76 167 345 556 968
wing 84 91 107 133 193 318 563 1,208 2,211
wing_nodal 19 23 36 68 155 324 680 1,038 1,620

Table A.4.: Partitioning Times in Milliseconds for Various Partition Counts
(PenMETIS, 3% Imbalance)
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A. Additional Graph Partitioning Results

Number of Constraints
Graph 1 2 3 4 5
144 392 828 901 980 1,043
3elt 46 446 564 661 761
4elt 54 431 542 632 733
598a 309 911 926 1,006 1,103
add20 62 378 486 570 669
add32 40 337 428 516 612
auto 1,167 2,034 2,211 2,497 2,515
bcsstk29 113 737 867 976 1,063
bcsstk30 215 942 1,052 1,148 1,359
bcsstk31 165 643 715 783 896
bcsstk32 201 647 688 762 850
bcsstk33 196 1,119 1,353 1,491 1,618
brack2 165 604 698 780 845
crack 55 438 553 648 749
cs4 91 518 630 735 810
cti 90 541 670 786 879
data 52 534 666 763 849
fe_4elt2 52 410 542 639 729
fe_body 98 418 502 600 675
fe_ocean 264 733 753 812 892
fe_pwt 91 418 516 601 698
fe_rotor 265 845 918 997 1,093
fe_sphere 62 436 547 649 751
fe_tooth 200 638 665 734 828
finan512 172 677 756 857 965
m14b 530 1,110 1,192 1,336 1,348
memplus 112 501 585 695 788
t60k 80 402 467 564 651
uk 37 373 476 583 679
vibrobox 161 783 875 997 1,148
wave 373 868 963 943 1,011
whitaker3 51 429 548 642 745
wing 165 600 640 713 826
wing_nodal 99 605 741 822 945

Table A.5.: Partitioning Times in Milliseconds for Various Numbers of Constraints
(64 Partitions, 3% Imbalance)
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Number of Constraints
Graph 1 2 3 4 5
144 86,347 87,509 88,510 88,501 89,730
3elt 1,668 1,866 2,130 2,216 2,524
4elt 2,793 3,083 3,273 3,666 4,070
598a 62,061 63,436 64,225 64,347 66,051
add20 3,448 3,507 3,845 4,239 4,377
add32 606 632 827 977 1,115
auto 187,250 190,125 188,694 187,489 188,443
bcsstk29 62,432 65,485 69,817 71,361 75,263
bcsstk30 185,948 196,643 199,997 208,878 216,551
bcsstk31 68,911 68,981 70,565 74,728 77,198
bcsstk32 102,292 110,443 117,950 127,555 128,796
bcsstk33 113,276 116,245 117,800 121,988 127,704
brack2 29,199 30,897 31,052 31,259 33,511
crack 2,761 3,065 3,194 3,528 3,877
cs4 4,636 4,763 5,003 4,936 5,174
cti 6,749 6,995 7,111 7,448 7,596
data 3,166 3,540 4,109 4,327 4,942
fe_4elt2 2,695 2,917 3,054 3,404 3,643
fe_body 5,682 6,086 6,890 7,178 7,831
fe_ocean 24,061 24,433 25,428 25,897 25,704
fe_pwt 8,790 9,245 9,509 10,257 10,497
fe_rotor 51,422 51,380 54,945 54,795 56,188
fe_sphere 3,944 4,278 4,521 4,585 4,768
fe_tooth 38,958 40,649 40,360 41,481 43,182
finan512 11,202 11,730 13,012 12,715 12,632
m14b 108,343 109,231 110,669 111,044 112,380
memplus 19,060 19,626 19,550 19,627 20,226
t60k 2,491 2,768 2,778 2,856 2,992
uk 482 546 636 748 861
vibrobox 52,587 53,972 55,859 56,237 56,477
wave 93,262 93,451 94,684 95,204 97,305
whitaker3 2,688 2,891 3,033 3,210 3,423
wing 8,923 9,294 9,461 9,665 9,750
wing_nodal 17,102 17,443 17,945 19,095 19,125

Table A.6.: Total Cut for Various Numbers of Constraints (64 Partitions, 3% Imbal-
ance)
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A. Additional Graph Partitioning Results

Imbalance Parameter
Graph 50% 10% 5% 1% 0.1%
144 389 391 426 389 424
3elt 45 45 45 44 47
4elt 54 54 54 54 59
598a 300 312 330 311 332
add20 63 62 62 65 65
add32 40 40 40 41 42
auto 1,154 1,155 1,170 1,169 1,294
bcsstk29 111 114 113 118 120
bcsstk30 201 210 209 215 218
bcsstk31 156 163 165 169 179
bcsstk32 187 196 197 202 214
bcsstk33 183 191 194 202 182
brack2 167 177 177 178 194
crack 55 55 55 56 60
cs4 91 92 91 92 93
cti 87 87 87 88 92
data 50 51 53 53 55
fe_4elt2 51 51 52 52 56
fe_body 78 78 101 102 109
fe_ocean 254 265 262 261 278
fe_pwt 88 90 90 90 111
fe_rotor 256 291 264 292 277
fe_sphere 62 63 62 61 68
fe_tooth 201 202 200 218 217
finan512 166 174 175 174 258
m14b 516 524 526 530 610
memplus 110 111 111 113 119
t60k 79 80 80 80 83
uk 38 38 38 39 39
vibrobox 148 157 155 162 148
wave 356 363 368 414 442
whitaker3 51 51 50 50 54
wing 160 159 159 162 170
wing_nodal 97 98 103 106 105

Table A.7.: Partitioning Times in Milliseconds for Various Imbalance Parameters
(64 Partitions)
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Imbalance Parameter
Graph 50% 10% 5% 1% 0.1%
144 82,915 84,357 86,013 86,514 90,187
3elt 1,573 1,618 1,631 1,791 2,105
4elt 2,719 2,749 2,808 2,910 3,761
598a 59,897 61,073 60,589 63,316 66,793
add20 3,261 3,356 3,412 3,624 3,870
add32 467 506 567 742 1,175
auto 183,732 185,522 188,061 193,524 194,354
bcsstk29 59,797 62,095 61,281 64,766 77,197
bcsstk30 173,279 185,558 185,220 192,356 219,318
bcsstk31 59,612 64,194 66,364 67,766 83,420
bcsstk32 99,115 105,276 104,616 109,390 121,841
bcsstk33 109,589 112,659 112,497 115,980 138,895
brack2 28,073 28,338 29,164 29,770 33,341
crack 2,592 2,709 2,682 2,923 3,808
cs4 4,517 4,612 4,579 4,715 6,123
cti 6,511 6,616 6,630 7,060 9,519
data 2,861 2,985 3,120 3,440 3,881
fe_4elt2 2,610 2,650 2,675 2,770 3,633
fe_body 4,962 5,218 5,470 6,002 7,724
fe_ocean 23,226 24,040 23,908 23,783 27,497
fe_pwt 8,613 8,651 8,697 8,987 11,415
fe_rotor 48,235 49,517 50,725 52,661 57,697
fe_sphere 3,889 3,899 3,908 4,134 5,641
fe_tooth 37,306 37,998 38,594 38,763 43,590
finan512 10,786 10,895 11,402 11,838 24,358
m14b 104,026 105,428 107,984 108,394 111,030
memplus 18,006 18,556 18,862 18,958 21,091
t60k 2,406 2,438 2,449 2,509 3,117
uk 440 462 474 544 606
vibrobox 48,607 51,475 52,289 52,813 65,020
wave 89,557 92,171 93,408 94,858 97,352
whitaker3 2,621 2,678 2,715 2,828 3,595
wing 8,751 8,834 8,882 8,950 11,805
wing_nodal 16,502 16,798 16,919 17,296 21,710

Table A.8.: Total Cut for Various Imbalance Parameters (64 Partitions)
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