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ABSTRACT  

Optical connectivity has the potential to outperform copper-based TSVs in terms of bandwidth at the cost of more 

complexity due to the required electro-optical and opto-electrical conversion. The continuously increasing demand for 

higher bandwidth pushes the breakeven point for a profitable operation to shorter distances. To integrate an optical 

communication network in a 3D-chip-stack optical through-silicon vertical VIAs (TSV) are required. While the 

necessary effort for the electrical/optical and vice versa conversion makes it hard to envision an on-chip optical 

interconnect, a chip-to-chip optical link appears practicable. In general, the interposer offers the potential advantage to 

realize electro-optical transceivers on affordable expense by specific, but not necessarily CMOS technology. We 

investigated the realization and characterization of optical interconnects as a polymer based waveguide in high aspect 

ratio (HAR) TSVs proved on waferlevel.  

To guide the optical field inside a TSV as optical-waveguide or fiber, its core has to have a higher refractive index than 

the surrounding material. Comparing different material / technology options it turned out that thermal grown silicon 

dioxide (SiO2) is a perfect candidate for the cladding (nSiO2 = 1.4525 at 850 nm). In combination with SiO2 as the 

adjacent polymer layer, the negative resist SU-8 is very well suited as waveguide material (nSU-8 = 1.56) for the core. 

Here, we present the fabrication of an optical polymer based multimode waveguide in TSVs proved on waferlevel using 

SU-8 as core and SiO2 as cladding. The process resulted in a defect-free filling of waveguide TSVs with SU-8 core and 

SiO2 cladding up to aspect ratio (AR) 20:1 and losses less than 3 dB. 

Keywords: optical interconnects; polymer optical waveguides, through-silicon VIAs, 
 

1. INTRODUCTION  

The continuously increasing demand for higher bandwidth and evolution towards to 5G makes the application of an 

optical chip-to-chip interconnect system conceivable. Based on the assumption of a 3D-chip-package an essential 

ingredient of such a system is the availability of a vertical interconnects. Through-silicon vias  (TSVs) are the key 

technology for chip-stack intraconnects [1]. Copper-based solutions for electrical connections are the traditional 

approach [2]. Ultra-thin TSVs have been presented as well [3]. Usually, for electrical communication copper-filled 

through-silicon-vias (TSV) are used. A high bandwidth is the major performance indicator of the communication in a 

3D-chip-stack.  

Optical connections have the potential to outperform copper-based connections in terms of bandwidth at the cost of more 

complexity due to the required electro-optical and opto-electrical conversion. Once converted, the transmission distances 

in the optical domain are far less critical than in the electrical domain. The advantage of optical interconnects as optical 

waveguides or fibers is well established for long distance communication. The continuously increasing demand for 

higher bandwidth pushes the breakeven point for a profitable operation to shorter distances. Hence, first optical systems 

for chip-to-chip and chip-stack-to-chip-stack communication have been proposed [4]. Multiprocessor configurations are 

the driver for optical networks that connect chips [5], [6], [7]. While the required effort for the electrical/optical and vice 

versa conversions makes it hard to envision an on-chip optical interconnect, a chip-to-chip optical link appears 

practicable. Until this will have been realized, one has to consider a 3D-chip package based on silicon interposers. In 

Micro-structured and Specialty Optical Fibres V, edited by Kyriacos Kalli, Jiri Kanka, Alexis Mendez, 
Pavel Peterka, Proc. of SPIE Vol. 10232, 102320T · © 2017 SPIE
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