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Abstract 
The Central Asian (CA) rangelands is a part of the arid and semi-arid ecological zones and spatial extent of drylands 

in CA (Tajikistan, Kazakhstan, Uzbekistan, Kyrgyzstan, and Turkmenistan) is vast. Projections averaged across a 

suite of climate models, as measured between 1950-2012 by Standardised Precipitation-Evapotranspiration Index 

(SPEI) estimated a progressively increasing drought risks across rangelands (Turkmenistan, Tajikistan and 

Uzbekistan) especially during late summer and autumn periods, another index: Potential Evapotranspiration (PET) 

indicated drought anomalies for Turkmenistan and partly in Uzbekistan (between 1950-2000).  On this study, we 

have combined a several datasets of drought indices ( SPIE, PET, temperature_ToC and  precipitation_P)  for better 

estimation of resilience/non-resilience of the ecosystems after warming the temperature in the following five 

countries, meanwhile, warming of climate causing of increasing rating of degradations and extension of 

desertification in the lowland and foothill zones of the landscape and consequently surrounding experienced of a 

raising balance of evapotranspiration (ET0). The study concluded, increasing drought anomalies which is closely 

related with raising (ET0) in the lowland and foothill zones of CA indicated on decreasing of NDVI indices with 

occurred sandy and loamy soils it will resulting a loss of vegetation diversity (endangered species) and raising of 

wind speeds in lowlands of CA, but on regional level especially towards agricultural intensification (without 

rotation) it indicated no changes of greenness index. It was investigated to better interpret how vegetation feedback 

modifies the sensitivity of drought indices associated with raising tendency of air temperature and changes of cold 

and hot year seasons length in the territory of CA. 

Keywords: drought, SPIE, arid vegetation, PET, Central Asia, ecosystem resilience. 

Introduction 
Inter -annual climate variability is highly sensitive to agricultural production, livestock husbandry as expressed in 

growing season weather. Currently, these zones are gradually experiencing reduced moisture availability which 

has observed in recent global climate change impacts and raising aridity indexes (fig.1b) with frequent increasing 

of drought periods. According results of Dai et al (2004) in the former Soviet Union countries, where soil 

moisture data are available, the Palmer Drought Severity Index (PDSI) is significantly correlated  (r = 0.5 to 0.7) 
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with observed soil moisture content within the top 1-m depth during warm-season months. The strongest correlation 

is in late summer and autumn, and the weakest correlation is in spring, when snowmelt plays an important role. It 

is clear that one of the most important consequences of the temperature increase in arid lands is the increase of 

evapotranspiration (ET0), and therefore aridity [24]. Potential a negative impacts of climate change on vegetation 

dynamics in CA are well reported by researchers [6,7,8]; [20]; [13];  [21,22], [32,33] and results indicated that high 

ET0 and cumulative accumulation of anions are causing soil salinization in large areas of CA. Cumulative effects 

of climatic stress and anthropogenic pressure contribute to increased rates of biodiversity loss locally and 

regionally.  Climatic stress contributes to an overall loss of valuable biodiversity at the large scale. An NDVI is 

often used worldwide to monitor drought, monitor and predict agricultural production, assist in predicting 

hazardous fire zones, and map desert encroachment. The NDVI is preferred for global vegetation monitoring 

because it helps compensate for changing illumination conditions, surface slope, aspect, and other extraneous 

factors [29].  

In general, arid and semi – arid regions particularly has a high evaporation loss ratings, and therefore observed a 

high ET0 where the water supply is most limited and valuable. A reduction in precipitation due to climate change 

will affect the severity of droughts [1], within these objects we have obtained to simulate datasets for better 

estimation anomalies dataset.  Rangeland diversity in CA remains one of the important task of these countries, 

understanding a current condition and future status is important to provide measures to establish adaptation 

mechanism for biodiversity ecosystems and evaluating the adaptation ecosystem strategies with action plans in CA.  

However, climate change scenarios also shown a temperature increase during the 20th century. In some cases, such 

as the A2 greenhouse gas emissions scenario [2], the models predict a temperature increase that might exceed 1-

2ºC with respect to the 1960−1990 average, computed with real data between 1910 and 2007, also considers a 
progressive increase of 2−4ºC in the mean temperature series. Our results also indicated that these five countries 

are faced on drought anomalies which occurred on decreasing PET indexes then following ET0.  

Performance of utilization of satellite images within drought indexes given affordable and visual 

information for current and past condition to analyze and developing information systems for early drought 

detection. According land use classification to account for surface biophysical properties of various habitats (fig.1) 

and to assess temporal movement dynamics of vegetation pattern in these cold desert and semi desert ecosystems 

we have modified of quantity trends of vegetation responses in these ecosystems and several study sites have been 

selected: a) to assess spatio–temporal patterns of land-surface vegetation dynamics and drought indices b) explore 

their relationships with climate and anthropogenic variables over the past three decades with estimation resilience 

of the ecosystem on further anomlies. Although remote sensing data provide useful insights into the relationship 

between the NDVI and precipitation, the duration of such observations is still too short to describe climate change 

variations and trends realistically [23]. Combining analyses of NDVI trends and land-cover changes, [36,37] found 

a pattern of increasing greenness associated with agricultural abandonment (i.e.cropland to grassland) in the 

southern range of the Eurasian grain belt coinciding with statistically significant negative NDVI trends and likely 

driven by regional drought. In the northern range of the grain belt they found an opposite tendency towards 

agricultural intensification; in this case, represented by land-cover change from cropland mosaic to pure cropland, 

and also associated with statistically significant negative NDVI trends [11, 12]. 

 

 
Brief description of study area  

The irrigated crop farming is major agriculture sector in these areas and intensive salinization of arable 

lands is core environmental problem currently. The effects of shrinking of the Aral Sea Basin coupled with the 

USSR collapse have caused increased population migration and uncontrolled grazing, which lead to salinization 

and further deterioration of rangeland ecosystems in the region. The area covered lies between 34°57’30’’N and 

55°47’30’’N and 46°12’29’’E and 87°52’29’’E. Vegetation trends in this area are mostly driven by precipitation 

and temperature dynamics. According to soil anions/cations changes, which correspond with habitat heterogeneity 

and species diversity at finer scales on halophytic vegetation zones of CA. On the base of classification United 

Nations Environmental Program (UNEP) (1992) CA lies in the zone in which the aridity index varies between 0.05 

and 0.5 and consequently is defined as “arid” and “semi-arid” zones, also Köppen categories of classification 
(Köppen et al.,1800)  are described as a high evapotranspiration and less precipitation zones in these areas. 
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Precipitation and temperature patterns are most important for dryland ecosystems that are strongly 

dependent on these two factors. Dryland zones in CA (fig.1.) are mostly in a temperate continental arid climate: 

very hot (dry) summer and cold winter, total precipitation ranges from 0-200 mm, a vast majority of the land in the 

area is low lying <200 m but there are peaks of >5000 m. General overview describes on (fig.1), as requested robust 

understanding interrelations drought anomalies process in CA it was determined the onset, duration of drought 

conditions (June, July, August ,September) with respect to normal conditions period (middle of October till late 

spring) in a variety of natural and managed systems such as crops is best suited for drought monitoring and early 

warning purposes. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 
   

  

a). Average monthly rainfall and 

temperature for Kazakhstan during 

1900-2012 

b). Average monthly rainfall and 

temperature for Uzbekistan during 

1900-2012 

c). Average monthly rainfall and 

temperature for Turkmenistan 

during 1900-2012 

d). Average monthly rainfall and 

temperature for Kyrgyzstan during 

1900-2012 

e). Average monthly rainfall and 

temperature for Tajikistan during 

1900-2012 

Figure 1. Overview of CA climate (CRU TS3.23 dataset), and land use and land cover change (LULC) datasets modified after 

MODIS for 2000-2009 (right side).  
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Material and Methods 

 
Datasets 
A most commonly used measure of aridity (fig.2c) is Thornthwaite’s index of aridity [35] defined as a ratio of 

precipitation and evapotranspiration (P: PET), another method is PET which is temperature based equations. Also, 

one actual indices is SPIE measured monthly climatic water balance with following equation (P- ETo). We utilized 

simple kriging methodology that was developed to classify further vegetation pattern indexes which is identifying 

with associated factors (Prec/Temp/NDVI/SPIE) and well influenced to the solid earth. General datasets and data 

of source listed on table 1.  

 

Table 1. A summary of input datasets for parameterizing methodology to predict further status of vegetation and 

drought anomalies. 
 

Data Indices Temporal Scale Time Span (extracted) Spatial Scale Data Source 

NDVI Vegetation Bi-monthly 1982-2011 Grid 8 km AVHRR-GIMMS 

(NDVI 3g) 

SPIE Drought monthly 1982-2011 & 1950-2011  0.5x0.50 SPIEbase v.2 

Average air temperature Climate monthly 1981-2011 0.5x0.50 CRU-TS (ver. 3.23) 

 

Average Precipitation Climate monthly 1981-2011 0.5x0.50 CRU-TS (ver. 3.23) 

 

PET Drought annually 1950-2000 30 arc seconds or ~ 1km 

at equator 

WorldClim Global 

Climate Data 

Aridity index Drought annually 1950-2000 30 arc seconds or ~ 1km 

at equator 

WorldClim Global 

Climate Data 

 

A drought index: the Standardised Precipitation-Evapotranspiration Index (SPEI) 

The SPEI based on climatic data (CRU TS3.23 dataset), and it’s a multiscalar drought index with a 0.5 degrees 

spatial resolution and a monthly time resolution. Available to download on following 

https://climatedataguide.ucar.edu/data-type/climate-indices/drought/spei; The SPEI is obtained from the monthly 

climatic water balance with following  equation (P- ETo), which is adjusted using a three-parameter log-logistic 

distribution. The values are accumulated at various time scales, we measured between 1-12 month (annually) and 

converted to standard deviations with respect to average values [36]. We have explored and divided five countries 

separately to visualize SPIE anomalies for last 30 years, within this purpose to be able compare with NDVI values 

(1982-2011) and for longest monitoring we have computed periods 1950-2012 as graph interpretation. The 

equation modified by [36] 

                                                    (1) 

The constants are:  C0=2.515517, C1=0.802853, C2=0.010328, d1=1.432788, d2=0.189269, d3=0.001308. The 

average value of the SPEI is 0, and the standard deviation is 1. 

where 

W= -2ln (P),                                                                                               (2) 

for P≤0.5, P being the probability of exceeding a determined D value, P=1-F(x). If P>0.5, P is replaced by 1−P and 

the sign of the resultant SPEI is reversed. 
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A drought index: the Potential Evapotranspiration (Global-PET) 

Global-PET (fig.2b) and Aridity Index (fig. 2c) are both modeled using the data available from the WorldClim 

Global Climate Data [18] as input parameters, these two datasets are modified on base ICARDA Classification 

[43]. These datasets based on a high number of climate observations and SRTM topographical data, is a high-

resolution global geo-database (30 arc seconds or ~ 1km at equator) of monthly average data (1950-2000). Global-

PET parameters calculated using the Hargreaves method and insufficient to fully parameterize physical radiation-

based PET equations (i.e. the FAO-PM), though can parameterize simpler temperature-based PET equations by   

[15] uses, as shown below: 

PET = 0.0023 · RA · (Tmean + 17.8) · TD0.5 (mm / day)                     (3) 

mean monthly temperature (Tmean), mean monthly temperature range (TD) and mean monthly extra-terrestrial 

radiation (RA, radiation on top of atmosphere) to calculate mean PET. 

Quantify Drought Indices for better estimation vegetation – water stress  
 

This NDVI index outputs values between -1.0 and +1.0 (NDVI multiplied on *1000), mostly representing 

green color (high accumulated) and yellow (low accumulated) zones, where any negative values are mainly 

generated from desert ecosystems, and values near zero are mainly generated from rock and bare soil in the visible 

range than in the near-infrared range (fig.2d), while the difference is almost zero for rock and bare soil. A vast area 

of study site located under values 0.01-0.1; for better estimation of anomalies divided on decades (fig.2d, top) and 

proposed and compared with SPIE datasets (fig.3) between same periods of time: 1982-2011.  

The PET and Aridity Index dataset provides high-resolution raster climate data related to ET0 processes 

and rainfall deficit for potential vegetative growth. We are considering to demonstrate SPIE dataset as responsible 

to loss of energy in the balance (vegetation patterns) due to outgoing a high ET0 in the drylands of CA (fig.3). But 

same time, we are not able to modify ordinary kriging methodology with utilize datasets (PET and Aridity Index) 

with update version (dataset available till 1950-2000). Regarding on these suggestions, we have applied simple 

kriging standard error map (fig.3) to receive a less errors within applying certain datasets (Prec/Temp/NDVI/SPIE) 

for prediction status of patterns (loss and gain productivity) and resilience areas of CA. A model is equally good at 

describing the data (r2= 0.77 (the power law model) and y = 0.96 * x + 0.80) but extrapolation beyond the range of 

the data is always fraught with difficulties. And on reality, it may opposite occasions, anyhow some errors of the 

data are still available and more accuracy expected with adding extra thaw datasets for better estimation gradual 

change patterns.  

 
Results  

As usual, in arid and semi- arid zones are gradually faced with anomalies related to decreasing of 

precipitation in last decades, but same time  the results of NDVI indicated of accumulation greenness indexes are 

increased following two decades (1992-2001 & 2002-2011). Several previous studies have reported increased 

vegetation greenness over the northern high-latitude region over the past 20–30 years [4]. In the past, extensive 

agricultural development resulted in native vegetation being cleared across vast areas of the CA, especially 

converting desert zones to agricultural and it might be also one factor to assist greenness indexes. We analyzed 

PET under methodology by  [42] process on those five regions (fig. 1a.);  also utilize long time series data of NDVI 

and applied SPIE database (1982-2011) to better interpret vegetation cover status on different seasonality and 

annually. Results indicated that drought anomalies are not correspondence factor for decreasing of agricultural 

productivity in Kazakhstan, Kyrgyzstan, same time drought anomalies are response of altering a native vegetation. 

Mostly, palatable vegetation is occurred to decrease phytocenosis activity in drylands. These methods are modify 

structural and functional traits of ecosystems leaving and their anthropogenic and natural phenomena imprint on 

the amount and seasonality of photosynthetic activity.  
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The main drought episodes occurred in decades 1970´s for all five countries. On Fig.3, we have added 

extra basic requirements for better understanding anomaly decades of time (Y coordinate values reached until ≥ -
2, it means a very drought period of decades in the region) and inserted with shapes a quickly able to see a high 

drought period for each decades  and visualize with comparison of anomaly decades for each country.  
 

 

Figure 2a. Overview of locations CA on the northern 

hemisphere.  
Figure 2b. Mean annual potential evapotranspiration (PET) 

grid for Central Asia at 30 arc-second ( about 1 km) 

resolution. Source: (http://www.cgiar-csi.org) 

  

Figure 2c. Annual Aridity Index in Central Asian countries at 
30 arc-second ( about 1 km) resolution. Source: 

(http://www.cgiar-csi.org) 

Figure 2d. NDVI- vegetation monitoring enables to describe 

density and intensity of green vegetation growth using the 

spectral reflectivity of solar radiation. 
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Turkmenistan

}

Tajikistan
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Figure 3. Determining annually drought variability (1982-2011) and multiplicative year of trends (1950-2010) in targeted areas with 

positive and negative trends of SPIE (object-based). Inserted shapes (red line) indicated to observe a high anomaly decade periods in 

the regions. Trends modified after and updated on the database SPIEbase 2. 

 
This simple experiment clearly shows an increase in the duration and magnitude of droughts at the end of 

the century (fig.3), which is directly related to the temperature increases and decreasing of precipitation.  It uses a 

0 as normal, and drought is shown in terms of negative numbers; for example, -2 is severe drought, -3 is extreme 

drought. Algorithm also is used to describe wet spells, using corresponding positive numbers.  It estimated a 

progressively increasing drought risks across rangelands (Turkmenistan, Tajikistan and Uzbekistan) especially 

during late summer and autumn periods. On the base results, each country have explored a very drought anomaly 

periods a minimum 2 times during observed period (1950-2012), occasionally it is not similarity for each country. 

This phenomena which vary with time related to develop particular span of time. Based on observed result, the 

SPEI is a good indicator to predict a further drought anomalies or alternatively to be able develop crop failure or 

less productive zones. Appropriate phytoindicators for modifying and designing different ecological zones, 

especially trends of spatial changes of vegetation cover over time trends which are associated with climate patterns, 

assessed a better understanding vegetation movement dynamics and their mechanisms. 

The persistent drought conditions during this period are also clearly identified by the SPEI, especially in 

Turkmenistan and Uzbekistan observed anomaly periods longer than other three countries (Kazakhstan, 

Kyrgyzstan and Tajikistan). Southern part of Kazakhstan is currently also indicated of raising drought indices, such 

as Aridity Index (fig.2c) indicated a less aridity (1950-2000) on these ecosystems compare SPIE datasets (1982-

2011). 
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Results indicated that negative trends of drought severity index (red color) is related on low accumulation of NDVI 

values, and positive drought index included a high values of NDVI, in case of CA a high values of NDVI ranged 

between 0.35-0.50 or 0.15-0.30; and a negative trends of severity index indicated accumulation of NDVI values 

between 0.01-0.05 (very low values). It is clearly, when leaves are water stressed, diseased, or dead, they become 

more yellow and reflect significantly less in the near-infrared range. 

 

Discussion 
This trajectory zone (fig.4) is demonstrated distinct temporal patterns of bioclimatic synchronies for different land 

use patterns.  If we will able to describe an image (fig.4), then northern part occupies/covers high vegetation zones 

and southern part described inverse of this condition. Factors that must be considered when defining scenarios for 

changing threats to biodiversity on this area include the following: extensive using fertile lands in Uzbekistan and 

Turkmenistan, partly Kazakhstan and Tajikistan, where over 30-40 % of original arid and semi-arid lands 

vegetation has been removed. A native vegetation is no longer a common occurrence, agricultural intensification, 

including expansion of irrigated horticulture into areas that traditionally practiced dryland grazing and cropping 

enterprises, but vast areas continuing pressures on remnant vegetation. Slight changes of vegetation communities 

under overgrazing and long term of use of lands already under pressure (without rotation) developed degradation 

processes (erosion, salinity, soil structure decline, loss of vegetative cover) on the rangelands [27].   

 

 
 

Figure 4. Kriging methodology that was developed to classify further vegetation index (resilient zones) which is identifying as index 

certainty associated factors (Prec/Temp/NDVI/SPIE) influenced to the solid earth. 
 
This model, it can capture the basic effect of global warming on drought through changes in potential 

evapotranspiration. Temperature range (TD) is an effective proxy to describe the effect of cloud cover on the 

quantity of extra-terrestrial radiation reaching the land surface and, as such, it describes more complex physical 

processes with easily available climate data at high resolution. By using surface air temperature and precipitation 

takes into account the basic effect of global warming through PET measures. Such as without thaw and snow 

covering datasets this prediction map it may have some pros and cons. Within prediction standard error surface 

that locations (five countries) near sample points generally have lower error and more accuracy for receiving further 

status of vegetation and describe resilient and non-resilient ecosystems. A study published by U.S. Global Change 

Research Program suggests that higher temperatures lead to the evaporation of moisture from soils, thereby 

increasing the frequency, intensity and duration of droughts in the region.  
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There have been reports from land users about an alarming decrease in the frequency and intensity of snowfall over 

the past few years as well as the consistent rise in temperatures being witnessed over the years. Key limitations of 

these datasets that are not allowed calibrate or not account for thaw, snow or ice (delayed runoff); making it difficult 

to correlate with specific water resources like runoff, snowpack and etc.  

 
 

 

 

ACKNOWLEDGMENT:  The project work was financed by the DAAD Program, through a research exchange issues between Central Asia and European Union. 

We thank to the principal investigator Prof.Elmar Csaplovics (TU-Dresden) for their potential interest to this area and Prof. Kristina Toderich (ICBA-CAC) for her 

encouragement.  For technical part to Mr. Abdulloh Jarihani (CSIRO) for his expert assistance to simulate data with statistical approach. We kindly acknowledged 

to the cite CGIAR-CSI for published useful datasets for Central Asian continent (http://www.cgiar-csi.org) and anonymous authors for their efforts to disseminate 

datasets. We thank the NASA GIMMS team for providing the most up to date AVHRR GIMMS3g dataset, also MODIS team for providing vegetation indices 

datasets. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proc. of SPIE Vol. 10005  100050R-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 02 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

References 

[1]. Aralova, D., Toderich, K.., & Sunmadewa, B. A. O. (2015). Spatial Distribution Patterns of Vegetation Cover in Deserts of Central 

Kyzylkum with application of Vegetation Indices (VIs). JALS, 268, 265–268. 

[2]. Asia - IPCC Working Group II, 2015. ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-Chap24_FINAL.pdf   

[3]. Brown M E and de Beurs K M 2008 Evaluation of multi-sensor semi-arid crop season parameters based on NDVI and rainfall Remote 

Sens. Environ. 112 2261–71 

[4]. Bunn A G, Goetz S J, Kimball J S and Zhang K 2007 Northern high-latitude ecosystems respond to climate change EOS Trans. Am. 

Geophys. Union 8 333–40 

[5]. Chen, F., Yuan, Y. -j., Chen, F.-H., Wei, W. -s., Yu, S. -l., Chen, X. -j.,Qin, L. (2013). A 426-year drought history for Western Tian 

Shan, Central Asia, inferred from tree rings and linkages to the North Atlantic and Indo-West Pacific Oceans. The Holocene, 23(8), 

1095–1104. http://doi.org/10.1177/0959683613483614 

[6]. de Beurs K M and Henebry G M 2005. Land surface phenology and temperature variation in the International Geosphere–Biosphere 

Program high-latitude transects Glob. Change Biol. 11 779–90 

[7]. de Beurs K M and Henebry G M 2008. Northern annular mode effects on the land surface phonologies of northern Eurasia. J. 

Clim. 21 4257–79 

[8]. de Beurs K M and Henebry G M 2010 Spatio-temporal statistical methods for modelling land surface phenology Phenological 

Research: Methods for Environmental and Climate Change Analysis ed I L Hudson and M R Keatley (Dordrecht: Springer) pp 177–
208 

[9]. Dubovyk, O. (2013). Multi-scale targeting of land degradation in northern Uzbekistan using satellite remote sensing, (July). 

http://doi.org/10.13140/RG.2.1.1826.3205 

[10]. Fao, 2004. Global map of monthly reference evapotranspiration - 10 arc minutes. Available at: 

http://www.fao.org/geonetwork/srv/en/main.home. (Cited February, 2016)  

[11]. FAOstat, 2015. http://faostat3.fao.org/home/E (Accessed March 2015) 

[12]. FAO 2015. Climate change and food systems: global assessments and implications for food security and trade. Food Agriculture 

Organization of the United Nations (FAO) 

[13]. Gessner U., Naeimi V., Klein I., Kuenzer C., Klein D., Dech S. (2012) - The relationship between precipitation anomalies and 

satellite-derived vegetation activity in Central Asia. Global and Planetary Change, 110: 74-87. doi: http://dx.doi.org/10.1016/j. 

gloplacha.2012.09.007  

[14]. Harris, I., Jones, P.D., Osborn, T.J. and Lister, D.H. (2014).  Updated high-resolution grids of monthly climatic observations – the 

CRU TS3.10 Dataset. Int. J. Climatol., 34: 623–642.  doi: 10.1002/joc.3711   

[15]. Hargreaves, G.H., Allen, R.G. (2003). History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. ASCE 

129 (1), 53–63. 

[16]. He, B., Liao, Z., Quan, X., Li, X., & Hu, J. (2015). A Global Grassland Drought Index (GDI) Product: Algorithm and Validation. 

Remote Sensing, 7(10), 12704–12736. http://doi.org/10.3390/rs71012704 

[17]. Herrmann, S. M., Anyamba, A., & Tucker, C. J. (2005). Recent trends in vegetation dynamics in the African Sahel and their 

relationship to climate. Global Environmental Change, 15(4), 394–404. http://doi.org/10.1016/j.gloenvcha.2005.08.004 

[18]. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2004) The WorldClim interpolated global terrestrial climate 

surfaces, version 1.3 . Available at http://biogeo.berkeley.edu/ 

[19]. Kapustina, L. A. (2001). Biodiversity, ecology, and microelement composition of Kyzylkum Desert shrubs (Uzbekistan). In RMRS-

P-21: Shrubland ecosystem genetics and biodiversity: proceedings (pp. 98–103). 

[20]. Kariyeva, J., & van Leeuwen, W. J. D. (2011). Environmental drivers of NDVI-based vegetation phenology in Central Asia. Remote 

Sensing, 3(2), 203–246. http://doi.org/10.3390/rs3020203 

[21]. Karieva, J., van Leeuwen, W. (2012): Phenological dynamics of irrigated and natural drylands in Central Asia before and after the 

USSR collapse. Agr. Ecosyst. Environ. 162: 77–89. 

[22]. Kariyeva, J., van Leeuwen, W. J. D., & Woodhouse, C. A. (2012). Impacts of climate gradients on the vegetation phenology of 

major land use types in Central Asia (1981-2008). Frontiers of Earth Science, 6(2), 206–225. http://doi.org/10.1007/s11707-012-

0315-1 

[23]. Lioubimtseva, E., & Cole, R. (2006). Uncertainties of Climate Change in Arid Environments of Central Asia. Reviews in Fisheries 

Science, 14(1-2), 29–49. http://doi.org/10.1080/10641260500340603 

[24]. Lioubimtseva, E., Cole, R., Adams, J. M., & Kapustin, G. (2005). Impacts of climate and land-cover changes in arid lands of Central 

Asia. Journal of Arid Environments. http://doi.org/10.1016/j.jaridenv.2004.11.005 

[25]. Lu, L., Guo, H., Kuenzer, C., Klein, I., Zhang, L., & Li, X. (2014). Analyzing phenological changes with remote sensing data in 

Central Asia. IOP Conference Series: Earth and Environmental Science, 17, 012005. http://doi.org/10.1088/1755-1315/17/1/012005 

[26]. Miao, L., Ye, P., He, B., Chen, L., & Cui, X. (2015). Future Climate Impact on the Desertification in the Dry Land Asia Using 

AVHRR GIMMS NDVI3g Data. Remote Sensing, 7(4), 3863–3877. http://doi.org/10.3390/rs70403863 

[27]. Qi J. and Evered, K 2008. Environmental Problems of Central Asia and Their Economic, Social and Security Impacts, Springer 

2008 400 p. 

[28]. Qu, B., Zhu, W., Jia, S., & Lv, A. (2015). Spatio-Temporal Changes in Vegetation Activity and Its Driving Factors during the 

Growing Season in China from 1982 to 2011. Remote Sensing, 7(10), 13729–13752. http://doi.org/10.3390/rs71013729 

[29]. Paz-Kagan, T., Panov, N., Shachak, M., Zaady, E., & Karnieli, A. (2014). Structural Changes of Desertified and Managed Shrubland 

Landscapes in Response to Drought: Spectral, Spatial and Temporal Analyses. Remote Sensing, (Ci), 8134–8164. 

http://doi.org/10.3390/rs6098134 

 

 

Proc. of SPIE Vol. 10005  100050R-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 02 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

[30]. Ruecker, G. R., Dorigo, W. a, Lamers, J., Ibragimov, N., Kienzler, K., Strunz, G., … Vlek, P. L. G. (2006). Regional estimation of 

leaf chlorophyll in cotton in Uzbekistan by upscaling a vegetation index from plant scale to Proba-1/CHRIS hyperspectral satellite 

data, (1). 

 

[31]. Ruecker, G. R., Dorigo, W. a, Lamers, J. P. a, Ibragimov, N., Kienzler, K., Strunz, G., Symeonakis, E. (2014). Mapping and assessing 

water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Remote Sensing, 6(9), 012005. 

http://doi.org/10.3390/rs6109552 

[32]. Toderich, KN, Shuyskaya, EV, Rajabov, TF, Ismail, S. Shaumarov, M. Yoshiko, K. and Li, EV 2013. Uzbekistan: Rehabilitation of 

desert rangelands affected by salinity, to improve food security, combat desertification and main- tain the natural resource base. 

pp.249-278 In: G.A. 

Heshmati and V.R. Squires (eds) . Combating desertification in Asia, Africa and the Middle East: Proven Practices. Springer, 

Dordrecht. 

[33]. Toderich, K. N., Tsukatani, T., Goldshtein, R. I., Aparin, V. B., & Ashurmetov, A. A. (2002). Ecological conservation and 

reclamation of arid/saline lands under agricultural system development in Kyzylkum Deserts of Uzbekistan. Prospects for Saline 

Agriculture (Vol. 37). Retrieved from <Go to ISI>://WOS:000178570400003 

[34]. Tüshaus, J., Dubovyk, O., Khamzina, A., & Menz, G. (2014). Comparison of Medium Spatial Resolution ENVISAT-MERIS and 

Terra-MODIS Time Series for Vegetation Decline Analysis: A Case Study in Central Asia. Remote Sensing, 6(6), 5238–5256. 

http://doi.org/10.3390/rs6065238 

[35]. Thornthwaite, C., 1948. An approach toward a rational classification of climate. Geogr.Rev. 38 (1), 55 - 94. 

[36]. Vicente-Serrano, S. M., Cabello, D., Tomas-Burguera, M., Martin-Hernandez, N., Beguera, S., Azorin-Molina, C., & Kenawy, A. 

El. (2015). Drought variability and land degradation in semiarid regions: Assessment using remote sensing data and drought indices 

(1982-2011). Remote Sensing, 7(4), 4391–4423. http://doi.org/10.3390/rs70404391  

[37]. Waible, D. (2013). Biotope and Land Use Mapping in the Biosphere Reserve of Lower Amu Darya. Botanik.Uni-Greifswald.De, 

(June). Retrieved from http://www.botanik.uni-greifswald.de/fileadmin/laoek/theses/2013/2013_Waible.pdf 

[38]. Walter I.A., Allen R.G., Elliott R.,Mecham B., JensenM.E., Itenfisu D., Howell T.A., Snyder R., Brown P., Echings S., Spofford T., 

HattendorfM., Cuenca R.H.,Wright J.L.&Martin D. 2000. ASCE Standardized Reference Evapotranspiration Equation, p. 209–215. 

In: Evans RG, Benham BL, Trooien TP (eds.) Proc. National Irrigation Symposium, ASAE, Nov. 14–16, 2000, Phoenix, AZ. 

[39]. Zomer, R. J., Trabucco, a, Van Straaten, O., & Bossio, D. a. (2006). Carbon, Land and Water:A Global Analysis of the Hydrologic 

Dimensions of Climate Change Mitigation through Afforestation / Reforestation. Water Management (Vol. 101). 

http://doi.org/http://dx.doi.org/10.3910/2009.122  

[40]. Zomer, R.J., Trabucco, A., Bossio, D.A, van Straaten, O., Verchot, L.V. (2008). Climate Change Mitigation: A Spatial Analysis of 

Global Land Suitability for Clean Development Mechanism Afforestation and Reforestation. Agric. Ecosystems and Envir. 126: 67-

80. 

[41]. Zonn, I. S., & Kostianoy, A. G. (2014). The Turkmen Lake Altyn Asyr and Water Resources in Turkmenistan. 

http://doi.org/10.1007/978-3-642-38607-7 

[42]. Trabucco, A., Zomer, R.J., Bossio, D.A., van Straaten, O., Verchot, L.V. 2008. Climate Change Mitigation through Afforestation / 

Reforestation: A global analysis of hydrologic impacts with four case studies. Agric. Ecosystems and Environment. 126: 81 - 97. 

[43]. Trabucco, A., & Zomer, R. . (2009). Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) 

Geospatial Database. CGIAR Consortium for Spatial Information, (1978), Published online: http://www.csi.cgiar.org. 

http://doi.org/10.1017/CBO9781107415324.004  

 

 

Proc. of SPIE Vol. 10005  100050R-11
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 02 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


