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Abstract 
 

The investigation of the latent geometrical space behind complex network topologies is a fervid 

topic in current network science and the hyperbolic space is one of the most studied, because 

it seems associated to the structural organization of many real complex systems. The 

popularity-similarity-optimization (PSO) generative model is able to grow random geometric 

graphs in the hyperbolic space with realistic properties such as clustering, small-worldness, 

scale-freeness and rich-clubness. However, it misses to reproduce an important feature of real 

complex systems, which is the community organization. Here, we introduce the nonuniform 

PSO (nPSO) generative model, a generalization of the PSO model with a tailored community 

structure, and we provide an efficient algorithmic implementation with a O(EN) time 

complexity, where N is the number of nodes and E the number of edges. Meanwhile, in recent 

years, the inverse problem has also gained increasing attention: given a network topology, how 

to provide an accurate mapping into its latent geometrical space. Unlike previous attempts 

based on a computationally expensive maximum likelihood optimization (whose time 

complexity is between O(N3) and O(N4)), here we show that a class of methods based on 

nonlinear dimensionality reduction can solve the problem with higher precision and reducing 

the time complexity to O(N2). 
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Part I: Research Summary 
 

1. Introduction 
 

The Oxford English Dictionary (OED, 2019) provides several definitions for the term network, 

among which the most general and intuitive is ‘collection of interrelated things’. Network 

science is the academic interdisciplinary field that, combining theories from mathematics, 

physics, computer science, statistics and more, aims at studying physical systems represented 

as networks. In particular, the elements of the system are represented by nodes (or vertices) 

and the interactions between them are represented by links (or edges). The way in which the 

connections between the elements are arranged defines the structure (or topology) of the 

network. Most of the real networks intended to be modeled are considered complex networks, 

meaning that they exhibit structural features that are not purely regular nor purely random [1]. 

From the historical point of view, the beginning of network science dates back to 1736, when 

Leonhard Euler published the famous work on the Seven Bridges of Königsberg [2]. The 

problem described four land areas separated by a river and connected by seven bridges, asking 

whether it was possible to visit all the four land areas crossing each bridge once and only once. 

Euler noticed the only information relevant for approaching the problem was the 

interconnectivity between the land areas through the bridges, and therefore he could 

reformulate the problem in abstract terms representing the land areas as vertices and the bridges 

as edges. This corresponded to the foundation of graph theory, which studies graphs as 

mathematical structures used to model pairwise relations between objects, being therefore the 

mathematical framework for network science. 

In the scientific literature the terms network, node and link from network science are often used 

interchangeably with the terms graph, vertex and edge from graph theory. However, for the 

sake of clarity, networks and the related terminology refer to the physical systems that are 

represented, whereas we use graphs while referring to the mathematical representation of these 

systems. The mathematical object usually adopted to describe a graph is the adjacency matrix, 

which is in the simplest case a binary square matrix having as many rows and columns as the 

number of nodes, and where each element in position (i,j) indicates whether the nodes i-th and 

j-th are connected (value 1) or not (value 0) [1]. 

Being the definition of network very general, it can be adopted to describe systems of 

completely different nature and scale. For example, in a protein-protein interaction network, 
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the nodes are protein molecules and the links represent physical contacts between them. At a 

larger scale, a typical example is a social network, modeling social interactions between people, 

like friendship or collaboration. Countless further examples could be mentioned, like brain 

networks, ecological networks, economical networks, technological networks, 

telecommunication networks and so on [1]. 

Networks can also be classified depending on different ways in which pairs of nodes can be 

connected. In fact, links might have a directionality, beginning from a given node and ending 

to another node. In this case the network is known as directed network and an example is given 

by the World Wide Web, where the links between pages are directed. In the opposite scenario, 

when the directionality is meaningless, we would refer to an undirected network, as in a 

Facebook social network where the links represent the friendship between two users, which is 

a mutual relationship. A network might also allow a link between a node and itself, known as 

self-loop, for example to describe autocatalytic reactions in metabolic networks. Finally, we 

can have a weighted network, where a weight is assigned to each link, for example to indicate 

the strength of a physical interaction between molecules, the distance between two 

geographical points in a road map or the average amount of passengers in a flight between two 

cities [1]. 

 

Structural properties 

Provided a preliminary overview on networks and the basic terminology, we will now 

introduce the main topological properties commonly adopted to characterize the structure of a 

network. The two simplest features consist of the number of nodes (N) and the number of links 

(L), which are both indicators of the network size. Their values might differ widely between 

systems of different scale, going for example from a small friendship network within a sport 

club with tens of athletes, up to a large online social network with millions of users and billions 

of interactions between them. Another property related to the number of nodes and links is the 

network density, which is defined as the ratio between the number of links over the number of 

possible links. Many real networks are sparse, meaning that the number of links is much 

smaller than the number of possible links (low density) [3]. A key feature of each node of the 

network is its degree, which is the number of links it has to other nodes. For example in a social 

network modelling the friendship within a community, the degree of each individual indicates 

the number of friends. A network property closely related to the density is the average degree, 

simply defined as the average of the node degrees [3]. The degree distribution, which is the 
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probability distribution for a certain node having a certain degree, has a central role in 

characterizing the network organization and will be discussed more in details in later sections. 

An important concept in networks is the one of path length. A path is a sequence of links 

visiting a sequence of nodes, which usually have to be all distinct. Its length is simply the 

number of links in the sequence. In networks, the distance between two nodes is often 

represented by the shortest path between them, which is the path with the lowest amount of 

links. Shortest paths are at the base of many topological properties, for example the diameter, 

defined as the longest shortest path, or the characteristic path length, defined as the average of 

the shortest path between all pairs of nodes [4]. 

Another fundamental concept used to characterize the structure of a network is clustering. For 

a given node, its local clustering coefficient is the ratio between the number of links between 

its neighbors over the number of possible links that its neighbors could have. In other words, it 

is equal to the density of the subgraph of its neighbors and it is therefore a measure of local 

density. The average clustering coefficient of a network is simply defined as the average of the 

local clustering coefficient over all the nodes [4]. More intuitively, in a network with a high 

clustering the nodes tend to cluster together by closing triangles. For example, social networks 

usually exhibit a high clustering since if the individual A is friend with B and B is friend with 

C, then it is also likely that A is friend with C. Indeed, the concept of clustering in a network 

is strictly related to the concept of transitivity [5]. 

Looking for patterns of topological organization in networks, many real systems present a 

community structure. In intuitive terms, the network is composed of several communities 

(groups of nodes), such that nodes that belong to a community have a higher probability to link 

to the other members of that community than to nodes that do not belong to the same 

community [6]. These groups of densely connected nodes can have completely different 

meanings depending on the system in observation. In a social network, a community can 

represent a tight group of friends, people sharing the same hobbies or the same job. In a protein-

protein interaction network it corresponds to proteins with a similar functionality, whereas in 

a citation network it represents a set of scientific papers with a related topic. Many algorithms 

have been developed for detecting communities in networks and also a measure, the 

modularity, indicating the extent to which a network can be partitioned into communities [7]. 

 

Network models 

One of the main goals of network science is to develop models that are able to reproduce 

features as close as possible to the ones of real networks. A large amount of models have been 
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currently designed, each of them trying to emulate certain network characteristics [3]. In this 

section we will recall three models that certainly marked the history of network science. 

The first well known model for generating random networks is the Erdős-Rényi model 

introduced in 1959 [8]. As presented in the original publication, the model has two parameters, 

the number of nodes N and the number of links L, and the network is generated by choosing at 

random (with equal probabilities) L links among all the possible pairs of nodes. In a slight 

variation introduced by Gilbert, the model has as parameters the number of nodes N and the 

connection probability p, and for each pair of nodes a link is established with probability p [9]. 

Networks generated with the Erdős-Rényi model exhibit a small characteristic path length and 

a small average clustering coefficient. The degree distribution follows a binomial distribution, 

which becomes a Poisson distribution for large values of N [3]. 

In 1967 Stanley Milgram published the results of experiments investigating “the small-world 

problem” [10]. In the experiment, several random people living in the center of the USA were 

asked to send a letter to a target person living in Massachussets, or, in case they did not know 

personally the target person, they should have sent the letter to someone they knew and that 

could know the target person. By following the trajectory of the letters, the resulting network 

showed two main properties: the average path length was low (in particular around 6, from 

which the popular expression “six degrees of separation”), and the local clustering coefficient 

was high. While the first feature is found in the Erdős-Rényi model, the second one is lacking. 

In 1998, Watts and Strogatz proposed a new network model able to reproduce both the 

properties [4]. The parameters required are the number of nodes N, the average degree k and 

the rewiring probability p. Starting from a ring lattice, placing the nodes in a circle and 

connecting each node with the k nearest neighbors, each link is then rewired with probability 

p. In the extreme case p = 1, the generated network is an Erdős-Rényi network, with low 

characteristic path length and low average clustering coefficient. In the opposite case p = 0, the 

network remains a ring lattice, with high characteristic path length and high average clustering 

coefficient. However, there is a region of p values for which the characteristic path length is 

low and the average clustering coefficient is high, typical of small-world networks. The degree 

distribution, like for the Erdős-Rényi model, is a Poisson distribution [3]. 

In 1999, Barabasi and Albert argued that many large real networks have a degree distribution 

following a power-law function, which arises naturally introducing two generic mechanisms: 

growth and preferential attachment [11]. In other words, the network expands by the addition 

of new nodes, and these new nodes preferentially attach to nodes that are already well 

connected. According to the generative procedure of the model, starting from a small number 



11 
 

of nodes, at every step a new node is added and it connects to m nodes already present in the 

network, where the links are chosen with probabilities proportional to the degrees of the nodes. 

The resulting networks with power-law degree distribution are also reported as scale-free 

networks [11]. The main characteristic that makes the power-law different from the Poisson 

degree distribution of the previous models is the fat tail, implying that there are many nodes 

with few connections and few nodes with many connections, and such rich nodes are known 

as hubs. However, the rareness or universality of scale-free networks, as well as the definition 

of scale-free network itself, it is still a controversial topic [12]–[14].  
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2. Related work 
 

Given a general introduction on network science, this section will focus more on the specific 

subfield on which the dissertation is based, which is network geometry. It will summarize, 

mainly in chronological order, the most important papers that provided significant 

contributions to the rapid growth and interest that this topic has gained around the last decade. 

Both the models and the inference methods that represent the milestones in this subfield will 

be reported, together with examples of applications from the literature. This overview will give 

the knowledge required in order to present, in the next section, the results of the three papers 

that characterize this dissertation. Note that some models will be commented in this section in 

a more qualitative and conceptual fashion, without going into the mathematical details, since 

they are already reported within the papers. 

In 2008 Serrano et al. introduced the concept of hidden metric space [15]. The basic idea of 

hidden metric space of a complex network is that the nodes are located at certain geometrical 

coordinates, such that for each pair of nodes a distance is defined, and nodes that are closer to 

each other in the space are more likely to be connected in the network topology [15]. The 

original motivation of Serrano et al. was that self-similarity and scale-freeness, traditionally 

known as characteristics of certain geometric objects such as fractals, are still not properly 

defined in a geometric sense for complex networks, since many complex networks are not 

explicitly embedded in a physical space [15]. In order to test whether real networks could 

exhibit self-similarity, they designed a degree-normalization procedure, considering increasing 

degrees as thresholds, and analyzing for each threshold the subgraph consisting of the nodes 

with degree higher than the threshold. After analyzing few real networks, they concluded that 

the topological characteristics of the subgraphs, like degree distribution and clustering 

coefficient, were very similar, and therefore those networks could be considered self-similar 

with respect to the renormalization procedure [15]. As a further validation, they noticed that 

the self-similarity was not present after a randomization of the original topology while 

preserving the degree distribution (in particular, in this case the clustering was not self-similar). 

In addition to the self-similarity, another characteristic suggesting the presence of a hidden 

metric space behind complex networks was the high clustering measured in the real topologies 

[15]. Indeed, if the distance between the nodes in the hidden metric space satisfies the triangle 

inequality, then a high concentration of triangles, and therefore high clustering, will arise 

naturally. The triangle inequality states that for any triangle, the sum of the lengths of any two 

sides must be greater than or equal to the length of the remaining side. In intuitive words, 
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considering that nodes that are closer are more likely to be connected, if A is close (and 

connected) to B and B is close (and connected) to C, then A cannot be too far away from C, 

therefore they will likely be connected too, closing the triangle [15]. In the rest of their work, 

Serrano et al. introduced a network model where the nodes exist in a one-dimensional metric 

space (a circle) underlying the network topology, and that is able to generate networks with a 

scale-free degree distribution, strong clustering and the small-world property. They also 

emphasized that there were already in literature models of network embedded in a metric space, 

but that none of them could simultaneously reproduce all the characteristics mentioned above 

[15]. 

In 2009 Boguña et al. presented a second advantage of the adoption of a hidden metric space 

[16]. Not only it can offer an explanation for the topological characteristics typically observed 

in real networks, but it can also provide a plausible framework to justify the high navigability 

efficiency that networks often exhibit [16]. Many real systems have transport as their primary 

function, such as Internet or airport networks. When the elements of the system have a full 

view of the global network topology, finding the shortest route from the source to the target 

destination has a well-known computational solution. However, when the elements of the 

system do not have any global knowledge, for example in signaling pathways and neural 

networks, the protocol followed for reaching a highly efficient routing is not always clear. 

Boguña et al. adopted a greedy routing protocol to investigate this second case, in which the 

nodes of the network need to send information to a target destination only exploiting local 

information. In particular, each node knows only the position of its neighbors and of the 

destination in the hidden metric space, and it forwards the information to its neighbor closest 

to the destination [16]. They generated synthetic networks adopting the model of Serrano et al. 

[15] in order to reproduce characteristics observed in real networks and also to have a hidden 

geometric space behind the network topology. After several experiments they noticed that 

within the hidden metric framework and greedy routing protocol adopted the networks could 

route information with high efficiency, although the elements of the system were lacking global 

knowledge [16]. The main motivation that inspired the work of Boguña et al. was the scalability 

problem of the Internet architecture. In order to route packets to target destinations, the routers 

need to communicate to keep a coherent view of the global Internet topology. Due to the 

continuous growth in size and dynamics of the Internet, this communication processing 

overhead might become a crucial bottleneck for routing scalability in the near future. The 

adoption of a hidden metric space for the Internet network would theoretically remove the need 
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for maintaining global knowledge allowing the routers to greedily forward packets to the target 

destination based on the hidden distances [16]. 

In 2010 Krioukov et al. [17] make a further step in the field of network geometry. Under the 

assumption that there is a hyperbolic geometry underlying the topology of complex networks, 

then strong clustering and a power-law degree distribution emerge naturally. On the other side, 

assuming that the network has a hidden metric space and that the degree distribution is power-

law, then the metric distances can be rescaled such that the hidden geometry is hyperbolic. 

Considering the greedy routing framework previously discussed by Boguña et al. [16], they 

also show that the routing efficiency is maximized if the hidden metric space underlying the 

network topology is hyperbolic. Furthermore, in order to test the robustness of the routing in 

case of damages to the Internet topology, they simulated the failure of certain percentages of 

the network links, highlighting a high robustness of the routing efficiency in presence of such 

perturbations events [17]. These results of this work paved the way for a large variety of studies 

and investigations about the hidden hyperbolic geometry of complex networks, which is 

currently a very hot topic in the area. 

In line with the motivation behind the work of Boguña et al. [16] and the discovery of Krioukov 

et al. [17], in 2010 Boguña et al. introduced a method to map the Internet network to a 

hyperbolic space [18]. The paper shows that using this map and the greedy routing protocol, 

the scaling properties of the Internet routing become theoretically close to the best possible, 

potentially solving the problem of sustaining the Internet scalability [18]. The mapping method 

adopted is not specific for the Internet network, it is generic and can be applied to any other 

complex network with hidden metric structure and power-law degree distribution. The 

mapping method is based on likelihood maximization, therefore it aims at maximizing the 

likelihood that the observed Internet topology has been generated by the network model [18]. 

In particular, the model considered is the one described by Krioukov et al. [19], which is similar 

to the one previously introduced by Serrano et al. [15]. As indicated by the authors, methods 

based on maximum likelihood estimation can be very time consuming and the running times 

might become prohibitive for substantially large networks [18]. 

In 2012, Papadopoulos et al. [20] introduced a new fundamental concept for describing the 

mechanisms characterizing the growth of complex networks. Since the well-known paper of 

Barabasi et al. [11], it has been widely accepted that the popularity was a main attractive force 

during the network evolution, where new nodes entering the system preferentially link to nodes 

already popular in the network. This “rich get richer” process was naturally giving rise to a 

degree distribution following the power-law function [11]. In this work, Papadopoulos et al. 
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[20] show that popularity is only one dimension of attractiveness, with another dimension being 

the similarity. Indeed, nodes that are more similar have a higher chance of establishing a 

connection, regardless of the fact that they are popular or not [20]. In the social science this 

effect is known as homophily, and it has been observed in many other real networks [21]. 

Therefore, Papadopoulos et al. [20] developed a new framework in which new connections 

optimize a certain trade-off between the popularity and the similarity between the nodes. The 

simplest way to model the popularity would be the node birth time t. If there are no other factors 

in play, the older nodes have higher likelihood to become popular and attract more connections. 

In order to model the similarity, the nodes are randomly placed with an angular coordinate ϑ 

on a circle, which represents a simple similarity space where nodes at lower angular distance 

are more similar. In this basic model, the network is initially empty, and at each subsequent 

time step one new node enter in the network, linking to a prefixed number m of the existing 

nodes, chosen as the ones that minimize the product between birth time (popularity) and 

angular distance (similarity) [20]. Papadopoulos et al. [20] show that this basic model has an 

interesting geometrical interpretation. If we map the nodes not on a circle but on a plane adding 

also a radial coordinate, defined as the logarithm of the birth time 𝑟 = ln 𝑡, then establishing 

the links optimizing the product between birth time and angular distance is equivalent to 

connecting to the nodes at the lowest hyperbolic distance. Assuming the network with a hidden 

hyperbolic space, the hyperbolic distance can therefore be adopted as a unique metric 

representing the trade-off between the two forces of attraction in the network growth: radial 

popularity and angular similarity [20]. Papadopoulos et al. [20] comment also that there are 

crucial differences between the pure preferential attachment of the Barabasi-Albert model [11] 

and the model here proposed. The most important regards the clustering coefficient, which 

becomes asymptotically zero for increasing network size in the Barabasi-Albert model, 

whereas this model is able to reproduce the strongest possible clustering for a given degree 

distribution [20]. To the basic model, initially described for a more conceptual discussion, 

Papadopoulos et al. [20] added two main modifications in order to provide the possibility of 

tuning the clustering coefficient and the exponent of the power-law degree distribution. The 

first modification consists in introducing the concept of temperature, which intuitively 

indicates whether the network topology is congruous or not with the underlying metric space. 

At zero temperature the topology maximally reflects the underlying geometry, the new nodes 

connect only to the geometrically closest existing nodes and the clustering coefficient is 

maximized. At increasing temperature, new nodes establish links with a connection probability 

inversely related to the geometrical distance, therefore also connections between nodes far from 
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each other are possible, and the clustering coefficient decreases [20]. The second modification 

consists in introducing the concept of popularity fading, according to which, while the network 

grows, the existing nodes increase their radial coordinate drifting away from the center of the 

hyperbolic disk, which is the point of maximum popularity. Changing the speed of this 

popularity fading allows to tune the exponent of the power-law degree distribution. 

Papadopoulos et al. [20] let also notice that, by letting the different nodes move with different 

speeds, this geometric optimization model can be mapped to the Bianconi-Barabasi model [22]. 

This model is an extension of the Barabasi-Albert model [11] adding to the concepts of growth 

and preferential attachment the one of fitness. Each node has a value of fitness that indicates 

its ability to attract new links regardless of its degree. The introduction of the fitness model 

allows also to new nodes entering the system to become popular [22]. Note that more details 

on the popularity-similarity optimization (PSO) models can be found in the Methods sections 

of the Papers A, B and C of the dissertation. 

While the PSO model [20] lead to a significant progress in understanding the role of the hidden 

metric space behind the structure and dynamics of real complex networks, in order to translate 

this knowledge into practical applications a reliable network mapping method is required. An 

embedding method, given the observed topology of the real networks, infers the geometric 

coordinates of the nodes in the hidden metric space. Only provided such mapping, further 

analysis and applications based on the hidden geometry of the network would be possible. 

Given the ability of the PSO model to generate synthetic networks that well resemble real 

systems over a wide range of structural and dynamical features, Papadopoulos et al. [23] raised 

the question of whether it would be possible to map a network into the hyperbolic space in a 

way congruent to the PSO model. In order to answer to this question, Papadopoulos et al. [23] 

design an embedding methods that they named HyperMap. HyperMap, like the mapping 

method previously introduced by Boguña et al. [18], is based on maximum likelihood 

estimation. The algorithm replays the geometric growth of the network according to the PSO 

model and assigns coordinates to the nodes by maximizing the likelihood that the network is 

produced by the model [23]. The authors applied HyperMap to the Autonomous Systems 

topology of the Internet. As a first result, they showed that the mapping highlights soft 

communities of Autonomous Systems belonging to the same geographic region, where by soft 

communities they indicate groups of nodes located close to each other in the space. This is 

reasonable, since Autonomous Systems belonging to the same country tend to connect more 

densely between each other than to the rest of the world [23]. Given the Internet embedding, 

Papadopoulos et al. [23] also tested link prediction as practical application, and in particular 
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the prediction of missing links [23]. They adopted a standard framework of evaluation in which 

a percentage of links is randomly removed from the original topology, the remaining topology 

is provided in input to the algorithm, which provides in output a score for each nonobserved 

link, representing the likelihood of that link to exist. The performance is then evaluated by 

verifying whether the missing links originally removed obtained higher likelihood with respect 

to the other nonobserved links, computing several possible evaluation metrics, such as 

precision [24]. In the case of HyperMap, the hyperbolic distance was used to assign likelihood 

scores: the smaller the hyperbolic distance between two disconnected nodes, the higher the 

likelihood of the nonobserved link between them to exist [23]. The performance of HyperMap 

resulted similar to the one of basic link predictors adopted in literature, whereas it was better 

when hard-to-predict links (between low degree nodes without common neighbors) where 

evaluated [23]. At last, similarly to Boguña et al. [18], Papadopoulos et al. [23] applied the 

Internet mapping also for testing the navigability of the network, obtaining that the greedy 

routing is highly efficient, in agreement with previous results [23]. 

In the same year, Papadopoulos et al. [25] developed an extended variant of HyperMap, which 

adopts also common neighbors’ information in order to infer the coordinates of the nodes in 

the hyperbolic space. In particular, while in HyperMap the likelihood function to maximize 

only contains information about the connections and disconnections between the nodes, in this 

new approach the likelihood function also includes information about the number of common 

neighbors between the nodes [25]. The authors state that this extension leads to a more accurate 

inference, although the approach is computationally expensive with a complexity of O(N4), 

being N the number of nodes in the network. Therefore they also developed a hybrid approach 

adopting the likelihood function of the new variant, based on common neighbors’ information, 

only for inferring the coordinates of high degree nodes, and the likelihood function of 

HyperMap for the remaining nodes, arguing that the computational complexity is reduced to 

O(N3) without significant loss in mapping accuracy [25]. Note that more details on the 

HyperMap method and its extension (referred to as HyperMap-CN) can be found in the 

Methods sections of the Papers A and C of the dissertation. 

In 2013, Mangioni and Lima [26] presented a separate work that also builds on the results of 

Krioukov et al. [17]. Analogously to Papadopoulos et al. [20], they noticed that the preliminary 

model presented by Krioukov et al. [19] was static, and therefore it did not properly reproduce 

the dynamical properties of many real networks, which in most of the cases evolve and grow 

over time, with new nodes entering the system. Therefore, they proposed a new model that is 

a variation of the one presented by Krioukov et al. [19], with the main differences that the 
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network grows over time and that the space is discretized, meaning that the nodes can only 

occupy specific discrete slots within the hyperbolic space. The focus of the work of Mangioni 

and Lima [26] was to present a model more devoted to be adopted in practical applications 

such as building overlay networks in distributed computing environment [27]. The authors also 

commented that the discretized growing model developed conserves the desirable properties 

of the static model of Krioukov et al. [19], such as a power-law degree distribution and an 

extremely efficient greedy routing. 

After the introduction of the PSO model from Papadopoulos et al. [20], in 2015 Zuev et al. [28] 

perform an additional step. The authors argue that, although there is no consensus in what are 

the most common properties of real networks, power-law degree distribution, high clustering 

and community structure are certainly frequent [28]. While we have already discussed how the 

PSO model is able to reproduce the first two features in growing networks, a simple mechanism 

that provides also a non-trivial community structure is still lacking [28]. In order to fill this 

gap, Zuev et al. [28] introduce the concept of geometric preferential attachment (GPA). The 

model proposed is similar to the PSO but with a new main assumption. The similarity space is 

not equally attractive, instead it contains hot regions that are more attractive for the new nodes 

entering the system [28]. For example, in a collaboration network where nodes are scientists, a 

hot region can represent a hot working area in science. In order to model this new hypothesis, 

the new nodes are not placed in the similarity space with uniform probability, but they are 

placed in the hot regions with higher probability, therefore generating regions of higher node 

density. As a consequence, the distribution of the node angular coordinates in the similarity 

space is not homogeneous as in the PSO model, but heterogeneous [28]. The attractiveness of 

the regions is characterized by two factors in the model. The first one is the number of existing 

nodes that lie in the proximity of that regions, intuitively meaning that regions where many 

nodes are present are more attractive. The second factor is a parameter of initial attractiveness, 

which allows mainly to tune the heterogeneity of the angular coordinates distribution [28]. The 

authors comment that, while in the PSO the choice of a position in the similarity space is a 

passive decision performed uniformly at random, in the GPA it can be considered an active 

decision made by the node depending on the attractiveness of the different locations. The 

heterogeneous distribution of the angular coordinates of the nodes encodes a non-trivial 

community structure, where the communities are indicated by clusters of spatially close nodes 

[28]. In particular, Zuev et al. define a soft community as a group of nodes separated from the 

rest of the network by two gaps that exceed a certain critical value, and based on this definition 

they also propose a method to detect the communities from the similarity space [28]. In 
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summary, starting from the framework of hyperbolic network geometry, considering the 

popularity and similarity as driving forces in the network evolution, and adding the mechanism 

of preferential attachment of the nodes to hot geometric regions, the GPA model is able to grow 

networks with a power-law degree distribution, strong clustering and an emergent soft 

community structure [28]. Note that more details on the GPA model can be found in the 

Methods sections of the Paper B of the dissertation. 

In 2016 Krioukov [29] brings further support to the field of network geometry, motivated by 

the problem that it is usually not possible to know if a given real network has a hidden 

geometry, or in other words, if such real network is an element in the set of random geometric 

graphs. In his work, Krioukov [29] demonstrates that given random graphs with expected 

degree and clustering of each node fixed to some constants, if the clustering if sufficiently 

strong, then they are equivalent to random geometric graphs on the Euclidean line. The degree 

distribution of such random geometric graphs is the Poisson distribution, however it can be 

enforced to be a power-law distribution as typically observed in real networks by enforcing a 

hyperbolic geometry [29]. 

In the same year, Kleinberg et al. [30] extend the study of hidden metric spaces to multiplex 

networks. Despite the presence of contradictory terminology in literature [31], in this case a 

multiplex or multilayer network is considered a system composed of multiple networks having 

all the same set of nodes but with different patterns of interactions, usually representing 

different types of relationships between the nodes [31]. For example, in a transportation 

multilayer network the nodes could be cities and different layers might represent different types 

of connections between the cities (bus, train, flight and so on). In this work they show that 

multiplex systems are not random combinations of single network layers. Instead, they are 

organized in specific ways dictated by hidden geometric correlations between the layers, and 

they are hidden since they cannot be observed looking at the individual network topologies 

[30]. In their analysis, each single network layer is separately mapped into the hyperbolic space 

(in this case using the HyperMap method), assigning to each node radial and angular 

coordinates for each layer. The coordinates of the nodes can then be compared across layers, 

and the authors found that they are significantly correlated, meaning also that the distances 

between the nodes in the underlying hyperbolic spaces of the each network layer are also 

significantly correlated [30]. As a first result, the authors discovered an overabundance of two-

dimensional soft communities, defined as sets of nodes that are similar (located at small angular 

distance) in both layers of the multiplex. These clusters of similar nodes do not appear in 

reshuffled counterparts of the systems, where the node ids are randomly permutated [30]. As 
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second result, the authors show that the strong geometric correlations between layers allow to 

perform an accurate trans-layer link prediction, meaning that the hyperbolic distances in one 

layer can be used to predict the connections in another layer [30]. Kleinberg et al. comment 

that this could be useful when there is knowledge of the connections between nodes in one 

context, for example structural connections between brain regions, and we need to perform a 

prediction in another related context, for example the likelihood of functional connections 

between the same brain regions [30]. At last, their work investigated the importance of the 

geometric correlations for the navigability of the networks. While it has been already shown in 

previous works that real networks, like the Internet network, has a highly efficient greedy 

routing when mapped in the hyperbolic space [18], this has not been analyzed by exploiting 

multiple layers yet. We recall that in the single-layer greedy routing protocol, the node send 

the information to their neighbor that is closest to the destination in the geometric space. In the 

multilayer scenario, the authors defined the process as mutual greedy routing, where the 

information can flow also across layers, therefore the node forwards the message to its neighbor 

that is closest to the destination in any of the layers of the system [30]. If we think about the 

previous example of multilayer transportation network, where different layers represent 

different types of transport, then such protocol would be equivalent for example to go from a 

source city to an intermediate city by train, and then to switch layer and proceed from the 

intermediated city to the destination city by bus. In particular, in this paper they showed that 

the mutual greedy routing in the multiplex network consisting of the IPv4 and IPv6 topologies 

is more efficient than the greedy routing performed in the single IPv4 and IPv6 networks [30]. 

In 2017, Allard et al. [32] made a further step towards the generalization of network models 

based on hyperbolic geometry and extended the current framework also to weighted networks. 

They introduce a new general model that can be used to quantify the level of coupling between 

the topology, the weights and the hidden metric space, and also to reproduce both the topology 

and weights of real networks. Their results suggest that the formation of links and the 

assignment of their weights are governed by different processes [32]. 

We conclude this section with a recent work released in 2019 as an arXiv preprint, where Kitsak 

et al. [33] performed a wide investigation about the usage of hyperbolic geometry for link 

prediction, due to contradictory results presented in the previous literature. We recall that link 

prediction with hyperbolic geometry is a two-step procedure. First, the network has to be 

mapped in the hyperbolic space, meaning that the coordinates of the nodes need to be inferred. 

Second, from the given coordinates the nonobserved links that are more likely to be missing 

can be identified. As a first result of the article the authors notice that some evaluation measures 
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of link prediction accuracy are extremely sensitive to inaccuracies in the inference of the 

hyperbolic coordinates of the nodes. For such reason, the authors developed a new method for 

network embedding in the hyperbolic space that, as they report, maximizes the accuracy of 

such inference. As second main result, the work highlights that there are many link prediction 

methods able to infer more obvious and easy-to-predict links, among which hyperbolic link 

prediction is usually not the best but still competitive, whereas it becomes the best when the 

task is to predict less obvious and hard-to-predict missing links, such as missing links in largely 

incomplete networks and missing links between nodes without common neighbors [33].  
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3. Results 
 

After the general introduction on network science and a review of the most important works 

related to the field of network geometry, this section will focus on the three papers of the 

dissertation. Fistly, the content of each paper is briefly reported, then the main results of each 

paper will be discussed. 

In Paper A we introduce a new class of topological machine learning algorithms for embedding 

networks in the hyperbolic space, named ‘coalescent embedding’, which reduces the 

computational complexity to O(N2), versus O(N3)-O(N4) of the state-of-the-art methods based 

on maximum likelihood approaches. We adopted the PSO model as a framework to compare 

the mapping accuracy and greedy routing efficiency of coalescent embedding against state-of-

the-art methods, using three evaluation measures introduced in this paper: HD-correlation, C-

score and GR-score. As example of application, we exploit the geometrical information 

inferred using coalescent embedding to boost community detection algorithms on real 

networks. At last, we show how the coalescent embedding algorithms are able to provide 

mappings not only in the two-dimensional hyperbolic disk but also in the three-dimensional 

hyperbolic sphere. 

In Paper B we introduce the nonuniform PSO (nPSO) model, which generates synthetic 

networks in the hyperbolic space, where heterogeneous angular node attractiveness is forced 

by sampling the angular coordinates from a tailored nonuniform probability distribution. The 

model is able to reproduce synthetic networks with high clustering, small-worldness, scale-

freeness and a desired community organization, with the possibility to fix the number of 

communities, their relative sizes and to tune the mixing between them. An efficient 

implementation of the nPSO model is provided, with computational complexity of O(EN). In 

addition, we investigate the detectability of the communities by a state-of-the-art algorithm, 

showing that the model generates a meaningful community structure. At last, we perform a 

wide analysis to investigate the impact of a variable community organization on the main 

structural properties of the synthetic networks. 

In Paper C we leverage the nPSO model introduced in Paper B as a benchmark for comparing 

the performance of community detection and link prediction methods. First, we evaluate state-

of-the-art community detection methods using the communities generated by the nPSO model 

as ground-truth, showing the agreement with previous studies. Second, we test the performance 

of state-of-the-art link prediction methods on PSO and nPSO networks and verify the 

importance of community organization for link prediction and the agreement with respect to 
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real networks. Third, we show that the community detection performance can be improved 

using information gained by the network embedding in the hyperbolic space. At last, we discuss 

that link prediction in the hyperbolic space still needs further investigation. 

 

Paper A: A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci. (2017). 

Machine learning meets complex networks via coalescent embedding in the hyperbolic 

space. Nature Communications, 8, 1615. 

In the previous section, we have reported state-of-the-art methods for embedding a given 

network in the hyperbolic space. Such methods, provided in input a network topology, infer 

the radial and angular coordinates of the nodes in the hyperbolic space. The algorithms 

described, such as the pioneering one of Boguña et al. [18], HyperMap [23] and its extension 

HyperMap-CN [25], are all based on maximum likelihood approaches, which are generally 

very time consuming. The time complexity of the embedding methods developed are indeed 

between O(N3) and O(N4), which is still reasonable for networks of small size, but it becomes 

unfeasible for large systems. 

In this paper we show that, adopting topological-based machine learning for nonlinear 

dimension reduction, the node angular coordinates of the hyperbolic model can be directly 

approximated in the embedding space according to a persistent node aggregation pattern, which 

we term ‘angular coalescence’, and we name the related algorithms ‘coalescent embedding’. 

Manifold machine learning for unsupervised nonlinear dimensionality reduction is an 

important sub-class of topological machine learning algorithms. They learn nonlinear 

similarities between points distributed over a hidden manifold in a multidimensional feature 

space, in order to preserve, map and visualize them in a reduced space [34]. These methods are 

already used in network biology for instance to predict node similarities in protein interaction 

networks [35], [36], therefore it was likely for us to envisage their usage for network 

embedding in the hyperbolic space. We notice that the maximum likelihood approaches 

previously developed rely on an underlying hyperbolic network model for the inference of both 

radial and angular coordinates of the nodes. Instead, coalescent embedding algorithms infer the 

angular coordinates of the nodes in a model-free way, whereas the inference of the radial 

coordinates is still based on the PSO model theory. Most importantly, the time complexity of 

the class of algorithms proposed is O(N2), allowing a fast and accurate embedding also for 

networks of large size. As a running time example, we embedded large networks of 10000 

nodes in less than one minute and 30000 nodes in few minutes. 
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The mapping accuracy of the hyperbolic embedding methods has been compared on synthetic 

networks generated with the PSO model, ranging over several combinations of the model 

parameters. In order to evaluate the mapping accuracy we designed two different measures. 

The first one is the HD-correlation, which is the Pearson correlation between all the pairwise 

hyperbolic distances of the network nodes computed from the original coordinates of the PSO 

model and from the inferred coordinates. This measure provides an overall score of mapping 

accuracy considering both radial and angular coordinates. The second one is the Concordance 

score (C-score), which can be interpreted as the proportion of node pairs for which the angular 

order in the inferred network corresponds to the angular order in the original network. This 

measure only evaluates the angular ordering of the nodes and therefore their similarity, which 

are usually the most difficult to infer. Considering both the metrics, we show that the coalescent 

embedding techniques are outperforming the state-of-the-art methods. 

Another important characteristic that can be studied in a network embedded in a geometrical 

space is its navigability. The network is considered navigable if the greedy routing (GR) 

performed using the node coordinates in the geometrical space is efficient [16]. In the GR, for 

each pair of nodes, a packet is sent from the source to the destination and each node knows 

only the address (coordinates) of its neighbors and the address of the destination, which is 

written in the packet. In the GR procedure adopted [23], at each hop the packet is forwarded 

from the current node to its neighbor at the lowest hyperbolic distance from the destination and 

it is dropped when a loop is detected. In previous works, the GR was generally evaluated 

computing the percentage of successful paths and the average length of successful paths with 

respect to the shortest paths. In this paper we designed a new measure for evaluating the 

efficiency of the GR, which we named GR-score (or GR-efficiency), and it merges both the 

previous measures in a unique score. The GR-score assumes values between 0, when all the 

routings are unsuccessful, and 1, when all the packets reach the destination through the shortest 

path. Comparing the performance of the hyperbolic embedding methods on the PSO networks, 

we noticed that HyperMap-based algorithms obtained the highest GR-score, followed by the 

coalescent embedding techniques. The main reason is that the success of the greedy routing is 

very sensitive to the fact that connected nodes are mapped close in the geometrical space and 

disconnected nodes far apart. In fact, mapping disconnected nodes close in the geometrical 

space is likely to cause the routing of packets into wrong paths. While HyperMap maximizes 

the fact that connected nodes are at low hyperbolic distance and disconnected nodes are at high 

hyperbolic distance, coalescent embedding put connected nodes close and disconnected far 

only in the angular coordinates space and not directly in the hyperbolic space, where instead 
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the greedy routing navigation occurs. This point might be improved in future works, designing 

algorithms still based on fast machine learning techniques but able to optimize hyperbolic 

distances rather than angular distances only. 

Once in possession of fast methods that are able to map complex networks in the hyperbolic 

space with high precision, several studies can be lead exploiting the geometrical information. 

Here, as an example of application we show how the hyperbolic distances can be used to feed 

community detection algorithms. Community structure is a relevant feature of real networks, 

and consists in the organization of network nodes into groups within which the connections are 

dense, but between which connections are sparser. The development of algorithms for detection 

of such communities is a key topic that has broad applications in network science. We modified 

four approaches for community detection that a recent comparative study has shown to be the 

best among the state-of-the-art and that accept in input also weighted adjacency matrices. We 

demonstrate that they can be boosted when applied to the networks weighted according to the 

hyperbolic distances, which were inferred by our coalescent embedding techniques. The 

visualization of the inferred coordinates for several real networks also highlights that the 

communities are well separated over the similarity space of the angular coordinates. 

In comparison to the other approaches for hyperbolic embedding developed in previous studies 

and tailored for the two-dimensional hyperbolic disk, a peculiar property characterizes the class 

of unsupervised topological-based nonlinear machine learning algorithms adopted here. Being 

based on matrix decomposition methods for dimensionality reduction, there are not constraints 

on the number of dimensions that can be used to perform the embedding. Therefore, we 

investigate the possibility to enlarge the geometrical space from the hyperbolic disk to the 

hyperbolic sphere, with the addition of a further dimension. The evaluation of the 3D 

hyperbolic embedding with respect to the 2D embedding for the greedy routing and the 

community detection applications highlighted that the addition of the third dimension does not 

lead to a clear and significant improvement in performance. However, further investigations 

should be provided on networks of larger size and different types of origin, because the 3D 

space might conceptually offer an advantage with networks of large size. Finally, we want to 

emphasize that, while the other hyperbolic embedding methods should be re-designed to fit for 

the three-dimensional space, with the adoption of coalescent embedding approaches the 

exploration of additional dimensions of embedding is free of charge. 
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Paper B: A. Muscoloni, C. V. Cannistraci. (2018). A nonuniform popularity-similarity 

optimization (nPSO) model to efficiently generate realistic complex networks with 

communities. New Journal of Physics, 20, 052002. 

In the previous section we have already introduced the PSO model [20], which describes how 

random geometric graphs grow in the hyperbolic space optimizing a trade-off between 

popularity and similarity. In this framework, the popularity of the nodes is represented by the 

radial coordinate in the hyperbolic disk, whereas the angular coordinates distance is the 

geometrical counterpart of the similarity between the nodes. Networks generated through the 

PSO model exhibit strong clustering and a scale-free degree distribution, two among the 

peculiar properties that usually characterize real-world topologies [11], [37], [38]. However, 

another important feature commonly observed is the community structure [6], [39], [40], which 

is lacking in the PSO model, since the nodes are arranged over the angular coordinate space 

according to a uniform distribution. This issue has been addressed in the study of Zuev et al. 

[28], introducing the geometric preferential attachment (GPA). The GPA couples the latent 

hyperbolic network geometry with preferential attachment of nodes to this geometry in order 

to generate networks with strong clustering, scale-free degree distribution and a non-trivial 

community structure [28]. Recalling from the previous section, the GPA is characterized by 

heterogeneous angular attractiveness: the higher the attractiveness of a region the higher the 

probability that the nodes are placed in that angular section. However, the GPA model does not 

allow, at least in its current implementation, to directly control in an explicit and efficient way 

the number and size of the communities, a property that instead might be interesting, for 

example, while proposing a community detection benchmark. Furthermore, the GPA model 

does not take into account the possibility to vary the network temperature, an important 

parameter of the PSO model for tuning the clustering coefficient. For this reasons, in this paper 

we introduce a variation of the PSO model, which we call nonuniform PSO (nPSO) model, 

whose key aspects are the possibility of: a) fixing the number and size of communities; b) 

tuning their mixing property through the network temperature; c) efficiently producing also 

highly clustered realistic networks. 

The procedure to generate a network is the same as for the PSO model, with the only difference 

that the angular coordinates of the nodes are not sampled uniformly but according to the given 

nonuniform probability distribution. In particular, without loss of generality, we concentrated 

on the mixture of distributions where the components are either Gaussian or Gamma 

distributions, which we consider suitable for describing how to build a nonuniform distributed 

sample of nodes along the angular coordinates of a hyperbolic disk, with communities that 
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emerge in correspondence of the different components. For instance, given a Gaussian mixture 

distribution the communities will emerge in correspondence of the different Gaussians, 

therefore the number of Gaussians can be used to fix the number of desired communities and 

the mixing proportions of the components can be used to tune their relative size. 

One of the main drawbacks to use the original algorithmic implementation (#1) to establish 

links adopted by the PSO and GPA models also for the nPSO model, is the lack of efficiency 

in generating networks with communities characterized by high clustering (low temperature), 

or more in general, with features such that most of the connection probabilities to the targets 

are low during the network growth. Indeed, the computational time of implementation #1 for 

generating PSO networks of size N = 1000 is in the order of seconds, whereas for nPSO 

networks with low temperature it might take up to several hours, depending on the number of 

communities. Here we propose two other different algorithmic implementations (#2 and #3), 

showing that both the implementations do not present any issue for generating nPSO networks 

with low temperature. Analysing the time complexity, both the implementations #1 and #2 

have a dependency on the average connection probability to the targets during the generative 

procedure, which is mainly affected by the temperature and by the extent of the hyperbolic 

distances. Their complexity formulation is not straightforward to explicitly report since it is 

function of many parameters of the model. We recommend implementation #3, which resulted 

the fastest from running time simulations, and whose computational complexity is only 

dependent on the number of nodes and edges and it is O(EN), requiring 5 minutes to generate 

large size nPSO networks of N = 10000. In the paper we also provide the mathematical proof 

that the three implementations generate equivalent network topologies. 

As a second result of the paper, we performed a wide investigation on the parameter 

combinations of the nPSO model for which the emerging communities are detectable by a state-

of-the-art algorithm, considering also more complicated settings with asymmetric angular 

coordinate distributions over the angular space. We highlighted that, for most of the parameter 

combinations representing realistic scenarios, the community organization can be spotted by 

the state-of-the-art algorithm Louvain. The main factor that reduces the detectability is the ratio 

between the number of communities and the network size, in particular community detection 

in nPSO networks reduces significantly for small size networks that present many 

communities. These results suggest that realistic community structure is properly reproduced 

by the model and the nPSO might be employed as a benchmark for testing community detection 

algorithms, which is the topic of Paper C. 
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As last analysis, we evaluated and compared several topological measures of the synthetic 

networks generated using the PSO and nPSO models, and from this wide investigation two 

important results emerge. First, the parameters of the model allow to reproduce a great variety 

of the structural properties observed in real-world complex networks, and we provide heatmaps 

that can be used as a guide for the choice of parameters while generating networks with desired 

characteristics. Second, the diverse community organization has only a minor impact for most 

of the main topological measures. This suggests, for example, that if you want to model a given 

real network and you need to fit the temperature parameter of the model, this can be inferred 

from the clustering coefficient regardless of the community structure. 

 

Paper C: A. Muscoloni, C. V. Cannistraci. (2018). Leveraging the nonuniform PSO 

network model as a benchmark for performance evaluation in community detection and 

link prediction. New Journal of Physics, 20, 063022. 

In Paper B we introduced the nPSO model, which grows random geometric graphs in the 

hyperbolic space, reproducing networks that have realistic features such as high clustering, 

small-worldness and scale-freeness, with the additional possibility to control the community 

organization, tuning the number of communities, their size and their mixing. In this paper, we 

leverage the model as a benchmark for comparing the performance of community detection 

and link prediction methods. 

Providing a benchmark for community detection requires the possibility to manipulate 

structural properties such as average node degree, clustering, small-worldness and scale-

freeness, in order to assess how differently community detection algorithms react to these 

controlled topological variations. Several generative models have been proposed in the past 

years as synthetic benchmarks for community detection [40]. One of the first benchmark has 

been developed by Girvan and Newman [6], where all the nodes have the same degree and all 

the communities identical size, and has been later extended by Danon et al. [41] in order to 

generate communities with different size. A generative model able to reproduce structural 

properties closer to the ones observed in real networks has been proposed by Lancichinetti-

Fortunato-Radicchi (LFR) [42], which is characterized by a power-law distribution of degree 

and community size. A further benchmark for overlapping communities has been introduced 

by Ball et al. [43], however, having all the nodes the same expected degree, it is less realistic 

and flexible than the LFR [40]. Interestingly, all these well-known models of networks with 

communities are not generated according to a latent geometry, which instead is the fundamental 

theme of this study. 
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The community detection algorithms Louvain [44], Infomap [45], Walktrap [46] and Label 

propagation [47] are four state-of-the-art approaches that have been shown to provide high 

performances on synthetic benchmarks [48]–[50]. Louvain [44] is a model-free and 

unsupervised heuristic method based on modularity optimization; Infomap [45] finds the 

community structure by minimizing the expected description length of a random walker 

trajectory using the Huffman coding process; Walktrap [46] is based on an agglomerative 

method for hierarchical clustering, where the similarities between the nodes or groups are 

obtained using random walks; Label propagation [47] is an iterative algorithm in which each 

node label is updated with the one owned by the majority of the neighbours until reaching a 

consensus. In this study, we compare these four community detection approaches across 

synthetic networks generated using diverse nPSO parameter combinations. The results indicate 

that overall Louvain appears as the strongest approach, with an almost perfect detection over 

different values of network size, average node degree and temperature. Analysing the 

advantages and disadvantages of each method over the nPSO parameter combinations, we 

noticed that the results were in agreement with previous studies [48], in which for example it 

was shown that for a high mixing of the communities Louvain and Walktrap are more robust, 

whereas Infomap and Label propagation tend to drop in performance. Therefore, the nPSO 

model seems to provide a good benchmark to test community detection algorithms on networks 

generated using a latent geometry model which is based on the hyperbolic space. 

The study in Paper A demonstrated that, exploiting the geometrical embedding information in 

order to weight the adjacency matrix in input to the community detection algorithms, the 

performance of the respective unweighted variants can be improved [51]. Since the evaluation 

tests were executed on real network datasets, it remained the doubt that the performance 

evaluation could have been possibly biased by the restricted metadata available on the 

community annotation. This is a perfect example for clarifying the utility of the nPSO model. 

We would like to have a dataset of realistic networks for which we know the ground-truth 

community organization and that we can use as a benchmark to test whether the community 

detection algorithms benefit from being applied according to the geometrical embedding 

information in the hyperbolic space. Therefore, we repeat the same tests of Paper A [51] on 

real networks, but here we use nPSO synthetic networks as benchmark. More precisely, each 

network is embedded in the hyperbolic space using the coalescent embedding techniques and 

the hyperbolic distances between the nodes are used to weight the input network for the 

Louvain, Infomap, Walktrap and Label propagation algorithms. The results show that almost 

all the geometrically-weighted methods increase their performance with respect to the 
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unweighted Louvain and Infomap, whereas with the respect to the unweighted Walktrap the 

increase is relatively small, and with respect to the unweighted Label propagation only some 

methods increase, but the gain is remarkable. Overall, this investigation on nPSO networks 

confirms that the performance of community detection algorithms can be improved using 

network embedding information, in agreement with what has been previously demonstrated on 

real networks in Paper A [51]. 

The nPSO can have a large impact not only in the community detection scenario, but also in 

other real applications such as link prediction. For instance, by generating ground-truth 

synthetic networks with the nPSO, it is possible to investigate the extent to which the 

community organization affects, together with other topological properties, the performance of 

link prediction algorithms. This, in turn, can advocate the comprehension of the intrinsic rules 

of network wiring that connect topology to geometry and that are encrypted in algorithms for 

link prediction differentiating their performance. We compared the performance of state-of-

the-art approaches [52], [53] (CRA [54]–[56], RA [57], SPM [58], SBM [59]) across real 

networks, PSO and nPSO networks generated using diverse parameter combinations. 

Cannistraci-Resource-Allocation (CRA) is a mechanistic model which implements a local-

topology-based parameter-free deterministic rule for topological link-prediction motivated by 

the local-community-paradigm [54]–[56]; the standard Resource-Allocation (RA) is instead 

motivated by the resource allocation process; Structural Perturbation Method (SPM) is a global 

and model-free approach that relies on a theory similar to the first-order perturbation in 

quantum mechanics [58]; Stochastic Block Model (SBM) is a global approach based on general 

idea of a block model, where the nodes are partitioned into groups and the probability that two 

nodes are connected depends only on the groups to which they belong [59]. The aim is to 

understand whether using synthetic networks (generated by PSO or nPSO) is possible to 

replicate the same and diverse link-predictors’ performance obtained on real complex 

networks. In case this is not possible, we would like to check whether the community 

organization present in the nPSO plays an important role to replicate the results on real 

networks and to facilitate the performance of some algorithms in comparison to the case of 

networks where communities are not present. In the evaluation framework adopted, 10% of the 

links are randomly removed from the network and used to test the precision of the link 

predictors in recovering them. The results showed that the ranking of the methods according to 

their performance on the nPSO model is closer to the one in the real networks with respect to 

the PSO model, suggesting that the introduction of the communities in the model was important 

to design a more reliable benchmark for link prediction. 
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At last, while the previous analysis focused on link prediction approaches exploiting only 

topological information, we then investigated whether adopting also information gained by the 

embedding in the hyperbolic space could be beneficial. In particular, we applied the coalescent 

embedding techniques and the other main hyperbolic embedding methods to map the networks 

in the hyperbolic space, and we assigned likelihood scores to the nonobserved links based either 

on hyperbolic distances or hyperbolic shortest paths. The results suggest that the performance 

is generally lower with respect to the state-of-the-art topological-based link predictors adopted 

in the previous analysis, and therefore the adoption of geometrical information for link 

prediction still needs further investigation. 
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4. Discussion 
 

After having summarized the results of each paper of the dissertation, in this section we will 

focus on discussing them in perspective of future research. We recall as main results that: in 

Paper A we have introduced a new class of topological machine learning algorithms for 

embedding networks in the hyperbolic space, named ‘coalescent embedding’, whose 

computational complexity is O(N2); in Paper B we have introduced the nonuniform PSO 

(nPSO) model, which generates synthetic networks in the hyperbolic space, with high 

clustering, small-worldness, scale-freeness and a desired community organization, whose 

computational complexity is O(EN); in Paper C we have shown that the nPSO model can be 

leveraged as a benchmark for comparing the performance of community detection and link 

prediction methods. 

The discussion section is structured as follows: first, we will review what have been the recent 

advances on designing methods for embedding networks in the hyperbolic space after the 

publication of the coalescent embedding; second, we will review the evaluation measures 

developed until now for assessing the embedding accuracy, we will analyze their differences 

and highlight points to potentially address in future studies; at last, we will discuss an example 

of practical application related to a recent study on brain networks. 

Since the publication of the coalescent embedding techniques, several other methods for 

mapping networks in the hyperbolic space have been proposed. Some of them are still based 

on maximum likelihood algorithms, others on machine learning techniques like the coalescent 

embedding, others on a mixture of the two approaches, and others faced the problem with 

completely new ways. Some of these methods will be now discussed. 

In a recent preprint of 2019 released on arXiv, Boguña et al. [60] introduced Mercator, a new 

method for embedding networks in the hyperbolic space that mixes machine learning and 

maximum likelihood. An attempt of such a mixture approach was already present in a previous 

study by Alanis-Lobato et al. [61]. Differently from other techniques such as HyperMap [23], 

which rely on the assumption of the PSO dynamic model [20], this method assumes that the 

structure of networks is well described by the popularity-similarity S1/H2 static geometric 

network model [15], which can accommodate arbitrary degree distributions and reproduces 

many pivotal properties of real networks, including self-similarity patterns. The Mercator 

algorithm is presented with different variants, offering different compromises between running 

time and mapping accuracy. In brief, in its fast mode, Mercator uses a machine learning 

technique performing dimensional reduction to produce a fast and accurate map, similarly to 
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one variant of the coalescent embedding class of algorithms, but replacing some of the 

algorithmic steps with adjustments based on the popularity-similarity S1/H2 static model. In the 

refined Mercator mode, instead, the fast mode embedding result is taken as an initial condition 

in a maximum likelihood estimation, which improves the quality of the final embedding, 

although increasing the running time, with a complexity of (E2) [60]. 

In another recent preprint of 2019 released on arXiv, Keller-Ressel and Nargang [62] 

introduced hydra (hyperbolic distance recovery and approximation), a novel method for 

embedding network or distance-based data into hyperbolic space, which has strong 

mathematical foundations and does not depend on specific assumptions on network growth or 

structure. At the same time, the method is computationally efficient and based on reduced 

matrix Eigendecomposition [62]. The authors show mathematically that, when presented with 

mutual distances of data points located on a low-dimensional hyperbolic submanifold of the 

feature space, hydra will recover these points exactly [62]. For general data, the method 

satisfies a certain optimality property, similar to the strain-minimizing property of 

multidimensional scaling. If minimization of stress is the ultimate objective and strain is used 

only as a proxy, the result of hydra can be used as an initial condition for a direct minimization 

of the stress functional, for which efficient quasi-Newton routines can be used. The authors 

name such extension as hydra+ [62]. 

In 2018, Bläsius et al. [63] designed and implemented a new algorithm for computing 

hyperbolic embeddings of large-scale networks based on maximum likelihood estimation. 

Compared to previous approaches that needed Ω(N2) runtime, their algorithm runs in 

quasilinear runtime. As first modification, they used an analytical approach to compute the 

expected angular distances between pairs of high-degree nodes based on their number of 

common neighbors. In contrast to HyperMap-CN [25], this approach does not rely on 

expensive numerical computations, making it fast in practice. The resulting angle distance 

matrix is then fed to a spring embedder that finds good positions for high-degree nodes in linear 

time. For small degree nodes, the runtime is substantially improved by using the geometric data 

structure of Bringmann et al. [64] that allows traversing nodes of close proximity in expected 

amortized constant time. This enables to embed significantly larger graphs than before, 

requiring for instance less than one hour to compute a hyperbolic embedding of the Amazon 

product recommendation network with over 300000 nodes [63]. 

In a more recent preprint in collaboration between Cannistraci and me, released on arXiv [65], 

we proposed a completely new approach, neither based on machine learning nor on maximum 

likelihood estimation. In this work we present a mechanistic model named minimum 
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curvilinear automaton (MCA), which relies on a mechanism of node growth that we named 

similarity attachment, and that allows an efficient inference of the angular coordinates for the 

embedding of networks in the hyperbolic disk [65]. The revolutionary idea is that a local rule 

of node attachment implements a network automaton that grows according to a strategy of 

network navigation termed minimum curvilinearity. The idea of minimum curvilinearity (MC) 

is that the hidden geometry of complex networks that are in particular sufficiently sparse, 

clustered, small-world and heterogeneous can be efficiently navigated using the minimum 

spanning tree (MST), which is a greedy navigator. The local topological information drives the 

global geometrical navigation and the MST can be interpreted as a growing path that greedily 

maximizes local similarity between the nodes attached at each step by globally minimizing 

their overall distances in the network [65]. Here we show that, according to the mechanism of 

node similarity attachment, the visited node sequence of a growing MST can efficiently 

approximate the node angular coordinates in the hyperbolic disk, that actually represent an 

ordering of their similarities. This is a consequence of the fact that the MST, during its greedy 

growing process (for instance adopting the Prim’s algorithm [66]), at each step sequentially 

attaches the node most similar (less distant) to its own cohort. The network should be firstly 

pre-weighted in order to guide the MST growth according to a “good guess” of the edge weights 

that suggest the geometrical distances. MCA displays an embedding accuracy (evaluated using 

the HD-correlation) that in general seems superior to HyperMap-CN and inferior to coalescent 

embedding. However, the network mappings of coalescent embedding are less navigable 

(lower GR-score) than the ones of MCA, which appears therefore as the most robust over the 

different evaluation frameworks [65]. Remarkably, MCA is also the best method for link 

prediction on many diverse real networks of different size and topological characteristics. 

Depending on the type of minimum edge-weight data structure used to grow the MST, the 

MCA time complexity can also approach a linear dependence from the number of edges [65]. 

This review about the recent advances on the development of hyperbolic embedding methods 

highlighted that the field is still very active in trying to find the algorithm providing the best 

compromise between computational time complexity and mapping accuracy. However, it 

should be noted that what mapping accuracy means is still not well defined. In Paper A we 

have introduced the HD-correlation [51], which is a measure to compare all the pairwise 

hyperbolic distances of the original coordinates generated by the model with respect to the 

inferred ones. This measure evaluates the mapping accuracy adopting a synthetic model as 

ground-truth and considering both radial and angular coordinates, since hyperbolic distances 

include both of them. In Paper A we have also designed the C-score [51], which instead 
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evaluates the ordering of the nodes over the similarity space. This measure evaluates the 

mapping accuracy adopting a synthetic model as ground-truth, but only considering the angular 

coordinates, and in particular their ordering. Another evaluation measure is the GR-efficiency 

[51], [67], which assesses the network navigability according to the greedy routing protocol. 

This measure evaluates the mapping accuracy without requiring a synthetic model as ground-

truth, taking into consideration hyperbolic distances (therefore both radial and angular 

coordinates), but in relation to a very specific task, greedy navigability, which does not 

necessarily characterize all the real networked systems. Other quantitative evaluations can be 

performed in an application-oriented framework, such as link prediction or community 

detection. In this scenario the evaluation of the mapping accuracy would not require a synthetic 

model as ground-truth, however, like for the greedy navigability, it would be related to a 

specific task. In summary, there are many different ways of evaluating the mapping accuracy, 

and not always they are strongly related between each other. Therefore it is possible that some 

hyperbolic embedding methods obtain higher performance while tested on a certain 

framework, for example link prediction, and others instead result superior under another 

framework, for example greedy navigability. Given this, the field might benefit from a wide 

comparative study analyzing all the hyperbolic embedding methods developed until now, 

testing them under several evaluation frameworks and highlighting their computational 

complexity, trying to point out for each framework the method offering the best performance 

in a reasonable running time. 

To conclude, we will discuss an example of practical application related to a recent study on 

brain networks, released as a preprint on arXiv in 2017 by Cacciola et al. [68], in which I share 

the co-first authorship. In structural connectomes, topological patterns of connectivity are often 

related with the physical distances between elements of the brain networks. On one hand, brain 

regions that are spatially close have a relatively high probability of being interconnected, on 

the other hand, longer white matter projections are more expensive in terms of their material 

and energy costs, thus making connections between spatially far brain structures less likely 

[69]. As a first result of the work, Cacciola et al. [68] demonstrate that, by applying coalescent 

embedding techniques to map structural brain connectomes of healthy subjects, they can 

unsupervisedly reconstruct the anatomical arrangement of the brain regions. In other words, 

the nodes of the brain networks, representing structural brain regions, are arranged in the 

similarity space of the hyperbolic embedding with an ordering that resembles the left and right 

hemispheres of the brain, and, more in details, the lobes organization (frontal, parietal, 

occipital, temporal). This result demonstrates a strong relationship between topology and 
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geometry of brain structural connectomes. As second analysis of the study, Cacciola et al. [68] 

investigated whether adopting network markers based on the hidden metric space behind the 

brain networks, it would be possible to detect connectomic variations between healthy controls 

and  de novo drug naïve Parkinson’s Disease patients. The analysis have been repeated also 

comparing two groups of healthy controls within different age ranges. The results show 

interesting trends, according to which several latent geometry network markers, computed for 

example as the average of the pairwise distances in the hyperbolic embedding space, are able 

to significantly detect the separation between the two groups [68]. Such results, which require 

further investigation testing additional datasets and pathological conditions, pave the way for 

practical applications of hyperbolic embedding methods in network medicine.  
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Abstract 

Physicists recently observed that realistic-complex-networks emerge as discrete samples from 

a continuous hyperbolic-geometry enclosed in a circle: the radius represents the node centrality 

and the angular displacement between two nodes resembles their topological proximity. The 

hyperbolic-circle aims to become a universal space of representation and analysis of many real-

networks. Yet, inferring the angular-coordinates to map a real network back to its latent 

geometry remains a challenging inverse-problem. 

Here we show that intelligent-machines for unsupervised recognition and visualization of 

similarities in big-data can also infer the network angular-coordinates of the hyperbolic-model 

according to a geometrical organization that we term ‘angular-coalescence’. Based on this 

phenomenon, we propose a class of algorithms that offers fast and accurate ‘coalescent-

embedding’ in the hyperbolic-circle even for large-networks. This computational solution to 

an inverse-problem in physics of complex-systems favours the application of network latent-

geometry techniques in disciplines dealing with big-network-data analysis including biology, 

medicine and social science.  

mailto:kalokagathos.agon@gmail.com
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A.1 Introduction 

Significant progress has been achieved in the last twenty years in unveiling the universal 

properties of complex networks. Nevertheless, the characterization of the large variety of real 

network structures, which are originating from the ‘Big Data explosion’, remains an important 

challenge of network science. Network geometry aims at making a paradigmatic shift in our 

understanding of complex network structures by revealing their hidden metric [15], [16], [20], 

[35], [36], [54], [55], [70]–[72]. This field has a large number of applications ranging from 

brain networks [54] to routing packets in the Internet [18], [73]. In this context there is 

increasing evidence that the hidden metric of many complex networks is hyperbolic [74]. 

Examples of recent research topics are the development of tools to generate hyperbolic 

networks [75], [76], the measurement of the hyperbolicity of complex networks [77], [78], the 

analysis of its impact on traffic congestion [79], [80] and on link prediction [81], the 

characterization of network properties in terms of the parameters of hyperbolic network models 

[82] and the study of time-varying control systems with hyperbolic network structure [83]. 

However, the science that studies and designs algorithms to reveal and to test the latent 

geometry [29] of real complex networks, is in its dawning. 

The Popularity Similarity Optimization (PSO) model suggests that real networks have a 

congruous geometrical representation in a hyperbolic space, where each network node is 

mapped according to the angular and the radial coordinates of a polar system [20]. On one 

hand, node similarities are related with the angular distances in the hyperbolic space: the higher 

the similarity between two nodes, the closer their angular coordinates. On the other hand, the 

node degree is related with the intrinsic popularity of the node: the higher the node degree, the 

higher its popularity in the network and the lower its radial coordinate in the hyperbolic space. 

Recently, further variants of the PSO model have been proposed in order to produce hyperbolic 

synthetic networks with soft communities [28] or with a desired community structure [84]. 

Manifold machine learning for unsupervised nonlinear dimensionality reduction is an 

important sub-class of topological machine learning algorithms. They learn nonlinear 

similarities/proximities (that can be also interpreted as dissimilarities/distances) between points 

(samples) distributed over a hidden manifold in a multidimensional feature space, in order to 

preserve, embed (map) and visualize them in a two-dimensional reduced space [34]. They are 

inspired by a three-step procedure. First, they approximate the shape of the hidden manifold 

reconstructing a nearest-neighbourhood graph between the points in the high-dimensional 

space. Second, they use the reconstructed network to estimate pairwise topological similarities 
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(or distances) between the points that lie on the manifold, and store these nonlinear estimations 

in a kernel (or distance matrix). In a third and last step, they apply a matrix decomposition to 

the kernel to perform dimensionality reduction, usually in a space of two dimensions. If the 

network is already given in the form of an unweighted adjacency matrix, the same algorithm 

works neglecting the first step and thus, in practice, performs a network embedding that 

preserves the node similarities. These methods are already used in network biology for instance 

to predict node similarities in protein interaction networks [35], [36], therefore it was likely for 

us to envisage their usage for network embedding in the hyperbolic space. 

Here we show that, adopting topological-based machine learning for nonlinear dimension 

reduction, the node angular coordinates of the hyperbolic model can be directly approximated 

in the two or three dimensional embedding space according to a persistent node-aggregation 

pattern, which we term ‘angular coalescence’. Based on this phenomenon, we propose a class 

of algorithms that offers fast (time complexity approximately 𝑂(𝑁2), with N indicating the 

network node size) and accurate ‘coalescent embedding’ in the two or three dimensional 

hyperbolic space even for large unweighted and weighted networks. This discovery paves the 

way for the application of network latent-geometry techniques in many disciplines dealing with 

big-network-data analysis including biology, medicine and social science. 

 

A.2 Results 

Coalescent embedding 

In this study we selected a representative group of nonlinear topological-based unsupervised 

dimensionality reduction approaches among the ones with the highest performance. Three 

manifold-based: Isomap (ISO) [85], noncentered Isomap (ncISO) [36], Laplacian eigenmaps 

(LE) [86]. Two minimum-curvilinearity-based: minimum curvilinear embedding (MCE) [34], 

[36] and noncentered minimum curvilinear embedding (ncMCE) [36]. An important note for 

practical applications is that these approaches are unsupervised (node or edge labels are not 

required) and parameter-free (external tuning setting of algorithms’ parameters is not required). 

In Fig. 1B-D we show the embedding provided by the Isomap algorithm (ISO), the progenitor 

of the manifold dimension reduction techniques, starting from the unweighted adjacency 

matrix of a PSO network. The nodes are organized according to a circular pattern (Fig. 1B), 

which follows the angular coordinates of the original PSO model. For an algorithm named 

noncentered minimum curvilinear embedding (ncMCE) [36] (Fig. 1E-F), the circular pattern 

is linearized (Fig. 1E) and the nodes are ordered along the second dimension of embedding 
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according to their similarities. If we accommodate the node points on the circumference 

following the same ordering as the second dimension of embedding (Fig. 1E), we can again 

recover an unbroken circular pattern (Fig. 1F) that resembles the angular coordinates of the 

original PSO model. The ability of ncMCE and minimum-curvilinearity-based algorithms to 

learn, unfold and linearize along just one dimension an intrinsic nonlinear (circular) pattern is 

discussed in details in the Methods section. However, here we clarify that minimum-

curvilinearity-based algorithms compress the information in one unique dimension because 

they learn nonlinear similarities by means of the minimum spanning tree (MST), providing a 

hierarchical-based mapping that is fundamentally different from the manifold-based of ISO.  

The rationale of our approach is all contained in these simple insights. We embedded 

hyperbolic networks adopting different combinations of network similarities and matrix 

decompositions and we reached the same consistent finding: the arising in the two-dimensional 

embedding space of a common node aggregation pattern, which we named ‘angular 

coalescence’, and that was circularly or linearly ordered according to the angular coordinates 

of the hyperbolic model. This represents the first important result of our study. The term 

‘angular coalescence’ is proposed to indicate that the individual nodes aggregate together (from 

the Latin verb coalēscō: to join, merge, amalgamate single elements into a single mass or 

pattern) forming a pattern that is progressively ordered along the angular dimension. 

Consequently, we decided to coin the expression ‘coalescent embedding’ to indicate the class 

of algorithms that exhibit angular coalescence in the two-dimensional network embedding. In 

our case we detected the angular coalescence phenomenon as embedding result of topological-

based machine learning for nonlinear unsupervised dimension reduction. Indeed, the evidence 

that even MCE and ncMCE, which are not manifold-based but hierarchical-based, are able to 

exhibit coalescent embedding may theoretically suggest that this is an ‘epiphenomenon’ that 

in general characterizes topological-based machine learning for nonlinear dimension reduction 

when applied to this task. 

Given the first results, we propose to adopt these machine learning techniques to perform two-

dimensional ‘structural network imaging’, which could be figuratively envisaged as a sort of 

in-silico imaging technique (such as X-ray or MRI are for condensed matter) for 2D-

reconstruction and visualization of the hidden manifold shape from which the structural 

organization of a complex network emerges. 

In the Methods section we propose a general algorithm - based on the angular coalescence 

principle - for network embedding in the hyperbolic space. In Fig. 2 a flow chart is reported, 

where both the algorithmic steps and the intermediate input/output are highlighted. In order to 
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build a general algorithm we started by noticing that the problem to compute the embedding 

on an unweighted adjacency matrix would be simplified by having a ‘good guess’ of the edge 

weights that suggest the connectivity geometry. Thus, there was a clear margin to improve the 

coalescent embedding performance by pre-weighting the network links using a convenient 

strategy to approximate distances between the connected nodes. We devised two different pre-

weighting strategies. The first approach - which we called the repulsion-attraction rule (RA) – 

assigns an edge weight adopting only the local information related to its adjacent nodes 

(neighbourhood topological information). The idea is that adjacent nodes with a high external 

degree (where the external degree is computed considering the number of neighbours not in 

common) should be geometrically far because they represent hubs without neighbours in 

common, which - according to the theory of navigability of complex networks presented by 

Boguñá et al. [16] - tend to dominate geometrically distant regions: this is the repulsive part of 

the rule. On the contrary, adjacent nodes that share a high number of common neighbours 

should be geometrically close because most likely they share many similarities: this is the 

attractive part of the rule. Thus, the RA (see Equation 1 and 2 for two alternative mathematical 

formulations) is a simple and efficient approach that quantifies the trade-off between hub 

repulsion and common-neighbours-based attraction. Supplementary Fig. 1 gives a visual 

example about how the RA pre-weighting rule is improving the angular coalescence effect with 

respect to Fig. 1, where the same methods are adopted without pre-weighting. Since it might 

be argued that the repulsion between high external degree nodes implied by the RA rule is in 

contrast with the existence of rich-clubs, in Supplementary Discussion we comment the rich-

clubness of the PSO networks (Supplementary Fig. 25) and why this does not affect the RA 

pre-weighting efficiency. Although inspired by the same rationale, the second strategy makes, 

instead, a global-information-based pre-weighting of the links, using the edge-betweenness-

centrality (EBC) to approximate distances between nodes and regions of the network. EBC is 

indeed a global topological network measure, which expresses for each edge of the network a 

level of centrality, and the assumption is that central edges are bridges that tend to connect 

geometrically distant regions of the network, while peripheral edges tend to connect nodes in 

the same neighbourhood. We let notice that if a weighted network is given, where the weights 

suggest distances between connected nodes, these can be directly adopted rather than 

approximated by the pre-weighting techniques. 

Furthermore, we were not convinced that preserving the angular distances between nodes 

adjacent in the angular coordinates was the best strategy. Most likely their reciprocal angular 

distances were affected by short-range angular noise. Thus, we devised a strategy to re-organize 
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the nodes on the circumference that we called equidistant adjustment (EA): the nodes are 

equidistantly re-organized along the angular coordinates of the circumference according to 

their original order learned by the coalescent embedding. Fig. 2 displays a didactic example of 

the difference between the circular and equidistant adjustment. 

The several variants of coalescent embedding algorithms, characterized by the different pre-

weightings and angular adjustments, have been tested in various evaluation frameworks using 

both synthetic and real networks, and their performance has been compared to state of the art 

methods for hyperbolic embedding. The next sections will report the results obtained together 

with a discussion of the main achievements. 

 

Evaluations of mapping accuracy in PSO synthetic networks 

In order to test the performance of the hyperbolic embedding methods, synthetic networks have 

been generated with the PSO model, ranging over several combinations of the parameters. Fig. 

3 reports the results of the best dimension reduction methods for the first evaluation framework. 

Here the performance was evaluated as Pearson correlation between all the pairwise hyperbolic 

distances of the network nodes (we called such correlation: HD-correlation) in the original PSO 

model and in the reconstructed hyperbolic space. The plots report the average correlation over 

the 100 synthetic networks that have been generated for each different PSO model parameter 

combination. It is evident that the coalescent embedding techniques pre-weighted with RA and 

adjusted according to EA are outperforming HyperMap [23], HyperMap-CN [25] and LPCS 

[87] that are the state of the art, and this is the second key discovery of our study. RA performed 

similarly to EBC, and in general both the pre-weighting strategies are effective (Supplementary 

Fig. 2-6). However, RA is computationally more efficient because it is a local approach (see 

Methods for details about the complexity). Obviously, all the methods reduce their 

performance for increasing temperature (reduced clustering), because the networks assume a 

more ‘random’ structure. 

Another alluring result, pointing out a very subtle problem, is that without EA all the techniques 

significantly reduce the performance, as it is shown in Supplementary Fig. 7. Looking at Fig. 

3 and the Supplementary Fig. 2-6, EA makes a difference especially for low temperatures (high 

clustering), while for high temperatures its improvement is vanishing. This is particularly 

evident for LE that in Supplementary Fig. 7 (where EA is not applied) at low temperatures has 

a significantly worse performance compared to Fig. 3 where EA is applied. Imposing an 

equidistant adjustment might be counterintuitive, but our simulations suggest that this sub-

optimal strategy is better than passively undergo the short-range angular embedding 



43 
 

uncertainty. On the other hand, once the temperature is increased, the overall angular 

embedding uncertainty also increases and the techniques are less efficient to recover the node 

order. In practice, for high temperatures the overall noise overcomes the short-range noise and 

the EA reduces its effectiveness.  

In Fig. 4B, we repeated the same evaluation of Fig. 3, but we adopted a different measure called 

Concordance score (C-score). The C-score can be interpreted as the proportion of node pairs 

for which the angular relationship in the inferred network corresponds to the angular 

relationship in the original network (see Methods). Basically, this score provides a quantitative 

evaluation of the scatter plots in Fig. 4A where the alignment between inferred and original 

angular coordinates is visually compared. A C-score of 0 indicates total misalignment, while 1 

indicates perfect alignment. The results in Fig. 4 confirm that our methods outperform, 

especially for low temperatures, the state of the art techniques also in recovering a good angular 

alignment of the nodes. Supplementary Fig. 8-17 show the scatter plots for all the other 

methods and temperatures. The scatter plots visually highlight that the correlation between real 

and inferred angular coordinates decreases for increasing temperatures. However, it is evident 

that the proposed techniques are able to provide quite accurate alignments even for middle 

temperatures. Noticeably, the coalescent-embedding-based algorithms combine important 

performance improvement with a spectacular speed up in respect to HyperMap (Fig. 5 and 

Supplementary Fig. 18). They can even embed large networks of 10000 nodes in less than one 

minute and 30000 nodes in few minutes (Fig. 5), whereas HyperMap requires more than three 

hours for small networks of just 1000 nodes. It is important to underline that, in addition to the 

remarkable scaling of the computational time (see Methods for details about the complexity), 

the high correlation values are also preserved for larger networks. 

 

Greedy routing performance in synthetic and real networks 

Another important characteristic that can be studied in a network embedded in a geometrical 

space is its navigability. The network is considered navigable if the greedy routing (GR) 

performed using the node coordinates in the geometrical space is efficient [16]. In the GR, for 

each pair of nodes, a packet is sent from the source to the destination and each node knows 

only the address (coordinates) of its neighbours and the address of the destination, which is 

written in the packet. In the GR procedure adopted [23], at each hop the packet is forwarded 

from the current node to its neighbour at the lowest hyperbolic distance from the destination 

and it is dropped when a loop is detected. The efficiency is evaluated according to the GR-

score (see Methods for details), which assumes values between 0, when all the routings are 
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unsuccessful, and 1, when all the packets reach the destination through the shortest path. 

Supplementary Fig. 19 compares the performance of the hyperbolic embedding methods as 

mean GR-score over all the PSO networks of Fig. 3. While mean GR-score on 8 real networks 

(whose statistics are reported in Table 1) are shown in Fig. 6. The first fact to notice is that the 

PSO network as synthesized with its original coordinates is the most navigable network. 

Secondly, HyperMap-based algorithms obtained the highest GR-score among the hyperbolic 

embedding algorithms, followed by the coalescent embedding technique RA-ncMCE, which 

turns out to be the best both considering EA and non-EA versions. However, the mean GR-

score of RA-ncMCE in Fig. 6 is not statistically different from the one of the HyperMap-based 

algorithms (permutation test p-value > 0.2 in all the pairwise comparisons), therefore their 

performance is comparable on real networks of Fig. 6. This is an impressive result and we will 

now explain the reason. The success of the greedy routing is very sensitive to the fact that 

connected nodes are mapped close in the geometrical space and disconnected nodes far apart. 

In fact, mapping disconnected nodes close in the geometrical space is likely to cause the routing 

of packets into wrong paths. In the original PSO network, nodes are connected with probability 

inversely proportional to their hyperbolic distance [20], therefore connected nodes tend to be 

close and disconnected nodes faraway by construction, which explains the high navigability of 

the networks generated with the PSO model. The reason why HyperMap methods offer the best 

GR performance is that - during maximum likelihood estimation procedure - they iteratively 

adjust both the angular and radial coordinates of the nodes using an objective function that is 

maximized if connected nodes are at low hyperbolic distance and disconnected nodes are at 

high hyperbolic distance [23]. The reason why coalescent embedding techniques offer a GR 

performance that is inferior to HyperMap methods is that they put connected nodes close and 

disconnected far only in the angular coordinates and not directly in the hyperbolic space, where 

instead the greedy routing navigation occurs. In brief, coalescent embedding optimizes angular 

distances in order to put connected points close and disconnected far, while HyperMap 

optimizes the hyperbolic distances. Therefore, the results obtained by RA-ncMCE in greedy 

routing are impressive considering that for this method only angular coordinates contribute to 

the organization of the points in the hyperbolic space, and that despite this significant limitation 

RA-ncMCE performances on real networks are comparable to the ones of HyperMap methods. 

This finding is promising since further algorithms might also be designed to embed directly in 

the hyperbolic space instead of inferring exclusively angular coordinates, as for the moment 

coalescent embedding is able to do. A digression on the reason why RA-ncMCE is the best 

performing among the coalescent embedding methods is provided in Supplementary 
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Discussion, together with an analysis on the impact of the equidistant adjustment for greedy 

routing, reported in Supplementary Fig. 20. 

 

Community detection on real networks 

Once in possession of fast methods that are able to map complex networks in the hyperbolic 

space with high precision and to disclose the hidden geometry behind their topologies, several 

studies can be lead exploiting the geometrical information. The analyses can cover disparate 

fields like social, communication, transportation, biological and brain networks. As an example 

of application we show how the hyperbolic distances can be used to feed community detection 

algorithms. Community structure is one of the most relevant features of real networks, and 

consists in the organization of network nodes into groups within which the connections are 

dense, but between which connections are sparser. The development of algorithms for detection 

of such communities is a key topic that has broad applications in network science, for example 

in identifying people with similar interests in social networks, functional molecular modules in 

biological networks or papers with related topics in citation networks [6]. We modified four 

approaches for community detection that a recent comparative study [48] has shown to be the 

best among the state of the art and that accept in input also weighted adjacency matrices: 

Louvain [44],  Infomap [45], Label propagation [47] and Walktrap [46]. We demonstrate that 

they can be boosted when applied to the networks weighted according to the hyperbolic 

distances, which were inferred by some of our coalescent embedding techniques (see Methods 

for details). In general, our results show that, regardless of the approach used for community 

detection, ncISO-based and MCE-based coalescent embedding techniques are significantly 

better than LE-based in this task on real networks (Table 1-2 and Supplementary Table 1-4). 

The improvement obtained for Infomap is moderate but very reliable: indeed EBC-ncISO-EA 

allows always (on every network) the improvement or the same performance in respect to 

standard Infomap (unweighted). The boost obtained for Louvain is remarkable (but less stable), 

indeed EBC-ncISO-EA, which is also here the best method, offers an overall improvement of 

+13.2%. In particular, an astonishing performance is obtained for a social network, the Karate 

Club [88] (Table 1, first column), where the Louvain algorithm based on the EBC-ncISO-EA 

embedding reaches the perfect community detection - a result that is evident also in the 

hyperbolic space visualization (Fig. 7A) - whereas the unweighted Louvain, Infomap, Label 

propagation and Walktrap algorithms on the same network attain a mediocre performance. The 

Karate network represents the friendship between the members of a university karate club in 

US: communities are formed by a split of the club into two parts, each following one trainer. 
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This is a valuable pedagogic result, indeed to the best of our knowledge it is the first time that 

the communities present in the Karate network are perfectly untangled by means of the Louvain 

algorithm (which is ineffective without the ‘geometrical’ boost of the coalescent embedding), 

and few algorithms can achieve these results in general [89]. On the other hand, significant 

Louvain improvements are obtained for the majority by the MCE-based approaches (Table 1): 

in Fig. 7B-D we offer some real network examples of the embedding efficacy of these 

techniques for disclosing and visualizing the communities directly in the hyperbolic space. We 

gained perfect community detection also for another type of social network of larger size 

(composed of four hidden communities), the Opsahl_11 [90] (Fig. 7C). This is a type of intra-

organisational network where a link indicates that the connected employees have both 

awareness of each other’s knowledge and skills on the job. The four hidden communities are 

related with the location of the employers (Paris, Frankfurt, Warsaw and Geneva) and they 

were perfectly detected starting from the social-based network topology (Fig. 7C). For the 

Label propagation and Walktrap algorithms the presence of a performance improvement given 

by some coalescent embedding techniques is confirmed (Supplementary Table 3-4) and most 

of them are again ncISO-based and MCE-based approaches. Further discussions on the impact 

of the equidistant adjustment and on the results for large-size real networks are provided in 

Supplementary Discussion and Supplementary Table 6-8. 

 

Beyond the two-dimensional space 

In comparison to the other approaches for hyperbolic embedding developed in previous studies 

and tailored for the two-dimensional hyperbolic disk, a peculiar property characterizes the class 

of unsupervised topological-based nonlinear machine learning algorithms adopted here. Being 

based on matrix decomposition methods for dimensionality reduction, there are not constraints 

on the number of dimensions that can be used to perform the embedding. This led us to 

investigate the possibility to enlarge the geometrical space from the hyperbolic disk to the 

hyperbolic sphere, with the addition of a further dimension. 

Therefore, we have adopted the manifold-based unsupervised machine learning algorithms 

(LE, ISO, ncISO) in order to extend the coalescent embedding to the three-dimensional 

hyperbolic space. After the pre-weighting step, the nonlinear dimension reduction is performed 

using an additional dimension with respect to the two-dimensional case. Considering a 

spherical coordinate system, the polar and azimuthal angles of the nodes in the hyperbolic 

sphere are preserved from the dimensionally reduced coordinates, whereas the radial 

coordinate is assigned as for the hyperbolic disk. The minimum-curvilinearity-based 
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algorithms as well as the equidistant adjustment are not suitable for this extension, detailed 

explanations are provided in Supplementary Discussion. The analysis of the 3D hyperbolic 

embedding of the PSO networks highlighted the presence of common patterns, for which Fig. 

8 and Supplementary Fig. 21 show an explanatory example. At low temperature (T = 0) the 

nodes appear distributed over a well-defined closed 3D curve. Intuitively, it seems that the 2D 

hyperbolic disk already offers a perfect discrimination of the similarities and with the addition 

of the third dimension there is not much gain of information. With the increase of the 

temperature the nodes look more and more spread around the closed 3D curve that was well-

defined at low temperature. Even if one angular dimension of the sphere still recovers most of 

the similarities present in the original network, it is unknown if the higher spread along the 

second angular dimension consists in a more refined discrimination between similar nodes or 

in noise. Since the original coordinates are two-dimensional, this cannot be easily assessed. 

In order to analyse the quality of the mapping from a quantitative point of view, the 

improvement given by the 3D hyperbolic embedding with respect to the 2D embedding is 

evaluated for the greedy routing and the community detection applications, the results are 

shown in Supplementary Table 9-12 and commented in details in Supplementary Discussion. 

Overall, the tests both on real and artificial networks represent a quantitative evidence that the 

addition of the third dimension of embedding in the hyperbolic space does not lead to a clear 

and significant improvement in performance. Although for the PSO model this is indeed 

expected (because the synthetic networks are generated by a 2D geometrical model), we obtain 

the same result also on real networks, for which the hidden geometry is not necessarily 2D. 

Therefore, we might conclude that in practical applications, at least on the tested networks, the 

two-dimensional space appears to be enough for explaining the hidden geometry behind the 

complex network topologies. However, further investigations should be provided on networks 

of larger size and different types of origin, because the 3D space might conceptually offer an 

advantage with networks of large size. An additional interesting test can be to generate 

synthetic networks using a 3D PSO model, and then to compare the embedding accuracy using 

mapping techniques in 2D and 3D. Finally, we want to emphasize that, while the other 

hyperbolic embedding methods should be re-designed to fit for the three-dimensional space, 

with the adoption of coalescent embedding approaches the exploration of additional 

dimensions of embedding is free of charge.  
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A.3 Discussion 

The investigation of the hidden geometry behind complex network topologies is an active 

research topic in recent years and the PSO model highlighted that the hyperbolic space can 

offer an adequate representation of the latent geometry of many real networks in a low 

dimensional space. However, in absence of a method able to map the network with high 

precision and in a reasonable computational time, any further analysis in the geometrical space 

would be compromised. Here we propose coalescent embedding: a class of unsupervised 

topological-based nonlinear machine learning algorithms for dimension reduction that offer a 

fast and accurate embedding in the hyperbolic space even for large graphs, this is the main 

product of the work. The embedding methods can be at the basis of any kind of investigation 

about network geometry and, as examples of applications, we presented community detection 

and greedy routing. However, the impact of coalescent embedding can be of importance for 

many disciplines including biology, medicine, computer science and physics. 

Below, we will summarize the main findings of this study. The first is that coalescent 

embedding significantly outperforms existing state of the art methods for accuracy of mapping 

in the hyperbolic space and, at the same time, reduces the computational complexity from 

𝑂(𝑁3) - 𝑂(𝑁4) of current techniques to 𝑂(𝑁2). In addition, the results obtained on synthetic 

networks are indicative but should be considered with caution. In fact, LE-based coalescent 

embedding that performs better on synthetic networks is clearly outperformed in real network 

applications by MCE-based coalescent embedding. This implies that real networks might have 

a geometry that is even more tree-like and hyperbolic (for this reason MCE-based techniques 

can perform better on real networks) than the one hypothesized by the PSO model with uniform 

probability distribution of angular coordinates. In addition, although the topology of many real 

networks is certainly conditioned by the hyperbolic geometry this is however one of the factors 

that shape their structure. Interestingly, good results are achieved also for networks with out of 

range γ values. Since it has been demonstrated that a scale-free degree distribution is a 

necessary condition for hyperbolic geometry [17], this result demonstrates that the coalescent 

embedding methods can reach good performances also for networks whose latent geometry 

might be weakly-hyperbolic or not hyperbolic. 

The second important result is that the greedy routing performance on real networks embedded 

in the hyperbolic space using RA-ncMCE (which is a special type of coalescent embedding 

based on Minimum Curvilinearity) is only slightly inferior and in general comparable (no 

significant statistical difference is detected) to the one of networks mapped using the state of 
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art methods. This is a remarkable result because the state of the art methods directly optimize 

the hyperbolic distances in order to map connected nodes close and disconnected nodes far, 

which is a key factor for effective greedy routing. RA-ncMCE, instead, offers a comparable 

performance by ordering only the angular coordinates, which is a promising starting point to 

develop more effective strategies. In addition, RA-ncMCE can provide embedding of networks 

with 30000 nodes in few minutes (Supplementary Fig. 22), hence can be of crucial aid for the 

investigation of greedy routing in real large networks. However, this last claim needs further 

analysis, because using the state of the art methods on networks of 30000 nodes was not 

computationally achievable in this study, therefore we cannot ensure that also on large 

networks RA-ncMCE provides a performance comparable to state of the art methods such as 

HyperMap.  

The third important finding of this study is that coalescent embedding can improve the 

performance of several state of the art community detection algorithms when they are applied 

to real networks of small and medium size. But this improvement tends to be of less entity for 

large networks. 

The previous state of the art methods such as HyperMap were tailored for mapping networks 

in the hyperbolic space. The fourth key achievement of this study is that coalescent embedding 

techniques, although here adopted and tested for the inference of hyperbolic angular 

coordinates, are topological-based machine learning algorithms for nonlinear dimensionality 

reduction and therefore theoretically able to unfold any network latent-geometry, not 

necessarily hyperbolic. The main point consists in the ability to design or learn a kernel that 

approximates the geometry of the hidden manifold behind the network topology. To this aim, 

we proposed two network pre-weighting node-similarity methods (RA that is local-topology-

based and EBC that is global-topology-based) aimed to approximate link geometrical 

information starting from the mere network topology. However, at the moment we are making 

the first steps towards understanding these mechanisms of self-organization in complex 

networks, only further scientific efforts will help in the years to come to take advantage of the 

promising solutions proposed in this article to address many other questions in network 

geometry. For instance, the hidden geometry of networks with strong clustering and a non-

scale-free degree distribution has been demonstrated to be Euclidean [29]. Thus, for networks 

with these characteristics, the Euclidean embedding obtained by the dimension reduction could 

be in theory directly adopted rather than exploiting it for the inference of the hyperbolic angular 

coordinates. However, this is just a speculation that needs to be proved in future studies. The 

fifth and last significant discovery of this study consists in an innovation introduced with 
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coalescent embedding techniques that, although adopted for the mapping on a two-dimensional 

hyperbolic space, offers the possibility to explore spaces of higher dimensionality. Our 

simulations showed that the coalescent embedding on a three-dimensional hyperbolic sphere 

does not lead to a significant improvement on the tested datasets for tasks such as greedy 

routing and community detection. However, this result does not prevent further investigations 

that can lead to different results when the method is employed for embedding in arbitrary 

dimensions on new data and with different aims. Although in this study only unweighted 

networks have been used, we let notice that the coalescent embedding methods can work also 

on weighted networks, where the weights suggest geometrical distances between the connected 

nodes, and this is a further advantage with respect to state of the art methods such as HyperMap. 

We want to stress that the exploitation of these machine learning techniques in complex 

network latent-geometry is, as a matter of fact, initiated in this article, hence we suggest to take 

all the results here presented with a ‘grain of salt’. Nevertheless, gathered all together our 

findings suggest that the idea to connect unsupervised topological-based nonlinear machine 

learning theory with network latent-geometry is a promising direction of research. In fact, 

coalescent embedding algorithms combine important performance improvement with a 

spectacular speed up both on in-silico and real tests. We hope that this article will contribute to 

establish a new bridge at the interface between physics of complex networks and computational 

machine learning theory, and that future extended studies will dig into real applications 

revealing the impact of coalescent network embedding in social, natural and life sciences. 

Interestingly, a first important instance of impact on network medicine is given in the article 

of Cacciola et al. [68], in which coalescent embedding in the hyperbolic space enhances our 

understanding of the hidden geometry of brain connectomes, introducing the idea of network 

latent-geometry marker characterization of brain diseases with application in de novo drug-

naïve Parkinson’s Disease patients.  
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A.4 Methods 

Coalescent embedding algorithm in 2D 

 

INPUT: adjacency matrix, 𝑥 

OUTPUT: polar coordinates of nodes, (𝑟, 𝜃) 

 

1. Pre-weighting rules 

1.1. Repulsion-Attraction Rule (RA, local) 

𝑥𝑖𝑗
𝑅𝐴1 =

𝑑𝑖 + 𝑑𝑗 + 𝑑𝑖𝑑𝑗

1 + 𝐶𝑁𝑖𝑗
         (𝑖𝑓 𝑥𝑖𝑗 = 1) (1) 

𝑥𝑖𝑗
𝑅𝐴2 =

1 + 𝑒𝑖 + 𝑒𝑗 + 𝑒𝑖𝑒𝑗

1 + 𝐶𝑁𝑖𝑗
   (𝑖𝑓 𝑥𝑖𝑗 = 1) (2) 

𝑥𝑖𝑗 value of (𝑖, 𝑗) entry in matrix 𝑥; 𝑑𝑖 degree of node 𝑖; 𝑒𝑖 external degree of node 𝑖 (links neither to 

𝐶𝑁𝑖𝑗 nor to 𝑗); 𝐶𝑁𝑖𝑗  common neighbours of nodes 𝑖 and 𝑗. 

1.2. Edge Betweenness Centrality Rule (EBC, global) 

𝑥𝑖𝑗
𝐸𝐵𝐶 = ∑

𝜎(𝑠, 𝑡|𝑙𝑖𝑗)

𝜎(𝑠, 𝑡)
𝑠,𝑡𝜖𝑉

 (3) 

𝑉 set of nodes; 𝑠, 𝑡 any combination of network nodes in 𝑉; 𝜎(𝑠, 𝑡) number of shortest paths (𝑠, 𝑡); 

𝜎(𝑠, 𝑡|𝑙𝑖𝑗) number of shortest paths (𝑠, 𝑡) through link 𝑙𝑖𝑗. 

2. Nonlinear dimension reduction 

2.1 Laplacian Eigenmaps (LE), 2nd-3rd dimensions 

2.2 Isomap (ISO), 1st-2nd dimensions 

2.3 Noncentered Isomap (ncISO), 2nd-3rd dimensions 

2.4 Minimum Curvilinearity (MCE), 1st dimension 

2.5 Noncentered Minimum Curvilinearity (ncMCE), 2nd dimension 

3. Angular coordinates (𝜃) 

3.1 Circular adjustment 

3.2 Equidistant adjustment 

4. Radial coordinates (𝑟) 

Nodes are sorted according to descending degree and the radial coordinate of the 𝑖-th node in the set is 

computed according to: 

𝑟𝑖 =
2


[𝛽 ln 𝑖 + (1 − 𝛽) ln 𝑁]      𝑖 = 1,2, … , 𝑁 (4) 

𝑁 number of nodes;  = √−𝐾, we set  = ; 𝐾 curvature of the hyperbolic space; 

𝛽 =
1

𝛾−1
 popularity fading parameter; 𝛾 exponent of power-law degree distribution 

 

A flow chart with the visualization of the intermediate results produced by the algorithmic 

steps on a toy network are provided in Fig. 2.  
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Coalescent embedding algorithm in 3D 

 

INPUT: adjacency matrix, 𝑥 

OUTPUT: spherical coordinates of nodes, (𝑟, 𝜃, 𝜑) 

 

1. Pre-weighting rules (same as 2D) 

1.1. Repulsion-Attraction Rule (RA, local) 

1.2. Edge Betweenness Centrality Rule (EBC, global) 

2. Nonlinear dimension reduction 

2.1 Laplacian Eigenmaps (LE), 2nd-3rd-4th dimensions 

2.2 Isomap (ISO), 1st-2nd-3rd dimensions 

2.3 Noncentered Isomap (ncISO), 2nd-3rd-4th dimensions 

3. Angular coordinates (𝜃, 𝜑) 

The angular coordinates obtained from the nonlinear dimension reduction are used. 

4. Radial coordinates (𝑟) (same as 2D) 

 

Notes: 

Four variants of the Repulsion-Attraction pre-weighting rule have been tested, the results are 

shown in Supplementary Fig. 23 and commented in Supplementary Discussion. Here only the 

two best rules are reported. 

The exponent 𝛾 of the power-law degree distribution has been fitted using the MATLAB script 

‘plfit.m’, according to a procedure described by Clauset et al. [91] and released at 

http://www.santafe.edu/~aaronc/powerlaws/. 

 

Manifold-based embedding  

The first type of topological-based unsupervised machine learning for nonlinear dimension 

reduction adopted in this study are Isomap, ISO [85], and Laplacian Eigenmaps LE [86]. These 

two methods are manifold-based machine learning because, in classical dimension reduction 

of multidimensional datasets, they approximate the sample data manifold using a proximity 

graph, and then they embed by matrix decomposition the sample distances in a two-

dimensional space. In our application the proximity graph is already given, representing an 

important advantage, because the topological connections (similarities) between the nodes are 

already known. In fact, the problem to infer a proximity graph is not trivial and generally 

requires the introduction of at least a tuning parameter, for instance in the procedure to learn a 

nearest-neighbour graph (network) that approximates the manifold. Furthermore, there is not a 

clear strategy to unsupervisedly tune these kinds of parameters to infer the proximity graph. 
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ISO is based on extracting a distance matrix (or kernel) that stores all the network shortest path 

distances (also named geodesic distances) that approximate the real distances over the 

manifold. Then the kernel is centred and in this work singular value decomposition (SVD) is 

applied to embed the nodes in the two-dimensional space. We also propose the noncentered 

version of the same algorithm, named ncISO, in which the kernel centering is neglected. 

Consequently, the first dimension of embedding is discarded because, since it points toward 

the center of the manifold, is not useful. For more computational details on the implementation 

of ISO please refer to [34], [36], [85]. 

LE is a different type of manifold machine learning. In fact, the inference of a distance kernel 

(for instance the shortest path kernel for ISO) starting from the network structure is not required 

in this algorithm, which makes it faster than ISO. Indeed, the idea behind LE is to perform the 

eigen-decomposition of the network’s Laplacian matrix, and then to perform two-dimensional 

embedding of the network’s nodes according to the eigenvectors related to the second and third 

smallest eigenvalues. The first smallest eigenvalue is zero, thus the related eigenvector is 

neglected. In order to implement a weighted version of this algorithm we used, as suggested in 

the original publication [86], the ‘heat-function’ (instead of the pre-weighting values as they 

are in their original scale): 

𝑥̃𝑖𝑗 =  𝑒−
𝑥𝑖𝑗

2

𝑡  (5) 

Where 𝑥𝑖𝑗 is the original pre-weighing value for the link i,j, and t is a scaling factor fixed as 

the squared mean of all the network’s pre-weighting values. For more computational details on 

the implementation of LE please refer to [86]. 

 

Minimum Curvilinearity and minimum curvilinear embedding  

The centered and noncentered versions of the minimum curvilinear embedding algorithm – 

respectively named MCE and ncMCE - are based on a general nonlinear dissimilarity learning 

theory called Minimum Curvilinearity [34]. These approaches compress the information in one 

unique dimension because they learn nonlinear similarities by means of the minimum spanning 

tree, providing a hierarchical-based mapping. This is fundamentally different from the previous 

algorithms (Isomap and LE), which are manifold-based. If we would consider the mere 

unsupervised machine learning standpoint, we would notice that manifold-based techniques in 

this study showed two main weaknesses: 1) they offer less compression power because two 

orthogonal dimensions of representation, instead of one, are needed; 2) the node similarity 
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pattern remains nonlinear (circular) also in the embedded space, thus the goal of the nonlinear 

dimension reduction to linearize a (hidden) nonlinear pattern in the embedding space is missed.  

In unsupervised tasks where the objective is to discover unknown and unexpected sample 

stratifications - for instance the discovery of unforeseen groups of patients with undetected 

molecular-based disease variations – the linearization of a pattern along one unique embedding 

dimension can offer an undisputed help to recognize hidden and hierarchical organized 

subgroups [34], [92]. 

However, the utility of a computational technique varies in relation to the designed target to 

reach. In fact, when the goal is to perform embedding of the points of a multidimensional 

dataset for unsupervised pattern detection and linearization, the graph that connects the points 

and approximates the manifold is unknown, and the minimum-curvilinearity-based techniques 

offer an advantage over manifold approaches. Conversely, when the task is to embed a network 

in the hyperbolic space, the graph that approximates the manifold is already given, and the goal 

of embedding is to retain - and not to linearize - the circular node similarity pattern in the two-

dimensional space. Therefore the manifold-based techniques, compared to the minimum-

curvilinearity-based, could offer a better approximation of the angular coordinates 

(representing the network node similarities) especially for high temperatures of the PSO model, 

when the tree-like network organization and the related hyperbolic geometry degenerate. 

Interestingly, MCE and ncMCE were theoretically designed by Cannistraci et al. [34], [36] 

according to a previous theory of Bogugna, et al. presented in the ‘Navigability of complex 

networks’ [16]. This article was clearly explaining that to navigate efficiently a network (and 

thus approximate geodesic/curvilinear pairwise node connections over the hidden manifold) it 

was not necessary to know the complete information of network topology in the starting point 

of the navigation. A greedy routing process (thus, based on the neighbourhood information) 

was enough to efficiently navigate the network. This triggered an easy conclusion at the basis 

of the Minimum Curvilinearity learning theory design: to approximate curvilinear distances 

between the points of the manifold it is not necessary to reconstruct the nearest-neighbour 

graph. Just a greedy routing process (that exploits a norm, for instance Euclidean) between the 

points in the multidimensional space, is enough to efficiently navigate the hidden network that 

approximates the manifold in the multidimensional space. In few words, learning nonlinear 

distances over the manifold by navigating an invisible and unknown network was possible, 

because the navigation process was instead guided by a greedy routing. Hence, according to 

Cannistraci et al. [34], [36], a preferable greedy routing strategy, was the minimum spanning 

tree (MST). The only hypothesis of application of this approach was that the points were not 
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homogenously distributed in a lattice regular structure, or a similar degenerative condition. 

Thus, the minimum curvilinear kernel is the matrix that collects all the pairwise distances 

between the points (or nodes) computed over the MST. And the ncMCE is the embedding of 

the noncentered minimum curvilinear kernel by means of the SVD. The reason why to exploit 

the ncMCE - noncentered version of MCE [34] - is discussed in a second article [36] that 

presents how to use this approach for link prediction in protein interaction networks. The main 

difference between MCE and ncMCE is that in general MCE linearizes the hidden patterns 

along the first dimension of embedding while ncMCE along the second dimension (since it is 

noncentered the first dimension of embedding should be generally neglected because it points 

towards the center of the manifold). To conclude this part, MCE/ncMCE are conceptually 

different from all the other approaches because they are one of the few (maybe the only, to the 

best of our knowledge) dimensionality reduction methods that performs hierarchical 

embedding, and they exploit the MST as a highway to navigate different regions of the network. 

Although they exploit a small fraction of the network links – practically only the MST, which 

consists of N-1 links in a network with N nodes - the reason why they work efficiently to infer 

the angular coordinates of networks that follow the PSO model is well explained in the article 

of Papadopoulos et al. [23]  thus we take the advantage to report the full paragraph: << This 

work shows that random geometric graphs [93] in hyperbolic spaces are an adequate model for 

complex networks. The high-level explanation of this connection is that complex networks 

exhibit hierarchical, tree-like organization, while hyperbolic geometry is the geometry of trees 

[94]. Graphs representing complex networks appear then as discrete samples from the 

continuous world of hyperbolic geometry. >> 

However, the problem to compute the MST on an unweighted adjacency matrix is that we do 

not have a norm that suggests the hidden connectivity geometry. Thus, there was a clear margin 

to improve the performance of MCE/ncMCE by pre-weighting the links in the network (and 

the adjacency matrix) using a convenient strategy to suggest topological distances between the 

connected nodes. In fact, in the Supplementary Fig. 5 and 6 we notice that the pre-weighting 

strategy significantly boosts MCE/ncMCE performance. 

 

HyperMap 

HyperMap [23] is a method to map a network into its hyperbolic space based on Maximum 

Likelihood Estimation (MLE). For sake of clarity, the first algorithm for MLE-based network 

embedding in the hyperbolic space is not HyperMap, but to the best of our knowledge is the 

algorithm proposed by Boguñá et al. in [18]. HyperMap is basically an extension of that method 
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applied to the PSO model. Unlike the coalescent embedding techniques, it can only perform 

the embedding in two dimensions and cannot exploit the information of the weights. It replays 

the hyperbolic growth of the network and at each step it finds the polar coordinates of the added 

node by maximizing the likelihood that the network was produced by the E-PSO model [23]. 

For curvature 𝐾 = −1 the procedure is as follows: 

(1) Nodes are sorted decreasingly by degree and then labeled 𝑖 = 1, 2, … , 𝑁 according to the 

order; 

(2) Node 𝑖 = 1 is born and assigned radial coordinate 𝑟1 = 0 and a random angular coordinate 

𝜃1 ∈ [0, 2π]; 

(3) For each node 𝑖 = 2, 3, … , 𝑁 do: 

(3.a) Node 𝑖 is added to the network and assigned a radial coordinate 

𝑟𝑖 = 2 ln 𝑖 (6) 

(3.b) The radial coordinate of every existing node 𝑗 < 𝑖 is increased according to 

𝑟𝑗(𝑖) = 𝛽𝑟𝑗 + (1 − 𝛽)𝑟𝑖 (7) 

where 𝛽 ∈ (0, 1] is obtained from the exponent 𝛾 of the power-law degree distribution 

𝛾 = 1 +
1

𝛽
 (8) 

(3.c) The node 𝑖 is assigned an angular coordinate by maximizing the likelihood 

𝐿𝑖 = ∏ 𝑝(ℎ𝑖𝑗)𝑥𝑖𝑗(1 − 𝑝(ℎ𝑖𝑗))1−𝑥𝑖𝑗

1≤𝑗<𝑖

 (9) 

where 𝑝(ℎ𝑖𝑗) is the connection probability of nodes 𝑖 and 𝑗 

𝑝(ℎ𝑖𝑗) =
1

1 + exp (
ℎ𝑖𝑗 − 𝑅𝑖

2𝑇 )

 
(10) 

which is function of the hyperbolic distance ℎ𝑖𝑗 between node i and node j, the current radius 

of the hyperbolic disk 𝑅𝑖, and the network temperature T [23]. The maximization is done by 

numerically trying different angular coordinates in steps of 2𝜋/𝑁 and choosing the one that 

leads to the biggest 𝐿𝑖. The method has been implemented in MATLAB. 

 

HyperMap-CN 

HyperMap-CN [25] is a further development of HyperMap, where the inference of the angular 

coordinates is not performed anymore maximizing the likelihood 𝐿𝑖,𝐿,based on the connections 

and disconnections of the nodes, but using another local likelihood 𝐿𝑖,𝐶𝑁, based on the number 

of common neighbours between each node i and the previous nodes j < i at final time. Here the 
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hybrid model has been used, a variant of the method in which the likelihood 𝐿𝑖,𝐶𝑁 is only 

adopted for the high degree nodes and 𝐿𝑖,𝐿 for the others, yielding a shorter running time. 

Furthermore, a speed-up heuristic and corrections steps can be applied. The speed-up can be 

achieved by getting an initial estimate of the angular coordinate of a node i only considering 

the previous nodes j < i that are i’s neighbours. The maximum likelihood estimation is then 

performed only looking at an interval around this initial estimate. Correction steps can be used 

at predefined times i after step 3.c (in the description of HyperMap). Each existing node j < i 

is visited and with the knowledge of the rest of the coordinates the angle of j is updated to the 

value that maximizes the likelihood 𝐿𝑗,𝐿. The C++ implementation of the method has been 

released by the authors at the website https://bitbucket.org/dk-lab/2015_code_hypermap. For 

the embedding of all the PSO networks the default settings (correction steps but no speed-up 

heuristic) have been used, whereas for all the real networks neither correction steps nor speed-

up heuristic have been used. 

 

LPCS 

Link Prediction with Community Structure (LPCS) [87] is a hyperbolic embedding technique 

that consists of the following steps: (1) Detect the hierarchical organization of communities. 

(2) Order the top-level communities starting from the one that has the largest number of nodes 

and using the Community Intimacy index, which takes into account the proportion of edges 

within and between communities. (3) Recursively order the lower level communities based on 

the order of the higher-level communities, until reaching the bottom level in the hierarchy. (4) 

Assign to every bottom-level community an angular range of size proportional to the nodes in 

the community, in order to cover the complete circle with non-overlapping angular ranges. 

Sample the angular coordinates of the nodes uniformly at random within the angular range of 

the related bottom-level community. (5) Assign the radial coordinates according to Equation 

4. 

The LPCS code firstly takes advantage of the Louvain R function for detecting the hierarchy 

of communities (see Louvain method), then we implemented the embedding in MATLAB. 

 

The C-score for angular coordinates evaluation 

The inference of the angular coordinates order is evaluated according to a modified version of 

the concordance score (C-score) [95]. The C-score is defined as the proportion of sample pairs 

for which the ranking by a prediction model corresponds to the true ranking. Here, we need to 
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adapt the interpretation to our particular case, where the ranked samples are not disposed along 

an axis but on a circle, hence the C-score can be interpreted as the proportion of node pairs for 

which the angular relationship in the inferred network corresponds to the angular relationship 

in the original network.  Below, we report the formula to compute the C-score in our case: 

𝐶 − 𝑠𝑐𝑜𝑟𝑒 =  
∑ ∑ 𝛿(𝑖, 𝑗)𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1

𝑛 ∗ (𝑛 − 1)/2
 (11) 

Where: n is the total number of network nodes; i and j indicate two nodes and 𝛿(𝑖, 𝑗) is 1 if the 

shortest angular distance from i to j has the same direction (clockwise or counter-clockwise) in 

both the original and inferred coordinates, and 0 if the direction is the opposite in the original 

and inferred coordinates. 

Since in the inferred network the nodes could have been arranged in the opposite clock 

direction with respect to the original network, the C-score is computed also considering the 

inferred angular relationships in the opposite clock direction (the two conditions for the value 

of 𝛿(𝑖, 𝑗) are inverted) and the maximum between the two values is chosen. 

 

Greedy routing 

An important characteristic that can be studied in a network embedded in a geometrical space 

is its navigability. The network is considered navigable if the greedy routing (GR) performed 

using the node coordinates in the geometrical space is efficient [16]. In the GR, for each pair 

of nodes i and j, a packet is sent from i with destination j. Each node knows only the address 

of its neighbours and the address of the destination j, which is written in the packet. The address 

of a node is represented by its coordinates in the geometrical space. In the GR procedure 

adopted [23], the nodes are located in the hyperbolic disk and at each hop the packet is 

forwarded from the current node to its neighbour closest to the destination, meaning at the 

lowest hyperbolic distance. The packet is dropped when this neighbour is the same from which 

the packet has been received at the previous hop, since a loop has been generated. In order to 

evaluate the efficiency of the GR, two metrics are usually taken into account: the percentage 

of successful paths and the average hop-length of the successful paths [16]. The first one 

indicates the proportion of packets that are able to reach their destinations - the higher the better 

- whereas the second one indicates if the successful packets require on average a short path to 

reach the destination - the lower the better. In order to compare the performance of methods in 

a unique way while taking both of the metrics into account, a GR-score has been introduced 

and it is computed as follows: 
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𝐺𝑅𝑠𝑐𝑜𝑟𝑒 =  

∑ ∑
𝑠𝑝𝑖𝑗

𝑝𝑖𝑗

𝑛
𝑗=1,𝑗≠𝑖

𝑛
𝑖=1

𝑛 ∗ (𝑛 − 1)
 

(12) 

Where i and j are two within the set of n nodes, 𝑠𝑝𝑖𝑗 is the shortest path length from i to j and 

𝑝𝑖𝑗 is the GR path length from i to j. The ratio 
𝑠𝑝𝑖𝑗

𝑝𝑖𝑗
 assumes values in the interval [0, 1]. When 

the greedy routing is unsuccessful the path length is infinite and therefore the ratio is 0, which 

represents the worst case. When the greedy routing is successful the path length is greater than 

0 and tends to 1 as the path length tends to the shortest path length, becoming 1 in the best case. 

The GR-score is the average of this ratio over all the node pairs. 

 

Louvain algorithm for community detection 

The Louvain algorithm [44] is separated into two phases, which are repeated iteratively.  

At first every node in the (weighted) network represents a community in itself. In the first 

phase, for each node i, it considers its neighbours j and evaluates the gain in modularity that 

would take place by removing i from its community and placing it in the community of j. The 

node i is then placed in the community j for which this gain is maximum, but only if the gain 

is positive. If no gain is possible node i stays in its original community. This process is applied 

until no further improvement can be achieved. 

In the second phase the algorithm builds a new network whose nodes are the communities 

found in the first phase, whereas the weights of the links between the new nodes are given by 

the sum of the weight of the links between nodes in the corresponding two communities. Links 

between nodes of the same community lead to self-loops for this community in the new 

network.  

Once the new network has been built, the two phase process is iterated until there are no more 

changes and a maximum of modularity has been obtained. The number of iterations determines 

the height of the hierarchy of communities detected by the algorithm. 

For each hierarchical level there is a possible partition to compare to the ground truth 

annotation. In this case, the hierarchical level considered is the one that guarantees the best 

match, therefore the detected partition that gives the highest NMI value. 

We used the R function ‘multilevel.community’, an implementation of the method available in 

the ‘igraph’ package [96]. 

In this study, the embedding of the network in the hyperbolic space has been exploited in order 

to weight the input adjacency matrix. Given the hyperbolic coordinates, the observed links have 

been weighted using the formula 
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𝑥𝑖𝑗
𝐻𝐷 =

1

1 + 𝐻𝐷𝑖𝑗
 (13) 

where 𝐻𝐷𝑖𝑗 is the hyperbolic distance between nodes i and j. For the Louvain algorithm a 

further variant has been tested in which also the non-observed links have been weighted using 

the formula 

𝑥𝑖𝑗
𝐻𝑆𝑃 =

1

1 + 𝐻𝑆𝑃𝑖𝑗
 (14) 

where 𝐻𝑆𝑃𝑖𝑗 is the hyperbolic shortest path between nodes i and j, computed as the sum of the 

hyperbolic distances over the shortest path. 

 

Infomap algorithm for community detection 

The Infomap algorithm [45] finds the community structure by minimizing the expected 

description length of a random walker trajectory using the Huffman coding process [97].  

It uses the hierarchical map equation (a further development of the map equation, to detect 

community structures on more than one level), which indicates the theoretical limit of how 

concisely a network path can be specified using a given partition structure. In order to calculate 

the optimal partition (community) structure, this limit can be computed for different partitions 

and the community annotation that gives the shortest path length is chosen. 

For each hierarchical level there is a possible partition to compare to the ground truth 

annotation. In this case, the hierarchical level considered is the one that guarantees the best 

match, therefore the detected partition that gives the highest NMI value. 

We used the C implementation released by the authors at 

http://www.mapequation.org/code.html. 

In this study, the embedding of the network in the hyperbolic space has been exploited in order 

to weight the input adjacency matrix. Given the hyperbolic coordinates, the observed links have 

been weighted using the hyperbolic distances according to Equation 13. 

 

Label propagation algorithm for community detection 

The label propagation algorithm [47] initializes each node with a unique label and iteratively 

updates each node label with the one owned by the majority of the neighbours, with ties broken 

uniformly at random. The update is performed in an asynchronous way and the order of the 

nodes at each iteration is chosen randomly. As the labels propagate through the network, 

densely connected groups of nodes quickly reach a consensus on a unique label. The iterative 

process stops when every node has the same label as the majority its neighbours, ties included. 
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At the end of the procedure the nodes having the same label are grouped together to form a 

community. Since the aim is not the optimization of an objective function and the propagation 

process contains randomness, there are more possible partitions that satisfy the stop criterion 

and therefore the solution is not unique. For this reason the algorithm has been run for 10 

independent iterations and the mean performance is reported. 

We used the R function ‘label.propagation.community’, an implementation of the method 

available in the ‘igraph’ package [96]. 

In this study, the embedding of the network in the hyperbolic space has been exploited in order 

to weight the input adjacency matrix. Given the hyperbolic coordinates, the observed links have 

been weighted using the hyperbolic distances according to Equation 13. 

 

Walktrap algorithm for community detection 

The Walktrap algorithm [46] is based on an agglomerative method for hierarchical clustering: 

the nodes are iteratively grouped into communities exploiting the similarities between them. 

The nodes similarities are obtained using random walks and are based on the idea that random 

walks tend to get trapped into densely connected subgraphs corresponding to communities. 

The agglomerative method uses heuristics to choose which communities to merge and 

implements an efficient way to update the distances between communities. At the end of the 

procedure a hierarchy of communities is obtained and each level offers a possible partition. 

The algorithm chooses as final result the partition that maximizes the modularity. 

We used the R function ‘walktrap.community’, an implementation of the method available in 

the ‘igraph’ package [96]. 

In this study, the embedding of the network in the hyperbolic space has been exploited in order 

to weight the input adjacency matrix. Given the hyperbolic coordinates, the observed links have 

been weighted using the hyperbolic distances according to Equation 13. 

 

Normalized Mutual Information 

The evaluation of the community detection has been performed using the Normalized Mutual 

Information (NMI) as in [98]. The entropy can be defined as the information contained in a 

distribution p(x) in the following way: 

𝐻(𝑋) = ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝑋

 (15) 

The mutual information is the shared information between two distributions: 
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𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log (
𝑝(𝑥, 𝑦)

𝑝1(𝑥)𝑝2(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 (16) 

To normalize the value between 0 and 1 the following formula can be applied: 

𝑁𝑀𝐼 =
𝐼(𝑋, 𝑌)

√𝐻(𝑋)𝐻(𝑌)
 (17) 

If we consider a partition of the nodes in communities as a distribution (probability of one node 

falling into one community), we can compute the matching between the annotation obtained 

by the community detection algorithm and the ground truth communities of a network as 

follows: 

𝐻(𝐶𝐷) = ∑
𝑛ℎ

𝐷

𝑁
log (

𝑛ℎ
𝐷

𝑁
)

𝑛𝐷

ℎ=1

 (18) 

𝐻(𝐶𝑇) = ∑
𝑛𝑙

𝑇

𝑁
log (

𝑛𝑙
𝑇

𝑁
)

𝑛𝑇

𝑙=1

 (19) 

𝐼(𝐶𝐷, 𝐶𝑇) = ∑ ∑
𝑛ℎ,𝑙

𝑁
log (

𝑛ℎ,𝑙

𝑛ℎ
𝐷𝑛𝑙

𝑇)

𝑙ℎ

 (20) 

𝑁𝑀𝐼(𝐶𝐷 , 𝐶𝑇) =
𝐼(𝐶𝐷 , 𝐶𝑇)

√𝐻(𝐶𝐷)𝐻(𝐶𝑇)
 (21) 

Where: 

N – number of nodes; 

𝑛𝐷 , 𝑛𝑇 – number of communities detected by the algorithm (D) or ground truth (T); 

𝑛ℎ,𝑙 – number of nodes assigned to the h-th community by the algorithm and to the l-th 

community according to the ground truth annotation.  

We used the MATLAB implementation available at http://commdetect.weebly.com/. As 

suggested in the code, when 
𝑁

𝑛𝑇 ≤ 100, the NMI should be adjusted in order to correct for 

chance [99]. 

 

Generation of synthetic networks using the PSO model 

The Popularity-Similarity-Optimization (PSO) model [20] is a generative network model 

recently introduced in order to describe how random geometric graphs grow in the hyperbolic 

space. In this model the networks evolve optimizing a trade-off between node popularity, 

abstracted by the radial coordinate, and similarity, represented by the angular coordinate 
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distance, and they exhibit many common structural and dynamical characteristics of real 

networks. 

The model has four input parameters: 

- 𝑚 > 0, which is equal to half of the average node degree; 

- 𝛽 ∈ (0, 1], defining the exponent 𝛾 = 1 + 1/𝛽 of the power-law degree distribution; 

- 𝑇 ≥ 0, which controls the network clustering; the network clustering is maximized at 𝑇 = 0, 

it decreases almost linearly for 𝑇 = [0,1) and it becomes asymptotically zero if 𝑇 > 1; 

- 𝜁 = √−𝐾 > 0, where K is the curvature of the hyperbolic plane. Since changing 𝜁 rescales 

the node radial coordinates and this does not affect the topological properties of networks [20], 

we considered 𝐾 = −1. 

Building a network of N nodes on the hyperbolic disk requires the following steps: (1) Initially 

the network is empty. (2) At time 𝑖 = 1, 2, … , 𝑁 a new node i appears with radial coordinate as 

described in Equation 6 and angular coordinate 𝜃𝑖 uniformly sampled in [0,2𝜋]; all the existing 

nodes 𝑗 < 𝑖 increase their radial coordinates according to Equation 7 in order to simulate 

popularity fading. (3) If 𝑇 = 0, the new node connects to the m hyperbolically closest nodes; 

if 𝑇 > 0, the new node picks a randomly chosen existing node 𝑗 < 𝑖 and, given that it is not 

already connected to it, it connects to it with probability 𝑝(ℎ𝑖𝑗) (see Equation 10), repeating 

the procedure until it becomes connected to m nodes. (4) The growing process stops when N 

nodes have been introduced. 

 

Real networks dataset 

The community detection methods have been tested on 8 small real networks, which represent 

differing systems, and on 8 large Internet networks. 

The networks have been transformed into undirected, unweighted, without self-loops and only 

the largest connected component has been considered. The information of their ground truth 

communities is available. Every table, together with the results, provides also some basic 

statistics of the networks. 

The first small network is about the Zachary’s Karate Club [88], it represents the friendship 

between the members of a university karate club in the US. The communities are formed by a 

split of the club into two parts, each following one trainer. 

The networks from the second to the fifth are intra-organisational networks from [90] and can 

be downloaded at https://toreopsahl.com/datasets/#Cross_Parker. Opsahl_8 and Opsahl_9 

come from a consulting company and nodes represent employees. In Opsahl_8 employees were 
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asked to indicate how often they have turned to a co-worker for work-related information in 

the past, where the answers range from: 0 - I don’t know that person; 1 - Never; 2 - Seldom; 3 

- Sometimes; 4 - Often; 5 - Very often. Directions were ignored. The data was turned into an 

unweighted network by setting a link only between employees that have at least asked for 

information seldom (2). 

In the Opsahl_9 network, the same employees were asked to indicate how valuable the 

information they gained from their co-worker was. They were asked to show how strongly they 

agree or disagree with the following statement: “In general, this person has expertise in areas 

that are important in the kind of work I do.” The weights in this network are also based on the 

following scale: 0 - Do Not Know This Person; 1 - Strongly Disagree; 2 - Disagree; 3 - Neutral; 

4 - Agree; 5 - Strongly Agree. We set a link if there was an agreement (4) or strong agreement 

(5). Directions were ignored. 

The Opsahl_10 and Opsahl_11 networks come from the research team of a manufacturing 

company and nodes represent employees. The annotated communities indicate the company 

locations (Paris, Frankfurt, Warsaw and Geneva). 

For Opsahl_10 the researchers were asked to indicate the extent to which their co-workers 

provide them with information they use to accomplish their work. The answers were on the 

following scale: 0 – I do not know this person / I never met this person; 1 – Very infrequently; 

2 – Infrequently; 3 – Somewhat frequently; 4 – Frequently; 5 – Very frequently. We set an 

undirected link when there was at least a weight of 4.  

For Opsahl_11 the employees were asked about their awareness of each other’s knowledge (“I 

understand this person’s knowledge and skills. This does not necessarily mean that I have these 

skills and am knowledgeable in these domains, but I understand what skills this person has and 

domains they are knowledgeable in.”). The weighting was on the scale: 0 – I do not know this 

person / I have never met this person; 1 – Strongly disagree; 2 – Disagree; 3 – Somewhat 

disagree; 4 – Somewhat agree; 5 – Agree; 6 – Strongly agree. We set a link when there was at 

least a 4, ignoring directions. 

The Polbooks network represents frequent co-purchases of books concerning US politics on 

amazon.com. Ground truth communities are given by the political orientation of the books as 

either conservative, neutral or liberal. The network is unpublished but can be downloaded at 

http://www-personal.umich.edu/~mejn/netdata/, as well as with the Karate, Football and 

Polblogs networks. 

The Football network [6] presents games between division IA colleges during regular season 

fall 2000. Ground truth communities are the conferences that each team belongs to. 
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The Polblogs [100] network consists of links between blogs about the politics in the 2004 US 

presidential election. The ground truth communities represent the political opinions of the blogs 

(right/conservative and left/liberal). 

The large size networks considered for community detection are Autonomous systems (AS) 

Internet topologies extracted from the data collected by the Archipelago active measurement 

infrastructure (ARK) developed by CAIDA [101]. The connections in the topology are not 

physical but logical, representing AS relationships, and the annotated communities are the 

geographical locations (countries). ARK200909-ARK201012 are topologies collected from 

September 2009 to December 2010 at time steps of three months (download available at 

https://bitbucket.org/dk-

lab/2015_code_hypermap/src/bd473d7575c35e099b520bf669d92aea81fac69b/AS_topologies

/). AS201501_IPv4 is a more recent version of the IPv4 Internet topology, collected on January 

2015 (download at 

http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml). 

AS201501_IPv6 is as recent as the previous one but represents the IPv6 Internet network 

(download at https://www.caida.org/data/active/ipv6_allpref_topology_dataset.xml). 

 

Complexity of coalescent embedding algorithms 

The time complexity of the coalescent embedding algorithms proposed can be obtained 

summing up the computational cost of the main steps: pre-weighting, dimension reduction, 

assignment of angular coordinates and radial coordinates. All the complexities reported assume 

the network to be connected, therefore the number of edges E has at least the same order of 

complexity as the number of nodes N. 

1) Pre-weighting rules 

1.1) RA: it only requires basic operations on sparse matrices, whose complexity is proportional 

to the number of nonzero elements, therefore 𝑂(𝐸). 

1.2) EBC: it requires the computation of the Edge Betweenness Centrality, which takes 𝑂(𝐸𝑁) 

using the Brandes’ algorithm for unweighted graphs [102]. 

2) Dimension reduction techniques 

2.1) LE: the method performs the eigen-decomposition of the Laplacian matrix solving a 

generalized eigenvalue problem and then uses the eigenvectors related to the smallest 

eigenvalues, discarding the first because it is zero. The computation of all the eigenvalues of 

the matrix requires 𝑂(𝑁3) [103], using the MATLAB function ‘eig’. However, since the 
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Laplacian matrix is sparse and only a few eigenvalues are needed (k=3 for a 2D embedding 

and k=4 for a 3D embedding in the hyperbolic space), the MATLAB function ‘eigs’ can be 

executed. Firstly, the matrix is factorized, which requires 𝑂(𝑁3/2 ) for sparse matrices [104], 

then it uses the Implicitly Restarted Arnoldi Method (IRAM) [105] as implemented in 

ARPACK [106]. It is an iterative method whose convergence speed strictly depends on the 

relative gap between the eigenvalues, which makes the computational complexity difficult to 

analyse in terms of N and E. 

2.2) ISO: the method computes as first all the pairwise shortest paths between the nodes using 

the Johnson’s algorithm, which takes 𝑂(𝐸𝑁) [107]. The obtained kernel is centered, which 

costs 𝑂(𝑁2) due to operations on dense matrices, and finally singular value decomposition is 

applied, in order to obtain the singular vectors related to the largest singular values. The 

computation of all the singular values of the matrix requires 𝑂(𝑁3) [103], using the MATLAB 

function ‘svd’. However, since only a few singular values are needed (k=2 for a 2D embedding 

and k=3 for a 3D embedding in the hyperbolic space), the function ‘lansvd’ from the software 

package PROPACK can be exploited, which has a lower computational complexity equal to 

𝑂(𝑘𝑁2) [108]. 

2.3) ncISO: the method performs the same operations as ISO, omitting the kernel centering. As 

a consequence, the first dimension of embedding is discarded, therefore the singular values to 

compute are k=3 for a 2D embedding and k=4 for a 3D embedding in the hyperbolic space. 

2.4) MCE: the method computes as first a minimum spanning tree over the network using the 

Kruskal’s algorithm, whose complexity is 𝑂(𝐸 + 𝑋 ∗ 𝑙𝑜𝑔(𝑁)), where X is the number of edges 

no longer than the longest edge in the MST [109]. Starting from the minimum spanning tree, 

all the pairwise transversal distances between disconnected nodes are computed in order to 

form the MC-Kernel, the complexity of this step it 𝑂(𝐸𝑁) with 𝐸 = (𝑁 − 1) hence 𝑂(𝑁2). 

The following step is the kernel centering that costs 𝑂(𝑁2). Since the angular coordinates are 

inferred according to the first dimension of embedding, the singular values to compute are k=1 

for a 2D embedding in the hyperbolic space. 

2.5) ncMCE: the method performs the same operations as MCE, omitting the kernel centering. 

As a consequence, the first dimension of embedding is discarded and the angular coordinates 

are inferred according to the second one. Therefore the singular values to compute are k=2 for 

a 2D embedding in the hyperbolic space. 

3) Angular coordinates 
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3.1) Circular adjustment: the assignment requires the conversion from Cartesian to polar 

coordinates for the methods LE, ISO and ncISO and a rescaling of the coordinates for MCE 

and ncMCE, in both the cases the cost is 𝑂(𝑁). 

3.2) Equidistant adjustment: a sorting operation is performed, which costs 𝑂(𝑁𝑙𝑜𝑔𝑁). 

4) Radial coordinates: the assignment is performed applying a given mathematical formula, 

which requires the nodes to be sorted by degree, the cost is therefore 𝑂(𝑁𝑙𝑜𝑔𝑁). 

Summarizing, if full matrix factorization techniques are used, all the methods have a 

complexity of 𝑂(𝑁3). Instead, if the truncated variants are used, for ISO, ncISO, MCE and 

ncMCE the SVD takes 𝑂(𝑁2) since k is a small constant, therefore they have a complexity 

dominated by the shortest path computation, which is 𝑂(𝐸𝑁) in case of ISO and ncISO and 

𝑂(𝑁2) in case of MCE and ncMCE. The slowest pre-weighting is EBC and it is in the same 

order of complexity. The Supplementary Fig. 22 where the RA pre-weighting is used shows 

that LE is faster than the other methods and suggests that the computational complexity might 

be in the same range of RA-ncMCE or even lower, certainly not higher. Therefore we conclude 

that the complexity would be 𝑂(𝐸𝑁) if the EBC pre-weighting is used; and it could be even 

lower, and approximatively 𝑂(𝑁2) for LE, MCE and ncMCE, if the RA pre-weighting is used. 

 

Data availability 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request. 

For real networks data that have been obtained from publicly available sources, the 

corresponding URLs or references are provided in the 'Real networks dataset' section. 

 

Code availability 

The MATLAB code for performing the coalescent embedding in 2D and 3D, together with 

functions for the evaluation (HD-correlation, C-score, GR-score) and visualization of the 

embedding are publicly available at the GitHub repository: 

https://github.com/biomedical-cybernetics/coalescent_embedding 

 

Hardware and software details 

Unless stated otherwise MATLAB code was used for all the methods and simulations, which 

were carried out on a workstation under Windows 8.1 Pro with 512 GB of RAM and 2 Intel(R) 

Xenon(R) CPU E5-2687W v3 processors with 3.10 GHz. 

https://github.com/biomedical-cybernetics/coalescent_embedding
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Figure 1. Coalescent embedding 

(a) We show the original synthetic network generated by the PSO model in the hyperbolic space. (b) 

The Isomap algorithm (ISO), which is the progenitor of manifold techniques, starting from the 

unweighted adjacency matrix offers an embedding of the network nodes that is organized according to 

a circular pattern that follows the angular coordinates of the original PSO model. We made different 

trials using other synthetic networks, and this circular pattern is mainly preserved if the kernel is 

centered or if the kernel is not centered and the first dimension is neglected (see Methods for details). 

This makes sense because the operation of kernel centering puts the origin of the reduced space at the 

center of the points in a multidimensional space and thus at the center of the manifold. Since the node 

points lie on the hyperbolic disk, the embedding places the origin approximatively at the center of the 

disk. (d) The nodes are projected over a circumference and adjusted equidistantly according to the step 

3.2 of the algorithm described in Methods. (c) The radial coordinates are given according to Equation 

4. (e) A different pattern is obtained for an algorithm named ncMCE. The circular pattern is linearized 

and the nodes are ordered along the second dimension of embedding according to their similarities (here 

the kernel is noncentered and the first dimension of embedding should be neglected, see Methods). (f) 

If we accommodate the node points on the circumference following the same ordering as the second 

dimension of embedding, we can again recover an unbroken circular pattern that resembles the angular 

coordinates of the original PSO model.  
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Figure 2. Flow chart of the coalescent embedding algorithm. 

The algorithmic steps (greyscale squares) and the intermediate input/output (rounded red squares) of 

the coalescent embedding algorithm are illustrated. Each algorithmic step reports all the possible 

variants. The example network has been generated by the PSO model with parameters N = 50, m = 2, T 

= 0.1, γ = 2.5. We applied the RA1 pre-weighting rule and the ISO dimension reduction technique. The 

colours of the embedded nodes are assigned according to their angular coordinates in the original PSO 

network. Description of the variables in the mathematical formulas: 𝑥𝑖𝑗 value of (𝑖, 𝑗) link in adjacency 

matrix 𝑥; 𝑑𝑖 degree of node 𝑖; 𝑒𝑖 external degree of node 𝑖 (links neither to 𝐶𝑁𝑖𝑗  nor to 𝑗); 𝐶𝑁𝑖𝑗 common 

neighbours of nodes 𝑖 and 𝑗; 𝑉 set of nodes; 𝑠, 𝑡 any combination of network nodes in 𝑉; 𝜎(𝑠, 𝑡) number 

of shortest paths (𝑠, 𝑡); 𝜎(𝑠, 𝑡|𝑙𝑖𝑗) number of shortest paths (𝑠, 𝑡) through link 𝑙𝑖𝑗; 𝑁 number of nodes; 

 = √−𝐾, we set  = ; 𝐾 curvature of the hyperbolic space; 𝛽 =
1

𝛾−1
 popularity fading parameter; 𝛾 

exponent of power-law degree distribution. Details on each step are provided in the respective Methods 

sections.  
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Figure 3. HD-correlation on PSO synthetic networks. 

(a-i) To validate the abovementioned techniques, we generated 100 different synthetic networks for 

each combination of tuneable parameters of the PSO model (temperature T, size N, half of average 

degree m, power-law degree distribution exponent γ). Supplementary Fig. 24 offers an idea of the 

topological diversity of the synthetic networks generated fixing γ = 2.5 and tuning the other parameters, 

Supplementary Fig. 25 reports an analysis of the rich-clubness of the networks, commented in 

Supplementary Discussion.  In the results presented in the figures of this article we used γ = 2.5, but we 

also ran the simulations for γ = 2.25 and 2.75, and the differences were negligible (results not shown). 

Here, the performance was evaluated as Pearson correlation between all the pairwise hyperbolic 

distances of the network nodes in the original PSO model and in the reconstructed hyperbolic space 

(HD-correlation). The plots report the average correlation and the standard error over the 100 synthetic 

networks that have been generated for each different parameter combination. The value one indicates a 

perfect correlation between the nodes’ hyperbolic distances in the original and reconstructed hyperbolic 

space. The plots show the results of different methods when both RA and EA are applied. The methods 

without EA are plotted in Supplementary Fig. 7. For each subplot the value of HyperMap-CN for T = 0 

is missing because the original code assumes T > 0.  
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Figure 4. Angular coordinates comparison and C-scores on PSO synthetic networks 

(a-i) For all the combinations of the PSO parameters N (size) and m (half of average degree), we chose 

among the synthetic networks embedded with RA-MCE-EA the ones with the best C-score, which had 

always temperature T = 0. For these networks we plotted the aligned inferred angular coordinates 

against the original angular coordinates (θ). The alignment was done in the following manner: we 

applied 360 rotations of one degree both to the inferred coordinates as they are and to the inferred 

coordinates obtained arranging the nodes in the opposite clock direction. Then from these resulting 720 

alternatives of the inferred angular coordinates we chose the one that maximizes the correlation with 

the original angular coordinates, in order to guarantee the best alignment. The alignment does not 

change the C-score, which represents the percentage of node pairs in the same circular order in the 

original and inferred networks (see Methods for details). Similar plots for the other coalescent 

embedding methods and temperature values can be found in Supplementary Fig. 8-17. (j-r) The plots 

report the average C-score and the standard error over the 100 synthetic networks that have been 

generated for each different parameter combination. There are no separate plots for the methods with 

and without EA since this adjustment affects the distances but not the circular ordering, therefore it does 

not change the C-score. For each subplot the value of HyperMap-CN for T = 0 is missing because the 

original code assumes T > 0.  
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Figure. 5. Comparison of HD-correlation and time on small and large size PSO synthetic networks 

(a, c, e) Average performance and standard error, measured as HD-correlation, for all PSO networks of 

sizes N = 1000, N = 10000 and N = 30000 respectively. Averages are taken over the parameters m (half 

of the mean node degree) and temperature T. (b, d, f) Average computation times for the PSO networks 

of sizes N = 1000, N = 10000 and N = 30000 respectively. Again, averages are taken over the parameters 

m (half of the mean node degree) and temperature T.  Considering the average performance in all the 

simulations on 1000 nodes networks (a), coalescent embedding approaches achieved a performance 

improvement of more than 30% in comparison to HyperMap, requiring only around one second versus 

more than three hours of computation time. Similar performance results are confirmed for the networks 

of sizes N = 10000 and N = 30000 with an execution time still in the order of minutes for the biggest 

networks. The comparison to HyperMap was not possible due to its long running time. The dashed grey 

bins represent the HD-correlation of the respective non-EA variants, suggesting that their performance 

tends to the EA variants for larger PSO networks.  
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Figure. 6. Greedy routing on real networks 

The 8 real networks whose statistics are reported in Table 1 have been mapped using the hyperbolic 

embedding techniques and the greedy routing in the geometrical space has been evaluated. The barplot 

report for each method the mean GR-score and standard error over the networks. The GR-score is a 

metric to evaluate the efficiency of the greedy routing, which assumes values between 0, when all the 

routings are unsuccessful, and 1, when all the packets reach the destination through the shortest path 

(see Methods for details). Both the EA (a) and non-EA (b) variants are reported, in order to check 

whether the equidistant adjustment might affect the navigability. A black arrow points the coalescent 

embedding algorithm RA-ncMCE that offers the best performance regardless the use of node angular 

adjustment. The mean GR-score of RA-ncMCE is not statistically different from the one of the 

HyperMap-based algorithms (permutation test p-value > 0.2 in all the pairwise comparisons).  
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Figure. 7. Communities in Karate and Opsahl_11 networks 

(a, b) Karate network embedded with EBC-ncISO-EA and RA-MCE-EA. The network represents the 

friendship between the members of a university karate club in the US. The two real communities are 

highlighted, they are formed by a split of the club into two parts, each following one trainer. The NMI 

obtained by the Louvain community detection algorithm is reported, where the embedding coordinates 

were used to weight the input matrix: observed links are weighted using the hyperbolic distances 

between the nodes and non-observed links using the hyperbolic shortest paths (see Methods for details). 

NMI is the normalized mutual information and represents the shared information between two 

distributions, normalized between 0 and 1, where 1 indicates that the communities detected by the 

algorithm perfectly correspond to the ground truth communities (see Methods for details). (c, d) 

Opsahl_11 network embedded with RA-ncMCE-EA and RA-MCE-EA. This is a type of intra-

organisational network where a link indicates that the connected employees have both awareness of 

each other’s knowledge and skills on the job. The four real communities are highlighted, they are related 

with the location of the employers. All the approaches here adopted are adjusted according to EA 

strategy, although this is not explicitly reported in the subtitles for brevity. Note that the angular 

coordinates of the embedding in (b) and (d) have been aligned for a better visualization respectively to 

the ones in (a) and (c), as described for the scatterplots in Fig. 4A.  



81 
 

  



82 
 

Figure. 8. Comparison of 2D and 3D RA-ISO embedding for increasing temperature 

The figure shows how the similarities of the original PSO network (N = 1000, m = 6,  = 2.5) (c, h) are 

recovered either embedding in 2D (a, f) and arranging the angular coordinates over the circumference 

of a circle (d, i) or embedding in 3D (b, g) and adjusting the angular coordinates over a sphere (e, j). (a-

e) At low temperature (T = 0) the nodes appear distributed over a well-defined closed 3D curve. 

Intuitively, it seems that the 2D hyperbolic disk already offers a perfect discrimination of the similarities 

and with the addition of the third dimension there is not much gain of information. (f-j) With the increase 

of the temperature (T = 0.6 reported, T = 0.3 and T = 0.9 shown in Supplementary Fig. 21) the nodes 

look more and more spread around the closed 3D curve that was well-defined at low temperature. Even 

if one angular dimension of the sphere still recovers most of the similarities present in the original 

network, it is unknown if the higher spread along the second angular dimension consists in a more 

refined discrimination between similar nodes or in noise, therefore we have evaluated the improvement 

given by the 3D mapping for the greedy routing and the community detection applications. 
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Method 

Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs 

 
Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝛾=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

EBC-ncISO-EA 1.00 0.57 0.47 1.00 0.93 0.59 0.90 0.68 0.77 +13.2 

RA-MCE-EA 0.83 0.51 0.47 1.00 0.96 0.57 0.82 0.67 0.73 +7.4 

RA-ncMCE-EA 0.73 0.55 0.47 1.00 1.00 0.57 0.83 0.67 0.73 +7.4 

EBC-MCE-EA 0.83 0.47 0.41 1.00 0.96 0.57 0.90 0.62 0.72 +5.9 

EBC-ncMCE-EA 0.88 0.46 0.41 1.00 0.96 0.57 0.85 0.62 0.72 +5.9 

EBC-ISO-EA 0.83 0.42 0.47 1.00 0.89 0.59 0.88 0.66 0.72 +5.9 

LPCS 0.83 0.49 0.41 1.00 0.96 0.55 0.87 0.67 0.72 +5.9 

ncMCE-EA 0.73 0.47 0.47 1.00 0.96 0.57 0.89 0.62 0.71 +4.4 

RA-LE-EA 0.67 0.48 0.53 1.00 0.92 0.56 0.82 0.70 0.71 +4.4 

RA-ncISO-EA 0.67 0.54 0.42 1.00 0.92 0.56 0.86 0.67 0.70 +2.9 

ncISO-EA 0.73 0.50 0.41 1.00 0.88 0.54 0.87 0.66 0.70 +2.9 

EBC-LE-EA 0.85 0.42 0.41 0.96 0.92 0.56 0.85 0.62 0.70 +2.9 

MCE-EA 0.64 0.47 0.47 0.96 0.92 0.55 0.86 0.62 0.69 +1.5 

unweighted 0.46 0.55 0.41 1.00 0.96 0.50 0.93 0.64 0.68 0.0 

LE-EA 0.63 0.55 0.41 1.00 0.78 0.55 0.82 0.67 0.68 0.0 

RA-ISO-EA 0.57 0.43 0.44 1.00 0.88 0.54 0.86 0.67 0.67 -1.5 

ISO-EA 0.34 0.50 0.41 0.96 0.93 0.56 0.82 0.67 0.65 -4.4 

HyperMap 0.56 0.60 0.28 0.92 0.85 0.50 0.83 0.69 0.65 -4.4 

HyperMapCN 0.55 0.47 0.41 0.93 0.79 0.54 0.79 0.70 0.65 -4.4 

 

Table 1. Community detection on real networks with Louvain algorithm 

Normalized Mutual Information (NMI) computed between the ground truth communities and the ones 

detected by the Louvain algorithm for 8 real networks. NMI = 1 indicates a perfect match between the 

two partitions of the nodes. For each method, the network has been embedded in the hyperbolic space 

and the embedding coordinates are used to weight the input matrix for the Louvain algorithm: observed 

links are weighted using the hyperbolic distances between the nodes and non-observed links using the 

hyperbolic shortest paths (see Methods for details). As a reference, the Louvain algorithm has been run 

giving in input also the unweighted adjacency matrix, the related row is highlighted. The table contains 

also some statistics for each network: number of nodes N, number of edges E, temperature T (inversely 

related to the clustering coefficient), power-law degree distribution exponent γ, half of average degree 

m and number of ground truth communities Nc. Due to the higher performance only the EA methods 

are here reported, whereas the complete table is shown as Supplementary Table 1. The NMI values 

highlighted for the Karate and Opsahl_11 networks are the ones whose embedding is shown in Fig. 7. 

The rightmost column reports the percentage of improvement with respect to the unweighted variant, 

the best result is highlighted. The results obtained only weighting the observed links are shown in 

Supplementary Table 5. 
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Method 

Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs 

 
Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝛾=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

EBC-ncISO-EA 0.68 0.75 0.47 1.00 1.00 0.54 0.92 0.53 0.74 +4.2 

ncMCE-EA 0.68 0.74 0.47 1.00 0.93 0.50 0.92 0.52 0.72 +1.4 

unweighted 0.55 0.69 0.47 1.00 1.00 0.52 0.92 0.52 0.71 0.0 

EBC-MCE-EA 0.68 0.55 0.53 1.00 0.96 0.52 0.93 0.52 0.71 0.0 

EBC-ncMCE-EA 0.58 0.55 0.53 1.00 1.00 0.52 0.93 0.52 0.70 -1.4 

ISO-EA 0.68 0.53 0.47 1.00 0.96 0.52 0.92 0.53 0.70 -1.4 

LE-EA 0.68 0.54 0.47 1.00 0.96 0.53 0.92 0.51 0.70 -1.4 

EBC-LE-EA 0.68 0.55 0.47 0.95 0.96 0.52 0.93 0.53 0.70 -1.4 

ncISO-EA 0.68 0.53 0.47 1.00 0.96 0.47 0.92 0.53 0.69 -2.8 

EBC-ISO-EA 0.55 0.55 0.47 1.00 1.00 0.52 0.92 0.53 0.69 -2.8 

MCE-EA 0.68 0.54 0.47 0.95 0.93 0.51 0.92 0.52 0.69 -2.8 

RA-ncISO-EA 0.55 0.55 0.47 1.00 1.00 0.52 0.92 0.52 0.69 -2.8 

RA-ISO-EA 0.58 0.55 0.47 1.00 0.96 0.52 0.92 0.52 0.69 -2.8 

RA-ncMCE-EA 0.47 0.55 0.53 1.00 1.00 0.52 0.92 0.50 0.69 -2.8 

LPCS 0.55 0.55 0.53 1.00 0.96 0.52 0.93 0.51 0.69 -2.8 

RA-LE-EA 0.55 0.55 0.47 1.00 0.93 0.52 0.92 0.52 0.68 -4.2 

RA-MCE-EA 0.47 0.55 0.53 1.00 0.92 0.52 0.92 0.51 0.68 -4.2 

HyperMapCN 0.52 0.55 0.41 1.00 0.86 0.57 0.89 0.46 0.66 -7.0 

HyperMap 0.52 0.60 0.32 1.00 0.92 0.49 0.90 0.46 0.65 -8.5 

 

Table 2. Community detection on real networks with Infomap algorithm 

Normalized Mutual Information (NMI) computed between the ground truth communities and the ones 

detected by the Infomap algorithm for 8 real networks. NMI = 1 indicates a perfect match between the 

two partitions of the nodes. For each method, the network has been embedded in the hyperbolic space 

and the hyperbolic distances between the nodes are used to weight the observed links in the input matrix 

for the Infomap algorithm (see Methods for details). As a reference, the Infomap algorithm has been 

run giving in input also the unweighted adjacency matrix, the related row is highlighted. The table 

contains also some statistics for each network: number of nodes N, number of edges E, temperature T 

(inversely related to the clustering coefficient), power-law degree distribution exponent 𝛾, half of 

average degree m and number of ground truth communities Nc. Due to the higher performance only the 

EA methods are here reported, whereas the complete table is shown as Supplementary Table 2. The 

rightmost column reports the percentage of improvement with respect to the unweighted variant.  
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A.7 Supplementary Information 
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Supplementary Figure 1. Coalescent embedding with RA pre-weighting 

(a) We show the original synthetic network generated by the PSO model in the hyperbolic space. (b) 

The Isomap algorithm (ISO) starting from the adjacency matrix pre-weighted with the repulsion-

attraction (RA) rule offers an embedding of the network nodes that is organized according to a circular 

pattern that follows the angular coordinates of the original PSO model. The circular pattern is visible 

more clearly compared to the embedding without the pre-weighting (Fig. 1). (d) The nodes are projected 

over a circumference and adjusted equidistantly according to the step 3.2 of the algorithm described in 

Methods. (c) The radial coordinates are given according to Equation 4. (e) A different pattern is obtained 

for an algorithm named ncMCE. The circular pattern is linearized and the nodes are ordered along the 

second dimension of embedding according to their similarities. (f) If we accommodate the node points 

on the circumference following the same ordering as the second dimension of embedding, we can again 

recover an unbroken circular pattern that resembles the angular coordinates of the original PSO model. 
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Supplementary Figure 2. HD-correlation on PSO synthetic networks for ISO 

(a-i) The figure is equivalent to Fig. 3, but all the variants of ISO are compared. 
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Supplementary Figure 3. HD-correlation on PSO synthetic networks for ncISO 

(a-i) The figure is equivalent to Fig. 3, but all the variants of ncISO are compared. 
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Supplementary Figure 4. HD-correlation on PSO synthetic networks for LE 

(a-i) The figure is equivalent to Fig. 3, but all the variants of LE are compared. 
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Supplementary Figure 5. HD-correlation on PSO synthetic networks for MCE 

(a-i) The figure is equivalent to Fig. 3, but all the variants of MCE are compared. 
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Supplementary Figure 6. HD-correlation on PSO synthetic networks for ncMCE 

(a-i) The figure is equivalent to Fig. 3, but all the variants of ncMCE are compared.  
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Supplementary Figure 7. HD-correlation on PSO synthetic networks 

(a-i) The figure is equivalent to Fig. 3, but the methods without EA are shown. Comparing the two 

figures, it is evident that the ability of EA to adjust for the local positional noise makes a difference. In 

fact, when m = 2 and temperatures are low, RA-LE without equidistant adjustment suffers a strong 

performance reduction in comparison to the case in which EA is applied. 
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Supplementary Figure 8. Angular coordinates comparison for RA-ISO-EA (T = 0, T = 0.3) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0 

(a-i) and T = 0.3 (j-r),  we chose among the synthetic networks embedded with RA-ISO-EA the ones 

with the best C-score. For these networks we plotted the aligned inferred angular coordinates against 

the original angular coordinates as described in Fig. 4. 
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Supplementary Figure 9. Angular coordinates comparison for RA-ISO-EA (T = 0.6, T = 0.9) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0.6 

(a-i) and T = 0.9 (j-r),  we chose among the synthetic networks embedded with RA-ISO-EA the ones 

with the best C-score. For these networks we plotted the aligned inferred angular coordinates against 

the original angular coordinates as described in Fig. 4. 
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Supplementary Figure 10. Angular coordinates comparison for RA-ncISO-EA (T = 0, T = 0.3) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0 

(a-i) and T = 0.3 (j-r),  we chose among the synthetic networks embedded with RA-ncISO-EA the ones 

with the best C-score. For these networks we plotted the aligned inferred angular coordinates against 

the original angular coordinates as described in Fig. 4. 
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Supplementary Figure 11. Angular coordinates comparison for RA-ncISO-EA (T = 0.6, T = 0.9) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0.6 

(a-i) and T = 0.9 (j-r),  we chose among the synthetic networks embedded with RA-ncISO-EA the ones 

with the best C-score. For these networks we plotted the aligned inferred angular coordinates against 

the original angular coordinates as described in Fig. 4. 
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Supplementary Figure 12. Angular coordinates comparison for RA-LE-EA (T = 0, T = 0.3) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0 

(a-i) and T = 0.3 (j-r), we chose among the synthetic networks embedded with RA-LE-EA the ones with 

the best C-score. For these networks we plotted the aligned inferred angular coordinates against the 

original angular coordinates as described in Fig. 4. 
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Supplementary Figure 13. Angular coordinates comparison for RA-LE-EA (T = 0.6, T = 0.9) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0.6 

(a-i) and T = 0.9 (j-r),  we chose among the synthetic networks embedded with RA-LE-EA the ones 

with the best C-score. For these networks we plotted the aligned inferred angular coordinates against 

the original angular coordinates as described in Fig. 4. 
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Supplementary Figure 14. Angular coordinates comparison for RA-MCE-EA (T = 0, T = 0.3) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0 

(a-i) and T = 0.3 (j-r),  we chose among the synthetic networks embedded with RA-MCE-EA the ones 

with the best C-score. For these networks we plotted the aligned inferred angular coordinates against 

the original angular coordinates as described in Fig. 4. 

  



100 
 

 
 

Supplementary Figure 15. Angular coordinates comparison for RA-MCE-EA (T = 0.6, T = 0.9) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0.6 

(a-i) and T = 0.9 (j-r),  we chose among the synthetic networks embedded with RA-MCE-EA the ones 

with the best C-score. For these networks we plotted the aligned inferred angular coordinates against 

the original angular coordinates as described in Fig. 4. 
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Supplementary Figure 16. Angular coordinates comparison for RA-ncMCE-EA (T = 0, T = 0.3) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0 

(a-i) and T = 0.3 (j-r),  we chose among the synthetic networks embedded with RA-ncMCE-EA the ones 

with the best C-score. For these networks we plotted the aligned inferred angular coordinates against 

the original angular coordinates as described in Fig. 4. 
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Supplementary Figure 17. Angular coordinates comparison for RA-ncMCE-EA (T = 0.6, T = 0.9) 

For all the combinations of the PSO parameters N (size) and m (half of average degree), fixing T = 0.6 

(a-i) and T = 0.9 (j-r),  we chose among the synthetic networks embedded with RA-ncMCE-EA the ones 

with the best C-score. For these networks we plotted the aligned inferred angular coordinates against 

the original angular coordinates as described in Fig. 4. 
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Supplementary Figure 18. Time on PSO synthetic networks 

(a-i) For the same PSO networks in Fig. 3, the computational time shows the large efficiency of the 

coalescent embedding based approaches that generally required around one second to embed networks 

with 1000 nodes, while HyperMap spent approximately 3 hours for the same task (software and 

hardware details in the Methods).  
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Supplementary Figure 19. Greedy routing on PSO synthetic networks 

The same PSO networks considered in Fig. 3 have been mapped using the hyperbolic embedding 

techniques and the greedy routing in the geometrical space has been evaluated. The barplot reports for 

each method the mean GR-score over all the PSO parameter combinations. The GR-score is a metric to 

evaluate the efficiency of the greedy routing, which assumes values between 0, when all the routings 

are unsuccessful, and 1, when all the packets reach the destination through the shortest path  (see 

Methods for details).  Both the EA (a) and non-EA (b) variants are reported, in order to check whether 

the equidistant adjustment might affect the navigability. The score for HyperMap-CN is not reported 

since the value for T = 0 is missing, because the original code assumes T > 0. The GR-score evaluated 

over the original coordinates of the PSO model is also shown. A black arrow points the coalescent 

embedding algorithm RA-ncMCE, as in Fig. 6.s  
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Supplementary Figure 20. Comparison of EA and non-EA for greedy routing 

(a) The same PSO networks considered in Fig. 3 have been mapped using the coalescent embedding 

techniques and the greedy routing in the geometrical space has been evaluated. The barplot reports the 

GR-score averaged not only over all the PSO parameter combinations but also respectively over all the 

EA and non-EA coalescent embedding techniques. The corresponding standard error are also shown. 

The p-value of the permutation test for the mean (10000 iterations) is reported, performed considering 

the two vectors of GR-scores for the EA and non-EA methods. (b) The 8 real networks whose statistics 

are reported in Table 1 have been mapped using the coalescent embedding techniques and the greedy 

routing in the geometrical space has been evaluated. The barplot reports the GR-score averaged not 

only over the networks but also respectively over all the EA and non-EA coalescent embedding 

techniques. The corresponding standard error are also shown. The p-value of the permutation test for 

the mean (10000 iterations) is reported, performed considering the two vectors of GR-scores for the EA 

and non-EA methods.  
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Supplementary Figure 21. Comparison of 2D and 3D embedding for increasing temperature 

The figure shows how the similarities of the original PSO network (N = 1000, m = 6,  = 2.5) are 

recovered either embedding in 2D (a, f) and arranging the angular coordinates over the circumference 

of a circle (d, i) or embedding in 3D (b, g) and adjusting the angular coordinates over a sphere (e, j). 

The figure reports the plots for the temperatures T = 0.3 (a-e) and T = 0.9 (f-j) in order to integrate the 

Fig. 8, where T = 0 and T = 0.6 are shown. 
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Supplementary Figure 22. Time estimation for coalescent embedding methods on PSO networks 

For the PSO parameters  = 2.5, T = 0.3 (since Supplementary Fig. 4 showed that the time is T invariant) 

and m = [2, 4, 6], we generated 10 networks of size N = [100, 500, 1000, 5000, 10000] and 5 networks 

of size N = 30000. The plot reports the average embedding time for increasing network size and for 

each of the coalescent embedding techniques with RA pre-weighting and equidistant adjustment. The 

corresponding standard error are also shown.  
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Supplementary Figure 23. Comparison of Repulsion-Attraction (RA) pre-weighting rules 

Since there was not a unique possible mathematical formulation of the RA formula, we tested four 

variants differing in the way in which the degrees of the connected nodes are combined. For each 

combination of the PSO parameters m = [2, 4, 6] and T = [0, 0.3, 0.6, 0.9], fixing  = 2.5, we generated 

100 networks of size N = [100, 500, 1000], 10 networks of size N = 10000 and 5 networks of size N = 

30000. The networks have been embedded using the coalescent embedding techniques applying the 

different RA pre-weighting variants and the HD-correlation has been evaluated. The figure reports for 

each RA variant the HD-correlation averaged over the PSO parameter combinations and over the 

different coalescent embedding techniques, for networks of size N = [100, 500, 1000] (a) and N = 

[10000, 30000] (b). The corresponding standard error are also shown.  
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Supplementary Figure 24. Examples of synthetic networks generated by the PSO model 

(a-i) For each combination of the parameters N (size) and m (half of average degree), examples of 

synthetic networks with temperature T = 0 and T = 0.9 are shown, in order to illustrate the increase of 

randomness and the loss of the tree like structure for high temperatures.  
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Supplementary Figure 25. Rich-club statistical test on PSO synthetic networks 

For each combination of the PSO parameters N, m and T, the statistical test for rich-clubness [110] has 

been performed on 10 networks and the p-values have been adjusted for multiple hypothesis testing by 

the Bonferroni correction. For each parameter combination the average of the adjusted p-values is 

reported, highlighting the range below the significance level of 0.05.  
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Method 

Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs 

 
Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝜸=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

EBC-ncISO-EA 1.00 0.57 0.47 1.00 0.93 0.59 0.90 0.68 0.77 +13.2 

RA-MCE-EA 0.83 0.51 0.47 1.00 0.96 0.57 0.82 0.67 0.73 +7.4 

RA-ncMCE-EA 0.73 0.55 0.47 1.00 1.00 0.57 0.83 0.67 0.73 +7.4 

EBC-MCE-EA 0.83 0.47 0.41 1.00 0.96 0.57 0.90 0.62 0.72 +5.9 

EBC-ncMCE-EA 0.88 0.46 0.41 1.00 0.96 0.57 0.85 0.62 0.72 +5.9 

EBC-ISO-EA 0.83 0.42 0.47 1.00 0.89 0.59 0.88 0.66 0.72 +5.9 

LPCS 0.83 0.49 0.41 1.00 0.96 0.55 0.87 0.67 0.72 +5.9 

ncMCE-EA 0.73 0.47 0.47 1.00 0.96 0.57 0.89 0.62 0.71 +4.4 

RA-LE-EA 0.67 0.48 0.53 1.00 0.92 0.56 0.82 0.70 0.71 +4.4 

EBC-ISO 0.83 0.47 0.47 1.00 0.76 0.54 0.89 0.68 0.71 +4.4 

RA-MCE 0.83 0.52 0.36 0.93 0.92 0.56 0.85 0.66 0.71 +4.4 

RA-ncISO-EA 0.67 0.54 0.42 1.00 0.92 0.56 0.86 0.67 0.70 +2.9 

ncISO-EA 0.73 0.50 0.41 1.00 0.88 0.54 0.87 0.66 0.70 +2.9 

EBC-LE-EA 0.85 0.42 0.41 0.96 0.92 0.56 0.85 0.62 0.70 +2.9 

RA-ncISO 0.68 0.46 0.41 1.00 0.87 0.54 0.89 0.72 0.70 +2.9 

EBC-MCE 0.83 0.42 0.51 1.00 0.92 0.59 0.86 0.40 0.69 +1.5 

EBC-ncISO 0.68 0.49 0.36 1.00 0.85 0.57 0.85 0.71 0.69 +1.5 

MCE-EA 0.64 0.47 0.47 0.96 0.92 0.55 0.86 0.62 0.69 +1.5 

RA-ISO 0.68 0.43 0.39 1.00 0.87 0.54 0.87 0.70 0.69 +1.5 

unweighted 0.46 0.55 0.41 1.00 0.96 0.50 0.93 0.64 0.68 0.0 

LE 0.68 0.53 0.37 1.00 0.79 0.53 0.85 0.73 0.68 0.0 

LE-EA 0.63 0.55 0.41 1.00 0.78 0.55 0.82 0.67 0.68 0.0 

RA-ISO-EA 0.57 0.43 0.44 1.00 0.88 0.54 0.86 0.67 0.67 -1.5 

ISO 0.59 0.49 0.45 0.96 0.85 0.56 0.80 0.68 0.67 -1.5 

RA-ncMCE 0.67 0.45 0.41 0.93 0.89 0.49 0.84 0.64 0.67 -1.5 

RA-LE 0.55 0.40 0.44 0.96 0.83 0.56 0.85 0.71 0.66 -2.9 

ncISO 0.68 0.55 0.41 0.96 0.79 0.56 0.68 0.67 0.66 -2.9 

ISO-EA 0.34 0.50 0.41 0.96 0.93 0.56 0.82 0.67 0.65 -4.4 

HyperMap 0.56 0.60 0.28 0.92 0.85 0.50 0.83 0.69 0.65 -4.4 

HyperMapCN 0.55 0.47 0.41 0.93 0.79 0.54 0.79 0.70 0.65 -4.4 

EBC-LE 0.68 0.36 0.36 1.00 0.79 0.54 0.82 0.60 0.64 -5.9 

EBC-ncMCE 0.57 0.37 0.49 1.00 0.89 0.56 0.82 0.22 0.62 -8.8 

MCE 0.73 0.28 0.32 0.50 0.21 0.54 0.77 0.42 0.47 -30.9 

ncMCE 0.61 0.24 0.25 0.49 0.18 0.49 0.79 0.08 0.39 -42.6 

 

Supplementary Table 1. Community detection on real networks with Louvain algorithm (HSP-

kernel). The table is equivalent to Table 1, but also the non-EA methods are shown.  
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Method 

Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs 

 
Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝜸=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

EBC-ncISO-EA 0.68 0.75 0.47 1.00 1.00 0.54 0.92 0.53 0.74 +4.2 

ncMCE-EA 0.68 0.74 0.47 1.00 0.93 0.50 0.92 0.52 0.72 +1.4 

unweighted 0.55 0.69 0.47 1.00 1.00 0.52 0.92 0.52 0.71 0.0 

EBC-MCE-EA 0.68 0.55 0.53 1.00 0.96 0.52 0.93 0.52 0.71 0.0 

EBC-ncMCE-EA 0.58 0.55 0.53 1.00 1.00 0.52 0.93 0.52 0.70 -1.4 

ISO-EA 0.68 0.53 0.47 1.00 0.96 0.52 0.92 0.53 0.70 -1.4 

LE-EA 0.68 0.54 0.47 1.00 0.96 0.53 0.92 0.51 0.70 -1.4 

EBC-LE-EA 0.68 0.55 0.47 0.95 0.96 0.52 0.93 0.53 0.70 -1.4 

EBC-ncISO 0.68 0.52 0.47 1.00 0.93 0.51 0.92 0.54 0.70 -1.4 

RA-ISO 0.58 0.55 0.47 1.00 1.00 0.52 0.93 0.51 0.70 -1.4 

ncISO-EA 0.68 0.53 0.47 1.00 0.96 0.47 0.92 0.53 0.69 -2.8 

EBC-ISO-EA 0.55 0.55 0.47 1.00 1.00 0.52 0.92 0.53 0.69 -2.8 

MCE-EA 0.68 0.54 0.47 0.95 0.93 0.51 0.92 0.52 0.69 -2.8 

RA-ncISO-EA 0.55 0.55 0.47 1.00 1.00 0.52 0.92 0.52 0.69 -2.8 

RA-ISO-EA 0.58 0.55 0.47 1.00 0.96 0.52 0.92 0.52 0.69 -2.8 

RA-ncMCE-EA 0.47 0.55 0.53 1.00 1.00 0.52 0.92 0.50 0.69 -2.8 

EBC-ISO 0.57 0.55 0.47 1.00 1.00 0.45 0.92 0.53 0.69 -2.8 

LPCS 0.55 0.55 0.53 1.00 0.96 0.52 0.93 0.51 0.69 -2.8 

LE 0.63 0.55 0.36 1.00 1.00 0.48 0.92 0.54 0.68 -4.2 

RA-LE-EA 0.55 0.55 0.47 1.00 0.93 0.52 0.92 0.52 0.68 -4.2 

EBC-LE 0.68 0.55 0.36 1.00 0.94 0.47 0.92 0.53 0.68 -4.2 

EBC-ncMCE 0.54 0.55 0.49 1.00 0.93 0.48 0.93 0.52 0.68 -4.2 

RA-ncISO 0.54 0.61 0.36 1.00 0.96 0.52 0.92 0.52 0.68 -4.2 

RA-MCE-EA 0.47 0.55 0.53 1.00 0.92 0.52 0.92 0.51 0.68 -4.2 

ncISO 0.54 0.53 0.36 1.00 1.00 0.52 0.92 0.52 0.67 -5.6 

ISO 0.58 0.53 0.36 0.96 0.96 0.52 0.93 0.54 0.67 -5.6 

RA-MCE 0.47 0.55 0.53 0.93 0.92 0.52 0.92 0.51 0.67 -5.6 

EBC-MCE 0.58 0.55 0.22 1.00 0.96 0.52 0.93 0.52 0.66 -7.0 

HyperMapCN 0.52 0.55 0.41 1.00 0.86 0.57 0.89 0.46 0.66 -7.0 

HyperMap 0.52 0.60 0.32 1.00 0.92 0.49 0.90 0.46 0.65 -8.5 

RA-LE 0.43 0.55 0.36 1.00 0.96 0.45 0.92 0.53 0.65 -8.5 

RA-ncMCE 0.47 0.61 0.36 0.93 0.96 0.42 0.92 0.44 0.64 -9.9 

MCE 0.57 0.53 0.55 0.93 0.50 0.59 0.92 0.38 0.62 -12.7 

ncMCE 0.54 0.45 0.59 0.98 0.50 0.41 0.92 0.38 0.60 -15.5 

 

Supplementary Table 2. Community detection on real networks with Infomap algorithm. The 

table is equivalent to Table 2, but also the non-EA methods are shown.  
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Method 

Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs 

 
Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝜸=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

ISO 0.63 0.50 0.25 0.94 0.83 0.56 0.91 0.69 0.67 +9.8 

EBC-ncISO-EA 0.72 0.53 0.42 0.96 0.43 0.52 0.91 0.68 0.65 +6.6 

ncISO-EA 0.75 0.38 0.50 0.95 0.44 0.52 0.89 0.69 0.64 +4.9 

EBC-ncISO 0.52 0.58 0.32 1.00 0.57 0.51 0.91 0.68 0.64 +4.9 

RA-ISO 0.58 0.46 0.42 1.00 0.54 0.50 0.90 0.68 0.63 +3.3 

RA-ncMCE-EA 0.68 0.51 0.53 0.97 0.29 0.54 0.90 0.64 0.63 +3.3 

EBC-ISO 0.50 0.40 0.42 0.99 0.66 0.51 0.90 0.66 0.63 +3.3 

EBC-ncMCE 0.42 0.47 0.40 0.97 0.70 0.49 0.91 0.69 0.63 +3.3 

RA-MCE 0.62 0.41 0.38 0.99 0.71 0.51 0.87 0.55 0.63 +3.3 

RA-LE 0.43 0.40 0.28 1.00 0.83 0.49 0.91 0.68 0.63 +3.3 

RA-ncISO 0.44 0.51 0.24 1.00 0.73 0.52 0.89 0.69 0.63 +3.3 

LE 0.63 0.49 0.27 1.00 0.48 0.51 0.91 0.70 0.62 +1.6 

EBC-LE-EA 0.76 0.46 0.34 0.92 0.38 0.54 0.91 0.68 0.62 +1.6 

LPCS 0.49 0.48 0.29 1.00 0.60 0.53 0.89 0.68 0.62 +1.6 

unweighted 0.73 0.44 0.27 0.99 0.34 0.56 0.88 0.70 0.61 0.0 

HyperMap 0.52 0.45 0.25 0.98 0.63 0.50 0.86 0.66 0.61 0.0 

EBC-MCE 0.54 0.47 0.33 1.00 0.42 0.54 0.90 0.62 0.60 -1.6 

RA-ncISO-EA 0.60 0.48 0.30 0.98 0.33 0.56 0.89 0.68 0.60 -1.6 

RA-ISO-EA 0.79 0.44 0.14 0.96 0.35 0.53 0.89 0.69 0.60 -1.6 

EBC-MCE-EA 0.82 0.44 0.19 0.95 0.29 0.56 0.91 0.61 0.60 -1.6 

ISO-EA 0.57 0.43 0.19 0.99 0.44 0.56 0.90 0.69 0.60 -1.6 

EBC-LE 0.50 0.45 0.29 1.00 0.58 0.51 0.89 0.54 0.60 -1.6 

ncISO 0.50 0.41 0.20 0.94 0.60 0.50 0.89 0.70 0.59 -3.3 

LE-EA 0.70 0.57 0.11 0.92 0.33 0.54 0.90 0.68 0.59 -3.3 

EBC-ncMCE-EA 0.67 0.41 0.29 0.90 0.36 0.53 0.90 0.68 0.59 -3.3 

RA-ncMCE 0.45 0.53 0.32 0.86 0.72 0.37 0.85 0.63 0.59 -3.3 

HyperMapCN 0.48 0.46 0.38 0.87 0.61 0.42 0.82 0.67 0.59 -3.3 

EBC-ISO-EA 0.66 0.38 0.33 0.95 0.29 0.53 0.90 0.68 0.59 -3.3 

RA-LE-EA 0.62 0.53 0.26 0.96 0.22 0.52 0.89 0.68 0.59 -3.3 

RA-MCE-EA 0.39 0.43 0.37 0.94 0.28 0.55 0.89 0.70 0.57 -6.6 

ncMCE-EA 0.67 0.42 0.17 0.96 0.14 0.56 0.88 0.69 0.56 -8.2 

ncMCE 0.58 0.59 0.23 0.78 0.32 0.42 0.87 0.62 0.55 -9.8 

MCE-EA 0.56 0.24 0.29 0.92 0.19 0.56 0.88 0.71 0.55 -9.8 

MCE 0.54 0.47 0.37 0.63 0.30 0.44 0.87 0.63 0.53 -13.1 

 

Supplementary Table 3. Community detection on real networks with Label propagation 

algorithm. The table is equivalent to Supplementary Table 2, but the Label propagation algorithm is 

used rather than Infomap.  
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Method 

Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs 

 
Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝜸=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

RA-ISO-EA 0.58 0.44 0.53 1.00 0.85 0.56 0.89 0.65 0.69 +6.2 

RA-MCE-EA 0.49 0.41 0.53 1.00 0.96 0.54 0.91 0.65 0.69 +6.2 

ncISO-EA 0.68 0.44 0.47 1.00 0.89 0.54 0.86 0.67 0.69 +6.2 

LPCS 0.57 0.55 0.41 1.00 0.96 0.54 0.89 0.63 0.69 +6.2 

EBC-ncISO-EA 0.68 0.47 0.36 1.00 0.89 0.54 0.89 0.65 0.68 +4.6 

EBC-MCE-EA 0.68 0.44 0.36 1.00 0.91 0.54 0.89 0.65 0.68 +4.6 

EBC-ncMCE-EA 0.68 0.44 0.36 1.00 0.89 0.54 0.89 0.64 0.68 +4.6 

ncMCE-EA 0.58 0.41 0.47 1.00 0.89 0.54 0.89 0.67 0.68 +4.6 

EBC-MCE 0.49 0.51 0.36 1.00 0.96 0.54 0.89 0.67 0.68 +4.6 

RA-ncMCE 0.53 0.55 0.46 0.91 1.00 0.48 0.89 0.61 0.68 +4.6 

RA-LE-EA 0.58 0.53 0.36 1.00 0.90 0.54 0.91 0.64 0.68 +4.6 

RA-ncMCE-EA 0.51 0.44 0.41 1.00 0.96 0.54 0.89 0.66 0.68 +4.6 

EBC-ISO-EA 0.47 0.45 0.47 1.00 0.89 0.54 0.89 0.66 0.67 +3.1 

EBC-LE-EA 0.68 0.44 0.36 0.90 0.89 0.54 0.86 0.66 0.67 +3.1 

HyperMapCN 0.55 0.55 0.41 1.00 0.83 0.46 0.94 0.61 0.67 +3.1 

MCE-EA 0.52 0.41 0.47 0.92 0.89 0.54 0.89 0.68 0.66 +1.5 

EBC-ncISO 0.68 0.53 0.36 1.00 0.83 0.44 0.85 0.62 0.66 +1.5 

LE 0.68 0.44 0.36 1.00 0.86 0.45 0.89 0.61 0.66 +1.5 

unweighted 0.46 0.45 0.36 1.00 0.89 0.53 0.89 0.64 0.65 0.0 

RA-ISO 0.68 0.44 0.36 1.00 0.73 0.54 0.85 0.63 0.65 0.0 

ISO-EA 0.46 0.44 0.36 1.00 0.89 0.54 0.86 0.67 0.65 0.0 

LE-EA 0.68 0.44 0.36 1.00 0.73 0.54 0.85 0.62 0.65 0.0 

RA-ncISO-EA 0.50 0.44 0.36 1.00 0.85 0.54 0.85 0.66 0.65 0.0 

ISO 0.52 0.44 0.36 0.96 0.86 0.54 0.86 0.63 0.65 0.0 

RA-MCE 0.50 0.48 0.41 0.91 0.87 0.50 0.85 0.65 0.65 0.0 

EBC-ISO 0.57 0.41 0.47 1.00 0.80 0.44 0.89 0.60 0.65 0.0 

EBC-ncMCE 0.47 0.35 0.42 1.00 0.90 0.46 0.91 0.64 0.64 -1.5 

ncISO 0.48 0.44 0.36 1.00 0.89 0.49 0.86 0.63 0.64 -1.5 

RA-ncISO 0.50 0.48 0.36 1.00 0.76 0.54 0.85 0.62 0.64 -1.5 

RA-LE 0.51 0.35 0.36 1.00 0.87 0.44 0.91 0.64 0.63 -3.1 

EBC-LE 0.57 0.35 0.36 1.00 0.80 0.45 0.89 0.65 0.63 -3.1 

HyperMap 0.45 0.56 0.36 0.96 0.78 0.43 0.87 0.62 0.63 -3.1 

ncMCE 0.46 0.52 0.47 0.92 0.55 0.51 0.89 0.33 0.58 -10.8 

MCE 0.42 0.42 0.47 0.92 0.56 0.47 0.91 0.33 0.56 -13.8 

 

Supplementary Table 4. Community detection on real networks with Walktrap algorithm. The 

table is equivalent to Supplementary Table 2, but the Walktrap algorithm is used rather than Infomap.  
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Method 

Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs 

 
Mean 

 

N=34 N=43 N=44 N=77 N=77 N=105 N=115 N=1222  

E=78 E=193 E=348 E=518 E=1088 E=441 E=613 E=16714 % 

m=2.29 m=4.49 m=7.91 m=6.73 m=14.13 m=4.20 m=5.33 m=13.68 Impr.  

T=0.43 T=0.43 T=0.32 T=0.35 T=0.28 T=0.51 T=0.60 T=0.68  

𝜸=2.12 𝛾=8.20 𝛾=5.92 𝛾=5.06 𝛾=4.87 𝛾=2.62 𝛾=9.09 𝛾=2.38  

 Nc=2 Nc=7 Nc=7 Nc=4 Nc=4 Nc=3 Nc=12 Nc=2   

EBC-ISO-EA 0.78 0.50 0.41 1.00 0.96 0.45 0.90 0.63 0.70 +2.9 

ISO-EA 0.58 0.50 0.46 1.00 1.00 0.51 0.93 0.66 0.70 +2.9 

MCE-EA 0.51 0.55 0.53 0.96 0.96 0.54 0.90 0.66 0.70 +2.9 

RA-ISO 0.68 0.55 0.39 1.00 0.96 0.49 0.90 0.62 0.70 +2.9 

EBC-ncMCE 0.57 0.55 0.49 1.00 0.96 0.49 0.91 0.60 0.70 +2.9 

EBC-ncISO-EA 0.56 0.55 0.41 1.00 0.93 0.52 0.90 0.62 0.69 +1.5 

EBC-ncMCE-EA 0.47 0.55 0.41 1.00 0.96 0.54 0.93 0.62 0.69 +1.5 

EBC-MCE-EA 0.57 0.55 0.41 1.00 0.96 0.51 0.91 0.62 0.69 +1.5 

EBC-ISO 0.57 0.50 0.47 1.00 1.00 0.45 0.93 0.64 0.69 +1.5 

EBC-ncISO 0.68 0.50 0.37 1.00 0.96 0.45 0.90 0.67 0.69 +1.5 

EBC-LE-EA 0.68 0.51 0.42 0.96 0.92 0.52 0.87 0.63 0.69 +1.5 

LE-EA 0.59 0.55 0.42 1.00 0.93 0.51 0.90 0.63 0.69 +1.5 

LE 0.58 0.55 0.41 1.00 0.96 0.50 0.90 0.65 0.69 +1.5 

EBC-LE 0.68 0.50 0.41 1.00 0.96 0.45 0.90 0.62 0.69 +1.5 

unweighted 0.46 0.55 0.41 1.00 0.96 0.50 0.93 0.64 0.68 0.0 

RA-ncISO-EA 0.49 0.55 0.41 1.00 0.96 0.52 0.90 0.63 0.68 0.0 

ncISO-EA 0.52 0.46 0.46 1.00 0.96 0.48 0.91 0.66 0.68 0.0 

EBC-MCE 0.47 0.49 0.49 1.00 0.96 0.54 0.90 0.59 0.68 0.0 

RA-LE-EA 0.48 0.55 0.46 1.00 0.96 0.46 0.90 0.63 0.68 0.0 

RA-ISO-EA 0.50 0.50 0.41 1.00 0.96 0.52 0.90 0.64 0.68 0.0 

ISO 0.47 0.50 0.41 0.96 0.96 0.56 0.91 0.66 0.68 0.0 

ncISO 0.47 0.52 0.42 1.00 0.96 0.47 0.91 0.67 0.68 0.0 

RA-MCE-EA 0.49 0.52 0.42 1.00 0.92 0.52 0.91 0.64 0.68 0.0 

RA-ncMCE-EA 0.47 0.55 0.42 1.00 0.96 0.46 0.91 0.64 0.68 0.0 

ncMCE-EA 0.50 0.48 0.41 1.00 0.96 0.50 0.90 0.66 0.68 0.0 

RA-LE 0.55 0.48 0.41 1.00 0.92 0.45 0.89 0.65 0.67 -1.5 

RA-ncISO 0.47 0.48 0.41 1.00 0.92 0.47 0.90 0.63 0.66 -2.9 

RA-MCE 0.47 0.54 0.42 0.93 0.92 0.51 0.86 0.63 0.66 -2.9 

RA-ncMCE 0.47 0.60 0.41 0.93 1.00 0.46 0.88 0.48 0.66 -2.9 

LPCS 0.47 0.50 0.41 1.00 0.96 0.46 0.89 0.61 0.66 -2.9 

HyperMapCN 0.55 0.49 0.41 1.00 0.88 0.46 0.90 0.60 0.66 -2.9 

HyperMap 0.56 0.57 0.32 1.00 0.92 0.47 0.87 0.57 0.66 -2.9 

MCE 0.52 0.46 0.34 0.75 0.56 0.47 0.88 0.54 0.56 -17.6 

ncMCE 0.54 0.49 0.34 0.82 0.40 0.43 0.89 0.55 0.56 -17.6 

 

Supplementary Table 5. Community detection on real networks with Louvain algorithm (HD-

network). The table is equivalent to Supplementary Table 1, but the HD-weighted network (see 

Equation 13) is given in input to the Louvain algorithm rather than the HSP-kernel (see Equation 14).  
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Method 

AS 
201501 

IPv6 

AS 
200909 

IPv4 

AS 
200912 

IPv4 

AS 
201003 

IPv4 

AS 
201006 

IPv4 

AS 
201009 

IPv4 

AS 
201012 

IPv4 

AS 
201501 

IPv4 

 
Mean 

 

N=5143 N=24091 N=25910 N=26307 N=26756 N=28353 N=29333 N=37542  

E=13446 E=59531 E=63435 E=66089 E=68150 E=73722 E=78054 E=95019 % 

m=2.61 m=2.47 m=2.45 m=2.51 m=2.55 m=2.60 m=2.66 m=2.53 Impr.  

T=0.65 T=0.64 T=0.64 T=0.63 T=0.63 T=0.63 T=0.62 T=0.64  

𝛾=2.30 𝛾=2.12 𝛾=2.11 𝛾=2.26 𝛾=2.08 𝛾=2.23 𝛾=2.22 𝛾=2.07 
 

 Nc=151 Nc=203 Nc=206 Nc=204 Nc=204 Nc=208 Nc=212 Nc=222   

EBC-ncISO-EA 0.54 0.61 0.59 0.60 0.60 0.62 0.59 0.62 0.60 +3.4 

EBC-ISO-EA 0.53 0.61 0.60 0.59 0.59 0.62 0.61 0.62 0.60 +3.4 

EBC-ISO 0.52 0.61 0.60 0.61 0.61 0.62 0.62 0.62 0.60 +3.4 

EBC-ncISO 0.53 0.61 0.60 0.60 0.59 0.62 0.62 0.60 0.60 +3.4 

EBC-MCE 0.54 0.61 0.60 0.61 0.61 0.60 0.60 0.62 0.60 +3.4 

EBC-ncMCE-EA 0.54 0.61 0.59 0.60 0.60 0.61 0.60 0.59 0.59 +1.7 

RA-ncMCE-EA 0.56 0.60 0.59 0.59 0.59 0.59 0.59 0.59 0.59 +1.7 

EBC-MCE-EA 0.54 0.60 0.59 0.61 0.61 0.60 0.60 0.58 0.59 +1.7 

RA-MCE-EA 0.57 0.60 0.59 0.59 0.58 0.59 0.59 0.59 0.59 +1.7 

EBC-LE-EA 0.55 0.58 0.60 0.60 0.59 0.60 0.60 0.58 0.59 +1.7 

RA-LE-EA 0.54 0.61 0.58 0.59 0.60 0.60 0.59 0.59 0.59 +1.7 

EBC-ncMCE 0.53 0.61 0.59 0.60 0.61 0.59 0.60 0.61 0.59 +1.7 

RA-ncMCE 0.57 0.60 0.59 0.59 0.59 0.59 0.59 0.59 0.59 +1.7 

RA-MCE 0.56 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 +1.7 

MCE-EA 0.55 0.60 0.59 0.59 0.60 0.59 0.59 0.59 0.59 +1.7 

unweighted 0.56 0.58 0.58 0.58 0.58 0.59 0.59 0.58 0.58 0.0 

RA-ISO-EA 0.55 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.58 0.0 

RA-ncISO 0.55 0.60 0.58 0.58 0.59 0.59 0.60 0.58 0.58 0.0 

EBC-LE 0.55 0.57 0.59 0.60 0.59 0.62 0.57 0.57 0.58 0.0 

RA-LE 0.55 0.57 0.58 0.59 0.60 0.62 0.57 0.59 0.58 0.0 

RA-ISO 0.55 0.59 0.58 0.59 0.59 0.59 0.59 0.59 0.58 0.0 

RA-ncISO-EA 0.55 0.59 0.58 0.59 0.58 0.59 0.59 0.58 0.58 0.0 

LE-EA 0.55 0.60 0.58 0.58 0.58 0.59 0.58 0.58 0.58 0.0 

ncMCE-EA 0.55 0.59 0.58 0.59 0.58 0.59 0.59 0.58 0.58 0.0 

MCE 0.55 0.59 0.58 0.58 0.58 0.59 0.59 0.58 0.58 0.0 

ncISO 0.53 0.59 0.58 0.58 0.58 0.60 0.60 0.58 0.58 0.0 

ncMCE 0.55 0.59 0.58 0.57 0.58 0.59 0.58 0.59 0.58 0.0 

ncISO-EA 0.53 0.59 0.58 0.58 0.58 0.60 0.59 0.58 0.58 0.0 

LE 0.55 0.58 0.58 0.59 0.58 0.58 0.58 0.59 0.58 0.0 

ISO 0.52 0.59 0.58 0.58 0.58 0.58 0.59 0.58 0.57 -1.7 

ISO-EA 0.53 0.58 0.57 0.58 0.58 0.58 0.59 0.57 0.57 -1.7 

LPCS 0.56 0.57 0.57 0.58 0.58 0.57 0.58 0.57 0.57 -1.7 

 

Supplementary Table 6. Community detection on Internet networks with Infomap algorithm. The 

table is equivalent to Supplementary Table 2, but the community detection is performed on the Internet 

networks rather than on the small-size real networks.  
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Method 

AS 
201501 

IPv6 

AS 
200909 

IPv4 

AS 
200912 

IPv4 

AS 
201003 

IPv4 

AS 
201006 

IPv4 

AS 
201009 

IPv4 

AS 
201012 

IPv4 

AS 
201501 

IPv4 

 
Mean 

 

N=5143 N=24091 N=25910 N=26307 N=26756 N=28353 N=29333 N=37542  

E=13446 E=59531 E=63435 E=66089 E=68150 E=73722 E=78054 E=95019 % 

m=2.61 m=2.47 m=2.45 m=2.51 m=2.55 m=2.60 m=2.66 m=2.53 Impr. 

T=0.65 T=0.64 T=0.64 T=0.63 T=0.63 T=0.63 T=0.62 T=0.64  

𝛾=2.30 𝛾=2.12 𝛾=2.11 𝛾=2.26 𝛾=2.08 𝛾=2.23 𝛾=2.22 𝛾=2.07  

 Nc=151 Nc=203 Nc=206 Nc=204 Nc=204 Nc=208 Nc=212 Nc=222   

LPCS 0.51 0.55 0.51 0.56 0.52 0.54 0.46 0.32 0.50 +117.4 

ncMCE 0.32 0.44 0.36 0.55 0.28 0.28 0.43 0.21 0.36 +56.5 

RA-MCE 0.21 0.26 0.50 0.36 0.29 0.47 0.24 0.32 0.33 +43.5 

EBC-LE 0.36 0.44 0.35 0.26 0.19 0.28 0.37 0.34 0.33 +43.5 

LE 0.15 0.40 0.43 0.40 0.34 0.33 0.26 0.27 0.32 +39.1 

RA-ncISO 0.30 0.37 0.37 0.42 0.27 0.32 0.27 0.18 0.31 +34.8 

MCE 0.27 0.38 0.35 0.39 0.27 0.26 0.26 0.24 0.30 +30.4 

RA-ncMCE 0.20 0.33 0.30 0.29 0.51 0.22 0.39 0.19 0.30 +30.4 

LE-EA 0.14 0.40 0.39 0.32 0.33 0.28 0.27 0.23 0.29 +26.1 

RA-LE 0.35 0.44 0.27 0.27 0.17 0.31 0.38 0.17 0.29 +26.1 

ncMCE-EA 0.32 0.35 0.31 0.36 0.23 0.23 0.30 0.21 0.29 +26.1 

MCE-EA 0.19 0.35 0.31 0.34 0.26 0.24 0.24 0.18 0.27 +17.4 

RA-ISO 0.12 0.29 0.36 0.27 0.25 0.32 0.23 0.16 0.25 +8.7 

EBC-LE-EA 0.13 0.39 0.28 0.28 0.21 0.23 0.22 0.20 0.24 +4.3 

RA-MCE-EA 0.22 0.29 0.32 0.26 0.22 0.23 0.23 0.17 0.24 +4.3 

unweighted 0.07 0.30 0.41 0.29 0.29 0.19 0.19 0.15 0.23 0.0 

RA-ncMCE-EA 0.16 0.23 0.25 0.25 0.36 0.22 0.28 0.14 0.23 0.0 

EBC-ISO-EA 0.15 0.23 0.32 0.25 0.21 0.27 0.27 0.18 0.23 0.0 

ncISO 0.08 0.24 0.31 0.29 0.26 0.27 0.19 0.17 0.23 0.0 

EBC-ncMCE-EA 0.10 0.24 0.25 0.27 0.22 0.24 0.22 0.19 0.22 -4.3 

EBC-ncISO-EA 0.12 0.23 0.26 0.25 0.23 0.25 0.24 0.19 0.22 -4.3 

EBC-ncISO 0.18 0.22 0.22 0.25 0.25 0.22 0.22 0.19 0.22 -4.3 

RA-LE-EA 0.13 0.29 0.24 0.24 0.19 0.20 0.20 0.19 0.21 -8.7 

ISO 0.09 0.30 0.29 0.25 0.18 0.21 0.19 0.16 0.21 -8.7 

EBC-ISO 0.12 0.29 0.24 0.22 0.20 0.20 0.20 0.19 0.21 -8.7 

ISO-EA 0.10 0.30 0.27 0.26 0.17 0.22 0.19 0.15 0.21 -8.7 

EBC-MCE-EA 0.10 0.21 0.23 0.24 0.19 0.26 0.20 0.16 0.20 -13.0 

RA-ncISO-EA 0.13 0.30 0.24 0.27 0.14 0.20 0.17 0.16 0.20 -13.0 

ncISO-EA 0.08 0.21 0.36 0.26 0.21 0.21 0.17 0.13 0.20 -13.0 

RA-ISO-EA 0.11 0.21 0.29 0.25 0.23 0.24 0.18 0.14 0.20 -13.0 

EBC-MCE 0.07 0.21 0.26 0.22 0.22 0.25 0.19 0.16 0.20 -13.0 

EBC-ncMCE 0.08 0.24 0.25 0.21 0.23 0.19 0.16 0.19 0.19 -17.4 

 

Supplementary Table 7. Community detection on Internet networks with Label propagation 

algorithm. The table is equivalent to Supplementary Table 6, but the Label propagation algorithm is 

used rather than Infomap.  



118 
 

Method 

AS 
201501 

IPv6 

AS 
200909 

IPv4 

AS 
200912 

IPv4 

AS 
201003 

IPv4 

AS 
201006 

IPv4 

AS 
201009 

IPv4 

AS 
201012 

IPv4 

AS 
201501 

IPv4 

 
Mean 

 

N=5143 N=24091 N=25910 N=26307 N=26756 N=28353 N=29333 N=37542  

E=13446 E=59531 E=63435 E=66089 E=68150 E=73722 E=78054 E=95019 % 

m=2.61 m=2.47 m=2.45 m=2.51 m=2.55 m=2.60 m=2.66 m=2.53 Impr.  

T=0.65 T=0.64 T=0.64 T=0.63 T=0.63 T=0.63 T=0.62 T=0.64  

𝛾=2.30 𝛾=2.12 𝛾=2.11 𝛾=2.26 𝛾=2.08 𝛾=2.23 𝛾=2.22 𝛾=2.07 
 

 Nc=151 Nc=203 Nc=206 Nc=204 Nc=204 Nc=208 Nc=212 Nc=222   

RA-MCE 0.52 0.62 0.66 0.63 0.64 0.65 0.64 0.64 0.63 +1.6 

unweighted 0.51 0.65 0.64 0.63 0.63 0.64 0.65 0.63 0.62 0.0 

RA-MCE-EA 0.52 0.63 0.65 0.62 0.63 0.65 0.65 0.64 0.62 0.0 

RA-ncISO-EA 0.51 0.63 0.65 0.64 0.63 0.66 0.64 0.63 0.62 0.0 

EBC-ncISO-EA 0.51 0.65 0.64 0.62 0.64 0.64 0.65 0.63 0.62 0.0 

EBC-MCE-EA 0.48 0.63 0.65 0.62 0.63 0.65 0.64 0.61 0.62 0.0 

RA-ncMCE-EA 0.51 0.64 0.65 0.64 0.60 0.64 0.65 0.63 0.62 0.0 

EBC-ISO-EA 0.48 0.63 0.61 0.64 0.65 0.65 0.65 0.61 0.62 0.0 

RA-ISO-EA 0.49 0.64 0.65 0.65 0.61 0.64 0.64 0.63 0.62 0.0 

EBC-ncISO 0.48 0.64 0.65 0.65 0.64 0.65 0.65 0.61 0.62 0.0 

RA-ncMCE 0.51 0.63 0.64 0.61 0.65 0.64 0.64 0.65 0.62 0.0 

MCE 0.51 0.64 0.64 0.65 0.63 0.63 0.64 0.62 0.62 0.0 

EBC-ISO 0.46 0.64 0.65 0.64 0.64 0.66 0.65 0.62 0.62 0.0 

LE-EA 0.49 0.64 0.63 0.65 0.62 0.65 0.64 0.64 0.62 0.0 

ISO 0.48 0.65 0.64 0.64 0.63 0.64 0.64 0.62 0.62 0.0 

ncISO-EA 0.49 0.64 0.64 0.64 0.63 0.61 0.64 0.64 0.62 0.0 

LE 0.50 0.67 0.64 0.62 0.62 0.65 0.64 0.62 0.62 0.0 

MCE-EA 0.51 0.63 0.63 0.64 0.63 0.64 0.65 0.62 0.62 0.0 

ncISO 0.47 0.63 0.64 0.64 0.63 0.63 0.64 0.64 0.62 0.0 

LPCS 0.53 0.63 0.64 0.63 0.63 0.65 0.62 0.63 0.62 0.0 

EBC-ncMCE-EA 0.47 0.61 0.65 0.63 0.63 0.65 0.64 0.62 0.61 -1.6 

ncMCE-EA 0.51 0.63 0.63 0.64 0.63 0.64 0.61 0.63 0.61 -1.6 

ISO-EA 0.49 0.64 0.64 0.63 0.62 0.64 0.64 0.62 0.61 -1.6 

EBC-LE-EA 0.49 0.63 0.63 0.63 0.62 0.64 0.64 0.61 0.61 -1.6 

RA-LE-EA 0.48 0.63 0.64 0.63 0.62 0.64 0.63 0.62 0.61 -1.6 

EBC-LE 0.53 0.62 0.64 0.62 0.63 0.64 0.61 0.61 0.61 -1.6 

RA-LE 0.53 0.61 0.62 0.64 0.62 0.63 0.61 0.62 0.61 -1.6 

EBC-MCE 0.45 0.62 0.65 0.61 0.62 0.65 0.64 0.63 0.61 -1.6 

EBC-ncMCE 0.44 0.65 0.65 0.61 0.61 0.64 0.64 0.62 0.61 -1.6 

RA-ISO 0.48 0.60 0.61 0.65 0.62 0.65 0.62 0.62 0.61 -1.6 

RA-ncISO 0.52 0.60 0.63 0.62 0.63 0.63 0.63 0.60 0.61 -1.6 

ncMCE 0.51 0.62 0.62 0.61 0.62 0.64 0.61 0.63 0.61 -1.6 

 

Supplementary Table 8. Community detection on Internet networks with Walktrap algorithm. 

The table is equivalent to Supplementary Table 6, but the Walktrap algorithm is used rather than 

Infomap.  
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Method 
Mean 

GR-score 
2D 

Mean 
GR-score 

3D 
Improvement p-value 

ISO 0.61 0.67 +0.06 < 0.001 

ncISO 0.62 0.66 +0.04 < 0.001 

RA-ISO 0.64 0.65 +0.01 0.296 

EBC-ISO 0.61 0.61 0.00 0.494 

EBC-ncISO 0.62 0.62 0.00 0.499 

RA-ncISO 0.65 0.65 0.00 0.429 

LE 0.67 0.66 -0.01 0.296 

RA-LE 0.68 0.67 -0.01 0.259 

EBC-LE 0.68 0.66 -0.02 0.113 

 

Supplementary Table 9. Comparison of 2D and 3D greedy routing on PSO synthetic networks. 

The same PSO networks considered in Fig. 3 have been mapped both in 2D and 3D using the manifold-

based coalescent embedding techniques and the greedy routing in the hyperbolic space has been 

evaluated. The table reports for each method the mean GR-score over all the PSO parameter 

combinations, both in 2D and in 3D, highlighting the 3D-improvement. The GR-score is a metric to 

evaluate the efficiency of the greedy routing, which assumes values between 0, when all the routings 

are unsuccessful, and 1, when all the packets reach the destination through the shortest path  (see 

Methods for details). The rightmost column shows for each method the p-value of the permutation test 

for the mean (10000 iterations) performed considering the two vectors of GR-scores related to 2D and 

3D. The p-values lower than the significance level of 0.05 are highlighted in bold.  
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GR-score 2D  

Method Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs Mean  

RA-ncISO 0.91 0.92 0.95 0.92 0.96 0.47 0.65 0.41 0.77  

RA-LE 0.85 0.91 0.97 0.91 0.98 0.49 0.70 0.30 0.76  

RA-ISO 0.86 0.93 0.93 0.90 0.96 0.43 0.62 0.43 0.76  

ncISO 0.82 0.94 0.95 0.91 0.97 0.40 0.60 0.44 0.75  

ISO 0.79 0.93 0.91 0.88 0.98 0.40 0.56 0.51 0.75  

LE 0.80 0.93 0.97 0.93 0.94 0.42 0.59 0.38 0.74  

EBC-LE 0.78 0.92 0.95 0.93 0.91 0.40 0.72 0.26 0.73  

EBC-ncISO 0.80 0.83 0.94 0.91 0.92 0.40 0.58 0.45 0.73  

EBC-ISO 0.84 0.89 0.94 0.85 0.94 0.36 0.57 0.38 0.72  

GR-score 3D  

Method Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs Mean  

RA-ISO 0.86 0.97 0.97 0.96 0.94 0.44 0.77 0.47 0.80  

RA-ncISO 0.80 0.96 0.97 0.96 0.94 0.44 0.76 0.46 0.79  

ncISO 0.76 0.97 0.97 0.97 0.94 0.44 0.67 0.49 0.78  

LE 0.75 0.91 0.98 0.94 0.94 0.47 0.75 0.46 0.77  

RA-LE 0.75 0.89 0.98 0.96 0.94 0.51 0.75 0.38 0.77  

EBC-ISO 0.80 0.92 0.95 0.93 0.92 0.41 0.76 0.46 0.77  

EBC-ncISO 0.76 0.93 0.96 0.92 0.92 0.41 0.78 0.45 0.77  

ISO 0.72 0.94 0.97 0.96 0.94 0.44 0.65 0.51 0.77  

EBC-LE 0.79 0.88 0.92 0.95 0.93 0.43 0.74 0.11 0.72  

Improvement  

Method Karate 
Opsahl 

8 
Opsahl 

9 
Opsahl 

10 
Opsahl 

11 
Polbooks Football Polblogs Mean p-value 

EBC-ISO -0.04 0.03 0.01 0.08 -0.02 0.05 0.19 0.08 +0.05 0.409 

EBC-ncISO -0.04 0.10 0.02 0.01 0.00 0.01 0.20 0.00 +0.04 0.412 

RA-ISO 0.00 0.04 0.04 0.06 -0.02 0.01 0.15 0.04 +0.04 0.359 

LE -0.05 -0.02 0.01 0.01 0.00 0.05 0.16 0.08 +0.03 0.376 

ncISO -0.06 0.03 0.02 0.06 -0.03 0.04 0.07 0.05 +0.03 0.434 

ISO -0.07 0.01 0.06 0.08 -0.04 0.04 0.09 0.00 +0.02 0.424 

RA-ncISO -0.11 0.04 0.02 0.04 -0.02 -0.03 0.11 0.05 +0.02 0.451 

RA-LE -0.10 -0.02 0.01 0.05 -0.04 0.02 0.05 0.08 +0.01 0.421 

EBC-LE 0.01 -0.04 -0.03 0.02 0.02 0.03 0.02 -0.15 -0.01 0.493 

 

Supplementary Table 10. Comparison of 2D and 3D greedy routing on real networks. 

The 8 real networks whose statistics are reported in Table 1 have been mapped both in 2D and 3D using 

the manifold-based coalescent embedding techniques and the greedy routing in the hyperbolic space 

has been evaluated. The table reports for each method and for each network the GR-score both in 2D 

and in 3D, in addition to the 3D-improvement. The GR-score is a metric to evaluate the efficiency of 

the greedy routing, which assumes values between 0, when all the routings are unsuccessful, and 1, 

when all the packets reach the destination through the shortest path  (see Methods for details). The 

rightmost column shows for each method the p-value of the permutation test for the mean (10000 

iterations) performed considering the two vectors of GR-scores related to 2D and 3D.  
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 GR-score 2D GR-score 3D Improvement 

Method 
AS 

201501 
IPv6 

AS 
200909 

IPv4 

AS 
201501 

IPv6 

AS 
200909 

IPv4 

AS 
201501 

IPv6 

AS 
200909 

IPv4 
Mean 

RA-LE 0.02 0.01 0.02 0.01 0.00 0.00 0.00 

RA-ISO 0.15 0.10 0.10 0.04 -0.05 -0.06 -0.06 

EBC-ncISO 0.15 0.12 0.10 0.05 -0.05 -0.07 -0.06 

EBC-ISO 0.17 0.11 0.11 0.04 -0.06 -0.07 -0.07 

RA-ncISO 0.16 0.14 0.10 0.04 -0.06 -0.10 -0.08 

EBC-LE 0.02 0.34 0.02 0.01 0.00 -0.33 -0.17 

LE 0.23 0.28 0.13 0.05 -0.10 -0.23 -0.17 

ncISO 0.32 0.24 0.16 0.06 -0.16 -0.18 -0.17 

ISO 0.36 0.30 0.17 0.06 -0.19 -0.24 -0.22 

 

Supplementary Table 11. Comparison of 2D and 3D greedy routing on Internet networks. 

Two of the Internet networks whose statistics are reported in Supplementary Table 6 have been mapped 

both in 2D and 3D using the manifold-based coalescent embedding techniques and the greedy routing 

in the hyperbolic space has been evaluated. The table reports for each method and for each network the 

GR-score both in 2D and in 3D, in addition to the 3D-improvement. The GR-score is a metric to 

evaluate the efficiency of the greedy routing, which assumes values between 0, when all the routings 

are unsuccessful, and 1, when all the packets reach the destination through the shortest path  (see 

Methods for details). Differently from the previous tables, the statistical test has not been performed 

due to the reduced number of networks considered.  
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Louvain Infomap 

Method 
Mean 

NMI 2D 
Mean 

NMI 3D 
Impr. p-value Method 

Mean 
NMI 2D 

Mean 
NMI 3D 

Impr. p-value 

RA-LE 0.66 0.69 +0.03 0.380 ISO 0.67 0.72 +0.05 0.343 

LE 0.68 0.70 +0.02 0.452 RA-LE 0.65 0.67 +0.02 0.429 

ISO 0.67 0.69 +0.02 0.413 EBC-ISO 0.69 0.71 +0.02 0.387 

ncISO 0.66 0.67 +0.01 0.482 ncISO 0.67 0.69 +0.02 0.404 

EBC-LE 0.64 0.65 +0.01 0.481 EBC-ncISO 0.70 0.71 +0.01 0.424 

EBC-ncISO 0.69 0.70 +0.01 0.450 LE 0.68 0.69 +0.01 0.494 

RA-ISO 0.69 0.69 0.00 0.487 RA-ncISO 0.68 0.68 0.00 0.489 

EBC-ISO 0.71 0.70 -0.01 0.473 RA-ISO 0.70 0.69 -0.01 0.441 

RA-ncISO 0.70 0.68 -0.02 0.453 EBC-LE 0.68 0.66 -0.02 0.425 

Label Propagation Walktrap 

Method 
Mean 

NMI 2D 
Mean 

NMI 3D 
Impr. p-value Method 

Mean 
NMI 2D 

Mean 
NMI 3D 

Impr. p-value 

ncISO 0.59 0.62 +0.03 0.410 EBC-LE 0.63 0.66 +0.03 0.436 

EBC-LE 0.60 0.63 +0.03 0.391 RA-LE 0.63 0.64 +0.01 0.492 

RA-ISO 0.63 0.65 +0.02 0.430 EBC-ncISO 0.66 0.67 +0.01 0.469 

LE 0.62 0.62 0.00 0.491 ISO 0.65 0.65 0.00 0.493 

RA-LE 0.63 0.63 0.00 0.488 ncISO 0.64 0.64 0.00 0.505 

RA-ncISO 0.63 0.62 -0.01 0.471 RA-ncISO 0.64 0.64 0.00 0.503 

EBC-ISO 0.63 0.61 -0.02 0.438 EBC-ISO 0.65 0.65 0.00 0.483 

EBC-ncISO 0.64 0.61 -0.03 0.419 LE 0.66 0.65 -0.01 0.474 

ISO 0.67 0.63 -0.04 0.360 RA-ISO 0.65 0.64 -0.01 0.456 

 

Supplementary Table 12. Comparison of 2D and 3D community detection on real networks. 

The 8 real networks whose statistics are reported in Table 1 have been mapped both in 2D and 3D using 

the manifold-based coalescent embedding techniques and the community detection has been evaluated 

exploiting the 2D and 3D hyperbolic distances to weight the input matrix for the four community 

detection algorithms. The table reports for each method the mean NMI over all the networks both in 2D 

and in 3D, highlighting the 3D-improvement. NMI is the normalized mutual information and represents 

the shared information between two distributions, normalized between 0 and 1, where 1 indicates that 

the communities detected by the algorithm perfectly correspond to the ground truth communities (see 

Methods for details). The rightmost column of each community detection algorithm shows for each 

embedding method the p-value of the permutation test for the mean (10000 iterations) performed 

considering the two vectors of GR-scores related to 2D and 3D.  
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Supplementary Notes 

 

Supplementary Note 1: Repulsion-Attraction pre-weighting rules 

𝑥𝑖𝑗
𝑅𝐴1 =

𝑑𝑖 + 𝑑𝑗 + 𝑑𝑖𝑑𝑗

1 + 𝐶𝑁𝑖𝑗
 (1) 

𝑥𝑖𝑗
𝑅𝐴2 =

1 + 𝑒𝑖 + 𝑒𝑗 + 𝑒𝑖𝑒𝑗

1 + 𝐶𝑁𝑖𝑗
 (2) 

𝑥𝑖𝑗
𝑅𝐴3 =

𝑑𝑖 + 𝑑𝑗

1 + 𝐶𝑁𝑖𝑗
 (3) 

𝑥𝑖𝑗
𝑅𝐴4 =

𝑑𝑖𝑑𝑗

1 + 𝐶𝑁𝑖𝑗
 (4) 

In the mathematical expressions: 𝑥𝑖𝑗 is the value of an edge (𝑖, 𝑗) in the adjacency matrix; 𝑑𝑖 is 

the degree of the node i; 𝑒𝑖 is the external degree of the node i with respect to node j (links to 

nodes that are neither common neighbours nor the node j); 𝐶𝑁𝑖𝑗 are the common neighbours 

of nodes i and j. 

 

Supplementary Discussion 

 

Greedy routing performance in synthetic and real networks 

In this section, we would like to explain the reason why RA-ncMCE resulted the best 

performing among the coalescent embedding methods on the greedy routing tests. 

Firstly, we would like to underline the relevant increase of performance obtained by ncMCE 

when the RA pre-weighting is applied, which confirms the efficacy of the RA rule. The RA 

pre-weighting is very effective to suggest the hidden geometry to extract the MST on the basis 

of which the distances that are collected in the MC-kernel are approximated (see Methods for 

details). In fact, ncMCE alone offers a very poor performance in GR, while RA-ncMCE 

provides top performance between the coalescent embedding techniques. 

Secondly, the fact that ncMCE is performing better than MCE in problems of network 

embedding was also proved and discussed in a previous publication [36], and it is related with 

the effect of the kernel centring procedure, therefore we will not discuss further here. 

At last, a theoretical digression is necessary in order to explain why RA-ncMCE performed 

better than the manifold-based coalescent embedding techniques. The embedding methods 

based on matrix factorization are all global methods because they exploit an NxN matrix 
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decomposition [111]. However, they mainly work in different ways. LE is a neighbourhood-

preserving global method, in fact, the Laplacian matrix to which eigen-decomposition is 

applied only contains information about connected nodes, therefore it infers angular 

coordinates that give preference to put connected nodes closer. ISO and ncISO, on the contrary, 

belong to the class of global methods that aim to preserve the global topology of the 

neighbourhood graph that approximates the hidden manifold geometry, therefore they do not 

concentrate exclusively on the accurate preservation of connected points at close angular 

coordinates. Indeed, they apply singular value decomposition to a distance kernel, which 

contains information about both connected and disconnected nodes. It means that they attempt 

to preserve geometry at all scales, therefore introducing and distributing the error at all the 

scales. ISO procedure does not give preference to an accurate preservation of connected points 

that is a necessary procedure for effective GR but, on the other hand, tries to fulfil the second 

important condition to put disconnected points far in the angular coordinates. ncMCE is a 

global method that preserves a locally-reconstructed (by means of MST) global geometry by 

overestimating distances between disconnected nodes. Since the MC-kernel is obtained by 

computing all pairwise transversal distances over the MST, in practice distances for both 

connected and disconnected nodes are approximated. However, the distances of connected 

nodes will be ‘fairly’ estimated, while the ones of disconnected nodes will be overrated. In 

conclusion, minimum curvilinearity, which is the mechanism of generation of the MC-kernel, 

favours inference of kernel distances that preserve connected nodes close in the angular 

coordinates, and push disconnected nodes far apart in the angular coordinates. 

 

Community detection on real networks 

This section is intended to provide further discussions about the results on the community 

detection application. As first, we would like to comment the fact that, differently from the 

embedding evaluation on the synthetic networks, in community detection on real networks 

ncISO-based and MCE-based coalescent embedding techniques are significantly better than 

LE-based methods (Table 1-2 and Supplementary Table 1-4). Not to be overlooked, EBC-

ncISO-EA is the only method that improves with respect to all the four unweighted algorithms. 

As expected, this finding suggests that the results obtained on synthetic networks are indicative 

but should be taken with caution. Real networks might have a geometry that is even more tree-

like and hyperbolic than the one hypothesized by the PSO model (for this reason MCE-based 

techniques can perform better on real networks), and although the topology of real networks is 

certainly conditioned by the hyperbolic geometry this is however one of the factors that shape 
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their structure. On the other side, good results are achieved also for networks with out of range 

γ values such as Opsahl_11. Since it has been demonstrated that a scale-free degree distribution 

is a necessary condition for hyperbolic geometry [17], this result demonstrates that the methods 

can reach good performances also for networks whose latent geometry might be weakly 

hyperbolic. 

As second point, we want to highlight that also in community detection simulations on real 

world networks the contribution offered by EA is evident. Except for Label propagation where 

the EA and non-EA methods show a mixed ranking (Supplementary Table 3), in Louvain, 

Infomap and Walktrap the EA-based coalescent embedding techniques offer the best 

performance (Supplementary Table 1, 2 and 4), confirming that the adjustment of local 

embedding uncertainty can be crucial for effective coalescent embedding also in real 

applications. We note that Louvain was the only method for which the improvement in 

community detection was higher using not only the geometrical information between the 

connected nodes but also between disconnected nodes. Supplementary Table 1 and 5 show the 

different results using either a kernel or a weighted network in input. For the other community 

detection algorithms the results are not reported since the usage of a kernel led to totally wrong 

predictions. 

In order to test the coalescent embedding methods on real networks of larger size, the 

community detection has been performed also on Internet networks ranging from 5000 up to 

37000 nodes, where each node represents an Autonomous System and the connections indicate 

the IPv4 or IPv6 topology (see dataset description for details). For Louvain, the processing of 

the kernel matrix for large networks resulted to be too computationally expensive from the 

point of view of the memory requirements, therefore the results are not reported. For Infomap 

and Walktrap, most of the embedding methods obtained the same performance as the 

unweighted variant, and also the other techniques did not show a big deviation from that 

reference (Supplementary Table 6 and 8). However, for Infomap, many MCE-based 

approaches offered a small increase of performance and the only improving method for 

Walktrap is also MCE-based. Differently, for Label propagation the unweighted variant 

obtained a very low result, therefore there was a higher margin of improvement and the usage 

of the geometrical information led to a significant boosting (Supplementary Table 7). 

 

Beyond the two-dimensional space 

Before starting with the analysis of the results, there is the need to discuss a preliminary point. 
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Coalescent embedding at the moment includes two different types, the manifold-based (LE, 

ISO, ncISO) and the Minimum Curvilinearity (MCE, ncMCE) approaches. The latter ones are 

fundamentally different, since they learn the nonlinear similarities by means of MST and 

linearize the hidden pattern providing a hierarchical-based mapping. Therefore, on one side we 

are seeking to exploit an additional dimension of embedding, on the other side the power of 

the Minimum Curvilinearity methods is the compression of information in a single dimension: 

it is evident by definition that it would be a contradiction to adopt them for this investigation. 

Furthermore, while the rearrangement of the linearized similarities over a circumference 

remains intuitive, it is not trivial to find a meaningful way for reorganizing the linearized 

pattern over a sphere. Note that, for analogous reasons, also the equidistant adjustment is not 

adopted. On the contrary, the manifold-based approaches offer less compression capabilities 

and therefore do not exclude the presence of potentially useful information in the third 

dimension. Moreover, since the hidden similarity pattern can remain nonlinear also in the 

embedded space, the similarities can be directly accommodated to the sphere without the need 

of any particular reorganization, as it happens using two dimensions.  

Supplementary Table 9 reports the mean difference between the GR scores of the 3D versus 

2D greedy routing performed on the PSO networks embedded in the hyperbolic space, where 

the mean is taken over all the parameter combinations. The table highlights a small even though 

significant (p-value < 0.001) improvement obtained with the addition of the third dimension in 

ISO and ncISO. However, there is no significant improvement for the other methods, and for 

the LE-based approaches there is even a small decline. Supplementary Table 10 reports the 

mean difference between the GR scores of the 3D versus 2D greedy routing performed on the 

real small-size networks embedded in the hyperbolic space, where the mean is taken over all 

the networks. The table shows that, except for EBC-LE, the methods slightly improve the 

performance with a gain in NMI up to 0.05, but not significantly. Supplementary Table 11 

reports the difference between the GR scores of the 3D versus 2D greedy routing performed 

on two AS networks embedded in the hyperbolic space, one middle size and one large size. 

The table underlines the presence of a general performance decrease with the addition of the 

third dimension. 

Supplementary Table 12 reports the mean difference between the NMI scores of the 3D versus 

2D community detection performed on the real small-size networks embedded in the 

hyperbolic space, where the mean is taken over all the networks. The table highlights that for 

each community detection method the coalescent embedding approaches oscillate between a 
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small increase and a little decrease of performance using the third dimension, but the difference 

is not significant in any case. 

 

Notes on pre-weighting, rich-clubness and angular adjustment 

The proposed class of coalescent embedding algorithms includes several variants and, except 

for the different machine learning techniques, the variations are given by the pre-weighting and 

the angular adjustment, whose contribution will be now discussed. 

Out of question is the positive effect of the pre-weighting on the embedding accuracy. All the 

simulations highlighted that suggesting topological similarities between the connected nodes 

makes the inference of the coordinates more precise and leads to remarkable improvements in 

performance (Supplementary Fig. 2-6). Furthermore, both the local-based RA rule and the 

global-based EBC rule resulted to be effective. Since there was not a unique possible 

mathematical formulation of the RA formula, we tested four variants differing in the way in 

which the degrees of the connected nodes are combined, the mathematical expressions are 

shown in Supplementary Note 1 and the results in Supplementary Fig. 23. The variant RA1 

gave the best results for the embedding of small-size PSO networks, whereas the variant RA2 

for the large-size PSO networks, although the performance is very similar for all of them. 

Therefore, we here propose to adopt both the versions RA1 and RA2, as reported in Fig. 2. Since 

in most of the simulations the networks are small and the results of the two variants are very 

close, for sake of brevity we showed all the other results only for RA1. We let notice that from 

a theoretical point of view the formula RA2 is more correct, in fact it conceptually splits the 

neighbours of the adjacent nodes in two non-overlapping subsets: the neighbours not in 

common (external degree), responsible for the repulsive part, and the common neighbours, 

determining the attractive part. In the other formulas, instead, the numerator considers not the 

external degree but the degree of the adjacent nodes, which includes also the common 

neighbours. However, on the tested networks it emerges that this conceptual difference does 

not lead to a substantial performance improvement, but it might play an important role for 

networks of larger size. 

It might be argued that the repulsion between high (external) degree nodes implied by the RA 

rule is in contrast with the existence of rich-clubs. In rich-club networks, high degree nodes 

(hubs) tend to connect each other [112]. However, we would like to clarify that the repulsive 

part of the rule is not suggesting that nodes with high (external) degree tend to be disconnected. 

It suggests that they tend to dominate geometrically distant regions, which does not exclude 

their connectivity and therefore it should not be theoretically in contrast to the existence of 
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rich-clubs. In order to prove this point by experiments, we started performing a statistical test 

for rich-clubness[110] on the PSO networks used for the previous simulations, the p-values are 

reported in Supplementary Fig. 25. The statistical test highlights that for most of the parameter 

combinations, in particular for m = [4, 6] and N = [500, 1000] the networks present a significant 

rich-club, whereas for more sparse (m = 2) and small networks (N = 100) in general there is 

not a significant rich-club. This is in agreement with the network growing procedure explained 

by the PSO model. In fact, the high degree nodes are the first ones to be born in the network 

and they are expected to connect to around m of the older nodes[20]. Therefore for higher m 

the rich nodes have higher probability to create a club. Looking at Supplementary Fig. 2-6, it 

is evident that for networks with m = [4, 6], which are significantly rich-club, the methods 

using the RA pre-weighting rule do not have any particular decrease in performance, they still 

provide a very high improvement with respect to the unweighted variant, as for networks with 

m = 2 that do not contain a significant rich-club. We therefore conclude that the RA pre-

weighting rule can be adopted regardless of the rich-clubness of a network. 

If on one side there are no doubts about the essentialness of the pre-weighting, a discussion is 

required on the contribution of the equidistant adjustment. In fact, the significant improvement 

obtained using EA on PSO networks up to 1000 nodes (Fig. 3 and Supplementary Fig. 7) might 

be due to overfitting to the PSO model, since the angular coordinates are randomly generated 

by a uniform sampling. Interestingly, Fig. 5 suggests that for PSO networks of size 30000 the 

EA contribution vanishes. The reason is that with bigger networks the high number of nodes 

tends to densely and more uniformly cover the angular range hence the non-EA embedding 

already arranges the nodes in an almost exactly equidistant way. Looking at the community 

detection application, we noticed that for three out four algorithms (Louvain, Infomap and 

Walktrap) the EA-based methods obtained in general higher performances than the respective 

non-EA versions, suggesting that the adjustment of local embedding uncertainty can be 

effective in real applications. As last, we checked the contribution of the equidistant adjustment 

on greedy routing. As reported in Supplementary Fig. 20, the equidistant adjustment offered 

an overall improvement for the greedy routing on PSO networks and a decrease in performance 

on real networks, although small. To conclude, due to the variable contribution given by the 

equidistant adjustment, we propose it as a valid alternative to take into consideration, even if it 

does not represent always the best option. New methods of angular adjustment should be 

investigated in future studies.  
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Abstract 

The investigation of the hidden metric space behind complex network topologies is a fervid 

topic in current network science and the hyperbolic space is one of the most studied, because 

it seems associated to the structural organization of many real complex systems. The 

Popularity-Similarity-Optimization (PSO) model simulates how random geometric graphs 

grow in the hyperbolic space, generating realistic networks with clustering, small-worldness, 

scale-freeness and rich-clubness. However, it misses to reproduce an important feature of real 

complex networks, which is the community organization. The Geometrical-Preferential-

Attachment (GPA) model was recently developed in order to confer to the PSO also a soft 

community structure, which is obtained by forcing different angular regions of the hyperbolic 

disk to have a variable level of attractiveness. However, the number and size of the 

communities cannot be explicitly controlled in the GPA, which is a clear limitation for real 

applications. 

Here, we introduce the nonuniform PSO (nPSO) model. Differently from GPA, the nPSO 

generates synthetic networks in the hyperbolic space where heterogeneous angular node 

attractiveness is forced by sampling the angular coordinates from a tailored nonuniform 

probability distribution (for instance a mixture of Gaussians). The nPSO differs from GPA in 

other three aspects: it allows to explicitly fix the number and size of communities; it allows to 

tune their mixing property by means of the network temperature; it is efficient to generate 

networks with high clustering. Several tests on the detectability of the community structure in 

nPSO synthetic networks and wide investigations on their structural properties confirm that the 

nPSO is a valid and efficient model to generate realistic complex networks with communities. 

mailto:kalokagathos.agon@gmail.com
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B.1 Introduction 

In recent years the study of hidden geometrical spaces behind complex network topologies has 

led to several developments and, currently, the hyperbolic space seems to be one of the most 

appropriate in order to explain many of the structural features observed in real networks [15], 

[17]–[20], [30], [32], [51], [65], [68], [74], [81]. In 2012 Papadopoulos et al. [20] introduced 

the Popularity-Similarity-Optimization (PSO) model in order to describe how random 

geometric graphs grow in the hyperbolic space optimizing a trade-off between popularity and 

similarity. In this framework, the popularity of the nodes is represented by the radial coordinate 

in the hyperbolic disk, whereas the angular coordinates distance is the geometrical counterpart 

of the similarity between the nodes. Networks generated through the PSO model exhibit strong 

clustering and a scale-free degree distribution, two among the peculiar properties that usually 

characterize real-world topologies [11], [37], [38]. However, another important feature 

commonly observed is the community structure [6], [39], [40], which is lacking in the PSO 

model. The reason is that the nodes are arranged over the angular coordinate space according 

to a uniform distribution, therefore, since the connection probability is a decreasing function 

of the hyperbolic distance, there are not angular regions containing a cluster of spatially close 

nodes that are more densely connected between each other than with the rest of the network. 

This issue has been addressed in a following study by Zuev et al. [28], introducing the 

geometric preferential attachment (GPA). The GPA couples the latent hyperbolic network 

geometry with preferential attachment of nodes to this geometry in order to generate networks 

with strong clustering, scale-free degree distribution and a non-trivial community structure 

[28]. The main assumption of the GPA model and simultaneously the main innovation with 

respect to the PSO model is that the angular coordinate space is not equally attractive 

everywhere. Practically, the GPA is characterized by heterogeneous angular attractiveness: 

regions of different attractiveness are designed according to the rationale that the higher the 

attractiveness of a region the higher the probability that the nodes are placed in that angular 

section. Although this general idea can be implemented in several ways, a high-level 

description of the procedure presented in the study of Zuev et al. [28] is as follows (see Methods 

for details). For each new node entering in the network, a set of candidate positions is defined 

(angular coordinate sampled uniformly at random, radial coordinate mathematically fixed) and 

to every candidate position is assigned a probability depending on the number of nodes that 

would be “close” to the entering node if it were placed in that position. The probability is also 

function of a parameter of initial attractiveness, which can be used to tune the heterogeneity of 
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the angular coordinate distribution. However, the GPA model does not allow – at least in the 

form in which it is currently proposed - to directly control in an explicit and efficient way the 

number and size of the communities, a property that instead might be interesting, for example, 

while proposing a community detection benchmark. Furthermore, the GPA model does not 

take into account the possibility to vary the network temperature. For this reasons we here 

introduce a variation of the PSO model, which we call nonuniform PSO (nPSO) model, whose 

key aspects are the possibility of: a) fixing the number and size of communities; b) tuning their 

mixing property through the network temperature; c) efficiently producing also highly 

clustered realistic networks. Finally, although we present the nPSO as a generative model for 

non-overlapping communities, we will discuss a strategy for taking into account also the 

presence of overlapping communities. 

 

B.2 Methods 

PSO model 

The Popularity-Similarity-Optimization (PSO) model [20] is a generative network model 

recently introduced in order to describe how random geometric graphs grow in the hyperbolic 

space. In this model the networks evolve optimizing a trade-off between node popularity, 

abstracted by the radial coordinate, and similarity, represented by the angular coordinate 

distance, and they exhibit many common structural and dynamical characteristics of real 

networks. 

The model has five input parameters: 

 𝑁 > 0, number of nodes in the network; 

 𝑚 > 0, equal to half of the average node degree; 

 𝑇 ≥ 0, network temperature, which controls the network clustering; the network clustering 

is maximized at 𝑇 = 0, it decreases almost linearly for 𝑇 = [0,1) and it becomes 

asymptotically zero if 𝑇 > 1; 

 𝛽 ∈ (0, 1], popularity fading parameter, or alternatively 𝛾 ≥ 2, exponent of the power-law 

degree distribution, due to the relationship 𝛾 = 1 + 1/𝛽; 

 𝜁 = √−𝐾 > 0, where K is the curvature of the hyperbolic plane. Since changing 𝜁 rescales 

the node radial coordinates and this does not affect the topological properties of network 

[20], in the rest of the article we will consider 𝐾 = −1. 

Building a network in the hyperbolic disk requires the following steps: 

(1) Initially the network is empty; 
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(2) At time 𝑖 = 1, 2, … , 𝑁 a new node i appears with radial coordinate 𝑟𝑖 = 2𝑙𝑛(𝑖) and angular 

coordinate 𝜃𝑖 uniformly sampled in [0,2𝜋]; all the existing nodes 𝑗 < 𝑖 increase their radial 

coordinates according to 𝑟𝑗(𝑖) = 𝛽𝑟𝑗 + (1 − 𝛽)𝑟𝑖 in order to simulate popularity fading; 

(3) If 𝑇 = 0, the new node connects to the m hyperbolically closest nodes; if 𝑇 > 0, the new 

node picks a randomly chosen existing node 𝑗 < 𝑖 and, given that it is not already connected to 

it, it connects to it with probability 

𝑝(𝑖, 𝑗) =
1

1 + exp (
ℎ𝑖𝑗 − 𝑅𝑖

2𝑇 )

 
(1) 

repeating the procedure until it becomes connected to m nodes. 

Note that 

𝑅𝑖 = 𝑟𝑖 − 2 ln [
2𝑇(1 − 𝑒−(1−𝛽) ln(𝑖))

sin(𝑇𝜋) 𝑚(1 − 𝛽)
] (2) 

is the current radius of the hyperbolic disk, and 

ℎ𝑖𝑗 = 𝑎𝑟𝑐𝑐𝑜𝑠ℎ(cosh 𝑟𝑖 cosh 𝑟𝑗 − sinh 𝑟𝑖 sinh 𝑟𝑗 cos 𝜃𝑖𝑗) (3) 

is the hyperbolic distance between node i and node j, where 

𝜃𝑖𝑗 = 𝜋 − |𝜋 − |𝜃𝑖 − 𝜃𝑗|| (4) 

is the angle between these nodes. 

(4) The growing process stops when N nodes have been introduced. 

 

GPA model 

The GPA model is a variation of the original PSO model that couples the latent hyperbolic 

network geometry with preferential attachment of nodes to this geometry in order to generate 

networks with strong clustering, scale-free degree distribution and a non-trivial community 

structure [28]. 

The procedure to generate a network of N nodes is the same described in the previous section 

for the PSO model, with the main difference that the angular coordinate 𝜃𝑖 of the new node i is 

assigned as follows: 

(a) Sample 𝜑1, … , 𝜑𝑖 in [0,2𝜋] uniformly at random. The points (𝑟𝑖, 𝜑𝑗) for 𝑗 = 1 … 𝑖 represent 

candidate positions for the node. 

(b) Define for each candidate position (𝑟𝑖, 𝜑𝑗) the attractiveness 𝐴𝑖(𝜑𝑗) equal to the number of 

existing nodes that lie within hyperbolic distance 𝑟𝑖 from it. 

(c) Set the angular coordinate 𝜃𝑖 = 𝜑𝑗 with probability: 
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𝛱𝑖(𝜑𝑗) =
𝐴𝑖(𝜑𝑗) + 𝛬

∑ 𝐴𝑖(𝜑𝑘) + 𝛬𝑖
𝑘=1

 (5) 

Where 𝛬 ≥ 0 is a parameter representing the initial attractiveness. 

Note that the GPA model has been presented in the related study with only three input 

parameters, m, 𝛽 and 𝛬, with the additional parameters of the PSO model considered in the 

setting 𝑇 = 0 and 𝐾 = −1. 

 

Nonuniform PSO (nPSO) model 

The nonuniform PSO model is a variation of the PSO model introduced in order to confer to 

the generated networks an adequate community structure, which is lacking in the original 

model. Since the connection probability is a decreasing function of the hyperbolic distance, a 

uniform distribution of the nodes over the hyperbolic disk does not create agglomerates of 

nodes that are concentrated on angular sectors and that are more densely connected between 

each other than with the rest of the network. A nonuniform distribution, instead, allows to do 

it by generating heterogeneity in the angular node arrangement. Given the parameters of the 

PSO model (N, m, T, γ) and a nonuniform probability distribution defined in [0, 2π[, the 

procedure to generate a network is the same described in the section for the uniform case, with 

the only difference that the angular coordinates of the nodes are not sampled uniformly but 

according to the given nonuniform probability distribution. 

In particular, without loss of generality, we will concentrate on the mixture of distributions 

where the components are either Gaussian or Gamma distributions (Figure 1A), which we 

consider suitable for describing how to build a nonuniform distributed sample of nodes along 

the angular coordinates of a hyperbolic disk, with communities that emerge in correspondence 

of the different components. For instance, given a Gaussian mixture distribution the 

communities will emerge in correspondence of the different Gaussians. In particular, a 

Gaussian mixture distribution is characterized by the following parameters [113]: 

 𝐶 > 0, which is the number of components, each one representative of a community; 

 𝜇1…𝐶 ∈ [0,2𝜋[, which are the means of the components, representing the central locations 

of the communities in the angular space; 

 𝜎1…𝐶 > 0, which are the standard deviations of the components, determining how much the 

communities are spread in the angular space; a low value leads to isolated communities, a 

high value makes the adjacent communities to overlap; 
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 𝜌1…𝐶  (∑ 𝜌𝑖 = 1𝑖 ), which are the mixing proportions of the components, determining the 

relative sizes of the communities. 

Note that, although the means of the components are located in [0, 2π[, the sampling of the 

angular coordinate 𝜃 can fall out of this range. In this case, it has to be shifted within the 

original range using the modulo operator: 𝜃 = 𝑚𝑜𝑑𝑢𝑙𝑜(𝜃, 2𝜋). 

Although the parameters of the Gaussian mixture distribution allow for the investigation of 

disparate scenarios, as a first case of study (Figure 1B) we focused on the most straightforward 

setting. For a given number of components C, we considered their means equidistantly arranged 

over the angular space, the same standard deviation and equal mixing proportions: 

 𝜇𝑖 =
2𝜋

𝐶
∗ (𝑖 − 1)     𝑖 = 1 … 𝐶 

 𝜎1 = 𝜎2 = . . . = 𝜎𝐶 = 𝜎 

 𝜌1 = 𝜌2 = . . . = 𝜌𝐶 =
1

𝐶
 

In particular, in our simulations we fixed the standard deviation to 1/6 of the distance between 

two adjacent means (𝜎 =
1

6
∗

2𝜋

𝐶
), which allowed for a reasonable isolation of the communities 

independently from their number. 

In a second scenario (Figure 1C), we introduced asymmetries in the distribution of the nodes 

over the circumference by generating communities of different sizes, implemented using 

diverse mixing proportions for the components. In particular, in our simulations the mixing 

proportions have been randomly assigned. 

As a last scenario (Figure 1D), we considered a mixture of Gaussian and Gamma distributions, 

which is also characterized by asymmetries due to the presence of the Gamma components. 

Since this is not a mixture distribution as ordinary as the Gaussian one, in Supplementary 

Information we will provide the details about how it has been built for our simulations. In all 

the scenarios, the community memberships are assigned considering for each node the 

component whose mean is at the lowest angular distance. 

 

Computational implementations of the generative model algorithm 

In the PSO model section, at step (3) of the generative procedure, it is presented how the new 

node establishes connections to m of the existing nodes. In particular, if 𝑇 > 0, the new node 𝑖 

picks a randomly chosen existing node 𝑗 < 𝑖 and, given that it is not already connected to it, it 

connects with probability 𝑝(𝑖, 𝑗), repeating the procedure until it becomes connected to m 

nodes. An example of pseudocode is: 



135 
 

targets = [1...i-1] 

c = 0 

while c < m 

j = random node uniformly sampled from targets 

rand_p = random number in [0,1] 

if p(i,j) > rand_p 

add link from i to j 

remove j from targets 

c = c + 1; 

end 

end 

At the implementation level, the basic solution in MATLAB code would be: 

targets = 1:(i-1); 

c = 0; 

while c < m 

idx = randi(length(targets)); 

       j = targets(idx); 

rand_p = rand(1); 

       if p(i,j) > rand_p 

        x(i,j) = 1; 

              c = c + 1; 

              targets(idx) = []; 

       end 

end 

where x is the adjacency matrix of the network. We will refer to this as implementation 1. 

As it will be commented in the Results and Discussion, this implementation has issues of time 

performance in specific cases. In fact, it is possible to note from Equation (1) that the 

connection probability 𝑝(𝑖, 𝑗) decreases both for increasing hyperbolic distance and for 

decreasing temperature (when ℎ𝑖𝑗 > 𝑅𝑖, which is true in the majority of the cases as shown in 

Suppl. Table 1, in particular for increasing network size). Therefore, while generating a 

network with low temperature and where many nodes are at high hyperbolic distance (for 

example sampling the angular coordinates from a Gaussian mixture distribution with 4 

communities), most of the connection probabilities to the targets will be low. As a consequence, 

the if statement will result false in many iterations and the while loop will require a relevant 

computational time before that m connections are successfully established. 

In order to solve this issue, we note that at each while-loop iteration the connection probabilities 

to the target nodes (excluded the ones already connected) do not always cover the full range 
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[0, 1]. In particular, at each iteration the maximum of these probabilities max_p =

max
𝑡 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑠

𝑝(𝑖, 𝑡) will be usually lower than 1. Since it is known a priori that any random 

sampling rand_p > max_p will necessarily bring to a rejection of the connection 

independently from the target node chosen, the sampling range of the random probability 

rand_p can be restricted to [0, max_p]. In the critical conditions previously mentioned, where 

most of the connection probabilities are low, this adjustment can bring to a considerable 

speedup without biasing the link generation procedure. An example of pseudocode is: 

targets = [1...i-1] 

c = 0 

max_p = max
t ∈ targets

p(i, t) 

while c < m 

j = random node uniformly sampled from targets 

rand_p = random number in [0,max_p] 

if p(i,j) > rand_p 

add link from i to j 

remove j from targets 

max_p = max
t ∈ targets

p(i, t) 

c = c + 1; 

end 

end 

In case a programming language optimized for vector operations (i.e. MATLAB) is used, since 

vector operations are faster than loop-based operations, at each iteration m attempts of 

connection to target nodes can be done at once, reducing the number of iterations required to 

successfully establish m connections. Note that, while this adjustment is convenient only at the 

implementation level when using a programming language optimized for vectorization, the 

restriction of the probability sampling to the range [0, max_p] is valid in general. 

The MATLAB code of the implementation would be: 

targets = 1:(i-1); 

c = 0; 

max_p = max(p(i,targets)); 

while c < m 

 if length(targets) > m 

             idx = randsample(length(targets),m); 

      else 

idx = 1:length(targets); 

end 
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rand_p = rand(1,length(idx)) * max_p; 

idx = idx(p(i,targets(idx)) > rand_p); 

if ~isempty(idx) 

       if length(idx) > m - c 

         idx = randsample(idx,m - c); 

end 

       x(i,targets(idx)) = 1; 

        targets(idx) = []; 

max_p = max(p(i,targets)); 

        c = c + length(idx); 

 end 

end 

We will refer to this as implementation 2. 

A further variant that we propose is to sample the target nodes according to the theoretical 

probabilities 𝑝(𝑖, 𝑗). This solution ensures that at every iteration new connections are 

successfully established, avoiding rejections and making the procedure faster. An example of 

pseudocode is: 

targets = [1...i-1] 

for c = 1...m 

j = random node t sampled from targets with probabilities 
p(i,t)

∑ p(i,u)u ∈ targets
 

add link from i to j 

remove j from targets 

end 

Given normalized connection probabilities from node i to U targets, 𝑤(𝑖, 𝑡) =
p(i,t)

∑ p(i,u)u ∈ targets
, 

the nonuniform sampling can be performed in the following way: 

(a) Partition the interval [0,1] in U subintervals 𝐼(𝑡) of sizes 𝑤(𝑖, 𝑡) 

(b) Generate a random number 𝑟 ∈ [0,1] 

(c) The sampled target is the t such that 𝑟 ∈ 𝐼(𝑡) 

The MATLAB code of the implementation would be: 

targets = 1:(i-1); 

idx = datasample(targets, m, 'Replace', false, 'Weights', p(i,targets)); 

x(i,idx) = 1; 

We will refer to this as implementation 3. 

Note that, as for the previous implementation, the sampling of m targets at once is an adjustment 

convenient only at the implementation level when using a programming language optimized 
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for vectorization, whereas the idea of sampling according to the theoretical probabilities is valid 

in general. 

The computational complexity of the model using the three implementations is discussed in 

the next section, whereas their running time as well as the equivalence of the generated 

synthetic networks is discussed in the Results and Discussion. 

 

Computational complexity 

The generative procedure of the nPSO model mainly consists in a loop of N iterations, where 

for each iteration i a new node appears and connects to m of the existing nodes. 

Let’s firstly consider the degenerate case in which 𝑚 ≈ 𝑁. For approximately all the N 

iterations the connections m to establish are more than the existing nodes, therefore the new 

node i will simply connect to all the previous i-1 nodes, with 𝑂(𝑖) operations. The 

computational complexity is given by: 

∑ 𝑖 =
𝑁 ∙ (𝑁 + 1)

2

𝑁

𝑖=1

= 𝑂(𝑁2) 

Let’s now consider the more realistic case in which 𝑚 ≪ 𝑁. For approximately all the N 

iterations the connections m to establish are less than the existing nodes, therefore the new node 

i will connect to only m of them, and the time-dominant operations to create the links change 

depending on the temperature (whether zero or positive) and on which of the three 

implementations is adopted. 

For T = 0, the connections are established with the m hyperbolically closest nodes, 

independently from the implementation. For each iteration i, i-1 hyperbolic distances have to 

be computed in 𝑂(𝑖) operations, and then the m smallest ones have to be found, which can be 

obtained building a min-heap in 𝑂(𝑖) and retrieving the minimum m times in 𝑂(𝑚 log 𝑖). 

Considering ∑ log 𝑖𝑁
𝑖=1 = 𝑂(𝑁log𝑁) and 𝐸 = 𝑚𝑁, the computational complexity is given by: 

∑(𝑖 + 𝑚 log 𝑖)

𝑁

𝑖=1

= ∑ 𝑖

𝑁

𝑖=1

+ 𝑚 ∑ log 𝑖

𝑁

𝑖=1

= 𝑂(𝑁2) + 𝑚 ∙ 𝑂(𝑁log𝑁) = 𝑂(𝑁2 + 𝐸log𝑁) 

For T > 0, for each iteration i the m links are instead established according to the connection 

probabilities 𝑝(𝑖, 𝑗). We will now analyse the three different implementations. 

Using the implementation 1, for each link to create, one target node t is uniformly sampled and 

the connection is established with probability 𝑝(𝑖, 𝑡), otherwise rejected. Therefore a 

connection attempt costs constant time 𝑂(1). The average connection probability to the targets 

changes over the iterations i and over the m links depending on the set of targets. Let’s indicate 
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with 𝑝1 the average connection probability to the targets over the entire generative procedure 

using implementation 1. For each iteration i, on average 
𝑚

𝑝̃1
 connection attempts of cost 𝑂(1) 

are performed and therefore at most O(
𝑚

𝑝̃1
) operations are required. The computational 

complexity is given by: 

∑
𝑚

𝑝1

𝑁

𝑖=1

= 𝑂 (𝑁
𝑚

𝑝1
) = 𝑂 (𝐸

1

𝑝1
) 

Using the implementation 2, for each link to create, one target node t is uniformly sampled and 

the connection is established with probability 𝑝(𝑖, 𝑡)/max_p, otherwise rejected (max_p is the 

maximum probability between the targets). Computing the maximum costs 𝑂(𝑖) and since it 

has to be updated every time a connection is successfully established, for each iteration i its 

overall cost is 𝑂(𝑚 ∙ 𝑖). Analogously to implementation 1, on average 
𝑚

𝑝̃2
 connection attempts 

of cost 𝑂(1) are performed, where 𝑝2 is the average connection probability to the targets over 

the entire generative procedure using implementation 2. The computational complexity is given 

by: 

∑ (𝑚 ∙ 𝑖 +
𝑚

𝑝2
)

𝑁

𝑖=1

= 𝑂(𝑚𝑁2) + 𝑂 (𝑁
𝑚

𝑝2
) = 𝑂 (𝐸𝑁 + 𝐸

1

𝑝2
) = 𝑂 (𝐸 (𝑁 +

1

𝑝2
)) 

Using the implementation 3, for each link to create, one target node t is nonuniformly sampled 

with probabilities 𝑤(𝑖, 𝑡) =
p(i,t)

∑ p(i,u)u ∈ targets
 and the connection is successfully established. The 

computation of the normalized probabilities and the nonuniform sampling have a cost of 𝑂(𝑖), 

which is performed exactly m times. The computational complexity is given by: 

∑ 𝑚 ∙ 𝑖

𝑁

𝑖=1

= 𝑂(𝑚𝑁2) = 𝑂(𝐸𝑁) 

Note that the factor 
1

𝑝̃1
 (in implementation 1) is expected to be higher with respect to 

1

𝑝̃2
 

(implementation 2) and they both mainly increase for low temperatures and when the 

hyperbolic distances are overall high (i.e. low number of communities). Therefore, depending 

on the model’s parameter combination, the factors 
1

𝑝̃1
 and 

1

𝑝̃2
 can have a significant impact on 

the computational time, which will be discussed in Results and Discussion. 
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B.3 Results and Discussion 

The idea behind the nPSO is quite intuitive. The sampling of the angular coordinates from a 

uniform distribution - which is used by the standard PSO - can be generalized to sampling from 

any distribution with a desired shape. In particular, a nonuniform distribution would indicate 

the presence of regions with different levels of node attractiveness. In this study, without loss 

of generality, we will concentrate on the mixture of distributions where the components can be 

either Gaussian or Gamma distributions, which we consider suitable for describing how to 

build a nonuniform distributed sample of nodes along the angular coordinates of a hyperbolic 

disk, with communities that emerge in correspondence of the different distribution 

components. However, we want to stress that our nPSO model is general and can be 

implemented considering any mixture of desired distributions from which to sample the 

angular coordinates of the nodes.  

Although the parameters of the Gaussian and Gamma mixture distributions built on the angular 

coordinate space allow for the investigation of disparate scenarios, in this work we focused on 

three straightforward settings, which are illustrated in Figure 1. For a given number of 

communities C, in the first scenario (Figure 1B), we consider a Gaussian mixture distribution 

of C components with the means equidistantly arranged over the angular space, the same 

standard deviation and equal mixing proportions (see Methods for details). In a second scenario 

(Figure 1C), we introduced asymmetries in the distribution of the nodes over the circumference 

by generating communities of different sizes, implemented using diverse mixing proportions 

for the components. As a third and last scenario (Figure 1D), we considered a mixture of 

Gaussian and Gamma distributions, which is also characterized by asymmetries due to the 

presence of the Gamma components. In all the scenarios, the community memberships are 

assigned considering for each node the component whose mean is at the lowest angular 

distance. Figure 2 shows examples of networks in the hyperbolic space generated using the 

nPSO model (first scenario, Gaussian mixture distribution with equal proportions is 

considered) for different values of clustering (temperature, T = 0.1, 0.5, 0.9) and community 

number (C = 4, 8), while keeping the other parameters fixed (N = 100, m = 5, γ = 3). The related 

communities are also highlighted using different node colours. The figure indicates below each 

network also the Normalized Mutual Information (NMI) [98], a measure of performance for 

evaluating the community detection, computed by comparing the nPSO ground-truth 

communities and the ones detected by Louvain [44], which is one of the state-of-the-art 

community detection algorithms [48] (see Supplementary Methods for details). We notice that 
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the communities are perfectly detected both for C = 4 and C = 8 at low temperature, suggesting 

that a meaningful community structure is generated by the proposed model. For the same 

number of communities, if the temperature is increased the performance slightly decreases, 

because more inter-community links are established in the network, causing as expected a 

higher rate of wrong assignments by the community detection algorithm. 

The next sections will be organized as follows: at first we will prove the equivalence of the 

three implementations for the generative model algorithm and we will discuss their 

computational efficiency; later - using the fastest implementation (which is the implementation 

3) to generate numerous networks over diverse parameter combinations - we will propose a 

wide investigation on the detectability of the communities and on the topological properties of 

the synthetic networks generated by the nPSO. 

 

Equivalence of the three implementations for link generation 

Let’s consider a node i that has to establish a connection with one over U target nodes. 

Implementation 1: one target node t is chosen uniformly at random and a connection is 

established with probability 𝑝(𝑖, 𝑡). 

Let’s call Ct the event: node i connects with target t. The probability of the event is: 

𝑃(𝐶𝑡) =
1

𝑈
∙ 𝑝(𝑖, 𝑡) 

Let’s call C the event: node i connects with any of the targets. Taking into account that the 

event C is the union of the events 𝐶1, 𝐶2, … , 𝐶𝑈 and that these events are mutually exclusive, 

the probability of the event is: 

𝑃(𝐶) = 𝑃 (⋃ 𝐶𝑡

𝑡∈𝑈

) = ∑ 𝑃(𝐶𝑡)

𝑡∈𝑈

= ∑
1

𝑈
∙ 𝑝(𝑖, 𝑡)

𝑡∈𝑈

=
1

𝑈
∙ ∑ 𝑝(𝑖, 𝑡)

𝑡∈𝑈

 

In case the connection is rejected, another attempt is iteratively made until node i connects with 

any of the targets. In other words, the procedure is repeated until the event C occurs. 

Therefore, the probability to eventually recruit the target t as a neighbour is given by the 

conditional probability that node i has connected with target t, given that event C occurred: 

𝑃(𝐶𝑡|𝐶) =
𝑃(𝐶𝑡 ∩ 𝐶)

𝑃(𝐶)
=

𝑃(𝐶𝑡)

𝑃(𝐶)
=

1
𝑈 ∙ 𝑝(𝑖, 𝑡)

1
𝑈 ∙ ∑ 𝑝(𝑖, 𝑢)𝑢∈𝑈

=
𝑝(𝑖, 𝑡)

∑ 𝑝(𝑖, 𝑢)𝑢∈𝑈
 

Implementation 2: one target node t is chosen uniformly at random and a connection is 

established with probability 
𝑝(𝑖,𝑡)

max
𝑢∈𝑈

𝑝(𝑖,𝑢)
. 
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Following the same procedure as the implementation 1, we obtain: 

𝑃(𝐶𝑡) =
1

𝑈
∙

𝑝(𝑖, 𝑡)

max
𝑢∈𝑈

𝑝(𝑖, 𝑢)
=

1

𝑈
∙

1

max
𝑢∈𝑈

𝑝(𝑖, 𝑢)
∙ 𝑝(𝑖, 𝑡) 

𝑃(𝐶) =
1

𝑈
∙ ∑

𝑝(𝑖, 𝑡)

max
𝑢∈𝑈

𝑝(𝑖, 𝑢)
𝑡∈𝑈

=
1

𝑈
∙

1

max
𝑢∈𝑈

𝑝(𝑖, 𝑢)
∙ ∑ 𝑝(𝑖, 𝑡)

𝑡∈𝑈

 

𝑃(𝐶𝑡|𝐶) =
𝑃(𝐶𝑡)

𝑃(𝐶)
=

1
𝑈 ∙

1
max
𝑢∈𝑈

𝑝(𝑖, 𝑢)
∙ 𝑝(𝑖, 𝑡)

1
𝑈 ∙

1
max
𝑢∈𝑈

𝑝(𝑖, 𝑢)
∙ ∑ 𝑝(𝑖, 𝑢)𝑢∈𝑈

=
𝑝(𝑖, 𝑡)

∑ 𝑝(𝑖, 𝑢)𝑢∈𝑈
 

Implementation 3: one target node t is chosen non-uniformly at random with probability 

𝑝(𝑖,𝑡)

∑ 𝑝(𝑖,𝑢)𝑢∈𝑈
 and a connection is established. 

Note that in this procedure the connection is never rejected. Therefore we obtain: 

𝑃(𝐶𝑡) =
𝑝(𝑖, 𝑡)

∑ 𝑝(𝑖, 𝑢)𝑢∈𝑈
 

𝑃(𝐶) = 1 

𝑃(𝐶𝑡|𝐶) =
𝑃(𝐶𝑡)

𝑃(𝐶)
=

𝑝(𝑖, 𝑡)

∑ 𝑝(𝑖, 𝑢)𝑢∈𝑈
 

Since the probability 𝑃(𝐶𝑡|𝐶) to eventually recruit the target t as a neighbour is the same for 

the three implementations, their equivalence is proven. 

However, as a further demonstration that the generative procedure is not biased toward 

networks with different properties, in Suppl. Tables 2-6 we report for each PSO and nPSO 

parameter combination some of the main deterministic (in the sense that the measure does not 

depend by the stochastic generation of null models) topological measures of the networks 

generated using the three different implementations: clustering coefficient, characteristic path 

length, assortativity, LCP-correlation and power-law exponent. The results confirm that these 

structural properties of the model are well preserved and there are not noteworthy changes 

introduced by the adoption of the algorithmic variants. 

 

nPSO algorithm efficiency in generating networks with high clustering 

One of the main drawbacks to use the original algorithmic implementation to establish links 

adopted by the PSO and GPA models also for the nPSO model, is the lack of efficiency in 

generating networks with communities characterized by high clustering (low temperature), 

when 𝑇 > 0. As reported in Figure 3 and Suppl. Figures 1-3, the computational time for 

generating PSO networks of size N = 1000 is in the order of seconds, whereas for nPSO 
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networks with low temperature T = 0.1 it might take almost one hour (C = 8) or up to several 

hours (C = 4), depending on the number of communities. 

The main reason is the following. Assuming 𝑇 > 0, at each time step 𝑖 of the generative 

procedure the new node 𝑖 picks a randomly chosen existing node 𝑗 < 𝑖 and, given that it is not 

already connected to it, it connects with probability 𝑝(𝑖, 𝑗), repeating the procedure until it 

becomes connected to m nodes. However, it is possible to note from Equation (1) that the 

connection probability 𝑝(𝑖, 𝑗) decreases both for increasing hyperbolic distance and for 

decreasing temperature (when ℎ𝑖𝑗 > 𝑅𝑖, which is true in the majority of the cases as shown in 

Suppl. Table 1, in particular for increasing network size). Therefore, while generating a 

network with low temperature and where many nodes are at high hyperbolic distance (for 

instance: a nonuniform PSO model that displays communities presents hyperbolic distances 

significantly higher than a classical uniform PSO), most of the connection probabilities to the 

targets will be low. As a consequence, many iterations will be required before that m 

connections are successfully established. Note that, in the nPSO, the lower the C the higher the 

distance between adjacent communities, therefore more target nodes will be at high hyperbolic 

distance, which results in an increased computational time, as pointed out comparing C = 4 

(Suppl. Figure 2) and C = 8 (Suppl. Figure 3). Furthermore, in Figure 3 it can be noticed that 

the running time increases also for decreasing m. Although this might result counterintuitive 

because less links need to be generated, the reason is that for decreasing m the radius 𝑅𝑖 of the 

hyperbolic disk (see Equation (1)) decreases, as a consequence also the connection probabilities 

𝑝(𝑖, 𝑗) decreases and therefore more iterations will be required before that m connections are 

successfully established. 

Here we propose two different algorithmic implementations, whose details are provided in the 

Methods. Figure 3 shows that both the implementations do not present any issue for generating 

nPSO networks with low temperature. As highlighted in Suppl. Figures 4-5, the fastest is 

implementation 3, whose key idea is to sample the target nodes according to the theoretical 

probabilities 𝑝(𝑖, 𝑗), and it only requires 5 minutes to generate large-size nPSO networks of N 

= 10000, regardless of the temperature. This is indeed expected since it is the only 

implementation in which the attempts of establishing new connections are never rejected, and 

its computational complexity is only dependent on the number of nodes and edges, 𝑂(𝐸𝑁). On 

the contrary, the time complexity of the implementations 1 and 2 have a dependency on the 

average connection probability to the targets during the generative procedure, which is mainly 

affected by the temperature and by the extent of the hyperbolic distances. Comparing the 
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complexity of the three implementations and taking into account the computational time of the 

numerical experiments, we can derive that: 

𝑂(𝐸𝑁) <  𝑂 (𝐸 (𝑁 +
1

𝑝2
)) < 𝑂 (𝐸

1

𝑝1
) 

And therefore: 

𝑂(𝑁) <  𝑂 (𝑁 +
1

𝑝2
) < 𝑂 (

1

𝑝1
) 

This result mainly suggests that, in particular in the scenario of low temperature where the time 

difference is considerably high, the average number of attempts required by implementation 1 

to establish one connection has an order of complexity higher than the number of nodes in the 

network. 

Suppl. Figures 6-7 report the time performance for generating GPA networks both with 𝛬 =

0.1 and 𝛬 = 1. The advantage of the implementation 3 for low temperature T = 0.1 is clearly 

evident and the computational time difference with implementation 1 becomes more significant 

for low initial attractiveness 𝛬 = 0.1. Indeed, in this parameter configuration (T = 0.1, 𝛬 =

0.1) and using implementation 1, the generation of networks with N = 500 required several 

hours and networks with N = 1000 were still not generated after one month of running time, 

whereas implementation 3 required around 1 minute for N = 1000. We let notice that a lower 

initial attractiveness tends to locate new coming nodes in regions where other nodes are already 

present, generating a lower number of denser regions in the hyperbolic disk. The explanation 

of the higher computational time with respect to 𝛬 = 1 is therefore analogous to the one given 

for lower C in the nPSO model. 

 

Detectability and mixing property of the nPSO communities 

The main novelty introduced by the nPSO model with respect to the GPA model is the 

possibility to generate a tailored community structure at any given temperature different from 

T = 0. Therefore this section of the paper will lead the reader through a wide investigation on 

the parameter combinations of the nPSO model for which the emerging communities are 

detectable by a state-of-the-art algorithm. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 

1000], m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according 

to mixture distributions with components C = [5, 10, 15, 20] for the three different scenarios 

previously mentioned: Gaussian mixture with equal proportions (nPSO1), Gaussian mixture 

with random proportions (nPSO2), Gaussian and Gamma mixture with equal proportions 
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(nPSO3). For more details on the parameters of the mixture distributions please refer to the 

Methods. 

For each network the Louvain community detection algorithm [44] has been executed and the 

communities detected have been compared to the annotated ones computing the Normalized 

Mutual Information (NMI) [98] (see Supplementary Methods for details). We decided to use 

the Louvain algorithm because it is a model-free and unsupervised heuristic method for 

community detection based on modularity optimization [44], therefore its performance is not 

dependent by any assumption on the generative model, and its results should be robust enough 

regardless of the generative model used to create the synthetic networks. In addition, the 

Louvain algorithm has been regarded as one of the most effective algorithms for community 

detection in previous studies across many real and synthetic datasets [48], [50], [114]. 

However, the fact that here we tested the community detectability of the nPSO synthetic 

networks using only the Louvain algorithm is overcome in a second study where we compare 

the performance of several state-of-the-art algorithms for community detection across different 

parameters of the nPSO model [115]. 

The heatmap in Figure 4 reports the mean NMI over 10 repetitions for each parameter 

combination. The point that firstly captures the attention is the overall higher detectability of 

the communities in networks of larger size with a lower number of communities (top-right area 

of the heatmap) in comparison to networks of smaller size with a higher number of 

communities (bottom-left area of the heatmap). This result suggests that, independently from 

the kind of mixture distribution (nPSO1, nPSO2 or nPSO3), the ratio between the number of 

communities (C) and the network size (N) is a factor that strongly affects the detectability of 

the nPSO communities. This is indeed expected since, for a fixed network size, the lower the 

number of communities the higher their separation in the angular space. Since connection 

probabilities depend on geometrical distances, a higher separation leads to a higher percentage 

of intra-community links with respect to inter-community links (lower community mixing). 

Previous studies have already demonstrated that the communities are easier to be detected for 

a lower community mixing [42], [50], defined as the average proportion of links from a node to 

external communities [42]. 

The heatmap in Figure 5 reports the mean community mixing over 10 repetitions for the same 

parameter combinations as in Figure 4. It clearly illustrates that the mixing increases with the 

number of communities for fixed network size, and it decreases with the network size for fixed 

number of communities. As expected, the mixing grows also with the temperature, since there 

is higher probability for a node to establish connections with nodes located far apart from its 
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own community. Furthermore, it increases also with the parameter m, in particular for higher 

C, where the nodes have too many links with respect to the community size and they are forced 

to create edges with external communities. 

Suppl. Figure 8 highlights some particular parameter combinations from the heatmap in Figure 

4 and this helps to discuss some counterintuitive scenarios due to the parameter combinations. 

Suppl. Figure 8A focuses on small networks (N = 100) with a low number of communities (C 

= 5) for the first scenario (nPSO1), and it shows that for increasing temperature the NMI 

decreases for m = 5 whereas tends to increase for m = 20. This is reasonable because, when 

each node creates few connections (m = 5), directing them towards external communities 

(higher temperature) makes the community structure less detectable (lower NMI). Instead, 

when too many links are generated (m = 20), a high temperature avoids that most of the inter-

communities links are directed to adjacent communities and helps to make more distinct the 

community boundaries. 

Suppl. Figure 8B reports similar results but from a different perspective. It shows that for 

increasing m the NMI decreases for T = 0 whereas tends to increase for T = 0.9. In fact, at T = 

0 most of the links are internal to the community and increasing m will only increase the links 

external to the community, being its size small. On the contrary, at T = 0.9 many links are also 

directed to other communities and increasing m will help to have enough internal links to make 

the communities better detectable. These patterns highlighted on small networks (N = 100) 

with few communities (C = 5) are mainly preserved also for higher number of communities, 

although the overall detectability decreases, as already discussed. 

For networks of larger size (N = [500, 1000]) with few communities (C = 5) the detectability 

is generally high and tends to be better for middle temperatures. For increasing C the NMI 

overall decreases, and the highest detectability occurs at low m for middle temperatures (see 

Suppl. Figure 8C). The reason is that, due to the larger number of nodes and communities, at 

T = 0 there is higher probability for the nodes to link to adjacent communities, making less 

distinct the boundaries, while at T = 0.9 there is higher probability to lose the preferentiality of 

connection to nodes of the same community. Middle temperatures guarantee a good proportion 

between links internal to the community and links directed to all the other communities (not 

only the adjacent ones). 

Suppl. Figure 8D focuses on networks of N = 1000 nodes with a high number of communities 

(C = 20) for the first scenario (nPSO1). It shows that for increasing m the NMI decreases for T 

= 0 whereas it is almost not affected for T = 0.9. As discussed for the smaller networks, at T = 

0 most of the links are internal to the community and increasing m will mainly increase the 
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links external to the community, making it less detectable. At T = 0.9, differently from what is 

shown in Suppl. Figure 8B, the NMI remains almost constant and does not increase with m, 

probably due to the fact that the communities are bigger and therefore more internal links are 

required to make them better detectable. 

Finally, although there are some minor variabilities between the different scenarios (nPSO1, 

nPSO2 and nPSO3), the patterns discussed are mostly consistent over all the nPSO model 

parameter combinations. 

 

Topological properties of the nPSO networks 

After having proposed a wide investigation on the detectability of the communities generated 

by the nPSO, in this section we are going to highlight to which extent the community 

organization affects the main structural properties of the synthetic networks. For the same 

parameter combinations of the nPSO model as in Figure 4, and considering also synthetic 

networks generated using the (conventional) PSO model with the same parameters N, m, T and 

γ, we computed several topological measures: clustering coefficient, characteristic path length, 

assortativity, LCP-correlation, structural consistency, power-law exponent, modularity, small-

worldness and rich-clubness. The related heatmaps are reported in Figures 6-10 and Suppl. 

Figures 9-12 and will be now discussed. 

Figure 6 shows the clustering coefficient, which offers an average evaluation of the cross-

interaction density between the first neighbours of each node in the network [4]. The clustering 

coefficient strongly decreases for increasing temperature, since there is higher probability to 

establish connections between nodes that are far apart from each other, and therefore it is less 

likely to close triangles in a node neighbourhood. Increasing m tends to increase the clustering 

coefficient, in fact with a higher number of links it is also more likely to close local triangles, 

and this is more evident on small networks, where there are less target nodes to connect. The 

type of angular coordinate distribution (nPSO1, nPSO2 or nPSO3) and the number of 

communities (C) does not have a remarkable effect for most of the parameter combinations. 

The few cases in which there is higher variability are for N = [500, 1000] and T = 0.3 where, 

with the increase of the number of communities, the clustering coefficient increases, becoming 

closer and closer to the one of the PSO model. 

Figure 7 shows the characteristic path length, which describes the average of the shortest path 

lengths between all the pairs of vertices [4]. The measure decreases for increasing temperature, 

since there is higher probability to establish connections between nodes that are far apart from 

each other, acting as bridges between different, and often far apart, regions of the network. This 
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decrease of the characteristic path length is attenuated when there are many edges with respect 

to the network size (higher m and lower N), because the bridges naturally emerge due to the 

high network density. Increasing m, indeed, leads in general to a decrease of the characteristic 

path length. The type of angular coordinate distribution (nPSO1, nPSO2 or nPSO3) and the 

number of communities (C) does not have any remarkable effect. 

Figure 8 reports the assortativity, which indicates the tendency of the networks to connect 

nodes with similar degree [116]. Positive values suggest an assortative behavior and negative 

values a disassortative mixing. The results highlight that there are no parameter combinations 

for which the networks are strongly assortative, whereas disassortativity is detected for 

networks of small size at low temperature. In the generative procedure of the PSO and nPSO 

models, the oldest nodes have the highest node degree and, being at the center of the hyperbolic 

disk, at low temperature they tend to be the connection targets of new coming nodes with lower 

degree, leading to a disassortative mixing. At higher temperature this disassortativity gets 

weaker and there is more balance between the connections established from a new node to 

popular and less popular nodes, resulting in an increase of the measure. It can be noticed also 

a decrease at N = 100 and T = 0 for increasing m, since more connections are created between 

the older higher-degree nodes and the younger lower-degree nodes. The type of angular 

coordinate distribution (nPSO1, nPSO2 or nPSO3) and the number of communities (C) leads 

only to minor variabilities for low temperature with respect to the PSO. 

Figure 9 shows the LCP-correlation, the Pearson correlation between the number of common 

neighbours (which create a local community) and the number of local community links 

(connections among common neighbours) that are computed for each link of the network [54]. 

The LCP-correlation measures whether the network follows a local-community-paradigm 

(LCP) organization [54]–[56] and therefore whether the network is organized in local 

communities (one for each link) where the number of interactions between the common 

neighbours is a function that increases with the number of common neighbours in the local 

community. Complex adaptive networks with weak-links that make local processing and global 

delivery generally follow the LCP organization (the LCP-correlation is generally ≥ 0.7), 

whereas the networks that do not follow the LCP organization (LCP-correlation ≤ 0.3) present 

strong-links, they are not clustered and they are suitable for storage or mere delivery of energy 

or information. It is very rare to find networks that have a LCP-correlation between 0.3 and 

0.7. For this reason we expect to find that all the nPSO networks are organized according to 

the LCP, however the level of LCP-correlation might change between 0.7 and 1. Indeed, as 

expected, the LCP-correlation obtains high values over all the parameter combinations of the 
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network. Since connection probabilities depend on geometrical distances, for a given link of 

the network it is likely that the adjacent nodes are close in the hyperbolic space, therefore it is 

likely that their common neighbours (if any) are close, and as a consequence it is also likely 

that these common neighbours have connections among them that increase with the number of 

common neighbours. Explained in a simpler form: the smaller the hyperbolic distance between 

two linked nodes, the more common neighbours exist between them (since the geometrical 

space that separates the two linked points is smaller, the two linked points share more adjacent 

nodes, which are in fact common neighbours), as a consequence the smaller geometrical space 

will generate also more connections between these common neighbours. This mechanism 

obviously is corrupted for increasing temperature, since the connection probabilities have a 

weaker dependency on the geometrical distances, and therefore the LCP-correlation decreases 

for high temperatures. In particular, this temperature-dependent LCP-correlation decrease is 

remarkable for lower m and higher N, since there are less links to establish and more possible 

connection targets, which reduces the probability to create both common neighbours and local 

community links (links between the common neighbours). The type of angular coordinate 

distribution (nPSO1, nPSO2 or nPSO3) and the number of communities (C) leads only to minor 

variabilities for T > 0. 

Figure 10 reports the structural consistency, which quantifies the link predictability of the 

network, characterizing the inherent difficulty to predict the missing or non-observed links 

regardless of the specific algorithm used for the prediction [58]. The structural consistency 

strongly decreases for increasing temperature, in particular from T = 0 to T > 0. In fact, at T = 

0 the links are regularly established with the closest target nodes, which makes the structure 

highly consistent and easier to predict. Furthermore, creating a higher number of connections 

according to this regular pattern (T = 0 and higher m) strengthens even more the consistency 

of the structure. The link predictability becomes lower for increasing network size, since there 

are potentially more missing or non-observed links to predict. The type of angular coordinate 

distribution (nPSO1, nPSO2 or nPSO3) and the number of communities (C) leads only to minor 

variabilities. 

Suppl. Figure 9 shows the exponent γ of the power-law degree distribution, fitted using the 

procedure described by Clauset et al. [91], in order to test whether the value provided in input 

to the PSO and nPSO models is indeed reproduced. The results highlight that all the fitted 

values are very close to the desired exponent γ = 3. The variability might be either due to the 

difficulty of the model to reproduce perfectly the input value or due to some defects in the 
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fitting procedure. The diverse community organization does not introduce a remarkable bias in 

the degree distribution. 

Suppl. Figure 10 reports the modularity, indicating the extent to which the network can be 

partitioned in segregated modules that tend to interact densely within themselves but sparsely 

between each other [39]. We let notice that in nPSO networks the modularity is inversely 

related to the community mixing, since the lower the community mixing the more the network 

can be partitioned in distinct modules. Indeed, the Pearson correlation between the community 

mixing and the modularity over all the parameter combinations of the nPSO model is -0.91. 

The main patterns observed on nPSO networks for the community mixing are therefore valid, 

in an inverse way, also for the modularity. For PSO networks the modularity is generally lower, 

with an exception for larger networks, low m and low temperature, probably due to the fact that 

many small modules naturally emerge since for low temperatures the clustering is very high. 

The type of angular coordinate distribution (nPSO1, nPSO2 or nPSO3) leads only to minor 

variabilities, although we let notice that such variabilities might be even due to the randomness 

in the modularity evaluation procedure. 

Suppl. Figure 11 shows the measure of small-worldness ω, which indicates whether a network 

exhibits a small-world organization, characterized by a clustering coefficient (CL) as high as 

in an equivalent lattice network (CLlatt) and a characteristic path length (L) as low as in an 

equivalent random network (Lrand) [4], [117]: 𝜔 =
𝐿𝑟𝑎𝑛𝑑

𝐿
−

𝐶𝐿

𝐶𝐿𝑙𝑎𝑡𝑡
. The measure ω is expected to 

be close to 0 in small-world networks (𝐿 ≈ 𝐿𝑟𝑎𝑛𝑑 and 𝐶𝐿 ≈ 𝐶𝐿𝑙𝑎𝑡𝑡), higher than 0 for random 

networks (𝐿 ≈ 𝐿𝑟𝑎𝑛𝑑 and 𝐶𝐿 < 𝐶𝐿𝑙𝑎𝑡𝑡) and lower than 0 for lattice networks (𝐿 > 𝐿𝑟𝑎𝑛𝑑 and 

𝐶𝐿 ≈ 𝐶𝐿𝑙𝑎𝑡𝑡). The parameter combinations closest to small-world networks are at N = 100, m 

= [15, 20] and T = 0. Indeed, these are the synthetic networks characterized by the highest 

clustering coefficient and the lowest characteristic path length. The measure ω increases for 

increasing temperature, since the clustering coefficient strongly decreases and the characteristic 

path length slightly decreases, with a transition from structural properties of a regular network 

to the ones of a random network. At T = 0, the measure ω increases for increasing m, since the 

clustering coefficient is constantly high and the characteristic path length decreases. This is not 

always valid at T > 0, where sometimes the increase in clustering balances the decrease of the 

characteristic path length. The type of angular coordinate distribution (nPSO1, nPSO2 or 

nPSO3) and the number of communities (C) leads only to minor variabilities. 

Suppl. Figure 12 reports the p-value of the statistical test for rich-clubness, which indicates 

whether the network presents a significant rich-club organization with respect to the 
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Cannistraci-Muscoloni null-model [110]. It clearly emerges that for almost all the parameter 

combinations the synthetic networks are significantly (p-value ≤ 0.05) characterized by rich-

clubness. This is indeed in agreement with the network growing procedure explained by the 

PSO and nPSO models. In fact, the high degree nodes are the first ones to be born in the 

network and they connect to m of the nodes already present [20], therefore every network has 

at least a fully connected subgraph composed by the m+1 oldest high-degree nodes. The only 

p-values that are not significant are borderline and detected for small (N = 100) and sparse (m 

= 5) networks, since there are less nodes and links to build the rich-club, and only at higher 

temperature, where the connection probabilities have a weaker dependency from geometrical 

distances and therefore the rich and popular nodes decrease their attractiveness for new 

connections. The type of angular coordinate distribution (nPSO1, nPSO2 or nPSO3) and the 

number of communities (C) leads only to minor variabilities among the borderline cases. 

All these topological measures have been evaluated using the MATLAB code released at: 

https://github.com/biomedical-cybernetics/topological_measures_wide_analysis [118]. 

 

B.4 Conclusion 

Recent studies presented the hyperbolic disk as an adequate space to describe the latent 

geometry of real complex networks and the PSO model was introduced to generate random 

geometric graphs in the hyperbolic space, reproducing strong clustering and a scale-free degree 

distribution [20]. Coupling the hyperbolic space with the preferential attachment of nodes to 

this space, the GPA model confers to the networks also a community structure, introducing the 

idea that different angular regions of the hyperbolic disk can have a variable level of 

attractiveness [28]. However, the GPA model does not allow to indicate in input a desired 

number of communities, neither to control their size and the mixing between them, which is a 

clear limitation for real applications. For this reason, we here introduced the nonuniform PSO 

(nPSO) model, which allows to explicitly fix the number of communities and their size by 

means of a tailored probability distribution on the angular coordinates, and to tune the mixing 

property through the network temperature. 

We performed extensive tests on the detectability of the nPSO communities, considering also 

more complicated settings with asymmetric angular coordinate distributions over the angular 

space. We highlighted that, for most of the parameter combinations representing realistic 

scenarios, the community organization can be spotted by the state-of-the-art algorithm 

Louvain. The main factor that reduces the detectability is the ratio between the number of 

https://github.com/biomedical-cybernetics/topological_measures_wide_analysis
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communities and the network size, in particular community detection in nPSO networks 

reduces significantly for small size networks that present many communities. These results 

suggest that realistic community structure is properly reproduced by the model and the nPSO 

might be employed in future studies as a benchmark for testing community detection 

algorithms. On this regard, we propose a second study that discusses how to leverage the nPSO 

model to test and compare the performance of different algorithms for community detection 

and also link prediction [115].  

We evaluated and compared several topological measures of the synthetic networks generated 

using the PSO and nPSO models, and from this wide investigation two important results 

emerge. First, the parameters of the model allow to reproduce a great variety of the structural 

properties observed in real-world complex networks, and the heatmaps provided in this study 

can be used as a reference for the choice of parameters while generating networks with desired 

characteristics. Second, the diverse community organization has only a minor impact for most 

of the main topological measures. This suggests, for example, that the temperature of a real 

network can be inferred from the clustering coefficient regardless of the community structure. 

From the algorithmic point of view, since the original procedure to establish links adopted by 

the PSO and GPA models is computationally expensive for generating networks with 

communities and high clustering, we proposed other two different variants. We demonstrated 

that the three implementations generate equivalent topologies and the fastest of them 

(implementation 3) significantly reduces the computational time, with a complexity of 𝑂(𝐸𝑁) 

independently from the communities and the clustering. 

Although in this work we present the nPSO as a generative model for realistic networks with 

non-overlapping communities, its current implementation would be able also to generate 

networks with overlapping communities, for instance by increasing the standard deviations of 

the components in the Gaussian mixture distribution. However, a specific rule according to 

which the nodes are assigned to one or more communities needs to be designed, depending 

both on the geometrical positions of the nodes (angular and radial coordinates) and on the 

mixture distribution parameters. This extension of the nPSO model will be investigated in 

future studies. 

To conclude, we propose the nPSO model as a valid framework able to efficiently generate 

realistic networks with a fixed number of communities according to a nonuniform node-angular 

probability distribution. The nPSO might be adopted, among the many possibilities, as a null 

model for the hyperbolic embedding of networks with community structure, or as a benchmark 



153 
 

for testing community detection and link prediction algorithms, as we illustrate and discuss in 

a second study dedicated to this topic [115]. 

 

Code availability 
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Figure 1. Nonuniform distributions of angular coordinates. 

(A) Plot of three different kinds of nonuniform distributions used for sampling the angular coordinates 

of the nodes: Gaussian mixture with equal proportions (nPSO1, black line), Gaussian mixture with 

custom proportions (nPSO2, red line), Gaussian and Gamma mixture with equal proportions (nPSO3, 

green line). The mixture distributions have 4 components, placing the mean of the components 

equidistantly over the angular space. More details on the parameters of the mixture distributions are in 

the Methods. (B-C-D) The same three kinds of mixture distributions in (A) are represented along the 

angular space of the hyperbolic disk, using 4 and 8 components. For each of them, a synthetic network 

has been generated using the nPSO model with parameters N = 100, m = 2, T = 0, γ = 3 and angular 

coordinates sampled according to the mixture distribution. The coordinates of the nodes are represented 

in the hyperbolic disk in order to provide an example of the emerging community structure. 
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Figure 2. Communities generated using the nPSO model. 

Synthetic networks have been generated using the nPSO model with parameters N = 100, m = 5, T = 

[0.1, 0.5, 0.9], γ = 3 and angular coordinates sampled according to a Gaussian mixture distribution with 

equal proportions and components C = [4, 8] (communities). For each combination of parameters, 10 

networks have been generated. For each network the Louvain community detection method has been 

executed and the communities detected have been compared to the annotated ones computing the 

Normalized Mutual Information (NMI). The plots show for each parameter combination a 

representation in the hyperbolic space of the network that obtained the highest NMI, whose value is 

reported. The nodes are coloured according to the communities as generated by the nPSO model. 
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Figure 3. Time performance for generating PSO and nPSO networks. 

Synthetic networks have been generated using the PSO and nPSO models with parameters N = 1000, m 

= [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and, for the nPSO model, angular coordinates sampled according 

to a Gaussian mixture distribution with equal proportions and components C = [4, 8]. For each 

combination of parameters, 10 networks have been generated using the 3 different implementations. 

The plots report for each parameter combination the mean computational time and standard error over 

the random repetitions. A more detailed comparison of implementations 2 and 3 and additional plots 

for different network sizes are provided in Supplementary Information. 
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Figure 4. Detectability of the nPSO communities. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according to mixture 

distributions of three different kinds with components C = [5, 10, 15, 20]: Gaussian mixture with equal 

proportions (nPSO1), Gaussian mixture with random proportions (nPSO2), Gaussian and Gamma 

mixture with equal proportions (nPSO3). For more details on the parameters of the mixture distributions 

please refer to the Methods. For each combination of parameters, 10 networks have been generated. For 

each network the Louvain community detection method has been executed and the communities 

detected have been compared to the annotated ones computing the Normalized Mutual Information 

(NMI). The heatmap reports for each parameter combination the mean NMI, coloured according to a 

blue-to-red colormap in the range [0.4, 1].  
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Figure 5. Community mixing on nPSO networks. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according to mixture 

distributions of three different kinds with components C = [5, 10, 15, 20]: Gaussian mixture with equal 

proportions (nPSO1), Gaussian mixture with random proportions (nPSO2), Gaussian and Gamma 

mixture with equal proportions (nPSO3). For more details on the parameters of the mixture distributions 

please refer to the Methods. For each combination of parameters, 10 networks have been generated and 

the community mixing has been computed. The heatmap reports for each parameter combination the 

mean community mixing, coloured according to a blue-to-red colormap in the range [0, 1]. 
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Figure 6. Clustering coefficient of the PSO and nPSO networks. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according to mixture 

distributions of three different kinds with components C = [5, 10, 15, 20]: Gaussian mixture with equal 

proportions (nPSO1), Gaussian mixture with random proportions (nPSO2), Gaussian and Gamma 

mixture with equal proportions (nPSO3). For more details on the parameters of the mixture distributions 

please refer to the Methods. Furthermore, synthetic networks have been generated also using the PSO 

model with the same parameters N, m, T and γ. For each combination of parameters, 10 networks have 

been generated and the clustering coefficient has been computed. The heatmap reports for each 

parameter combination the mean clustering coefficient, coloured according to a blue-to-red colormap 

in the range [0, 1]. 
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Figure 7. Characteristic path length of the PSO and nPSO networks. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according to mixture 

distributions of three different kinds with components C = [5, 10, 15, 20]: Gaussian mixture with equal 

proportions (nPSO1), Gaussian mixture with random proportions (nPSO2), Gaussian and Gamma 

mixture with equal proportions (nPSO3). For more details on the parameters of the mixture distributions 

please refer to the Methods. Furthermore, synthetic networks have been generated also using the PSO 

model with the same parameters N, m, T and γ. For each combination of parameters, 10 networks have 

been generated and the characteristic path length has been computed. The heatmap reports for each 

parameter combination the mean characteristic path length, coloured according to a blue-to-red 

colormap in the range [1, 4]. 
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Figure 8. Assortativity of the PSO and nPSO networks. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according to mixture 

distributions of three different kinds with components C = [5, 10, 15, 20]: Gaussian mixture with equal 

proportions (nPSO1), Gaussian mixture with random proportions (nPSO2), Gaussian and Gamma 

mixture with equal proportions (nPSO3). For more details on the parameters of the mixture distributions 

please refer to the Methods. Furthermore, synthetic networks have been generated also using the PSO 

model with the same parameters N, m, T and γ. For each combination of parameters, 10 networks have 

been generated and the assortativity has been computed. The heatmap reports for each parameter 

combination the mean assortativity, coloured according to a blue-to-red colormap in the range [-0.3, 

0.3]. 
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Figure 9. LCP-correlation of the PSO and nPSO networks. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according to mixture 

distributions of three different kinds with components C = [5, 10, 15, 20]: Gaussian mixture with equal 

proportions (nPSO1), Gaussian mixture with random proportions (nPSO2), Gaussian and Gamma 

mixture with equal proportions (nPSO3). For more details on the parameters of the mixture distributions 

please refer to the Methods. Furthermore, synthetic networks have been generated also using the PSO 

model with the same parameters N, m, T and γ. For each combination of parameters, 10 networks have 

been generated and the LCP-correlation has been computed. The heatmap reports for each parameter 

combination the mean LCP-correlation, coloured according to a blue-to-red colormap in the range [0.5, 

1]. 

  



171 
 

  



172 
 

Figure 10. Structural consistency of the PSO and nPSO networks. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according to mixture 

distributions of three different kinds with components C = [5, 10, 15, 20]: Gaussian mixture with equal 

proportions (nPSO1), Gaussian mixture with random proportions (nPSO2), Gaussian and Gamma 

mixture with equal proportions (nPSO3). For more details on the parameters of the mixture distributions 

please refer to the Methods. Furthermore, synthetic networks have been generated also using the PSO 

model with the same parameters N, m, T and γ. For each combination of parameters, 10 networks have 

been generated and the structural consistency has been computed. The heatmap reports for each 

parameter combination the mean structural consistency, coloured according to a blue-to-red colormap 

in the range [0, 1]. 
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B.6 Supplementary Information 

 

Methods 

Generation of Gaussian and Gamma mixture distribution 

The procedure here described aims at generating a Gaussian and Gamma mixture distribution 

and consists in separately building a certain number C of components (Gaussian or Gamma) 

in the range [0, 2π[ and then combining them. Note that the same procedure is valid also to 

combine only Gaussian components and can be applied to generate the Gaussian mixture 

distribution described in the main article, in case your programming tools do not provide 

already the possibility for a random sampling from a Gaussian mixture distribution. 

Given a number C of components, we generated half of them as Gaussian and half as Gamma, 

with an additional one among the two at random if C is an odd number. The means of the 

components are equidistantly arranged over the angular space: 

𝜇𝑖 =
2𝜋

𝐶
∗ (𝑖 − 1)     𝑖 = 1 … 𝐶 

The ordering of the components is chosen at random. 

For each Gaussian component, the parameters to set are the mean, fixed to 𝜇 = 𝜇𝑖, and the 

standard deviation, fixed to 1/6 of the distance between two adjacent means (𝜎 =
1

6
∗

2𝜋

𝐶
), 

which allowed for a reasonable isolation of the communities independently from their number. 

For each Gamma component, the parameters to set are the shape parameter, fixed to 𝑎 = 2, 

and the scale parameter, fixed to 𝑏 = 1/𝐶, which allowed for a reasonable isolation of the 

communities independently from their number. Note that the mean of the distribution is given 

by the product of the two parameters 𝑎 ∗ 𝑏. 

For each component i, given the type of distribution and the parameters, we generate a 

probability density function Yi evaluated at a sufficiently high number (i.e. 104) of evenly 

spaced points X in [0, 2π[. Since a relevant part of the probability density function might lie 

out of this range, we iteratively repeat the evaluation also for points X* greater than 2π ([2π, 

4π[, [4π, 6π[, …) and lower than 0 ([-2π, 0[, [-4π, -2π[, …), and in both the cases we stop when 

the values of the probability density function are lower than a tolerance threshold (i.e. 10-4). 

The related values Yi
* are added up to the initial Yi. 

If the component is a Gamma distribution, further operations has to be performed. While for 

the Gaussian distribution changing the mean parameter allows to shift the curve toward the 

desired mean 𝜇𝑖 preserving the shape, for the Gamma distribution this is not valid, since fixing 
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the mean by changing the parameters a and b also results in a change of shape. Therefore, we 

keep fixed the parameters a and b and we perform a translation of Yi such that the expected 

mean 𝑎 ∗ 𝑏 is shifted toward the desired mean 𝜇𝑖. Note that while performing the translation 

the range [0, 2π[ has to be considered in a circular way, therefore the translated Yi is still defined 

for the same points X as before. 

Furthermore, the Gamma distribution is not symmetric with respect to its mean, in fact the 

mode is located to the left of the mean and in correspondence to (𝑎 − 1) ∗ 𝑏 for 𝑎 ≥ 1. In order 

to increase the possible asymmetries in the final mixture distribution, as a random alternative 

we perform a reflection of Yi with respect to its mean, so that the mode would be located to the 

right of the mean. Note that while performing the reflection the range [0, 2π[ has to be 

considered in a circular way, therefore the reflected Yi is still defined for the same points X as 

before. 

Finally, given the probability functions Y1 … YC defined for the points X and considering equal 

mixing proportions, the final Gaussian and Gamma mixture distribution is obtained as the 

average of the components’ probability functions. 

 

Louvain algorithm for community detection  

The Louvain algorithm [44] is separated into two phases, which are repeated iteratively.  

At first every node in the (weighted) network represents a community in itself. In the first 

phase, for each node i, it considers its neighbours j and evaluates the gain in modularity that 

would take place by removing i from its community and placing it in the community of j. The 

node i is then placed in the community j for which this gain is maximum, but only if the gain 

is positive. If no gain is possible node i stays in its original community. This process is applied 

until no further improvement can be achieved. 

In the second phase the algorithm builds a new network whose nodes are the communities 

found in the first phase, whereas the weights of the links between the new nodes are given by 

the sum of the weight of the links between nodes in the corresponding two communities. Links 

between nodes of the same community lead to self-loops for this community in the new 

network.  

Once the new network has been built, the two phase process is iterated until there are no more 

changes and a maximum of modularity has been obtained. The number of iterations determines 

the height of the hierarchy of communities detected by the algorithm. 
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For each hierarchical level there is a possible partition to compare to the ground truth 

annotation. In this case, the hierarchical level considered is the one that guarantees the best 

match, therefore the detected partition that gives the highest NMI value. 

We used the R function multilevel.community, an implementation of the method available in 

the igraph package [96]. 

 

Normalized Mutual Information 

The evaluation of the community detection has been performed using the Normalized Mutual 

Information (NMI) as in [98]. The entropy can be defined as the information contained in a 

distribution p(x) in the following way: 

𝐻(𝑋) = ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝑋

 

The mutual information is the shared information between two distributions: 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log (
𝑝(𝑥, 𝑦)

𝑝1(𝑥)𝑝2(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 

To normalize the value between 0 and 1 the following formula can be applied: 

𝑁𝑀𝐼 =
𝐼(𝑋, 𝑌)

√𝐻(𝑋)𝐻(𝑌)
 

If we consider a partition of the nodes in communities as a distribution (probability of one node 

falling into one community), we can compute the matching between the annotations obtained 

by the community detection algorithm and the ground truth communities of a network as 

follows:  

𝐻(𝐶𝐷) = ∑
𝑛ℎ

𝐷

𝑁
log (

𝑛ℎ
𝐷

𝑁
)

𝑛𝐷

ℎ=1

 

𝐻(𝐶𝑇) = ∑
𝑛𝑙

𝑇

𝑁
log (

𝑛𝑙
𝑇

𝑁
)

𝑛𝑇

𝑙=1

 

𝐼(𝐶𝐷 , 𝐶𝑇) = ∑ ∑
𝑛ℎ,𝑙

𝑁
log (

𝑛ℎ,𝑙

𝑛ℎ
𝐷𝑛𝑙

𝑇)𝑙ℎ . 

𝑁𝑀𝐼(𝐶𝐷, 𝐶𝑇) =
𝐼(𝐶𝐷 , 𝐶𝑇)

√𝐻(𝐶𝐷)𝐻(𝐶𝑇)
 

Where: 

N - number of nodes; 

𝑛𝐷 , 𝑛𝑇 - number of communities detected by the algorithm (D) or ground truth (T); 
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𝑛ℎ,𝑙 - number of nodes assigned to the h-th community by the algorithm and to the l-th 

community according to the ground truth annotation.  

We used the MATLAB implementation available at http://commdetect.weebly.com. As 

suggested in the code, when 
𝑁

𝑛𝑇 ≤ 100, the NMI should be adjusted in order to correct for 

chance [99].  

http://commdetect.weebly.com/
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Figure 1. Time performance for generating PSO networks. 

Synthetic networks have been generated using the PSO model with parameters N = [100, 500, 1000], m 

= [10, 12, 14], T = [0.1, 0.3, 0.5] and γ = 3. For each combination of parameters, 10 networks have been 

generated using the 3 different implementations. The plots report for each parameter combination the 

mean computational time and standard error over the random repetitions.  
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Figure 2. Time performance for generating nPSO networks with 4 communities. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = 4. For each combination of parameters, 

10 networks have been generated using the 3 different implementations. The plots report for each 

parameter combination the mean computational time and standard error over the random repetitions.  
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Figure 3. Time performance for generating nPSO networks with 8 communities. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = 8. For each combination of parameters, 

10 networks have been generated using the 3 different implementations. The plots report for each 

parameter combination the mean computational time and standard error over the random repetitions.  
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Figure 4. Time performance for generating nPSO networks: implementations 2-3. 

Due to the different scale of the computational time of implementation 1, the figure reports a more 

detailed comparison of the time performance for generating nPSO networks with 4 and 8 communities 

only for implementations 2 and 3. 

  



181 
 

 
 

Figure 5. Time performance for generating large-size nPSO networks. 

Synthetic networks have been generated using the nPSO model with parameters N = 10000, m = [10, 

12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian mixture 

distribution with equal proportions and components C = [4, 8]. For each combination of parameters, 10 

networks have been generated using the implementations 2 and 3. The plots report for each parameter 

combination the mean computational time and standard error over the random repetitions.  
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Figure 6. Time performance for generating GPA networks with Λ = 0.1. 

Synthetic networks have been generated using the GPA model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and Λ = 0.1. For each combination of parameters, 10 networks 

have been generated using the implementations 1 and 3. The plots report for each parameter 

combination the mean computational time and standard error over the random repetitions. Note that for 

T = 0.1 and N = 1000 the results of implementation 1 are not reported since the computational time 

required to generate the networks was too high (more than one month).  
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Figure 7. Time performance for generating GPA networks with Λ = 1. 

Synthetic networks have been generated using the GPA model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and Λ = 1. For each combination of parameters, 10 networks 

have been generated using the implementations 1 and 3. The plots report for each parameter 

combination the mean computational time and standard error over the random repetitions.  



184 
 

 
 

Figure 8. Detectability of the nPSO communities: particular cases. 

The figure highlights some particular parameter combinations from the Louvain-NMI heatmap in 

Figure 4 of the main article. (A) N = 100, m = [5, 20], T = [0, 0.3, 0.6, 0.9], γ = 3, C = 5 (nPSO1). (B) 

N = 100, m = [5, 10, 15, 20], T = [0, 0.9], γ = 3, C = 5 (nPSO1). (C) N = 1000, m = 5, T = [0, 0.3, 0.6, 

0.9], γ = 3, C = [10, 15, 20] (nPSO1). (D) N = 1000, m = [5, 10, 15, 20], T = [0, 0.9], γ = 3, C = 20 

(nPSO1). 
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Figure 9. Power-law exponent (γ) of the PSO and nPSO networks. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according to mixture 

distributions of three different kinds with components C = [5, 10, 15, 20]: Gaussian mixture with equal 

proportions (nPSO1), Gaussian mixture with random proportions (nPSO2), Gaussian and Gamma 

mixture with equal proportions (nPSO3). For more details on the parameters of the mixture distributions 

please refer to the Methods. Furthermore, synthetic networks have been generated also using the PSO 

model with the same parameters N, m, T and γ. For each combination of parameters, 10 networks have 

been generated and the power-law exponent (γ) has been computed. The heatmap reports for each 

parameter combination the mean power-law exponent (γ), coloured according to a blue-to-red colormap 

in the range [2, 4]. 
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Figure 10. Modularity of the PSO and nPSO networks. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according to mixture 

distributions of three different kinds with components C = [5, 10, 15, 20]: Gaussian mixture with equal 

proportions (nPSO1), Gaussian mixture with random proportions (nPSO2), Gaussian and Gamma 

mixture with equal proportions (nPSO3). For more details on the parameters of the mixture distributions 

please refer to the Methods. Furthermore, synthetic networks have been generated also using the PSO 

model with the same parameters N, m, T and γ. For each combination of parameters, 10 networks have 

been generated and the modularity has been computed. The heatmap reports for each parameter 

combination the mean modularity, coloured according to a blue-to-red colormap in the range [0, 1]. 
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Figure 11. Small-worldness (ω) of the PSO and nPSO networks. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according to mixture 

distributions of three different kinds with components C = [5, 10, 15, 20]: Gaussian mixture with equal 

proportions (nPSO1), Gaussian mixture with random proportions (nPSO2), Gaussian and Gamma 

mixture with equal proportions (nPSO3). For more details on the parameters of the mixture distributions 

please refer to the Methods. Furthermore, synthetic networks have been generated also using the PSO 

model with the same parameters N, m, T and γ. For each combination of parameters, 10 networks have 

been generated and the small-worldness (ω) has been computed. The heatmap reports for each 

parameter combination the mean small-worldness (ω), coloured according to a blue-to-red colormap in 

the range [-2, 2]. 
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Figure 12. Rich-clubness (p-value) of the PSO and nPSO networks. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [5, 10, 15, 20], T = [0, 0.3, 0.6, 0.9], γ = 3 and angular coordinates sampled according to mixture 

distributions of three different kinds with components C = [5, 10, 15, 20]: Gaussian mixture with equal 

proportions (nPSO1), Gaussian mixture with random proportions (nPSO2), Gaussian and Gamma 

mixture with equal proportions (nPSO3). For more details on the parameters of the mixture distributions 

please refer to the Methods. Furthermore, synthetic networks have been generated also using the PSO 

model with the same parameters N, m, T and γ. For each combination of parameters, 10 networks have 

been generated and the rich-clubness (p-value) has been computed. The heatmap reports for each 

parameter combination the mean rich-clubness (p-value), coloured according to a non-uniform red-to-

blue colormap in the range [0, 1] with higher resolution in the range [0, 0.1].  
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Table 1. Percentage of target-distances greater than the radius of the hyperbolic disk. 

Synthetic networks have been generated using the PSO and nPSO models with parameters N = [100, 

500, 1000], m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and, for the nPSO model, angular coordinates 

sampled according to a Gaussian mixture distribution with equal proportions and components C = [4, 

8]. For each combination of parameters, 10 networks have been generated using the implementation 3. 

During the generative procedure of every network, for each step 𝑡 ∈ [𝑚 + 2, 𝑁] we computed the 

percentage of hyperbolic distances (from the new node to the 𝑡 − 1 target nodes) greater than the current 

radius of the hyperbolic disk, and then we averaged over the generative steps. The aim is to understand 

whether the condition ℎ𝑖𝑗 > 𝑅𝑖 of Equation (1) is frequently verified. The table reports for each 

combination of parameters the mean percentage over the 10 networks. Note that the first 𝑚 + 1 

generative steps have been discarded because the connections are directly established with all the 

existing nodes, without any computation of the hyperbolic distances. 

 

  PSO 
nPSO 

C = 4 

nPSO 

C = 8 

  T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 

N=100 

m=10 72.2 75.6 82.3 69.6 73.1 79.4 72.4 75.2 81.2 

m=12 68.5 72.5 79.4 66.7 70.2 77.0 68.7 72.5 78.6 

m=14 65.2 69.9 77.6 63.9 67.5 74.4 65.7 69.9 77.4 

N=500 

m=10 91.6 92.7 94.6 89.2 90.6 92.9 90.1 91.3 93.3 

m=12 90.4 91.6 93.8 87.9 89.3 91.7 88.9 90.2 92.5 

m=14 89.3 90.5 93.0 86.7 88.2 91.0 87.7 89.1 91.6 

N=1000 

m=10 95.1 95.8 96.9 93.6 94.3 95.7 94.1 94.7 95.9 

m=12 94.4 95.1 96.4 92.6 93.4 95.0 93.2 94.0 95.4 

m=14 93.7 94.5 95.9 91.8 92.7 94.5 92.5 93.4 94.9 
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Table 2. Clustering coefficient comparison for different implementations. 

Synthetic networks have been generated using the PSO and nPSO models with parameters N = [100, 

500, 1000], m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and, for the nPSO model, angular coordinates 

sampled according to a Gaussian mixture distribution with equal proportions and components C = [4, 

8]. For each combination of parameters, 10 networks have been generated using the 3 different 

implementations and the clustering coefficient has been computed. The table reports for each 

combination of parameters the mean clustering coefficient over the 10 networks generated using the 

implementation 1. Instead, for the implementations 2 and 3, the difference in the mean clustering 

coefficient with respect to the implementation 1 is reported. 

 

   Implementation 1 
Difference 

Implementations 1-2 

Difference 

Implementations 1-3 

   T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 

PSO 

N=100 

m=10 0.64 0.51 0.43 -0.01 -0.01 0.00 0.01 0.01 0.02 

m=12 0.66 0.53 0.45 -0.01 -0.01 -0.01 0.00 0.01 0.01 

m=14 0.66 0.55 0.48 -0.01 -0.01 -0.01 0.01 0.01 0.01 

N=500 

m=10 0.65 0.48 0.32 0.00 -0.01 0.00 0.01 0.01 0.01 

m=12 0.65 0.48 0.33 -0.01 -0.01 0.00 0.01 0.01 0.01 

m=14 0.65 0.48 0.34 0.00 -0.01 0.00 0.01 0.01 0.01 

N=1000 

m=10 0.65 0.48 0.31 0.00 -0.01 0.00 0.01 0.01 0.01 

m=12 0.65 0.48 0.31 0.00 0.00 0.00 0.01 0.02 0.01 

m=14 0.66 0.49 0.32 0.00 0.00 0.00 0.01 0.02 0.01 

nPSO 

C=4 

N=100 

m=10 0.62 0.51 0.42 -0.01 -0.01 -0.02 0.01 0.01 0.00 

m=12 0.64 0.53 0.46 -0.01 -0.01 -0.01 0.01 0.01 0.01 

m=14 0.66 0.55 0.49 -0.01 -0.01 -0.02 0.01 0.01 0.01 

N=500 

m=10 0.50 0.39 0.29 -0.01 -0.01 -0.01 0.01 0.00 0.00 

m=12 0.52 0.41 0.31 0.00 0.00 0.00 0.01 0.01 0.01 

m=14 0.53 0.42 0.32 0.00 0.00 0.00 0.01 0.01 0.00 

N=1000 

m=10 0.49 0.38 0.26 0.00 0.00 -0.01 0.00 0.01 0.00 

m=12 0.49 0.38 0.27 -0.01 -0.01 0.00 0.01 0.01 0.01 

m=14 0.50 0.39 0.28 0.00 0.00 0.00 0.01 0.01 0.00 

nPSO  

C=8 

N=100 

m=10 0.65 0.51 0.43 -0.01 -0.02 0.00 -0.01 0.01 0.01 

m=12 0.66 0.54 0.45 -0.01 0.00 -0.01 0.00 0.02 0.01 

m=14 0.68 0.55 0.47 0.00 -0.02 -0.02 0.00 0.01 0.00 

N=500 

m=10 0.54 0.43 0.31 0.00 0.00 0.00 0.01 0.01 0.00 

m=12 0.56 0.44 0.33 0.00 0.00 -0.01 0.01 0.01 0.01 

m=14 0.57 0.46 0.34 0.00 -0.01 -0.01 0.01 0.01 0.01 

N=1000 

m=10 0.51 0.40 0.28 -0.01 -0.01 0.00 0.00 0.01 0.01 

m=12 0.52 0.41 0.29 0.00 0.00 0.00 0.01 0.01 0.01 

m=14 0.53 0.41 0.30 0.00 -0.01 0.00 0.00 0.01 0.01 
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Table 3. Characteristic path length comparison for different implementations. 

Synthetic networks have been generated using the PSO and nPSO models with parameters N = [100, 

500, 1000], m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and, for the nPSO model, angular coordinates 

sampled according to a Gaussian mixture distribution with equal proportions and components C = [4, 

8]. For each combination of parameters, 10 networks have been generated using the 3 different 

implementations and the characteristic path length has been computed. The table reports for each 

combination of parameters the mean characteristic path length over the 10 networks generated using 

the implementation 1. Instead, for the implementations 2 and 3, the difference in the mean characteristic 

path length with respect to the implementation 1 is reported. 

 

   Implementation 1 
Difference 

Implementations 1-2 

Difference 

Implementations 1-3 

   T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 

PSO 

N=100 

m=10 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 1.8 1.8 1.8 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 1.7 1.7 1.7 0.0 0.0 0.0 0.0 0.0 0.0 

N=500 

m=10 2.5 2.5 2.4 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 2.4 2.4 2.3 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 2.3 2.3 2.2 0.0 0.0 0.0 0.0 0.0 0.0 

N=1000 

m=10 2.8 2.7 2.7 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 2.6 2.6 2.5 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 2.6 2.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 

nPSO 

C=4 

N=100 

m=10 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 1.8 1.8 1.8 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 1.8 1.8 1.8 0.0 0.0 0.0 0.0 0.0 0.0 

N=500 

m=10 2.6 2.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 2.5 2.4 2.4 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 2.4 2.4 2.3 0.0 0.0 0.0 0.0 0.0 0.0 

N=1000 

m=10 2.8 2.8 2.7 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 2.7 2.7 2.6 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 2.6 2.6 2.5 0.0 0.0 0.0 0.0 0.0 0.0 

nPSO  

C=8 

N=100 

m=10 1.9 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 1.8 1.8 1.8 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 1.7 1.7 1.7 0.0 0.0 0.0 0.0 0.0 0.0 

N=500 

m=10 2.6 2.6 2.5 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 2.5 2.4 2.4 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 2.4 2.3 2.3 0.0 0.0 0.0 0.0 0.0 0.0 

N=1000 

m=10 2.9 2.8 2.7 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 2.7 2.7 2.6 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 2.7 2.6 2.5 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 4. Assortativity comparison for different implementations. 

Synthetic networks have been generated using the PSO and nPSO models with parameters N = [100, 

500, 1000], m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and, for the nPSO model, angular coordinates 

sampled according to a Gaussian mixture distribution with equal proportions and components C = [4, 

8]. For each combination of parameters, 10 networks have been generated using the 3 different 

implementations and the assortativity has been computed. The table reports for each combination of 

parameters the mean assortativity over the 10 networks generated using the implementation 1. Instead, 

for the implementations 2 and 3, the difference in the mean assortativity with respect to the 

implementation 1 is reported. 

 

   Implementation 1 
Difference 

Implementations 1-2 

Difference 

Implementations 1-3 

   T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 

PSO 

N=100 

m=10 -0.16 -0.13 -0.09 0.00 0.00 0.00 0.00 -0.01 -0.01 

m=12 -0.17 -0.13 -0.09 0.01 0.01 0.00 0.00 0.00 -0.01 

m=14 -0.17 -0.13 -0.09 0.01 0.01 0.00 0.00 0.00 0.00 

N=500 

m=10 -0.06 -0.06 -0.05 0.00 0.00 0.00 0.00 0.00 0.00 

m=12 -0.07 -0.07 -0.05 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 -0.08 -0.08 -0.06 0.00 0.00 0.00 0.00 0.00 0.00 

N=1000 

m=10 -0.04 -0.04 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 

m=12 -0.05 -0.05 -0.04 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 -0.05 -0.06 -0.04 0.00 0.00 0.00 0.00 0.00 0.00 

nPSO 

C=4 

N=100 

m=10 -0.10 -0.09 -0.05 0.01 0.00 0.00 -0.01 0.00 0.00 

m=12 -0.12 -0.09 -0.05 0.01 0.00 0.00 0.00 0.00 0.01 

m=14 -0.13 -0.10 -0.06 0.00 -0.01 0.00 0.00 0.00 -0.01 

N=500 

m=10 -0.04 -0.04 -0.02 0.00 0.00 0.00 0.01 0.00 0.00 

m=12 -0.05 -0.05 -0.02 0.00 -0.01 -0.01 0.00 0.00 0.00 

m=14 -0.05 -0.05 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 

N=1000 

m=10 -0.04 -0.03 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 

m=12 -0.04 -0.03 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 -0.04 -0.04 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 

nPSO  

C=8 

N=100 

m=10 -0.15 -0.12 -0.08 0.00 0.00 0.00 0.01 0.00 0.00 

m=12 -0.17 -0.13 -0.08 0.00 0.00 0.00 0.00 -0.01 0.00 

m=14 -0.18 -0.13 -0.08 0.00 0.00 0.01 0.00 0.00 0.01 

N=500 

m=10 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 0.01 0.00 

m=12 -0.03 -0.03 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 -0.04 -0.04 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 

N=1000 

m=10 -0.02 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

m=12 -0.02 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 -0.02 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

  



197 
 

Table 5. LCP-correlation comparison for different implementations. 

Synthetic networks have been generated using the PSO and nPSO models with parameters N = [100, 

500, 1000], m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and, for the nPSO model, angular coordinates 

sampled according to a Gaussian mixture distribution with equal proportions and components C = [4, 

8]. For each combination of parameters, 10 networks have been generated using the 3 different 

implementations and the LCP-correlation has been computed. The table reports for each combination 

of parameters the mean LCP-correlation over the 10 networks generated using the implementation 1. 

Instead, for the implementations 2 and 3, the difference in the mean LCP-correlation with respect to the 

implementation 1 is reported. 

 

   Implementation 1 
Difference 

Implementations 1-2 

Difference 

Implementations 1-3 

   T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 

PSO 

N=100 

m=10 0.99 0.97 0.96 0.00 0.00 0.00 0.00 0.00 0.00 

m=12 0.99 0.98 0.97 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 0.99 0.98 0.97 0.00 0.00 0.00 0.00 0.00 0.00 

N=500 

m=10 0.98 0.96 0.93 0.00 0.00 0.00 0.00 0.00 0.00 

m=12 0.98 0.97 0.94 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 0.99 0.97 0.94 0.00 0.00 0.00 0.00 0.00 0.00 

N=1000 

m=10 0.98 0.96 0.92 0.00 0.00 0.00 0.00 0.00 0.01 

m=12 0.98 0.97 0.93 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 0.98 0.97 0.93 0.00 0.00 0.00 0.00 0.00 0.00 

nPSO 

C=4 

N=100 

m=10 0.98 0.97 0.96 0.00 0.00 0.00 0.00 0.00 0.00 

m=12 0.99 0.98 0.96 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 0.99 0.98 0.97 0.00 0.00 0.00 0.00 0.00 0.00 

N=500 

m=10 0.96 0.94 0.92 0.00 0.00 -0.01 0.00 0.00 0.00 

m=12 0.97 0.95 0.93 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 0.97 0.96 0.94 0.00 0.00 0.00 0.00 0.00 0.00 

N=1000 

m=10 0.95 0.94 0.91 0.00 0.00 -0.01 0.00 0.00 0.00 

m=12 0.96 0.94 0.92 0.00 0.00 0.00 0.00 0.00 0.01 

m=14 0.96 0.95 0.92 0.00 0.00 0.00 0.00 0.00 0.00 

nPSO  

C=8 

N=100 

m=10 0.99 0.97 0.96 0.00 0.00 0.00 0.00 0.00 0.00 

m=12 0.99 0.98 0.96 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 0.99 0.98 0.97 0.00 0.00 0.00 0.00 0.00 0.00 

N=500 

m=10 0.97 0.95 0.93 0.00 0.00 0.00 0.00 0.00 0.00 

m=12 0.97 0.96 0.93 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 0.98 0.96 0.94 0.00 0.00 0.00 0.00 0.00 0.00 

N=1000 

m=10 0.96 0.95 0.91 0.00 0.00 0.00 0.00 0.00 0.00 

m=12 0.97 0.95 0.92 0.00 0.00 0.00 0.00 0.00 0.00 

m=14 0.97 0.96 0.93 0.00 0.00 0.00 0.00 0.00 0.01 
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Table 6. Power-law exponent (γ) comparison for different implementations. 

Synthetic networks have been generated using the PSO and nPSO models with parameters N = [100, 

500, 1000], m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and, for the nPSO model, angular coordinates 

sampled according to a Gaussian mixture distribution with equal proportions and components C = [4, 

8]. For each combination of parameters, 10 networks have been generated using the 3 different 

implementations and the power-law exponent has been computed. The table reports for each 

combination of parameters the mean power-law exponent over the 10 networks generated using the 

implementation 1. Instead, for the implementations 2 and 3, the difference in the mean power-law 

exponent with respect to the implementation 1 is reported. 

 

   Implementation 1 
Difference 

Implementations 1-2 

Difference 

Implementations 1-3 

   T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 T=0.1 T=0.3 T=0.5 

PSO 

N=100 

m=10 2.9 2.9 2.9 0.1 -0.1 0.0 0.0 0.0 -0.1 

m=12 2.9 2.9 2.9 0.0 0.0 -0.1 0.0 0.0 0.0 

m=14 2.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 0.0 

N=500 

m=10 2.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 2.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 3.0 2.9 2.9 0.0 0.0 0.0 0.1 0.0 0.0 

N=1000 

m=10 2.9 2.9 2.9 -0.1 0.0 0.0 0.0 0.0 0.0 

m=12 2.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 2.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 0.0 

nPSO 

C=4 

N=100 

m=10 3.3 3.0 2.9 0.3 -0.1 0.1 0.2 0.1 0.0 

m=12 3.2 3.1 2.9 0.1 0.1 -0.1 0.0 0.1 -0.1 

m=14 3.2 3.0 2.9 0.0 -0.1 0.0 0.0 0.0 -0.2 

N=500 

m=10 2.9 2.8 2.8 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 2.8 2.8 2.8 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 2.9 2.9 2.9 0.0 0.0 0.0 0.0 0.1 0.0 

N=1000 

m=10 2.9 2.9 2.8 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 2.9 2.9 2.8 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 2.9 2.9 2.8 0.0 0.0 0.0 0.0 0.0 0.0 

nPSO  

C=8 

N=100 

m=10 3.0 2.9 2.9 0.0 0.0 0.0 0.1 0.1 0.0 

m=12 3.0 2.9 3.0 0.0 0.0 0.1 0.0 0.0 0.2 

m=14 3.0 2.9 3.0 0.0 0.0 0.0 0.0 0.0 0.1 

N=500 

m=10 2.8 2.8 2.8 0.0 -0.2 -0.1 0.0 0.0 -0.1 

m=12 2.9 3.0 2.9 -0.1 0.0 0.0 -0.1 0.1 0.0 

m=14 2.9 2.9 3.0 -0.1 -0.1 0.0 0.0 -0.2 0.0 

N=1000 

m=10 2.8 2.8 2.9 0.0 0.0 0.0 0.0 0.0 0.0 

m=12 2.9 2.8 2.8 0.0 0.0 0.0 0.0 0.0 0.0 

m=14 2.8 2.9 2.8 0.0 0.0 0.0 0.0 0.0 0.0 
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Abstract 

Advances in network geometry pointed out that structural properties observed in networks 

derived from real complex systems can emerge in the hyperbolic space (HS). The nonuniform 

PSO (nPSO) is a generative model recently introduced in order to grow random geometric 

graphs in the HS, reproducing networks that have realistic features such as high clustering, 

small-worldness, scale-freeness and rich-clubness, with the additional possibility to control the 

community organization. 

Generative models allowing to tune the structural properties of ‘realistic’ synthetic networks 

are fundamental, because they offer a ground-truth to investigate how predictive algorithms 

react to controlled topological variations. Here, we discuss how to leverage the nPSO model 

as a synthetic benchmark to compare the performance of methods for community detection and 

link prediction; and we prove that the nPSO offers a reliable and realistic testing framework 

which can complement other existing benchmarks not based on latent geometry. 

Furthermore, we confirm that network embedding information can improve community 

detection, whereas boosting link prediction in HS still needs further investigations. Indeed, we 

find that the presence of communities in nPSO significantly modifies the performance of link 

predictors and is fundamental for the reproducibility of results observed on real networks. The 

nPSO can trigger valuable insights to understand the intrinsic rules of link-growth and self-

organization that connect topology to geometry and that are encoded in link-prediction 

algorithms differentiating their performance.  

mailto:kalokagathos.agon@gmail.com
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C.1 Introduction 

Several generative models have been proposed in the past years as synthetic benchmarks for 

community detection [40]. One of the first benchmark has been developed by Girvan and 

Newman [6], where all the nodes have the same degree and all the communities identical size, 

and has been later extended by Danon et al. [41] in order to generate communities with different 

size. A generative model able to reproduce structural properties closer to the ones observed in 

real networks has been proposed by Lancichinetti-Fortunato-Radicchi (LFR) [42], which is 

characterized by a power-law distribution of degree and community size. This model turned 

out to be a particular version of the degree-corrected stochastic block model [40], [119]. The 

LFR benchmark has been later extended to directed and weighted networks with overlapping 

communities [120], meaning that communities can have also nodes in common [40]. A further 

benchmark for overlapping communities has been introduced by Ball et al. [43], however, 

having all the nodes the same expected degree, it is less realistic and flexible than the LFR [40]. 

Interestingly, all these well-known models of networks with communities are not generated 

according to a latent geometry, which instead will be the fundamental theme of this study. 

The investigation of hidden geometrical spaces behind complex network topologies has been 

a fervid topic in recent years and, currently, the hyperbolic space seems to be one of the most 

appropriate in order to explain many of the structural features observed in real networks [15], 

[17]–[20], [30], [32], [51], [65], [68], [74], [81]. The PSO [20] is a generative model that grows 

random geometric graphs in the hyperbolic space, reproducing networks that have realistic 

features such as clustering, small-worldness, scale-freeness and rich-clubness. However, real 

networks exhibit another very important feature that is community organization, not 

contemplated in the original PSO model. For such reason, Muscoloni et al. [121] introduced a 

variation of it, the nonuniform PSO (nPSO) model, which allows to explicitly control the 

number of communities, their size and mixing property. Providing a benchmark for community 

detection requires the possibility to manipulate structural properties such as average node 

degree, clustering, small-worldness and scale-freeness, in order to assess how differently 

community detection algorithms react to these controlled topological variations. The nPSO can 

have a large impact not only in this scenario, but also in other real applications such as link 

prediction. For instance, by generating ground-truth synthetic networks with the nPSO, it is 

possible to investigate the extent to which the community organization affects, together with 

other topological properties, the performance of link prediction algorithms. This, in turn, can 

advocate the comprehension of the intrinsic rules of network wiring that connect topology to 
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geometry and that are encrypted in algorithms for link prediction differentiating their 

performance. 

In this study we will discuss how the nPSO model can be employed to: a) test the performance 

of state-of-the-art community detection methods and verify the agreement with previous 

studies; b) test whether the community detection performance can be improved using 

information gained by the network embedding in the hyperbolic space; c) test the performance 

of state-of-the-art link prediction methods on PSO and nPSO networks and verify the 

importance of community organization for link prediction and the agreement with respect to 

real networks; d) discuss the extent to which link prediction can be improved using information 

gained by the network embedding in the hyperbolic space. 

 

C.2 Results and Discussion 

Comparison of community detection algorithms on nPSO networks 

The community detection algorithms Louvain [44], Infomap [45], Walktrap [46] and Label 

propagation [47] are four state-of-the-art approaches that have been shown to provide high 

performances on synthetic benchmarks [48]–[50]. Louvain [44] is a model-free and 

unsupervised heuristic method based on modularity optimization; Infomap [45] finds the 

community structure by minimizing the expected description length of a random walker 

trajectory using the Huffman coding process; Walktrap [46] is based on an agglomerative 

method for hierarchical clustering, where the similarities between the nodes or groups are 

obtained using random walks; Label propagation [47] is an iterative algorithm in which each 

node label is updated with the one owned by the majority of the neighbours until reaching a 

consensus (see Methods for details). Louvain and Infomap have been also recently tested on 

small-size and large-size real networks, resulting overall among the best performing on 

recovering ground-truth communities associated to metadata [114]. In this study, we compare 

these four community detection approaches across synthetic networks generated using diverse 

nPSO parameter combinations: N = [100, 500, 1000] (network size), m = [10, 12, 14] (half of 

average node degree), T = [0.1, 0.3, 0.5] (temperature, inversely related to clustering), γ = 3 

(power-law degree distribution exponent) and angular coordinates sampled according to a 

Gaussian mixture distribution with equal proportions and components C = [4, 8]. The values 

chosen for the parameter m are centred around the average m (which is equal to 12 rounded) 

computed on the dataset of small-size real networks. The values chosen for N and T are 

intended to cover the range of network size and clustering coefficient observed in the dataset 
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of small-size real networks. Since the average γ estimated on the dataset of small-size real 

networks is higher than the typical range 2 < γ < 3, we choose γ = 3. 

Figure 1 reports the mean Normalized Mutual Information (NMI) [122] performance (NMI is 

a measure to assess the performance of community detection, see Methods for details) and 

related standard errors (10 network repetitions considered for each parameter combination) of 

the community detection algorithms applied to nPSO networks with 4 communities. The results 

indicate that overall Louvain appears as the strongest approach, with an almost perfect 

detection over different values of network size, average node degree and temperature. Infomap 

highlights problems in correctly detecting the communities when there are too many inter-

community links, as can be seen for N = 100 and increasing temperature. The higher 

temperature in fact leads to a higher number of links between nodes that are geometrically far 

in the disk, which increases the mixing between the communities. The performance is more 

stable for bigger networks, although in general slightly worse than Louvain. Walktrap results 

as robust as Louvain to the increase of network temperature, but the NMI is slightly lower for 

N = 100 and N = 1000. As last, Label propagation, which is the fastest approach, but the one 

with lowest accuracy, performs worse than the other methods and presents the same problem 

as Infomap for N = 100. This issue has been already pointed out in the study of Yang et al. 

[48], in which it is shown that for a high mixing of the communities Louvain and Walktrap are 

more robust, whereas Infomap and Label propagation tend to drop in performance. Hence, the 

nPSO model here proposed seems to provide a good benchmark to test community detection 

algorithms on networks generated using a latent geometry model which is based on the 

hyperbolic space. 

Figure 2 reports the NMI performance on networks with 8 communities. Focusing firstly on 

the performance on bigger networks (N = [500-1000]), it can be noticed that Louvain and 

Infomap swap their behaviour, with Infomap going close to the perfect community detection 

and Louvain slightly decreasing its performance. Walktrap, instead, remains quite robust and 

slightly improves for N = 1000. Label propagation still remains the most unstable, although 

surpassing Louvain for very low temperature. In the study of Yang et al. [48] it is shown that, 

when the mixing of the communities is not high, Louvain can slightly underestimate the 

number of communities for networks of increasing size, which might be the reason of its 

reduced performance in large networks (N = [500-1000]) with respect to the other approaches. 

Focusing now on the small size networks (N = 100), Suppl. Figure 1 highlights that the methods 

preserve the same ranking with respect to the case with 4 communities, but they all decrease 

their performance. The reason is that, being the network small and keeping the average node 
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degree constant, the increase of the communities leads to more inter-community links, making 

the community structure less detectable. 

 

Community detection on nPSO networks using network embedding information 

Recently, Muscoloni et al. [51] introduced coalescent embedding, a model-free topological-

based machine learning class of algorithms that exploits nonlinear unsupervised dimensionality 

reduction to infer the node coordinates in the hyperbolic space. The study also demonstrates 

that, exploiting the geometrical embedding information in order to weight the adjacency matrix 

in input to the community detection algorithms, the performance of the respective unweighted 

variants can be improved [51]. Since the evaluation tests in Muscoloni et al. [51] were executed 

on real network datasets, it remains the doubt that the performance evaluation was not objective 

and possibly biased by the restricted metadata available on the community annotation. This is 

a perfect example for clarifying the utility of the nPSO model. We would like to have a dataset 

of realistic networks for which we know the ground-truth community organization and that we 

can use as a benchmark to test whether the community detection algorithms benefit from being 

applied according to the geometrical embedding information in the hyperbolic space. 

Therefore, we repeat the same tests made by Muscoloni et al. [51] on real networks, but here 

we use nPSO synthetic networks as benchmark. More precisely, each network is embedded in 

the hyperbolic space using the coalescent embedding techniques and the inverse hyperbolic 

distances (HD) between the nodes are used to weight the observed links of the input network 

for the Louvain, Infomap, Walktrap and Label propagation algorithms. In a second variant 

(working only for the Louvain method) the non-observed links are also weighted, using the 

inverse hyperbolic shortest paths (HSP) (see Methods for details). The results of these tests are 

in Tables 1-2 and Suppl. Tables 1-2, which report the mean NMI for nPSO networks with 4 

and 8 communities, the mean NMI over all the networks and the mean ranking, comparing the 

weighted variants and the unweighted ones. 

Table 1 displays for the Louvain algorithm the mean NMI and the mean ranking over all the 

networks, which are indicators of the general performance on many parameter combinations 

of the nPSO. Almost all the HD-based methods increase their performance with respect to the 

unweighted Louvain, going from a mean NMI of 0.89 up to 0.93. A few HSP-based methods 

are also able to reach similar performances, whereas most of the others exhibit a decrease in 

NMI. Figure 1 provides a more detailed comparison between the unweighted Louvain and the 

top-ranked of the weighted variants (RA-LE-HD) for nPSO networks with 8 communities, 

showing the NMI performance in all the network configurations. The improvement is 
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consistent over all the parameter combinations and becomes more pronounced for bigger 

networks, remarkably bringing the NMI close to a perfect detection. 

Table 2 displays the mean NMI and the mean ranking results for the Infomap algorithm and 

shows that all the HD-based methods increase the mean NMI with respect to the unweighted 

Infomap, going from a value of 0.74 up to 0.87, but not all of them obtain a higher ranking. 

The reason is explained in Figure 2, which provides a more detailed comparison between the 

unweighted Infomap and the top-ranked of the weighted variants (EBC-ncISO-HD) for nPSO 

networks with 8 communities. As already discussed in the previous section, Infomap highlights 

problems in correctly detecting the communities when there are too many inter-community 

links, as can be seen for N = 100 and increasing temperature. In this scenario, the increase in 

NMI given by the HD-weighting is remarkable. For bigger networks, instead, the detection 

using the unweighted Infomap is almost perfect and the HD-based variants tend to obtain the 

same performance, except for a slight decrease at N = 1000 and T = 0.1. 

Suppl. Table 1 displays the results for the Walktrap algorithm and shows that all the HD-based 

methods obtain a higher ranking, although the mean NMI has only a small increase with respect 

to the unweighted Walktrap, going from a value of 0.89 up to 0.91. 

At last, Suppl. Table 2 displays the results for the Label propagation algorithm and shows that 

only some of the HD-based methods increase the mean NMI with respect to the unweighted 

Label propagation. However, the increase can be outstanding, going from a NMI of 0.56 up to 

0.70. Indeed, Label propagation is the least accurate among the methods and therefore the one 

with the largest margin for improvement. 

Overall, this investigation on nPSO networks confirms that the performance of community 

detection algorithms can be improved using network embedding information, in agreement 

with what has been previously demonstrated on real networks by Muscoloni et al. [51]. 

 

Comparison of link prediction algorithms on PSO and nPSO networks 

We investigated if the nPSO networks could represent a realistic framework also for testing 

link prediction algorithms. We compared the performance of state-of-the-art approaches [52], 

[53] (CRA [54]–[56], RA [57], SPM [58], SBM [59]) across both PSO and nPSO networks 

generated using diverse parameter combinations. Cannistraci-Resource-Allocation (CRA) is a 

mechanistic model which implements a local-topology-based parameter-free deterministic rule 

for topological link-prediction motivated by the local-community-paradigm [54]–[56]; the 

standard Resource-Allocation (RA) is instead motivated by the resource allocation process; 

Structural Perturbation Method (SPM) is a global and model-free approach that relies on a 
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theory similar to the first-order perturbation in quantum mechanics [58]; Stochastic Block 

Model (SBM) is a global approach based on general idea of a block model, where the nodes 

are partitioned into groups and the probability that two nodes are connected depends only on 

the groups to which they belong [59] (see Methods for details). The aim of this section is to 

understand whether using synthetic networks (generated by PSO or nPSO) is possible to 

replicate the same and diverse link-predictors’ performance obtained on real complex 

networks. In case this is not possible, we would like to check whether the community 

organization present in the nPSO plays an important role to replicate the results on real 

networks and to facilitate the performance of some algorithms in comparison to the case of 

networks where communities are not present, such as the ones generated by classical PSO. 

In the evaluation framework adopted, 10% of the links are randomly removed from the network 

and used to test the precision of the link predictors in recovering them. Every method is 

executed on the network deprived of the randomly removed links and provides a ranking of 

candidate links. The precision is computed as the proportion of links correctly recovered 

considering a number of top-ranked candidate links equivalent to the 10% removed. The 

percentage of removed links is kept at 10% in order to ensure that the original topological 

structure of the network is minimally perturbed and the topological properties are conserved. 

This removal and re-prediction procedure is repeated multiple times (100 repetitions for all the 

methods, only 10 repetitions for SBM due to the high computational time) and the average 

precision is considered to evaluate the performance of each link predictor. 

In the PSO networks, as reported in Figure 5, the three methods CRA, SPM and RA obtain a 

comparable precision, with RA performing slightly better (in particular for N = 100) than CRA, 

which in turn offers a small improvement with respect to SPM for low temperature T = 0.1. 

SBM is slightly inferior to the other predictors for N = 100, and it decreases performance for 

larger networks. The fact that RA performs slightly better than CRA in wiring-prediction of 

synthetic networks generated by a uniform model without communities is expected, because 

RA does not account for local-community-organization in the network, and therefore it should 

adhere better than CRA to the community-free structure of the PSO. In the PSO model a node 

connects to the other nodes in an ‘isotropic’ manner, it means that there is not any connection 

preference on the left or right side of the angular coordinates. Whereas, in the nPSO model a 

node connects to the other nodes in an ‘anisotropic’ manner, it means that there is a preference 

for nodes on the left or right side of the angular coordinates in relation to the direction of 

localization of the community to which that node belongs. In practice, RA is a weighted version 

of common neighbours similarity that penalizes each common neighbour for its degree 
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‘isotropically’ (in the sense that: taking a common neighbour the penalization is the same for 

each link that contributes to determine its degree). Instead, CRA penalizes each common 

neighbour for its degree ‘anisotropically’ (in the sense that: taking a common neighbour the 

penalization is not effective for links that - although contribute to determine its degree - are 

connected to other common neighbours and create a local community). Hence, if our rationale 

is correct, we expect that CRA should clearly outperform RA not only on nPSO but also on 

real networks, and this improvement should emerge especially for growing network size, 

because a large number of nodes favours the generation of non-uniform topology. 

When the link-prediction techniques are tested on the nPSO networks, as shown in Figures 6-

7, it can be noticed that the introduction of the communities leads to a different scenario. For 

N = 100 (small size networks) the performance of CRA, SPM and RA remains overall 

comparable, with SBM slightly inferior. For increasing network size, and particularly for low 

temperature, all the methods reduce their precision. However, the decrease is smaller for SBM 

and CRA, leading to a different ranking, where CRA overcomes the other link prediction 

approaches regardless of the number of communities adopted (4 or 8). In order to check 

whether these results resemble a real scenario, we tested the link prediction algorithms also on 

real networks (SBM only on small-size networks due to the high computational time 

complexity). Suppl. Tables 3-5 summarize the performance of the approaches for small-size 

and large-size real networks, both in predicting randomly removed links and in predicting links 

with time information. For small-size networks SPM obtains the highest mean precision-

ranking, followed by CRA, SBM and, as last, RA. This result does not approximate well what 

has been seen in the artificial networks, and the main reason can be that the networks present 

different characteristics. In particular, most of the small-size real networks do not have a 

marked power-lawness, as reported in Suppl. Table 6, whereas the PSO and nPSO networks, 

at least in their basic implementation, are designed to follow a power-law degree distribution. 

We emphasize that in the other study in which we theoretically introduce and discuss the nPSO 

model [121], it has been numerically proven that changing or removing the community 

structure in the nPSO networks (while keeping fixed the other model parameters) does not 

significantly affect the main structural features of the network, like clustering coefficient, 

characteristic path length, power-law exponent, assortativity and LCP-correlation [121]. 

Looking at the large-size networks, which tend to be scale-free (see Suppl. Table 7), CRA 

obtains the best mean precision-ranking, reproducing the results reported for increasing 

network size on the nPSO networks, which, therefore, seems to offer a more realistic 

framework with respect to the original PSO model. SBM performance is in general comparable 
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to the one of the other algorithms only on small-size networks (N = 100), whereas for increasing 

network size SBM considerably loses performance showing a clear problem of inference. 

 

Link prediction using network embedding information 

While the previous section focused on link prediction approaches exploiting only topological 

information, we are now going to discuss whether adopting also information gained by the 

embedding in the hyperbolic space could be beneficial. 

The plots in Figures 5-7, previously commented, report as a reference also the performance 

that is obtained if the links are predicted ranking them by the hyperbolic distances (HD) or the 

hyperbolic shortest paths (HSP), computed using the original coordinates of the nodes and 

without considering the links randomly removed. It can be noticed that in the PSO model the 

HD performance is slightly lower than CRA for T = 0.1 and higher than CRA for T = [0.3, 0.5], 

whereas in the nPSO model, with the introduction of the communities, the HD performance 

consistently decreases, since most of the non-existing links within each community are at low 

HD and therefore are top-ranked. The HSP, instead, provide a quite low precision and always 

lower than the other methods, which could be expected because the links in the PSO and nPSO 

networks are established only depending on the HD. 

Since the real networks tend to present a community structure, these results obtained on the 

nPSO suggest that embedding a network in the hyperbolic space and using the ranked HD for 

predicting the links will not generally lead to high values of precision. 

In order to prove this we applied the coalescent embedding techniques [123], a topological-

based machine learning class of algorithms that provides a fast and efficient hyperbolic 

embedding, and the other main hyperbolic embedding methods: HyperMap-CN [25] and LPCS 

[124]. We employ here the same procedure of link prediction evaluation adopted above. The 

small-size real networks are embedded in the hyperbolic space after the 10% random link 

removal. Given the geometrical coordinates of the embedded nodes, we adopted both the HD-

ranking and HSP-ranking to re-predict the randomly removed links, the results are reported in 

Suppl. Table 8. The maximum average precision offered by the techniques is 0.17, which 

confirms the expectations independently from the mapping method used. However, if the HSP-

ranking is adopted, we notice a general increase of performance with respect to the HD-

ranking. From an applied standpoint, this result suggests that on real networks combining both 

the geometrical and the topological information (using the HSP) might help to improve the 

prediction, and actually this is a confirmation of a result already presented by Cannistraci et al. 

[36] on prediction of protein interactions by network embedding. At last, we underlines that 
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the small difference in performance between HD and HSP detected in the real networks is 

better resembled by the nPSO model. In fact, using the PSO model, the difference in 

performance between HD and HSP is large, and this is markedly in disagreement with the 

results obtained in real networks. 

As discussed for the nPSO networks, we argue that most of the non-existing links within the 

communities would be characterized by a low HD or HSP, and therefore they tend to be top-

ranked, reducing the likelihood to predict the randomly removed (missing) links, which are not 

necessarily inside the community. In order to provide an explanatory example for this point, 

we focused on three small-size real networks for which community metadata are available, and 

we analysed the top-ranked links provided by the hyperbolic embedding techniques after the 

random link removal. Suppl. Table 9 reports for each method and each network the percentage 

of intra-community candidate-links predicted in the top-ranking and the percentage of these 

which corresponds to correct predictions. The results support our argument showing that on 

average ~80% of the top-ranked candidate-links are intra-community, and that among these 

only ~10% represent correct predictions. 

To conclude, we would like to discuss the fact that in the generative procedure of the PSO and 

nPSO models the links are deterministically established between the closest nodes only for the 

case T = 0, whereas for T > 0 with a probability dependent on the hyperbolic distance. Since 

real networks are hardly characterized by a temperature zero, we argue that the usage of the 

HD-ranking might be not the best solution for link prediction. Ideally, the connection 

probability as a function of the hyperbolic distance should be empirically estimated from the 

length gained by the links when the network is embedded in the hyperbolic disk. Assuming 

that this well approximates the original connection probability function of the unknown 

generative model, the hyperbolic distances between non-connected nodes can be converted in 

connection probabilities according to the probability distribution function inferred from the 

existing links. Alternatively, as second option, the hyperbolic distances between the nodes 

could be converted in connection probabilities according to the mathematical formula of the 

model, after having fitted the temperature parameter of the network. Therefore, instead to adopt 

a greedy procedure that ranks (smallest values come first) the candidate links according to their 

distances in the hyperbolic space, a correct procedure should sample the candidate links 

respecting the empirically estimated connection probability of the networked system. However, 

since the main focus of the article is not link prediction, we procrastinate this investigation to 

future studies. 
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C.3 Conclusion 

In this work, the nPSO model [121] has been used as a benchmark for testing four state-of-the-

art community detection approaches, and the evaluations through several parameter 

combinations highlighted two main points: firstly, the communities are always detected with 

high accuracy by at least one method; secondly, performance limitations arisen in particular 

conditions for some community detection methods are in agreement with findings produced in 

previous studies. These points represent the first main result of our study and suggest that the 

model can be adopted as a valid framework for community detection studies. It is not 

necessarily intended to replace the previous benchmarks, but potentially to complement them, 

in particular the LFR model [42] that seems the most realistic among the ones not based on 

latent geometry. 

Furthermore, making tests on nPSO networks, we confirmed that community detection 

algorithms can be boosted if their input is not a simple unweighted adjacency matrix but a pre-

weighted one, where the strength of each link is the inverse of the respective distance in the 

hyperbolic space. While this has been previously demonstrated on real networks [51], a 

confirmation on networks with ground-truth community structure (such as nPSO) was 

necessary because the metadata on the community structure of real networks remains always 

questionable. Therefore, this represents the second main result of this study. 

At last, we tested state-of-the-art link prediction algorithms both in real and artificial networks, 

and we showed that the ranking of the methods according to their performance on the nPSO 

model is closer to the one in the real networks with respect to the PSO model. 

In addition, we highlighted that embedding a network in the hyperbolic space and adopting the 

HD-ranking for suggesting the links more likely to appear will not lead generally to an efficient 

prediction, pointing out that the usage of a weighted sampling of candidate links according to 

empirically estimated connection probabilities needs to be investigated. 

To conclude, we propose the nPSO model as a valid framework able to generate realistic 

networks that can be adopted, among the many possibilities, as a reliable benchmark for testing 

algorithms designed for community detection and link prediction. Although several 

benchmarks for community detection have been proposed in previous studies, at the best of our 

knowledge the nPSO model is the first one able to produce realistic networks with a tailored 

community structure based on a latent geometrical space, and the first able to reproduce results 

for link prediction evaluation reasonably close to the ones obtained on real networks. 
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C.4 Methods 

1. Community detection 

1.1 Louvain 

The Louvain algorithm [44] is separated into two phases, which are repeated iteratively.  

At first every node in the (weighted) network represents a community in itself. In the first 

phase, for each node i, it considers its neighbours j and evaluates the gain in modularity that 

would take place by removing i from its community and placing it in the community of j. The 

node i is then placed in the community j for which this gain is maximum, but only if the gain 

is positive. If no gain is possible node i stays in its original community. This process is applied 

until no further improvement can be achieved. 

In the second phase the algorithm builds a new network whose nodes are the communities 

found in the first phase, whereas the weights of the links between the new nodes are given by 

the sum of the weight of the links between nodes in the corresponding two communities. Links 

between nodes of the same community lead to self-loops for this community in the new 

network.  

Once the new network has been built, the two phase process is iterated until there are no more 

changes and a maximum of modularity has been obtained. The number of iterations determines 

the height of the hierarchy of communities detected by the algorithm. 

For each hierarchical level there is a possible partition to compare to the ground truth 

annotation. In this case, the hierarchical level considered is the one that guarantees the best 

match, therefore the detected partition that gives the highest NMI value. 

We used the R function multilevel.community, an implementation of the method available in 

the igraph package [96]. 

In this study, the embedding of the network in the hyperbolic space has been exploited in order 

to weight the input adjacency matrix. Given the hyperbolic coordinates, the observed links have 

been weighted using the formula 

𝑥𝑖𝑗
𝐻𝐷 =

1

1 + 𝐻𝐷𝑖𝑗
 

where 𝐻𝐷𝑖𝑗 is the hyperbolic distance between nodes i and j. For the Louvain algorithm a 

further variant has been tested in which also the non-observed links have been weighted using 

the formula 

𝑥𝑖𝑗
𝐻𝑆𝑃 =

1

1 + 𝐻𝑆𝑃𝑖𝑗
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where 𝐻𝑆𝑃𝑖𝑗 is the hyperbolic shortest path between nodes i and j, computed as the sum of the 

hyperbolic distances over the shortest path. 

 

1.2. Infomap 

The Infomap algorithm [45] finds the community structure by minimizing the expected 

description length of a random walker trajectory using the Huffman coding process [97].  

It uses the hierarchical map equation (a further development of the map equation, to detect 

community structures on more than one level) in the form 𝐿(𝑀) = 𝑞↶𝐻(𝑄) + ∑ 𝐿(𝑀𝑖)𝑚
𝑖=1 .  

𝐿(𝑀) is the lower bound of the code length to specify a network path of a partitioning M, 

𝑞↶𝐻(𝑄) is the Shannon information at the coarsest level of the partitioning, 𝐿(𝑀𝑖) =

𝑞↻
𝑖 𝐻(𝑄𝑖) + ∑ 𝐿(𝑀𝑖𝑗)𝑚𝑖

𝑗=1  is the lower bound of the code length to specify a network path of a 

partitioning M at sublevel 𝑖 and 𝐿(𝑀𝑖𝑗…𝑘) = 𝑝↻
𝑖𝑗…𝑘

𝐻(𝑃𝑖𝑗…𝑘) is the lower bound of the code 

length at the finest modular level with submap 𝑀𝑖𝑗…𝑘.  

The hierarchical map equation indicates the theoretical limit of how concisely a network path 

can be specified using a given partition structure. In order to calculate the optimal partition 

(community) structure, this limit can be computed for different partitions and the community 

annotation that gives the shortest path length is chosen. 

For each hierarchical level there is a possible partition to compare to the ground truth 

annotation. In this case, the hierarchical level considered is the one that guarantees the best 

match, therefore the detected partition that gives the highest NMI value. 

We used the C implementation released by the authors at 

http://www.mapequation.org/code.html. 

In this study, the embedding of the network in the hyperbolic space has been exploited in order 

to weight the input adjacency matrix. Given the hyperbolic coordinates, the observed links have 

been weighted using the hyperbolic distances (HD) as described for Louvain.  

 

1.3. Walktrap 

The Walktrap algorithm [46] is based on an agglomerative method for hierarchical clustering: 

the nodes are iteratively grouped into communities exploiting the similarities between them. 

The nodes similarities are obtained using random walks and are based on the idea that random 

walks tend to get trapped into densely connected subgraphs corresponding to communities. 

The agglomerative method uses heuristics to choose which communities to merge and 

implements an efficient way to update the distances between communities. At the end of the 

http://www.mapequation.org/code.html
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procedure a hierarchy of communities is obtained and each level offers a possible partition. 

The algorithm chooses as final result the partition that maximizes the modularity. 

We used the R function walktrap.community, an implementation of the method available in the 

igraph package [96]. 

 

1.4. Label propagation 

The label propagation algorithm [47] initializes each node with a unique label and iteratively 

updates each node label with the one owned by the majority of the neighbours, with ties broken 

uniformly at random. The update is performed in an asynchronous way and the order of the 

nodes at each iteration is chosen randomly. As the labels propagate through the network, 

densely connected groups of nodes quickly reach a consensus on a unique label. The iterative 

process stops when every node has the same label as the majority its neighbours, ties included. 

At the end of the procedure the nodes having the same label are grouped together to form a 

community. Since the aim is not the optimization of an objective function and the propagation 

process contains randomness, there are more possible partitions that satisfy the stop criterion 

and therefore the solution is not unique. 

We used the R function label.propagation.community, an implementation of the method 

available in the igraph package [96]. 

 

1.5. Normalized Mutual Information 

The evaluation of the community detection has been performed using the Normalized Mutual 

Information (NMI) as in [98]. The entropy can be defined as the information contained in a 

distribution p(x) in the following way: 

𝐻(𝑋) = ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝑋

 

The mutual information is the shared information between two distributions: 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log (
𝑝(𝑥, 𝑦)

𝑝1(𝑥)𝑝2(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 

To normalize the value between 0 and 1 the following formula can be applied: 

𝑁𝑀𝐼 =
𝐼(𝑋, 𝑌)

√𝐻(𝑋)𝐻(𝑌)
 

If we consider a partition of the nodes in communities as a distribution (probability of one node 

falling into one community), we can compute the matching between the annotation obtained 
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by the community detection algorithm and the ground truth communities of a network as 

follows:  

𝐻(𝐶𝐷) = ∑
𝑛ℎ

𝐷

𝑁
log (

𝑛ℎ
𝐷

𝑁
)

𝑛𝐷

ℎ=1

 

𝐻(𝐶𝑇) = ∑
𝑛𝑙

𝑇

𝑁
log (

𝑛𝑙
𝑇

𝑁
)

𝑛𝑇

𝑙=1

 

𝐼(𝐶𝐷 , 𝐶𝑇) = ∑ ∑
𝑛ℎ,𝑙

𝑁
log (

𝑛ℎ,𝑙

𝑛ℎ
𝐷𝑛𝑙

𝑇)𝑙ℎ . 

𝑁𝑀𝐼(𝐶𝐷, 𝐶𝑇) =
𝐼(𝐶𝐷 , 𝐶𝑇)

√𝐻(𝐶𝐷)𝐻(𝐶𝑇)
 

Where: 

N – number of nodes; 

𝑛𝐷 , 𝑛𝑇 – number of communities detected by the algorithm (D) or ground truth (T); 

𝑛ℎ,𝑙 – number of nodes assigned to the h-th community by the algorithm and to the l-th 

community according to the ground truth annotation.  

We used the MATLAB implementation available at http://commdetect.weebly.com/. As 

suggested in the code, when 
𝑁

𝑛𝑇 ≤ 100, the NMI should be adjusted in order to correct for 

chance [99]. 

 

2. Link prediction methods 

2.1. Cannistraci-Resource-Allocation (CRA) 

Cannistraci-Resource-Allocation (CRA) is a local-based, parameter-free and model-based 

deterministic rule for topological link-prediction in both monopartite [54] and bipartite 

networks [55], [56]. It is based on the local-community-paradigm (LCP) which is a bioinspired 

theory recently proposed in order to model local-topology-dependent link-growth in a class of 

real complex networks characterized by the development of diverse, overlapping and 

hierarchically organized local-communities [54]. Being a local-community-based method, it 

assigns to every candidate interaction a likelihood score looking only at the neighbours nodes 

and their cross-interactions. In particular, the paradigmatic shift introduced by the LCP is to 

consider not only the common-neighbours of the interacting nodes but also the links between 

those common-neighbours, which in practice form all together a local-community. 

For each candidate interaction between nodes 𝑖 and 𝑗, the score is assigned according to the 

following equation [54]: 
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𝐶𝑅𝐴(𝑖, 𝑗) = ∑
|𝜑(𝑘)|

|𝛷(𝑘)|
𝑘∈𝛷(𝑖)∩𝛷(𝑗)

 

Where: 

𝑘: common neighbour of nodes 𝑖 and 𝑗 

𝛷(𝑖): set of neighbours of node 𝑖 

|𝛷(𝑘)|: cardinality of set 𝛷(𝑘), equivalent to the degree of 𝑘 

𝜑(𝑘): sub-set of neighbours of 𝑘 that are also common-neighbours of 𝑖 and 𝑗 

|𝜑(𝑘)|: equivalent to the local-community degree of 𝑘 (see Fig. 2) 

The higher the CRA score, the higher the likelihood that the interaction exists, therefore the 

candidate interactions are ranked by decreasing CRA scores and the obtained ranking is the 

link-prediction result. The method has been implemented in MATLAB. The code is available 

at: https://sites.google.com/site/carlovittoriocannistraci/ 

 

2.2. Resource-Allocation (RA) 

Resource-Allocation (RA) is a local-based, parameter-free and model-based deterministic rule 

for topological link-prediction [57], motivated by the resource allocation process taking place 

in networks. Considering a pair of nodes that are not directly connected, one node can send 

some resource to the other one through their common-neighbours, which play the role of 

transmitters. It assumes the simplest case where every transmitter equally distributes a unit of 

resource between its neighbours. For each candidate interaction between nodes 𝑖 and 𝑗, the 

score is assigned according to the following equation [57]: 

𝑅𝐴(𝑖, 𝑗) = ∑
1

|𝛷(𝑘)|
𝑘∈𝛷(𝑖)∩𝛷(𝑗)

 

Where: 

𝑘: common neighbour of nodes 𝑖 and 𝑗 

𝛷(𝑖): set of neighbours of node 𝑖 

|𝛷(𝑘)|: cardinality of set 𝛷(𝑘), equivalent to the degree of 𝑘 

The higher the RA score, the higher the likelihood that the interaction exists, therefore the 

candidate interactions are ranked by decreasing RA scores and the obtained ranking is the link-

prediction result. The method has been implemented in MATLAB. 

 

2.3. Structural Perturbation Method (SPM) 

https://sites.google.com/site/carlovittoriocannistraci/
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SPM is a structural perturbation method that relies on a theory similar to the first-order 

perturbation in quantum mechanics [58]. Unlike CH, it is a global approach, meaning that it 

exploits the information of the complete adjacency matrix in order to compute the likelihood 

score to assign to every candidate interaction. A high-level description of the procedure is the 

following: 

1) Randomly remove a subset of the edges ∆𝐸 (usually 10%) from the network adjacency 

matrix 𝑥, obtaining a reduced adjacency matrix 𝑥𝑅. 

2) Compute the eigenvalues and eigenvectors of 𝑥𝑅. 

3) Considering ∆𝐸 as a perturbation of 𝑥𝑅, construct the perturbed matrix 𝑥̃ via a first-order 

approximation that allows the eigenvalues to change while keeping fixed the eigenvectors. 

4) Repeat steps 1-3 for 10 independent iterations and take the average of the perturbed 

matrices 𝑥̃. 

The idea behind the method is that a missing part of the network is predictable if it does not 

significantly change the structural features of the observable part, represented by the 

eigenvectors of the matrix. If this is the case, the perturbed matrices should be good 

approximations of the original network [58]. The entries of the average perturbed matrix 

represents the scores for the candidate links. The higher the score the greater the likelihood that 

the interaction exists, therefore the candidate interactions are ranked by decreasing scores and 

the obtained ranking represents the link-prediction result. 

The MATLAB implementation of the method has been provided by the authors. 

 

2.4 Stochastic Block Model (SBM) 

The framework based on stochastic block model (SBM) considered in this study has been 

introduced by Guimerà et al. [59] in order to identify both missing and spurious interactions in 

noisy network observations. The general idea of a block model is that the nodes are partitioned 

into groups and the probability that two nodes are connected depends only on the groups to 

which they belong. Assuming that there is no prior knowledge about which partition is more 

suitable for the observed network, the mathematical formula for obtaining the reliability of an 

individual link between nodes i and j is [59]: 

𝑅𝑖𝑗 =
1

𝑍
∑ (

𝑙𝜎𝑖𝜎𝑗
+ 1

𝑟𝜎𝑖𝜎𝑗
+ 2

) 𝑒𝑥𝑝[−𝐻(𝑝)]

𝑝∈𝑃

 

Where the sum is over every partition p in the space P of all the possible partitions of the 

network into groups, 𝜎𝑖 is the group of node i in partition p, 𝑙𝛼𝛽 is the number of links between 
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groups  and , 𝑟𝛼𝛽 is the maximum number of possible links between groups  and . The 

function H(p) is: 

𝐻(𝑝) = ∑ [𝑙𝑛(𝑟𝛼𝛽 + 1) + 𝑙𝑛 (
𝑟𝛼𝛽

𝑙𝛼𝛽
)]

𝛼≤𝛽

 

And the normalization factor is: 

𝑍 = ∑ 𝑒𝑥𝑝[−𝐻(𝑝)]

𝑝∈𝑃

 

However, since the exploration of all the possible partitions is too computationally expensive, 

the Metropolis algorithm, which is based on a stochastic procedure, is exploited in order to 

sample only a subset of partitions that are relevant for the estimation of the link reliability [59]. 

The higher the reliability the greater the likelihood that a non-observed interaction actually 

exists, therefore the candidate interactions are ranked by decreasing scores and the obtained 

ranking represents the link-prediction result. The C code of the method has been released by 

the authors and can be download from the website http://seeslab.info/downloads/network-c-

libraries-rgraph/. 

 

2.5. Coalescent embedding 

The expression coalescent embedding refers to a topological-based machine learning class of 

algorithms that exploits nonlinear unsupervised dimensionality reduction to infer the nodes 

angular coordinates in the hyperbolic space [51]. The techniques are able to perform a fast and 

accurate mapping of a network in the 2D hyperbolic disk, the 3D hyperbolic sphere, and 

potentially also in higher dimensions. 

The first step of the algorithm for a 2D embedding consists in weighting the network in order 

to suggest geometrical distances between connected nodes, since it has been shown that 

improves the mapping accuracy [51]. If the network is unweighted, the topological-based pre-

weighting rules repulsion-attraction (RA) or edge-betweenness-centrality (EBC) can be 

applied. The rules are devised to suggest geometrical distances between the connected nodes, 

using either local (RA) or global (EBC) topological information [51]. 

Given the weighted network, the second step consists in performing the nonlinear 

dimensionality reduction. Two different kinds of machine learning approaches can be used, 

manifold-based (LE, ISO, ncISO) or Minimum-Curvilinearity-based (MCE, ncMCE). The 

details about which dimensions of the embedding should be considered are provided in the 

original publication [51]. 

http://seeslab.info/downloads/network-c-libraries-rgraph/
http://seeslab.info/downloads/network-c-libraries-rgraph/
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In order to assign the angular coordinates in the 2D embedding space, either a circular 

adjustment or an equidistant angular adjustment (EA) can be considered. The circular 

adjustment for the manifold-based approaches consists in exploiting directly the polar 

coordinates of the 2D reduced space, whereas for the Minimum-Curvilinearity-based in 

rearranging the node points on the circumference following the same ordering of the 1D 

reduced space and proportionally preserving the distances. Using the equidistant angular 

adjustment, instead, the nodes are equidistantly arranged on the circumference, which might 

help to correct for short-range angular noise present in the embedding [51]. 

The radial coordinates are assigned according to a mathematical formula which takes into 

account both the position of the nodes in their ranking by degree and the scale-freeness of the 

node degree distribution [23]. The exponent 𝛾 of the power-law degree distribution has been 

fitted using the MATLAB script plfit.m, a procedure described by Clauset et al. [91] and 

released at http://www.santafe.edu/~aaronc/powerlaws/. 

In the link prediction application, the hyperbolic distances (HD) are computed between the 

nodes in the hyperbolic space and the candidate interactions are ranked by increasing HD, the 

obtained ranking is the link prediction result. 

In a second variant that combines both geometrical and topological information, the network 

is weighted using the HD and the hyperbolic shortest paths (HSP) are computed as sum of the 

HD over the shortest path between each pair of nodes. The candidate interactions are ranked 

by increasing HSP and the obtained ranking is the link prediction result. The method has been 

implemented in MATLAB. 

The code is available at https://github.com/biomedical-cybernetics/coalescent_embedding. 

 

2.6. HyperMap-CN 

HyperMap [23] is a method to map a network into the hyperbolic space based on Maximum 

Likelihood Estimation (MLE). For sake of clarity, the first algorithm for MLE-based network 

embedding in the hyperbolic space is not HyperMap, but to the best of our knowledge is the 

algorithm proposed by Boguñá et al. in [18]. HyperMap is basically an extension of that method 

applied to the PSO model [20]. It replays the hyperbolic growth of the network and at each 

time step i it finds the coordinates of the added node i by maximizing the likelihood that the 

network was produced by the E-PSO model [23]. According to the MLE procedure, the nodes 

are added in decreasing order of degree. The radial coordinates depend on the time step i and 

on the exponent 𝛾 of the power-law degree distribution. The angular coordinates, instead, are 

http://www.santafe.edu/~aaronc/powerlaws/
https://github.com/biomedical-cybernetics/coalescent_embedding
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assigned by maximizing a likelihood function 𝐿𝑖,𝐿, with the aim of mapping connected nodes 

at a low hyperbolic distance and disconnected nodes at a high hyperbolic distance. The 

maximization is done by numerically trying different angular coordinates in steps of 2𝜋/𝑁 and 

choosing the one that leads to the biggest 𝐿𝑖,𝐿. 

HyperMap-CN [25] is a further development of HyperMap, where the inference of the angular 

coordinates is not performed anymore maximizing the likelihood 𝐿𝑖,𝐿,based on the connections 

and disconnections of the nodes, but using another local likelihood 𝐿𝑖,𝐶𝑁, based on the number 

of common neighbours between each node i and the previous nodes j < i at final time. Here the 

hybrid model has been used, a variant of the method in which the likelihood 𝐿𝑖,𝐶𝑁 is only 

adopted for the high degree nodes and 𝐿𝑖,𝐿 for the others, yielding a shorter running time. 

Furthermore, a speed-up heuristic and corrections steps can be applied. The speed-up can be 

achieved by getting an initial estimate of the angular coordinate of a node i only considering 

the previous nodes j < i that are i’s neighbours, the maximum likelihood estimation is then 

performed only looking at an interval around this initial estimate. Correction steps can be used 

at predefined times i: each existing node j < i is visited and with the knowledge of the rest of 

the coordinates the angle of j is updated to the value that maximizes the likelihood 𝐿𝑗,𝐿. The 

C++ implementation of the method has been released by the authors at the website 

https://bitbucket.org/dk-lab/2015_code_hypermap. In our simulations, neither correction steps 

nor speed-up heuristic have been used. The input parameter 𝛾 has been fitted as described for 

the coalescent embedding method. The temperature has been set to a default value T = 0.1. 

 

2.7. LPCS 

Link Prediction with Community Structure (LPCS) [87] is a hyperbolic embedding technique 

that consists of the following steps: (1) Detect the hierarchical organization of communities. 

(2) Order the top-level communities starting from the one that has the largest number of nodes 

and using the Community Intimacy index, which takes into account the proportion of edges 

within and between communities. (3) Recursively order the lower level communities based on 

the order of the higher-level communities, until reaching the bottom level in the hierarchy. (4) 

Assign to every bottom-level community an angular range of size proportional to the nodes in 

the community, in order to cover the complete circle with non-overlapping angular ranges. 

Sample the angular coordinates of the nodes uniformly at random within the angular range of 

the related bottom-level community. (5) Assign the radial coordinates as described for the MCA 

method. 

https://bitbucket.org/dk-lab/2015_code_hypermap
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The LPCS code firstly takes advantage of the R function multilevel.community for detecting 

the hierarchy of communities, an implementation of the Louvain method [44] available in the 

igraph package [96], while the following embedding steps have been implemented in 

MATLAB. 

 

3. Networks datasets 

3.1. PSO model 

The Popularity-Similarity-Optimization (PSO) model [20] is a generative network model 

recently introduced in order to describe how random geometric graphs grow in the hyperbolic 

space. In this model the networks evolve optimizing a trade-off between node popularity, 

abstracted by the radial coordinate, and similarity, represented by the angular coordinate 

distance, and they exhibit many common structural and dynamical characteristics of real 

networks. 

The model has five input parameters: 

 𝑁 > 0, number of nodes in the network; 

 𝑚 > 0, equal to half of the average node degree; 

 𝑇 ≥ 0, network temperature, which controls the network clustering; the network clustering 

is maximized at 𝑇 = 0, it decreases almost linearly for 𝑇 = [0,1) and it becomes 

asymptotically zero if 𝑇 > 1; 

 𝛽 ∈ (0, 1], popularity fading parameter, or alternatively 𝛾 ≥ 2, exponent of the power-law 

degree distribution, due to the relationship 𝛾 = 1 + 1/𝛽; 

 𝜁 = √−𝐾 > 0, where K is the curvature of the hyperbolic plane. Since changing 𝜁 rescales 

the node radial coordinates and this does not affect the topological properties of network 

[20], in the rest of the article we will consider 𝐾 = −1. 

Building a network in the hyperbolic disk requires the following steps: 

(1) Initially the network is empty; 

(2) At time 𝑖 = 1, 2, … , 𝑁 a new node i appears with radial coordinate 𝑟𝑖 = 2𝑙𝑛(𝑖) and angular 

coordinate 𝜃𝑖 uniformly sampled in [0,2𝜋]; all the existing nodes 𝑗 < 𝑖 increase their radial 

coordinates according to 𝑟𝑗(𝑖) = 𝛽𝑟𝑗 + (1 − 𝛽)𝑟𝑖 in order to simulate popularity fading; 

(3) If 𝑇 = 0, the new node connects to the m hyperbolically closest nodes; if 𝑇 > 0, the new 

node picks a randomly chosen existing node 𝑗 < 𝑖 and, given that it is not already connected to 

it, it connects to it with probability 
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𝑝(𝑖, 𝑗) =
1

1 + exp (
ℎ𝑖𝑗 − 𝑅𝑖

2𝑇 )

 

repeating the procedure until it becomes connected to m nodes. 

Note that 

𝑅𝑖 = 𝑟𝑖 − 2 ln [
2𝑇(1 − 𝑒−(1−𝛽) ln(𝑖))

sin(𝑇𝜋) 𝑚(1 − 𝛽)
] 

is the current radius of the hyperbolic disk, and 

ℎ𝑖𝑗 = 𝑎𝑟𝑐𝑐𝑜𝑠ℎ(cosh 𝑟𝑖 cosh 𝑟𝑗 − sinh 𝑟𝑖 sinh 𝑟𝑗 cos 𝜃𝑖𝑗) 

is the hyperbolic distance between node i and node j, where 

𝜃𝑖𝑗 = 𝜋 − |𝜋 − |𝜃𝑖 − 𝜃𝑗|| 

is the angle between these nodes. 

(4) The growing process stops when N nodes have been introduced. 

 

3.2. Nonuniform PSO (nPSO) model 

The nonuniform PSO model [121] is a variation of the PSO model introduced in order to confer 

to the generated networks an adequate community structure, which is lacking in the original 

model. Since the connection probabilities are inversely proportional to the hyperbolic 

distances, a uniform distribution of the nodes over the hyperbolic disk does not create 

agglomerates of nodes that are concentrated on angular sectors and that are more densely 

connected between each other than with the rest of the network. A nonuniform distribution, 

instead, allows to do it by generating heterogeneity in the angular node arrangement. Given the 

parameters of the PSO model (N, m, T, γ) and a nonuniform probability distribution defined in 

[0, 2π[, the procedure to generate a network is the same described in the section for the uniform 

case, with the only difference that the angular coordinates of the nodes are not sampled 

uniformly but according to the given nonuniform probability distribution. 

In this study, without loss of generality, we will concentrate on Gaussian mixture distributions, 

with communities that emerge in correspondence of the different components. 

A Gaussian mixture distribution is characterized by the following parameters [113]: 

 𝐶 > 0, which is the number of components, each one representative of a community; 

 𝜇1…𝐶 ∈ [0,2𝜋[, which are the means of the components, representing the central locations 

of the communities in the angular space; 
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 𝜎1…𝐶 > 0, which are the standard deviations of the components, determining how much the 

communities are spread in the angular space; a low value leads to isolated communities, a 

high value makes the adjacent communities to overlap; 

 𝜌1…𝐶  (∑ 𝜌𝑖 = 1𝑖 ), which are the mixing proportions of the components, determining the 

relative sizes of the communities. 

Note that, although the means of the components are located in [0, 2π[, the sampling of the 

angular coordinate 𝜃 can fall out of this range. In this case, it has to be shifted within the 

original range using the modulo operator: 𝜃 = 𝑚𝑜𝑑𝑢𝑙𝑜(𝜃, 2𝜋). 

Although the parameters of the Gaussian mixture distribution allow for the investigation of 

disparate scenarios, as a first case of study we focused on the most straightforward setting. For 

a given number of components C, we considered their means equidistantly arranged over the 

angular space, the same standard deviation and equal mixing proportions: 

 𝜇𝑖 =
2𝜋

𝐶
∗ (𝑖 − 1)     𝑖 = 1 … 𝐶 

 𝜎1 = 𝜎2 = . . . = 𝜎𝐶 = 𝜎 

 𝜌1 = 𝜌2 = . . . = 𝜌𝐶 =
1

𝐶
 

In particular, in our simulations we fixed the standard deviation to 1/6 of the distance between 

two adjacent means (𝜎 =
1

6
∗

2𝜋

𝐶
), which allowed for a reasonable isolation of the communities 

independently from their number. The community memberships are assigned considering for 

each node the component whose mean is at the lowest angular distance. 

 

3.3. Real networks 

The real networks have been transformed into undirected and unweighted, self-loops have been 

removed and the largest connected component has been considered. 

Mouse neural: in-vivo single neuron connectome that reports mouse primary visual cortex 

(layers 1, 2/3 and upper 4) synaptic connections between neurons [125]. 

Karate: social network of a university karate club collected by Wayne Zachary in 1977. Each 

node represents a member of the club and each edge represents a tie between two members of 

the club [88]. Community metadata are available, the communities are formed by a split of the 

club into two parts, each following one trainer. 

Dolphins: a social network of bottlenose dolphins. The nodes are the bottlenose dolphins 

(genus Tursiops) of a bottlenose dolphin community living off Doubtful Sound, a fjord in New 
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Zealand. An edge indicates a frequent association. The dolphins were observed between 1994 

and 2001 [126]. 

Macaque neural: a macaque cortical connectome, assembled in previous studies in order to 

merge partial information obtained from disparate literature and database sources [127]. 

Polbooks: nodes represent books about US politics sold by the online bookseller Amazon.com. 

Edges represent frequent co-purchasing of books by the same buyers, as indicated by the 

"customers who bought this book also bought these other books" feature on Amazon. The 

network was compiled by V. Krebs and is unpublished, but can found at http://www-

personal.umich.edu/~mejn/netdata/. Community metadata are available, the three communities 

are given by the political orientation of the books as either conservative, neutral or liberal. 

ACM2009_contacts: network of face-to-face contacts (active for at least 20 seconds) of the 

attendees of the ACM Conference on Hypertext and Hypermedia 2009 [128]. 

Football: network of American football games between Division IA colleges during regular 

season Fall 2000 [6]. 

Physicians innovation: the network captures innovation spread among physicians in the towns 

in Illinois, Peoria, Bloomington, Quincy and Galesburg. The data was collected in 1966. A 

node represents a physician and an edge between two physicians shows that the left physician 

told that the right physician is his friend or that he turns to the right physician if he needs advice 

or is interested in a discussion [129]. 

Manufacturing email: email communication network between employees of a mid-sized 

manufacturing company [130]. 

Littlerock foodweb: food web of Little Rock Lake, Wisconsin in the United States of America. 

Nodes are autotrophs, herbivores, carnivores and decomposers; links represent food sources 

[131]. 

Jazz: collaboration network between Jazz musicians. Each node is a Jazz musician and an edge 

denotes that two musicians have played together in a band. The data was collected in 2003 

[132]. 

Residence hall friends: friendship network between residents living at a residence hall located 

on the Australian National University campus [133]. 

Haggle contacts: contacts between people measured by carried wireless devices. A node 

represents a person and an edge between two persons shows that there was a contact between 

them [134]. 

Worm nervous: a C. Elegans connectome representing synaptic interactions between neurons 

[37]. 

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
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Netsci: a co-authorship network of scientists working on networks science [135]. 

Infectious contacts: network of face-to-face contacts (active for at least 20 seconds) of people 

during the exhibition INFECTIOUS: STAY AWAY in 2009 at the Science Gallery in Dublin 

[128]. 

Flightmap: a network of flights between American and Canadian cities [136]. 

Email: email communication network at the University Rovira i Virgili in Tarragona in the 

south of Catalonia in Spain. Nodes are users and each edge represents that at least one email 

was sent [137]. 

Polblog: a network of front-page hyperlinks between blogs in the context of the 2004 US 

election. A node represents a blog and an edge represents a hyperlink between two blogs [100]. 

Community metadata are available, the two communities represent the political opinions of the 

blogs (conservative or liberal). 

Odlis: Online Dictionary of Library and Information Science (ODLIS): ODLIS is designed to 

be a hypertext reference resource for library and information science professionals, university 

students and faculty, and users of all types of libraries. Version December 2000 [138]. 

Advogato: a trust network of the online community platform Advogato for developers of free 

software launched in 1999. Nodes are users of Advogato and the edges represent trust 

relationships [139]. 

Arxiv astroph: collaboration graph of authors of scientific papers from the arXiv's Astrophysics 

(astro-ph) section. An edge between two authors represents a common publication [140]. 

Thesaurus: this is the Edinburgh Associative Thesaurus. Nodes are English words, and a 

directed link from A to B denotes that the word B was given as a response to the stimulus word 

A in user experiments [141]. 

Arxiv hepth: this is the network of publications in the arXiv's High Energy Physics – Theory 

(hep-th) section. The links that connect the publications are citations [140]. 

Facebook: a network of a small subset of posts to user's walls on Facebook. The nodes of the 

network are Facebook users, and each edge represents one post, linking the users writing a post 

to the users whose wall the post is written on [142]. 

ARK200909-ARK201012: Autonomous systems (AS) Internet topologies extracted from the 

data collected by the Archipelago active measurement infrastructure (ARK) developed by 

CAIDA, from September 2009 up to December 2010. The connections in the topology are not 

physical but logical, representing AS relationships [101]. 

Most of the networks in the dataset can be downloaded from the Koblenz Network Collection 

at http://konect.uni-koblenz.de. 
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Hardware and software 

MATLAB code has been used for all the simulations, carried out partly on a workstation under 

Windows 8.1 Pro with 512 GB of RAM and 2 Intel(R) Xenon(R) CPU E5-2687W v3 

processors with 3.10 GHz, and partly in the ZIH-Cluster Taurus of the TU Dresden. 
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C.5 Figures and Tables 

 

 
 

Figure 1. Community detection on nPSO networks with 4 communities. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = 4.  For each combination of 

parameters, 10 networks have been generated. For each network the community detection methods 

Louvain, Infomap, Walktrap and Label propagation have been executed and the communities detected 

have been compared to the annotated ones computing the Normalized Mutual Information (NMI). The 

plots report for each parameter combination the mean NMI and standard error over the random 

repetitions. 
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Figure 2. Community detection on nPSO networks with 8 communities. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = 8.  For each combination of 

parameters, 10 networks have been generated. For each network the community detection methods 

Louvain, Infomap, Walktrap and Label propagation have been executed and the communities detected 

have been compared to the annotated ones computing the Normalized Mutual Information (NMI). The 

plots report for each parameter combination the mean NMI and standard error over the random 

repetitions. 
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Figure 3. Community detection on nPSO networks (C = 8) using Louvain-HD. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = 8.  For each combination of 

parameters, 10 networks have been generated. Each network has been embedded in the hyperbolic space 

using the best performing coalescent embedding technique (RA-LE-HD) and the embedding 

coordinates are used to weight the input matrix for the Louvain algorithm: observed links are weighted 

using the hyperbolic distances (HD) between the nodes (see Methods for details). As a reference, the 

Louvain algorithm has been run giving in input also the unweighted adjacency matrix. The communities 

detected have been compared to the annotated ones computing the Normalized Mutual Information 

(NMI). The plots report for each parameter combination the mean NMI and standard error over the 

random repetitions. The comparison for all the coalescent embedding methods is reported in Table 1. 
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Figure 4. Community detection on nPSO networks (C = 8) using Infomap-HD. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = 8.  For each combination of 

parameters, 10 networks have been generated. Each network has been embedded in the hyperbolic space 

using the best performing coalescent embedding technique (EBC-ncISO-HD) and the embedding 

coordinates are used to weight the input matrix for the Infomap algorithm: observed links are weighted 

using the hyperbolic distances (HD) between the nodes (see Methods for details). As a reference, the 

Infomap algorithm has been run giving in input also the unweighted adjacency matrix. The communities 

detected have been compared to the annotated ones computing the Normalized Mutual Information 

(NMI). The plots report for each parameter combination the mean NMI and standard error over the 

random repetitions. The comparison for all the coalescent embedding methods is reported in Table 2. 
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Figure 5. Link prediction on PSO networks. 

Synthetic networks have been generated using the PSO model with parameters N = [100, 500, 1000], m 

= [10, 12, 14], T = [0.1, 0.3, 0.5] and γ = 3.  For each combination of parameters, 100 networks have 

been generated (only 10 repetitions for SBM due to the high computational time). For each network 

10% of links have been randomly removed and the algorithms have been executed in order to assign 

likelihood scores to the non-observed links in these reduced networks. In order to evaluate the 

performance, the links are ranked by likelihood scores and the precision is computed as the percentage 

of removed links among the top-r in the ranking, where r is the total number of links removed. The 

plots report for each parameter combination the mean precision and standard error over the random 

repetitions. 
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Figure 6. Link prediction on nPSO networks with 4 communities. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = 4.  For each combination of 

parameters, 100 networks have been generated (only 10 repetitions for SBM due to the high 

computational time). For each network 10% of links have been randomly removed and the algorithms 

have been executed in order to assign likelihood scores to the non-observed links in these reduced 

networks. In order to evaluate the performance, the links are ranked by likelihood scores and the 

precision is computed as the percentage of removed links among the top-r in the ranking, where r is the 

total number of links removed. The plots report for each parameter combination the mean precision and 

standard error over the random repetitions. 
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Figure 7. Link prediction on nPSO networks with 8 communities. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = 8.  For each combination of 

parameters, 100 networks have been generated (only 10 repetitions for SBM due to the high 

computational time). For each network 10% of links have been randomly removed and the algorithms 

have been executed in order to assign likelihood scores to the non-observed links in these reduced 

networks. In order to evaluate the performance, the links are ranked by likelihood scores and the 

precision is computed as the percentage of removed links among the top-r in the ranking, where r is the 

total number of links removed. The plots report for each parameter combination the mean precision and 

standard error over the random repetitions. 
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Table 1. Community detection on nPSO networks using network embedding and Louvain. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = [4, 8].  For each combination of 

parameters, 10 networks have been generated. Each network has been embedded in the hyperbolic space 

using coalescent embedding techniques and the embedding coordinates are used to weight the input 

matrix for the Louvain algorithm: observed links are weighted using the hyperbolic distances (HD) 

between the nodes and, in a second variant, non-observed links using the hyperbolic shortest paths 

(HSP) (see Methods for details). As a reference, the Louvain algorithm has been run giving in input 

also the unweighted adjacency matrix. The communities detected have been compared to the annotated 

ones computing the Normalized Mutual Information (NMI). The table reports the mean NMI for nPSO 

networks with 4 and 8 communities, the mean NMI over all the networks and the mean ranking. The 

best coalescent embedding technique and the unweighted variant are highlighted. 

 

 nPSO 
C=4 

nPSO 
C=8 

mean 
NMI 

mean 
ranking 

RA-LE-HD 0.95 0.91 0.93 11.5 

EBC-LE-HSP 0.96 0.91 0.93 11.7 

EBC-ncISO-HD 0.96 0.90 0.93 11.8 

EBC-ISO-HD 0.96 0.89 0.93 11.9 

EBC-LE-HD 0.95 0.91 0.93 11.9 

RA-LE-HSP 0.96 0.91 0.93 12.0 

RA-ISO-HD 0.95 0.89 0.92 13.8 

RA-ncISO-HD 0.95 0.89 0.92 13.9 

EBC-ncISO-HSP 0.95 0.89 0.92 15.9 

RA-ncISO-EA-HD 0.95 0.87 0.91 16.1 

RA-ISO-EA-HD 0.95 0.86 0.91 16.6 

EBC-ISO-EA-HD 0.96 0.85 0.91 16.6 

EBC-ISO-HSP 0.95 0.88 0.92 16.8 

EBC-ncISO-EA-HD 0.95 0.85 0.90 17.4 

RA-LE-EA-HD 0.94 0.86 0.90 17.7 

RA-ncMCE-EA-HD 0.95 0.85 0.90 18.0 

EBC-LE-EA-HD 0.95 0.85 0.90 18.2 

RA-MCE-HD 0.93 0.86 0.90 18.3 

RA-ncMCE-HD 0.92 0.88 0.90 18.5 

EBC-MCE-HD 0.94 0.86 0.90 18.7 

RA-MCE-EA-HD 0.94 0.85 0.90 18.9 

EBC-ncMCE-HD 0.92 0.87 0.90 19.1 

unweighted 0.95 0.83 0.89 19.2 

RA-ncISO-HSP 0.94 0.85 0.89 20.7 

EBC-ncMCE-EA-HD 0.93 0.83 0.88 21.3 

RA-ISO-HSP 0.93 0.85 0.89 21.5 

EBC-MCE-EA-HD 0.93 0.82 0.88 22.2 

EBC-ncMCE-HSP 0.90 0.84 0.87 24.4 

RA-ncISO-EA-HSP 0.90 0.81 0.86 27.4 

EBC-ISO-EA-HSP 0.90 0.81 0.86 27.9 

RA-ISO-EA-HSP 0.90 0.81 0.86 28.0 

EBC-ncISO-EA-HSP 0.89 0.81 0.85 28.2 

EBC-MCE-HSP 0.89 0.80 0.85 29.2 

RA-LE-EA-HSP 0.88 0.81 0.85 29.4 

RA-ncMCE-HSP 0.87 0.80 0.84 29.4 

EBC-LE-EA-HSP 0.87 0.80 0.84 29.7 

RA-ncMCE-EA-HSP 0.89 0.79 0.84 29.8 

RA-MCE-HSP 0.87 0.79 0.83 30.4 

EBC-ncMCE-EA-HSP 0.87 0.79 0.83 31.0 

RA-MCE-EA-HSP 0.88 0.78 0.83 31.1 

EBC-MCE-EA-HSP 0.83 0.76 0.79 34.6 
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Table 2. Community detection on nPSO networks using network embedding and Infomap. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = [4, 8].  For each combination of 

parameters, 10 networks have been generated. Each network has been embedded in the hyperbolic space 

using coalescent embedding techniques and the embedding coordinates are used to weight the input 

matrix for the Infomap algorithm: observed links are weighted using the hyperbolic distances (HD) 

between the nodes (see Methods for details). As a reference, the Infomap algorithm has been run giving 

in input also the unweighted adjacency matrix. The communities detected have been compared to the 

annotated ones computing the Normalized Mutual Information (NMI). The table reports the mean NMI 

for nPSO networks with 4 and 8 communities, the mean NMI over all the networks and the mean 

ranking. The best coalescent embedding technique and the unweighted variant are highlighted. 

 

 nPSO 
C=4 

nPSO 
C=8 

mean 
NMI 

mean 
ranking 

EBC-ncISO-HD 0.89 0.80 0.84 8.9 

EBC-ISO-HD 0.88 0.79 0.84 9.1 

EBC-LE-HD 0.91 0.81 0.86 9.6 

RA-LE-HD 0.92 0.81 0.87 10.2 

EBC-ISO-EA-HD 0.81 0.73 0.77 10.5 

EBC-ncISO-EA-HD 0.80 0.73 0.77 10.6 

unweighted 0.77 0.71 0.74 10.7 

RA-ISO-EA-HD 0.81 0.73 0.77 10.7 

RA-ISO-HD 0.89 0.80 0.84 10.8 

RA-ncISO-HD 0.89 0.79 0.84 11.0 

EBC-LE-EA-HD 0.80 0.73 0.77 11.0 

RA-ncISO-EA-HD 0.80 0.73 0.77 11.0 

RA-LE-EA-HD 0.80 0.73 0.76 11.4 

EBC-MCE-EA-HD 0.79 0.73 0.76 11.4 

EBC-ncMCE-EA-HD 0.80 0.73 0.76 11.4 

EBC-MCE-HD 0.83 0.77 0.80 11.5 

RA-ncMCE-EA-HD 0.80 0.73 0.76 11.7 

RA-MCE-EA-HD 0.79 0.73 0.76 12.0 

EBC-ncMCE-HD 0.88 0.83 0.86 12.0 

RA-ncMCE-HD 0.87 0.81 0.84 12.8 

RA-MCE-HD 0.83 0.76 0.80 12.9 
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C.6 Supplementary Information 

 

 
 

Figure 1. Comparison of performance on small nPSO networks for 4 and 8 communities. 

The same results reported in Figure 1-2 in the main article for networks with N=100 are here shown in 

a unique plot, in order to highlight the decrease of performance of the community detection methods 

when the number of communities is increased from 4 (full lines) to 8 (dashed lines).  
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Table 1. Community detection on nPSO networks using network embedding and Walktrap. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = [4, 8].  For each combination of 

parameters, 10 networks have been generated. Each network has been embedded in the hyperbolic space 

using coalescent embedding techniques and the embedding coordinates are used to weight the input 

matrix for the Walktrap algorithm: observed links are weighted using the hyperbolic distances (HD) 

between the nodes (see Methods for details). As a reference, the Walktrap algorithm has been run giving 

in input also the unweighted adjacency matrix. The communities detected have been compared to the 

annotated ones computing the Normalized Mutual Information (NMI). The table reports the mean NMI 

for nPSO networks with 4 and 8 communities, the mean NMI over all the networks and the mean 

ranking. The best coalescent embedding technique and the unweighted variant are highlighted. 

 

 nPSO 
C=4 

nPSO 
C=8 

mean 
NMI 

mean 
ranking 

EBC-ISO-HD 0.93 0.88 0.91 9.7 

EBC-ncISO-HD 0.93 0.88 0.90 9.8 

RA-ISO-EA-HD 0.92 0.88 0.90 10.4 

RA-LE-HD 0.92 0.88 0.90 10.5 

EBC-LE-HD 0.92 0.88 0.90 10.6 

EBC-ISO-EA-HD 0.92 0.88 0.90 10.6 

RA-ncISO-EA-HD 0.92 0.88 0.90 10.6 

EBC-ncISO-EA-HD 0.92 0.88 0.90 10.7 

RA-ncISO-HD 0.91 0.88 0.90 10.8 

EBC-ncMCE-EA-HD 0.92 0.88 0.90 10.9 

RA-ISO-HD 0.91 0.88 0.90 10.9 

EBC-ncMCE-HD 0.90 0.88 0.89 11.1 

RA-LE-EA-HD 0.92 0.88 0.90 11.2 

EBC-LE-EA-HD 0.92 0.88 0.90 11.4 

EBC-MCE-EA-HD 0.92 0.87 0.89 11.5 

RA-ncMCE-EA-HD 0.92 0.87 0.89 11.6 

RA-MCE-EA-HD 0.92 0.87 0.89 11.6 

RA-ncMCE-HD 0.90 0.88 0.89 11.7 

EBC-MCE-HD 0.91 0.87 0.89 11.7 

RA-MCE-HD 0.91 0.87 0.89 11.8 

unweighted 0.91 0.87 0.89 11.9 
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Table 2. Community detection on nPSO networks using network embedding and Label 

propagation. 

Synthetic networks have been generated using the nPSO model with parameters N = [100, 500, 1000], 

m = [10, 12, 14], T = [0.1, 0.3, 0.5], γ = 3 and angular coordinates sampled according to a Gaussian 

mixture distribution with equal proportions and components C = [4, 8].  For each combination of 

parameters, 10 networks have been generated. Each network has been embedded in the hyperbolic space 

using coalescent embedding techniques and the embedding coordinates are used to weight the input 

matrix for the Label propagation algorithm: observed links are weighted using the hyperbolic distances 

(HD) between the nodes (see Methods for details). As a reference, the Label propagation algorithm has 

been run giving in input also the unweighted adjacency matrix. The communities detected have been 

compared to the annotated ones computing the Normalized Mutual Information (NMI). The table 

reports the mean NMI for nPSO networks with 4 and 8 communities, the mean NMI over all the 

networks and the mean ranking. The best coalescent embedding technique and the unweighted variant 

are highlighted. 

 

 nPSO 
C=4 

nPSO 
C=8 

mean 
NMI 

mean 
ranking 

EBC-LE-HD 0.74 0.66 0.70 8.2 

RA-LE-HD 0.73 0.66 0.70 8.6 

EBC-ISO-HD 0.69 0.63 0.66 9.1 

EBC-ncISO-HD 0.67 0.63 0.65 9.6 

RA-ISO-HD 0.69 0.62 0.65 9.9 

EBC-ncMCE-HD 0.65 0.65 0.65 10.2 

RA-ncISO-HD 0.68 0.61 0.64 10.3 

unweighted 0.57 0.56 0.56 10.8 

EBC-MCE-HD 0.58 0.60 0.59 11.0 

RA-ISO-EA-HD 0.58 0.59 0.58 11.4 

RA-LE-EA-HD 0.59 0.58 0.59 11.6 

RA-ncISO-EA-HD 0.55 0.58 0.57 11.7 

EBC-ISO-EA-HD 0.56 0.56 0.56 11.8 

RA-ncMCE-EA-HD 0.56 0.58 0.57 11.8 

EBC-ncISO-EA-HD 0.55 0.57 0.56 11.9 

RA-ncMCE-HD 0.61 0.63 0.62 11.9 

RA-MCE-HD 0.57 0.59 0.58 12.0 

EBC-MCE-EA-HD 0.55 0.56 0.55 12.1 

EBC-ncMCE-EA-HD 0.52 0.57 0.55 12.1 

EBC-LE-EA-HD 0.54 0.56 0.55 12.4 

RA-MCE-EA-HD 0.51 0.56 0.54 12.7 
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Table 3. Link prediction on small-size real networks. 

For each network 10% of links have been randomly removed (10 repetitions for SBM due to the high 

computational time, 100 repetitions for the others) and the algorithms have been executed in order to 

assign likelihood scores to the non-observed links in these reduced networks. In order to evaluate the 

performance, the links are ranked by likelihood scores and the precision is computed as the percentage 

of removed links among the top-r in the ranking, where r is the total number of links removed. The 

table reports for each network the mean precision over the random repetitions. The last rows show the 

mean precision and the mean ranking over the entire dataset. For each network the best method is 

highlighted in bold. The networks are sorted by increasing number of nodes N. 

 

 SPM CRA SBM RA 

mouse neural 0.02 0.11 0.10 0.07 

karate 0.17 0.20 0.28 0.14 

dolphins 0.13 0.14 0.16 0.10 

macaque neural 0.72 0.56 0.68 0.51 

polbooks 0.17 0.17 0.15 0.21 

ACM2009 contacts 0.26 0.27 0.25 0.27 

football 0.31 0.36 0.34 0.27 

physicians innovation 0.07 0.07 0.06 0.08 

manufacturing email 0.51 0.42 0.47 0.43 

littlerock foodweb 0.84 0.15 0.73 0.10 

jazz 0.65 0.56 0.47 0.54 

residence hall friends 0.28 0.24 0.18 0.25 

haggle contacts 0.62 0.57 0.62 0.58 

worm nervoussys 0.16 0.12 0.15 0.10 

netsci 0.41 0.50 0.13 0.59 

infectious contacts 0.37 0.34 0.30 0.35 

flightmap 0.75 0.54 0.64 0.56 

email 0.16 0.16 0.09 0.15 

polblog 0.23 0.17 0.19 0.13 

mean precision 0.36 0.30 0.32 0.29 

mean ranking 1.89 2.53 2.71 2.87 
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Table 4. Link prediction on large-size real networks. 

For each network 10% of links have been randomly removed (10 repetitions) and the algorithms have 

been executed in order to assign likelihood scores to the non-observed links in these reduced networks. 

In order to evaluate the performance, the links are ranked by likelihood scores and the precision is 

computed as the percentage of removed links among the top-r in the ranking, where r is the total number 

of links removed. The table reports for each network the mean precision over the random repetitions. 

The last rows show the mean precision and the mean ranking over the entire dataset. For each network 

the best method is highlighted in bold. The networks are sorted by increasing number of nodes N. 

 

 CRA RA SPM 

odlis 0.12 0.10 0.08 

advogato 0.16 0.14 0.15 

arxiv astroph 0.53 0.64 0.67 

thesaurus 0.08 0.03 0.07 

arxiv hepth 0.22 0.20 0.27 

ARK200909 0.15 0.14 0.10 

ARK200912 0.16 0.15 0.09 

ARK201003 0.16 0.15 0.10 

ARK201006 0.16 0.15 0.10 

ARK201009 0.16 0.16 0.10 

ARK201012 0.16 0.16 0.11 

facebook 0.11 0.06 0.10 

mean precision 0.18 0.17 0.16 

mean ranking 1.33 2.25 2.42 
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Table 5. Link prediction in time on AS Internet networks. 

Six AS Internet network snapshots are available from September 2009 to December 2010, at time steps 

of 3 months. For every snapshot at times i = [1, 5] the algorithms have been executed in order to assign 

likelihood scores to the non-observed links and the link prediction performance has been evaluated 

computing the precision with respect to every future time point j = [i+1, 6]. Considering a pair of time 

points (i, j), the non-observed links at time i are ranked by decreasing likelihood scores and the precision 

is computed as the percentage of links that appear at time j among the top-r in the ranking, where r is 

the total number of non-observed links at time i that appear at time j. Non-observed links at time i 

involving nodes that disappear at time j are not considered in the ranking. The table reports for each 

method a 5-dimensional upper triangular matrix, containing as element (i, j) the precision of the link 

prediction from time i to time j+1. On the bottom-right side, the methods are ranked by the mean 

precision computed over all the time combinations, the mean ranking is also shown. For each 

comparison the best method is highlighted in bold. 

 

CRA RA 

0.11 0.12 0.13 0.14 0.14 0.10 0.11 0.11 0.12 0.12 

 0.12 0.13 0.14 0.14  0.09 0.10 0.11 0.12 

  0.12 0.13 0.14   0.09 0.11 0.12 

   0.12 0.13    0.10 0.11 

    0.12     0.10 

SPM  
mean 

precision 

mean 

ranking 

0.08 0.09 0.09 0.10 0.11 CRA 0.13 1 

 0.07 0.08 0.09 0.10 RA 0.11 2 

  0.08 0.09 0.10 SPM 0.09 3 

   0.08 0.09    

    0.09    
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Table 6. Statistics of small-size real networks. 

For each network several statistics have been computed. N is the number of nodes. E is the number of 

edges. The parameter m, as in the PSO model, refers to half of the average node degree. D is the network 

density. C is the average clustering coefficient, computed for each node as the number of links between 

its neighbours over the number of possible links [37]. L is the characteristic path length of the network 

[37]. Power-law is the exponent  of the power-law distribution estimated from the observed degree 

distribution of the network using the maximum likelihood procedure described in [91]. 

 

 N E m D C L 
Power 

law 

mouse neural 18 37 2.06 0.24 0.22 1.97 4.01 

karate 34 78 2.29 0.14 0.57 2.41 2.12 

dolphins 62 159 2.56 0.08 0.26 3.36 6.96 

macaque neural 94 1515 16.12 0.35 0.77 1.77 4.46 

polbooks 105 441 4.20 0.08 0.49 3.08 2.62 

ACM2009 contacts 113 2196 19.43 0.35 0.53 1.66 3.74 

football 115 613 5.33 0.09 0.40 2.51 9.09 

physicians innovation 117 465 3.97 0.07 0.22 2.59 4.51 

manufacturing email 167 3250 19.46 0.23 0.59 1.97 3.13 

littlerock foodweb 183 2434 13.30 0.15 0.32 2.15 3.00 

jazz 198 2742 13.85 0.14 0.62 2.24 4.48 

residence hall friends 217 1839 8.47 0.08 0.36 2.39 6.32 

haggle contacts 274 2124 7.75 0.06 0.63 2.42 1.51 

worm nervoussys 297 2148 7.23 0.05 0.29 2.46 3.34 

netsci 379 914 2.41 0.01 0.74 6.04 3.36 

infectious contacts 410 2765 6.74 0.03 0.46 3.63 6.42 

flightmap 456 37947 83.22 0.37 0.81 1.64 1.71 

email 1133 5451 4.81 0.01 0.22 3.61 4.89 

polblog 1222 16714 13.68 0.02 0.32 2.74 2.38 

 

  



241 
 

Table 7. Statistics of AS Internet snapshots and large-size real networks. 

The first half of the table reports the statistics for the AS Internet snapshots, whereas the second half 

the large-size real networks. Note that also the last AS Internet snapshot has been considered in the 

simulations on the large-size real networks. For each network several statistics have been computed. N 

is the number of nodes. E is the number of edges. The parameter m, as in the PSO model, refers to half 

of the average node degree. D is the network density. C is the average clustering coefficient, computed 

for each node as the number of links between its neighbours over the number of possible links [37]. L 

is the characteristic path length of the network [37]. Power-law is the exponent  of the power-law 

distribution estimated from the observed degree distribution of the network using the maximum 

likelihood procedure described in [91]. 

 

 N E m D C L 
Power 

law 

ARK200909 24091 59531 2.47 0.0039 0.36 3.53 2.12 

ARK200912 25910 63435 2.45 0.0031 0.36 3.54 2.11 

ARK201003 26307 66089 2.51 0.0012 0.37 3.53 2.26 

ARK201006 26756 68150 2.55 0.0011 0.37 3.51 2.08 

ARK201009 28353 73722 2.60 0.0009 0.37 3.52 2.23 

ARK201012 29333 78054 2.66 0.0002 0.38 3.50 2.22 

odlis 2898 16376 5.65 0.0002 0.30 3.17 2.63 

advogato 5042 39227 7.78 0.0002 0.25 3.27 2.73 

arxiv astroph 17903 196972 11.00 0.0002 0.63 4.19 2.83 

thesaurus 23132 297094 12.84 0.0002 0.09 3.49 2.84 

arxiv hepth 27400 352021 12.85 0.0002 0.31 4.28 2.86 

facebook 43953 182384 4.15 0.0002 0.11 5.60 3.66 
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Table 8. Link prediction on small-size real networks using hyperbolic embedding methods. 

For each of the small-size real networks shown in Table 1, 10% of links have been randomly removed 

(100 repetitions) and the algorithms have been executed in order to assign likelihood scores to the non-

observed links in these reduced networks. In order to evaluate the performance, the links are ranked by 

likelihood scores and the precision is computed as the percentage of removed links among the top-r in 

the ranking, where r is the total number of links removed. The table reports the mean precision and the 

mean ranking over the entire dataset. The methods are sorted by mean ranking. 

 

 mean precision mean ranking 

RA-ncMCE-HSP 0.17 10.8 

EBC-ncISO-HSP 0.17 10.9 

RA-ncISO-HSP 0.17 11.1 

RA-MCE-EA-HSP 0.17 11.2 

RA-MCE-HSP 0.17 11.8 

EBC-ncISO-EA-HSP 0.16 12.8 

RA-LE-HSP 0.17 12.9 

RA-ISO-HSP 0.16 13.1 

RA-ncMCE-EA-HSP 0.17 13.7 

RA-ncISO-EA-HSP 0.16 13.8 

EBC-ISO-HSP 0.15 13.9 

EBC-ncMCE-HSP 0.16 14.0 

EBC-MCE-HSP 0.16 14.2 

EBC-ISO-EA-HSP 0.16 14.3 

RA-LE-EA-HSP 0.16 14.8 

EBC-ncMCE-EA-HSP 0.16 15.1 

EBC-LE-EA-HSP 0.15 15.1 

EBC-MCE-EA-HSP 0.16 15.6 

RA-ISO-EA-HSP 0.16 16.2 

EBC-LE-HSP 0.14 19.7 

LPCS-HSP 0.14 20.4 

EBC-ncISO-EA-HD 0.12 24.7 

RA-LE-EA-HD 0.12 26.7 

EBC-MCE-EA-HD 0.12 27.0 

EBC-ncMCE-EA-HD 0.12 27.2 

RA-ncMCE-EA-HD 0.12 27.7 

RA-ncISO-EA-HD 0.12 27.7 

LPCS-HD 0.12 27.8 

HyperMapCN-HSP 0.11 27.9 

EBC-ISO-EA-HD 0.11 28.3 

RA-ISO-EA-HD 0.11 28.9 

RA-ncISO-HD 0.10 29.3 

RA-ncMCE-HD 0.10 29.4 

EBC-LE-EA-HD 0.11 29.6 

EBC-ncISO-HD 0.10 29.8 

RA-MCE-EA-HD 0.11 30.4 

RA-ISO-HD 0.09 31.8 

RA-MCE-HD 0.09 32.6 

EBC-ncMCE-HD 0.09 33.1 

HyperMapCN-HD 0.06 33.2 

RA-LE-HD 0.09 34.1 

EBC-MCE-HD 0.09 34.3 

EBC-ISO-HD 0.07 35.4 

EBC-LE-HD 0.07 37.3 
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Table 9. Top-ranked intra-community links using hyperbolic embedding methods. 

For three small-size real networks with community metadata available, 10% of links have been 

randomly removed (100 repetitions) and the algorithms have been executed in order to assign likelihood 

scores to the non-observed links in these reduced networks. After ranking the links by likelihood scores, 

the top-r in the ranking are considered, where r is the total number of links removed. The table reports 

the percentage of intra-community links in the top-ranking (𝑖𝑐𝑙_𝑡𝑜𝑝/𝑡𝑜𝑝) and the percentage of these 

top-ranked intra-community links corresponding to correct predictions (𝑖𝑐𝑙_𝑡𝑜𝑝_𝑡𝑟𝑢𝑒/𝑖𝑐𝑙_𝑡𝑜𝑝), 

averaged over the 100 repetitions. The mean over all the techniques is also highlighted. 
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EBC-ISO-HD 1.00 0.01 0.95 0.06 0.93 0.05 

EBC-ISO-HSP 0.97 0.09 0.98 0.09 0.94 0.14 

EBC-ISO-EA-HD 0.50 0.20 0.82 0.10 0.78 0.10 

EBC-ISO-EA-HSP 0.91 0.07 0.94 0.09 0.76 0.13 

EBC-ncISO-HD 1.00 0.02 0.92 0.08 0.97 0.05 

EBC-ncISO-HSP 0.99 0.06 0.96 0.10 0.98 0.13 

EBC-ncISO-EA-HD 0.48 0.24 0.83 0.11 0.87 0.11 

EBC-ncISO-EA-HSP 0.73 0.07 0.93 0.10 0.84 0.12 

EBC-MCE-HD 0.98 0.01 0.88 0.07 0.54 0.04 

EBC-MCE-HSP 0.88 0.07 0.94 0.11 0.68 0.12 

EBC-MCE-EA-HD 0.35 0.35 0.83 0.10 0.46 0.08 

EBC-MCE-EA-HSP 0.67 0.07 0.94 0.10 0.72 0.08 

EBC-ncMCE-HD 0.98 0.01 0.85 0.06 0.54 0.05 

EBC-ncMCE-HSP 0.91 0.04 0.84 0.09 0.50 0.13 

EBC-ncMCE-EA-HD 0.36 0.31 0.76 0.10 0.43 0.10 

EBC-ncMCE-EA-HSP 0.79 0.07 0.84 0.10 0.59 0.09 

EBC-LE-HD 1.00 0.02 0.90 0.07 0.44 0.04 

EBC-LE-HSP 0.99 0.09 0.95 0.10 0.67 0.07 

EBC-LE-EA-HD 0.44 0.24 0.84 0.10 0.41 0.06 

EBC-LE-EA-HSP 0.78 0.10 0.93 0.11 0.67 0.08 

RA2-ISO-HD 0.99 0.01 0.91 0.07 0.95 0.04 

RA2-ISO-HSP 0.98 0.11 0.96 0.08 0.99 0.09 

RA2-ISO-EA-HD 0.47 0.25 0.81 0.09 0.85 0.07 

RA2-ISO-EA-HSP 0.83 0.09 0.94 0.08 0.90 0.08 

RA2-ncISO-HD 0.99 0.02 0.93 0.07 0.94 0.06 

RA2-ncISO-HSP 0.99 0.09 0.96 0.09 0.99 0.10 

RA2-ncISO-EA-HD 0.39 0.29 0.82 0.09 0.87 0.10 

RA2-ncISO-EA-HSP 0.80 0.10 0.93 0.08 0.83 0.10 

RA2-MCE-HD 0.97 0.01 0.86 0.06 0.89 0.05 

RA2-MCE-HSP 0.96 0.09 0.92 0.08 0.97 0.10 

RA2-MCE-EA-HD 0.32 0.34 0.75 0.08 0.80 0.08 

RA2-MCE-EA-HSP 0.74 0.12 0.88 0.08 0.93 0.09 

RA2-ncMCE-HD 1.00 0.01 0.81 0.07 0.91 0.05 

RA2-ncMCE-HSP 0.99 0.07 0.83 0.08 0.96 0.10 

RA2-ncMCE-EA-HD 0.42 0.31 0.70 0.09 0.81 0.08 

RA2-ncMCE-EA-HSP 0.82 0.08 0.87 0.07 0.87 0.09 

RA2-LE-HD 1.00 0.02 0.91 0.07 0.96 0.03 

RA2-LE-HSP 0.99 0.10 0.92 0.11 0.99 0.09 

RA2-LE-EA-HD 0.46 0.28 0.81 0.10 0.92 0.09 

RA2-LE-EA-HSP 0.87 0.09 0.93 0.09 0.94 0.09 

HyperMapCN-HD 0.59 0.23 0.48 0.09 0.67 0.04 

HyperMapCN-HSP 0.94 0.11 0.77 0.06 0.83 0.04 

LPCS-HD 0.60 0.13 0.80 0.08 0.90 0.05 

LPCS-HSP 0.74 0.12 0.88 0.09 0.92 0.08 

mean 0.78 0.12 0.87 0.09 0.80 0.08 
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