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Abstract The evolution of the U.S. skill premium over the past century has been
characterized by a U-shaped pattern. The previous literature has attributed this
observation mainly to the existence of exogenous, unexpected technological shocks
or changes in institutional factors. In contrast, this paper demonstrates that a
U-shaped evolution of the skill premium can also be obtained using a simple two-
sector growth model that comprises both variants of skill-biased technological change
(SBTC): technological change (TC) that is favorable to high-skilled labor and capital-
skill complementarity (CSC). Within this framework, we derive the conditions neces-
sary to achieve a non-monotonic evolution of relative wages and analyze the dynam-
ics of such a case. We show that in the short run for various parameter constellations
an educational, a relative substitutability, and a factor intensity effect can induce a
decrease in the skill premium despite moderate growth in the relative productivity of
high-skilled labor. In the long run, as the difference in labor productivity increases,
the skill premium also rises. To underpin our theoretical results, we conduct a
comprehensive simulation study.
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1 Introduction

The pattern of movements in the U.S. skill premium, defined as the wage of high-
skilled relative to low-skilled labor, varied substantially during the twentieth century.
Figure 1 plots the development of the wage premium for college and high school grad-
uates in the U.S. from 1915 through 2005.1 It illustrates that the college and high
school premium collapsed from 1915 to 1950 and fluctuated during the years 1950
to 1980. Thereafter, the wage differential between college and high school graduates
expanded considerably starting in the 1980s and continued to increase, although at a
slower rate, in the 1990s and early 2000s. By 2005, the college premium had almost
come full circle to its 1915 level. Although less pronounced, a similar picture can be
obtained for the development of the high school premium. While relatively constant
from 1950 to 1980, the wage differential began to increase during the 1980s and
1990s. Consequently, the time series of the U.S. college and high school premium
have been U-shaped over the past century. In addition to the U.S., a non-monotonic
development of relative wages between high- and low-skilled labor has been docu-
mented for several developed countries, most prominently Sweden (Lindquist, 2005,
Domeij and Ljungqvist, 2019), Japan (Lise et al., 2014), and Germany (Glitz and
Wissmann, 2017).2

Figure 1: Evolution of the U.S. college and high school graduate wage premium
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The time series of the U.S. skill premium are obtained from Goldin and Katz (2008). The plotted

series are based on the log (college/high school) and (high school/eighth grade) wage differential

series from 1915 to 2005.

To explain changes in the structure of relative wages, numerous potential approaches
have been proposed, including low-skilled immigration, labor market institutions

1In addition, see Autor (2014) for the development of the college premium based on yearly data
from 1963 to 2012.

2See Peracchi (2006) for an extensive survey of the empirical literature.
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and the international fragmentation of production.3 However, most of the recent
empirical literature, e.g., McAdam and Willman (2018), suggests that skill-biased
technological change (SBTC) has been the most important driver of the wage struc-
ture development.4 In essence, SBTC can be interpreted as a shift in the production
technology that raises the relative productivity of high-skilled labor and thus its rela-
tive wage rate (Violante, 2008). The literature distinguishes two distinct approaches
of SBTC: technological change (TC), which is favorable to high-skilled labor, and
capital-skill complementarity (CSC).5 The first approach was popularized by Bound
and Johnson (1992) and Katz and Murphy (1992). Under this explanation, an in-
crease in the skill premium is induced by an increase in technological change that
augments high-skilled more than low-skilled labor. In addition, this requires that
the elasticity of substitution between the two types of labor must exceed unity. The
second approach is capital-skill complementarity. CSC is present if an increased
use of capital in production raises the wage of high-skilled labor more than that of
low-skilled labor. Consequently, the skill premium increases. As shown by Griliches
(1969), under this explanation, capital and high-skilled labor must be more comple-
mentary than capital and low-skilled labor.

However, in most preceding studies, both approaches of SBTC have generally been
applied to explain the rapid increase in the U.S. college premium over the past four
decades. In comparison, with respect to the U-shaped development of the skill pre-
mium, only a few studies have applied the framework of SBTC. Moreover, in most of
these papers (e.g. Galor and Tsiddon, 1997, Caselli, 1999, Lloyd-Ellis, 1999, Jacobs
and Nahuis, 2002, Guvenen and Kuruscu, 2012, Kishi, 2015), the non-monotonic
behavior of the skill premium has mainly been explained through the adjustment
process to exogenous, unexpected technological shocks. For instance, Caselli (1999)
assumes the existence of learning costs for new technologies. He argues that the cycli-
cal behavior of the skill premium can be explained by the interplay of skill-biased
and de-skilling technological revolutions. Guvenen and Kuruscu (2012) present an
overlapping-generations model in which individuals differ in their ability to accumu-
late human capital. The authors show that a U-shaped pattern of the skill premium
emerges in response to a one-time permanent increase in the productivity of human
capital. In addition to technological change, another strand of the literature explains
the development of the skill premium through changes in institutional factors. For
example, Galor and Moav (2000) present an overlapping-generations model with
ability-biased technological progress where education requires a costly investment
financed through a loan. The authors show that within this framework, a sufficient
decline in the degree of credit market imperfections can explain the cyclical pattern
of wage inequality over recent decades.

In contrast to this literature, the main aim of this paper is to demonstrate that
a U-shaped development of the skill premium is attainable under both approaches

3For a detailed discussion of different explanations, see Bound and Johnson (1992), Katz and
Autor (1999), Acemoglu (2003), Hornstein et al. (2005), Autor et al. (2008), Goldin and Katz
(2008), Acemoglu and Autor (2011) and van Reenen (2011), among others.

4See Card and DiNardo (2002) for a critical review of the literature linking SBTC to wage
inequality in the U.S. economy.

5See the appendix for a detailed description of both approaches.
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of SBTC and can emerge in the absence of any exogenous shocks or changes in
institutional factors. By extending a simplified approach developed by Steger (2008),
we demonstrate that the non-monotony in in the development of relative wages can
be derived as an equilibrium outcome driven by factor-augmenting technological
change and the accumulation of capital. For this purpose, this paper develops a
two-sector Solow growth model in which a final good is produced through a four-
factor, two-level CES production function that combines two types of capital with
low-skilled and high-skilled labor. To allow for SBTC, production is characterized by
factor-augmenting technological progress and differences in the sectoral possibility
to substitute capital and labor. The labor force consists of heterogeneous workers
that differ with respect to their inherent abilities. Each worker can decide whether
to spend a fraction of time on education and work as high-skilled labor or to enter
the labor market directly as a low-skilled worker without education. In each period,
the composition of labor is endogenously determined by the decisions of individual
workers and solely depends on the skill premium and the distribution of inherent
abilities. In this economic environment, we derive the conditions necessary to achieve
a U-shaped pattern in the behavior of relative wages. Furthermore, by conducting
comparative statics of changes in central model parameters, we test for the sensitivity
of this result. We demonstrate that a U-shaped pattern of the skill premium can
be achieved due to the interplay of three distinct effects: an educational, a relative
substitutability, and a factor intensity effect. While the first effect relies on the
opportunity cost of education, the second effect is driven by sectoral differences in
the elasticity of substitution between capital and labor. Both effects increase the
requirement of relative high-skilled augmenting technological change necessary to
induce an increase in the skill premium. Consequently, for a moderate rise in relative
labor productivity, the wage ratio will decrease in the short run. In the long run, as
the difference in labor productivity increases, the skill premium also rises. The factor
intensity effect is driven by sectoral differences in the relative usage of capital and
labor in production. Depending on the set of parameter combinations, the effect can
either strengthen or weaken the U-shaped pattern of the skill premium. Especially
for a strong sectoral reallocation of capital, the skill premium might increase steadily
over time. Although the model appears relatively simple, it cannot generally be
solved analytically. Therefore, we conduct a comprehensive simulation study to
present the transitional dynamics of the model. We show that with empirically
plausible parameter choices, our neoclassical growth model is able to generate a
U-shaped development of the skill premium under both approaches of SBTC.

Furthermore, the mechanisms derived in this paper are also related to those dis-
cussed in the literature on structural transformation. Notable contributions that
examine technological explanations for the observed reallocation of resources across
the broad sectors of agriculture, manufacturing and services include Ngai and Pis-
sarides (2007), Acemoglu and Guerrieri (2008), and Alvarez-Cuadrado et al. (2017).6

Specifically, Alvarez-Cuadrado et al. (2017) present a model where the process of

6For a review of the main forces driving structural change, see van Neuss (2019). Alvarez-
Cuadrado et al. (2018) jointly examine the influence of technological aspects (sectoral differences
in capital-labor substitutability, productivity, and capital intensity) together with non-homothetic
preferences on changes in the labor share and structural transformation.
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structural change is induced by cross-sectoral differences in the elasticity of substi-
tution between capital and labor.7 However, as the authors assume homogeneous
labor, the wage rate is always equalized across sectors, and the model is therefore
unable to study the development of the skill premium. To some extent, our model
can be seen as an extension of Alvarez-Cuadrado et al. (2017), as we study the
development of the skill premium under the assumption of heterogeneous labor.

The remainder of the paper is organized as follows. In the next section, our model
is introduced. After a description of the static equilibrium in section 3.1, we ana-
lyze the dynamics of the model in section 3.2. Section 4 presents some numerical
applications. We close with some concluding remarks in section 5.

2 A two-sector model of endogenous labor supply

In this section, we present our model, which introduces elements from the literature
on endogenous labor supply (Cahuc and Michel, 1996, Cervellati and Sunde, 2005,
Meckl, 2006) into a two-sector growth model in the spirit of Ngai and Pissarides
(2007), Acemoglu and Guerrieri (2008), Steger (2008), and Alvarez-Cuadrado et al.
(2017). We consider a closed economy operating under perfect competition in an
infinite, continuous-time horizon. To simplify the analysis, we abstract from a house-
hold sector and solely focus on the production structure of the economy. Within
the latter, in each period of time, a homogeneous final good is produced as a com-
bination of two intermediates. One intermediate uses capital and low-skilled labor,
while the other uses capital and high-skilled labor.

2.1 Labor supply

The economy is populated by a continuum of different workers who live for one
period. Each period, a new generation is born such that the population is constant
over time. To simplify the analysis, we normalize the mass of workers to unity.
Workers are endowed with one unit of time and are heterogeneous with respect
to their inherent abilities a ∈ [0, 1]. Abilities are distributed uniformly over the
continuum of workers. In each period t, the composition of labor is endogenously
determined by the decisions of individual workers.

Ability a characterizes each worker by the effort that is required of him or her to
become a high-skilled worker. Thus, following Cahuc and Michel (1996), education is
not assumed to raise individual human capital but to enable a worker to be engaged
in the high-skilled sector. The costs of education depend negatively on the inherent
abilities. A worker with ability a can choose to spend an exogenously given fraction
of time η = 1−a on education. This enables him or her to inelastically supply 1−η
units of high-skilled labor once the education process is completed. The educational

7In a related approach, Wingender (2015) argues that structural transformation in developing
countries is mainly driven by differences in the sectoral elasticity of substitution between high-
skilled and low-skilled workers.
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costs are completely borne by workers. Therefore, the wage income of the individual
high-skilled worker is given by (1−η)wH . Alternatively, a worker can decide against
education and enter the labor market directly as a low-skilled worker. In that case,
he or she inelastically supplies one unit of low-skilled labor and earns the wage
rate wU , irrespective of ability. Based on these assumptions, the individual worker
chooses to become high-skilled if and only if his or her ability a is not smaller than
a threshold value ã determined by (suppressing time subscripts for legibility)

(1) ω = (1− η̃)−1 = (ã)−1,

where ω ≡ wH
wU

denotes the skill premium in the economy. As will be shown in the
following, in each period t, there exists a unique, interior, threshold level of ability
0 < ã < 1.8 Workers with an ability a ≥ ã decide in favor of education to become
high-skilled, while those with a < ã decide to remain low-skilled. The threshold
level ã is inversely related to the relative wage rate ω. Any increase in ω induces
labor employment shifts from the low-skilled to the high-skilled intermediate sector,
as it increases the incentive to become educated. Finally, the aggregate supplies of
low- and high-skilled labor, LU and LS, respectively, measured in effective working
time and the aggregate time of high-skilled labor spent on education, E, are

LU =

∫ ã

0

f(a)da = ã(2)

LS =

∫ 1

ã

af(a) da = 0.5(1− ã2)

E =

∫ 1

ã

(1− a)f(a) da = 0.5(1 + ã2)− ã

where f(a) is the density function of low-skilled workers given the uniform distribu-
tion of abilities.

2.2 Technology

In each period t, a two-level, four-factor CES production system is applied, where
a unique final good, Y , is produced by a representative firm as a combination of
capital, K, high-skilled labor, LS, and low-skilled labor, LU . In the following anal-
ysis, we adopt the normalization procedure developed in de La Grandville (1989)
and Klump and de La Grandville (2000). The basic idea behind normalization is to
express production functions in terms of index numbers to ensure deep or dimension-
less parameters (Cantore and Levine, 2012).9 During our analysis, normalization is

8Note that as a consequence, aggregate labor supply measured in effective working time is
necessarily smaller than unity. Furthermore, this ensures that the wage rate of each effective unit
of high-skilled labor strictly exceeds that of low-skilled labor.

9For a comprehensive survey of the concept of normalization, see Klump et al. (2012).
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essential, as it guarantees a meaningful and consistent comparison of model results
relying on different values of production parameters. Hence, in the following, the
subscript 0 indicates an arbitrarily chosen benchmark value used for normalization
at the point t = 0. In the upper level of the production system, normalized final
output, Ỹ = Y/Y0, is produced based on the following CES technology

(3) Ỹ =
[
α0Ỹ

σ−1
σ

S + (1− α0)Ỹ
σ−1
σ

U

] σ
σ−1

where σ refers to the elasticity of substitution between a normalized high-skilled
and low-skilled intermediate good, Ỹi = Yi/Yi,0, i ∈ {S, U}. The production of
intermediates is defined by two lower level CES production functions

(4) ỸS =
[
β0(AKSK̃S)

σS−1

σS + (1− β0)(ASL̃S)
σS−1

σS

] σS
σS−1

and

(5) ỸU =
[
γ0(AKUK̃U)

σU−1

σU + (1− γ0)(AU L̃U)
σU−1

σU

] σU
σU−1

where K̃i = Ki/Ki,0 and L̃i = Li/Li,0 depict normalized sectoral inputs of capital
and labor, respectively. Production functions (3) to (5) are linearly homogeneous.
At the point of normalization, t = 0, the distribution parameter α0 ∈ (0, 1) repre-
sents the output share of the high-skilled intermediate in the final good production.
Analogously, β0 (γ0) ∈ (0, 1) depicts the factor share of capital in the production
of the high-skilled (low-skilled) intermediate. Capital market clearing requires the
aggregate capital stock, K, at each date to be fully allocated across intermediate
sectors:

(6) K = KS +KU

In the following, we assume capital to be fully mobile across intermediate sectors.
Thus, the equalization of the interest rates, rS = rU = r, allows us to endogenously
determine the allocation of capital between sectors. In contrast, labor differs with
respect to its degree of education. Based on educational attainment, high- or low-
skilled labor will only be employed in its respective intermediate sector. Within
these sectors, the elasticity of substitution between capital and the skill-specific
labor input is defined by σi, i ∈ {S, U}.10 Based on the results of Krusell et al.
(2000) and McAdam and Willman (2018), among others, we make the following
assumption with respect to these elasticities:

10Note that for production functions (3) to (5), the Cobb-Douglas case occurs when
σ(σS){σU} → 1, the Leontief case with perfect complements occurs when σ(σS){σU} → 0, and
the von Neumann case with perfect substitutes occurs when σ(σS){σU} → ∞.
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Assumption 1. Within the production of intermediates, capital and high-skilled
labor are more complementary than are capital and low-skilled labor, that is,

σS < σU .

Furthermore, factor-specific technological progress for each input, KS, KU , LS, and
LU , is assumed to be an exogenous result of research and development. It is defined
according to the following exponential functions of time

(7) Aj,t = eλj(t−t0)

where the coefficients AKS, AKU , AS and AU indicate the efficiency in production
of the two types of capital, high-skilled and low-skilled labor, respectively.11

Assumption 2. Technological change augments high-skilled labor more than low-
skilled labor, that is,

λS > λU .

Based on Assumption 2, we follow the majority of the empirical literature, as sum-
marized in Hornstein et al. (2005) and Acemoglu and Autor (2011), and assume
that technological change is unbalanced and favorable to high-skilled labor. Insert-
ing equations (4) and (5) into (3), the two-level CES production function becomes

Ỹ =

[
α0

[
β0(AKSK̃S)

σS−1

σS + (1− β0)(ASL̃S)
σS−1

σS

] σS
σS−1

σ−1
σ +

(1− α0)
[
γ0(AKUK̃U)

σU−1

σU + (1− γ0)(AU L̃U)
σU−1

σU

] σU
σU−1

σ−1
σ

] σ
σ−1

,(8)

which imposes the following symmetry restrictions on the substitution elasticities.12

In the case of (8), the elasticity of substitution between the high-skilled and low-
skilled intermediate, σ, is restricted to be the same as between the pairs KS and
KU , KS and LU , and LS and LU , together with LS and KU . Most of the empirical
literature reports estimates of these elasticities to be greater than unity.13 Therefore,
in the following, we assume σ, σS, σU ≥ 1. Moreover, to ensure strictly positive values
for all inputs, we consider finite values for all substitution elasticities. Associated
with production function (8), the skill premium

(9) ω =
α0

1− α0

(
ỸS

ỸU

)− 1
σ 1− β0

1− γ0

(ỸS/LS)
1
σS

(ỸU/LU)
1
σU

(AS/LS,0)
σS−1

σS

(AU/LU,0)
σU−1

σU

11Thus, at the point of normalization, t = 0, we have Aj,0 = 1.
12See Sato (1967) for the theoretical foundation of two-level CES production functions. A com-

plete derivation of the normalized production system can be found in the appendix.
13See chapter 4 for a summary.
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is given by the marginal value product of high-skilled labor relative to that of low-
skilled labor.14 Finally, along the lines of Solow (1956), we assume a constant rate
of capital depreciation, δ ∈ (0, 1), and a constant exogenous fraction of final output,
s ∈ (0, 1), to be saved and invested every period.15 The law of motion for the capital
stock takes the form

(10) K̇t = sYt − δKt

where a dot denotes the time derivative of a variable. The aggregate resource con-
straint of the economy requires consumption, C, and gross investment, I, to be equal
to the output of the final good:

(11) K̇t + δKt + Ct = It + Ct = Yt

After presenting the full model, in the following, we turn to the characterization of
the static and dynamic equilibrium of the economy.

3 The static equilibrium and model dynamics

We normalize the price of the final good, p, to unity at all points in time. This leads
to

p ≡ 1 =
[
ασ0p

1−σ
S + (1− α0)σp1−σ

U

] 1
1−σ

where the prices of the high-skilled and low-skilled intermediates, pS and pU , respec-
tively, are obtained as

pS = α0

[
Ỹ

ỸS

] 1
σ

and pU = (1− α0)

[
Ỹ

ỸU

] 1
σ

.

We can now turn to the definition of the competitive equilibrium of the economy.

Definition 1. The competitive equilibrium of the economy, given factor sup-
ply and technology sequences {Kt, Lt, AS,t, AU,t, AKS,t, AKU,t}∞t=0, is defined as paths
for factor and intermediate good prices {rt, wS,t, wU,t, pS,t, pU,t}∞t=0, factor allocations
{KS,t, KU,t, LS,t, LU,t}∞t=0 and output levels {YS,t, YU,t, Yt}∞t=0 such that the represen-
tative firm maximizes profits and all markets clear.

The competitive equilibrium can be solved by maximizing the profit of the repre-
sentative firm, that is,

14A complete list of first-order conditions corresponding to (8) is presented in the appendix.
15Thus, following Barro (1974), we implicitly assume the existence of dynastic families with

intergenerational transfers that behave as though they are single, infinitely lived individuals.
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(12) max
{LS,t,LU,t,KS,t,KU,t}∞t=0

∫ ∞
t=0

(Yt − rt(KS,t +KU,t)− wS,tLS,t − wU,tLU,t) dt

subject to (2), (6), (7), and the resource constraint (10) in addition to the initial
conditions K0 > 0, L0 > 0, AKS,0 > 0, AKU,0 > 0, AS,0 > 0, and AU,0 > 0. Since
there are no intertemporal elements in the firm’s maximization problem, the model
can be solved sequentially by maximizing the static profits of the representative firm
at all points in time. Thanks to this property, we follow Acemoglu and Guerrieri
(2008) and divide the solution of the maximization problem into two parts: static
and dynamic. In the static part of the equilibrium characterization, presented in
section 3.1, we take the state variables, {K,L,AKS, AKU , AS, AU}, at any point in
time as given. We first determine the composition of labor into high-skilled and
low-skilled as well as the allocation of capital between sectors. This is followed by
a discussion of the comparative statics of the equilibrium allocation. In section 3.2,
we characterize the dynamic behavior of the economy, which is given as a sequence
of static problems as formalized above.

3.1 The static equilibrium

For the economy to be in equilibrium, all markets must clear simultaneously. As
can immediately be seen from (12), under perfect competition, the maximization
problem of the representative firm comprises two equilibrium conditions with respect
to factor inputs.16 First, at any point in time, free mobility of capital implies the
equalization of the marginal value product of capital across intermediate sectors,
that is, ∂Y/∂KS = ∂Y/∂KU . This results in the following capital mobility condition
(CMC):

(CMC)
α0

(1− α0)

(
ỸS

ỸU

)− 1
σ β0

γ0

(ỸS/KS)
1
σS

(ỸU/KU)
1
σU

(AKS/KS,0)
σS−1

σS

(AKU/KU,0)
σU−1

σU

= 1

Second, at any point in time and for any prices, the allocation of labor between the
high-skilled and low-skilled intermediate sector is captured by the following labor
mobility condition (LMC). The LMC equalizes the wage income of the marginal
worker, who is indifferent between becoming high-skilled or remaining low-skilled,
i.e., (1− η)∂Y/∂LS = ∂Y/∂LU :

(LMC) (1− η)
α0

1− α0

(
ỸS

ỸU

)− 1
σ 1− β0

1− γ0

(ỸS/LS)
1
σS

(ỸU/LU)
1
σU

(AS/LS,0)
σS−1

σS

(AU/LU,0)
σU−1

σU

= 1

16Due to the concavity of production system (8) with respect to factor inputs, the associated
first-order conditions are both necessary and sufficient for the characterization of the competitive
equilibrium.
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Both conditions, the CMC and the LMC, ensure the optimal allocation of capital
and labor between the two intermediate sectors. They hold at any point in time
and for any given set of state variables. We can now turn to a discussion of the
comparative statics of the static equilibrium. Within our model, shifts in the skill
premium can in general be decomposed into shifts induced by factor-augmenting
technological change and capital accumulation. In the following, we investigate the
influence of these sources on the determination of ω by considering both approaches
of SBTC. For that reaseon, we distinguish two different cases with respect to the
ordering of substitution elasticities: i) σ > σU > σS and ii) σU > σ > σS. As we will
see below, in the first special case, σ > σU > σS, factor-augmenting technological
change is also factor-biased because it increases the relative marginal value product
of the respective factor. As a result, under this constellation of the substitution
elasticities, an increase in the skill premium can be explained by technological change
that augments high-skilled labor more than low-skilled labor. The second case,
σU > σ > σS, features capital-skill complementarity. That is, an increase in the
aggregate stock of capital, K, unambiguously increases the relative marginal value
product of high-skilled labor and thus the skill premium.

Special case 1: factor-biased technological change Consider in the following the or-
dering σ > σU > σS. Assume first that the aggregate capital stock, K, is constant,
and focus solely on technological progress. Proposition 1 summarizes the quanti-
tative impact of labor- and capital-augmenting technological change on the general
equilibrium allocation of workers to the high-skilled intermediate sector, LS, and
thus the skill premium of the economy.17

Proposition 1. Consider σ > σU > σS. Under this constellation of the substitu-
tion elasticities, in the competitive equilibrium,

(13)
∂LS
∂AS

= −∂Σ(·)/∂AS
∂Σ(·)/∂LS

> 0,

(14)
∂LS
∂AU

= −∂Σ(·)/∂AU
∂Σ(·)/∂LS

< 0,

(15)
∂LS
∂AKS

= −∂Σ(·)/∂AKS
∂Σ(·)/∂LS

> 0,

and

(16)
∂LS
∂AKU

= −∂Σ(·)/∂AKU
∂Σ(·)/∂LS

< 0,

where the function Σ(·) = Σ(AS, AU , AKS, AKU , K, LS) and its partial elasticities
with respect to AS, AU , AKS, AKU , and LS are defined in the appendix.

17Note that, given by (1), ω = 1
a , where a =

√
1− 2LS . Thus, we have ∂ω

∂LS
= (1−2LS)−1.5 > 0,

or, alternatively, ∂LS
∂ω = ω−3 > 0.
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Proof: See Appendix A.4. �

Proposition 1 states that in the competitive equilibrium, assuming σ > σU > σS,
the level of labor allocated to the high-skilled intermediate sector and thus the skill
premium strictly increases with AS and AKS but decreases with AU and AKU .18

The intuition for this result is as follows. Under σ > σU > σS, an improvement in
the productivity of high-skilled workers, AS, increases their relative marginal value
product

∂
(
∂Y/∂LS
∂Y/∂LU

)
∂AS

> 0

and thus raises the demand for high-skilled labor. Consequently, the skill premium
increases. This increase, in turn, generates an incentive for additional workers to
become educated and thus raises the supply of high-skilled labor. Therefore, fol-
lowing Acemoglu (2002), under σ > σU > σS, high-skilled augmenting technological
change is also high-skilled biased. The effects of an increase in AU , AKS or AKU
appear similar. Moreover, the results in Proposition 1 can also be applied to KS. In
particular, for a constant aggregate capital stock, K, and the ordering σ > σU > σS,
we have ∂KS/∂AS > 0, ∂KS/∂AU < 0, ∂KS/∂AKS > 0, and ∂KS/∂AKU < 0.

Following the results from Proposition 1, it becomes clear that for any given capital
stock, in the long run, due to Assumption 2, ω and thus the level of high-skilled
labor always increases as a result of labor-augmenting technological change. Thus,
in the long run, our model results are consistent with the hypothesis put forward
by Bound and Johnson (1992) and Katz and Murphy (1992). However, in the short
run, the model also entails a feature that can account for the U-shaped development
of the skill premium. A necessary condition to allow for this feature is that the
relative influence of technological change augmenting low-skilled labor has to be
more pronounced than that of high-skilled labor. Consequently, for a moderate
increase in relative labor productivity, the skill premium will decrease in the short
run.

Figure 2 shows the result of a numerical example to visualize the interplay between
the two types of labor-augmenting technological change on the determination of
the skill premium. The 45◦ solid line indicates equality of high- and low-skilled
augmenting technological progress, that is, ∆AS = ∆AU . Based on the chosen
model configuration, we first calculate the initial skill premium, ω0, of the economy.
As a second step, the dashed, dotted, and dot-dashed line illustrate, under different
assumptions on the underlying production parameters, the relative increase in labor-
augmenting technological change necessary to keep ω0 constant. As seen from figure
2, under the assumptions made here, for any increase in AU , constancy in relative
wages requires that the increase in AS has to be strictly higher than that of AU .
In other words, to induce an increase in the skill premium, high-skilled augmenting

18This result is true even in the limiting case of σS = 1, where production function (4) reduces

to the Cobb-Douglas case, that is, ỸS = (AKSK̃S)β0(ASL̃S)1−β0 . Note that σU = 1 is ruled out
due to Assumption 1.
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technological change has to sufficiently exceed low-skilled augmenting technological
change. Within our model, this result is driven by three distinct effects.

Figure 2: Static effects of labor-augmenting technological change on the skill pre-
mium
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The scenario depicted in the figure above is based on production function (8), where the distribution

parameters are α0 = γ0 = 0.5, the initial aggregate capital stock is K0 = 2, and the elasticity of

substitution between intermediates is σ = 3. Furthermore, we have β0 = 0.5, σS = σU = 1.2

(dashed line), β0 = 0.5, σS = 1.2 and σU = 1.7 (dotted line), and β0 = 0.7, σS = σU = 1.2

(dot-dashed line).

First, there is an educational effect. It is depicted by the difference between the solid
and the dashed line. The rationale behind the effect is simple. Consider an increase
in the productivity of low-skilled labor. As shown in Proposition 1, this increase
in AU shifts labor from the high-skilled to the low-skilled intermediate sector, as
it causes a decrease in the skill premium ω. To induce an increase in LS back
to its initial level, high-skilled augmenting technological change has to compensate
not only for the increase in AU but also for the extent of educational costs. These
costs occur because in our model, education is not free, as in, for instance, Alvarez-
Cuadrado et al. (2017), but requires a costly investment of time. The strength of
the educational effect depends on the initial allocation of labor to both intermediate
sectors and the corresponding threshold ability ã. However, in general, the effect
implies that to ensure constancy in an initial skill premium, ∆AS has to exceed
∆AU .

Second, there is a relative substitutability effect. This effect relies on a fundamental
property of the CES production function.19 As demonstrated by de La Grandville

19Note that the effect is similar to the factor rebalancing effect developed in Alvarez-Cuadrado
et al. (2017).
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and Solow (2017), sectoral production described by CES production functions (4)
and (5) is an increasing function of the sectoral elasticity of substitution. The
rationale behind the relative substitutabiltiy effect is that when σi, i ∈ {S, U} is
high, diminishing marginal returns of capital and labor set in less pronounced than
in a case where σi is low (Brown, 1966). Consequently, for any given set of state
variables, {K,L,AKS, AKU , AS, AU}, and production parameters, the skill premium
is an increasing (decreasing) function of σS (σU).20 On the basis of this property and
due to Assumption 1, that is σS < σU , an identical increase in labor productivity,
i.e., ∆AS = ∆AU , induces a decrease in the skill premium. As a result, to keep
the initial skill premium constant, the relative substitutability effect also requires
∆AS > ∆AU . In figure 2, the effect can approximately be measured by the difference
between the dotted and the dashed lines.

Third, in addition to the educational and the relative substitutablity effect, the
model comprises an additional effect. Referring to Acemoglu and Guerrieri (2008),
we label it the factor intensity effect because it compares the relative usage of capital
and labor in both intermediate sectors. To visualize the effect, we need to relax the
assumption of a symmetric constellation of the production system with respect to
the distribution parameters, i.e., α0 = β0 = γ0 = 0.5.21 The intuition for the
factor intensity effect is as follows. Consider an increase in β0. As seen from the
sectoral production function (4), this is tantamount to a decrease in the relative
importance of high-skilled labor, LS, in producing the high-skilled intermediate, YS.
Consequently, the effect of high-skilled augmenting technological change on the skill
premium decreases. It then follows that for a given increase in AU , constancy in an
initial skill premium, ω0, now requires a larger increase in high-skilled augmenting
technological change. In figure 2, the factor intensity effect can approximately be
measured by the difference between the dot-dashed and dashed lines. Moreover,
a similar effect appears for a decrease in γ0. This increases the importance of
low-skilled labor, LU , in producing the low-skilled intermediate, YU , which in turn
increases the relative influence of low-skilled augmenting technological progress on
the skill premium.22

The discussion of the special case underlying figure 2 demonstrates that for a fixed
stock of capital, a U-shaped development of relative wages can be achieved, as long
as in the short run, relative labor-augmenting technological change ∆AS/∆AU stays
below a certain threshold value. This threshold level is defined as the degree of high-

20This statement remains true as long as for the normalized capital-labor ratio in efficiency

units ki,t =
(AKi,tKi,t)/(AKi,0Ki,0)

(Ai,tLi,t)/(Ai,0Li,0)
< 1, i ∈ {S,U}, holds. A formal proof based on a single CES

production function can be found in Mallick (2012). In addition, see the numerical results provided
by figure 3.

21At the point of normalization, t = 0, the distribution parameters are given by α0 =
pS,0YS,0

pS,0YS,0+pU,0YU,0
, β0 =

r0KS,0
r0KS,0+wS,0LS,0

, and γ0 =
r0KU,0

r0KU,0+wU,0LU,0
, respectively, and thus solely rely

on chosen baseline values. Although the normalization procedure developed by de La Grandville
(1989) and Klump and de La Grandville (2000) allows these values to be arbitrarily chosen, the
following discussion will show how variations in the distribution parameters influence the impact
of factor-augmenting technological progress and the accumulation of capital on the skill premium.
For a more detailed discussion on the calibration of CES production functions, see Temple (2012).

22Of course, the effects are reversed for a decrease in β0 and an increase in γ0.
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skilled relative to low-skilled augmenting technological progress required to ensure
constancy of a given initial skill premium ω0. Based on Proposition 1 and solely
focusing on labor-augmenting technological progress, for a constant level of high-
skilled labor, L̄S, the threshold value can be calculated by the total differential of
LS with respect to AS and AU :

dLS =
∂LS
∂AS

dAS +
∂LS
∂AU

dAU
!

= 0

⇔ dAS
dAU

∣∣∣∣
LS=L̄S

= −∂Σ(·)/∂AU
∂Σ(·)/∂AS

(17)

We denote this threshold value by ϑ̃. Consequently, for ϑ > ϑ̃ (ϑ < ϑ̃), relative
labor-augmenting technological change leads to an increase (decrease) in the skill
premium. The above equation is of particular importance because it enables us to
test the sensitivity of the threshold value ϑ̃ to changes in the central parameter of
our model. This in turn allows for a quantitative evaluation of both the relative
substitutabilty and the factor intensity effect. For that reason, we choose a certain
configuration of production system (8) and calculate ϑ̃ while systematically varying
the individual parameter values α0, β0, γ0, and σU .

Figure 3 shows the results of this exercise. The black (white) area indicates the
extent of relative labor-augmenting technological change that, given the particular
parameter configuration, induces an increase (decrease) in the initial skill premium
ω0. Panel a visualizes the sensitivity of ϑ̃ with respect to the substitution elasticities.
As seen from the left figure, for a given value of σS, the strength of the relative sub-
stitutability effect strictly increases with σU , although at a substantially diminishing
marginal rate. By contrast, as shown by the right figure, given a fixed difference be-
tween the two sectoral substitution elasticities, ∆σ = σU −σS = const., the strength
of the effect decreases with σU . This occurs because for large values of the substi-
tution elasticities, the two sectors become increasingly similar. However, and most
interesting, the relative substitutability effect disappears at a relatively fast rate as
σU increases and almost completely vanishes as σU approaches towards σ = 3. Panel
b illustrates the sensitivity of ϑ̃ with respect to the distribution parameters. Based
on the underlying model configuration, the threshold value monotonically increases
in both α0 and β0 but decreases in γ0. Interestingly, while the effect of changes in β0

and γ0 is relatively strong, ϑ̃ does not change much in response to variation in α0.23

Especially for small values of α0, the threshold value remains relatively constant.
In addition, for very low values of β0 or very high values of γ0, an increase in ω0

can also be achieved for net low-skilled augmenting technological change, that is,
0 < λS < λU .24 Overall, based on the chosen model configuration, figure 3 suggests
that a change in sectoral distribution parameters appears to have a greater influ-

23However, note that the initial skill premium, ω0, and thus LS is increasing in α0 and γ0 but
decreasing in β0.

24Note that in our model, due to Assumption 1, that is, λS > λU , for this constellation of
production function parameters, ω is monotonically increasing in labor-augmenting technological
change.
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ence on the development of the skill premium than a similar change in the value of
sectoral substitution elasticities.

Figure 3: Sensitivity of the threshold value ϑ̃ to the choice of model parameters
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(a) Sensitivity with respect to substitution elasticities
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(b) Sensitivity with respect to distribution parameters

The calculations in the figure above are based on a baseline configuration, where the distribution

parameters are α0 = β0 = γ0 = 0.5, the initial aggregate capital stock is K0 = 2, and the

substitution elasticities are given by σS = 1.2, σU = 1.7, and σ = 3. For the sensitivity analysis,

we choose α0, β0, γ0 ∈ [0.15, 0.85], and σU ∈ [1.7, 3]. The borders of the distribution parameters

are chosen to ensure the numerical tractability of the model.

After discussing the impact of factor-augmenting technological change, we next ex-
amine the effects of an increase in the aggregate capital stock, K, on the allocation
of labor to the high-skilled intermediate sector. Contingent on the assumption of
finite values of both sectoral substitution elasticities, the marginal products of capi-
tal are positive and downward sloping. From this, it follows that for a fixed level of
productivity, an increase in K leads to a strictly positive increase in both KS and
KU . This result holds for any ordering of substitution elasticities and remains true
even in the extreme case of an aggregate von Neumann production technology, where
σ → ∞.25 The following lemma characterizes the effect of capital accumulation on
the composition of labor with respect to the first special case:

25However, note that in this case, with α0 = 0.5, β0 = γ0, KS,0 = KU,0, and neglecting tech-

nological change, we have lim
KS→∞

∂Y
∂KS

= α0Y0

KS,0
β

σS
σS−1

0 > 0 and lim
KU→∞

∂Y
∂KU

= (1−α0)Y0

KU,0
γ

σU
σU−1

0 > 0.

Assumption 1, that is, σS < σU , leads to α0Y0

KS,0
β

σS
σS−1

0 < (1−α0)Y0

KU,0
γ

σU
σU−1

0 . Therefore, in the limit,
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Lemma 1. Under σ > σU > σS, in the competitive equilibrium, the level of high-
skilled labor, LS, is increasing in KS but decreasing in KU .

Proof: See Appendix A.5. �

The result follows from the elasticities of the left-hand side of (LMC) and the (CMC)
with respect to LS, KS, and KU . Therefore, for the first special case, the influence of
an increase in the aggregate capital stock, K, on the allocation of labor to the high-
skilled intermediate sector, LS, and the skill premium, ω, is generally ambiguous
and dependent on parameters. We can now turn to a discussion of special case 2.

Special case 2: capital-skill complementarity In the second case, we consider the
ordering σU > σ > σS. Under this constellation of the substitution elasticities, the
impact of factor-augmenting technological change on the allocation of labor to the
high-skilled intermediate sector and the skill premium are generally ambiguous and
dependent on parameter values. This can immediately be seen from an inspection
of the proof of Proposition 1 in Appendix A.4 while considering the ordering σU >
σ > σS.

Turning to the accumulation of capital, equivalent to the first special case, an in-
crease in the aggregate capital stock K leads to a positive increase in both KS and
KU . Under σU > σ > σS, the impact of capital accumulation on the composition
of labor across the two intermediate sectors is unambiguous. The following lemma
establishes the existence of capital-skill complementarity.

Lemma 2. Under σU > σ > σS, in the competitive equilibrium, an increase in the
aggregate capital stock, K, strictly raises the level of high-skilled labor, LS, and the
skill premium ω.

Proof: See Appendix A.5. �

This result can be obtained analogously to that of Lemma 1. The intuition is as
follows. Under σU > σ > σS, an increase in both types of capital, KS and KU ,
respectively, always induces an increase in the relative marginal value product of
high-skilled labor. Formally, we have ∂

(
∂Y/∂LS
∂Y/∂LU

)
/∂KS > 0 and ∂

(
∂Y/∂LS
∂Y/∂LU

)
/∂KU >

0. Consequently, considering σU > σ > σS, our model supports the hypothesis
advanced by Griliches (1969). That is, an increase in the aggregate capital stock
ceteris paribus raises the demand for high-skilled labor and thus the relative wage
rate. As a result, to obtain a U-shaped evolution of the skill premium under CSC,
the transitional decline in ω has to be induced completely by factor-augmenting
technological change.

After analyzing the effects of factor-augmenting technological change and capital
accumulation for all three possible cases with respect to the constellation of substi-
tution elasticities, we can now turn to the dynamic behavior of the model.

the marginal product of KS is equal to the asymptotical value of the marginal product of KU , i.e.,

α0β0Y0

KS,0

(
ỸS
K̃S

) 1
σS = α0β

σU
σU−1

0 . From this, it follows that as K goes to infinity, KS is bounded from

above while lim
K→∞

KU =∞.

16



3.2 Dynamic behavior

In the previous section, we discussed the comparative statics of the static equilibrium
for arbitrary, one-time changes in the technology levels, AS, AU , AKS, AKU , or the
aggregate capital stock, K. In this section, we briefly discuss the dynamics of the
central variables of our model before we turn to the numerical evaluation of the
model. We first define

L̇i
Li
≡ ni,

K̇i

Ki

≡ zi,
Ẏi
Yi
≡ gi, for i ∈ {S, U}

Ẏ

Y
≡ g,

ω̇

ω
≡ gω,

where ni, zi and gi denote the growth rates of labor, capital, and output in both
intermediate sectors. The growth rate of aggregate production is denoted by g.
Finally, gω refers to the growth rate of the skill premium. To decompose these
growth rates into different components, we follow Krusell et al. (2000) and McAdam
and Willman (2018). We first log-linearize (3), (4), (5), and (9) and differentiate the
resulting equations with respect to time. From the result, and with some algebra,
we obtain the following two propositions that characterize the dynamic behavior of
our model in terms of the growth rates of output, Y , YS and YU , as well as of ω.

Proposition 2. In the competitive equilibrium, the dynamic behavior of the model
is described by the following growth rates:

g = α0

(
ỸS

Ỹ

)σ−1
σ

gS + (1− α0)

(
ỸU

Ỹ

)σ−1
σ

gU

where

gS = β0

(
AK,SK̃S

ỸS

)σS−1

σS

(zS + λKS) + (1− β0)

(
ASL̃S

ỸS

)σS−1

σS

(nS + λS)

and

gU = γ0

(
AK,UK̃U

ỸS

)σU−1

σU

(zU + λKU) + (1− γ0)

(
AU L̃U

ỸU

)σU−1

σU

(nU + λU)

where zi = zi(AS, AU , AKS, AKU , K, LS) and ni = ni(AS, AU , AKS, AKU , K, LS) with
i ∈ {S, U}.

Not surprisingly, the growth rate of aggregate output, g, is a weighted average of the
sectoral growth rates gS and gU . Due to our assumption of σ > 1, this implies that
as t → ∞, aggregate output will be determined by the asymptotically dominant
sector. Formally, we have g∗ = max{g∗S, g∗U}, where the asterisks denote asymptotic
growth rates. The growth rates of intermediate production are in turn weighted
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averages of the sectoral growth rates of capital and labor, measured in efficiency
units. Moreover, the following proposition decomposes the growth rate of the skill
premium into three components.26

Proposition 3. At the point of normalization, t = 0, the growth rate of the skill
premium, ω, can be decomposed into:

gω = −
[
σS
σ

(1− β0) + β0

]
nS +

[
σU
σ

(1− γ0) + γ0

]
nU : RSS(18)

+
(
σ−σS
σSσ

)
β0zS −

(
σ−σU
σUσ

)
γ0zU : CA

+
(
σ−σS
σSσ

)
β0λKS −

(
σ−σU
σUσ

)
γ0λKU

+
(
σ−σS
σSσ

(1− β0) + σS−1
σS

)
λS

−
(
σ−σU
σUσ

(1− γ0) + σU−1
σU

)
λU

TC

The first component, RSS, refers to the relative supply of high-skilled labor. The
coefficients

[
σS
σ

(1− β0) + β0

]
and

[
σU
σ

(1− γ0) + γ0

]
are both strictly positive. Due

to our assumption of a constant population, we further have sgn(nS) = − sgn(nU).
From this, it follows that for an increase in the reallocation of labor to the high-
skilled (low-skilled) intermediate sector, the growth rate of the skill premium strictly
decreases (increases) according to the RSS component. This result relies on the
usual substitution effect (Acemoglu, 2002). According to this effect, for competitive
markets, an increase in the supply of a factor depresses its marginal value product
and thus the wage rate. The second component, CA, describes the effect of capital
accumulation. In this channel, the condition for an increase in gω is given by the in-

equality zS
zU
> (σ−σS)σU

(σ−σU )σS

γ0
β0

. From the previous discussion, we obtained sgn
(
zS
zU

)
= 1

for any increase in the aggregate capital stock, independent of the ordering of sub-
stitution elasticities. Furthermore, in special case 2, that is σU > σ > σS, we obtain
(σ−σS)σU
(σ−σU )σS

γ0
β0
< 0. Consequently, similar to the results obtained from Lemma 2, under

CSC, capital accumulation has a strictly positive impact on the growth rate of the
skill premium. Finally, the third component, TC, refers to the impact of factor-
augmenting technological change. As seen from (18), capital-augmenting technolog-
ical progress has the same quantitative impact on the growth rate of the skill pre-
mium as capital accumulation. A positive contribution requires λKS

λKU
> (σ−σS)σU

(σ−σU )σS

γ0
β0

.
In addition, labor-augmenting technological progress has a positive influence on the

TC channel, if λS

(
σ−σS
σSσ

(1− β0) + σS−1
σS

)
> λU

(
σ−σU
σUσ

(1− γ0) + σU−1
σU

)
.

Unfortunately, due to the complexity of the underlying production system, we can-
not analytically solve for the endogenous growth rates zS, zU , nS and nU . Therefore,
we resort to the following chapter, in which we conduct a comprehensive simulation
analysis.

26However, note that in a general equilibrium framework, these components cannot be separated
in a strict sense, as a reallocation of labor between intermediate sectors induces a reallocation of
capital and vice versa.
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4 Numerical examples

In this section, we provide several numerical examples of the above model to ex-
amine the development of the skill premium and some further key variables along
the transitional path of a growing economy. To simulate the model, we choose pa-
rameter and benchmark values that reflect the results of empirical studies wherever
possible. However, note that the following simulations should not be interpreted as
a calibration but instead as a simple numerical illustration.

Our model economy is fully characterized by three substitution parameters, σ, σS,
and σU , four growth parameters, λS, λU , λKS, and λKU , the savings rate, s, the
depreciation rate, δ, and 10 benchmark values, Y0, YS,0, YU,0, KS,0, KU,0, LS,0, LU,0,
µ0 =

[
pU
pS

]
0
, µS,0 =

[
ωS
r

]
0
, and µU,0 =

[
ωU
r

]
0
. We choose parameter and benchmark

values as follows. Estimates of substitution elasticities can be found in, among other
works, Krusell et al. (2000), Duffy et al. (2004), Goldin and Katz (2008), and Pol-
green and Silos (2008). While the results vary considerably, most of them exceed
unity. Unfortunately, due to different specifications of the underlying production
function, none of these estimates directly fit to our model. In comparison, McAdam
and Willman (2018) estimate the parameters of the production function (8) for the
U.S. economy over the period 1963 − 2008. The authors obtain the substitution
elasticities σ = 2.951, σS = 1.234, and σU = 1.697, which are suitable to our case
of factor-biased technological change, when treating KS as structure (or building)
capital andKU as equipment capital. A second specification assumesKS to be equip-
ment and KU to be structure capital. In that case, the authors obtain σ = 2.505,
σS = 1.317, and σU = 7.327, which are supportive of capital-skill complementarity.
For reasons of comparability, in the following, we simulate our model based on the
results provided by McAdam and Willman (2018).

With respect to technological change, Katz and Murphy (1992), Krusell et al. (2000),
Autor et al. (2008), and Acemoglu and Autor (2011), among others, estimate the
difference in the growth rates of labor productivity, i.e., λS−λU , based on U.S. data
for different specifications and time periods. The results range from 0.006 to 0.033.
Furthermore, McAdam and Willman (2018) provide estimates of the growth rates
λS, λU , λKS, and λKU for U.S. data based on the production function (8). While λS
is estimated at approximately 0.033, the corresponding value for low-skilled labor,
λU , lies slightly below zero. For different specifications of the underlying production
function, the difference between the two estimates narrows, while lower values of
λS and higher values of λU are obtained. Furthermore, with respect to capital-
augmenting technological change, the results are rather diverse, and the estimates
lie between−0.06 and 0.05. Against this background, we exclude capital-augmenting
technological progress, i.e., λKS = λKU = 0, and solely focus on labor-augmenting
technological change. We set high-skilled augmenting technological change to be
λS = 0.035, slightly exceeding that of low-skilled labor, λU = 0.033. The choice of
these growth rates allows us to provide sensible examples. To set the parameters of
the Solow growth model, we follow Miyagiwa and Papageorgiou (2007) and choose
δ = 0.1. Series of gross savings as a percentage of gross national income are available
from the U.S. Bureau of Economic Analysis (BEA). Over the period 1947 to 2018,
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average annual savings lie slightly above 20%. Therefore, we set s = 0.2.

Finally, with respect to the distribution parameters, we distinguish two cases. In the
following figures, the left panel shows transitional dynamics based on our symmetric
benchmark case, where α0 = β0 = γ0 = 0.5. In that case, the results are purely
driven by the educational and the relative substitutability effect. Additionally, in
the right panel, we utilize the results provided by McAdam and Willman (2018)
and set the distribution parameters to α0 = 0.5, β0 = 0.7 and γ0 = 0.3. As a
consequence, the transitional dynamics presented in the right panel also account for
the factor intensity effect. Based on these choices, table 1 summarizes the remaining
benchmark values. An outline of its calculation is provided in Appendix A.6.

Table 1: Benchmark values

Benchmark values for α0 = β0 = γ0 = 0.5

σ > σU > σS σU > σ > σS

LS,0 = 0.333 LU,0 = 0.577 LS,0 = 0.333 LU,0 = 0.577
KS,0 = 1.000 KU,0 = 1.000 KS,0 = 1.000 KU,0 = 1.000
µS,0 = 2.436 µU,0 = 1.382 µS,0 = 2.303 µU,0 = 1.078

Benchmark values for α0 = 0.5, β0 = 0.7, γ0 = 0.3

σ > σU > σS σU > σ > σS

LS,0 = 0.231 LU,0 = 0.734 LS,0 = 0.231 LU,0 = 0.734
KS,0 = 1.400 KU,0 = 0.600 KS,0 = 1.400 KU,0 = 0.600
µS,0 = 1.847 µU,0 = 2.072 µS,0 = 1.685 µU,0 = 2.270

Note: Across all specifications, we employed the benchmark values Y0 =
YS,0 = YU,0 = µ0 = 1, together with an initial aggregate capital stock
of K0 = 2. The remaining benchmark values provided in the table are
calculated as outlined in Appendix A.6 and rounded to 3 digits.

We can now turn to our numerical results. Figures 4 and 5 plot the time series of
some key variables of our model, considering both special cases with respect to the
constellation of substitution elasticities. Within each figure, chart a) illustrates the
development of the skill premium, ω. Chart b) shows the share of capital allocated
to the high-skilled intermediate sector, κ = KS

K
, and to the low-skilled intermediate

sector, (1 − κ) = KU
K

. Finally, chart c) displays the development of the functional

distribution of income between labor, SL = ωSLS+ωULU
Y

, and capital, SK = r(KS+KU )
Y

.
As a consequence of the assumption of constant returns to scale and purely compet-
itive markets, the two factor shares sum to a value of unity by Euler’s theorem.

Figure 4 illustrates the transitional dynamics for the case of factor-biased technolog-
ical change, i.e., σ > σU > σS. As seen in the left panel, considering a symmetric
constellation of distribution parameters, i.e., α0 = β0 = γ0 = 0.5, a U-shaped devel-
opment of the skill premium can be achieved under the stated model parametriza-
tion. However, the magnitude of the pattern is very small. Relative wages decline by
only 0.5% during the first 17 periods, followed by a monotonic increase afterwards.
The share of capital allocated to the high-skilled intermediate sector, κ, increases
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Figure 4: Transitional dynamics for the case of factor-biased technological change,
i.e., σ > σU > σS
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The illustrations above are constructed while assuming the following parameter values: σS = 1.234,

σU = 1.697, σ = 2.951,K0 = 2, λS = 0.035, λU = 0.033, λKS = λKU = 0, δ = 0.1, and s = 0.2. The

distribution parameters are α0 = β0 = γ0 = 0.5 (left panel) and α0 = 0.5, β0 = 0.7, and γ0 = 0.3

(right panel), respectively.
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constantly from 0.50 to 0.57. With respect to the functional distribution of income,
the labor share, SL, increases during the first 66 periods and shows a slight decline
afterwards. In comparison, the right panel of figure 4 shows results for the case of
an asymmetric constellation of distribution parameters, i.e., α0 = 0.5, β0 = 0.7
and γ0 = 0.3. As can be deduced from equation (8), an increase (decrease) in β0

(γ0) decreases the relative importance of high-skilled labor in producing aggregate
output Y . Consequently, as illustrated in chart 4b, the initial skill premium, ω0,
declines. Moreover, the chart also reveals the impact of the factor intensity effect
from a dynamic perspective. From the discussion of figure 3, we have seen that
an increase (decrease) in β0 (γ0) implies a rise in the threshold value ϑ̃. This, in
turn, should result in a longer and more pronounced transitional decrease in the skill
premium. Such a pattern can be obtained from the time series underlying panel b.
The skill premium decreases by approximately 3.5% and reaches an inflection point
after 37 periods. Subsequently, relative wages begin to rise, but it takes more than
150 periods for ω to come full circle. Furthermore, as illustrated by the right panel
of chart c, the share of capital allocated to the high-skilled intermediate sector, κ,
rises considerably relative to the left panel. The reason for this behavior is that
an increase (decrease) in β0 (γ0) also increases the relative importance of capital in
producing the high-skilled intermediate good. As a result, a higher share of capital
is allocated to the high-skilled intermediate sector. As seen in panel 4b, at the point
of normalization, t = 0, κ jumps to a high value of approximately 0.70. Thereafter,
the value remains roughly constant. Finally, the development of factor shares is
approximately the same as in the left panel, although the subsequent decline in the
labor share is more pronounced.

Figure 5 illustrates the transitional dynamics for the case of capital-skill comple-
mentarity, that is, σU > σ > σS. As seen in the left panel, the transitory decrease in
ω is more pronounced than in the case of factor-biased technological change. Dur-
ing the first 32 periods, the skill premium declines by approximately 5.0%. This
result is largely induced by the greater difference between the two sectoral substi-
tution elasticities, σS and σU , i.e., a greater impact of the relative substitutability
effect. Furthermore, under CSC, we obtain a higher share of capital allocated to the
high-skilled intermediate sector. After a brief but considerable adjustment process,
κ stabilizes at approximately 0.6 (left panel) and 0.8 (right panel). This relatively
strong sectoral reallocation of capital during the initial periods also explains why in
the right panel, the transitional decline in the skill premium is less pronounced than
in the left panel. From Lemma 2, we observed that under CSC, the skill premium
is strictly increasing in both KS and KU . However, conditioned by the inequality
β0 > γ0, an increase in KS leads to a stronger increase in ω than a similar increase in
KU . As a result, an increase in κ reduces the threshold value ϑ̃ necessary to induce
a rise in the skill premium and thus dampens the transitional decline in ω. Interest-
ingly, the development of the functional distribution of income is almost identical
under the two assumptions on distribution parameters. The labor share reaches a
maximum of 59% after 56 periods and slightly declines afterwards.

Our numerical application thus yields the following conclusion. To achieve a U-
shaped development of the skill premium, the ordering of substitution elasticities
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Figure 5: Transitional dynamics for the case of capital-skill complementarity, i.e.,
σU > σ > σS
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The illustrations above are constructed while assuming the following parameter values: σS = 1.317,

σU = 7.327, σ = 2.505,K0 = 2, λS = 0.035, λU = 0.033, λKS = λKU = 0, δ = 0.1, and s = 0.2. The

distribution parameters are α0 = β0 = γ0 = 0.5 (left panel) and α0 = 0.5, β0 = 0.7, and γ0 = 0.3

(right panel), respectively.
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seems to be of minor importance. By contrast, in all cases we examined, relative
wages first decline and then monotonically increase. The results thus demonstrate
that a U-shaped development of ω is attainable under both approaches of SBTC
and can emerge in the absence of any exogenous shocks or changes in institutional
factors. As obtained from our symmetric benchmark cases, both the educational and
the relative substitutability effect can induce a considerable transitional decline in ω.
In comparison, we demonstrated that the factor intensity effect can both strengthen
and weaken the U-shaped pattern of the skill premium. In particular, for a strong
reallocation of capital between intermediate sectors, the transitional decline of ω can
considerably be dampened. As this effect becomes strong, the skill premium may
increase steadily over time. Furthermore, our model also generates time series of the
functional distribution of income that are largely in line with observations for the
U.S. economy. As has been documented by several authors, e.g., Karabarbounis and
Neiman (2014) and Herrendorf et al. (forthcoming), the U.S. labor share of income
remained roughly constant during the mid-twentieth century but has declined since
the 1980s.27 Our results obtained under CSC are broadly in accordance with that
observation. However, based on the chosen parametrization, our model produces
relatively slow dynamics with respect to ω. Generally, the interim decline in the
skill premium is less pronounced than the dramatic decrease shown by the data.28

Thus, in the following, we conduct a brief sensitivity analysis to better align our
model results with the data.

Table 2: Sensitivity analysis

Sensitivity analysis for σ > σU > σS , asymmetric case

savings rate technological change initial capital stock

s = 0.15 7.19 (45) λU = 0.025, λS = 0.023 2.26 (34) K0 = 3 8.51 (47)
s = 0.25 0.34 (16) λU = 0.045, λS = 0.043 4.56 (38) K0 = 5 13.17 (53)
s = 0.30 increase λU = 0.055, λS = 0.053 5.56 (38) K0 = 10 17.39 (57)

Sensitivity analysis for σU > σ > σS , asymmetric case

savings rate technological change initial capital stock

s = 0.15 6.91 (42) λU = 0.025, λS = 0.023 2.55 (34) K0 = 3 7.98 (43)
s = 0.25 0.48 (18) λU = 0.045, λS = 0.043 4.70 (36) K0 = 5 11.67 (48)
s = 0.30 increase λU = 0.055, λS = 0.053 5.56 (36) K0 = 10 15.24 (52)

Table 2 reports the results under alternative calibrations of our model economy.
We consider different values for the savings rate, s, labor-augmenting technological
progress, λS and λU , and the initial capital stock, K0. All other parameter values
remain unchanged. For each alternative parametrization, the first value shows the
maximum percentage decrease in the skill premium relative to ω0, while the value

27From a level of roughly 64% in 1975, the U.S. labor share has constantly declined, reaching
59% in 2012.

28Based on the data provided by Goldin and Katz (2007), the U.S. college (high-school) wage
gap declined by approximately 50.94% (51.36%) between 1915 and 1950. In the left panel of figure
5, the decrease is only 5.0%.
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in brackets indicates the inflection point. For instance, in the asymmetric case
of σ > σU > σS, for a savings rate of s = 0.15, ω decreases by approximately
7.19% over the course of 45 periods. In general, consistent with our expectations,
a change in the savings rate can have a substantial impact on both the length and
the strength of the decline in relative wages. Especially for high values of s, the skill
premium increases monotonically. In comparison, the sensitivity results show that
for higher values of labor-augmenting technological change, the U-shaped evolution
of the skill premium is more pronounced. Finally, the appropriate choice of the
initial capital stock, K0, seems to be the most important aspect. As can be seen
under both parameter configurations, the U-shaped pattern in the development of
the skill premium is more pronounced the higher the initial capital stock is.

5 Conclusion

In this paper, we introduced a simple neoclassical growth model with endogenous
labor supply to investigate the transitional dynamics of the wage ratio between
high-skilled and low-skilled labor, referred to as the skill premium. The empirical
literature has documented that for several developed countries, the behavior of the
skill premium was U-shaped over the last century. We demonstrated that such a
development of relative wages can be obtained using a simple two-sector growth
model that comprises both variants of skill-biased technological change: technologi-
cal change that is favorable to high-skilled labor and capital-skill complementarity.
Our approach thus contrasts with most earlier studies that explain the U-shaped de-
velopment of the skill premium through exogenous, unexpected technological shocks
or changes in institutional factors. Within our framework, the transitional decline
in the skill premium can be explained by the interplay of an educational, a relative
substitutability, and a factor intensity effect. The first two effects unambiguously
increase the requirement of relative high-skilled augmenting technological change
necessary to induce an increase in the skill premium. Consequently, for a moderate
rise in relative labor productivity, the wage ratio will decrease in the short run. We
showed that such a transitional decline can be achieved for a broad range of param-
eter values. However, in all cases, in the long run, as relative labor productivity
increases, the skill premium also rises. In contrast to the first two effects, the factor
intensity effect can either increase or decrease the transitional decline in the skill
premium. Especially for a production structure that is characterized by a high share
of capital allocated to the high-skilled intermediate sector, the accumulation of cap-
ital can considerably dampen the transitional decline in ω. As a result, rapid capital
accumulation might induce a strictly increasing wage ratio. Overall, however, our
numerical evaluation illustrates that a U-shaped development of the skill premium
can be achieved under both approaches of SBTC.

In future research, our model could be extended in several important directions.
In the model, the formation of labor is stylized and abstracts from some important
aspects of education and labor markets. For instance, we assumed the distribution of
abilities to be uniform. This simplifies the analysis but prevents a deeper discussion
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of within-group income inequality for high-skilled labor. Over recent decades, several
authors, e.g., Autor et al. (2008), have documented a gradual increase in wage
dispersion within the group of high-skilled labor. A more detailed model could focus
on this issue, for instance, by incorporating a versatile beta distribution of abilities.
A second aspect concerns the educational process itself. In our model, the time spent
on education is fixed for a certain ability level and thus independent of the stage
of technological development. However, consistent with the empirical literature,
the effort required to become a high-skilled worker should increase with the level of
technological progress. While the effect may be negligible for low differences in labor
productivity, it becomes increasingly important as technological change continues.
Incorporating this aspect might help to explain the recent deceleration in the growth
of the skill premium as observed for the U.S. economy.
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A Appendices

A.1 Two approaches of SBTC

The first approach of SBTC was popularized by Bound and Johnson (1992) and Katz
and Murphy (1992). For illustrative purposes, suppose that high-skilled, LS, and
low-skilled labor, LU , with factor-specific productivities, AS and AU , build a com-
pound labor input, L, according to the following constant elasticity of substitution
(CES) production function:

(19) L =
[
(ASLS)

ε−1
ε + (AULU)

ε−1
ε

] ε
ε−1

where ε is the elasticity of substitution between the two labor inputs. Based on (19),
with competitive labor markets, the log of relative wages (ωS/ωU) is a function of
relative productivity (AS/AU) and relative labor supply (LS/LU):

(20) log

(
ωS
ωU

)
=
ε− 1

ε
log

(
AS
AU

)
− 1

ε
log

(
LS
LU

)
.

As can immediately be seen from (20), if ε > 1, that is, high- and low-skilled labor
are (imperfect) substitutes, an increase in relative labor productivity will lead to an
increase in the skill premium. Given observable time series of relative wages and
relative factor supplies together with an estimate of ε, relative labor-augmenting
technological change can be estimated residually from (20). Following Bound and
Johnson (1992) and Katz and Murphy (1992), this inherently unobservable trend
component has been the main explanation for the rapid increase in the U.S. skill
premium starting in the 1980s. However, despite its simplicity, a main drawback
of the first approach is that it does not explicitly account for the role of capital
accumulation.29 This gap was subsequently closed by the second approach.

The concept of capital-skill complementarity was initially formalized by Griliches
(1969) and further applied by Krusell et al. (2000), Duffy et al. (2004), and Papa-
georgiou and Chmelarova (2005), among others. Capital-skill complementarity is
present if the relative marginal product of high-skilled labor, and thus the wage pre-
mium, increases with capital accumulation. The most simple model of CSC applies
the following two-level, three-factor CES production technology

(21) Y =

[
α
(
βKθ + (1− β)LθS

)ψ
θ + (1− α)LψU

] 1
ψ

29As shown by Hulten (1992), Greenwood et al. (1997), and Cummins and Violante (2002), the
substantial decline in the quality-adjusted price of equipment capital, since at least the 1960s,
induced a considerable expansion of such capital in production.
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with capital, K, high- and low-skilled labor, two distribution parameters, α and β,
and two constant substitution parameters, θ and ψ. Based on (21), relative wages
can be derived as

(22)
ωS
ωU

=
α
(
βKθ + (1− β)LθS

)ψ
θ
−1

(1− β)Lθ−1
S

(1− α)Lψ−1
U

.

Differentiation of the right-hand side of (22) with respect to K yields

(23)
∂
(
ωS
ωU

)
∂K

=

(
ψ − θ
θ

)
θβKθ−1

βKθ + (1− β)LθS

ωS
ωU

.

Equation (23) reveals that CSC requires ψ > θ. That is, based on a production
structure as formalized by (21), capital and high-skilled labor must be more com-
plementary than capital and low-skilled labor.

A.2 Explicit normalization of the production system

In this appendix, we derive the explicitly normalized, two-stage CES production
function (8), as applied in this paper.30 The derivation can start with the primal
Arrow et al. (1961) specification of the CES production function

(24) Y = C
[
aK

σ−1
σ + (1− a)L

σ−1
σ

] σ
σ−1

where σ is the elasticity of substitution between capital and labor, C denotes a Hicks-
neutral “efficiency” parameter and 0 < a < 1 refers to a “distribution” parameter.31

For a meaningful specification of the latter two parameters, de La Grandville (1989)
and Klump and de La Grandville (2000) introduced the idea of “normalizing” CES
production functions. Based on a given set of baseline values, K0, L0, µ0 =

[
FL
FK

]
0

=[
w
r

]
0

and Y0, production function (24) can be transformed as follows:

30See Klump and Preissler (2000) and Klump et al. (2012) for further details.
31A detailed derivation of the CES function applying the primal approach developed in Arrow

et al. (1961) can be found in de La Grandville (2017, p. 85 - 88).
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Y0 = C
[
aK

σ−1
σ

0 + (1− a)L
σ−1
σ

0

] σ
σ−1

(25)

⇒ µ0 =

[
FL
FK

]
0

=
1− a
a

(
K0

L0

) 1
σ

⇔ a(σ) =
K

1/σ
0

K
1/σ
0 + L

1/σ
0 µ0

⇒ C(σ) = Y0

[
K

1/σ
0 + L

1/σ
0 µ0

K0 + L0µ0

] σ
σ−1

This procedure delivers an explicit relationship between the elasticity of substitution,
σ, and both C and a. Inserting a(σ) and C(σ) into (24) provides, after some
rearranging, a normalized CES production function

(26) Y = Y0

[
π0

(
K

K0

)σ−1
σ

+ (1− π0)

(
L

L0

)σ−1
σ
] σ
σ−1

similar to (3). The parameter π0 = r0K0

r0K0+w0L0
denotes the capital share in total

income at the point of normalization t = 0. At that point, (26) reduces to Y = Y0

and is thus independent of σ. Additionally, a CES production function with factor-
augmenting technological change has been introduced by David and van de Klundert
(1965). It can be written as

(27) Y =
[
(EK,tK)

σ−1
σ + (EL,tL)

σ−1
σ

] σ
σ−1

where Ej,t, j ∈ (K,L) represent the levels of efficiency of the two input factors. The
functional form for the growth rates of the two efficiency levels is assumed to be

(28) Ej,t = Ej,oe
λj(t−t0)

where λj denotes growth in technical progress and t represents time. To ensure that
at the common baseline point, t = 0, the factor shares are not distorted by the level
of factor efficiencies but are just equal to the distribution parameter π0 and 1− π0,
it follows that

EK,0 =
Y0

K0

(
1

π0

) σ
1−σ

(29)

EL,0 =
Y0

L0

(
1

1− π0

) σ
1−σ

.

34



Inserting (28) and the normalized values (29) into (27) leads to a normalized CES
function that can be written as

(30) Y = Y0

[
π0

(
Kt

K0

eλK(t−t0)

)σ−1
σ

+ (1− π0)

(
Lt
L0

eλL(t−t0)

)σ−1
σ
] σ
σ−1

which is equivalent to (4) and (5), respectively. Again, as a test of consistent nor-
malization, for t = 0, (30) reduces to Y = Y0.

A.3 First-order conditions of the production system

Normalizing the price of the final good, p, to unity at all points in time leads to

p ≡ 1 =
[
ασ0p

1−σ
S + (1− α0)σp1−σ

U

] 1
1−σ

where pS refers to the price of the high-skill intermediate and pU denotes the price
of the low-skill intermediate. Based on the chosen normalization of the price index,
the CES production function (8) implies the following four first-order conditions for
profit maximization:

(31) rS = α0β0Y0Ỹ
1
σ Ỹ

(
1
σS
− 1
σ

)
S

(
AKS
KS,0

)σS−1

σS

K
− 1
σS

S

(32) rU = (1− α0)γ0Y0Ỹ
1
σ Ỹ

(
1
σU
− 1
σ

)
U

(
AKU
KU,0

)σU−1

σU

K
− 1
σU

U

(33) ωS = α0(1− β0)Y0Ỹ
1
σ Ỹ

(
1
σS
− 1
σ

)
S

(
AS
LS,0

)σS−1

σS

L
− 1
σS

S

(34) ωU = (1− α0)(1− γ0)Y0Ỹ
1
σ Ỹ

(
1
σU
− 1
σ

)
U

(
AU
LU,0

)σU−1

σU

L
− 1
σU

U

where Ỹ , ỸS, and ỸU are given by equations (8), (4), and (5) in the text.
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A.4 Proof of Proposition 1

In the following, we consider the ordering σ > σU > σS. We start by rearranging
CMC and define

P (AS, AU , AKS, AKU , K, LS, KS) ≡(35)

α0

(1− α0)

(
ỸS

ỸU

)− 1
σ β0

γ0

(ỸS/KS)
1
σS

(ỸU/(K −KS))
1
σU

(AKS/KS,0)
σS−1

σS

(AKU/KU,0)
σU−1

σU

− 1 = 0

where ỸS and ỸU depend on both KS and LS. Equation (35) yields the implicit
function KS = g(AS, AU , AKS, AKU , K, LS), with

∂P (·)
∂KS

=− 1

σ

α0

(1− α0)

∂ỸS/∂KS

∂ỸU/∂KU

{(
∂ỸS
∂KS

)
Ỹ

1
σ
U Ỹ

− 1+σ
σ

S +

(
∂ỸU
∂KS

)
Ỹ
− 1
σ

S Ỹ
1−σ
σ

U

}

+
α0

(1− α0)

(
ỸS

ỸU

)− 1
σ

{
∂2ỸS/∂K

2
S

∂ỸU/∂KU

− ∂ỸS/∂KS

(∂ỸU/∂KU)2

∂2ỸU
∂KU∂KS

}
< 0,

∂P (·)
∂AS

=X

(
1

σS
− 1

σ

)
α0Ỹ

1
σ
− 1
σU

U Ỹ
2σ−σS
σSσ

−1

S L̃
σS−1

σS
S A

− 1
σS

S > 0,

∂P (·)
∂AU

=X

(
1

σ
− 1

σU

)
β0Ỹ

1−σ
σ

U Ỹ
1
σS
− 1
σ

S L̃
σU−1

σU
U A

− 1
σU

U < 0,

∂P (·)
∂AKS

=XỸ
1
σ
− 1
σU

U

{(
σS − 1

σS

)
Ỹ

1
σS
− 1
σ

S A−1
KS +

(
1

σS
− 1

σ

)
β0Ỹ

2σ−σS
σSσ

−1

S A
− 1
σS

KS K̃
σS−1

σS
S

}
> 0,

∂P (·)
∂AKU

=XỸ
1
σS
− 1
σ

S

{(
1− σU
σU

)
Ỹ

1
σ
− 1
σU

U A−1
KU +

(
1

σ
− 1

σU

)
γ0Ỹ

1−σ
σ

U A
− 1
σS

KU K̃
σU−1

σU
U

}
< 0,

and

∂P (·)
∂LS

=X

{(
1

σS
− 1

σ

)
(1− β0)Ỹ

1
σ
− 1
σU

U Ỹ
2σ−σS
σSσ

−1

S

(
AS
LS,0

)σS−1

σS

L
− 1
σS

S

+

(
1

σU
− 1

σ

)
(1− γ0)Ỹ

1−σ
σ

U Ỹ
1
σS
− 1
σ

S

(
AU
LU,0

)σU−1

σU

(1− 2LS)
− 1+σU

2σU

}
> 0,

where X = α0

(1−α0)
β0
γ0

K
1/σU
U

K
1/σS
S

(
AKS
KS,0

)σS−1

σS

(
AKU
KU,0

) 1−σU
σU > 0. From this, it follows that

∂g(·)
∂LS

= − ∂P (·)/∂LS
∂P (·)/∂KS

> 0, ∂g(·)
∂AS

= − ∂P (·)/∂AS
∂P (·)/∂KS

> 0, ∂g(·)
∂AU

= −∂P (·)/∂AU
∂P (·)/∂KS

< 0, ∂g(·)
∂AKS

=

−∂P (·)/∂AKS
∂P (·)/∂KS

> 0, and ∂g(·)
∂AKU

= −∂P (·)/∂AKU
∂P (·)/∂KS

< 0. Next, we arrange (LMC) and define
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Σ(AS, AU , AKS, AKU , K, g(AS, AU , AKS, AKU , K, LS)) ≡(36)

Σ(AS, AU , AKS, AKU , K, LS) ≡

(1− η)
α0

1− α0

(
ỸS

ỸU

)− 1
σ 1− β0

1− γ0

(ỸS/LS)
1
σS

(ỸU/LU)
1
σU

(AS/LS,0)
σS−1

σS

(AU/LU,0)
σU−1

σU

− 1 = 0

which yields LS as an implicit function of AS, AU , AKS, AKU , and K, which we
denote as LS = f(AS, AU , AKS, AKU , K). Based on (1) and (2), we have 1 − η =
LU = (1− 2LS)0.5. From that, we can derive

∂Σ(·)
∂LS

=(1− 2LS)0.5 α0

(1− α0)

[
1

σ

∂ỸS/∂LS

∂ỸU/∂LU

{(
∂ỸU
∂LS

)
Ỹ
− 1
σ

S Ỹ
1−σ
σ

U −

(
∂ỸS
∂LS

)
Ỹ

1
σ
U Ỹ

− 1+σ
σ

S

}

+

(
ỸS

ỸU

)− 1
σ

{
∂2ỸS/∂L

2
S

∂ỸU/∂LU
− ∂ỸS/∂LS

(∂ỸU/∂LU)2

∂2ỸU
∂LU∂LS

}

− (1− 2LS)−1

(
ỸS

ỸU

)− 1
σ ∂ỸS/∂LS

∂ỸU/∂LU
+

1− β0

1− γ0

L
1/σU
U

L
1/σS
S

(AS/LS,0)
σS−1

σS

(AU/LU,0)
σU−1

σU

×

{(
1

σS
− 1

σ

)
β0Ỹ

1
σ
− 1
σU

U Ỹ
2σ−σS
σSσ

−1

S

(
AKS
KS,0

)σS−1

σS

g(·)−
1
σS
∂g(·)
∂LS

+

(
1

σU
− 1

σ

)
γ0Ỹ

1−σ
σ

U Ỹ
1
σS
− 1
σ

S

(
AKU
KU,0

)σU−1

σU

(K − g(·))−
1
σU
∂g(·)
∂LS

}]
< 0,

where the latter two terms are positive due to the complementarity between capital
and labor in production. However, as an increase in KS is induced by an increase
in LS, the whole expression becomes negative. Furthermore, we obtain

∂Σ(·)
∂AS

=W

[(
σS − 1

σS

)
Ỹ

1
σS
− 1
σ

S

ASỸ
1
σU
− 1
σ

U

+

(
1

σS
− 1

σ

)
Ỹ

2σ−σS
σSσ

−1

S Ỹ
1
σU
− 1
σ

U ×

{
(1− β0)L̃

σS−1

σS
S A

− 1
σS

S + β0

(
AKS
KS,0

)σS−1

σS

K
− 1
σS

S

∂g(·)
∂AS

}

+

(
1

σU
− 1

σ

)
γ0

(
AKU
KU,0

)σU−1

σU

Ỹ
1
σS
− 1
σ

S Ỹ
1−σ
σ

U (K −KS)
− 1
σU
∂g(·)
∂AS

]
> 0,
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∂Σ(·)
∂AU

=W

[(
1− σU
σU

)
Ỹ

1
σS
− 1
σ

S

AU Ỹ
1
σU
− 1
σ

U

+

(
1

σU
− 1

σ

)
Ỹ

1
σS
− 1
σ

S Ỹ
1−σ
σ

U ×

{
γ0

(
AKU
KU,0

)σU−1

σU

(K −KS)
− 1
σU
∂g(·)
∂AU

− (1− γ0)A
− 1
σU

U L̃
σU−1

σU
U

}

+

(
1

σS
− 1

σ

)
β0

(
AKS
KS,0

)σS−1

σS

Ỹ
2σ−σS
σSσ

−1

S Ỹ
1
σU
− 1
σ

U K
− 1
σS

S

∂g(·)
∂AU

]
< 0,

∂Σ(·)
∂AKS

=W

[(
1

σS
− 1

σ

)
β0Ỹ

1
σ
− 1
σU

U Ỹ
2σ−σS
σSσ

−1

S K̃
σS−1

σS
S

{
A
− 1
σS

KS + A
σS−1

σS
KS K−1

S

∂g(·)
∂AKS

}

+

(
1

σU
− 1

σ

)
γ0

(
AKU
KU,0

)σU−1

σU

Ỹ
1
σS
− 1
σ

S Ỹ
1−σ
σ

U (K −KS)
− 1
σU

∂g(·)
∂AKS

]
> 0,

and

∂Σ(·)
∂AKU

=W

[(
1

σU
− 1

σ

)
γ0Ỹ

1
σS
− 1
σ

S Ỹ
1−σ
σ

U K̃U

σU−1

σU

{
A

σU−1

σU
KU (K −KS)−1 ∂g(·)

∂AKU
− A

− 1
σS

KU

}

+

(
1

σS
− 1

σ

)
β0

(
AKS
KS,0

)σS−1

σS

Ỹ
1
σ
− 1
σU

U Ỹ
2σ−σS
σSσ

−1

S K
− 1
σS

S

∂g(·)
∂AKU

]
< 0,

where W = (1− 2LS)0.5 α0

(1−α0)
1−β0
1−γ0

(
AS
LS,0

)σS−1

σS

(
ALU
LU,0

) 1−σU
σU L

− 1
σS

S L
1
σU
U > 0. Finally, we

receive dLS
dAS

= −∂Σ(·)/∂AS
∂Σ(·)/∂LS

> 0, dLS
dAU

= −∂Σ(·)/∂AU
∂Σ(·)/∂LS

< 0, dLS
dAKS

= −∂Σ(·)/∂AKS
∂Σ(·)/∂LS

> 0, and
dLS
dAKU

= −∂Σ(·)/∂AKU
∂Σ(·)/∂LS

< 0.

A.5 Proof of Lemmas 1 and 2

We initially show that the left-hand side of (LMC) is strictly decreasing in LS.

The CES production function (4) yields ∂YS
∂LS

= (1− β0)YS,0

(
ỸS
LS

) 1
σS

(
AS
LS,0

)σS−1

σS > 0

and ∂2YS
∂L2

S
= (1 − β0)σ−1

S (ASL̃S)
σS−1

σS Ỹ
1−σS
σS

S [(1 + β0
1−β0

(
AKSK̃S
ASL̃S

)σS−1

σS )−1 − 1] < 0.

Analogously, as ∂LU/∂LS < 0, production function (5) yields ∂YU/∂LS < 0 and
∂2YU/∂L

2
S > 0. Finally, LS = 0.5− 0.5a2 leads to (1− η) = a =

√
1− 2LS. Partial

derivation of a with respect to LS yields ∂a/∂LS = −(1 − 2LS)−0.5 < 0. Combin-
ing these effects results in ∂LMC/∂LS < 0, which is the usual substitution effect
(Acemoglu, 2002). Furthermore, we denote the numerator in (LMC) as

(37) Ψ = (1− η)α0Ỹ
− 1
σ

S (1− β0)(ỸS/LS)
1
σS (AS/LS,0)

σS−1

σS

where YS is defined by (4). Analogously, we denote the denominator in (LMC) as
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(38) ξ = (1− α0)Ỹ
− 1
σ

U (1− γ0)(ỸU/LU)
1
σU (AU/LU,0)

σU−1

σU

where YU is defined by (5). Partial derivation of (37) with respect to KS yields

∂Ψ

∂KS

=(1− η)α0(1− β0)β0(LSKS)
− 1
σS

(
AKSAS
KS,0LL,0

)σS−1

σS

×(39) (
1

σS
− 1

σ

)[
β0(AKSK̃S)

σS−1

σS + (1− β0)(ASL̃S)
σS−1

σS

] σS
σS−1

(
1
σS
− 1
σ

)
−1

and thus sgn
(

∂Ψ
∂KS

)
= sgn(σ − σS). Analogously, partial derivation of (38) with

respect to KU yields

∂ξ

∂KU

=(1− α0)(1− γ0)γ0(LUKU)
− 1
σU

(
AKUAU
KU,0LU,0

)σU−1

σU

×(40) (
1

σU
− 1

σ

)[
γ0(AKUK̃U)

σU−1

σU + (1− γ0)(AU L̃U)
σU−1

σU

] σU
σU−1

(
1
σU
− 1
σ

)
−1

and thus sgn
(

∂ξ
∂KU

)
= sgn(σ − σU). Analogously, (CMC) is strictly decreasing in

KS. The production function (4) yields ∂YS
∂KS

= β0YS,0

(
ỸS
KS

) 1
σS

(
AKS
KS,0

)σS−1

σS > 0 and

∂2YS
∂K2

S
= β0σ

−1
S (AKSK̃S)

σS−1

σS Ỹ
1−σS
σS

S [(1 + 1−β0
β0

(
ASL̃S
AKSK̃S

)σS−1

σS )−1 − 1] < 0. Furthermore,

as ∂KU/∂KS = −1, production function (5) yields ∂YU/∂KS = −(∂YU/∂KU) < 0
and ∂2YU/∂K

2
S > 0. Combining these partial effects results in ∂CMC/∂KS < 0,

which is again the usual substitution effect. Next, we denote the numerator in the
(CMC) as

(41) Ω = α0Ỹ
− 1
σ

S β0(ỸS/KS)
1
σS (AKS/KS,0)

σS−1

σS

where YS is defined by (4). Partial derivation of (41) with respect to LS yields:

∂Ω

∂LS
=α0β0(1− β0)(LSKS)

− 1
σS

(
ASAKS
KS,0LS,0

)σS−1

σS

×(42) (
1

σS
− 1

σ

)[
β0(AKSK̃S)

σS−1

σS + (1− β0)(ASL̃S)
σS−1

σS

] σS
σS−1

(
1
σS
− 1
σ

)
−1
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and thus sgn
(
∂Ω
∂LS

)
= sgn(σ − σS). Analogously, we denote the denominator in

(CMC) as

(43) Θ = (1− α0)Ỹ
− 1
σ

U γ0(ỸU/KU)
1
σU (AKU/KU,0)

σU−1

σU

where YU is defined by (5). Accordingly,

∂Θ

∂LU
=(1− α0)γ0(1− γ0)(LUKU)

− 1
σU

(
AUAKU
AU,0KU,0

)σU−1

σU

×(44) (
1

σU
− 1

σ

)[
γ0(AKUK̃U)

σU−1

σU + (1− γ0)(AU L̃U)
σU−1

σU

] σU
σU−1

(
1
σU
− 1
σ

)
−1

with sgn
(
∂Θ
∂LU

)
= sgn(σ − σU) where ∂LU/∂LS < 0.

A.6 Choice and construction of benchmark values

In this appendix, we outline the choice and construction of benchmark values applied
for the numerical evaluation of our model in chapter 4. We start by setting Y0 = 1.
In appendix A.2, we saw that the distribution parameter α0 can also be written as

(45) α0 =
Y

1
σ
S,0

Y
1
σ
S,0 + Y

1
σ
U,0µ0

We set YS,0 = YU,0 = µ0 = 1 to obtain α0 = 0.5. Furthermore, at the point of
normalization, t = 0, we have LS = LS,0, LU = LU,0, KS = KS,0, and KU = KU,0.
From that, (LMC) simplifies to

(46) LU,0 =

(
LS,0

1− α0

α0

1− γ0

1− β0

)0.5

We can substitute the benchmark value of high-skilled labor, LS,0 = 0.5 − 0.5L2
U,0,

and rearrange (46) to obtain

(47) LU,0 =

(
1 +

2α0(1− β0)

(1− α0)(1− γ0)

)−0.5

For given values of α0, β0, and γ0, the benchmark allocation of labor, LS,0 and
LU,0, can unequivocally be obtained from (47). Next, at the point of normalization,
(CMC) reduces to
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(48) KU,0 = KS,0
1− α0

α0

γ0

β0

where capital market clearing requires KS,0 = K0−KU,0. As before, for given values
of α0, β0, and γ0, together with an assumption on the initial aggregate capital stock
K0, the benchmark values for KS,0 and KU,0 can be obtained from (48). Finally,
based on the above calculations and chosen values for σS and σU , the marginal rates
of technical substitution µS,0 and µU,0 within the two intermediate sectors are given
by

β0 =
K

1
σS
S,0

K
1
σS
S,0 + L

1
σS
S,0µS,0

⇔ µS,0 =
(1− β0)K

1
σS
S,0

β0L
1
σS
S,0

(49)

and

γ0 =
K

1
σU
U,0

K
1
σU
U,0 + L

1
σU
U,0µU,0

⇔ µU,0 =
(1− γ0)K

1
σU
U,0

γ0L
1
σU
U,0

(50)

This completes the choice and the construction of the benchmark values Y0, YS,0,
YU,0, KS,0, KU,0, LS,0, LU,0, µ0 =

[
pU
pS

]
0
, µS,0 =

[
ωS
r

]
0
, and µU,0 =

[
ωU
r

]
0
.
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