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Abstract 

The high entropy alloys (HEAs) have been developed based on the concept of entropic 

stabilization associated with a large number of constituent elements. The high configurational 

entropy in HEAs is expected to cause promising characteristic properties, i.e. high microstructural 

stability and high mechanical properties. In this study, the equiatomic fcc-structured FeNiCoCrMn 

and the bcc-structured TiNbHfTaZr single phase high entropy alloys (HEAs) were investigated 

regarding the effect of multiple atom species on microstructure, intrinsic lattice strain and 

mechanical properties. In a comparison with the HEAs, the sub-alloys having less chemical 

complexity were studied. The selected sub-alloys of the FeNiCoCrMn HEA were FeNiCoCr, 

FeNiCo, FeNi alloys and pure Ni, while equiatomic TiNbHfTa, TiNbHf, TiNb alloys and pure Nb 

were studied to compare with the TiNbHfTaZr HEA. 

The samples in this study were prepared by arc-melting, cold-crucible casting and 

thermomechanical treatment. The thermal phase stability of the FeNiCoCrMn HEA, TiNbHfTaZr 

HEA and their sub-alloys were observed and no second phase was formed between 300 - 1500 K. 

In high entropy alloys, the random arrangement of multiple atom species is assumed to cause large 

atomic displacements at lattice sites, which give rise to a severe lattice distortion. The evidences 

of lattice distortion in HEAs have been limitedly reported due to a difficulty of experimental 

investigation. In this work, the pair distribution function (PDF) method was used to assess local 

strain with analysis of diffuse intensities on total synchrotron X-ray scattering data. The current 

study found that the level of local lattice strain associated with atomic displacement was a function 

of atomic size misfit. The local lattice strain of the FeNiCoCrMn HEA was small and comparable 

to that of the sub-alloys which obtain similar values of the atomic size misfit. In contrast to the 

FeNiCoCrMn system, the magnitude of the local lattice strain increased with the value of atomic 

size misfit from the unary Nb sample to the quinary TiNbHfTaZr HEA. The lattice distortion was 

evident in the TiNbHfTaZr HEA due to large local lattice strain, but the local lattice strain of the 

FeNiCoCrMn HEA was not anomalously large. The level of lattice strain determines the solid 

solution hardening as a consequence of the elastic interaction between dislocations and atoms. The 

comparable level of the lattice strain in the FeNiCoCrMn HEA, its sub-alloys and Ni sample led 

to narrow range of hardness (64 – 132 HV) and tensile yield strength (60 – 192 MPa). For the bcc-
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structured samples, the hardness and the yield strength significantly varied depending on the level 

of local lattice strain, between 80 – 327 HV of hardness and 207 – 985 MPa of tensile yield 

strength. It is clear from the result that the atomic size misfit influences the level of the local lattice 

strain and the solid solution hardening. 

Cold rotary swaging was used to study the work hardening in the HEAs because it can 

delay fracture by large hydrostatic stresses. The large plastic deformability was observed in the 

FeNiCoCrMn and TiNbHfTaZr HEAs. The TiNbHfTaZr HEA was cold-swaged by 90% reduction 

of the cross-sectional area without intermediate annealing. The FeNiCoCrMn HEA was swaged 

until 85% reduction of the cross-sectional area; however, it was observed that it could be further 

deformed. The dislocation densities of the HEAs and its sub-alloys after the cold deformation were 

calculated as in the range between 1014 - 1015 m-2, in a good agreement with reported values of 

conventional metals after severe plastic deformation. This finding suggested that the level of 

dislocation density storage was correlated with the number of the constituent elements, the level 

of lattice distortion associated with atomic size misfit and the intrinsic properties (i.e. the stacking 

fault energy and the melting point). Whereas the intrinsic lattice strains of the FeNiCoCrMn HEA 

and its sub-alloys were comparable, the levels of dislocation storage were different possibly due 

to a difference of stacking fault energy. For the bcc-structured samples, the dislocation densities 

of the TiNbHfTaZr HEA, TiNbHfTa and TiNbHf alloys were large due to the large atomic size 

misfits. The high dislocation density leads to strong interactions between dislocations, which 

results in high resistance to dislocation motions. The high mechanical properties (hardness and 

yield strength) in the as-deformed FeNiCoCrMn and TiNbHfTaZr HEA were presented with the 

evidence of high dislocation densities. Moreover, the hardness and yield strength of the 

FeNiCoCrMn HEA significantly increased by the deformation, while those of the TiNbHfTaZr 

HEA after the deformation were slightly changed from the undeformed HEA. The large work 

hardenability of the FeNiCoCrMn HEA is possibly caused by small solid solution hardening and 

ease of twin formation. 

The research results suggest a further step towards designing an alloy composition for a 

development of microstructure and mechanical properties of high entropy alloys. It is evidently 

clear from the findings that the large number of constituent elements (in a term of high 

configurational entropy) is not only a factor in the determination of lattice distortion, 
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microstructure and mechanical properties, but the type and the combination of constituent elements 

including the atomic interactions (i.e. atomic size misfit) have also an effect. 
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Zusammenfassung 

Die Hochentropielegierungen (HELen) wurden auf der Grundlage des Konzepts der 

entropischen Stabilisierung entwickelt, was eine große Anzahl von Legierungselementen 

beinhaltet. Es wird erwartet, dass die hohe Konfigurationsentropie in HELen vielversprechende 

charakteristische Eigenschaften hervorruft, d.h. hohe mikrostrukturelle Stabilität und hohe 

mechanische Eigenschaften. In dieser Studie wurden die äquiatomare kfz-strukturierte 

FeNiCoCrMn und die krz-strukturierte TiNbHfTaZr Einphasen-Hochentropielegierung  

hinsichtlich der Wirkung mehrerer Atomarten auf das Gefüge, die intrinsische Gitterdehnung und 

die mechanischen Eigenschaften untersucht. Im Vergleich zu den HELen wurden die 

Sublegierungen mit geringerer chemischer Komplexität untersucht. Die ausgewählten 

Sublegierungen der FeNiCoCrMn HEL waren FeNiCoCr, FeNiCo, FeNi-Legierungen und reines 

Ni, während äquiatomare TiNbHfTa, TiNbHf, TiNbHf, TiNb-Legierungen und reines Nb im 

Vergleich zur TiNbHfTaZr HEL untersucht wurden. 

Die Proben in dieser Studie wurden durch Lichtbogenschmelzen, Kalttiegelguss und 

thermomechanische Behandlung hergestellt. Die thermische Phasenstabilität der FeNiCoCrMn 

HEL, der TiNbHfTaZr HEL und ihrer Sublegierungen wurde untersucht und es wurde keine zweite 

Phase zwischen 300 - 1500 K gebildet. Bei Hochentropielegierungen wird angenommen, dass die 

zufällige Anordnung mehrerer Atomarten zu großen Atomverschiebungen an den Gitterplätzen 

führt, die eine starke Gitterverzerrung hervorrufen. Aufgrund der Schwierigkeit der 

experimentellen Untersuchung wurden Beweise für Gitterverzerrungen bei HELen nur begrenzt 

berichtet. In dieser Studie wurde die Methode der Paarverteilungsfunktion (PDF) verwendet, um 

die lokale Dehnung mit Analyse der diffusen Intensitäten der gesamten Synchrotron-

Röntgenstreuungsdaten zu beurteilen. Die aktuelle Studie ergab, dass die Höhe der lokalen 

Gitterdehnung, die mit der atomaren Verschiebung einhergeht, eine Funktion der Differenz der 

Atomgröße ist. Die lokale Gitterdehnung der FeNiCoCrMn HEL war klein und vergleichbar mit 

der der Sublegierungen, für die ähnliche Werte für die Atomgrößen-Unterschiede ermittelt wurden. 

Im Gegensatz zum FeNiCoCrMn-System stieg die Größe der lokalen Gitterdehnung mit dem Wert 

der Atomgrößendifferenz von der unären Nb-Probe bis zur quinären TiNbHfTaZr HEL. Die 

Gitterverzerrung war in der TiNbHfTaZr HEL aufgrund der großen lokalen Gitterdehnung 
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offensichtlich, wohingegen die lokale Gitterdehnung der FeNiCoCrMn HEL nicht ungewöhnlich 

groß war. Die Höhe der Gitterdehnung bestimmt die Mischkristallverfestigung als Folge der 

elastischen Wechselwirkung zwischen Versetzungen und Atomen. Der vergleichbare Wert der 

Gitterdehnung in der FeNiCoCrMn HEL, seinen Sublegierungen und den Ni-Proben führte zu 

einem engen Härte- (64 - 132 HV) und Streckgrenzenbereich (60 - 192 MPa). Für die krz-

strukturierten Proben variierten die Härte und die Streckgrenze dagegen je nach Höhe der lokalen 

Gitterdehnung signifikant, d.h zwischen 80 - 327 HV hinsichtlich der Härte und zwischen 207 - 

985 MPa hinsichtlich der Streckgrenze. Aus dem Ergebnis ist ersichtlich, dass die Differenz der 

Atomgröße einen Einfluss auf die Höhe der lokalen Gitterdehnung und die 

Mischkristallverfestigung hat. 

Das Kalthämmen wurde für die Untersuchung der Kaltverfestigung in den HELen genutzt, 

da es den Bruch durch die großen hydrostatischen Spannungen verzögern kann. Die große 

plastische Verformbarkeit wurde bei den FeNiCoCrMn und TiNbHfTaZr HELen beobachtet. Die 

TiNbHfTaZr HEL wurde ohne Zwischenglühen um 90% der Querschnittsfläche kaltgehämmert. 

Die FeNiCoCrMn HEL wurde bis zu einer Verkleinerung der Querschnittsfläche von 85% 

gehämmert, wobei jedoch eine weitere Verformung möglich gewesen wäre. Die 

Versetzungsdichten der HELen und ihrer Sublegierungen wurden nach dem Verformung in einem 

Bereich zwischen 1014 - 1015 m-2 berechnet, was in guter Übereinstimmung mit den berichteten 

Werten konventioneller Metalle nach starker plastischer Verformung ist. Dieses Ergebnis deutete 

darauf hin, dass die Höhe der gespeicherten Versetzungsdichte mit der Anzahl der beinhaltenden 

Elemente, dem Grad der Gitterverzerrung im Zusammenhang mit der Differenz der Atomgröße 

und den intrinsischen Eigenschaften (d.h. der Stapelfehlerenergie und dem Schmelzpunkt) 

korreliert. Obwohl die intrinsischen Gitterdehnungen der FeNiCoCrMn HEL und seiner 

Sublegierungen vergleichbar waren, waren die Werte der gespeicherten Versetzungen 

unterschiedlich, was möglicherweise an einer Differenz der Stapelfehlerenergie lag. Für die krz-

strukturierten Proben waren die Versetzungsdichten der TiNbHfTaZr HEL, der TiNbHfTa- und 

der TiNbHf-Legierungen aufgrund der großen Atomgrößenunterschiede hoch. Die hohe 

Versetzungsdichte bewirkt  starke Wechselwirkungen zwischen den Versetzungen, was zu einem 

hohen Widerstand gegen Versetzungsbewegungen führt. Die hohen mechanischen Eigenschaften 

(Härte und Streckgrenze) in den verformten FeNiCoCrMn und TiNbHfTaZr HELen wurden mit 

dem Nachweis hoher Versetzungsdichten belegt. Darüber hinaus wurden die Härte und die 
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Streckgrenze des FeNiCoCrMn HEL durch das Kalthämmern deutlich erhöht, während die der 

TiNbHfTaZr HEL nach dem Hämmerprozess nur leicht gegenüber der unverformten HEL 

verändert wurden. Die große Kaltverfestigung der FeNiCoCrMn HEL ist möglicherweise auf eine 

geringe Mischkristallhärtung und eine geringfügige Zwillingsbildung zurückzuführen. 

Die Forschungsergebnisse empfehlen für die Entwicklung des Gefüges und der 

mechanischen Eigenschaften von Hochentropielegierungen  weitere Schritte hinsichtlich eines 

zielführenden Legierungsdesigns durchzuführenhin. Aus den Ergebnissen geht eindeutig hervor, 

dass die große Anzahl an Legierungselementen ( hinsichtlich einer hochkonfigurativen Entropie) 

nicht die einzige Einflussgrößebei der Bestimmung von Gitterverzerrungen, dem Gefüge und der 

mechanischen Eigenschaften darstellt, sondern auch die Art und die Kombination der 

Legierungselementen einschließlich der atomaren Wechselwirkungen (d.h. 

Atomgrößenunterschiede) einen Effekt haben.  
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1. Motivation and objectives   

High entropy alloy (HEA), consisting of multi-components in near- or equiatomic ratio, 

has been known to form a solid solution phase with simple crystal structure, such as face-centered 

cubic (fcc) and body-centered cubic (bcc) structures, rather than several intermetallic phases. This 

suggests that the high configurational entropy in HEAs can overcome the enthalpy of formation of 

competing intermetallic phases [1, 2, 3]. The HEAs are designed based on the concept of entropic 

stabilization associated with a large number of constituent elements with high concentration. As a 

result, the large chemical complexity in HEAs is expected to cause exceptional microstructural 

stability and special properties, especially mechanical properties. 

Due to a large number of atom species at lattice sites in HEAs, an assumption of severe 

lattice distortion has been proposed [4, 5, 6, 7]. The assumption is based on the number of 

constituent elements. In fact, not only the number of constituent elements plays a role in a lattice 

distortion, but an alloy composition should be considered due to different interactions between 

atom species. There has been a limited number of reports to show the evidence for severe lattice 

distortion in HEAs. This is particularly because of the difficulties in finding suitable experimental 

approach to detect these distortions. Recently, the atomic pair distribution function (PDF), 

obtained from the Fourier transform of total scattering data, has been suggested as a powerful 

technique to probe the local atomic arrangements and to assess the lattice distortion in HEAs [8, 

9, 10]. The diffuse intensities included in the PDF profiles obtain the information on local atomic 

correlation [8]. An atomic PDF is one-dimensional function which has peaks at distances 

describing the probability of finding an atom at a distance r in real space. The width of these PDF 

peaks can give information on atomic displacement correlated with lattice distortion.  

As the assumption of severe lattice distortion in HEAs, the random arrangements of 

multiple atom species are expected to create intensive local strain field. The intensive strain fields 

act as strong barriers to the dislocation motions, which give rise to a significant level of solid 

solution hardening [11, 12]. In other words, the level of lattice distortion correlates with the level 

of solid solution hardening, often expected as key strengthening mechanism in HEAs. 
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 Moreover, it is reported that the effect of work hardening is significant on the improvement 

of the mechanical properties. For example, in fcc-structured FeNiCoCrMn HEA, 50% cold 

working can enhance the yield strength from 200 MPa to 1000 MPa [4]. It suggests that random 

arrangements of multiple atom species and an assumption of lattice distortion in the HEAs strongly 

prohibit the dislocation motion during the plastic deformation; hence, the strength are enhanced. 

[1, 13]. The characterization of dislocation motion in HEAs have been addressed in the literatures 

[11, 13, 14]. Many studies indicate that the deformation mechanism of HEAs is similar to 

concentrated binary solid solution alloys [15, 16]. However, the quantitative analysis of dislocation 

is still needed to understand deformation behavior and correlated mechanical properties in HEAs 

[13]. 

Previous works on HEAs demonstrate that typical manufacturing routes are applied to 

produce the samples [1, 17, 18, 19]. Also, the high malleability is observed in the fabrication of 

HEAs [20]. This beneficial point facilitates to tune mechanical and other properties by controlling 

microstructure with a conventional process [21]. In this study, HEAs could be produced with cold 

crucible casting and their microstructure was modified by common fabrication methods (rolling 

and swaging), followed by heat treatment. The macroscopic fracture could not be observed during 

the production process.  

Therefore, this present work aims to assess the lattice strain interacted by multiple 

atom species in order to correlate the mechanical properties and microstructural evolution 

during thermomechanical treatment. 

 This PhD dissertation consists of 8 chapters. Chapter 2 introduces some fundamental 

aspects about HEAs and their mechanical properties in a comparison with those of conventional 

alloys. The fundamentals also include thermodynamics and criterion of single solid solution 

formation in HEAs. Chapter 3 describes the experimental procedure in this work in terms of alloy 

preparations and characterizations. 

The experimental results are presented in chapter 4 – 7. The single solid solution phase fcc-

structured FeNiCoCrMn and bcc-structured TiNbHfTaZr HEAs were studied in the aspects of 

lattice strain, microstructure and mechanical properties. The single solid solution phase sub-alloys 

with a variation of compositional complexity were parallel investigated in a comparison with the 
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HEAs. The two different crystal structures of the HEAs are expected to obtain different structural 

information due to different constituent elements in each HEA. The investigation of thermal phase 

stability of the HEAs is discussed in chapter 4. Chapter 5 presents the assessment of lattice strain 

associated with multiple constituent elements in fcc- and bcc-structured HEAs. The lattice strain 

in micro and local scales were characterized by high energy synchrotron X-ray diffraction. The 

samples were prepared by the cold rolling and subsequent annealing. The samples obtained fine 

microstructure with strain-free grains in order to achieve high statistics, avoid fluctuation in 

intensity, and minimize preferred orientation on the diffraction information. Chapter 6 presents the 

intrinsic effect of solid solution hardening associated with multiple constituent element in HEAs. 

The effect of solid solution hardening was represented by hardness and tensile strength.  

The effect of work hardening on the mechanical properties of the HEAs was presented in 

chapter 7. The rotary swaging was applied to deform the samples in order to study an accumulation 

of dislocation. Moreover the rotary swaging associated with large hydrostatic stresses delays brittle 

fracture and allows the accumulation of high plastic strain [17]. The work hardening was discussed 

in the correlation between mechanical properties and dislocation density accumulated after cold 

swaging. According to the mechanical properties strongly dependent on the microstructure, the 

quantitative analysis of dislocation density is important to study. Finally, the conclusions and 

outlook for this study are presented in chapter 8.  
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2. Fundamentals 

2.1 Concept of high entropy alloys  

 High entropy alloys (HEAs) have been introduced by two independent publications in 2004 

by J.W. Yeh et al. [22] and B. Cantor et al. [23]. Based on an original definition, HEAs compose 

of at least 5 elements with near- or equiatomic ratio and obtain a single disordered solid solution 

[1, 2, 3, 22]. The key characteristic of HEAs is high configurational entropy (Sconf) driven by 

multiple elements. The high Sconf stabilizes a disordered solid solution over completing 

intermetallic compounds [24, 25]. In fact, recent works indicate that most HEAs are not stable as 

single solid solution at all service temperatures [12]. The many HEAs in recent scientific reports 

obtain metastable solid solution phase and multiple phases can be presented [21]. The presence of 

multiple phases in the HEAs is not in an agreement with the original definition of the HEAs. In 

order to avoid the confusion in the definition, another term “complex concentrated alloys (CCAs)” 

has been introduced for alloy naming conversion [3, 24]. However, the single phase high entropy 

alloys were studied in this thesis; hence, the term “high entropy alloy” was used to call the samples. 

 

2.1.1 Phase formation and thermodynamic 

In case of excluding kinetic factors, phase formation in multiple element alloys including 

HEAs is thermodynamically controlled by minimizing the Gibbs free energy of mixing (Gmix). 

The Gmix is presented in following equation [26]: 

 ∆𝐺𝑚𝑖𝑥 =  ∆𝐻𝑚𝑖𝑥 −  𝑇∆𝑆𝑚𝑖𝑥        (2.1) 

where ΔHmix is the enthalpy of mixing, ΔSmix is the entropy of mixing, and T is the temperature at 

which different elements are mixed. The enthalpy of mixing for multiple element alloys with n 

elements can be determined from the following equation [27, 28]: 

     ∆𝐻𝑚𝑖𝑥 =  ∑ 𝑖𝑗𝑐𝑖𝑐𝑗  𝑛
𝑖=1,𝑖≠𝑗       (2.2) 
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where 𝑖𝑗is the regular solution interaction parameter between the ith and jth elements, ci or cj is 

the atomic percentage of the ith or jth component and 𝑖𝑗 = 4∆𝐻𝐴𝐵
𝑚𝑖𝑥 ; ∆𝐻𝐴𝐵

𝑚𝑖𝑥is the enthalpy of 

mixing of binary A-B liquid alloys. 

For ideal and regular solutions, the entropy of mixing is assumed to be approximately the 

configurational entropy (Sconf). The configurational entropy of an n-element solution is as 

follows; 

      ∆𝑆𝑚𝑖𝑥 ≈ ∆𝑆𝑐𝑜𝑛𝑓 =  −𝑅 ∑ 𝑐𝑖ln 𝑐𝑖 
𝑛
𝑖=1       (2.3) 

where R is gas constant (8.314 J K−1 mol−1). The configurational entropy would be the maximum 

for an equiatomic composition. The Sconf of multi-principle element HEAs would higher than that 

of conventional alloys with one or two main element(s). The magnitude of Sconf increases with 

the number of alloying element in high concentration.  

The solid solution formation is determined by competition between an enthalpy term of 

Hmix and an entropy term of TSmix. It is reported that Hmix plays an important role in phase 

formation in multi-component alloys similar to that of binary alloys [29]. The negative Hmix drives 

the constituent elements to form intermetallic compound(s), while the positive Hmix leads to 

incompatibility of constituent elements which results in separation or segregation of elements in 

alloys. Theoretical models and experimental results show a good agreement that solid solution is 

stably formed with Hmix close to zero [12, 30]. Additionally, an equilibrium phase diagram is 

obtained from the calculation of thermodynamic data using the Gibbs free energy for all relevant 

phases. Figure 2.1 presents examples of three types of phase diagram when the values of Hmix are 

negative, positive and close to zero. They show various phase transformations due to different 

thermodynamic properties of the alloys. 

 

 

 

 



2. Fundamentals 7 

 

 

Figure 2.1 Three types of phase diagram when Hmix  0, Hmix  0 and Hmix  0. 

 

In HEAs, when they form a disordered solid solution phase, the multiple atom species are 

expected to randomly occupy the lattice sites. The atomic radius of alloying elements is an 

important parameter for solid solution forming and hence the phase stability [31, 32]. The large 

atomic size misfit increases the free-energy in the alloys, which lowers the stability of the solid 

solution. The Hume-Rothery rule defines that the solid solution can be formed with less than 15% 

atomic size misfit between alloying elements and host element in conventional alloys [33]. In 

HEAs, high concentration and the larger number of constituent elements limit the range of atomic 

size misfit at 6.6% for the borderline between disordered solid solution and other complex crystal 

structures [34]. The atomic size misfit () can be calculated with the following equation: 

    𝛿 = 100√∑ 𝑐𝑖(1 −
𝑟𝑖

𝑟̅
)2 𝑛

𝑖=1         (2.4) 

where 𝑟𝑖  is the radius of individual atomic species, 𝑐𝑖  is its concentration and 𝑟̅  is the average 

atomic radius.  

Figure 2.2 presents the phase selection under the relationship between the parameters Hmix 

and . The solid solutions in HEAs are formed in the criterion of -15  Hmix  5 kJ/mol and   

6.6%. Beyond this criterion, the intermetallic compounds can be decomposed and the amorphous 

phase can be stable with rapid quenching. 
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Figure 2.2 Plot between the parameters Hmix and  determines the phase formation. The oval zone is for 

mixtures of solid solutions, intermetallic compounds (IM), and metallic glasses. Taken from reference [31]. 

 

Meanwhile, the ΔSmix is another parameter to be considered. The ΔSmix should be high 

enough to stabilize the formation of solid solution against either the ordering or segregation of 

alloy elements [3, 30, 35, 36]. In contrast, the small ΔSmix favors the formation of intermetallic 

compound [37]. The high ΔSmix increases the randomness of alloy system and lowers the term of 

ΔGmix. As temperature increases, the higher TΔSmix facilitates forming solid solution, which 

overcome the effect of Hmix. As discussed, the Hmix and TΔSmix are competitive parameters for 

solid solution formation. Y. Zhang et al. [34] proposed the parameter  by combining effects of 

Hmix and ΔSmix on the stability of multicomponent solid solution. The  is expressed by the 

following equation;   

 =  
𝑇𝑚∆𝑆𝑚𝑖𝑥

|∆𝐻𝑚𝑖𝑥|
          (2.5) 

 The melting point (Tm) of a n-element alloy can be estimated by rule of mixture, as shown 

below: 

        𝑇𝑚 =  ∑ 𝑐𝑖
𝑛
𝑖=1 (𝑇𝑚)𝑖       (2.6)  
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 According to the equation 2.4, the  is always positive. The solid solution formation is 

favorable for high value of TmΔSmix affected by a large number of constituent elements in case of 

 > 1 [25]. X. Yang et al. [30] presented the plot between  and  for different kinds of 

microstructures, as presented in Figure 2.3. The plot suggested that single solid solution phase 

would be formed under the criterion of   1.1 and   6.6. 

Based on experimental reports on the number of HEAs, only limited number of alloys 

(composing of at least 4 elements) can be called as a single phase solid solution for at least one 

processing step of sample preparation [21]; for example, FeNiCoCrMn [38, 39], FeNiCoCr [40], 

FeNiCoCrAl0.3 [41], FeNiCoCrMnAl0.2 [42], TiNbHfTaZr [43, 44], TiZrNbMo0-1.5V0.3 [45], 

NbMoTaW [46] and NbMoTaWV [46]. In fact, the magnitude of ΔSmix may vary with temperature 

[47] and cahnges significantly after a first order phase transformation. It is in a good agreement 

with the experimental results that the most HEAs show solid solution instability at some range of 

temperatures [12]. Only NbMoTaWV presents a stable single solid solution phase at all 

temperature [30, 46, 48]. 

 

Figure 2.3 Plot between the parameters  and  determines the phase formation. The regions “S”, “I”, “S+I” 

and “B” indicate a single solid solution alloys, intermetallic compound contained in alloys, the precipitation 

of intermetallic compounds with solid solution phase and bulk metallic glass alloys, respectively. Taken 

from reference [30]. 
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2.1.2 Four core effects  

In general, composition and processing determine lattice structure and microstructure, 

which result in properties. The high concentrations of multiple elements in HEAs contribute to 

unique characteristic effects on their microstructures and properties. These effects were proposed 

in 2006, namely as “four core effects”: high entropy, sluggish diffusion, severe lattice distortion 

and cocktail effects [49]. Figure 2.4 demonstrates the role of each effect in the physical metallurgy 

of HEAs. 

 

 

Figure 2.4 Role of four core effects in physical metallurgy of HEAs. Taken from reference [11]. 

 

High entropy effect – The high entropy effect is the key effect in the HEA via 

thermodynamic. As discussed previously, it is led by a large number of constituent elements in 

high concentration. The high entropy effect causes high possibilites to form solid solution phase 

in the simple form of  fcc or bcc or hcp crystal structures [50]. The number of phase formed in 

HEAs is far fewer than the maximum phase number expected from the Gibbs phase rule [1, 28, 

51]. This indicates that the high entropy effect increases the solubility of their solid solutions, 

resulting in simpler microstructure [2].  

Severe lattice distortion effect – The hypothesis of severe lattice distortion in HEAs is 

suggested by random arrangements of multiple atom species at their lattice site, comparing with 
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one dominant element alloys, as illustrated in Figure 2.5. These distortions are caused by atomic 

size misfit, different bonding energies and different crystal structures among constituent elements 

[52]. Lattice distortion is related to the deformation theory, kinetics and thermodynamics. J. W. 

Yeh et al. [53] suggested as an evidence of intrinsic lattice distortion that peak intensities on the 

X-ray diffraction (XRD) of CuNiAlCoCrFeSi alloy dropped due to the large roughness of the 

atomic planes and the severe X-ray scattering effect. The lattice distortion is often assumed to 

cause high hardness and strength, especially in  bcc-structured HEAs [34, 51, 54], also related to 

the slower kinetics of HEAs [55].   

 

 

Figure 2.5 Schematic diagram of lattice distortion affected by five different atom species in bcc lattice. 

Taken from reference [2]. 

 

Sluggish diffusion effect – The sluggish diffusion in HEAs affects kinetics of phase 

transformation. This hypothesis is based on an experimental observation of nano-sized crystals 

precipitation upon cooling in CuCoNiCrAl alloy by J. W. Yeh et al. [22]. It was suggested that 

difficulties in substitutional diffusion and interdiffusion led to the formation of ultrafine crystallites. 

Recent evidence revealed that the precipitations in Al0.5CrFeCoNiCu HEA could be formed with 

slow solidification rate, which is similar to the precipitation with rapid solidification [56]. It 

suggested that sluggish diffusion in HEAs may have a similar effect on the precipitation in samples 

either obtained by a furnace or rapid cooling [12, 57, 58]. K. Y. Tsai et al. [59] also verified 

sluggish diffusion effects through a direct measurement of diffusion coefficient in equiatomic 
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CoCrFeMnNi alloy. The experimental results demonstrated that the diffusion coefficients for each 

element in the matrix of the CoCrFeMnNi HEA were the lowest when compared with conventional 

crystalline metals (Figure 2.6). This effect is expected to lead exceptional high-temperature 

strength [16, 60], high-temperature structural stability [61, 62] and formation of nanostructures 

[22, 63]. In recent, based on the results from various methods approaching diffusion behavior in 

HEAs, the concept of “sluggish” diffusion in HEAs have been increasingly questioned [3, 12, 64]. 

However, it is suggested that the term “sluggish diffusion” cannot be used for all HEA.  

 

 

Figure 2.6 Diffusion coefficients as a function of temperature for Cr, Mn, Fe, Co and Ni in different 

matrixes. Taken from reference [59]. 

 

Cocktail effect – The cocktail effect is proposed by S. Ranganathan [65] to imply the 

enhancement of the properties depend on composition, microstructure and other features of HEAs 

in complicated and sensitive ways [1, 3]. This effect requires no proof because it is not a hypothesis 

[3]. This similar effect can be found in conventional alloys, but significant effect is observed in 

HEAs due to the mutual interactions among all the constituent elements. 
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2.2 Alloy classification of high entropy alloys 

 Since the first report on high entropy alloys, there have been huge number of attempts to 

develop the high entropy alloys based on the concept of high configurational entropy. D.B. Miracle 

and O.N. Senkov have made an effort to group high entropy alloys (HEAs) and complex 

concentrated alloys (CCAs) among 408 alloys using 37 elements [66]. Some of these elements is 

commonly observed in the compositions, i.e. Al, Co, Cr, Cu, Fe, Mn, Ni, Ti, Mo, Nb, V and Zr. It 

is also mentioned that the number of constituent element is averagely 5 - 6 for an alloy.  

 The alloys have been classified into three main alloy families; 3d transition metal HEAs 

(consisting of the 3d transition metallic elements with similar electronic configurations and atomic 

sizes), refractory metal HEAs (composing of refractory metallic elements), and others. In the first 

group of 3d transition metal HEAs, the elements having larger atomic size (such as Al, Ti, V, Mo) 

are also included in the alloys of this group; hence, the mechanical properties of the alloys are 

complicated and it is hard to obtain a clear trend. Recently, H.Y. Diao et al [13] has modified the 

classification by dividing the first group into two groups; namely, 3d transition metal HEAs and 

transition metals HEAs with larger atomic radius elements.  

 3d transition metal HEAs - This group is the soft solid solution HEAs, only including 3d-

transition metals Co, Cr, Fe, Mn and Ni with similar electronic configurations and atomic sizes. 

This group contains the alloys obtaining single phase fcc solid solution. The classical HEA 

CoCrFeMnNi [39], so called as Cantor alloy, is in this group. The CoCrFeMnNi HEA was firstly 

experimentally investigated by B.Cantor and his student Alain Vincent [6] in 1981 and this was 

published in 2004 [39]. Among the alloys of their experiment with 20 elements, only 

Co20Cr20Fe20Mn20Ni20 (in at%) presents single fcc-structured solid solution phase. Since the first 

report, this HEA has been intensively investigated with a particular focus on its mechanical 

properties and processing [16, 67]. The composition of the CoCrFeMnNi HEA has been modified 

for further investigations; for example, CoCrFeNi [68, 69], CoFeMnNi [70], CoCrMnNi [70], and 

Co0.25Cr0.1Fe2Mn1.35Ni1.3 [71].  

 Transition metal HEAs with larger atomic radius elements - The combination between 

transition metals and the larger atomic size elements (such as Al, Ti, V, Mo) typically forms duplex 
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fcc + bcc solid solution phases. These alloys in this group are commonly Al-containing alloys; 

excessive alloying with Al can cause changes in both microstructure and mechanical properties. 

The precipitation of intermetallic compounds i.e. L12,  and laves phases can occur. The examples 

of duplex fcc + bcc solid solution HEA are AlxCoCrCuFeNi [22], AlxCoCrFeNi [55, 72] and 

AlCoCrFeNiTix [51]. Alloying with refractory elements can result in single bcc solid solution 

phase; i.e. AlNbTiV [73] and AlNbTaTiV [74]. 

 Refractory metal HEAs - This alloy family is developed for using in high temperature 

applications. The bcc solid solution phase is commonly formed in this group. This alloy family 

usually combines at least 4 elements from the 9 refractory elements: Cr, Hf, Mo, Nb, Ta, Ti, V, W, 

and Zr [24, 25]. NbMoTaW and VNbMoTaW were firstly proposed by O. N. Senkov et al. [46]. 

These two alloys with single ingle bcc solid solution phase have extremely high yield strength of 

over 400 MPa at 1600C [48]. In contrast to the Ni-base superalloy Inconel 718, it significantly 

softens above 600C. However, the NbMoTaW and VNbMoTaW HEAs have a limited 

compressive plasticity about 2 – 3% at room temperature [48], which is similar to conventional 

refractory alloys [75]. Therefore, other compositions of refractory HEAs have been investigated 

to increase the ductility. It was reported that the compressive strain of HfMoxNbTaTiZr (x  1) 

[76] and HfNbTaZrTi [43] at room temperature is above 50%. This alloy group also includes 

Hf0.5Nb0.5Ta0.5Ti1.5Zr [77] and HfNbTiZr [78]. 

  Besides the alloys mentioned above, hcp solid solution alloys were recently developed. It 

was suggested that HEAs based on rare earth elements can be formed with a HCP structure [25]. 

Additionally, it was reported that the combinations of at least 4 lanthanide (4f) elements such as 

Dy, Gd, Lu, Tb and Tm form single hcp solid solution HEAs [79]. The example alloys are 

DyGdLuTbY and DyGdLuTbTm. 

 

2.3 Mechanical properties of high entropy alloys 

HEAs present high strength and reasonable ductility at room and elevated temperatures 

[14, 48, 80, 81]. The mechanical properties of HEAs are resulted by a mutual interaction between 
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multiple principle elements, unlike conventional alloys which their mechanical properties is 

mainly dictated by one principle element. It is known that the multiple element HEAs could easily 

form simple solid solutions with or without nano-precipitates during solidification [1, 63]. Thus, 

multiple element solid solutions play a vital role in the mechanical properties of HEAs [70, 76, 82, 

83] and cause superior mechanical properties when compared to conventional alloys. It is believed 

that the high degree of solid solution hardening in HEAs is related to lattice distortion. C. M. Lin 

et al. [84] studied the solid solution hardening by the addition of Al to single bcc-structured 

AlxHfNbTaTiZr HEA as shown in Figure 2.7. This large effect of hardening is attributed to the 

strong bonding of Al and other elements in combination with the effect of atomic size misfit. These 

conclusions are similar to a theoretical study of O. N. Senkov et al. [43] that high degree of solid 

solution hardening in HfNbTaTiZr is resulted by atomic size misfit and modulus misfit of its 

constituent atoms. However, it is reported that the degree of solid solution hardening in fcc-

structured HEA i.e. CoCrFeMnNi is relatively lower due to its smaller lattice distortion [1]. 

Besides the intrinsic hardening effect, the microstructure features i.e. grain size and secondary 

phase, influence the mechanical properties of HEAs, similarly to conventional alloys.   

 

 

Figure 2.7 Effect of Al content on hardness of single phase AlxHfNbTaTiZr HEA. Taken from reference 

[84].  
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Figure 2.8 presents the hardness values of 20 HEA systems in a comparison with those of 

conventional alloys. In each alloy system, the hardness values widely vary depending on chemical 

compositions, fabrication methods, and following heat-treatment processes. It is mentioned that 

the hardness values of HEAs mainly composed of fcc-structured solid solution (i.e. CoCrFeNi, 

CoCrCuFeNi and CoCrFeMnNi) are relatively low. In the alloys with addition of Ti and Al, the 

hardness values can be enhanced by the formation of hard secondary phases. The refractory HEAs 

are based on bcc-structured solid solution alloys. For example, the hardness values of 

HfNbTaTiZrTi, MoNbTaW, MoNbTaVW, AlMo0.5NbTa0.5TiZr and Al0.4Hf0.6NbTaTiZr alloys 

are 390, 454, 535, 591 and 500 HV, respectively [43, 46, 85]. It is noted that the crystal structure 

types are the dominant factor for characterizing the strength or hardness of HEAs [86, 87, 88]. It 

is reported that fcc-structured HEAs present low strength and high plasticity, and bcc-structured 

HEAs show high strength and low plasticity as mentioned previously. The valance electron 

concentration (VEC) has an effect on crystal structure of solid solution phase. S. Guo [89] reported 

that fcc phases were stable at VEC > 8 and VEC < 6.87 stabilized bcc phases.  

 

 

Figure 2.8 Hardness values of 20 most studied HEA systems, compared with conventional alloys; Al-, Co-, 

Cr-, Cu-, Fe-, Ni-, Ti-, and V-based alloys. The white regions of the bars represent the minimum hardness 

values and the hatched regions indicate the variable range for each alloy system. Taken from reference [1]. 
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M. C. Gao et al. [1] summarized the published tensile information of HEAs as presented in 

Figure 2.9. It suggests that the HEAs present a wide range of mechanical properties. The tensile 

yield stresses of AlCoCrCuFeNi and Al0.5CoCrCuFeNi are comparable to Ti-6Al-4V and Inconel 

713. The ductilities of CoCrFeNi and CoCrFeMnNi HEAs are remarkably better than the 

conventional alloys. In addition to bcc-structured HEAs, the HfNbTaTiZr HEA shows the tensile 

yield stress of approximately 1200 - 1300 MPa and a range of tensile ductility between 2 – 10% 

depending on the processing route [90]. Its mechanical properties are likely better than Inconel 

713 and other conventional alloys. 

 

 

Figure 2.9 Relationship between yield stress and ductility of HEAs at room temperature in comparison with 

conventional alloys; 304 stainless steel, Ti-6Al-4V, Inconel 713, and 5083 aluminum alloy. Taken from 

reference [1]. 

  

 Besides the exceptional strength, HEAs have also shown high ductility, good work 

hardening and plasticity. These combinations of mechanical properties including strength and 

hardness are attractive to use HEAs as structural materials for future applications. It is consistent 

with the conventional alloys that HEAs with fcc structure are more ductile than HEAs with bcc 

structure [91]. The high ductility and large deformability of fcc-structured HEAs (such as 



18   2. Fundamentals 

 

FeNiCoCrMn) are often explained by low stacking fault energy [1]. Numerous macro slip bands 

are formed during deformation, which is evident to the extensive ductility for fcc-structured HEAs 

[92]. Although most of reported HEAs with bcc structure has limited ductility at room temperature 

[13, 93], the equiatomic HfNbTaTiZr HEA and some of its derived compositions obtain large 

plasticity [13]. This large plasticity is attributed to dislocation movement and pile-ups, which is 

observed by TEM investigation [78]. The previous investigations suggest that the ductility of 

HEAs is strongly response to the chemical composition and phase structure [91].
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3. Experiments  

3.1 Alloy preparation 

3.1.1 Alloy selection 

This study focused on the investigation of single fcc-structured and bcc-structured solid 

solution phase high entropy alloys (HEAs). The equiatomic FeNiCoCrMn HEA was investigated 

for a fcc-structured solid solution alloy and the equiatomic TiNbHfTaZr was studied for a bcc-

structured solid solution alloy. In order to study the effect of a variation of compositional 

complexity, the single solid solution phase sub-alloys (namely quaternary, ternary and binary 

alloys) including unary samples were carefully selected with considerations of literature reviews, 

phase diagrams and experimentally results. For a selection of fcc-structured sub-alloys, Figure 3.1 

presents the possible phase formation of the sub-alloys and pure metal subsets of the equiatomic 

FeNiCoCrMn HEA, which is experimentally investigated by Z. Wu et al. [70]. Therefore, the 

equiatomic FeNiCoCr, FeNiCo, FeNi sub-alloys and pure Ni were systematically studied in a 

comparison with the FeNiCoCrMn HEA. For a selection of bcc-structured sub-alloys, phase 

formation of some alloys is experimental investigated by arc-melting and homogenization, and the 

others of the sub-alloys were checked with the theoretical work of Y. Lederer et al. [94]. Figure 

3.2 presents the possible phase formation of the sub-alloys and pure metal subsets of the 

equiatomic TiNbHfTaZr HEA. The equiatomic TiNbHfTa, TiNbHf, TiNb sub-alloys and pure Nb 

were selected for studying a variation of compositional complexity in the TiNbHfTaZr HEA.  



20   3. Experiments 

 

 

Figure 3.1 Possible phase formations of the sub-alloys and pure metal subsets of the equiatomic 

FeNiCoCrMn HEA. The data is collected form experimental results of Z. Wu et al. [70]. 

 

 

Figure 3.2 Possible phase formations of the sub-alloys and pure metal subsets of the equiatomic Zr HEA. 

Phase formations of some sub-alloys (masked with *) are experimentally investigated by arc-melting and 

homogenization, and the others are collected from the theoretical work of Y. Lederer et al. [94]. 
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Table 3.1 shows the alloy composition of the samples in this study. The samples in this this 

study were divided into three groups; (1) equiatomic fcc-structured alloys, (2) equiatomic bcc-

structured alloys and (3) non-equiatomic bcc-structured alloys. The group of the equiatomic fcc-

structured alloys composed of FeNiCoCrMn HEA and its sub-alloys (FeNiCoCr, FeNiCo, FeNi 

and Ni), while the group of the equiatomic bcc-structured alloys consisting of TiNbHfTaZr HEA 

and its sub-alloys (TiNbHfTa, TiNbHf, TiNb and Nb). As- received 2 mm diameter Nb rod was 

used during this study. The compositions of non-equiatomic TiNbHfTaZr alloys were modified 

based on the TiNbHfTaZr HEA for further investigation of the solid solution hardening; 

Ti30Nb30Hf5Ta30Zr5, Ti20Nb18Hf20Ta18Zr24 and TiNbHfTaZrMo0.25 (in atomic ratio). 

Table 3.1 Studied samples in this work are classified into three groups; namely (1) equiatomic fcc-structured 

alloys, (2) equiatomic bcc-structured alloys and (3) non-equiatomic bcc-structured alloys. 

Equiatomic fcc-structured 

alloys 

Equiatomic bcc-structured 

alloys 

Non-equiatomic bcc-

structured alloys  

FeNiCoCrMn 

FeNiCoCr 

FeNiCo 

FeNi 

Ni 

TiNbHfTaZr 

TiNbHfTa 

TiNbHf 

TiNb 

Nb 

Ti30Nb30Hf5Ta30Zr5 

Ti20Nb18Hf20Ta18Zr24  

TiNbHfTaZrMo0.25 

                                                                   

3.1.2 Melting and casting   

 Prior alloying, elements with purities of 99.9 wt% or higher were prepared and used for 

casting 20 - 30 g ingots. The amounts of the constituting elements were weighed using a Mettler 

Toledo XPE26 with experimental accuracy of  0.01 g. Master alloy ingots were prepared in arc 

melter (Edmund Bühler GmbH) under a purified Ti-gettered argon (Ar) atmosphere on a water-

cooled copper substrate. A schematic illustration of the arc melter is shown in Figure 3.3. The pre-

alloyed ingots were flipped over and remelted at least 3 times to ensure chemical homogeneity.  
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Figure 3.3 Schematic illustration of the arc melting instrument combined with a suction facility at IFW-

Dresden. 

 

Subsequently, an in house built cold crucible device as sketched in Figure 3.4 (a) was used 

to cast rods. The ingots were melted with a high frequency inductive heating and levitated off in a 

Ti-gettered Ar atmosphere. A fast-moving stick was inserted from below into the mold in order to 

pull casting rods out of the levitated melt into a water-cooled Cu mold. During melting, the Cu 

crucible was actively cooled by water. Figure 3.4 (b) presents the cast rod with 6 mm diameter and 

80 – 100 mm length. The conical part was removed from each rod before further processing. The 

non-equiatomic bcc-structured alloys were investigated in the form of ingot. The casting was 

technically supported by S. Donath in Institute for Complex Materials (IKM), IFW-Dresden and 

C. Blum in the Institute for Solid State Research (IFF), IFW-Dresden. 
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Figure 3.4 (a) Schematic illustration of the cold crucible device at IFW-Dresden and (b) sample rod cast by 

cold crucible method. 

 

3.1.3 Thermomechanical treatment  

  After casting, the cast samples were subjected to thermomechanical treatment for specific 

purpose of characterization. Figure 3.5 presents a schematic illustration of thermomechanical 

treatment for the samples after casting. The diagram indicates three states of treatment; (1) as-

homogenized, (2) as-swaged or as-rolled and (3) as-annealed state. 

 Due to non-equilibrium solidification during the casting, dendritic segregation was 

observed in the as-cast microstructures. The homogenization treatment was used to improve 

chemical homogeneity throughout the samples and the as-homogenized samples were used as 

starting samples for the investigation in this work. In order to characterize lattice strain with the 

large number of structural data, the samples should obtain a fine microstructure. Hence, plastic 

deformation was performed to refine microstructure and subsequent annealing was used to induce 
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the nucleation of defect-free grains for avoiding textural effect on x-ray diffraction patterns. 

Furthermore, the as-annealed microstructures should obtain similarly an average grain size in order 

to exclude the grain size effect on the investigation of lattice strain and solid solution hardening. 

The conditions of each processing step is described as following paragraphs.  

 

 

Figure 3.5 Schematic illustration of thermomechanical treatment for the sample preparations after casting. 

 

Homogenization 

 After casting, the SiC papers were used to remove casting defects on the surface and to 

produce smooth surface. The cast rods were finished by grinding with approximately 55 mm 

diameter, followed by cleaning with ethanol. The rods were subsequently encapsulated in quartz 

tubes evacuated and backfilled with 150 mbar of Ar prior to homogenization. The samples were 

subjected to high temperature annealing followed by water quenching. After cooling down to room 

temperature, the samples were taken out by breaking the quartz tubes and then possible oxide layer 

was removed by grinding with 1200 grit SiC paper for subsequent studies and processing. The 

conditions of homogenization were different depending on the alloy compositions. The 

FeNiCoCrMn, FeNiCoCr, FeNiCo and FeNi alloys were homogenized at 1273 K (1000 °C) for 12 

hours. Ni sample did not undergo homogenization. The TiNbHfTaZr, TiNbHfTa, TiNbHf and 
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TiNb alloys were homogenized at 1373 K (1100 °C) for 40 hours of homogenization. The ingots 

of Ti30Nb30Hf5Ta30Zr5, Ti20Nb18Hf20Ta18Zr24 and TiNbHfTaZrMo0.25 were homogenized at 1373 K 

for 32 hours followed by water quenching. 

 

Cold plastic deformation 

 In this study, plastic deformation was performed at room temperature in order to limit 

oxidation contamination. Especially, the bcc-structured samples, which contain Ti element, are 

sensitive to oxidation. In this work, cold rolling and cold rotary swaging were carried out to 

fabricate the samples.  

Cold rolling was used to deform the samples into the form of plate for tensile testing. The 

as-homogenized rods of 5.5 cm diameter were rolled by 10% thickness reduction per step, at room 

temperature, until 1 mm thickness of plates. No cracking was observed in the samples. 

Cold rotary swaging was used to fabricate the samples into the form of rod for compression 

testing. The as-homogenized rods were cold swaged by rotary swaging machine (HMP Heinrich 

Müller Maschinenfabrik GmbH.). Four dies in the machine are used to hammer a round workpiece 

into a smaller diameter by moving around the center. A cross sectional area reduction of about 

19% per step was applied. The as-swaged samples in this thesis were done at the range of 45 - 90% 

cross sectional area reduction. 

 Figure 3.6 shows the rolling machine and the rotary swaging. The cold plastic deformation 

was technically supported by D. Seifert in Institute for Metallic Materials (IMW), IFW-Dresden. 
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Figure 3.6 (a) Rolling machine and (b) rotary swaging machine at the IFW-Dresden. 

 

Annealing 

Prior to annealing, as-deformed samples were cleaned by ethanol in an ultrasonic bath to 

remove surface contaminations obtained during cold deformation. The as-deformed samples 

encapsulated in the quartz tubes were subjected to high temperature of annealing. Temperature and 

time of annealing for each composition were designed by literature surveys and experimental 

observations in order to obtain similar grain sizes for all compositions. Table 3.2 presents the 

condition of annealing for each composition. After annealing, the samples were quenched into 

water by breaking the quartz tubes. 
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Table 3.2 Annealing conditions for each composition. 

fcc samples Annealing condition bcc samples Annealing condition 

Ni 1073 K, 1 hour Nb 1223 K, 1 hour 

FeNi 1073 K, 2 hours TiNb 1223 K, 1 hours 

FeNiCo 1073 K, 2 hours TiNbHf 1223 K, 3 hours 

FeNiCoCr 1223 K, 6 hours TiNbHfTa 1223 K, 5 hours 

FeNiCoCrMn 1223 K, 6 hours TiNbHfTaZr 1223 K, 5 hours 

 

3.2 Sample characterization  

3.2.1 Chemical analyses 

 In order to examine the actual chemical composition of the samples before and after the 

thermomechanical treatment, chemical analyses were performed by using an inductively coupled 

plasma with optical emission spectrometry (ICP-OES: IRIS Intrepid II XUV, Thermo Fisher 

Scientific GmbH). Additionally, carrier gas hot extraction method (CGHE: LECO US TC-436 

DR) was used to analyze the oxygen content in as-homogenized samples. The chemical analysis 

was technically supported by A. Voß and H. Bußkamp in Institute for Complex Materials (IKM), 

IFW-Dresden 

 

3.2.2 Differential scanning calorimetry (DSC) 

 The thermal phase stability of as-homogenized samples was examined by a differential 

scanning calorimeter (DSC: Netzsch DSC-404C). The examination was performed between room 

temperature and 1500 K, which covers the temperature ranges used during the thermal treatment. 

A 12 – 15 mg test piece was measured using Al2O3 crucible. The measurements were carried out 

with heating and cooling rates of 20°C/min in a continuous Ar-flow. The investigation of the 
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thermal phase stability of the samples was technically supported by B. Bartusch in Institute for 

Complex Materials (IKM), IFW-Dresden. 

 

3.2.3 Scanning electron microscopy and microstructural analyses 

 The samples after each processing step (as-cast / as-homogenized / as-deformed (as-

swaged and as-rolled) / as-annealed states) were cut by an abrasive wheel saw using a SiC blade. 

The cut samples were hot embedded with red phenolic powder. The embedded samples were 

ground with sequence of 320, 600, 1200, 2400 and 4000 grit size of SiC paper. After grinding, the 

samples were polished with 0.3, 0.1 and 0.25 m of diamond suspension, respectively. In addition 

to EBSD analysis, the samples were finalized by polishing with colloidal silica (particle size 0.05 

mm) on a vibratory polisher (Buehler Vibromet 2).  

 A scanning electron microscopy (SEM: Zeiss Gemini 1530) was used to observe the 

microstructures. An energy-dispersive X-ray spectrometer (EDX: Bruker XFlash 4010) equipped 

with the SEM were used to examine the chemical composition of phases and samples.  

The microstructures after thermomechanical treatment were characterized by electron 

backscatter diffraction (EBSD: Bruker e-Flash HR detector) equipped with the SEM. Grain size, 

twin boundary density and residual strain were quantitatively analyzed with EBSD post-processing 

the HKL CHANNEL 5 software (Oxford instruments). The EBSD maps with 0.5 – 1.0 m step 

size obtained at least 500 grains were acquired from each sample. A grain was defined as an 

aggregate of neighboring data points having relative misorientations smaller than 2. A critical 

misorientation angle of   10° was used for grain size determination. 3 twin boundaries with a 

misorientation angle were not counted as grain boundaries for grain size determination. The twin 

boundaries were determined by the calculation of the 3n (n = 1, 2, 3) coincidence-site lattice 

(CSL) boundaries. The deformed, substructured and undeformed (recrystallized) fractions was 

evaluated by misorientation distribution. If the internal average misorientation angle within the 

grain exceeded the minimum angle (2°) to define a subgrain, the grain was classified as being 

“deformed”. If grains consist of subgrains whose internal misorientation was under 2° but the 



3. Experiments  29 

 

misorientation from subgrain to subgrain was above 2°, these grains were classified as 

“substructured”. The rest of grains was classified as “undeformed grains”. 

 

3.2.4 X-ray diffraction (XRD) 

 The X-ray diffraction (XRD) in Bragg-Brentano geometry was carried out to analyze phase 

formation in as-cast and as-homogenized samples. The phase identification was examined by using 

a Panalytical X’pert Pro diffractometer using CoKα radiation (λ = 1.78897 Å), equipped with a 

sample spinner. The diffractometer was operated at a voltage of 40 kV and a current of 40 mA. 

The Bragg intensities were obtained at 2 theta (2θ) between 20 and 100 degrees with a step size of 

Δ2θ = 0.017 ° and an exposure time per step of 500 s. 

 

3.2.5 High energy synchrotron X-ray diffraction 

 In order to analyze local structure of the samples, the high energy synchrotron X-ray 

diffraction was performed in transmission geometry at E = 60 keV (λ = 0.2067150 Å) with 

assistance of Dr. J. Bednarčik at High Resolution Powder Diffraction Beamline P02.1, PETRA III, 

DESY in Hamburg, Germany. Figure 3.7 shows the schematic of the experiment. A studied sample 

was a long rectangular rod with dimension of 1 x 1 x 25 mm3. During the measurement, the samples 

were spin for increasing the scattering statistic. 

The high energy synchrotron X-ray diffraction allows the assessment of local structural 

information of the samples due to high statistic counting associated with high intensity of a 

synchrotron beam [95]. In the study with the high energy synchrotron X-ray diffraction, the 

diffraction data is simply given as a function of the scattering vector (Q); 

𝑄 =  
4𝜋 𝑠𝑖𝑛𝜃


      (3.1) 

where θ is the diffraction angle and λ is the wavelength of the radiation. From the equation 3.1, the 

parameter Q is independent on the wavelength () but the value of 2θ is dependent on the 
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wavelength. However, the diffraction data as a function of Q and 2θ was used to be analyzed in 

this work. The lattice strain in micro and local scales was analyzed on high energy synchrotron X-

ray diffractions with different experimental setting. The diffraction data with Qmax = 12 Å-1 of 

experimental setting was used to investigate the micro lattice strain with Williamson-Hall method. 

The diffraction data with Qmax = 26 Å-1 was performed to analyze the local lattice strain with pair 

distribution function (PDF) [8]. 

The two-dimensional diffraction patterns were integrated to one-dimensional patterns by 

using Fit2D [96] and Python (Python Software Foundation, https://www.python.org) software 

packages. A standard CeO2 powder sample was measured in order to calibrate a condition of 

measurement.  

 

 

Figure 3.7 Schematic of High Resolution Powder Diffraction Beamline P02.1 of DESY in Hamburg, 

Germany equipped with sample spinner. 

 

Williamson-Hall method 

Micro lattice strain arising from crystal imperfections and distortion [97] can be extracted 

from peak broadening on Bragg data of XRD patterns with Williamson-Hall method [98, 99]. The 

synchrotron XRD diffraction data can obtain high statistics from a large number of grains due to 

a high intensity and penetration of the synchrotron beam into the samples. In this thesis, micro 

lattice strain affected by interactions between atoms in a solid solution phase was investigated in 
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the rolled samples after annealing as will be discussed in chapter 5. Also, effects of deformation 

on lattice strain were studied in as-swaged samples as will be demonstrated in chapter 8. 

Williamson and Hall [100] suggested that the crystalline size (Dv) and lattice strain (εstr) 

leads to a broadening of the diffraction peaks as shown in the following equations: 

           βD − βinst  =   βsize + βstrain       (3.2) 

(βD − βinst)cos  =   λ/Dv + 4εstr(sinθ)       (3.3) 

where βD is an integral breadth of Bragg peak (in radians 2θ), and βinst, βsize and βstrain are the integral 

breadths dependent on instrumental, grain size and strain effects. The equation 3.2 suggests that 

the breadth of the Bragg peak is a combination of both instrument and sample dependent effects. 

In this study, the instrumental broadening was determined upon the diffraction patterns of LaB6. 

From the equation 3.3, namely the Williamson-Hall plots, a linear relationship between (βD − 

βinst)cos and 4sin can be plotted, By fitting the data, the crystalline size (Dv) was estimated from 

the y-intercept, and the micro lattice strain (εstr) was derived from the slope of the fit line. 

 

Pair distribution function (PDF) 

 Diffuse scattering intensities on total diffraction patterns allow assessing a local atomic 

arrangement deviating from average structural information reflected in the Bragg intensities [12]. 

A wide angular range of Q provided a maximum possibility to obtain high resolution of the diffuse 

intensity. In this work, a local lattice strain was investigated in the rolled sample after annealing 

by pair distribution function (PDF). 

In this study, the reduced pair distribution function (PDF) was obtained from a total 

scattering pattern using PDFgetX3 software [101]. The reduced pair distribution function, G(r) is 

derived from the pair distribution function, g(r). The G(r) has remarkable benefits and is widely 

used [102]. The G(r) is most directly related to the intensity data; thus G(r) include the average 

number density, 0. In contrast, it requires to assume a value of 0 for obtaining the g(r). The PDF, 
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G(r), is processed by Fourier transforms of structure function, S(Q), as shown in the following 

equation;  

     𝐺(𝑟)  =  4𝜋𝑟[𝜌(𝑟)  − 𝜌0]  =  
2

𝜋
 ∫ 𝑄[𝑆(𝑄)] −  1]𝑠𝑖𝑛(𝑄𝑟)𝑑𝑄

∞

0
     (3.4) 

where (r) is the microscopic pair density, S(Q) is the total structure function related to only the 

coherent/elastic part of the scattered X-ray intensities. The PDF profile included both the Bragg 

and diffuse components [8, 10, 103]. The PDF yields the probability of finding a pair of atoms 

separated by a distance (r), including information on the local environment surrounding each atom 

[104]. As illustrated in Figure 3.8, a one-dimension PDF profile presents the peaks identifying the 

pairs of atoms corresponding to interatomic distances. The width of the PDF peaks is proportional 

to number of atoms finding and the distribution of distances for the given atomic pair due to 

dynamic and static atomic displacements [10]. In HEAs, the multiple atom species leads to 

complex atomic arrangement due to differences in atomic size and electronic structure. These 

differences are expected to be attributed to the PDF peaks broadening, which implies the lattice 

distortion.  

 

 

Figure 3.8 PDF peaks at distance separating pairs of atoms, proportional to the number of atoms at lattice 

sites. Redrawn from reference [103]. 
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3.2.6 Mechanical Properties  

Hardness 

Hardness tests were carried out using a micro Vickers hardness tester (Shimadzu HVM-

2000) with applied load of 200 g for 10 s of holding time. The hardness was examined with at least 

15 indents with a distance of at least 5 times diagonal length of hardness indentation marks between 

each indent. The hardness was performed on ground and polished cross sections of as-

homogenized rods and longitudinal sections of as-deformed samples. 

 

Tensile and compression test 

Tensile and compression tests were performed by using Instron 5869. A constant strain rate 

of 5 x 10-4 s-1 was applied to all tensile and compression test samples. The strain was measured by 

a laser extensometer (Fiedler Optoelektronik). The test of each sample was conducted with at least 

3 test specimens for better statistic.  

The tensile test specimens were prepared by wire cutting into a flat “dog-bone” shape, as 

illustrated in Figure 3.9. Prior to the test, the specimens were polished in order to remove 

processing defects on the surface. 

The compression test pieces were prepared in a form of cylindrical rod with a dimension 

of a height to diameter ratio of 2:1. The test specimens should have a coplanar surfaces for a good 

quality of data.  
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Figure 3.9 Schematic of a tensile test specimen. 
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4. Thermal phase stability of single phase high 

entropy alloys  

The effect of solid solution phase in the equiatomic FeNiCoCrMn and TiNbHfTaZr HEAs 

and their equiatomic sub-alloys was studied on their microstructure and mechanical properties. 

Due to the non-equilibrium solidification during cold crucible casting, the dendritic microstructure 

and chemical microsegregation were observed in as-cast microstructures. The as-cast 

microstructures could not be investigated to represent the effect of the interactions between 

constituent elements due to chemical inhomogeneity at non-equilibrium state. In order to improve 

chemical homogeneities, the as-cast rod were subjected to the homogenization treatment. Figure 

4.1 and 4.2 show EDX mappings of the homogenized fcc- and bcc-structured alloys, respectively, 

which indicate the chemical homogeneity of the alloys after homogenization (1273 K, 12 hours 

for the fcc-structured alloys and 1373 K, 24 hours for the bcc-structured alloys). The homogenized 

samples were used as starting samples in order to investigate the effect of the solid solution phase.  

 

 

Figure 4.1 EDX element maps of As-homogenized microstructures for FeNi, FeNiCo, FeNiCoCr and 

FeNiCoCrMn. 
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Figure 4.2 EDX element maps of As-homogenized microstructures for TiNb, TiNbHf, TiNbHfTa and 

TiNbHfTaZr. 

 

The chemical homogeneities and compositions were firstly investigated by EDX at both 

two sides (top and bottom sides) of the as-homogenized rods. The two sides of each homogenized 

rod obtain similar chemical composition and the average chemical compositions for each alloy are 

presented in Table 4.1. For more precise measurement, the chemical compositions of the as-

homogenized rods were measured by the ICP-OES method. The results showed similar chemical 

composition investigated by the EDX, as presented in Table 4.1. The all samples with exception 

of the TiNb alloy presented the equiatomic compositions. It was mentioned that the chemical 

composition of the TiNb alloy was shifted from the nominal composition. This might result from 

incomplete melting of the TiNb ingot during the casting. The large portion of the TiNb was 

remained at a conical-shaped part of the cast TiNb rod, which was possibly evident to the 

incomplete melting. However, the similar chemical compositions between the two sides of the 

TiNb rod (investigated by EDX) indicated the chemical homogeneity throughout the TiNb rod.  

In this thesis work, the samples were subjected to the maximum temperature of 1223 K for 

sample preparations. Hence, the thermal phase stability of the samples were investigated between 

300 - 1500 K. 
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Table 4.1 Chemical composition (in at%) of the studied fcc- and bcc-structured samples after 

homogenization examined by ICP-OES and EDX techniques. 

fcc samples 
ICP-OES EDX 

Fe Ni Co Cr Mn Fe Ni Co Cr Mn 

FeNi 50.15 49.85 - - - 51.16 48.84 - - - 

FeNiCo 33.30 33.19 33.51 - - 32.46 32.53 35.01 - - 

FeNiCoCr 25.02 25.14 25.13 24.70 - 24.56 24.81 26.38 24.26 - 

FeNiCoCrMn 20.23 20.17 20.34 19.82 19.45 20.55 19.82 21.16 19.23 19.24 

bcc samples Ti Nb Hf Ta Zr Ti Nb Hf Ta Zr 

TiNb 61.53 38.47 - - - 63.44 36.56 - - - 

TiNbHf 34.81 32.41 32.09 - - 36.16 33.85 29.99 - - 

TiNbHfTa 25.04 25.31 25.00 24.66 - 25.87 23.92 24.87 25.34 - 

TiNbHfTaZr 19.18 20.16 18.92 21.80 19.47 21.56 18.42 21.50 17.80 20.72 

 

Phase stability of the fcc-structured FeNiCoCrMn high entropy alloy 

 Figure 4.3 presents the X-ray diffraction patterns of the equiatomic FeNiCoCrMn HEA 

and its sub-alloys (FeNi, FeNiCo and FeNiCoCr) after homogenization at 1273 K for 12 hours. 

The XRD patterns of as-homogenized HEA and its sub-alloys are in a good agreement with fcc-

structured phase of Ni powder (Alfa Aesar; 325 mesh, 99.8% pure). The patterns of these samples 

are identified as a single fcc-structured phase without secondary phases. The peak positions are 

varied with an increase in the number of constituents, indicating different lattice parameters of the 

samples. The lattice parameters were calculated as 3.5242, 3.5791, 3.5738, 3.5682 and 3.5828 Å 

for Ni, FeNi, FeNiCo, FeNiCoCr and FeNiCoCrMn, respectively. It is observed that an increase 

in the number of constituents expanded the lattice parameter. The peak position difference between 

the HEA and Ni samples is the largest, which indicates the largest chemical complexity in the 

HEA. However, the lattice parameters slightly change between the HEA and its sub-alloys. Lattice 
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strain affected by the number of constituents is further investigated by pair distribution function 

(PDF) as will be presented in the chapter 5. 

 

 

Figure 4.3 X-ray diffraction patterns of as-homogenized FeNiCoCrMn HEA and its sub-alloys comparing 

with Ni powder. 

 

To study phase stabilities of fcc-structured HEA and its sub-alloys during thermal 

exposure, a differential scanning calorimeter (DSC) was carried out to inspect as-homogenized 

samples at heating and cooling rate of 20 K/min. Figure 4.4 presents DSC profiles, which show no 

endothermic or exothermic peaks for all alloys. It indicates that no solid state phase transformation 

occured during heating and cooling between 300 and 1500 K. However, on the cooling curve of 

the as-homogenized FeNiCoCrMn HEA, there is a fluctuation possibly due to Mn vaporization. 

The Mn vaporization gave an evidence of brown color on the top of sample crucible. Another 

evidence for Mn vaporization is found in the research works on sintering of Mn-containing steel 

at elevated temperatures [105, 106]. With loss of Mn through the vaporization, it seemed to cause 

fluctuation on cooling until approximately 1300 K. A certain time was needed to reach a stable 

heat flux as mentioned at temperature below 1300 K. However, chemical composition of the as-
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homogenized FeNiCoCrMn HEA is not largely shifted from the nominal composition, which the 

amount of Mn loss during the homogenization is not significant.  

 

 

Figure 4.4 DSC thermograms; (a) heating and (b) cooling for as-homogenized FeNiCoCrMn HEA and its 

sub-alloys. 

 

In thermodynamic aspects as discussed in the chapter 2, the enthalpy of mixing (Hmix) is 

an important parameter to evaluate the phase formation in these multiple components HEAs. In 

case of Hmix close to zero,  the different elements can randomly distributed in the stable form of 

solid solution [30]. According to equation 2.2, the Hmix were calculated as -4.16, -3.75, -1.33 and 

-2.00 kJ/mol for the FeNiCoCrMn HEA and its sub-alloys FeNiCoCr, FeNiCo and FeNi, 

respectively. It is clear that the solid solution phase in FeNi and FeNiCo can be stable due to 

relatively closer to zero Hmix values. Despite the higher absolute values of Hmix, the high 

configuration entropies (Sconf) for the FeNiCoCrMn HEA (13.38 J/K·mol) and FeNiCoCr (11.52 

J/K·mol) have more influence over the enthalpies of formation of intermetallic compounds 

(negative Hmix) to stabilize solid solution phase [12, 30]. The  parameter [34], combining Hmix 

and Sconf, were calculated by the equation 2.5 with parameters Hmix, Sconf in Table 4.2 and Tm 

in Table 4.3. The parameters  for the studied fcc-structured alloys are between 4 – 12, as shown 
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in Table 4.2. Figure 4.5 shows the  and  parameters for the studied fcc-structured alloys (marked 

as blue square) on the plot taken from reference [30]. All the studied alloys fall in the region of 

single solid solution formation (  1.1 and   6.6).  

Table 4.2 Configurational entropy (Sconf) and enthalpy of mixing (ΔHmix) for the studied fcc-structured and 

bcc-structured samples. 

 

Figure 4.5 Relationship between the  and  parameters determines the phase formation of the alloys 

studied in this chapter and alloys collected from literature. Adapted from reference [30]. 

 Sample Sconf  (J/K·mol) Hmix ( kJ/mol)  

fcc-structured 

sample 

FeNi 5.76 -2.00 4.90 

FeNiCo 9.13 -1.33 11.76 

FeNiCoCr 11.53 -3.75 5.21 

FeNiCoCrMn 13.38 -4.16 5.02 

bcc-structured 

sample 

TiNb 5.76 2.00 6.75 

TiNbHf 9.13 2.67 8.20 

TiNbHfTa 11.53 2.50 12.09 

TiNbHfTaZr 13.38 2.72 12.42 
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Table 4.3 Atomic radius of the elements in the studied samples and atomic size misfit and the melting points 

the studied samples. 

Element r (pm) Samples  (%) Tm (K) 

Ni 124[107] Ni 0.00 1728[1] 

Fe 126[107] FeNi 0.80 1703[1] 

Co 125[107] FeNiCo 0.65 1713[1] 

Cr 128[107] FeNiCoCr 1.18 1693[1] 

Mn 127[107] FeNiCoCrMn 1.12 1562[1] 

Nb 143[3] Nb 0.00 2750[3] 

Ti 146[3] TiNb 1.12 2346* 

Hf 158[3] TiNbHf 4.28 2399* 

Ta 143[3] TiNbHfTa 4.13 2622* 

Zr 160[3] TiNbHfTaZr 4.98 2524[1] 

*Calculated by using equation 2.5 with melting points of each element form the reference [108] 

 

The X-ray diffraction patterns, DSC curves and calculated  value indicate a stability of 

single solid solution phase in the studied fcc-structured alloys. However, the possibility of second 

phase formation in these alloys cannot be completely eliminated. The formation of single solid 

solution phase can be facilitated applying high cooling rate during cold crucible casting and with 

homogenization temperature above the ordering temperature. The binary phase diagrams related 

to FeNi and FeNiCo alloys indicate a broad range of fcc solid solution formation at high 

temperatures near equiatomic composition, as presented in Figure 4.6. The ordered (B2) FeCo 

phase can be formed below 730 °C (1103 K) at equiatomic composition. Additionally, the ternary 

Fe-Ni-Co diagram shows complete solubility above 800 °C (1073 K) [109]. With Cr and Mn 

additions, it is observed that there are formations of several intermetallic compounds as can be 

seen in the binary diagrams of Co-Cr and Cr-Mn presented in Figure 4.7. It is reported that  phase 

can be formed with Cr addition into this alloy system [36, 40]. M. C. Gao [36] presented the 
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theoretical calculation that the driving force for  phase formation is strong in the binary Co-Cr 

system, but it decreases with increasing configurational entropy for the CoFe-Cr, CoFeMn-Cr, and 

CoFeMnNi-Cr system. According to the binary phase diagrams of Co-Cr, Cr-Mn system, it is 

possibly expected that Cr-rich  phase can be precipitated a low temperature heat treatments for 

very long treatment time [40].  

 

 

Figure  4.6 Binary phase diagrams of Fe-Ni, Co-Ni and Co-Fe systems [110]. 
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Figure  4.7 Binary phase diagrams of Co-Cr and Cr-Mn systems related to addition of Cr and Mn [110]. 

 

Recently, the instability of solid solution phase in FeNiCoCrMn HEA has been evidently 

reported. The FeNiCoCrMn HEA is often observed to show solid solution phase formation with 

tidy fraction of second phase particles. The Cr-rich phase is precipitated as fine particles after 

exposure between 873 - 1073 K [111, 112, 113]. N. D. Stepanov et al. [112] reports that the volume 

fraction of second phase particle reached the maximum about 2% at 973 K and decreased to about 

0.3% at 1073 K. The second phase particles were not found after 1173 K annealing [112]. 

However, in this study, the microstructure of the FeNiCoCrMn HEA after annealing at 1223 K 

was not observed a presence of second phase. The presence of tiny fraction of the second phase is 

expected to have a minor effect on the microstructure and mechanical properties of FeNiCoCrMn 

HEA. The second phase formation are also observed in most of other HEAs [3, 12, 114]. E. J. 

Pickering et al. [12] suggests that the role of enthalpy is more influential than the configurational 

entropy. However, a number of investigations accepts that the configurational entropy (Sconf) 

plays an important role in the stability of solid solution phase in HEAs and it affects greater than 

in conventional alloys. 
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Phase stability of the bcc-structured TiNbHfTaZr high entropy alloy 

Figure 4.8 presents the XRD patterns of as-homogenized (1373 K, 40 hours) TiNbHfTaZr 

HEA and its selected sub-alloys; TiNbHfTa, TiNbHf and TiNb. The XRD patterns of the all 

samples are in a good agreement with the pattern of bcc-structured Nb powder (Alfa Aesar; 325 

mesh, 99.8% pure). The XRD patterns indicate that the TiNbHfTaZr HEA and its selected sub-

alloys obtain a single bcc-structured phase without secondary phases. The increase in the number 

of constituent elements results the peak shifts associated with the different lattice parameters. The 

lattice parameters were determined as 3.3030, 3.2986, 3.3973, 3.3597 and 3.4181 Å for Nb, TiNb, 

TiNbHf, TiNbHfTa and TiNbHfTaZr, respectively. The TiNbHfTaZr HEA demonstrated the 

largest lattice parameter because of its largest chemical complexity, similar with the largest lattice 

parameter of the FeNiCoCrMn HEA. 

 

 

Figure 4.8 X-ray diffraction patterns of as-homogenized TiNbHfTaZr HEA and its sub-alloys comparing 

with Nb powder. 
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Figure 4.9 shows the DSC thermograms of the TiNbHfTaZr HEA and its sub-alloys. On 

both curves of heating and cooling at 20 K/min, no peak was observed, which imply no solid-state 

phase transformation during the temperature range (300 – 1500 K). However, a slight fluctuation 

on the cooling curve of the TiNb sample was observed at approximately 1200 K. The experimental 

error could be a reason because a phase diagram of Ti-Nb (Figure 4.10) shows a broad range of 

bcc-structured solid solution phase all the compositional range above approximately 600°C. 

 

 

Figure 4.9 DSC thermograms; (a) heating and (b) cooling for as-homogenized TiNbHfTaZr HEA and its 

sub-alloys  

 

Nb and Ta have only one stable bcc structure, while Ti, Zr and Hf have a hcp structure at 

lower temperatures and a bcc structure at high temperatures. The combination of these elements 

in the TiNbHfTaZr forms the bcc-structured solid solution phase. Despite a lack of equilibrium 

phase diagram of the TiNbHfTaZr alloy, the binary phase diagrams related to Ti-Nb-Hf-Ta-Zr 

alloy system also demonstrate the formation of bcc-structured solid solution phase over the broad 

range of temperature. Addition of Hf promotes the formation of hcp phase. For example, the Hf-

Ti phase diagram (Figure 4.10), bcc solid solution phase is stable at high temperature before 

allotropic transformation at about 900°C (1173 K) for equiatomic composition. It is also observed 

that addition of Zr causes decomposition of the bcc solid solution phase into two bcc phases, as 
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presented in the Ta-Zr and Nb-Zr binary phase diagrams (Figure 4.10). However, according to the 

equation 2.2, the TiNbHfTaZr HEA obtains Hmix  2.72 kJ/mol (close to zero values of Hmix), 

which support the tendency to form single solid solution phase. The TiNbHfTa, TiNbHf and TiNb 

alloys also obtain close to zero values of Hmix, calculated as 2.50, 2.67 and 2.00 kJ/mol, 

respectively. Furthermore, the calculated   parameter for the TiNbHfTaZr HEA and its sub-alloys 

is between 6 – 12, as shown in Table 4.2 and the atomic size misfits () are between 1 – 5%, as 

presented in Table 4.3. The  and   parameters for these alloys are plotted in the diagram of 

Figure 4.5 (marked as pink squares) and fit the criterion for solid solution formation (  1.1 and 

  6.6). In experimental evidence, O. N. Senkov et al. [43] reported that no phase transformation 

was observed after 3 hours of hot isostatic pressing (HIP) of TiNbHfTaZr HEA. Additionally, the 

TiNbHfTaZr HEA was examined to obtain a very small fraction of fine second phase precipitation 

after annealing above 1273 K [90]. Many experimental reports present that solid solution phase in 

the most HEAs is not stable at all temperature of process treatments [9]. 

 

Figure 4.10 Binary phase diagrams of Nb-Ti, Hf-Ti, Ta-Zr and Nb-Zr systems [110]. 
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 Despite the hypothesis that the configurational entropy may favor the formation of single 

solid solution phase, the values of the configurational entropy in HEAs is normally high due to a 

large number of constituent elements. In this study, the all studied alloys present single solid 

solution phase, which obtain close to zero values of the mixing enthalpy and different values of 

the configurational entropy. It can imply that the mixing enthalpy is an important parameter for 

the formation of solid solution phase. It is in a good agreement with literatures that the mixing 

enthalpy and atomic size misfit are intensively used for a determination of solid solution formation 

[12, 115, 116]. 
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5. An assessment of lattice strain in single phase 

high entropy alloys 

The random atomic arrangement in solid solution phase of high entropy alloys (HEAs) is 

more complex than in conventional dilute alloys because of high concentration of multiple atom 

species in HEAs. The presence of multiple atom species at lattice sites are expected to give rise to 

a high level of lattice strain, which influences the HEAs behaviors. Thus, this chapter focuses on 

the quantitative analysis of the lattice strain of HEAs. The assessments of lattice strain in the both 

micro and local scales of lattice strain are determined by using the synchrotron X-ray diffraction.  

As described in chapter 3, the samples in a study of lattice strain were prepared by 

thermomechanical treatments consisting of rolling and subsequent annealing. The samples 

obtained homogeneous fine microstructures with small strain-free grains. The high statistics of the 

synchrotron X-ray diffraction data can be collected from the large number of refined grains in the 

samples. In order to determine intrinsic lattice strain, the residual strain of the samples was 

removed by annealing. The measured chemical composition and oxygen content in the samples 

after thermomechanical treatment were measured and are shown in Table 5.1. The alloys 

containing Ti showed higher oxygen amount when compared with the other samples, but the 

content were quite low, below  1 at%. The limited content of oxygen probably gives a minor 

effect on lattice strain and the investigation of lattice strain can be focused on the effect of the alloy 

composition as discussed in the following. 
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Table 5.1 Chemical composition of the studied fcc- and bcc-structured samples after thermomechanical 

treatment examined by ICP-OES and CGHE. 

fcc samples 
Chemical Composition (at%) 

Fe Ni Co Cr Mn O 

Ni - 100 - - - 0 

FeNi 50.04 49.96 - - - 0.03 

FeNiCo 33.38 33.21 33.41 - - 0.03 

FeNiCoCr 25.18 24.92 25.12 24.72 - 0.07 

FeNiCoCrMn 20.17 20.11 20.23 19.88 19.54 0.08 

bcc samples 
Chemical Composition (at%) 

Ti Nb Hf Ta Zr O 

Nb - 99.97 - - - 0.03 

TiNb 58.09 40.82 - - - 1.09 

TiNbHf 34.78 32.27 31.84 - - 1.10 

TiNbHfTa 24.90 25.10 24.81 24.48 - 0.71 

TiNbHfTaZr 20.09 20.30 19.93 18.60 20.46 0.61 

 

5.1 Analysis of micro lattice strain on fcc- and bcc-structured high 

entropy alloys 

In this section, the analysis of micro lattice strain was demonstrated with the Williamson-

Hall method applied on high energy synchrotron X-ray diffractions with Qmax = 12 Å-1. Bragg 

intensities give a spatially averaged picture of the structure [8]. The Bragg peak broadening is 

particularly due to grain size, micro strain effects as well as instrumental effect [97, 99]. In this 

study, the instrumental broadening can be estimated by calibration measurement with a LaB6 

standard sample. The external stress and textural effect were minimized by annealing the samples 
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in order to assess the lattice strain associated with crystal imperfections and intrinsic lattice 

distortion [97, 117].   

 

Micro lattice strain of the fcc-structured FeNiCoCrMn high entropy alloy 

Figure 5.1 presents the high energy synchrotron X-ray diffraction patterns of as-annealed 

fcc-structured samples. The patterns of the FeNiCoCrMn HEA and its sub-alloys (FeNi, FeNiCo 

and FeNiCoCr alloys) fit well with the dataset of Ni solid solution. It suggests that the HEA and 

its sub-alloys obtain single fcc-structured solid solution phase with variation in lattice parameter. 

It is observed that the peak positions are shifted toward lower 2 theta values with an increase in 

the number of constituent elements. The lattice parameters of all the samples are presented in Table 

5.2. The result suggests that the FeNiCoCrMn HEA presented the largest lattice parameter possibly 

due to the highest chemical complexity. 

 

 

Figure 5.1 High energy synchrotron X-ray diffraction patterns of as-annealed fcc-structured samples. 
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Table 5.2 Lattice parameters and micro lattice strain of as-annealed fcc- and bcc-structured samples 

determined from high energy synchrotron X-ray diffraction data. 

fcc samples a (Å) str (%) bcc samples a (Å) str (%) 

Ni 3.5207 0.0337 Nb* 3.2971 0.2263 

FeNi 3.5828 0.0350 TiNb 3.2960 0.0282 

FeNiCo 3.5690 0.0342 TiNbHf 3.3740 0.0280 

FeNiCoCr 3.5691 0.0388 TiNbHfTa 3.3539 0.0429 

FeNiCoCrMn 3.5942 0.0389 TiNbHfTaZr 3.4011 0.0466 

*As-received Nb rod  

 

Figure 5.2 (a) presents the Williamson-Hall plots of the FeNiCoCrMn HEA and its sub-

alloys as well as pure Ni sample. The details of Williamson-Hall method were described in section 

3.3.5 of chapter 3. The marks represent the integral breadths and 2 values of the (111), (002), 

(022), (113), (222), (004), (133), (024), (224), (115) and (044) reflections. By fitting the data, the 

micro lattice strain was derived from the slope of the linear fit and presented in Figure 5.2 (b). The 

result shows that the values of micro lattice strain were between 0.0337 and 0.0389%. The pure 

Ni sample obtained the lowest value of micro lattice strain with 0.0337%, similar to those of the 

FeNi and FeNiCo alloys. With the addition of Cr which has the largest atom, the FeNiCoCr and 

FeNiCoCrMn alloys presented larger magnitudes of the micro strain; 0.0388 and 0.0389%, 

respectively. The atomic radius of the elements (Fe, Ni, Co, Cr and Mn) are not significantly 

different and their atomic radius are between 124 -128 Å. This may suggests that the values of 

micro lattice strain were not significantly different among all the samples. Although the largest 

number of constituent elements in the FeNiCoCrMn HEA leads to the complex arrangement of 

atoms at the lattice sites, the micro lattice strain in the FeNiCoCrMn HEA is not anomalously 

large.  
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Figure 5.2 (a) Williamson-Hall plots and (b) micro lattice strain of as-annealed fcc-structured samples. 

 

Micro lattice strain of the bcc-structured TiNbHfTaZr high entropy alloy 

Figure 5.3 shows the high energy synchrotron X-ray diffraction patterns of the bcc-

structured samples; they are similar for all samples. The patterns of the TiNbHfTaZr HEA and its 

sub-alloys agree with the Nb pattern. It indicates the presence of single bcc-structured solid 

solution phase in all alloys. An increase in the number of constituent element in this alloy family 

leads to peak shift toward lower 2 theta values, similar to the result of the fcc-structured samples. 

The lattice parameters of Nb, TiNb, TiNbHf, TiNbHfTa and TiNbHfTaZr were determined as 

3.2971, 3.2960, 3.3740, 3.3539 and 3.4011 Å, respectively, as shown in Table 5.2. An increase in 

the number of the constituent elements increased the lattice parameters of the samples. It is 

observed that the increase in the lattice parameter with the effect of element number was significant 

in the bcc-structured samples rather than in the fcc-structured samples. Besides the number of 

constituent elements, the characteristic of the elements has more effect on the lattice parameter.  
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Figure 5.3 High energy synchrotron X-ray diffraction patterns of as-annealed bcc-structured samples. 

 

Figure 5.4 presents the Williamson-Hall plots of the TiNbHfTaZr HEA and its sub-alloys 

including the Nb sample. The marks represent the integral breadths and 2 positions of (011), 

(002), (112), (022), (013), (222), (123), (033), (114), (024), (223) and (224) reflections. It is 

observed that the slope for the Nb sample is significantly large when compared to those for the 

other samples. Due to Bragg peak broadening including the effect of all crystal defects, it suggests 

that the Nb sample possibly obtained a large amount of residual strain from production process. It 

also indicates that the Nb sample was not properly annealed to obtain a completely refined 

microstructure. Therefore, the Nb sample (obtaining 0.2263% micro lattice strain) was excluded 

from this investigation of intrinsic micro lattice strain associated with the constituent elements. 

Figure 5.5 (a) presents the Williamson-Hall plots and Figure 5.5 (b) shows a comparison of micro 

lattice strain between the TiNbHfTaZr HEA and its sub-alloys (excluding the Nb sample). The 

dislocation densities of the TiNb, TiNbHf, TiNbHfTa and TiNbHfTaZr samples were determined 

as 0.0282, 0.0280, 0.0429, 0.0466%, respectively. It indicates that an increase in the number of 

constituent elements increased the level of the dislocation density. The TiNbHfTaZr HEA obtained 

the highest level of micro strain probably due to the largest level of chemical complexity. In a 

comparison with the dislocation density of the FeNiCoCrMn HEA (0.0389%), that of the 
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TiNbHfTaZr HEA was higher. It might also be a result of a large difference between the atomic 

radius of Ti, Nb, Hf, Ta and Zr. The atomic radius of the elements in the range of 143 – 160 Å. It 

is also observed that the addition of Ta in the TiNbHfTa samples increased the dislocation density, 

which was higher than that of the TiNbHf sample. It should be noted that the remarkable transition 

of the micro strain level was also found in between the ternary and quaternary alloys of the Fe-Ni-

Co-Cr-Mn system. The large increase in micro lattice strain might be caused by an increase in 

chemical complexity. 

 

Figure 5.4 Williamson-Hall plots of as-annealed bcc-structured samples including Nb sample. 

 

 

Figure 5.5 (a) Williamson-Hall plots and (b) micro lattice strain of as-annealed bcc-structured samples 

excluding Nb sample. 
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It is reported that the displacement of lattice points from their ideal position may cause 

both shift and broadening of the diffraction peaks [98]. The random presence of multiple atom 

species at lattice sites in HEAs was expected to cause the high level of strain-induced peak 

broadenings and peak shifts, which was in a good agreement with the results in both the 

FeNiCoCrMn and TiNbHfTaZr HEAs. However, the levels of micro lattice strain were not 

significantly different among the HEAs and their sub-alloys. T. Egami et al. [102] suggests that 

crystallographic information on Bragg intensity demonstrates only the average bond distance and 

the lattice parameter. Additionally, the experimental result also showed the effect of residual strain 

on the level of micro lattice strain. It suggests that the investigation on Bragg intensities is not 

sufficient to proof the hypothesis of severe lattice distortion in HEAs. Hence, the pair distribution 

function (PDF) will be used to analyze the effect of constituent elements on intrinsic lattice strain. 

 

5.2 Analysis of local lattice strain on fcc- and bcc-structured high 

entropy alloys 

The local lattice strain was assessed by a pair distribution function (PDF) transformed from 

the total scattering data with a wide range of Q value (Qmax = 26 Å-1). The PDF profile includes 

both the Bragg and diffuse components on total scattering patterns [8], as described in the section 

3.3.5. The diffuse scattering intensities allow assessing a local variation in the structure deviating 

from average structural information reflected in the Bragg intensities [9]. Hence, residual strain 

from production process has a minor effect on the determination of local lattice strain with PDF 

method. The Nb sample, which did not obtain completely refined microstructure, can be studied 

the intrinsic local lattice strain by PDF method. 

 

Local lattice strain of the fcc-structured FeNiCoCrMn high entropy alloy 

Figure 5.6 presents the reduced pair distribution functions, G(r) of the fcc-structured 

samples. The PDF profiles of the HEA and its sub-alloys are similar to the profile of fcc Ni, which 
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indicate fcc-structured phase. The positions of peaks of PDF profiles are related to the distribution 

of the interatomic distances directly in the real-space, r [9, 10]. There are slight peak shifts among 

the studied alloys because of a variation of the lattice parameters. The distance at second 

coordination shell (or second PDF peak) in fcc-structured materials is equivalent to a length of the 

unit cell. They were measured as 3.5339, 3.5823, 3.5662, 3.5711 and 3.5892 Å for Ni, FeNi, 

FeNiCo, FeNiCoCr and FeNiCoCrMn, respectively. These values were very similar to the lattice 

parameters measured by the position of the Bragg peaks.  

 

 

Fig. 5.6 Normalized pair distributions functions for all of the fcc-structured studied alloys. 

 

The width of the peaks depends on the coordination number and the distribution of 

distances for the given atomic pair [10, 104, 118, 119]. The local lattice distortion associated with 

the displacement of multiple atoms from their ideal positions is expected to cause significant local 

lattice strain-induced PDF peak broadening in HEAs. The expanded PDF spectrums and full width 

at half maximum (FWHM) determined by Gaussian fitting for the first six coordination shells are 

shown in Figure 5.7 (a) and (b), respectively. In an ideal case, the width of the peak is the function 

of dynamic and static atomic displacements [10, 119]. The dynamic displacement is due to thermal 
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vibrations, which are expressed by the neighboring atomic positions and the melting point [120]. 

The amplitude of thermal vibration is inversely proportional to their homologous temperature 

(T/Tm) [104]. The homologous temperatures for the studied samples were similar; between 0.17 -

019. Due to the measurement at room temperature (T = 298 K) for all samples, the thermal 

vibration is dependent on the melting point of the samples. As shown in Table 4.3, the melting 

points of the Ni, FeNi, FeNiCo and FeNiCoCr samples are in a narrow range between 1693 – 1728 

K, but the melting point of the FeNiCoCrMn HEA (1562 K) is lower. The lower melting point of 

the HEA might lead to the larger dynamic displacement, but the level of the peak broadening were 

insignificant. Hence, it could be assumed that the magnitude of the dynamic displacement in the 

studied alloys was constant. 

 

Figure 5.7 (a) Expanded pair distribution functions and (b) full width at half maximum (FWHM) values 

measured by Gaussian fits for the six coordination shells of as-annealed fcc-structured samples. 

 

The static displacement of the PDF peak broadening is a measure of local lattice distortion 

caused by atomic size misfit between substitutional atoms in the solid solutions [121]. The PDF 

peak at the first coordination shell is normally sharper than those at higher coordination number. 

It is caused by the motion between different pairs of near-neighbor atoms, while far-neighbor 

atoms move more independently [119]. The static displacement for pure Ni can be assumed to be 

zero in an ideal case due to single species of all atoms perfectly located on the fcc lattice points 
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[122]. As the result, the FWHM of Ni sample at the first coordination shell was assumed to be 

equivalent to the value of dynamic displacement ( 0.2100 Å). The FWHMs at the first 

coordination shell of the FeNiCoCrMn HEA, FeNiCoCr, FeNiCo and FeNi were 0.2205, 0.2193, 

0.2148 and 0.2148 Å, respectively. After subtraction of the equivalent dynamic displacement, the 

equivalent values of static displacement were between 0.0048 – 0.0105 Å. These values were not 

significant large and the values for the HEA was just 0.0048 Å. The FWHM values for the first 

six coordination shells presented in a narrow variation for all the samples. It suggested that the 

local lattice distortion in the FeNiCoCrMn HEA is not significantly larger than its sub-alloys and 

Ni sample. 

The level of the lattice strain or the lattice distortion was considered to be related to the 

magnitude of the atomic size misfit. The atomic size misfit is calculated with the equation 2.4. The 

calculated magnitude of atomic size misfit () are 0.80, 0.65, 1.18 and 1.12% for FeNi, FeNiCo, 

FeNiCoCr and FeNiCoCrMn, respectively. These values are not relatively high because of a small 

variation of the atomic size as presented in Table 4.3. The similar atomic radius of Ni, Fe and Co 

result in similar values of  in FeNi and FeNiCo. With the addition of Cr (having the largest atomic 

size), the atomic size misfit increases to 1.18% in FeNiCoCr. As a result of small magnitudes of 

the atomic misfit in the fcc-structured samples, the considerable differences were not seen in the 

level of local lattice strain. This experimental study showed no evidence that a severe lattice 

distortion was observed in the FeNiCoCrMn HEA. 

 

Local lattice strain of the bcc-structured TiNbHfTaZr high entropy alloy 

 Figure 5.8 displays normalized pair distributions functions for all of the bcc-structured 

studied alloys. The PDF spectrums of TiNbHfTaZr HEA and its sub-alloys are likely that of Nb 

sample, which implies single bcc-structured solid solution in the samples. The PDF spectrum of 

Nb sample presents clearly individual peaks for each coordination shell; in contrast, the peaks of 

TiNbHfTaZr HEA for first and second coordination shells are overlapped. It indicates the peak 

broadening in the HEA. The distance at second coordination shell is equivalent to the lattice 

parameter of bcc lattice structure. The distances at second peak were measured as 3.3030, 3.2727, 
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3.2940, 3.2300 and 3.3088 Å for Nb, TiNb, TiNbHf, TiNbHfTa and TiNbHfTaZr, respectively. It 

led to a doubt about the remarkable differences with the lattice parameter of TiNbHf, TiNbHfTa 

and TiNbHfTaZr determined on Bragg data as shown in Table 5.2. The measurement of Bragg 

data determines only the long range order of the lattice and may not provide sufficient information 

to explain local atomic displacements away from the crystallographic sites [8, 102]. It might result 

in the errors of the lattice parameter examination on Bragg data. 

 

 

Figure 5.8 Normalized pair distributions functions for all of the bcc-structured studied alloys. 

 

Figure 5.9 (a) presents the expanded PDF profiles and Figure 5.9 (b) shows the calculated 

FWHM for the first six coordination shells. It is apparent that the PDF peak widths show 

significant deviation among the bcc-structured samples and the width of the TiNbHfTaZr HEA is 

remarkably larger among the bcc-structured samples. As discussed above, the PDF peak width 

collects the information of static and dynamic disorder of atoms involved in the pair. The term of 

dynamic disorder is correlated to exposure temperature and melting point of samples. The melting 

points of the samples are largely different; 2750, 2346, 2399, 2622 and 2524 K for Nb, TiNb, 

TiNbHf, TiNbHfTa and TiNbHfTaZr, respectively, as shown in Table 4.3. The melting points of 
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the TiNb and TiNbHf are relatively lower than the others; thus, the dynamic displacement of these 

two samples was possibly larger. However, the homologous temperatures (T/Tm) for all the bcc-

structured samples (between 0.11 - 0.13) were not much different due to their high melting points. 

The dynamic atomic displacements were assumed to be similar in all the bcc-structured samples. 

In an ideal case, the PDF peak width of the Nb sample should be resulted by only dynamic atomic 

displacement. 

 

 

Figure 5.9 (a) Expanded pair distribution functions and (b) full width at half maximum (FWHM) values 

measured by Gaussian fits for the six coordination shells of as-annealed bcc-structured samples. 

 

 The static atomic displacement of TiNbHfTaZr HEA and its sub-alloys could be 

determined by subtraction of the width of Nb sample from their widths. Considering the PDF peak 

at the first coordination shell, the values of the FWHM were examined as 0.2038, 0.2429, 0.2420, 

0.2581 and 0.2862 Å for Nb, TiNb, TiNbHf, TiNbHfTa and TiNbHfTaZr samples, respectively. 

The equivalent magnitudes of the static displacement, determined on the first PDF peak, were 

0.0391, 0.0382, 0.0543 and 0.0824 Å for TiNb, TiNbHf, TiNbHfTa and TiNbHfTaZr samples, 

respectively. The increase in the amplitude was possibly caused by local lattice strain associated 

with atomic misfit and the number of constituent elements. The significantly higher value of static 
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displacement of TiNbHfTaZr HEA suggested the large atomic displacements from their ideal 

lattice sites and severe local lattice distortion. 

The values of atomic size misfit in all the bcc-structured samples were calculated from the 

atomic radius as shown in Table 4.3. The calculated values of atomic size misfit are 1.12, 4.28, 

4.13 and 4.98% for TiNb, TiNbHf, TiNbHfTa and TiNbHfTaZr samples, respectively. The atomic 

size misfits are significant in TiNbHf, TiNbHfTa and TiNbHfTaZr because of the large differences 

in atomic radius between small atoms (Nb, Ti and Ta) and large atoms (Hf and Zr). The larger size 

misfit of TiNbHf than that of TiNbHfTa might lead to the broader peaks at the second and third 

coordination shells. The largest values of atomic size misfit in the HEA produced the high local 

strain resulting in the broadest peak. It suggested an assumption that the atomic size misfit had 

more effect on the local lattice strain than the number of components. 

To carefully compare the level of local lattice distortion between the fcc- and bcc-structured 

samples, an average PDF peak width as shown in Table 5.3 were calculated by the first three PDF 

peaks for minimizing the effects of overlapped PDF peaks and fitting method. Although the first 

peak simply reflects the absolute effect of atomic size misfit [107], the clearly broader peaks at 

second and third peaks emphasized local lattice strain associated with the increase in the number 

of component. Thus, in this study the first three peaks within r = 5 Å for both two alloy systems 

were considered. The different information about the local structure is contained at different 

atomic pair distance [102]. The PDF peak slowly becomes beyond the pair-atomic interaction with 

increasing atomic pair distance. The near-neighbor PDF peaks reflect the discrete interatomic 

distances within the phase, resulting in sharper peak than that at high r [119, 123, 124]. In the PDF 

spectrums of the bcc-structured samples as shown in Figure 5.9, the blurred peak distinction are 

observed between the first and second peak. There are only eight nearest neighbor atoms in bcc 

lattice structure, but the close packed fcc lattice structure presents twelve nearest neighbor atoms. 

In case of local lattice distortion, the second neighbor atoms were possibly distorted close to the 

positions of the nearest atoms. The strong broadening is remarkably observed at the second peak, 

which implies high degree of lattice distortion in the bcc-structured alloys. Hence, the second peak 

should not be eliminated for the consideration.   
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Table 5.3 The values of FWHM for the first three peaks, the average FWHM values and the different values 

subtracted by the FWHM of pure metal (FWHM = FWHMi – FWHMNi/Nb). 

 
Composition 

FWHM (Å) 

FWHM 

1st peak 2nd peak 3rd peak Average 

fcc-structured 

sample 

Ni 0.2100 0.2162 0.2255 0.2172 - 

FeNi 0.2205 0.2262 0.2442 0.2303 0.0131 

FeNiCo 0.2193 0.2314 0.2380 0.2296 0.0123 

FeNiCoCr 0.2148 0.2251 0.2401 0.2267 0.0094 

FeNiCoCrMn 0.2148 0.2307 0.2484 0.2313 0.0141 

bcc-structured 

sample 

Nb 0.2038 0.2389 0.2345 0.2257 - 

TiNb 0.2429 0.3244 0.2744 0.2806 0.0548 

TiNbHf 0.2420 0.3446 0.3298 0.3055 0.0797 

TiNbHfTa 0.2581 0.3140 0.2897 0.2872 0.0615 

TiNbHfTaZr 0.2862 0.3640 0.3699 0.3401 0.1143 

 

Figure 5.10 shows the atomic size misfit and the equivalent static atomic displacement 

(FWHM) for fcc-structured and bcc-structured samples. The equivalent values of static atomic 

displacement as a function of atomic size misfit in the HEAs and their sub-alloys were determined 

by subtraction of the FWHM of pure metal (Ni or Nb) from the FWHM of the alloys, as discussed 

above. Among the fcc-structured alloys with a narrow range of atomic size misfit, the FWHM 

were slightly different for about 0.01 Å. The low values of equivalent static displacement could 

lead to an assumption of slight lattice distortion in the FeNiCoCrMn HEA. The FWHM of the 

bcc-structured TiNbHFTaZr HEA and its sub-alloys were relatively higher. The bcc-structured 

alloys obtain relatively larger range of atomic size misfit. It resulted in the larger level of FWHM. 

It can be noticed that FWHM was varied with the change of atomic size misfit. The FWHM of 

the TiNbHfTaZr HEA with  = 4.98% was doubled from that of TiNbHfTa having  = 4.13%. The 

larger atomic size misfit in TiNbHf might cause the higher values of FWHM than that of 
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TiNbHfTa; meanwhile, the effect of dynamic atomic displacement in the TiNbHf might be not 

completely removed due to the association with its relatively lower melting point. The result 

suggests that the atomic size misfit had an important effect on the static atomic displacement than 

the number of alloy composition. The largest atomic size misfit in the TiNbHfTaZr HEA led to a 

significant magnitude of equivalent static atomic displacment (0.1143 Å), proportional to the large 

local lattice distortion. In contrast, the pronouncement for lattice distortion in the fcc-structured 

FeNiCoCrMn HEA was not evident from the result indicating the relatively small magnitude of 

static atomic displacement (0.0141 Å). 

 

 

Figure 5.10 The atomic size misfit () and the equivalent static atomic displacement (FWHM) for the fcc-

structured and bcc-structured samples.
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6. Solid solution hardening in single phase high 

entropy alloys 

 It is generally known that the strength and hardness of crystalline materials is related to the 

resistance of dislocation mobility [4, 125]. The hardening mechanisms in the interaction with the 

dislocation are traditionally divided into four main factors; solid-solution hardening, grain 

boundary hardening, strain hardening and precipitation and/or dispersion hardening [4, 54, 126]. 

Other hardening factors are constraints from neighboring grains, preferred orientations and crystal 

structure [126]. 

This chapter focuses on the effect of solid solution hardening on mechanical properties of 

the high entropy alloys. The other three main hardening effects were controlled in order to quantify 

the solid solution hardening in the HEAs. In the FeNiCoCrMn and TiNbHfTaZr HEAs and their 

sub-alloys, the precipitation hardening was not considered due to their single phase alloys. The 

other two factors, work hardening and grain boundary hardening associated with grain size effect, 

were controlled by the thermomechanical treatment and measurement condition. This study 

examined the solid solution hardening by hardness and tensile tests.  

 

6.1 Hardness of fcc- and bcc-structured high entropy alloys 

The hardness as an indication of the level of solid solution hardening in the HEAs was 

measured in as-homogenized microstructures. The homogenization could eliminate internal stress 

resulted from casting and drove toward equilibrium microstructures. The FeNiCoCrMn HEA and 

its sub-alloys after homogenization at 1000°C for 12 hours obtained the chemical homogeneity, as 

measured by EDX mapping method (Figure 4.1). The TiNbHfTaZr HEA and its sub-alloys were 

homogenized at 1100°C for 40 hours due to their higher melting points and the chemical 

homogeneity of these samples were obtained (as shown in EDX maps of Figure 4.2).  
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Figure 6.1 presents as-homogenized microstructures for the FeNiCoCrMn HEA and its 

sub-alloys, and Figure 6.2 shows as-homogenized microstructures for the TiNbHfTaZr HEA and 

its sub-alloys. A second phase was not observed in as-homogenized microstructures of all samples. 

The casting defect (tiny pores) was found in as-homogenized microstructures. All as-homogenized 

microstructures show coarse and equiaxed grains with different grain sizes. The grain sizes 

estimated from SEM images were averagely 199  18, 305  42, 187  32 and 99  12 m for 

FeNi, FeNiCo, FeNiCoCr and FeNiCoCrMn, respectively. For the bcc-structured alloys, the 

average grain sizes were determined as 733  182, 231  54, 170  18 and 239  17 m for TiNb, 

TiNbHf, TiNbHfTa and TiNbHfTaZr, respectively. In order to minimize an effect of grain 

boundary hardening, the micro Vickers hardness were indented inside grains. Figure 6.3 shows the 

microhardness indentation marks for the FeNiCoCrMn and the TiNbHfTaZr HEAs. The 

indentation marks for all studied sample were smaller than the size of measured grains. The 

diagonal lengths of the indentation marks were approximately 50 m for the FeNiCoCrMn HEA 

and its sub-alloys, whereas the diagonal lengths for the TiNbHfTaZr HEA and its sub-alloys were 

in the range between 30 – 45 m.  

 

 

Figure 6.1 As-homogenized microstructures of (a) FeNi, (b) FeNiCo, (c) FeNiCoCr and (d) 

FeNiCoCrMn. 
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Figure 6.2 As-homogenized microstructures of (a) TiNb, (b) TiNbHf, (c) TiNbHfTa and (d) TiNbHfTaZr. 

 

 

Figure 6.3 Indentation marks on as-homogenized grains of (a) FeNiCoCrMn and (b) TiNbHfTaZr HEAs 

 

Hardness of the fcc-structured FeNiCoCrMn high entropy alloy 

Table 6.1 summarizes the values of microhardness for all the samples including the 

reference value of annealed pure Ni [127] and Figure 6.4 presents a bar graph for a comparison of 

the microhardness among the samples. The hardness values of the FeNi, FeNiCo, FeNiCoCr and 

FeNiCoCrMn were 116 ± 2, 112 ± 2, 132 ± 2 and 129 ± 1 HV, respectively, and the reference 
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value of the Ni sample is 64 HV. The presence of the substitutional Fe atom in the FeNi alloy 

induced solid solution hardening by disrupting the periodicity of the lattice. It increased the 

hardness from 64 HV of pure Ni to 116 HV of theFeNi alloy. The hardness of the FeNiCo alloy 

was slightly different from that of the FeNi alloy; hence, the addition of Co has a slight effect on 

hardness change. The addition of the largest Cr atom caused large hardening in FeNiCoCr and 

FeNiCoCrMn due to its largest atomic radius. I. Toda-Caraballo et al. [128] studied the 

strengthening model which demonstrated strong strengthening effects of Cr in FeNiCo-based 

alloys. However, the addition of Co and Mn resulted in insignificant changes of the hardness. The 

hardness values of the FeNiCoCrMn HEA and its sub-alloys were in a narrow range between 112 

-132 HV. The slight change in the hardness was supported by the slight pronouncements of lattice 

strain in this alloy system, which was investigated with the PDF method (as described in chapter 

5). The small magnitudes of the lattice strain led to a slight effect of solid solution hardening on 

the hardness among the fcc-structured samples. 

 

 

Figure 6.4 Microhardness of as-homogenized fcc-structured samples  
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Table 6.1 Microhardness of the as-homogenized fcc- and bcc-structured samples 

fcc samples Microhardness (HV) bcc samples Microhardness (HV) 

Ni 64 [127] Nb 80 [127] 

FeNi 116  2 TiNb 179 ± 1 

FeNiCo 112  2 TiNbHf 290 ± 2 

FeNiCoCr 132  2 TiNbHfTa 307 ± 5 

FeNiCoCrMn 129  1 TiNbHfTaZr 327 ± 3 

 

Hardness of the bcc-structured TiNbHfTaZr high entropy alloy 

The values of microhardness for the TiNbHfTaZr HEA and its sub-alloys are summarized 

in Table 6.1 including the reference value of annealed pure Nb [127] and Figure 6.5 presents a bar 

graph for a comparison of their microhardness. The hardness values were 179 ± 1, 290 ± 2, 307 ± 

5 and 327 ± 3 HV for TiNb, TiNbHf, TiNbHfTa and TiNbHfTaZr alloys, respectively, and the 

reference value of the Nb sample is 80 HV. It is not surprised that the bcc-structured alloys were 

harder than the fcc-structured alloys because slip planes in the bcc structure is made more difficult 

than the fcc structure [1]. For the bcc-structured alloys, the hardness values increased as the 

chemical complexity of alloys increased. The addition of Ti induced solid solution hardening to 

increase the hardness from the Nb to TiNb alloy. The large increase in the hardness was also 

observed between the TiNb and TiNbHf alloys. This increase was caused by an increase in atomic 

size misfit. The values of atomic size misfit for TiNbHf, TaNbHfTa and TiNbHfTaZr were above 

4%, while that of TiNb was about 1%. As investigated in chapter 5, the lattice strain increases 

from the Nb to TiNbHfTaZr HEAs as a result of an increase in atomic size misfit. The large atomic 

size misfit produce localized elastic strain fields which interact with those of dislocations [129]. 

By overcoming lattice distortions, the amount of energy is required for motion of dislocation, 

which results in hardening the materials [54, 125]. The large hardening for the Ti-Nb-Hf-Ta-Zr 

system might be given from the high magnitude of lattice strain associated with large atomic size 

misfit. 
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Figure 6.5 Microhardness of as-homogenized bcc-structured samples and indentation mark on as-

homogenized grain of TiNbHfTaZr HEA in the inset. 

 

6.2 Tensile strength of fcc- and bcc-structured high entropy alloys 

 To prove the solid solution hardening in the HEAs, the tensile strength is needed for a 

parallel study. The tensile test was conducted with thermomechanically treated samples composing 

of fine recrystallized grains. The sample preparation for tensile test was described in chapter 3.  

 

Tensile strength of the fcc-structured FeNiCoCrMn high entropy alloy 

For analyzing the microstructure, EBSD was used to quantify the microstructure, as listed 

in Table 6.2. After thermomechanical treatment, the recrystallization was achieved in all samples. 

All samples showed nearly free of deformed grains and main fraction of recrystallized grains. It is 

observed that the FeNi and FeNiCo alloys obtained the high fraction of substructured boundaries 

possibly due to the annealing condition (low temperature and short exposure time). Figure 6.6 
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presents EBSD grain orientation maps of the fcc-structured samples for tensile test. The 

microstructures were controlled to obtain average grain size between 13 – 22 m in all alloys. The 

grain sizes in all samples were not significantly different; thus, the effect of grain size hardening 

was controlled in order to compare the level of solid solution hardening between the alloys. 

Table 6.2 Microstructural analysis of fcc-structured tensile tested samples evaluated on EBSD maps. 

Alloys 
Grain Size 

(m) 

Residual strain analysis Twin 3 

(%) Undeformed (%) Substructured (%) Deformed (%) 

Ni 21.1 ± 1.5 94 6 0 2 

FeNi 13.4 ± 2.6 75 25 0 14 

FeNiCo 12.9 ± 1.3 87 13 0 14 

FeNiCoCr 18.4 ± 1.3 92 8 0 12 

FeNiCoCrMn 21.9 ± 2.4 96 4 0 14 

 

 

Figure 6.6 EBSD grain orientation maps of (a) Ni, (b) FeNi, (c) FeNiCo, (d) FeNiCoCr and (e) 

FeNiCoCrMn. 
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It was observed the concentration of annealing twin boundaries (measured as 3n, n = 1, 2, 

3 in coincidence site lattice notation) in the FeNiCoCrMn HEA and its sub-alloys. The annealing 

twin formation is related to grain boundaries migration due to the occurrence of stacking errors 

[130]. It is commonly known that Ni-based alloys with low stacking fault energy (SFE) shows 

twin grains during annealing [131]. The twin boundaries is also found in other low SFE materials. 

The stacking fault energy (SFE) of nickel is between 120 – 130 mJ/m2 [132] and the SFEs of FeNi, 

FeCoNi, FeNiCoCr and FeNiCoCrMn are 79, 31 , 25 and 25 mJ/m2 [1, 133, 134], respectively. 

The value of SFE decreases with increasing number of elements [1]. Figure 6.7 shows the large 

amount of 3 boundaries; while the quantities of 9 and 27 boundaries were relatively limited. 

The formation of 9 and 27 boundaries are responsible for the multiple twinning [135]. The 

major attention was paid on the twin formation of 3 boundaries. The FeNiCoCrMn HEA and its 

sub-alloys obtained 12 – 14% of 3 twin boundaries fraction, but the pure Ni sample presented the 

small fraction about 2% due to its relatively high SFE. It is considered that the lowering the SFE 

is effective to reduce the twin boundary energy [136, 137, 138], which stimulates the formation of 

annealing twinning boundaries. The annealing temperature and time also influences the twin 

formation during grain boundary mobility [139]. 

 

Figure 6.7 EBSD special grain boundaries (3, 9 and 27) maps of (a) Ni, (b) FeNi, (c) FeNiCo, (d) 

FeNiCoCr and (e) FeNiCoCrMn. 
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 Fig. 6.8 presents the true tensile stress-strain curve. The tensile mechanical properties in 

terms of yield strength (0.2), ultimate strength (max), uniform elongation (eu) and total elongation 

(et) are summarized in Table 6.3. The total elongations of all samples were larger than 40%. The 

necking was clearly observed for all samples during tensile test. The uniform elongation is 

determined at the maximum stress and better represents ductility or formability of these materials 

in uniaxial deformation. The uniform elongation of the sample is also large; between 32 – 44%. 

These large elongations were because of the fcc crystal structure having 12 slip systems, high 

concentration of annealing twin boundaries. The serration behaviors were observed as saw-like 

curve on the stress-strain curves of FeNiCo, FeNiCoCr and FeNiCoCrMn and also found by other 

studies [13]. R. Carroll et al. [140] reports that the serration increases with the number of 

constituent elements in the HEA. It is suggested that various microstates of the plastic deformation 

(introduced by the interaction between moving dislocations and substitutional atoms) hint the 

serration behavior of the HEAs [141, 142].The serrated flows could be related to deformation-

induced twinning [13, 16, 143]. It is reported that the deformation twins were observed in the 

FeNiCoCr and FeNiCoCrMn alloys during plastic deformation [144, 145]. The values of yield 

strength (0.2) were 60, 197, 154, 177 and 156 MPa for the Ni, FeNi, FeNiCo, FeNiCoCr and 

FeNiCoCrMn, respectively. By reviewing the yield strength of the FeNiCoCrMn HEA, it revealed 

a wide range of yield strength (100 – 600 MPa) and elongation (40 – 60%) dependent on grain size 

and processing [1, 11, 35]. In this study, the yield strength of the HEA was in the range of reference 

values. The pure Ni showed the lowest yield strength. The addition of Fe into the FeNi alloys 

enhanced the yield strength by the effect of solid solution hardening, similar to the hardness results. 

However, an increase in the number of substitutional elements did not lead to a significant 

enhancement in the yield strength between the HEA and its sub-alloys. The microstructural 

features (in terms of grain size, grain size distribution and a level of residual strain) also had an 

effect on the mechanical properties of the alloys. The small changes in the yield strength suggested 

that the level of solid solution hardening in the HEA was insignificant, compared to its sub-alloys.  
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Figure 6.8 (a) Overall tensile stress-strain curve of the thermomechanically treated fcc-structured samples 

and the curves between 0 – 2% tensile strain. 

Table 6.3 Tensile mechanical properties in terms of yield strength (0.2), ultimate strength (max), uniform 

elongation (eu) and total elongation (et) of fcc-structured samples after thermomechanical treatment. 

bcc samples 0.2 (MPa) max (MPa) eu  (%) et (%) 

Ni 60 477 33 42 

FeNi 192 657 32 40 

FeNiCo 147 591 33 42 

FeNiCoCr 189 896 43 43 

FeNiCoCrMn 156 798 44 50 

 

After the tensile failure of the FeNiCoCrMn HEA, pronounced necking was evident as 

shown in Figure 6.9 (a). It indicated ductile behavior of the HEA [146]. Figure 6.9 (b) and (c) are 

the fractography characterized by numerous deep dimples through the formation and coalescence 

of microvoids. Cr-Mn rich oxide particles were found inside the voids; it was possibly an initial 

site of a crack. N. D. Stepanov [112] reported that the oxide particles were formed during annealing 
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at low temperature (873 – 1073 K) in the FeNiCoCrMn HEA and these particle was not found in 

the HEA after annealing at high temperature (1173 K). This was supported by microstructural 

observation in this work that the HEA annealed at 1223 K presented a single phase without any 

second phase. Hence, it was possible that this oxide particles were formed during the tensile test. 

The presence of these particles might give no adverse effect on the mechanical properties because 

the HEA was as ductile as the FeNi and FeNiCo alloys, which had no Cr-Mn oxide particles. 

Figures 6.9 (d) and (e) present the lateral surface revealing intensively slip band. Numerous slip 

bands in different orientations were formed during tensile test, resulting in the extensive ductility 

in the fcc-structured FeNiCoCrMn HEA. 

 

 

Figure 6.9 (a) FeNiCoCrMn HEA after tensile test, (b) - (c) fracture surface and EDX spectrum of Cr-Mn 

rich particle indicated by red circles and (d) – (e) lateral surface. 
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Tensile strength of the bcc-structured TiNbHfTaZr high entropy alloy 

Table 6.4 summarizes the results of post processing on EBSD maps of the bcc-structured 

samples. All samples obtained free of deformed grains. With the exception of the TiNb sample, all 

samples were almost fully recrystallized and obtained slight fraction of substructured grains. The 

high fraction of substructure in the TiNb sample possibly was resulted by insufficient annealing 

time. Figure 6.10 shows the EBSD grain orientation maps of the as-thermomechanically treated 

bcc-structured samples. The bcc-structured samples revealed equiaxed and recrystallized grains. 

Although the microstructure of the TiNb was slightly different from the others, the average grain 

sizes was not significantly different. The grain sizes of the TaNbHf, TiNbHfTa and TiNbHfTaZr 

samples lied in the range between 14 -22 m, but the grain size of the TiNb sample was larger to 

29 m. The annealing twin boundaries were slightly observed as presented in Figure 6.11. The 

annealing twin boundaries were relatively less in this alloy system, compared to the fcc-structured 

samples. The annealing twins are slightly formed in bcc-structured materials due to their high 

stacking fault energy [147]. The values of the stacking fault energy of the TiNbHfTaZr HEA and 

its sub-alloys were not found. 

Table 6.4 Microstructural analysis of bcc-structured tensile tested samples evaluated on EBSD maps. 

Alloys 
Grain Size 

(m) 

Residual strain analysis Twin 3 

(%) Undeformed (%) Substructured (%) Deformed (%) 

TiNb 28.9 ± 3.1 44 56 0 1 

TiNbHf 14.5 ± 1.5 97 3 0 2 

TiNbHfTa 14.3 ± 0.7 95 5 0 2 

TiNbHfTaZr 22.4 ± 1.5 96 4 0 2 
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Figure 6.10 EBSD grain orientation maps of (a) TiNb, (b) TiNbHf, (c) TiNbHfTa and (d) TiNbHfTaZr. 

 

               

Figure 6.11 EBSD special grain boundaries (3, 9 and 27) maps of (a) TiNb, (b) TiNbHf, (c) 

TiNbHfTa and (d) TiNbHfTaZr. 
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The true tensile stress-strain curves are presented in Figure 6.12 and the tensile mechanical 

properties are summarized in Table 6.5. The yield strength (0.2) were 574, 857, 783 and 985 MPa 

for the TiNb, TiNbHf, TiNbHfTa and TiNbHfTaZr, respectively. The yield strength of Nb 

collected from the reference is 207 MPa. The yield strength of the TiNbHfTaZr HEA was 

comparable with the values of other works, such as 1073 MPa for as-cast sample with 120 m of 

grain size [84] and 966.0 - 973.3 MPa for theoretically calculated values corresponding the grain 

sizes between 100 - 200 μm [54]. The yield strength increased with the number of constituent 

elements. The addition of new constituent elements enhanced the solid solution hardening 

associated with intrinsic local lattice strain. The atomic size misfit in the bcc-structured samples 

was large and subsequently caused the high level of local lattice strain, as discussed in chapter 5. 

Strictly speaking, the lower yield strength of TiNbHfTa than those of TiNbHf were probably 

related to the smaller level of local lattice strain and homogeneity of grain size distribution 

homogeneous. The recrystallized grain sizes of the TiNbHf were largely distributed, obtaining the 

smaller grain sizes in the middle of sample as shown in Figure 6.11 (b). This heterogeneous grain 

size distribution strengthened the TiNbHf sample. However, it led to a conflict that the values of 

the microhardness for TiNbHf was lower than that of TiNbHfTa. The solid solution hardening in 

the TiNbHfTaZr HEA was higher than the FeNiCoCrMn HEA due to the larger lattice strain. 

Despite the small twin density and bcc lattice structure with no truly close-packed planes, the 

elongations in these alloys were not extremely low. The slight necking was observed in all bcc-

structured samples. The total elongation (et) can be represented ductility of the samples. The total 

elongation of the TiNbHf, TiNbHfTa and TiNbHfTaZr samples were 11, 17 and 12%, respectively. 

The TiNb sample presented relatively lower total elongation (5%) because of the higher fraction 

of substructure. For the uniform elongation (eu), the values were 1, 11, 12 and 7% for the TiNb, 

TiNbHf, TiNbHfTa and TiNbHfTaZr samples, respectively. The trend in the uniform elongation 

change was not different from that of the total elongation. In addition to the stress-strain curve of 

the TiNbHfTaZr HEA, the serration behavior characterized by saw-like curve was observed. The 

serration flow in the TiNbHfTaZr HEA might related to the deformation twinning under the tensile 

load. The deformation twins was reported to be observed in the TiNbHfTaZr during plasticity [60]. 
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Figure 6.12 (a) Overall tensile stress-strain curves of the thermomechanically treated bcc-structured 

samples and (b) the curves between 0 – 2% tensile strain. 

Table 6.5 Tensile mechanical properties in terms of yield strength (0.2), ultimate strength (max), uniform 

elongation (eu) and total elongation (et) of bcc-structured samples after thermomechanical treatment. 

bcc samples 0.2 (MPa) max (MPa) eu  (%) et (%) 

Nb[127] 207 275 - 30 

TiNb 574 575 1 5 

TiNbHf 857 931 11 11 

TiNbHfTa 783 852 12 17 

TiNbHfTaZr 985 1005 7 12 

 

Figure 6.13 shows the fracture and lateral surfaces of the TiNbHfTaZr HEA after tensile 

failure. Figure 6.13 (a) indicated that the failure was occurred by shear and necking was not 

apparently seen on the sample in contrast to the FeNiCoCrMn HEA sample. The presence of 

shallow dimples on the fracture surfaces indicated a ductile fracture mode of the TiNbHfTaZr 

HEA. In a comparison with the fractography of the FeNiCoCrMn HEA, the dimples of the 
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TiNbHfTaZr HEA were shallower. It is well known that the shallower dimples indicate less 

ductility [148]. The lateral surfaces (in Figure 6.13 (d) and (e)) shows observable grain structures 

and slight amount of slip bands. These behaviors presented ductile fracture mode in the 

TiNbHfTaZr HEA. 

 

 

Figure 6.13 (a) TiNbHfTaZr HEA after tensile test, (b) - (c) fracture surface and (d) – (e) lateral surface. 

 

For understanding better the effect of solid solution hardening on the HEAs compared to 

their sub-alloys, the correlation between local lattice strain and solid solution hardening was made 

in the following discussion. Traditionally, it has been known that the most important mechanism 

of solid solution hardening is correlated with the elastic interactions between the local stress field 

of solute atoms and surrounding dislocations [83, 149, 150, 151]. In HEAs with equiatomic ratios 
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of constituent elements, it is indistinguishable solvent and solute atoms. The classic solid solution 

hardening model in a conventional dilute solid solution may become invalid for the multi-

component solid solutions due to rough consideration of the effect of serious lattice distortion 

associated with high concentration of substitutional atoms [13, 128]. Recently, the expression of 

the solid solution hardening in HEAs involved the presences of multiple solute atoms, the elastic 

interaction due to atomic size misfit, interatomic bonds and lattice distortion [128].  

Figure 6.14 shows the correlation between the level of local lattice strain, microhardness 

and tensile yield strength for several samples having a range of chemical complexity. The level of 

microhardness and tensile yield strength were relatively higher in the bcc-structured samples than 

those of the fcc-structured samples. An increase in constituent number slightly increased the both 

hardness and tensile yield strength for the fcc-structured alloy system; in contrast, they rose 

significantly up with the number of constituent elements in the bcc-structured alloys. These 

changes indicate that the number of constituent elements is not a key factor for the enhancement 

of hardness and yield strength. As presented in Figure 6.14, the changes in both hardness and 

tensile yield strength is a function of the local lattice strain in a term of the equivalent static 

displacement. As discussed in chapter 5, the increase in the number of the constituent elements for 

the fcc-structured samples caused the small change in the static displacement from the unary 

sample (Ni) to the quinary alloy (FeNiCoCrMn). This small change of the static displacement in 

the fcc-structured alloy system caused the similar levels of hardness and tensile yield strength with 

an increase in the number of the constituent elements. The solid solution hardening in the 

FeNiCoCrMn HEA and its sub-alloys was not anomalously large due to the small level of the static 

displacement. On the contrary to the fcc-structured alloy system, an increase in the number of the 

constituent elements in the bcc-structured samples produced the large local lattice strain due to 

large atomic size misfits. This large increase in lattice strain led to large solid solution hardenability 

and strengthening ability, especially between the unary Nb and the ternary TiNbHf alloy. The 

addition of Ta for the TiNbHfTa alloy lowered local lattice strain because of smaller atomic size 

misfit than that of the TiNbHf alloy. This might decrease the tensile yield strength. The hardness 

and the yield strength of the TiNbHfTa alloy were remarkably higher than that of TiNb, although 

the magnitude of the relative local lattice strain in the TiNbHfTa alloy was slightly higher. It is 

because the presence of more constituent elements in the quaternary alloy resulted in more 

intensive elastic interaction between a dislocation and the strain field of multiple atoms species. 
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Among all studied samples, the TiNbHfTaZr HEA presented the highest levels of hardness and 

tensile yield strength due to the largest local lattice strain. It could be drawn that solid solution 

hardenability and strengthen ability are dependent on local lattice strain, which is induced by the 

atomic size misfit.       

 

 

Figure 6.14 Microhardness, tensile yield strength and relative local lattice strain for the fcc- and bcc-

structured samples. 

 

6.3 Correlation between atomic size misfit and solid solution 

hardening in Ti-Nb-Hf-Ta-Zr system 

The results in the previous section indicate that the atomic size misfit () strongly correlates 

to the level of lattice distortion and the solid solution strengthening. An extension of atomic size 

misfit range is needed to clarify the effect. Figure 6.15 shows the values of atomic size misfit () 
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for all studied samples. With the values of the atomic size misfit of the equiatomic fcc- and bcc-

structured samples, there are gaps of the atomic size misfit, such as a gap between 1 and 4% and 

gap between 4 -5%. The new compositions were developed to fill these gaps and the compositions 

were created based on the composition of the equiatomic TiNbHfTaZr HEA due to their different 

atomic radius of the constituent elements. 

 

 

Figure 6.15 The values of atomic size misfit () for the samples in this section comparing with equiatomic 

fcc- and bcc-structured samples. 

The selected compositions are Ti30Nb30Hf5Ta30Zr5, Ti20Nb18Hf20Ta18Zr24 and 

TiNbHfTaZrMo0.25 (in atomic ratio). The configurational entropy (Sconf ), enthalpy of mixing 

(ΔHmix) and atomic size misfit () for the studied samples are listed in Table 6.6. To complete the 

gaps of the atomic size misfit, the Ti30Nb30Hf5Ta30Zr5 (  3.25%) and Ti20Nb18Hf20Ta18Zr24 (  

4.46%) alloys were designed. The TiNbHfTaZrMo0.25 alloy was created in order to have the atomic 

size misfit larger than the TiNbHfTaZr HEA (  4.98%). The atomic size misfit of the 
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TiNbHfTaZr is likely maximum for this alloy system. The addition of Mo can increase the atomic 

size misfit to reach nearly the maximum theoretical value for solid solution limit (  6.6%) [31]. 

The ΔHmix for all the alloys are positive and close to zero, which suggest the high possibility for 

solid solution formation [12, 30, 31]. The Sconf for these samples are between the Sconf of the 

equiatomic quaternary TiNbHfTaHf and quinary TiNbHfTa alloys, which is highly favorable to 

stabilize the solid solutions [12, 30].  

Table 6.6 Melting points (Tm), configurational entropy (Sconf ), enthalpy of mixing (ΔHmix) and atomic size 

misfit () for the studied samples. 

*Calculated by using equation 2.5 with melting points of each element form the reference [108]. 

 

In this section, the studied samples including the equiatomic TiNbHfTaZr HEA were 

investigated in as-homogenized button-shaped ingots. Figure 6.16 presents X-ray diffraction 

patterns of the samples. The XRD patterns of all studied samples indicate single bcc-structured 

solid solution phase with variation of lattice parameter. The lattice parameters were determined as 

3.3321, 3.4438, 3.4136 and 3.4095 Å for Ti30Nb30Hf5Ta30Zr5, Ti20Nb18Hf20Ta18Zr24, TiNbHfTaZr 

and TiNbHfTaZrMo0.25, respectively. It can be mentioned that the lattice parameter of 

Ti30Nb30Hf5Ta30Zr5 is obviously lower, possibly due to the lowest atomic size misfit. Figure 6.17 

presents the SEM micrographs of as-homogenized samples. It was observed the single solid 

solution phase with large equiaxed grains in the Ti20Nb18Hf20Ta18Zr24, TiNbHfTaZr and 

TiNbHfTaZrMo0.25 alloys. The as-homogenized Ti30Nb30Hf5Ta30Zr5 presented dendritic 

microstructure. The annealing at 1373 K for 32 hours was not sufficient to homogenize the 

microstructure of the Ti30Nb30Hf5Ta30Zr5 sample due to its relatively higher melting point.  

Sample Tm* (K) Sconf  (J/K·mol) Hmix ( kJ/mol)  (%) 

Ti30Nb30Hf5Ta30Zr5 2626 11.50 1.92 3.25 

Ti20Nb18Hf20Ta18Zr24 2487 13.33 2.65 4.46 

TiNbHfTaZr 2524 13.38 2.72 4.98 

TiNbHfTaZrMo0.25 2542 14.34 2.22 5.26 
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Figure 6.16 X-ray diffraction patterns of as-homogenized Ti30Nb30Hf5Ta30Zr5, Ti20Nb18Hf20Ta18Zr24, 

TiNbHfTaZr and TiNbHfTaZrMo0.25 alloys. 

 

 

Figure 6.17 As-homogenized microstructures of (a) TiNbHfTaZrMo0.25, (b) TiNbHfTaZr, (c) 

Ti20Nb18Hf20Ta18Zr24 and (d) Ti30Nb30Hf5Ta30Zr5 alloys. 
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Recently, it is reported that the hardness of the TiNbHfTaZr HEA increased with the time 

of annealing at 2073 K due to the formation of local chemical clustering [152]. Hence, in this 

thesis, suitable annealing time and water quenching after heat treatment were used to limit the 

diffusivities for the clustering formation. The TiNbHfTaZr sample showed the hardness of 338 

MPa, similar to the value of as-homogenized TiNbHfTaZr rod (in section 6.1). These similar 

values of the TiNbHfTaZr HEA may indicates that the other effects besides solid solution 

hardening on hardness were controlled. Thus, the effect of solid solution hardening can be 

compared among the samples.  

Figure 6.18 shows the hardness of as-homogenized samples as a function of atomic size 

misfit. The hardness increased as a function of atomic size misfit. The TiNbHfTaZrMo0.25 with  

 5.26% showed the highest value of the hardness (394 HV) among all studied samples. It suggests 

that the introduction of Mo can contribute to large atomic size misfit and strong atomic interactions 

between larger numbers of constituent elements. Although the as-homogenized 

Ti30Nb30Hf5Ta30Zr5 shows dendritic microstructure, it obtains the lowest hardness value due to its 

smallest atomic size misfit. In chapter 5, the investigation of the lattice distortion with the PDF 

method demonstrated that the large atomic size misfit was attributed to the large local lattice strain. 

It can be said that the sample with the large atomic size misfit obtains the large solid solution 

hardening due to the large lattice strain. Figure 6.19 shows the microhardness as a function of 

atomic size misfit for non-equiatomic bcc alloys and equiatomic bcc alloys (investigated in 

previous sections). It is clear that the hardness increases with the magnitude of the atomic size 

misfit for the bcc-structured samples. 
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Figure 6.18 Correlation between microhardness and atomic size misfit for Ti30Nb30Hf5Ta30Zr5, 

Ti20Nb18Hf20Ta18Zr24, TiNbHfTaZr and TiNbHfTaZrMo0.25 alloys. 

 

 

Figure 6.19 Correlation between microhardness and atomic size misfit for the bcc-structured samples.  
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It is well known that substitutional solid solution hardening is a result of the elastic 

interaction between dislocations and atoms in the lattice [153, 154]. A model for a prediction of 

solid solution hardening in binary alloys was proposed. However, in HEAs or multiple component 

alloys, the chemical complexity in HEAs causes a different behavior of solid solution hardening. 

The model for HEAs is generally adapted from existing models in conventional alloys. The 

approach is expressed in the form of the following equation [128]: 

∆𝜎𝑠𝑠  =  (∑ 𝐵𝑖
3/2

𝑋𝑖𝑖 )
2/3

    (6.1) 

where ∆𝜎𝑠𝑠 is the level of solid solution hardening, Xi is the i solute content and Bi is a constant 

dependent on the shear modulus  of the alloy, the misfit parameter 𝜀𝑖 and a fitting constant Z 

 𝐵𝑖  =  3𝜇𝜀𝑖
4/3

𝑍     (6.2) 

where 𝜀𝑖 = (𝜀𝑖
𝑏2

+ 𝛼2𝜀𝑖
𝐺2

)1/2, 𝜀𝑖  represents the effects of elastic misfit (𝜀𝑖
𝐺) and atomic size misfit 

(𝜀𝑖
𝑏). The modulus misfit and the atomic size effect are attributed to the elastic interaction for solid 

solution hardening. It is reported that the modulus misfit is less important than the atomic size 

effect [128, 153, 155]. The equation 6.1 can be simplified in the following formula [155]: 

∆𝜎𝑠𝑠  =  𝑘𝜀𝑖
𝑏4/3

𝑋𝑖
2/3    (6.3) 

where k is the reduced form of the other parameters. 

From the equation 6.3 and a neglect of the elastic misfit effect, it can indicate that the level 

of solid solution hardening is proportional to the parameter 𝜀𝑖
𝑏4/3

. The parameter of atomic size 

misfit 𝜀𝑖
𝑏 is calculated with the interatomic spacing associated with the cell parameters [128]. The 

calculation of this parameter 𝜀𝑖
𝑏is complicated due to the chemical complexity and lattice distortion 

in the HEAs. The size misfit can also be evaluated by the differences of the atomic radius among 

the constituents according to the equation 2.4. In this study, the atomic size effect was considered, 

determined based on the atomic size misfit  including the solute concentration as discussed 

previously. To simplify the effect of atomic size misfit on the solid solution hardness, the 

correlation between the solid solution hardening and the parameter 4/3 was made, as shown in 
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Figure 6.20. The parameter HV is the hardness difference between the hardness of the alloys and 

the hardness of unary samples (Ni for fcc samples and Nb for bcc samples).  

Figure 6.20 (a) presents the correlation for the bcc-structured samples, which combines the 

hardness values of as-homogenized equiatomic bcc samples in previous sections and non-

equiatomic bcc samples in this section. The increase in the hardness of the bcc-structure solid 

solution samples was caused by larger atomic size misfit of the composition. This correlation is 

supported by good linear fit with slight scattering. It can suggest that the solid solution hardening 

in the bcc-structured HEAs is correlated to the atomic size misfit. For the fcc-structured sample, 

the hardness of as-homogenized equiatomic fcc samples is plotted in the correlation with the 

parameter 4/3, as presented in Figure 6.20 (b). The all marks are located at the low values of the 

parameter 4/3, showing a good agreement with a linear fit. It is mentioned that the slopes of the 

linear fit for the bcc and fcc samples are similar. It can suggest that the level of solid solution 

hardening can be enhanced by enlarging the magnitude of atomic size misfit in the fcc HEAs. Due 

to the narrow range of the parameter 4/3 associated with the slight atomic size differences, the 

correlation for the solid solution hardening in the fcc samples is limited. However, the 

experimental results suggest that the atomic size misfit has an influence on the solid solution 

hardening, at least, in the bcc-structured HEAs.  

 

Figure 6.20 Correlation between microhardness and 4/3 for (a) the bcc-structured samples and (b) the fcc-

structured samples. 
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7. Work hardening in single phase high entropy 

alloys 

Work hardening is commonly observed in plastic deformation of materials, which 

especially improves the strength. Cold rotary swaging was employed in this study to deform the 

samples. The rotary swaging facilitates an accumulation of high plastic strain due to delayed 

fracture associated with large hydrostatic stresses [17]. The hardness and compressive yield 

strength have been measured for evaluating the work hardening in the fcc-structured FeNiCoCrMn 

and the bcc-structured TiNbHfTaZr HEAs. This chapter also discusses the effects of degree of 

deformation and dislocation density on the mechanical properties of the HEAs.  

 

7.1 Work hardenability of fcc- and bcc-structured high entropy alloys 

The as-homogenized fcc-structured FeNiCoCrMn HEA rods with approximately 5.5 mm 

diameter after removing contaminated surface were swaged by approximately 45, 70 and 85 % 

reduction of cross-section area into 4.0, 3.0 and 2.0 mm diameter rods, respectively. Similarly, the 

as-homogenized bcc-structured TiNbHfTaZr HEA rods were swaged by 80 % and 90 % reduction 

of cross-section area into 2.5 and 1.7 mm diameter rods, respectively. The both HEAs indicated 

high deformability without cracking after the highest degree of cold deformation.  

Figure 7.1 shows the effects of degree of deformation on hardness and compressive yield 

strength of the FeNiCoCrMn and TiNbHfTaZr HEAs. For the compression test, all the samples 

were compressed until 20 % of strain and no fracture evidence was observed during the test. It was 

reported that the FeNiCoCrMn HEA is ductile because of dislocation pile-ups, dislocation motion 

and deformation nanotwin [1, 156]. In addition, O.N. Senkov et al. [14] suggests that the good 

deformability of TiNbHfTaZr HEA is probably due to simultaneous dislocation and deformation 

twinning. Hardness and compressive yield strength for the two HEAs increase with an increase in 

the degree of deformation, as observed in Figure 7.1. The higher degree of cold working elongates 

grains and generates the number of dislocation, which increases the amount of barriers for 
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dislocation motions [136]. It can be also observed that work hardenability and strengthening 

abilities of the fcc FeNiCoCrMn HEA were larger than those of the bcc TiNbHfTaZr HEA. The 

TiNbHfTaZr HEA shows an insignificant change in the hardness and compressive yield strength 

during an increase in the degree of deformation.  

 

 

Figure 7.1 Effect of degree of cold working on (a) hardness and (b) compressive yield strength of fcc-

structured FeNiCoCrMn HEA and bcc-structured TiNbHfTaZr HEA. 

 

For the fcc-structured FeNiCoCrMn HEA, the hardness and compressive yield strength 

increased significantly at the 45 % of cold working beginning of cold swaging, but afterward the 

degree of hardening was lower. After the highest degree of cold working (85 %), the hardness and 

compressive yield strength significantly reached 367 HV and 821 MPa, respectively. They were 

approximately three times higher than the values of undeformed sample. The FeNiCoCrMn HEA 

has low stacking fault energy (18 - 30 mJ/m2) [134, 157]. It was reported that stacking faults are 

frequently observed after small plastic deformation; for example at 2.1 % strain at room 

temperature [16]. Low stacking fault energy results in more difficult dislocation cross-slip and thus 

delay dynamic recovery [1, 158]. The deformation-induced nanotwinning was also reported in the 

FeNiCoCrMn at room temperature [16, 20, 134, 159, 160]. S-W Kim et al. [145] also reported the 
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deformation twins were immediately occurred during tensile straining on as-thermomechanically 

treated FeNiCoCrMn HEA. The twin boundaries retard the dislocation motion and moving across 

the boundaries, and thus result in dislocation pile-ups. These mechanisms are evident to cause the 

large work hardenability in the FeNiCoCrMn HEA.  

The hardness and yield strength of the TiNbHfTaZr HEA slightly increased with an 

increase in the degree of deformation. The values of the hardness and strength after deformation 

with the highest degree of area reduction (90%) were 377 HV and 1046 MPa, respectively. These 

values were not largely different from those of undeformed samples (327 HV of hardness, 985 

MPa of yield strength). The TiNbHfTaZr HEA is assumed to have high stacking fault energies due 

to high stacking fault energies of each constituent element (Ti, Nb, Hf, Ta and Zr). In the alloys 

with a high SFE, dynamic recovery is favored due to the dislocation cross slip under the 

deformation process [125, 136]. J.-P. Couzinié et al. [161] observed numerous dislocation debris 

in substructures of the TiNbHfTaZr sample after compression test. It is a consequence of the screw 

dislocation motions and ability to cross slip. J.-P. Couzinié et al. [161] also suggests that the 

dislocation activity during plastic deformation of the TiNbHfTaZr HEA is similar to bcc pure 

metals (i.e. Ta- or Nb-based alloys). Therefore, it can be assumed that the small work hardenability 

of the TiNbHfTaZr HEA is possibly resulted by high degree of solid solution hardening, ease to 

cross slip and less twin deformation.  

 

7.2 Dislocation density of fcc- and bcc-structured high entropy alloys 

after cold swaging 

Dislocation density of fcc- structured FeNiCoCrMn high entropy alloy after cold swaging 

For determining dislocation density in the fcc-structured samples, the as-swaged rods after 

the 85% reduction of the cross-sectional area were examined by Williamson-Hall method on 

synchrotron high energy X-ray diffraction patterns of Figure 7.2. The XRD patterns show the 

single fcc-structured phase for all samples after the 85% area reduction. Williamson-Hall plot as 

given in Figure 7.3 was used to calculate the dislocation density of the as-swaged fcc-structured 
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samples [99, 100, 162]. The Williamson-Hall plot was made by the data from the synchrotron X-

ray diffraction patterns as explained in the chapter 3. The micro lattice strain (εstr) was derived 

from the slope of the linear fitting, as presented in Table 7.1. The values of the lattice strain were 

adopted to evaluate the dislocation density () for fcc materials with Burgers vector along <110> 

using the following equation proposed by Williamson and Smallman [163]: 

          = 16.1 
ε2

b
2             (7.1) 

where  is lattice strain and b is the magnitude of Burgers vector. In the FeNiCoCrMn HEA, there 

is a report that deformation occurs by planar dislocation glide on the normal fcc slip system, 

{111}<110> [16]. The magnitude of the Burgers vector is calculated using the <110> slip direction.  

 

 

Figure 7.2 High energy synchrotron X-ray diffraction patterns of the fcc-structured samples after 85% 

reduction of the cross-sectional area. 
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Figure 7.3 Williamson-Hall plots of the fcc-structured samples after 85% reduction of the cross-sectional 

area. 

 

The dislocation densities of the samples after 85% reduction of the cross-sectional area 

were calculated as shown in Figure 7.4 and Table 7.1. The dislocation densities of the Ni, FeNi, 

FeNiCo, FeNiCoCr and FeNiCoCrMn samples are 2.8 x 1014, 6.4 x 1014, 6.7 x 1014, 17.8 x 1014 

and 12.0 x 1014 m-2, respectively. The stored dislocation densities of the samples after cold working 

are in the range of 1014 - 1015 m-2. In general, dislocation density of pure metals and conventional 

alloys is in a range of 1010 - 1012 m-2 at typical homogenized state, and can increase up to 1015 - 

1016 m-2, depending on the level of applied plastic deformation [163, 164]. The dislocation density 

of the as-swaged Ni in this study was examined as 2.8 x 1014 m-2, similar to a reported magnitude 

of the Ni after severely deformed by accumulative roll bonding (ARB) (3 x 1014 m-2) [165]. The 

dislocation densities of the FeNiCoCrMn HEA and its sub-alloys are within this range of the 

reported values, which supports the reliability of the current calculation. The dislocation density 

increases with the number of constituent elements, as shown in Figure 7.4. This could be due to 

the fact that the addition of a alloying elements (solid solution effect) to pure metals is effective to 

increase the dislocation density during deformation [163]. The presence of multiple atoms possibly 

produces strong barriers for dislocation motion. The strong inhibition of dislocation motion 
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reduces the dislocation recovery and grain boundary migration, and thus facilitates dislocation 

accumulation [164, 166]. Besides the number of constituent elements, the lattice distortion created 

by the random distribution of multiple principle elements in HEAs is often assumed to be an 

obstacle for dislocation motion and to affect the dislocation storage in HEAs. However, the 

experimental investigations in chapter 5 revealed that the level of the lattice distortion in the 

FeNiCoCrMn HEA was similar to those of the sub-alloys including Ni sample. Therefore, the role 

of the lattice distortion in the FeNiCoCrMn HEA is not expected to have a dominant effect on 

dislocation storage.  

 

 

Figure 7.4 Dislocation density stored in the fcc-structured samples after 85% reduction of the cross-

sectional area and the atomic size misfit of the samples. 
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Table 7.1 Lattice parameters (a), magnitudes of Burgers vector (b) along <110>, lattice strain () and 

dislocation density () of the fcc-structured samples after 85% reduction of the cross-sectional area and 

stacking fault energy of the alloys () 

Alloys a (Å)  b (Å)   (%)   (x 1015 m-2)  (mJ/m2) 

Ni 3.5210 2.4897 0.104 0.28 120 - 130 [132] 

FeNi 3.5834 2.5339 0.160 0.64 79 [133] 

FeNiCo 3.5695 2.5240 0.163 0.67 31 [1] 

FeNiCoCr 3.5709 2.5250 0.266 1.78 25 [1] 

FeNiCoCrMn 3.5931 2.5407 0.220 1.20 18 - 27 [134, 167] 

 

There have been experimental and theoretical studies which relates the stacking fault 

energy (SFE) to the dislocation density, cell size and flow stress [168, 169, 170]. According to 

these studies, a reduction of the SFE increases the total dislocation density and the flow stress, and 

promotes the splitting of a dislocation, which leads to the suppression of recombining the 

dissociated dislocations and annihilating the dislocations by cross-slip [126, 168]. The SFE of 

materials can be controlled by alloying elements [171]. Many studies reported the effects of 

alloying elements to Ni-based alloys on SFE. For example, the additions of Fe and Cr to Ni-based 

alloys generally decrease the SFE, while the addition of Cr up to 25 wt% reduces the SFE to 40 

and 45 mJ/m2 [172]. Meanwhile, the addition of Fe between 2.5 and 12.5 wt% results in an average 

SFE value of 86 mJ/m2 [70, 173]. Based on the previous experimental and theoretical 

investigations, the SFE of the alloys in the present study are obtained [1, 132, 134]; 120 - 130 

mJ/m2 of pure Ni [132], 79 mJ/m2 of FeNi [133], 31 mJ/m2 of FeNiCo [1], 25 mJ/m2 of FeNiCoCr 

[1] and 18 - 27 mJ/m2 of the FeNiCoCrMn HEA [134, 167].  

It can be seen that the FeNiCoCrMn HEA has the relatively low SFE among these studied 

samples. Based on the previous study, it is believed that the remarkably higher dislocation density 

of the FeNiCoCrMn HEA ( 1.20 x 1015 m-2) is influenced by the SFE effect. However, it is lower 

than the dislocation density in the quaternary FeNiCoCr alloy as 1.78 x 1015 m-2. The melting 

points of Ni, FeNi, FeNiCo and FeNiCoCr are in narrow range between 1693 - 1728 K, while that 
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of the FeNiCoCrMn HEA is 1562 K. The relative lower melting point relates to increase its 

homologous temperature of the deformation that allows thermal energy more available. It possibly 

promoted more chance of a dislocation being able to overcome the lattice resistance and decreased 

dislocation storage. 

Figure 7.5 presents the correlation between dislocation density, hardness and compressive 

yield strength as a function of constituent elements for the fcc-structured samples after 85% 

reduction of the cross-sectional area. The changes in the hardness and the compressive yield 

strength were followed by the level of dislocation density among the samples. The higher level of 

dislocation density produces stronger barriers for the dislocation motions. The FeNiCoCr alloy, 

which obtained the highest dislocation density, presented the highest hardness (403 HV) and 

compressive yield strength (933 MPa). The FeNiCoCrMn HEA with the most chemical complexity 

HEA was expected to exhibit the best mechanical properties but it showed lower hardness (367 

HV) and yield strength (821 MPa) possibly due to its lower dislocation storage. 

 

Figure 7.5 Dislocation density, hardness and compressive yield strength for the fcc-structured samples after 

85% reduction of the cross-sectional area 
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Table 7.2 Hardness and compressive yield strength (0.2) after 85% reduction of the cross-sectional area 

and shear modulus (G) calculated by the rule of mixture with the data from the reference [108]. 

Alloys Hardness (HV) 0.2 (MPa) G (GPa) 

Ni 201 471 76 

FeNi 249 609 78 

FeNiCo 245 621 77 

FeNiCoCr 403 933 87 

FeNiCoCrMn 367 821 84 

 

In general, an increase in flow stress due to interaction with forest dislocation is expressed 

by the following Taylor relationship [174]. 

 𝜏 =   𝜏0 +  𝛼𝐺𝑏√𝜌     (7.2) 

where  is the shear strength, 0 is the intrinsic shear strength,  is a constant describing the average 

interactions between dislocations dependent on the alloy, b is the magnitude of Burgers vector and 

G is the shear modulus of materials. The shear strength can be converted to yield stress with Taylor 

factor (M) as shown in the following equation. 

𝜏 =  
𝜎

𝑀
       (7.3) 

The Taylor factor (M) is approximately 3.06 for typical fcc-structured polycrystalline 

materials with the <110> slip direction [126]. The equation 7.2 can be derived from a series of 

different interaction mechanisms (i.e. cutting of forest dislocations) and related to the mean 

dislocation density [175]. This relationship explains a hardening behavior under the plastic 

deformation for one material. However, the attempt to predict the plastic deformation behaviors 

of the single phase fcc-structured solid solution samples were made by the equation 7.2, as 

presented in Figures 7.6. The data points are in a good agreement with a linear fit. It suggests that 

the behavior of work hardening in the fcc-structured FeNiCoCrMn HEA is similar to those of its 

sub-alloys. The linear fit cuts a y-intercept at /M  48 MPa; it is equivalent to 0  146 MPa. This 
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value indicates the property before plastic deformation, in the range of the yield strength between 

the as-annealed fcc HEA and its sub-alloys as discussed in chapter 6. The slope of the fit line is 

equivalent to the value of the term of 𝛼𝐺𝑏. In this study, the data points on the plot were interpreted 

from the different composition; hence, the extraction of the value of 𝛼 was done by the average 

shear modulus G (80.40 GPa) and Burgers vector b (2.523 Å). The value of 𝛼 in this work was 

calculated as approximately 0.3. The 𝛼 values is dependent on many factors; i.e. deformation 

mode, deformation rate, temperature, dislocation distribution, crystal orientation, alloying [176]. 

For metals, the 𝛼 value is in the range of 0.3 - 0.5 [177]. In particular, the treatment for general fcc 

metals uses 𝛼  0.3 for modeling work hardening behavior [178]. The dislocation interaction of 

the FeNiCoCrMn HEA and its sub-alloys was in a reasonable agreement with those of 

conventional fcc metals.  

 

 

Figure 7.6 Taylor relationship of work hardening between /M and √𝜌 for the fcc-structured alloys after 

85% reduction of the cross-sectional area. 
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Dislocation density of the bcc-structured TiNbHfTaZr high entropy alloy after cold swaging 

The TiNbHfTaZr, TiNbHfTa, TiNbHf and TiNb samples after 90% reduction of the cross-

sectional area and as-received 2 mm diameter Nb rod were used for examination of dislocation 

density in correlation with their hardness and compressive yield strength. All the samples were 

cold-swaged continuously without intermediate annealing. The TiNbHfTaZr HEA presented 

superior cold plasticity with 90% reduction of the cross-sectional area. The integral breath and 2 

of the bcc-structured solid solution peaks taken from XRD patterns of Figure 7.7 were used to be 

calculated for the Williamson-Hall plots as given in Figure 7.8. The slopes represented the lattice 

strain as given in Table 7.3. The dislocation density for the bcc-structured materials was calculated 

by the following equation [163].  

    = 14.4 
ε2

b
2             (7.4) 

where b is Burgers vector along <111>. A previous investigation in the TiNbHfTaZr HEA 

suggested that plastic deformation at room temperature is governed by the motion of screw 

dislocation with b = a/2 <111> Burgers vector [161].  

  

Figure 7.7 High energy synchrotron X-ray diffraction patterns of the bcc-structured samples after 90% 

reduction of the cross-sectional area including as-received Nb rod. 
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Figure 7.8 Williamson-Hall plots of the bcc-structured samples after 90% reduction of the cross-sectional 

area. 

Table 7.3 Lattice parameters (a), magnitudes of Burgers vector (b) along <111>, lattice strain ( ) and 

dislocation density () of the bcc-structured samples after 90% reduction of the cross-sectional area. 

Alloys a (Å) b (Å)   (%)   (x 1015 m-2) 

Nb* 3.298 2.856 0.170 0.510 

TiNb 3.281 2.842 0.211 0.794 

TiNbHf 3.370 2.918 0.358 2.167 

TiNbHfTa 3.355 2.906 0.350 2.089 

TiNbHfTaZr 3.398 2.942 0.412 2.823 

*as-received 2 mm diameter rod 

 

The dislocation densities of the as-swaged bcc-structured samples were listed in Table 7.3 

and schematically showed in the bar chart of Figure 7.9. The calculated magnitudes of dislocation 

density were between 0.510 - 2.823 x 1015 m-2, comparable to the range for conventional heavily 
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deformed materials [163, 164]. The dislocation density for the bcc-structured samples was higher 

than the fcc-structured sample. From equation 7.1 and 7.4, the dislocation density is proportional 

to the lattice strain. The larger lattice strain of the bcc-structured samples was possibly resulted by 

large atomic size misfit. On the other hand, the energy necessary to create dense distributions of 

dislocations is related to the elastic energy [179]. The elastic energy of bcc-structure is normally 

higher than that of fcc-structure due to more difficult to slip. Also the higher melting points of the 

bcc-structured samples have higher stored energy, which require more energy for plastic 

deformation. Strictly speaking, the dislocation density between fcc and bcc samples could not 

perfectly be compared due to different degree of deformation. The bcc- structured samples were 

deformed with higher degree of reduction than the fcc-structured samples; hence it could contribute 

to the higher magnitudes of dislocation density. 

 

 

Figure 7.9 Dislocation density stored in the as-swaged bcc-structured samples after 90% reduction of the 

cross-sectional area and the atomic size misfit of the samples. 

The stacking fault energy (SFE) for the most bcc alloys is unknown. The SFEs of Nb [180], 

Ti [181], Ta [181] and Zr [136] are reported as approximately 200, 320, 480 and 240 mJ/m2, 

respectively. The SFEs of the studied bcc-structured are assumed to be high. Hence, the 
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TiNbHfTaZr HEA and its sub-alloys can be categorized as high SFE materials. With high stacking 

fault energy, the screw dislocations may cross-slip to accommodate deformation [182]. In 

literatures, the deformation twin is less found in bcc HEAs [1]. Less deformation twinning suggests 

difficult deformation and increases dislocation density storage. The plastic deformation of general 

bcc materials at low temperature is controlled by thermally activated motion of screw dislocations 

[183], leading to dislocation cross-slip for both generation [184] and annihilation [185]. Among 

the bcc-structured samples, their melting points are high between 2346 – 2750 K and they lead to 

remarkably low homologous temperatures (0.10 - 0.13) of deformed samples at room temperature. 

As the result, the thermal energies for every samples could be assumed to be same. The levels of 

dislocation density can be compared between the samples in terms of intrinsic lattice resistance 

and lattice structure. 

The TiNbHfTaZr HEA obtained the highest dislocation density, followed by TiNbHf, 

TiNbHfTa, TiNb and as-received 2 mm Nb rod. It is claimed that the deformation of the bcc metals 

is affected by the interaction between the dislocations and solute atoms [183]. Figure 7.9 presents 

the strong correlation between the magnitude of dislocation density and the atomic size misfit. The 

large atomic size misfit caused the significant lattice distortion, as given evidence in chapter 5. 

The large atomic size misfit is possible to produces extensive stress field as strong obstacles to 

further dislocation motion [166, 186]. It leads to more chance for accumulation of high dislocation 

density. It was obvious that the dislocation densities for TiNbHf, TiNbHfTa and TiNbHfTaZr were 

higher than those of TiNb and Nb due to their relatively high atomic size misfits. As it is expected, 

bigger atoms, Hf and Zr, produce more local strains and cause a strong barrier for dislocation 

movement. The TiNbHfTaZr HEA, having the most chemical complexity and large atomic size 

misfit, demonstrated the high level of dislocation density. This suggested that the atomic size misfit 

and the large chemical complexity have a cooperative effect on dislocation density for the bcc-

structured samples. 

Figure 7.10 shows the dislocation density, hardness and compressive yield strength for the 

bcc-structured sample after 90% reduction of the cross-sectional area and the values for the 

mechanical properties are summarized in Table 7.4. The increases in hardness and compressive 

yield strength were observed between TiNb and TiNbHfTa, which their dislocation densities were 

greatly different. Although, the dislocation density of TiNbHfTa was slightly lower than that of 
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TiNbHf, the hardness and the compressive yield strength were higher. Moreover, the equation 7.2 

suggests that the interaction between dislocations and shear modulus correlate to the shear strength 

of as-deformed samples. The shear modulus of Ta is 69 GPa, relatively higher than those of other 

elements between 30 – 40 GPa [43]. The interactions between Ta and other atoms may cause a 

larger deviation in the local forces than the other elements. The higher hardness and yield strength 

might be resulted by the higher shear modulus of TiNbHfTa. The TiNbHfTaZr HEA presented 

significantly high dislocation density, but the hardness and the yield strength were comparable to 

those of the TiNbHfTa. It could be contributed by lower shear modulus.  

 

 

Figure 7.10 Dislocation density, hardness and compressive yield strength for the bcc-structured samples 

90% reduction of the cross-sectional area. 
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Table 7.4 Hardness and compressive yield strength (0.2) after 90% reduction of the cross-sectional area 

and shear modulus (G) calculated by the rule of mixture with the data from the reference [108]. 

Alloys Hardness (HV) 0.2 (MPa) G (GPa) 

Nb* 180 376 38 

TiNb 191 495 41 

TiNbHf 330 1009 37 

TiNbHfTa 369 1069 45 

TiNbHfTaZr 377 1046 43 

*as-received 2 mm diameter rod 

 

Figure 7.11 presents the relationship between /M and √𝜌  for the as-swaged bcc-

structured alloys according to the Taylor hardening model of the equation 7.2. The Taylor factor 

(M), 2.754, was used in this calculation for mixed slip modes in a <111> direction [187]. In bcc 

metals, slip is complex; however, the numerous experiments indicate that slip occurs in the closet 

packed <111> direction. In Figure 7.11, it shows a linear fit with some scatter. It is mentioned that 

the y-intercept is at /M (or 0) -65 MPa. The negative y-intercept suggests that the behaviors of 

work hardening in the TiNbHfTaZr HEA might be different from those of it sub-alloys. The term 

of 0 can be defined as the shear resistance to dislocation motion in the absence of dislocation 

interactions [188]. According to the investigation in the chapter 5, the levels of lattice strain for 

the TiNbHfTaZr HEA and its sub-alloys were significantly varied and the yield strength of as-

annealed state, where external stress was removed, were in the wide range between 207 – 985 

MPa. It indicates that the behavior of work hardening for the TiNbHfTaZr and its sub-alloys were 

possibly different due to their different lattice resistances. In addition, the  term, extracted from 

the slope of the linear fit in Figure 7.11, is approximately 0.8. This value is beyond the range for 

most metals between 0.3 – 0.5 [177]. G. Dirras et al. [189] reports 𝛼   0.16 for a plastic 

deformation of TiNbHfTaZr HEA, whereas the polycrystals of niobium is found with 𝛼  0.47 

[176]. This suggests that the dislocation interaction in term of 𝛼 for the TiNbHfTaZr might not be 
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similar to that of conventional bcc metals and, hence, the work hardening behavior is possibly not 

in an agreement with that of its sub-alloys and conventional alloys. 

 

Figure 7.11 Taylor relationship of work hardening between /M and √𝜌 for the bcc-structured alloys after 

90% reduction of the cross-sectional area.
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8. Summary and outlook 

In this thesis, the interactions of multiple constituent elements in the single solid solution 

phase FeNiCoCrMn and TiNbHfTaZr high entropy alloys (HEAs) were mainly investigated in 

terms of the effects on microstructure, lattice strain and mechanical properties. The main points 

can be summarized below and the possible directions are suggested at the end of this chapter. 

 

8.1 Summary 

 The equiatomic fcc-structured FeNiCoCrMn and bcc-structured TiNbHfTaZr HEAs were 

prepared by arc-melting, cold-crucible casting and thermomechanical treatment in order to study 

phase stability, intrinsic lattice strain, solid solution hardening and work hardening. The sub-alloys 

consisting of less number of constituent elements (fcc: equiatomic FeNiCoCr, FeNiCo, FeNi alloys 

and pure Ni / bcc: equiatomic TiNbHfTa, TiNbHf, TiNb alloys and pure Nb) were selected to be 

investigated in a comparison with the HEAs. The summary of each study in the HEAs was written 

in the following paragraphs. 

 Phase stability:  The FeNiCoCrMn HEA, its sub-alloys (FeNiCoCr, FeNiCo, FeNi) and 

pure Ni sample obtained a single fcc-structured solid solution phase after homogenization. The 

DSC traces of the fcc-structured samples demonstrated phase stability and no phase transformation 

between 300 - 1500 K. This temperature range covers the temperature for the heat treatment in this 

work. Similarly, the as-homogenized TiNbHfTaZr HEA, its sub-alloys (TiNbHfTa, TiNbHf, 

TiNb) and pure Nb sample demonstrated a single bcc-structured solid solution phase and phase 

stability within that range of temperature. In aspect of thermodynamic, all studied samples obtain 

close to zero values of the mixing enthalpy and different values of the configurational entropy. 

This indicates that the mixing enthalpy is an important parameter to determine the formation of 

solid solution phase.  

Lattice strain: The intrinsic lattice strain associated with the multiple atom species in the 

HEAs was examined in both micro and local scales by high energy synchrotron XRD. The micro 
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lattice strain in the HEAs and their sub-alloys was quantified by Williamson-Hall methods on the 

Bragg intensities. Although it was observed that larger micro lattice strain in the fcc FeNiCoCrMn 

and the bcc TiNbHfTaZr HEAs, but the levels of micro lattice strain were not significantly 

different among the samples having different number of constituent elements. The level of micro 

lattice strain were not clearly large to determine the atomic displacement. It is supported by the 

literature review that the crystallographic information on Bragg intensities demonstrates only the 

average bond distance and the lattice parameter. The pair distribution function (PDF) method was 

used to assess local lattice strain associated with the random arrangement of the multiple atom 

species in the HEAs. The small PDF peak widths of the FeNiCoCrMn HEA and its sub-alloys 

represented slight levels of local lattice strain affected by the small atomic size misfits. The atomic 

sizes of constituent elements in the FeNiCoCrMn HEA is not significantly different; hence, the 

local lattice strain was not anomalously large. In contrast, the PDF peaks of the TiNbHfTaZr HEA 

were broadened when compared with the peak widths of Nb and its sub-alloys. The large atomic 

size misfit in the TiNbHfTaZr HEA is assumed to cause the large local lattice strain. The evidence 

from this study suggests that the atomic size misfit is more important factor than the number of 

constituent elements in the determination of lattice distortion.  

 Solid solution hardening: For the single fcc-structured samples, the increase in the number 

of constituent elements from the unary Ni sample to the quinary FeNiCoCrMn HEA resulted in 

slight changes of hardness (64 – 132 HV) and tensile yield strength (60 – 192 MPa). On the 

contrary to the fcc-structured alloy system, the hardness and the yield strength of the bcc-structured 

alloy significantly increased with the number of constituent from the Nb sample to the 

TiNbHfTaZr HEA, between 80 – 327 HV of hardness and between 207 – 985 MPa of tensile yield 

strength. The lattice distortion in the bcc-structured alloy system was more pronounced than in the 

fcc-structured alloy system. The results suggest that the level of solid solution hardening is related 

to the level of lattice strain (lattice distortion) rather than the chemical complexity. The increase 

in atomic size misfit increases the lattice strain; thus, the large atomic size misfit is relative to 

enhancement of the solid solution hardening due to the strong elastic interaction between 

dislocations and atoms. The TiNbHfTaZr HEA presented larger level of solid solution hardening, 

than the FeNiCoCrMn HEA due to its large atomic size misfit.  
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 Work hardening:  The FeNiCoCrMn and TiNbHfTaZr HEAs including their sub-alloys 

were plastic deformed by the large degree of area reduction without intermediate annealing. The 

dislocation densities of the studied samples after the deformation were in the range between 1014 

- 1015 m-2. This range is consistent with reported levels for plastic deformed metals, which supports 

the reliability of this calculation. The increase in the number of constituent elements (solid solution 

effect) increased the accumulation of dislocation density during the cold working. Despite 

insignificant lattice distortion in the FeNiCoCrMn HEA and its sub-alloys, the dislocation storages 

after 85% reduction of the cross-sectional area were significantly different among the samples, 

followed by the level of atomic size misfit. For the bcc-structured alloys, the larger lattice 

distortion in the TiNbHfTaZr HEAs, the TiNbHfTa and the TiNbHf alloys were evident and 

significantly correlated with the higher dislocation densities after 90% reduction of the cross-

sectional area, compared with the Nb and TiNb samples. The level of dislocation densities was 

correlated with the number of constituent elements, the level of lattice distortion associated with 

atomic size misfit and the intrinsic properties (i.e. the stacking fault energy and the melting point). 

Furthermore, it is expected that the higher dislocation densities of the FeNiCoCrMn and the 

TiNbHfTaZr HEAs are attributed to the enhanced solid solution effect. It is in a good agreement 

with the experimental results that the samples with higher level of dislocation density obtained 

higher hardness and compressive yield strength due to stronger interaction between dislocations. 

By applying the Taylor equation to describe the work hardening behavior, the result indicated that 

the FeNiCoCrMn showed similar dislocation interaction to Ni sample and its sub-alloys. However, 

the dislocation interaction of the TiNbHfTaZr HEA is likely to be different from the Nb sample 

and its sub-alloys. The work hardenability of the fcc-structured FeNiCoCrMn HEA is significant. 

The mechanical properties of as-deformed FeNiCoCrMn were significantly higher than the 

undeformed sample. The hardness and the yield strength of the bcc-structured TiNbHfTaZr HEA 

insignificantly increased by the reduction of cross-sectional area; the values were not significantly 

higher than those of the undeformed sample. The larger work hardenability of the FeNiCoCrMn 

HEA is believed to be as a result of relatively lower solid solution hardening and more ease of 

deformation twin. 
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8.2 Outlook 

Based on the findings of this study, some aspects could be further investigated, as listed in 

the following points:  

  As determined with the PDF method on the XRD patterns, the lattice strain in the bcc 

TiNbHfTaZr HEA was evident. Another method such as TEM should be made an attempt to 

demonstrate atomic arrangement for another evidence of lattice distortion.  

 The experimental results demonstrated that the atomic size misfit had a great influence 

on the level of lattice strain and subsequently solid solution hardening. The investigation was made 

in the FeNiCoCrMn and TiNbHfTaZr HEAs and their sub-alloys. A study on other single solid 

solution phase HEA systems should be needed to emphasize this statement. 

 In the sample preparation, the microstructural evolutions during annealing were different 

between the HEAs and their sub-alloys and pure metals. The microstructural behavior of the HEAs 

could be studied in a comparison with the sub-alloys.   

  Due to single solid solution phase in the HEAs, the mechanical properties could modified 

within the limit of solid solution hardening. The other hardening mechanisms could be involved 

in the HEAs to enhance the mechanical properties. For example, the second phase precipitation, 

made by an addition of alloying element into single phase HEAs, can increase the strength and 

change the microstructural behavior. 
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