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Abstract
Bit flips are known to be a source of strange system behavior, failures, and crashes.
They can cause dramatic financial loss, security breaches, or even harm human life.
Caused by energized particles arising from, e.g., cosmic rays or heat, they are hardly
avoidable. Due to transistor sizes becoming smaller and smaller, modern hardware
becomes more and more prone to bit flips. This yields a high scientific interest,
and many techniques to make systems more resilient against bit flips are developed.
Fault-tolerance techniques are techniques that detect and react to bit flips or their
effects. Before using these techniques, they typically need to be configured for the
particular system they shall protect, the grade of resilience that shall be achieved, and
the environment. State-of-the-art configuration approaches have a high risk of being
imprecise, of being affected by undesired side effects, and of yielding questionable
resilience measures.

In this thesis we encourage the usage of formal methods for resiliency configuration,
point out advantages and investigate difficulties. We exemplarily investigate two
systems that are equipped with fault-tolerance techniques, and we apply parametric
variants of probabilistic model checking to obtain optimal configurations for pre-defined
resilience criteria. Probabilistic model checking is an automated formal method that
operates on Markov models, i.e., state-based models with probabilistic transitions,
where costs or rewards can be assigned to states and transitions. Probabilistic
model checking can be used to compute, e.g., the probability of having a failure, the
conditional probability of detecting an error in case of bit-flip occurrence, or the
overhead that arises due to error detection and correction. Parametric variants of
probabilistic model checking allow parameters in the transition probabilities and in
the costs and rewards. Instead of computing values for probabilities and overhead,
parametric variants compute rational functions. These functions can then be analyzed
for optimality.

The considered fault-tolerant systems are inspired by the work of project partners.
The first system is an inter-process communication protocol as it is used in the
Fiasco.OC microkernel. The communication structures provided by the kernel are
protected against bit flips by a fault-tolerance technique. The second system is
inspired by the redo-based fault-tolerance technique haft. This technique protects
an application against bit flips by partitioning the application’s instruction flow
into transaction, adding redundance, and redoing single transactions in case of error
detection.

Driven by these examples, we study challenges when using probabilistic model
checking for fault-tolerance configuration and present solutions. We show that small
transition probabilities, as they arise in error models, can be a cause of previously
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known accuracy issues, when using numeric solver in probabilistic model checking. We
argue that the use of non-iterative methods is an acceptable alternative. We debate
on the usability of the rational functions for finding optimal configurations, and show
that for relatively short rational functions the usage of mathematical methods is
appropriate.

The redo-based fault-tolerance model suffers from the well-known state-explosion
problem. We present a new technique, counter-based factorization, that tackles this
problem for system models that do not scale because of a counter, as it is the case for
this fault-tolerance model. This technique utilizes the chain-like structure that arises
from the counter, splits the model into several parts, and computes local characteristics
(in terms of rational functions) for these parts. These local characteristics can then
be combined to retrieve global resiliency and overhead measures. The rational
functions retrieved for the redo-based fault-tolerance model are huge — for small
model instances they already have the size of more than one gigabyte. We therefor can
not apply precise mathematic methods to these functions. Instead, we use the short,
matrix-based representation, that arises from factorization, to point-wise evaluate
the functions. Using this approach, we systematically explore the design space of the
redo-based fault-tolerance model and retrieve sweet-spot configurations.
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1 Introduction
Scaling trends for modern hardware cause transistors to become smaller and smaller.
Despite the undisputed advantage that these trends result in more computational
power, they also have the effect of hardware becoming more prone to bit flips [Shi+02;
Sha+14]. These bit flips are known to be a source of system failures [SG10; NDO11;
Gun+14]. To increase the resilience of systems against bit flips, fault-tolerance
techniques are applied.

The driving goal of this thesis is to study the configuration of fault-tolerance
techniques via formal methods. The configuration goal is to guarantee a predefined
level of resilience against bit flips with acceptable overhead, with respect to the
underlying system and the environment.

We exemplarily configure the system variables of two concrete systems. The
first system is a system of interacting processes that communicate via inter-process
communication structures provided by the L4/Fiasco.OC microkernel [16b]. The other
one is an application-level fault-tolerance mechanism that performs error correction
by redoing parts of the application. The mechanism is inspired by the redo-based
fault-tolerance technique haft [Kuv+16]. These systems arose from the work of
project partners in the “Center for Advancing Electronics Dresden” (cfaed). The goal
of cfaed is the exploration of new technologies for electronic information processing.

The exemplary configuration is performed with formal methods, in particular
probabilistic model checking. The usage of formal methods comes with several
benefits, but also with challenges. In this thesis, we show how to overcome these
challenges and how to apply formal methods to configure systems with respect to
resilience criteria.

1.1 Bit Flips and Fault Tolerance
Bit Flips. In modern hardware, transistors have a size of some nanometers, with
sizes still shrinking. In 2016 industrial production of chips following the 10 nanometers
technology1 started [Sam16], mass production of chips of 7 nanometer technology
began in June 2018 [Wei18]. Industrial production of 5 nanometer technology is
expected for 2020 [TSM18]. With the size of a transistor also the power the transistor
needs to switch from the “off” to the “on” state decreases. Reducing this power has
the drawback of making modern transistors more vulnerable to uncontrolled energy
impacts [Shi+02]. Energized particles that carry more energy than needed to switch

1 x nanometer technology refers to transistors with a gate length of x nanometers.
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1 Introduction

a transistor’s state, can cause the state of the transistor to change unintentionally
[Li+04]. These energized particles are, e.g., heavy ions, neutrons, or photons, caused
by, e.g., cosmic radiation [McK+96], alpha particles from packaging materials [MW79],
or interaction of cosmic ray thermal neutrons with the 10B isotope of Boron [Bau+95].
On earth, occurrence of many high-energized particles has been reduced with better
process technologies and removing uranium and thorium impurities [Bau05]. But
the scale of modern transistors makes them vulnerable to particles carrying much
less energy, e.g., particles caused by radiation. [Zie98] shows that these particles are
much more frequent in atmosphere than high-energized particles. In outer space, high
energized particles (e.g. from solar storms), are still present at a high rate [Sup14]
and give an additional chance of unintentional changes of modern transistors’ state.

The change of a transistor’s state is called a bit flip, soft fault, transient faults or
single event upset. In this thesis, we will use the term “bit flip”. The rate of bit flips is
typically measured in failures in time (FIT), and describes the number of bit flips that
arise in one megabite of memory within 109 hours of operations. The concrete rate
of bit flips depends on the hardware and the environment. [SL12] gives an on-earth
bit-flip rate of 0.066 FIT. Other estimates give bit-flip rates of 0.061 FIT [Li+10] and
0.044 FIT [Sri+13]. This means that in a single operation of a 2.5GHz processor an
error occurs approximately with a probability of 10−15.

The effects of bit flips are manifold. They might have no effect at all (e.g., if
corrupted bits are refreshed before they are read), but they also can cause applications
or systems to crash or produce wrong results. The latter is of special interest, since
wrong data can cause security breaches, financial loss, or death. In 2014, [Kim+14]
showed that in modern caches repeatedly refreshing a cash line causes adjacent cache
lines to be affected by bit flips with a high chance. [SD15] extended this work and
showed that this effect can be used to maliciously obtain kernel privileges. This
technique is known as “rowhammer”. In 2007, an uncontrolledly accelerating car
caused the death of a woman [EET13a]. In this car, the process measuring the angle
of the throttle control was activated and deactivated by a single, unprotected bit.
A bit flip in this bit caused the process to deactivate while the throttle control was
depressed and thus the throttle to be “software-stucked” at accelerating position
[EET13b]. These incidents illustrate the need of protection against bit flips.

Fault-Tolerance Techniques. Using the terminology of [Sah05], we say that a bit
flip, independent of its effect, is a fault. If the bit flip affects the run of the system,
the system has an error. These errors can be detected and corrected to avoid failures,
i.e., undesired system behavior. The concrete definition of a failure hereby depends
on the system. For systems providing a high availability like airplane or stock market
software, a crash of single processes or even the whole system is a failure. However, in
an operating system for home computers, a failure is typically defined as unintended
and unobservable data changes or access granting, i.e., a silent data corruption.
A crash of a process is, from this operating system’s perspective, detectable and
repairable, and thus an error.
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1.2 Configuration of Fault-Tolerance Techniques

To avoid system failures, fault-tolerance techniques are applied. The resilience (also
resiliency) of a system is a measure for its ability to deal with errors. Fault-tolerance
techniques equip a system with redundance and use this redundance to detect and
correct errors. They increase the system’s resilience and thus avoid failures. The
number of existing fault-tolerance techniques is enormous. Each one is tailored to
the system it shall protect (e.g., air planes, hospital software, home computers),
to the architecture level (e.g., hardware, operating system, user applications), to
the environment (e.g., high or low bit-flip rates), to characteristics of the concrete
application scenario (e.g., multi-threaded or single-threaded), and to many more
dimensions. Furthermore, fault-tolerance techniques can be tailored to particular
hardware or operating systems (e.g., Intel cores or Mac OS file systems), some of them
require user interaction, and they differ in the type and number of bit flips they can
find and correct. But all of them have one thing in common: They cause overhead.
Adding and maintaining redundance causes overhead in terms of time and energy.
For many fault-tolerance techniques this opens a configuration problem: How much
redundance shall be added, to provide a certain level of resilience without paying to
much? How often or at which points in time shall error detection be performed? Is
there a sweet-spot configuration that reduces overhead without decreasing resilience?

The answer to these questions typically depends not only on the concrete system
and resilience/overhead requirements, but also on the environment. As an example,
consider a fault-tolerance mechanism that shall protect high-level applications against
up to two bit flips arising at the same time. For this purpose, it periodically checks the
application’s data and, if it detects an error, performs error correction. If, between two
checks, three bit flips arise in the application’s data, the fault-tolerance mechanism
might not be able to detect these three bit flips. In this case, there is a failure in
the system and will cause data loss or a crash eventually. The time between two
periodic checks shall now be configured such that the probability of a failure is below
0.0001%, while having as less overhead as possible. Performing checks too seldom will
cause the chance of a failure to be too high, performing checks too often will cause
additional, unnecessary overhead due to error detection. The optimal check interval
depends on the applications characteristic (e.g., on the amount of data that shall be
protected), on the hardware (modern hardware is more prone to bit flips), and on the
environment (the probability of bit flips is higher in high altitudes or in space). This
makes the configuration a difficult task.

1.2 Configuration of Fault-Tolerance Techniques
State-of-the-Art Configuration. Most fault-tolerance techniques are configured
to their use case using one of the state-of-the-art analysis methods: simulation
and fault injection. During simulation, an erroneous environment is simulated and
the error-prone system, equipped with the fault-tolerance technique, is run in this
simulated environment. Fault injection in contrast is a method that assumes a bit-
flip-free environment, and injects errors in the system to analyze their effects. For

9



1 Introduction

configuration, the simulation-based or fault-injection-based analysis is performed for a
set of possible configurations, and the best (with respect to some optimality criteria)
is chosen.

Both methods have critical drawbacks. Simulating an erroneous environment results
in uncontrollable, imprecise, and probably fluctuant error occurrence. Typically, there
is no control about the amount, type, and target of bit flips. Furthermore, although
effects of failures can be very drastic, the source of errors, bit flips, is a rare event.
Simulations of a fault-tolerant system in an environment with realistic bit-flip rates,
that shall provide reliable results, would need a very long runtime.

The injection of faults in contrast can be done very precisely. Yet, a complete
analysis of fault effects would require to perform fault injection very often: A fault
needs to be injected at every point in time in every memory cell. Therefore, a common
fault injection technique is randomized fault injection, where a probabilistically chosen
subset of all possible faults is injected. Unfortunately, this technique’s measurement
results are independent of the bit-flip rate. Resilience measurements retrieved from
fault injection typically are of the form “out of n injected errors, x were detected, y
were corrected, and z led to failures”. [SBS15] showed that this kind of analysis can
be manipulated easily. As an example, they applied (randomized and complete) fault
injection to evaluate a fault-tolerance mechanism that does not detect any error, but
just consumes time and memory. They showed that with the standard fault-injection
resilience measurements applying this useless fault-tolerance mechanism increases
resilience.

As another drawback of fault injection, injected faults can be “canceled” due to
the complexity of modern hardware. For example, injecting a fault in the cache does
not result in an error, if the cache line is marked as invalid and thus the respective
data is reloaded into the cache. Then, the injected fault is just annulated.

Both techniques, simulation and probabilistic fault injection, are of stochastic nature
and thus can not guarantee correct results. Furthermore, the techniques typically
are applied to a benchmark of concrete systems, and thus the results are tailored
to these selected systems. There is no evidence that the results are generalizable.
The benchmark systems are often black boxes, which makes retrieving more complex
resilience criteria difficult. Increasing the observability means changing the system.
Then, a different system’s resilience is analyzed, and it is not clear whether results are
valid for the original system. Finally, since the analysis method needs to be applied
once for each considered configuration, using these state-of-the-art techniques is very
time-consuming.

Configuration with Formal Methods. The variety of formal methods is very broad.
There are pen-and-paper methods, which are often efficient methods, e.g., in the
field of coding theory [Sha48b; Lin98; AHS12]. Theorem proving [BC10; Gal15] is
a semi-automated formal method that can be used to deduce formulas describing
system characteristics. Statistical hypotheses testing [LR05], as it is used, e.g., in
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stochastic model checking [YS02; KNP07], is a simulation-based formal method that
combines benefits of simulation techniques with formal methods’ benefits.

An automated formal method that can address all the mentioned problems is
probabilistic model checking [EC80; Var85; BK08] (PMC). PMC is a widely used
Markov-model-based technique. A Markov model is a state-based model with proba-
bilistic transitions. States can be annotated with costs or rewards. In a model for
a resilient system, states in the Markov model represent system and error states,
transitions model system behavior and error occurrence, and costs/reward annotations
mark, e.g., the overhead arising through error detection and correction. The model’s
level of detail determines the observability of the modeled system and the complexity
of the resilience criteria that can be chosen for configuration. This also means that the
abstraction level can be chosen such that relevant system criteria are modeled while
not modeling a concrete system and thus configuring a fault-tolerance technique for a
set of concrete systems. Error occurrence and effects can be controlled completely
by simply modeling the desired behavior, and side effects can be excluded from the
model.

PMC is a precise method, i.e., results are guaranteed to be correct. In this work we
will utilize variants of PMC that allow parameters in the underlying Markov model,
and compute rational functions instead of single values. Although these variants
are restricted to parametrized transition probabilities and rewards, this eases the
configuration process. By using system variables as parameters, PMC does not need
to be invoked for each considered configuration, instead, a rational function describing
the resilience or overhead of the system is obtained and can be analyzed for optimality.
In this thesis, when not stated explicitly otherwise, we always use these parametric
variants of PMC, since we always consider parametric models.

An effect that is typically only vaguely included in state-of-the-art configurations, is
the error-proneness of fault-tolerance techniques itself. As stated before, resilience is
improved by adding redundance to the error-prone system. This redundance itself can
be affected by errors. Effects of errors in the fault-tolerance techniques can be easily
included in the model, when using formal methods, and thus make the configuration
holistic.

There is no free lunch. PMC, despite its advantages, is often difficult to apply.
One obstacle is the modeling process itself. Finding the right level of abstraction
is difficult, and modeling a system by hand is error-prone. For large models, time
and memory consumption during PMC can be another show-stopper. The purpose
of this work is to demonstrate how these difficulties can be handled in the field of
fault-tolerance configuration with respect to resilience criteria.

Probabilistic model checkers like Storm [Deh+17] or Prism [KNP11] implement
PMC techniques. Both Storm and Prism also implement variants for parametric
models. In this work, we use Storm to apply PMC.
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1.3 Fault-Tolerant Inter-Process Communication
Inter-process communication (IPC) is an operating system service that handles
exchange of data of several processes forming a system or a part of a system. The
communicating processes hereby shall be anonymous in the sense that a process does
not need to know the address space of its communication partner. Yet, exchanged
data shall be transferred to the correct receiver, without data loss or enabling access
to this data for other processes than the communicating ones. The operating system
provides communication structures that need to be protected against bit flips to
guarantee trouble-free communication.

Inter-Process Communication in Fiasco.OC. In this thesis we consider IPC in
the L4/Fiasco.OC microkernel [16b]. Here, communication is controlled by the kernel
completely. The kernel provides IPC channels, grants processes read or write access
to these channels, and maintains information on authorized processes. A process A
does not send a message directly to process B but uses a channel c connecting A and
B. For this purpose it performs a system call, informing the kernel that it needs to
send a message via channel c. The operating system checks whether A and B are
authorized to send and receive messages via this channel and copies the message from
A’s memory to B’s memory.

The communication structures provided by the operating system comprise, e.g.,
the communication channels and data describing which processes are connected to
these channels. Errors in the communication structures affect, e.g., data storing
the receiving process’ ID. This error might be detectable, e.g., if the information is
falsified to some useless data. In this case, the operating system will throw an error,
which typically causes an exception in one of the processes. This exception can be
caught and handled, and thus the described scenario is not a failure. In contrast,
errors may concern communication structures such that they are not detectable and,
e.g., falsify the information such that, instead of process B being connected to channel
c, a process F is connected. In this case, F receives messages it is not intended to
have, which is a security breach or can cause unintended behavior of process F. A
failure arose during communication.

Both detectable errors and failures affect the utility of the system. The concrete
definition of utility depends on the system and its purpose. In Chapter 3, we will
demonstrate how a fault-tolerance technique can be configured such that the utility
is maximized.

The contribution of this part of the thesis is two-fold. First, we use an exemplary
set of communicating processes to reveal problems with iterative standard PMC
methods. Iterative methods can not handle parametric models, yet they are typically
much faster than non-iterative methods. It is well known that the most common
iterative method, value iteration [Bel57], can not guarantee accuracy bounds for the
result [HM18]. We show that, arising from small transition probabilities modeling
error occurrence, this problem of inaccuracy is relevant for resilience analysis. In fact,
with the most common (non-parametric) PMC method we retrieve probability results
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1.3 Fault-Tolerant Inter-Process Communication

that are off by about 50%. Furthermore, we show that the proposed solution interval
iteration [HM18] solves the accuracy problem, but costs a lot of time. We reveal
that for the exemplary model the usage of non-iterative methods is the best choice.
Since this insight is based on the tiny transition probabilities, we argue that during
resiliency analysis and configuration iterative methods should always be handled
with care. We then show how to use non-iterative methods for parametric models to
configure inter-process-communication systems with respect to resilience criteria.

Modeling and Configuration. Modeling the system involves modeling three parts:
the functionality of inter-process communication in Fiasco.OC, the error model,
including effects of errors, and the communication structure of the processes in the
considered system. The latter refers to the relevant characteristics of the participating
processes (e.g., working time between two communications) and information on which
processes can communicate with each other. To ease the modeling process, we provide
a domain specific language to describe the process characteristics and communication
structure. A model generation tool then generates the model from this description,
and automatically includes IPC functionality, error effects, and additional information
about the error model.

We exemplify the use of the generation tool and the configuration procedure on a
concrete set of communicating processes forming a part of a space probe. This example
is inspired by the Maven Mars probe [Jak+15; 11a]. The modeled part is responsible
for collecting data in space and transferring it to earth. Bit flips in the communication
structures can, if not detected and corrected, cause message loss or strange system
behavior. A safe way to react to detected bit flips in the communication structures is
to restart the system. The probability of detecting an error depends on the chosen
fault-tolerance mechanism. After a restart, all memory is refreshed and the system is
error-free again. To handle undetected bit flips, the space probe is restarted in regular
time intervals, independent of the current error state. As a worst-case assumption we
say that in case of an undetected bit flip the system is not working correctly anymore,
as soon as the error arose. The utility of this system is defined as the availability,
i.e., the time the system does not suffer from an undetected error and is not in a
restart progress. The configuration goal is to set the interval length between two
error-independent restarts such that the availability is maximized. Restarting too
often will cause availability loss due to unnecessary restarts. Restarting too seldom
will cause availability loss due to undetected errors remaining too long in the system.
The best interval length depends on the error detection probability. We consider a
set of fixed probabilities and configure the space probe with respect to each of these
probabilities. In [Leu+17], we configured a fixed restart time interval, i.e., we found
the best t such that between two error-independent restarts exactly t microseconds
elapsed. In [Her+18b] and in this thesis, we find the optimal expected interval length,
i.e., in each time step there is a chance p of performing a restart. The probabilistic
restart models the use of heuristics when deciding whether to perform a restart or not.
These heuristics may consider, e.g., the overall observable state of the space probe,
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the space weather (which can increase bit-flip probabilities and thus the chance of
having undetected errors), etc. The retrieved optimal value for p can then be used
for the further configuration of the heuristics.

We apply PMC on the space probe model, and use p and the detection probability
as parameters, and obtain a rational function. For each selected detection probability,
we appoint this probability in the rational function and apply Newton’s method to
retrieve the optimal value for p. After finding optimal configurations (one for each
chosen detection probability) we analyze the space probe in this optimal settings. An
interesting result of this analysis is that the optimal configuration involves about 99%
of all restarts to be performed although the system is error-free.

1.4 Redo-Based Fault Tolerance
The other fault-tolerance technique considered in this thesis, redo-based fault tolerance,
protects a sequence of instructions and the produced data against bit flips. This
instruction sequence can be, e.g., a program, an application, or an operating system
service. In the further, we call the instruction sequence application and assume the
sequence to consist of finitely many instructions. The instruction sequence and the
data is equipped with redundance, and both the original instructions and the data
as well as the redundance is prone to bit flips. The application is partitioned into
transactions. During execution, each transaction is checked for errors. If an error
is detected, the transaction is redone. During this redo, the executed instructions
and the produced data can again be affected by bit flips and cause another redo.
After a predefined number of redos the application is aborted instead of performing
another redo. If no error is detected, the next transaction is executed. If there was an
undetected error, i.e., a failure, in some transaction and thus the next transaction is
executed, this failure will remain in the application until all instructions are executed
or the application is aborted due to another error. After executing all transaction,
the application terminates. We are interested in tuning the probabilities of the three
possible outcomes: application abort, application termination with a failure, and
correct application termination.

Modeling and Configuration. The model for redo-based fault-tolerance models a
general application protected by a general redo-based fault-tolerance mechanism. It
contains many attributes, which can be set to concrete values to obtain an application
with concrete characteristics and a concrete redo-based fault-tolerance mechanism.
For example, the length of the application and the overhead caused by error detection
can be defined by setting the respective attributes.

In the exemplary configuration we choose a concrete redo-based fault-tolerance
mechanism that is inspired by haft [Kuv+16], and an application that consists of
1012 instructions. We configure the following system variables:

• The number of instructions in a transaction.
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• The maximal number of redos that can be performed before aborting the
application.

• The amount of redundance that shall be added.

The system shall be configured such that the probability of terminating correctly is
above 99.95% while the conditional probability of terminating with a failure in case
of not terminating correctly is below 85%. From all configurations satisfying these
conditions, we choose the one with minimal overhead.

The amount of redundance directly correlates with the detection probability and
thus can be treated as parameter. Neither the number of instructions per transaction
nor the maximal number of redos can be treated as parameter, when using standard
PMC techniques. We configure the redo-based fault-tolerance technique for several
error probabilities. To not invoke probabilistic model checking for each error proba-
bility, we handle the error probability as additional parameter and appoint concrete
values later, after retrieving the rational functions from parametric model checking.
However, the parametric model of an application that consists of 1012 instructions
and is equipped with a fault-tolerance technique is ways too large to perform standard
PMC. Depending on the number of instructions per transaction, it has up to 1010

states. Therefore, we developed and present a new factorization technique that makes
use of the model structure. An overview of this technique will be provided in the
next section. The new technique can handle the huge state space and thus tackles
the state-explosion problem arising in this model. Furthermore, it allows to treat the
number of instructions per transaction parametric.

In contrast to the IPC configuration, where the retrieved rational functions are small
enough to perform a mathematical analysis, the rational functions for this protocol
are huge (in the gigabyte range). For this reason we now fix a set of configurations
and choose the best from this set. We show how to systematically explore the set of
configurations, by first determining the best number of maximal redos, then fixing
this setting and exploring the remaining configurations. We retrieve the unexpected
result that for the chosen error probabilities it is always advisable to perform at most
one redo.

1.5 Counter-Based Factorization
In the redo-based fault-tolerance model, the sub-model of the execution of one
transaction, error detection and redos consists of only several hundred states. A
counter counts the number of transactions that are already performed. When the
counter reaches its maximal value the application terminates. For the example
application consisting of 1012 instructions, the counters maximal value is, depending
on the chosen configuration, up to 1010, and thus causes the overall model to be very
large. For this reason, standard PMC methods can not compute rational functions
for resilience properties of the model, despite the small size of single-transaction
sub-models.
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The transaction counter induces a chain-like model structure. In this thesis, we
present a new technique, called counter-based factorization. Counter-based factoriza-
tion is a mathematical approach that uses this structure and splits the model into
chain links, called factors. Each factor is analyzed to retrieve local resilience and
overhead characteristics (in terms of rational functions), and the local results are
composed to obtain global characteristics, i.e., rational functions that can be used for
configuration. The approach is not tailored to the redo-based fault-tolerance setting,
but generalized to arbitrary discrete-time Markov chains where a chain-like structure
arises from a counter, i.e., a variable whose value never decreases. We characterize
counters in terms of being simple (the counter value is always increased by the same
value) and observing (the counter value does not influence other modeled behavior),
and present specialized instances of the counter-based factorization approach.

The transaction counter in the redo-based fault-tolerance model is a simple, ob-
serving counter. We present fact, a python tool that implements the factorization
approach for this particular type of counters. It enables counter-based factorization for
the redo-based fault-tolerance protocol, and can also be applied to arbitrary models
having a similar structure. fact combines methods from PMC and computer algebra
systems. PMC is utilized to retrieve local characteristics, and the computer algebra
system is used to deduce global rational functions from the local characteristics. The
probabilistic model checker used by fact is Storm. As a computer algebra system,
we use the python-library sympy.

1.6 Contribution
The main contribution of this work is the investigation of the adequateness of formal
methods for fault-tolerance configuration with respect to resilience-overhead con-
straints. The exemplary configuration of the two particular fault-tolerance techniques
with PMC shows this applicability, examines difficulties when applying PMC, and
presents solutions. A sub-contribution is the counter-based factorization framework
and the implementation of its special case for simple, observing counters in fact.

1.7 Related Work
Formal methods have widely been used to configure systems of all kinds. For example,
Fränzle et al. [Frä+15] present an approach that combines model checking, importance
sampling, and SAT-modulo-theory solving to configure hybrid systems. They apply
this approach to obtain a configuration for a battery charger such that the battery is
sufficiently charged at sunset within 90% of all days. In [LR16], Long and Rinard use
machine learning to automatically generate patches. [Che+13] combine Monte Carlo
sampling and the swarm intelligence method to repair an adaptive system online. In
the field of controller syntheses, optimal schedules for real-time tasks are synthesized
in [Abd+18; Jia+17; AM01]. [AMY17] synthesize Ada source code from synchronous
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digraph real-time task models. Symbolic methods are applied to synthesize controllers
for both discrete and real-time systems in [AMP95]. [KPP12] synthesize asynchronous
reactive systems for multi-threaded environments. Hardware is automatically synthe-
sized from specifications by solving two-player games in [Blo+07]. There is a lot of
more work in this area. Yet, the publications mentioned above are orthogonal to our
work, since we do not synthesize code or controllers, but adjust system variables.

The method applied in this work, probabilistic model checking for parametrized
Markov models, is applied by Češka et al. in [Češ+17] to configure parameters of a
stochastic biochemical network such that a given time-bounded continuous stochastic
logic property is satisfied. Cubuktepe et al. apply probabilistic model checking to
parametric variants of the models for a consensus protocol, a bounded retransmission
protocol and NAND multiplexing [Cub+17]. Fine tuning of probabilistic parameters
for self-stabilizing algorithms via PMC is considered by Aflaki et al. in [Afl+17].

There is more work in the field of configuration via both arbitrary formal methods
and probabilistic model checking for parametrized Markov models. Giving a full list
would go beyond the scope of this work. Focusing on fault tolerance, there is a lot of
literature concerning fault-tolerance analysis. In the context of configuration there is
a lot of work in the field of controller synthesis, but related work for configuration of
system variables is rather sparse.

Fault-Tolerance Analysis via Formal Methods. Focusing on fault tolerance, there
is a lot of literature about applying formal methods for resilience analysis. To
name a few analysis approaches from the non-probabilistic setting, [YS05], present
an approach to verify the correctness of a fault-tolerance mechanism for a set of
interacting processes, and use formal methods to examine side effects of faults and
fault tolerance. Also on the non-probabilistic and analytic side is the work of [EL16],
where the fault tolerance of an IEEE 802.5 token ring LAN protocol is analyzed
using model checking and fault injection. In [Baa+11], symbolic (non-probabilistic)
model checking is used to quantify the robustness of sequential circuits. [FFR01]
and [Sch+98] validate space-craft requirements via model checking.

Also in the probabilistic setting, formal methods have been widely used to analyze
resilience properties. First to name here is the work of Kuvaiskii et al., who present a
high-level CTMC model of haft in [Kuv+16], and use it to analyze the availability
of haft. To name some more, the reliability of a NAND-multiplexer is evaluated in
[Nor+04], and of FPGA implementations of an adder and a multiplier in [Hoq+14],
both using the probabilistic model checker Prism [KNP11]. [FYO14] verify and
analyze a micro processor unit that is protected against noise by the use of a reset
strategy. Ahmad et al. analyze the resilience of a satellite solar array in [AH16],
Reliability Block Diagrams in [AHT16a], logistic service supply chains in [AHT16b],
wireless sensor networks in [AHT15], and pipelines in [Ahm+14], using theorem
proving and higher-order-logic formalizations of probability theory.
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Fault-Tolerance Configuration via Formal Methods. Formal methods have been
widely applied to synthesize fault-tolerant systems, e.g., in [GR09; DF09; Dum+07;
Hsi00].

The feasability of formal methods for resiliency configuration of system variables
has not been investigated very often so far. However, there are some approaches in
the literature. In [HKM08], Han, Katoen, and Mereacre configure a reliable storage
system, modeled as a continuous-time Markov chain, with respect to expected time
between storage checks. The model suites the purpose of this paper, and demonstrates
the usability of an approach that approximates optimal configurations for parametric
continuous-time Markov chains with respect to time-bounded reachability properties.
Yet, the model is rather high-level, and comprises rather high error rates. In [Wu+12],
the authors propose a semi-automated technique to achieve resilience in a system
consisting of several components. This approach requires the resilience of each
component to be given, and identifies components where resilience increase has the
most impact on the overall system resilience. Therefore, for each component, the
resilience of this component is increased to 1, and the effect is analyzed. This is in
contrast to our work, where we apply PMC on parametric models to obtain resilience
characteristics for several configurations with one computation, and allow arbitrary
resilience values as configuration goal.

Closely related to this work is the work of Gmeiner et al., who propose and
analyze the combination of several existing techniques to apply model checking to
configure fault-tolerant distributed algorithms in [Gme+14]. Yet, this work is on the
non-probabilistic side.

Tackling the State-Explosion Problem. The state-explosion problem is a well-
known problem in the field of probabilistic model checking, and thus, there are many
existing techniques addressing this problem. To name a few prominent techniques,
there is bisimulation [HM80; Seg95], a technique reducing the model size. Storm
implements bisimulation, and thus we always apply this technique when invoking
Storm. Counter abstraction [ET99] is a technique that can be applied to Markov
models where some components have identical behavior. Counter abstraction provides
a more compact representation for these components. Other techniques are predicate
abstraction [WZH07], counter-example guided abstraction refinement [Cla+00], partial
order reduction [Lip75; Maz87; Pel96; God96], and compositional methods like assume-
guarantee reasoning [CLM89; GL91; AHJ01; Păs+08; Kwi+10]. [CJP18] used the
model structure to tackle the state-explosion problem. They provide a component-
based method to identify domain-specific modeling patterns in quality-of-service
systems, extract sub-models from the modeling patterns, analyze the sub-models using
parametric model checking, and combine the results to obtain overall characteristics.
The method is semi-automated and needs domain-specific knowledge to be applied.

In Chapter 4, we tackle the state-explosion problem arising during the configuration
of the redo-based fault-tolerance protocol with a new counter-based factorization
technique. This technique is orthogonal to the previously mentioned approaches in
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the sense that these techniques can be applied on top of or alongside counter-based
factorization.

1.8 Outline
Chapter 2 summarizes notations and preliminaries from the field of Markov mod-
els, property specification, and statistics. In Chapter 3, we present the exemplary
configuration of inter-process communication structures. Chapter 4 introduces the
factorization approach and its implementation in fact. The configuration of redo-
based fault tolerance is exemplified in Chapter 5. Finally, in Chapter 6, we conclude
this thesis and give a summary on open topics and further work.

1.9 Own Publications
The configuration of inter-process communication protocols for fault tolerance has been
published at the workshop “Hot Topics on Operating Systems” (HotOS) in [Leu+17],
and was extended in the journal “Foundations for Mastering Change” (FoMac) in
[Her+18b]. First observations concerning accuracy and time issues of iterative methods
are published at “Computer-Aided Verification” (CAV) in [Bai+17]. Configuration
of redo-based fault tolerance has been investigated in [Her+18a] and published at
the “European Performance Engineering Workshop” (EPEW). The counter-based
factorization approach has not yet been published, yet a version tailored to the
redo-based fault-tolerance protocol is included in [Her+18a]. Other work that does
not appear in this theses, but is published in [Bai+14], presents the energy-utility
analysis of a triple-modular redundancy technique.

Sections 3.1 to 3.5 have been originally published in [Her+18b]. Sections 5.2
and 5.3 are taken from [Her+18a]. Although other authors were involved in the
publications [Her+18b] and [Her+18a], the sections used in this thesis originate from
the author herself.

1.10 Resources
The model generation tool and the space probe model used in Chapter 3, the
tool fact, and the models used for redo-based fault-tolerance configuration in
Chapter 5 can be downloaded at https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/
Thesis-Herrmann/.

19

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/Thesis-Herrmann/
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/Thesis-Herrmann/




2 Preliminaries
In the further, we denote the set of natural numbers by N, the set of rational numbers
by Q, and the set of non-negative rational numbers by Q≥0. We denote the power set
of a set S by 2S. We fix a non-empty set Vars of variables with finite, non-empty
domain, and denote the domain of a variable v ∈ Vars , i.e., the set of values that can
be assigned to v, by Dom(v).

Let Ω be a non-empty set, and F ⊆ 2Ω. A mapping P : F → [0, 1] with∑
f∈F P (f) = 1 is a probability distribution on F . The set of all probability distri-

butions on F is denoted by Distr(F). Let f ∈ F . The Dirac distribution (degen-
erate distribution) for f is the probability distribution diracf ∈ Distr(F) such that
diracf(f) = 1 and diracf(f

′) = 0 for all f ′ ̸= f . Let A,B ∈ F , and let P ∈ Distr(F).
The conditional probability of A given B is P (A|B) = P (A∩B)

P (B)
. Let F1,F2 ⊆ 2Ω

be non-empty, let P1 ∈ Distr(F1), and let P2 ∈ Distr(F2). The joint probability
distribution P1 × P2 ∈ Distr(F1 × F2) is given as: P1 × P2(f1, f2) = P1(f1) · P2(f2)
for f1 ∈ F1 and f2 ∈ F2. Let A ∈ F . A series of sets A1, . . . , Ak ∈ F such that
Ai ∩ Aj = ∅ for all 1 ≤ i < j ≤ k and

⋃
1≤i≤k Ai = A is a partitioning of A.

Let AP be a finite set of atomic propositions. The set of propositional formulas
over AP is denoted by PL(AP). Let f be a propositional formula. The syntax of a
linear-time logical (LTL) formula is defined by the following BNF:

ϕ = true | a | ¬ϕ | ϕ ∧ ϕ | ⃝ ϕ | ϕUϕ,

where a ∈ 2AP. We use the usual abbreviations: false = ¬true, ϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2),
♦ϕ = true Uϕ, and □ϕ = ¬♦¬ϕ. For the semantics of linear-time logic, we refer to,
e.g., [BK08].

Probabilistic Control-Flow Graphs An evaluation of Vars is a mapping e : Vars →⋃
x∈Vars Dom(x) with e(x) ∈ Dom(x) for all x ∈ Vars . The set of all evaluations over

Vars is denoted by Eval(Vars). The projection of e to a subset of variables X ⊆ Vars
is the evaluation e↓X ∈ Eval(X ) such that e↓X(x) = e(x) for all x ∈ X. A guard over
Vars is a propositional formula over 2Eval(Vars). An evaluation e of Vars models a
guard g on Vars , denoted by e |= g, if replacing every atomic proposition ξ in g with
true if e ∈ ξ, and with false otherwise, yields a valid formula. An update on Vars is
a mapping u : Eval(Vars) → Eval(Vars). The set of all updates on Vars is denoted
by Upd(Vars). We denote id ∈ Upd(Vars) : id(e) = e for all e ∈ Eval(Vars). Let
X,Y ⊆ Vars be disjoint, let uX ∈ Upd(X), and let uY ∈ Upd(Y ). The joint update
uX × uY on X ∪ Y is defined as: uX × uY (e)(x) = uX(e↓X)(x) for all x ∈ X and
uX × uY (e)(y) = uY (e↓Y )(y) for all y ∈ Y . Note that for an update u ∈ Upd(X ∪ Y )
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there are unique updates ux ∈ Upd(X) and uy ∈ Upd(Y ) such that ux × uy = u.
A probabilistic update on Vars is a mapping pu in Distr(Upd(Vars)). The result
of applying pu to an evaluation e of Vars , denoted by pu(e), is the set pu(e) =
{e′ | e′ = u(e) for some u ∈ Upd(Vars) with pu(u) > 0}. The set of all probabilistic
updates on Vars is denoted by pUpd(Vars). Let X,Y ⊆ Vars be disjoint and let
pu1 ∈ Distr(Upd(X)), pu2 ∈ Distr(Upd(Y )). The joint probabilistic update pux×puy
on X ∪ Y is defined as: for all u ∈ Upd(X ∪ Y ): pux × puy(u) = pux(ux) · puy(uy),
where ux ∈ Upd(X) and uy ∈ Upd(Y ) are the unique updates such that u = ux × uy.

Let LV ⊆ Vars . A probabilistic program graph (PPG) over Vars is a tuple
P = (LV ,Act , ↪→) where

• Act is a finite, non-empty set of actions, and

• ↪→⊆ PL(Vars)× Act × pUpd(LV ) is a set of transitions.

A transition (g, α, pu) ∈↪→ is denoted by g
α
↪−→ pu. P is purely probabilistic, if for each

evaluation e ∈ Eval(Vars) there is at most one transition g
α
↪−→ pu such that e |= g. A

PPG that is not purely probabilistic is nondeterministic. A reward structure in P is
a mapping rew : Eval(Vars) → Q≥0.

When depicting a PPG, a designated variable is named location. This variable’s
evaluations are represented by named circles.

Let P1 = (LV 1,Act1, ↪−→1) and P2 = (LV 2,Act2, ↪−→2) be two PPGs over Vars . P1

and P2 are composable if LV 1 ∩ LV 2 = ∅. The composition is the PPG P1||P2 =
(LV ,Act , ↪→) over Vars where LV = LV 1 ∪ LV 2, Act = Act1 ∪ Act2, and ↪→⊆
PL(Vars)× Act × pUpd(LV ) is the smallest relation such that:

• for all α ∈ Act1 ∩ Act2 :
g1

α
↪−→1 pu1 g2

α
↪−→2 pu2

g1 ∧ g2
α
↪−→ pu1 × pu2

• for all α ∈ Act1 \ Act2 :
g1

α
↪−→1 pu1

g1
α
↪−→ pu1 × dirac id

• for all α ∈ Act2 \ Act1 :
g2

α
↪−→2 pu2

g2
α
↪−→ dirac id × pu2

Note that the composition of purely probabilistic program graphs is not necessarily
purely probabilistic.

Discrete-Time Markov Chains. Let AP be a set of atomic propositions. A discrete-
time Markov chain (DTMC) over AP is a tuple M = (S, P, L) where S is a non-empty,
finite set, P : S → Distr(S)∪f0, where f0 is the mapping assigning each state the value
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0, and L : S → 2AP is a labeling function. For all s, t ∈ S, we denote P (s, t) = P (s)(t).
For states s, t ∈ S, we say that there is a transition from s to t, if P (s, t) > 0. A
state s ∈ S with P (s) = f0 is called absorbing. For details to Markov chains see,
e.g., [BK08; Kul95].

A path in M that starts in s1 ∈ S is a finite or infinite sequence π = s1s2 . . . with
si ∈ S. A path π is maximal, if it is infinite, or it is of the form s1s2 . . . sn and sn is
absorbing. For a finite path π = s1s2 . . . sn we write Pr(π) =

∏n−1
i=1 P (si, si+1). Let

s ∈ S. The set of all finite paths in M starting in s is denoted by FPathsM,s, the set
of infinite paths is IPathsM,s, the set of maximal paths is MPathsM,s, and the set of
all paths is PathsM,s. Let ξ ⊆ S. We denote Πs(ξ) = {π = s1 . . . sn ∈ FPathsM,s |
sn ∈ ξ, si ̸∈ ξ for 1 ≤ i < n}.

Let s ∈ S and ϕ be an LTL-property. The probability of ϕ in M with starting
state s, denoted by PrM,s(ϕ), is derived using the standard definition of the induced
probability distribution on the set of measurable sets of maximal paths. Let G ⊆ S.
The LTL formula ♦G is called a probabilistic reachability property. The steady-
state probability of G is θM,s(G) = limn→∞

1
n
·
∑n

i=1 θi,M,s(G) where θk,M,s(G) =
Pr({s1s2 . . . sk ∈ FPathsM,s | sk ∈ G}).

Rewards in DTMCs. A reward function, also called reward structure, is a mapping
rew : S → Q≥0. Let s ∈ S. The accumulated reward induced by rew is a random
variable AccRew : PathsM,s → Q≥0 assigning each path in M the sum of its state
rewards, i.e., AccRew(s1 . . . sn) =

∑n−1
i=1 rew(si). Note that state rewards are collected

when leaving a state. In PPGs, reward structures often are defined as mappings
rew : Act → Q≥0 or rew : S × Act → Q≥0. These notions are equivalently expressive.
In this work we will also assign rewards to actions, and assume that the reader
is familiar with techniques that allow for transforming action rewards into state
rewards. Let s ∈ S and G ⊆ S be a set of states such that PrM,s(♦G) = 1. The
expected accumulated reward until reaching G from s, denoted by EM,s( G), is the
expectation value of AccRew in M restricted to the set of paths ending in G, i.e.,
EM,s( G) =

∑
π∈Πs(G) Pr(π) · AccRew(π).

For G ⊆ S and PrM,s(♦G) > 0 the conditional expected accumulated reward until
reaching G from s under the condition of reaching G is:

EM,s( G | ♦G) =
∑

π∈Πs(G)

Pr(π) · AccRew(π)

PrM,s(♦G).

If PrM,s(♦G) = 0 we define EM,s( G | ♦G) = 0.
If the state s is clear from the context, e.g., if there is a designated initial state, we

omit it’s index in all of the presented notations.

Induced DTMC. Let P = (LV ,Act , ↪→) be a purely probabilistic program graph
over Vars such that LV = Vars . The semantics of P is the induced DTMC MP =
(S, P, L) with S = Eval(Vars), L(e) = e, and P (e1, e2) = p if there is a transition
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g
α
↪−→ pu of P such that e1 |= g and there is an update u ∈ Upd(LV ) such that

u(e1) = e2 and pu(u) = p and P (e1, e2) = 0 otherwise. We say that the DTMC MP
arises from P. Note that, since each state s ∈ S is an evaluation of Vars , we can
denote s(x) to obtain the value of variable x ∈ Vars in state s. A reward structure
rew in P is also a reward structure in the induced DTMC.

The semantics of a non-deterministic program graph is a Markov decision process,
i.e., a Markov chain enhanced with non-determinism. In this work, Markov decision
processes will not be considered. For details to Markov decision process, we refer to,
e.g., [BK08; Put94].
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3 Configuration of Fault-Tolerant
Inter-Process Communication

Communication of processes, when not handled properly, easily enables abuse and
undesired access to other processes’ memory. For this reason, inter-process commu-
nication (IPC) is typically implemented in the kernel of the underlying operating
system, which provides and protects communication structures and handles access
rights. Bit flips in this data can cause messages to be readable by the wrong process,
data-loss, or the crash of single process or even the whole system. For this reason,
fault tolerance needs to be ensured for communication on operating system level. The
term inter-process communication protocols stands for a set of protocols coordinating
communication of a finite number of processes. The protocols differ in the communi-
cation structures they provide and in the safety strategies and rights management
implemented to protect these communication structures.

In this chapter we consider a set of n communicating processes that produce utility.
The concrete type of utility depends on the processes’ purpose. For example, several
processes in a bank server and a process in bank branch terminal communicate with
each other when a costumer draws some money. The utility is, e.g., the number of
successful money transfers per hour.

Bit flips affect the communication structures and thus the utility, which is decreased
due to error detection and correction overhead. The goal of this chapter is to
demonstrate how to find the sweet spot, where the utility is maximized while still
resilience is provided, for a concrete set of processes running in the L4/Fiasco.OC
microkernel [16b]. The characteristics of the processes and the concrete communication
structure can be specified easily via a domain specific language (DSL). We provide
a tool that automatically generates a model from the DSL-description. The utility
produced by the process network can then easily be specified in the model.

To demonstrate the configuration procedure, we consider a part of a space probe
consisting of 4 processes. The example is inspired by the Maven Mars probe [Jak+15;
11a]. The modeled part is responsible for collecting and transferring data to earth.
The space probe can not detect all errors that arise in its communication structures.
Undetected errors remain in the system, and their effect is unpredictable. In a worst-
case assumption no utility is produced by the system any longer, as soon as there
is an undetected error in the system. For this reason, the space probe is restarted
periodically to get rid of undetected errors. We model time in the space probe as
discrete time, each modeled time step spans 100 micro seconds. In each time step a
restart is triggered with a certain probability. This probability models heuristics that
are used to determine the need of a restart, e.g., heuristics using the space weather
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or the overall state of the space probe. The probability defines the expected time
between two restarts. As utility, we measure the availability of the space probe, i.e.,
the percentage of time where the space probe neither suffers from an undetected error,
nor performs a restart. The configuration criterion is to maximize the utility of the
system, by tuning the frequency of periodic restarts. Restarting to often will cause
availability loss because of time that is needed to restart the system. Restarting to
seldom cause availability loss due to undetected errors.

We first analyze standard PMC methods, show that iterative methods suffer from
(well-known) accuracy and timing issues when applied to this model, and thus motivate
the usage of non-iterative methods for configuration.

We then configure the space probe for a fixed error probability of 10−10, i.e.,
within every 100 micro seconds there is a chance of 10−10 that a bit flip affects
some communication structure. The restart probability per time step is used as a
parameter during PMC. We also include the detection probability as a parameter, and
we invoke PMC to find the rational function describing the availability of the space
probe in dependence of the detection probability and restart probability. We analyze
this rational function using Newton’s method to find, for a fixed set of detection
probabilities, the respective optimal restart probability.

We then analyze some characteristic of this optimally configured system, revealing
that the optimal setting requires 99% of all restarts to be performed without having
an error in the system.

Outline. In the first section of this chapter we introduce the inter-process communi-
cation protocol as used in the L4/Fiasco.OC microkernel [16b] and explain occurrence
of errors and their effects. Then, in Section 3.2, we specify the model that arises
from a concrete communication network, and we define the domain-specific language
used to describe a set of communicating processes. In Section 3.3, we explain the
space-probe example. Then we apply iterative and non-iterative PMC methods in
Section 3.4, including parametric variants to compute selected properties of the space
probe. We argue that iterative methods are not suitable to configure the space probe,
even when not using system variables as parameters. Finally, in Section 3.5, we define
the configuration criterion we want to address, configure the space probe part, and
analyze the optimal configuration.

3.1 Inter-Process Communication in Fiasco.OC
In the IPC protocol used in the operating system Fiasco.OC communication is
controlled by the kernel completely. Instead of a process A sending a message directly
to a process B, the kernel provides IPC channels, to which A can send messages and
from which B can receive messages. During message transfer, the sending process
A is in the role of a “client” and the receiving process B is a “server”. These roles
can change with every new message transfer. For each IPC channel, the kernel
maintains two buffers: Servers that are prepared to receive messages are stored in the
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Figure 3.1: Capability-based inter-process communication of three processes in a pipe.

server buffer, and clients that want to send messages via this channel are collected
in the client buffer. This way, A does not need to know which processes can receive
messages from the channel. This indirect communication increases the anonymity
of the communicating processes. For non-anonym communication, IPC channels
between exactly two communicating processes are established.

The kernel grants access to some IPC channel by handing over capabilities. A
capability is a pointer to the IPC channel’s memory, enhanced with some additional
information, e.g., the type of access right. A process can only send (receive) messages
via some IPC channel if it has a capability providing client (server) access to this
channel.

In Fiasco.OC, security is improved by not handing over capabilities directly, but
only IDs for capabilities. This way, a malevolent process can not easily corrupt the
capability. When some process intends to use a capability, it performs a system call,
providing the capability ID. The kernel maintains for each process a table which maps
capability IDs to concrete capabilities. If a process tries to use a capability ID which
is not listed in the table, the kernel throws an error.

In this chapter, we consider two types of processes: processes that process inquiries
(e.g., printers or operating system services) and processes that make inquiries (e.g.,
user processes). Former ones start in the role of a server, might become clients during
inquiry processing, and become a server again after inquiry processing. Latter one
are processes that always are in the role of a client (they only send messages and
thus have no capability providing server access). We name this processes “client-only
processes”. Furthermore, we assume communication networks to be cycle-free.
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Example 3.1. In Figure 3.1, three processes, A, B, and C, and IPC channels 1 and
2 form a pipe. Process B has two capabilities, listed in the capability table below B.
The first capability (which is known to B as the capability with ID 1), grants client
(sending) access to IPC channel 2. Client access is depicted by the small “c” in the
respective entry of the capability table. The second capability grants server (receiving)
access to channel 1, denoted by a small “s”. Process A, a client-only process, can send
messages to channel 1 and Process C can receive messages from channel 2.

Message transfer. There are three participants in each message transfer: the client
(sending process), the server (receiving process), and the kernel which checks access
rights and copies the data from the client’s memory to the server’s memory.

The workflow of a client is simple: It performs a system call send(IDx), providing
the ID of the channel it wants to use for message transfer. After this, the client is
blocked until it receives an answer to the sent message.

A process becomes a server when performing a system call receive(IDx), informing
the kernel that it is ready to receive messages via the channel represented by ID x.
Then, the server is blocked until it receives a message. After message receipt, it can
either send an answer to the respective client directly, or it might send a message to
another process beforehand. In the latter case, the former server becomes a client
and behaves as described above. After being unblocked, the process becomes a server
again and now might send an answer to the original message. For this, the server
performs a system call answer_receive(IDx), signalizing the kernel that the answer
can be copied into the client’s memory, and that the server is ready to receive a new
message via the channel with the respective ID x.

The kernel is responsible for checking access rights and transferring data during
communication. When receiving a system call (send(IDx)/receive(IDx)) it blocks
the calling process, checks whether the ID refers to an entry in the process’ capability
table, which IPC channel it refers to, and whether the respective capability grants
client/server access to this channel. If not, the kernel throws an error and unblocks
the process. Otherwise, the kernel adds the calling process to the IPC channels
client/server buffer and waits until a server/client is ready to receive/send a message
via this channel. As soon as there is an entry in both the channel’s client buffer and
the channel’s server buffer, the kernel copies the message from the client’s memory
into the server’s memory, and unblocks the server. Eventually, the kernel receives
a system call answer_receive(IDx) from some server. It blocks the server, copies
the server’s answer to the client’s memory, and checks whether the ID grants server
access to some IPC channel. Note that answering does not involve any IPC channel,
thus the server does not need to provide a capability for answering, only for the next
message receive.

Example 3.2. Figure 3.2 depicts an example message flow through the pipe in
Example 3.1. Process A sends a message to Process B, which, before answering
the message, sends a message to process C. Process A first performs a system call
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Figure 3.2: Message flow and process/kernel activities during IPC. A sends a message
to B, which, for processing this message sends a message to C. C answers
B’s message, and finally B answers A’s message.
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send(ID3). The kernel blocks process A and checks, whether ID3 refers to an entry
in A’s capability table, which IPC channel (channel 1) it refers to, and whether the
respective capability grants client access to this channel. Additionally, the kernel adds
process A to the IPC channels client buffer in this step. A’s message can not yet be
transferred, since no server is ready to receive the message.

Process C then performs a system call receive(ID2). This causes C to be blocked
and, since ID2 of process C refers to channel 2, process C to be added to channel 2’s
server buffer. Still, no message can be transferred, since for channel 1 only a client is
prepared to receive a message and for channel 2 only a server is prepared.
In the next step, B performs system call receive(ID2), and thus is blocked and

added to channel 1’s server buffer. Now, the kernel can copy the message from
process A’s memory to process B’s memory and wake up process B. Process B
processes the received message, but, before answering, needs to send a message via
channel 2. Thus, B becomes a client, performing system call send(ID1). B is blocked,
and since process C is in channel 2’s server buffer, the message from B can be
transferred to C. After this, C is unblocked, prepares an answer for B, and performs
system call answer_receive(ID2). With this system call, the answer is copied from
C’s memory to B’s memory, and C is added to channel 2’s server memory, to receive
a new message (after checking that ID2 is a valid ID, as before). B is unblocked,
proceeds with processing A’s message and prepares an answer. In this phase, B could
also send another message via channel 2, but in our example, it performs system call
answer_receive(ID2), and thus is blocked and added to channel 1’s server buffer.
The kernel copies the answer from server B’s memory to client A’s memory and wakes
up A, which then can process B’s answer. In the further, A can again send a message
via channel 1, and so on.

Errors. We focus on randomly occurring bit flips that affect communication struc-
tures, i.e., the IPC IDs maintained by the processes, the capability tables maintained
by the kernel, or the memory of the IPC channel. Most of these bit flips, if affecting
the IPC protocol at all, are easily detectable. If, for example, a capability in the table
maintained by the kernel is affected, there is a high chance of the erroneous capability
pointing to invalid memory. When a process performs a system call, the kernel checks
whether the included IDs are valid and whether the respective capability points to
valid memory. If a bit flip causes these data to be (detectably) corrupted, the kernel
will throw an error. Other errors in other data structures used for message transfer
(e.g., channel buffers) can also lead to error messages, and correction mechanisms
can be applied. Nevertheless, there is a chance that a bit flip changes memory in a
non-detectable way, i.e., to cause a silent data corruption. In this case the behavior
of the system is completely indeterminate.

Example 3.3. Continuing Example 3.1, it could happen that the capability pointer
of B’s capability 1 is corrupted by a bit flip. This bit flip might be detectable (e.g., if
the corrupted pointer points to some invalid memory), or it might be a silent data
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corruption (e.g., if it points to some other channel). In the latter case, a message
from B is misdirected to some other process than process C, which unintentionally
has access to data from B.

A safe way to react to detected errors is to restart the system. After a restart the
system is completely fresh, and all errors are gone. To handle silent data corruptions,
periodic restarts that are independent from the error states are performed.

3.2 Modeling Fault-Tolerant Inter-Process
Communication

The model consists of components for processes, the kernel, and IPC channels, as
well as a component modeling error occurrence and silent data corruptions, and a
component modeling restarts.

All components are program graphs that interact via synchronous actions. In
the pictures we mark actions that are triggered by the depicted component with an
explanation mark (!) and actions in components that react are marked with a question
mark (?). Recall that transitions having the same name are performed synchronously.
Each action is marked with the name of all components that synchronize on this
action. This way, we ensure that no unintended synchronization occurs. Nevertheless,
in the rest of this section we will omit these additional information when they are
clear from the context. Thus, instead of writing, e.g., “SEND_process_A_to_pro-
cess_B_via_channel_i”, we simply write “SEND”.

Processes. Each process alternates working phases and message phases. The model
abstracts from concrete work but only models time that passes by. After working,
the process performs a system call, which activates the kernel component and causes
the process to be blocked until being woken up by the kernel. When awakened, the
process starts another working phase (cf. Figure 3.3).

The models of a client-only process and a process that can act as a server differ
only in the initial location. A client-only process’ initial location is “working” (cf.
Figure 3.3). In this location, it works for expectably working_time, time units.
This is modeled using a geometric distribution, i.e., in each step there is a chance
1/working_time to finish work and to reach location “work done”. As a last part of
its working step, there is a probabilistic choice in the capability that shall be used
for message transfer. The probability of choosing ID x is p_cap_id. The process
performs a system call, informing the kernel that it intends to send a message with
capability x. The probability p_message is only relevant for processes that can be
servers and thus set to 1 for all client-only processes. The kernel is activated and
the process is blocked (location “blocked as client”) until the receiving server sends
an answer. After this, the kernel unblocks the process with action “WAKE UP”.
The process then enters its next working phase and proceeds as before. Note that a
client-only process will never reach location “blocked as server”, since p_message = 1.
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Figure 3.3: The PPG of a process. If the process is a client-only process then
p_send_message = 1.

All processes that have a server capability are initially servers waiting for mes-
sages, i.e, they start in location “blocked as server”. They are unblocked after the
kernel copied a message to their internal memory and performs action “WAKE UP”.
Analogously to the client-only processes, the server works for some time and then
performs a system call. For a server, there is a probabilistic choice in whether it
sends an answer directly (with probability 1− p_message) or whether it first calls
another server (with probability p_message). In the latter case, it becomes a client
and behaves the same way client-only processes do, i.e., it is blocked until it receives
an answer. If it sends an answer directly, it is also blocked after the system call, but
as a server, i.e., it is ready to receive new messages and will be woken up as soon as
there is a new message for this process.

The action names of the system calls in Figure 3.3 are annotated with the IPC
channel IDs in use, to enable correct synchronization (see paragraph “IPC channels”
below).

Kernel. We split up the model of the kernel in several components, one for each
process’ kernel activity. For each process, the respective kernel component, depicted
in Figure 3.4, is initially inactive, and is invoked when the process performs a system
call, i.e., “SYSCALL SEND” or “SYSCALL ANSWER”. Sending a message or an
answer takes some time which is again modeled via a geometric distribution. If
during message transfer an error is detected (not depicted in Figure 3.4, cf. paragraph
“Errors”), the kernel component stops its activities and the restart component is
invoked. With this, all other components but the restart component also stop their
activities. (See paragraph “Restart” below.)

If no error is detected, the kernel successfully transfers the message or answer. If a
message was transferred (i.e., a client performed the system call), then this kernel
component waits for another kernel component to transfer the answer for this message.
After this answer is transferred, the kernel wakes up the corresponding process.
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Figure 3.4: The Markov model of the kernel’s activity for some process.

In the other case, if the process performed “SYSCALL ANSWER”, the kernel
transfers the answer and reaches location “answered/wait for message”. The kernel
component waits until another kernel component transfers a new message to the
process’ memory and then wakes up the process.

IPC channels. IPC channels do not have internal behavior. These data structures
consists only of two FIFO buffers, one for enqueuing clients that aim to send messages
via this channel, but need to wait because no server is ready, and one buffer to enqueue
servers that are ready to receive messages. In a concrete communication network, we
know how many clients and servers have capabilities for this channel, thus we set the
maximal queue sizes to be these numbers. In reality, the buffer sizes are chosen large
enough, so that buffer overflows can not happen. The IPC components synchronize
on “SYSCALL SEND”, “SEND”, and “ANSWER” actions. When “SYSCALL SEND”
is performed by some client, the ID of the IPC channel to be used is already known
(cf. Figure 3.3), so the respective channel synchronizes on this action. The client is
added to the channel’s client buffer. When the kernel performs action “ANSWER”
for some server, the server finished proceeding the message and is ready to receive
the next one. Thus, the server is added to the respective IPC channel’s server buffer.

Since the buffers are FIFO buffers, an IPC channel component blocks all “SEND”
actions via this channel that involves clients or servers that are not first in line. Thus,
when action “SEND” is performed, a message is transferred from the first client in
the buffer to the first server in the buffer. Both the client and the server are removed
from the buffers in this step, enabling other clients and servers to transfer messages
via this channel.
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Errors. The error component synchronizes on actions where time elapses, i.e., on all
“WORKING”, “SENDING” and “ANSWERING” actions. In each of these transitions
there is a chance p_error of a bit flip causing a (detectable) error or a silent data
corruption (sdc). The probability of an error being detectable, given an error occurred,
is p_detect. In our model, for each IPC channel, there is a Boolean variable modeling
whether there is a detectable error in some data referring to this channel. We assume
that in each time step, and thus during each synchronization on “WORKING”,
“SENDING” or “ANSWERING”, only one channel can be affected by an error. Thus,
when synchronizing on one of the upper mentioned actions, for each channel there is
a chance of p_error · p_detect/num_IPC_channels that this channel is affected by
an error, where num_IPC_channels is the total number of modeled IPC channels.

A detectable error is only detected when the channel is used. Thus, a detectable
error remains in the system until the respective channel is used for message transfer.
Because of this, although only one single error can occur in a time step, it is possible
to have multiple channels to be in an erroneous state at the same time.

When synchronizing on a time-consuming action, there is a chance p_error · (1−
p_detect) that an error occurs and this error manifests as a silent data corruption.
This is modeled via a (channel-independent) Boolean variable sdc, which is initially
false. Since effects of silent data corruption are unpredictable, we made the worst-case
assumption that no useful system functionality is obtained after an sdc. We did not
model any system functionality after a silent data corruption.

Restarts. When an error is detected by some kernel component, the whole system
except for the restart component stops. The restart component performs a restart,
which takes expectably restart_time time units (cf. Figure 3.5). When finishing the
restart, it performs an action “RESTART”, where all other component synchronize.
To correctly model process inactivity during restarts, all components but the restart
component are modified in the following way (not depicted in the figures): If the
restart component is in its “restart = true” location, all actions of other components
are blocked, and a single action “RESTART” is enabled. This action resets all
locations and variables to the initial value.

To recover from an sdc, we include periodic, probabilistic restarts in our model. In
every transition modeling time elapsing there is a chance of the system to restart,
including time that passes by after an sdc. Again, after a restart the system’s
functionality is completely regained.

To model these periodic restarts, the component synchronizes on actions modeling
time passing by, and in each transition there is a chance p_restart to trigger a
periodic restart. If this happens, analogously to the restart in case of a detected error,
the whole system but this component stops, and the restart is performed. Note that
the error component does not synchronize on action “RESTARTING”. Thus, in our
model it is not possible that an error manifests during a restart. Analogously, it is
not possible that a restart is interrupted by another periodic restart.
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Figure 3.5: The Markov model of a the restart component.

A DSL for IPC In the domain-specific language, there is one block for each process
(for an example, cf. Figure 3.6). A process block starts with the Identifier “Process”
and the name of the process. Each process has a set of capabilities, each consisting of
a name, an ID, and the access type it grants (“client” or “server”). Each capability
needs to be listed in a separate line. Furthermore, for each process the following
information needs to be provided, each in a separate line:

• The working_time (in time units), preceded by the identifier “Runtime”.

• The probability of a server to send a new message instead of sending an answer
directly, given by the identifier “prob_send_message”, followed by the process’
p_message.

• If p_message > 0, the probabilities p_cap_id of sending a message via IPC
channel with name m. The structure for this information is: “prob_target: m,
p_cap_id”. This construct also defines for client-only processes the probability
distribution over IPC channels that can be accessed.

The probabilities p_error, p_restart, and p_detect are provided as command-
line arguments when starting the generation tool. Probabilities will be handled as
free parameters when providing names instead of rational values.

The DSL enables short and easy description of communication networks. The model
generation tool retrieves from the DSL description the number of processes, the number
of channels, and the communication structure, and automatically generates a model
for this concrete setting. This facilitates the modeling process. Furthermore, since
the IPC functionality does not need to be modeled for each concrete communication
structure, the usage of the DSL and the automatic model generation reduces the risk
of human flaws during the modeling process.
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Process : c on t r o l
Cap : name=con , id=3, a c c e s s=c l i e n t
Runtime :25
prob_send_message : 1
prob_target : con , 1

Process : a n a l y s i s
Cap : name=t , id=2, a c c e s s=c l i e n t
Cap : name=m, id=1, a c c e s s=c l i e n t
Cap : name=con , id=3, a c c e s s=s e r v e r
Runtime : 5
prob_send_message : 0 . 9 8
prob_target : t , 0 . 0 2
prob_target :m, 0 . 9 8

Process : measure
Cap : name=m, id=1, a c c e s s=s e r v e r
Runtime : 1
prob_send_message : 0

Process : t r a n s f e r
Cap : name=t , id=2, a c c e s s=s e r v e r
Runtime :50
prob_send_message : 0

Figure 3.6: Representations of the space probe in the domain-specific language.

3.3 The Space-Probe Example
Figure 3.6 shows the DSL-description for the space probe, which we will use as an
example throughout the rest of this chapter. One time unit in the model, i.e., one
transition modeling time, represents 100 microseconds. The space probe part is
capable of measuring data in space and transferring this data to Earth. It consists of
four processes (cf. Figure 3.7).

A process Control periodically invokes this part of the space probe by alternating
between working for expectably 2.5 milliseconds and sending messages to process
Analysis. Analysis coordinates a process Measure, which collects data, and a
process Transfer, which transfers data to earth. Control is a client-only process,

Measure Analysis

Control

Transfer

Figure 3.7: The communication structure of the space-probe example.
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i.e., it can, when not blocked, produce messages without receiving another message
before. All other processes are initially blocked, waiting for a message.

When receiving a message from Control, Analysis is unblocked. It performs some
work for expectably 500 microseconds. After this, a message is sent to either Measure
or Transfer with probability 0.98 (p_message). With probability 0.02 it directly
sends an answer to Control. In the former case, a message is sent to Measure with
probability 0.98. Measure is unblocked, collects data in space for expectably 100
microseconds and then sends an answer to Analysis. Analysis is unblocked when
receiving the answer from Measure, and, after the working phase, might either send
an answer to Control with probability 0.02, send another message to Measure with
probability 0.98 · 0.98, or with probability 0.98 · 0.02 it chooses to send a message
to Transfer. If so, Transfer transfers the collected data to Earth, which takes
expectably 5 milliseconds. It then sends an answer to Analysis, which again has
the choice of sending an answer to Control or re-invoking one of the other processes.
When sending an answer to Control, Control is unblocked by the kernel, which
starts a new cycle.

The probability of an error occurring within 100 microseconds is 10−10. The
probability of initiating a restart within 100 microseconds and the probability of
detecting an error are left as free parameters. A restart lasts expectably 1 second.

The Composition is Purely Probabilistic. In the composition of all component
PPGs, an action is available, if the action is available in all components that implement
this action. All components but the kernel components are, when standing alone,
purely probabilistic. Only in the kernel component there is non-determinism in the
available actions in the “inactive” location. When composing all components, this
non-determinism is no longer present, since in the respective process components there
is no non-determinism in this actions. Thus, in the composed model, non-determinism
arises only from different interleavings of the components.

The composition of the space probe components is purely probabilistic, since the
order of execution of the components is purely probabilistic: There is only one client-
only process (Control), and there is only one server for each IPC channel. Thus, when
starting the protocol, only Control is unblocked, its kernel process is inactive, and all
other processes are blocked and their respective kernel components wait for a message
that can be transferred. Control will eventually send a message to Analysis, which
unblocks Analysis. At this time, Control, Measure, and Transfer are blocked and
their respective kernel components wait for messages. Analysis probabilistically
chooses a target IPC channel, which again causes only one process to be unblocked
in the next message transfer, and all other processes are blocked while their kernel
components wait for message transfer. Similar arguments reveal that at any time
there is only one unblocked process and in each state there is no non-determinism in
the choice which process shall be unblocked next (this choice is made before and was
probabilistic). Thus, the induced semantics of the composed model is a DTMC.
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3.4 Time Consumption and Accuracy of Iterative
PMC Methods

Parametric versions of PMC that accept parametric Markov models as input use
non-iterative methods to solve the linear equation system arising during PMC. Despite
the advantages of these parametric versions, non-iterative methods often consume
more time than iterative methods. In this section we argue the usage of iterative
methods is not advisable for models comprising very small transition probabilities, as
it is the case when modeling bit-flip probabilities.

A parameter-free Markov chain can be analyzed using numerical solvers, e.g.,
value iteration [Bel57]. It is well-known that value iteration, when equipped with a
termination ε, can not guarantee that the computed result is within an ε-neighborhood
of the theoretical result [HM18]. During the work on [Leu+17], we discovered that
the space probe model is affected by accuracy issues when computing accumulated
rewards and reachability probabilities. In this section, we give a more detailed insight
into this issue and show that, for the space probe example, inaccuracy increases when
some transition probabilities tend to 0 or 1. We apply value iteration to a series of
error probabilities. Decreasing the error probability causes the probability of not
having an error in some working step to approach 1 and the probability of having an
error to shrink. Thus, with lower error probability, transition probabilities are more
close to 0 and 1.

We zoom into several scenarios and reveal differences in the usability of the in-
accurate results provided by value iteration. Furthermore we apply interval itera-
tion [HM18] and compare time consumption and convergence.

Setting. The space-probe model’s semantics is a Markov chain M and consists of
877 states. The bisimulation quotient has 145 states. We used the model checker
Storm [Deh+17]. Storm uses a non-iterative method by default. When forcing Storm
to use value iteration, the default termination ε is 10−6, and the starting value for
iteration is 0.5. Computation was performed on a 2.5GHz Intel Core with 16GB
RAM single-threaded. We use p_detect = 0.4, p_restart = 7.7456 · 10−8 as non-
parametric setting1, and error probabilities ranging from 10−3 to 10−15. We consider
both the absolute termination criterion xi − xi+1 < ε and the relative termination
criterion (xi − xi+1)/xi+1 < ε, for succeeding interim results xi and xi+1.

Inaccuracy. We start with analyzing the effect of value-iteration inaccuracy for an
expected accumulated reward property. We use a reward structure assigning action
ANSWER_from_process_Transfer_to_process_Analysis_via_channel_2 the value 1,
i.e., we count the number of transfers to earth. Table 3.8 shows the time consumption and
the inaccuracy of the results when computing the expected accumulated reward EM(♦sdc),
i.e., the expected number of transfers to Earth until the first silent data corruption arises.
The table summarizes the computed results, the computation time, and the number of

1In Section 3.5, we will see that this is an optimal setting guaranteeing an availability of 99.9%.
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iterations for both the relative and the absolute termination criterion. For comparison, the
correct values computed with (accuracy-loss-free) LU-elimination and the time consumption
of this method are included.

We see that, when using the relative termination criterion with the standard termination
bound ε = 10−6, for all error probabilities below 10−6 there is a significant deviation
between the exact result and the result computed with value iteration. For example, for
p_error = 10−6 and ε = 10−6, value iteration computed an accumulated reward of 1805.8,
while the correct value is 3459.4. Inaccuracy increases when decreasing the error probability.
For p_error = 10−15, value iteration computed results that are not inaccurate in some digits
but in factors above 1000, even when ε = 10−9. Note that, since p_restart = 7.7456 · 10−8,
for all error probabilities there are transition probabilities close to 0 and 1 in the model. Thus,
accuracy problems with value iteration do not always arise when transition probabilities are
close to 0 and 1. Instead, this depends on the model and the analyzed property.

Using an absolute termination criterion instead of a relative one produces much better
results. For example, for p_error = 10−9 and ε = 10−6, the computed result is 3459221,
when using absolute termination, which is within a relative ε = 10−3 neighborhood of
the correct result. The result computed with relative termination criterion is 5972. For
expected accumulated rewards reaching high values, this increase of accuracy is reasonable.
A high nominator causes the relative distance to be very small and thus boosts too early
termination. Value iteration with absolute termination criterion performs more iterations
and thus produces better results. This comes, of course, at the price of long computation
times (see paragraph below). Results couldn’t be computed for error probabilities 10−9 and
lower, since computation time exceeded 10 hours.

We now switch to the analysis of accuracy for a probabilistic reachability property. Ta-
ble 3.9 lists results, time consumption, and the number of iterations until termination for
PrM(healthyU restart), i.e., we compute the probability of the system being error-free and
having no sdc until the first restart is performed. For this property in both modes, with
relative and absolute termination, results are inaccurate when choosing p_error ≤ 10−6.
Again, accuracy decreases with decreasing p_error. For p_error = 10−9 and below, Storm
performs only 6 iterations before meeting the standard termination criterion. More than
107 iterations are needed for the first digit to be correct. This causes the computed result to
be off by 0.5 when choosing the standard termination ε and p_error ≤ 10−9. But even for
ε = 10−9, the result is accurate only in the first digit. Thus, for this reachability property
value iteration is not suitable.

[HM18] proposed interval iteration as a solution for the value-iteration-caused inaccuracy.
Interval iteration is guaranteed to be accurate within the proposed termination ε. This
is ensured by choosing two starting values, one upper bound and one lower bound of the
result. Iteration is performed twice, approaching the result from below and above. When
the (relative or absolute) distance of the interim results is below ε, the iterative algorithm
stops. This way it is guaranteed that enough iterations are performed to reach the desired
accuracy. Nevertheless, this method reveals that performing enough iterations costs an
unreasonable amount of time (see next paragraph).
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10−3 10−6 2.9168 0.05 s 2810 2.9183 0.01 s 8858

10−3 10−7 2.9191 0.05 s 10552 2.9192 0.02 s 11602

10−3 10−8 2.9193 0.05 s 13296 2.9193 0.02 s 14346

10−3 10−9 2.9194 0.05 s 16040 2.9194 0.02 s 17090

10−3 exact 2.9194 0.03 s – – – –

10−6 10−6 1805.8 0.8 s 7.9 · 105 3458.4 7.5 s 8.6 · 106

10−6 10−7 3127.1 2.1 s 2.5 · 106 3459.3 10.3 s 1.1 · 107

10−6 10−8 3423.0 4.2 s 4.9 · 106 3459.4 12.6 s 1.4 · 107

10−6 10−9 3455.8 6.5 s 7.3 · 106 3459.4 14.8 s 1.6 · 107

10−6 exact 3459.4 0.04 s – – – –

10−9 10−6 5972 1.7 s 1.8 · 106 3459221 2 h 8.6 · 109

10−9 10−7 41743 11.2 s 1.3 · 107 ? >10 h ?
10−9 10−8 296721 82.9 s 9.6 · 107 ? >10 h ?
10−9 10−9 1674696 627.8 s 7.1 · 108 ? >10 h ?

10−9 exact 3460286 0.05 s – – – –

10−12 10−6 5992 1.7 s 1.8 · 106 ? >10 h ?
10−12 10−7 42418 11.5 s 1.3 · 107 ? >10 h ?
10−12 10−8 324509 87.25 s 1.0 · 108 ? >10 h ?
10−12 10−9 3242019 897.5 s 1.0 · 109 ? >10 h ?

10−12 exact 3.46 · 109 0.06 s – – – –

10−15 10−6 5992 1.7 s 1.8 · 106 ? >10 h ?
10−15 10−7 42422 11.7 s 1.3 · 107 ? >10 h ?
10−15 10−8 324538 87.8 s 1.0 · 108 ? >10 h ?
10−15 10−9 3245020 895.3 s 1.0 · 109 ? >10 h ?

10−15 exact 3.46 · 1012 0.07 s – – – –

Table 3.8: Time consumption and results of probabilistic model checking in Storm
when using Gauss-Seidel value iteration to compute an expected accumu-
lated reward.
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10−3 10−6 4.3 · 10−5 0.05 s 8072 4.9 · 10−4 0.06 s 3308

10−3 10−7 4.3 · 10−5 0.05 s 9164 8.8 · 10−5 0.06 s 4396

10−3 10−8 4.3 · 10−5 0.06 s 10256 4.7 · 10−5 0.01 s 5488

10−3 10−9 4.3 · 10−5 0.06 s 11347 4.3 · 10−5 0.01 s 6580

10−3 exact 4.3 · 10−5 0.1 s – – – –

10−6 10−6 0.07489 0.4 s 1.1 · 106 0.49037 0.06 s 9509

10−6 10−7 0.04320 0.8 s 2.4 · 106 0.08617 0.3 s 1.0 · 106

10−6 10−8 0.04144 1.0 s 3.5 · 106 0.04575 0.7 s 2.1 · 106

10−6 10−9 0.04127 1.3 s 4.5 · 106 0.04170 0.8 s 3.1 · 106

10−6 exact 0.04126 0.1 s – – – –

10−9 10−6 0.500001 0.05 s 6 0.50000 0.05 s 6

10−9 10−7 0.500106 0.05 s 2341 0.50002 0.1 s 322

10−9 10−8 0.883311 5.1 s 1.7 · 107 0.87090 5.1 s 1.6 · 107

10−9 10−9 0.967001 11.6 s 4.1 · 107 0.96665 11.2 s 4.0 · 107

10−9 exact 0.977289 0.1 s – – – –

10−12 10−6 0.500001 0.05 s 6 0.50000 0.05 s 6

10−12 10−7 0.500126 0.05 s 2724 0.50002 0.06 s 330

10−12 10−8 0.901804 5.1 s 1.8 · 107 0.89111 5.3 s 1.7 · 107

10−12 10−9 0.989208 12.8 s 4.2 · 107 0.98909 11.8 s 4.2 · 107

10−12 exact 0.9999768 0.1 s – – – –

10−15 10−6 0.500001 0.05 s 6 0.50000 0.05 s 6

10−15 10−7 0.500126 0.06 s 2724 0.50002 0.06 s 330

10−15 10−8 0.901823 5.0 s 1.8 · 107 0.89113 5.0 s 1.7 · 107

10−15 10−9 0.989231 13.3 s 4.2 · 107 0.98911 11.9 s 4.2 · 107

10−15 exact 0.99999998 0.01 s – – – –

Table 3.9: Time consumption and results of probabilistic model checking in Storm
when using Gauss-Seidel value iteration to compute the probability of a
reachability property.
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10−3 10−3 2.920077 0.3 s 241021 2.919859 0.6 s 250249

10−3 10−4 2.919428 0.4 s 300181 2.919406 0.7 s 309407

10−3 10−5 2.919363 0.5 s 359295 2.919361 0.7 s 368521

10−3 10−6 2.919357 0.5 s 418409 2.919356 0.9 s 427635

10−3 exact 2.919355 0.03 s – – – –

10−6 10−3 3460.807 19.7 s 1.9 · 107 3459.444 79.3 s 3.4 · 107

10−6 10−4 3459.580 29.3 s 2.4 · 107 3459.444 89.3 s 3.9 · 107

10−6 10−5 3459.457 36.1 s 2.8 · 107 3459.443 72.0 s 4.4 · 107

10−6 10−6 3459.445 33.7 s 3.2 · 107 3459.443 109.9 s 4.9 · 107

10−6 exact 3459.443 0.04 s – – – –

Table 3.10: Time consumption and results of probabilistic model checking in Storm
when using Gauss-Seidel interval iteration to compute the probability of
an expected accumulated reward.

Time consumption and number of iterations. First note that there is a strong
correlation in time consumption and number of iterations. Each iteration can be performed
very quickly (about 106 iterations per second for the expected reward, about 3.5 · 106
iterations per second for the reachability probability). For the presented properties and
the space-probe model, value iteration convergence is very slow, i.e., the difference between
two succeeding intermediate results is very small. Especially for higher ε, this causes the
termination criterion of value iteration to be fulfilled too soon and value iteration to stop too
early. The amount of iterations to be performed, such that the result is in the ε-neighborhood
of the result, can be determined using interval iteration. Table 3.10 shows results for the
expected accumulated reward property. Note that ε ranges from 10−3 to 10−6. The table
shows that, when decreasing ε, the number of iterations needed until termination increases
steadily, but relatively slowly. In comparison, when decreasing p_error, the number of
iterations increases significantly, e.g., from 2.4 · 105 for p_error = 10−3 to 1.9 · 107 for
p_error = 10−6 for relative termination and ε = 10−3. Computation for p_error ≤ 10−9

did not terminate for any of the chosen ε within 10 hours.

Summary. The tables show clearly that iterative methods are not suitable to compute
characteristics of the space-probe model due to the small error probabilities.

The exact LU-elimination outperforms almost all settings. In fact, this non-iterative
method performs very well on our model, which is due to the small size of the linear
equation system (145 lines) obtained from the model and the properties. This also enables
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and encourages the use of parametric versions of PMC, since parametric variants use
non-iterative methods during model checking.

Unfortunately, the non-suitableness of iterative methods is not generalizable to other
models. Inaccuracy of value iteration and time consumption of value iteration do depend
on the small probability p_error, but do not depend on the small probability p_restart.
Thus, these methods might scale for other models with small probabilities, e.g., other models
considering fault tolerance. Yet, one should apply iterative methods with care to these
models and always consider non-iterative methods as an alternative.

3.5 Configuration of Resilient Communicating
Processes

The space probe presented in Section 3.3 has two system variables. The probability per
time step of performing a periodic restart, p_restart shall be configured with respect to
the probability of detecting an error, p_detect. In this section we apply parametric model
checking techniques with two free parameters to configure the space probe for an error
probability of p_error = 10−10, and we report on interesting system properties revealed
during the configuration process.

Although the detection probability can be arbitrary close to one in theory [Sha48a], in
reality typically there are restrictions imposed by memory- or hardware characteristics,
and the existence of fault-tolerance techniques. We exemplarily choose the detection rate
to be a value in {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}, representing, e.g., several
fault-tolerance techniques that can be chosen to protect the space probe against bit flips.
We do not impose any restrictions on p_restart. As the main configuration criterion we
maximize the availability of the space probe. The availability of a system is the degree
to which this system is operating correctly. It is typically given as a percentage, e.g.,
Amazon guarantees for its hosting service “Amazon EC2” an availability of 99.99% per
month [18a], Google’s service level agreement for its cloud storage service lists an availability
of 99.95% [16a]. The space probe is available when no restart takes place and no silent
data corruption causes the system to be unpredictable. We compute θ(Av) =

∑
s∈Av θ(s)

with Av being the set of all states where the space probe is available and θ(s) being the
steady-state probability of being in state s. We aim to configure the space probe’s system
variable p_restart such that the availability is maximized.

We use aforementioned p_restart and p_detect as free parameters in probabilistic
model checking and obtain a rational function describing the availability of the space probe.
Furthermore, we report on interesting system properties revealed during the configuration
process. For other properties than availability, we apply PMC with only one free parameter.
PMC with two free probabilistic parameters is very time-consuming (see below). We use
the computer algebra system sympy [Meu+17] to point-wise evaluate the rational functions
and to obtain plots. We also use sympy to determine the optimum of the availability curve
for the fixed detection rates using Newton’s method.

Availability maximization. The availability of the space probe is depicted in Figure 3.11.
Figure 3.12 is a magnification to the optima of the curves. We see that, e.g., a detection
probability of at least 0.4 is necessary to guarantee an availability of 0.999.
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Figure 3.11: The availability of the space probe.

Figure 3.12: A magnification of the space probe’s availability showing high availabili-
ties.
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Now we benefit from one of the most significant advantages of parametric methods.
Instead of, for a given detection probability, vaguely reading the optimal restart probability
from the picture, we analyze the rational function obtained from parametric model checking.
We import the rational function into sympy, appoint the chosen detection rate to p_detect,
and differentiate the resulting rational function. Applying Newton’s method to find the
zero of this function yields the results listed in Table 3.13. We can read the optimal setting
for each of the chosen detection probabilities from the table. For example, the optimal
p_restart for p_detect = 0.4 with respect to the previously mentioned configuration
criterion is p_restart = 7.7456 · 10−8, i.e., restarts should be performed about every 21
hours and 30 minutes to obtain an availability of 99.9%.

p_detect optimal p_restart availability

0.01 9.9494 · 10−8 0.9987841

0.1 9.4864 · 10−8 0.9988405

0.2 8.9438 · 10−8 0.9989066

0.3 8.3662 · 10−8 0.9989769

0.4 7.7456 · 10−8 0.9990526

0.5 7.0707 · 10−8 0.9991348

0.6 6.3242 · 10−8 0.9992258

0.7 5.4770 · 10−8 0.9993292

0.8 4.4719 · 10−8 0.9994518

0.9 3.1621 · 10−8 0.9996117

0.95 2.2356 · 10−8 0.9997249

0.99 9.9995 · 10−9 0.9998759

Table 3.13: Optimal values for p_restart for varying detection probabilities, and the
corresponding system availability.

Space-probe analysis. First note that for a fixed error probability p_error ̸= 0 the
system’s availability is bounded to a value strictly less than one (see also Figure 3.14). This
is because errors will affect the system, either in a detectable or a non detectable way. Both
types of errors cause the system to be unavailable for some time: After an error is detected,
the system is restarted and thus is unavailable for the time that is needed for a restart.
Silent data corruptions cause unavailability for the time until the next periodic restart and
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the time of this restart. Since increasing p_detect decreases the steady-state probability of
having a silent data corruption, (θ(sdc), cf. Figure 3.15), the availability can be increased
by increasing the detection probability. The maximal (theoretically achievable) availability
is gained when every error can be detected (p_detect = 1, no sdc occurs) and thus no
periodic restart needs to be performed (p_restart = 0). In this setting the availability
bound is 0.9999981656.

Figure 3.14: The availability of the space probe in dependence of the detection
probability. For each restart probability, the availability runs to a value
less than one, when increasing p_detect.

Figure 3.11 shows that with decreasing the probability p_restart the availability first
rises and then drops down to zero again. This can be explained as follows: When choosing
very high restart rates, too much time is spent for restarts, time that can not be used
for system functionality. Performing periodic restarts too infrequently causes silent data
corruption phases to be very long. The sweet spot depends on the detection probability, since
this probability influences the probability of silent data corruptions (cf. Figure 3.15). This
dependency also causes the crossings in Figure 3.14. On the left-hand side of a crossing, i.e.,
for a lower detection probability, it is more beneficial to choose a higher restart probability,
since the low detection rate comes with a higher frequency of silent data corruptions, and
periodic restarts should also be more frequent. Increasing the detection probability decreases
sdc frequency, so on the right-hand side of a crossing it is more beneficial to choose a lower
restart probability.

The values of the curves in Figure 3.11 on the right-hand side of the maxima are very
close, the distance shrinking with higher restart probabilities. The concrete values only
marginally depend on the detection rates. Figure 3.16 shows that this effect also arises when
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Figure 3.15: The steady state probability of a silent data corruption in dependence
of the detection probability.

varying error probabilities. This means that availability is lost only marginally because of
errors and their effect, but mainly because of the system being ill-configured: When restarts
are performed too often, the system is unavailable mainly because of unnecessary restarts.

Figure 3.17 shows the (steady-state) probability of a restart being performed although
the system neither comprises a detectable error nor a silent data corruption. Formally,
we compute the steady-state probability θ(restart ∧ healthy)/θ(restart), where restart is
the set of all states where a restart is performed and healthy is the set of all states where
neither a silent data corruption nor a detectable error is in the system. For high p_restart,
this probability is close to one, and persistently decreases with decreasing restart rates.
Interestingly, even for the optimal configurations about 98-99 out of 100 restarts are
performed although the system is healthy (see Table 3.18). This means, that a configuration
with maximal availability requires the acquiescence of many unnecessary restarts. A high
detection probability causes this value to shrink, but the effect is only marginal.

Computation times. The space-probe model is a Markov chain and consists of 877 states.
The bisimulation quotient has 145 states. We used the model checker Storm [Deh+17] to
perform experiments on a machine with a 2.5 GHz Intel Core i7 CPU with 16 GB RAM
single-threaded.

Table 3.19 lists computation times needed to compute the rational functions from above,
the size of this rational functions in both the number of symbols, and the storage size in
megabyte (MB). The table lists measurements when having one and when having two free
parameters. When using only p_restart as free parameter we computed a set of rational
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Figure 3.16: The availability of the space probe in dependence of the restart probabil-
ity, for varying error probabilities and error detection probabilities.

Figure 3.17: The ratio of unnecessary restarts and all restarts.
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p_detect optimal p_restart
unnecessary restarts

(percentage)

0.1 9.4864 · 10−8 0.99863

0.2 8.9438 · 10−8 0.99821

0.3 8.3662 · 10−8 0.99773

0.4 7.7456 · 10−8 0.99717

0.5 7.0707 · 10−8 0.99648

0.6 6.3242 · 10−8 0.99559

0.7 5.4770 · 10−8 0.99437

0.8 4.4719 · 10−8 0.99245

0.9 3.1621 · 10−8 0.98843

0.95 2.2356 · 10−8 0.98307

Table 3.18: For optimal p_detect–p_restart combinations, the probability of a
restart being performed although the system is neither affected by an
error nor by a silent data corruption.
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Property free param. time num symbols size(MB)

θ(sdc) 1 ≈20 s ≈ 70000 0.070

θ(sdc) 2 8090 s 2.8 · 106 2.8

θ(Av) 1 ≈15 s ≈ 72000 0.072

θ(Av) 2 22 996 s 2.9 · 106 2.9

θ(restart) 1 ≈1400 s ≈ 66000 0.06

θ(restart) 2 >30 h ? ?

θ(restart ∧ healthy) 1 ≈1300 s 70000 0.07

θ(restart ∧ healthy) 2 >30 h ? ?

Table 3.19: Time consumption and length of rational functions.

functions with varying p_detect. The table lists representative values for these sets of
functions.

For the first two listed properties (availability and steady-state probability of having
an sdc), computation with one free parameter was really fast (about 20 seconds). For the
properties focusing on restart states, computation took 23 minutes. Performing PMC with
two free parameters took about 6.5 hours for the first two properties listed in Table 3.19,
but did not complete within 30 hours for the last two.

The table also shows that, when having two parameters, the size of the results is large
(about 3MB). Evaluation of these functions is time-consuming, e.g., simply computing a
concrete value of θ(Av) by appointing concrete values for p_restart and p_detect took
about 4 seconds. Obtaining a rational function for a concrete p_detect from θ(Av) also
took about 5 seconds. Differentiating the obtained function with sympy took less than a
second. Applying Newton’s method to obtain the zero of the differentiate took about 2
seconds.

It is well known, that a) time complexity of PMC on parametric models is exponential in
the number of parameters and b) the actual time consumption depends not only on the
model structure, but also on the property. This is reflected in our model, since parametrized
versions of PMC have an acceptable runtime when considering only one free parameter.
When considering two parameters, the runtime crucially depends on the concrete property.
For our main configuration criterion, the availability of the space probe, we applied PMC
to a model with free parameters p_detect and p_restart, which caused a long runtime,
but we had the benefit of plotting curves fast.

50



4 Counter-based Factorization
In the previous chapter we configured a relatively small model for communicating processes
using parametric variants of probabilistic model checking. In the next chapter, Chapter 5,
we configure a parametric model for redo-based fault tolerance protecting a long-running
application (for model details, see Section 5.2). This model is by far larger: depending on
the chosen setting, the model has up to 1012 states. The model is actually so large, that it
can not be built in Storm or Prism, not to mention performing PMC on this model. The
complexity of the model arises from the application’s run-time. The runtime is modeled by
a counter, i.e., a variable whose value is never decreasing. The counter in the probabilistic
program graph modeling the redo-based fault-tolerance protocol has a very large domain
and thus causes the size of the induced DTMC to be huge.

In this chapter, we introduce counter-based factorization, a mathematical framework
that allows to make use of the structure that arises from the counter. The model is split
into small sub-models, PMC is applied to these sub-models to obtain rational functions
describing local characteristics, and these results are combined to obtain a rational function
describing the global configuration criterion that is used for optimization. We give the
mathematical background of this framework, and present fact, a tool that implements
factorization such that it can be applied to configure redo-based fault tolerance.

Factorization. The factorization framework presented in this chapter is applied to the
induced DTMC of an arbitrary PPG having a counter variable (i.e., it is not restricted to the
redo-based fault-tolerance model). We focus on the computation of probabilistic reachability
properties and expected accumulated rewards. The idea of counter-based factorization is to
flag states that are reached by transitions that increase the counter and to split the model
along these states into factors. Since the counter is a variable that is always increased,
these factors form a chain. For a probabilistic reachability property, for each factor the
rational functions describing probabilities of reaching one of the flagged states in the next
factor from this factor are computed. These local results are stored in a matrix. Since the
factors form a chain, the matrices can be multiplied to obtain the rational function for
the global probabilistic reachability property. When computing an expected accumulated
reward, additionally the conditional expected accumulated rewards until reaching a flagged
state in the next factor need to be computed. Then, the expected accumulated reward
can be derived by computing for all factors the product of probability matrices of previous
factors multiplied with the conditional expected accumulated reward matrix of this factor
and summing up these results.

For the redo-based fault-tolerance model, the model structure arising from the counter is
very specific. First, the counter increases, when updated, always by 1. We say that counters
having this property are simple. Second, the counter is observing, i.e., the counter value
does not influence the models structure, transition probabilities or reward assignments.
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Hence, the matrices for local probabilistic characteristics of factors are all identical, and so
are the matrices for local accumulated reward characteristics.

Implementation. The tool fact implements counter-based factorization for a simple,
observing counter. It takes as input a probabilistic program graph in the common Prism-
language [11b], together with a probabilistic reachability property or an expected accumu-
lated reward property. fact analyzes the input PPG to find counters that are simple and
observing and heuristically chooses one to apply factorization. A new variable f , which
is used to identify flagged states in the induced DTMC, is inserted in the PPG. fact
transforms the PPG such that it represents the factors of the induced DTMC, invokes
the probabilistic model checker Storm on these factors, and sets up the local matrices.
Finally fact makes use of the computer algebra system sympy to retrieve the global rational
function from the local matrices.

Outline. In the first section of this chapter, Section 4.1, we define the basic, counter-
independent, concept of factorization in arbitrary DTMCs. We assume two sub-models
(factors) to be given. Section 4.2 introduces counters in PPGs, and shows how they can be
used to obtain factors of the induced DTMC. The counter-based factorization approach
arises from applying the general factorization approach for two factors from Section 4.1
recursively. In Section 4.3 we adopt the factorization approach to counters that are simple,
and counters that are simple and observing. Finally, in Section 4.4 we present the tool
fact.

4.1 Base Schema of Factorization
In this section, we explain the basic principle of factorization. We fix a DTMC M =
(S, P, L), an initial state sinit ∈ S, a reward structure rew , and a set of states ξ ⊆ S. The
state set S is assumed to contain only states that are reachable from sinit . Recall that
Πsinit (ξ) = {π = s1 . . . sn ∈ FPathsM,sinit | sn ∈ ξ, si ̸∈ ξ for 1 ≤ i < n}. We assume that
states s ∈ ξ are absorbing, i.e.,

∑
t∈S P (s, t) = 0. We present factorization for computing

PrM,sinit (♦ξ) and EM,sinit ( ξ). Recall that the index s is omitted when s = sinit .
The basic factorization approach operates on two sets S1 and S2 partitioning the state

space S. This partitioning induces for each path of M two sub-paths: The first sub-path is
a prefix of the original path that consists only of states in S1 and a single state in S2, and
the second sub-path consists of the rest of the original path. With factorization, reachability
characteristics and (conditional) expected accumulated rewards are computed on the sets
of sub-paths, and the results are combined to obtain the values or rational functions for
PrM,sinit (♦ξ) and EM,sinit ( ξ).

Given a partitioning S1, S2 of the set of states S, we define the set of boundary states.
Boundary states are states in S2 that are reachable within one step from S1. These states
are the states where paths of M are split into sub-paths.

Definition 4.1 (Boundary States). Let S1, S2 be disjoint sets such that S1 ∪ S2 = S
and sinit ∈ S1. The set of boundary states is

Sb = {t ∈ S2 | there is a state s ∈ S1 such that P (s, t) > 0}
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Figure 4.1: A DTMC M with initial state sinit , and a set of states ξ (blue circles). The
boundary states arising from the partitioning S1, S2 are marked orange.

Figure 4.1 depicts the set of boundary states for a partitioning S1, S2. With factorization,
the computation of reachability properties and expected accumulated rewards is split along
the boundary states into sub-computations.

Lemma 4.2 (Factorization). Let S1, S2 be disjoint sets such that S1 ∪ S2 = S and
sinit ̸∈ S2, and let Sb be the set of boundary states. Let M′ be the DTMC arising from M
by making all states in S2 absorbing. Then:

PrM(♦ξ) = PrM′ (♦ (ξ ∧ ¬Sb)) +
∑
sb∈Sb

PrM′(♦sb) · PrM,sb(♦ξ). (FP)

Let PrM(♦ξ) = 1. Then:

EM( ξ) = EM′ ( (ξ ∧ ¬Sb) | ♦ (ξ ∧ ¬Sb)) · PrM′ (♦ (ξ ∧ ¬Sb))

+
∑
sb∈Sb

PrM′(♦sb) · (EM′( sb | ♦sb) + EM,sb( ξ)) . (FE)

The lemma claims that we can partition the set of paths satisfying ♦ξ into the set of
paths where ξ is reached before reaching S2, and the set of paths where ξ is reached when
or after reaching S2. Each path in the latter set of paths is split into two sub-paths, and
computation of sub-results is performed on the set of sub-paths.

Proof of Lemma 4.2. We start with proving (FP). We partition the set of paths Πsinit (ξ)
into two sets. The first set contains all paths where ξ is reached before S2 (including paths
where S2 is never reached). The second set contains all paths where ξ is reached earliest
with reaching S2. Note that for all paths visiting a state in S2, the first state of this path
that is in S2 needs to be in Sb. Formally, all paths π ∈ Paths visiting a state in S2 are of
the form π = s1 . . . sbsb+1 . . . , b ≥ 1 such that si ̸∈ Sb for i < b, sb ∈ Sb and sj ∈ S1 ∪S2 for
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j > b. Thus we can further partition the set of paths visiting a state in S2 by the boundary
state sb ∈ Sb. In the proof we use the following LTL-equivalence:

♦ξ ≡M (¬SbU(ξ ∧ ¬Sb))  
“ξ before S2”

∨

⎛⎝ ⋁
sb∈Sb

¬ξU(sb ∧ ♦ξ)

⎞⎠
  

“S2 before or with ξ”

where ≡M denotes that all paths in FPathsM,sinit that satisfy the left-hand side formula
also satisfy the right-hand side formula of the equivalence, and vice versa. In M′, where all
states in S2 are absorbing, we have (¬SbU(ξ ∧ ¬Sb)) ≡M′ ♦(ξ ∧ ¬Sb).

All states in ξ are absorbing in M, and thus for all sb ∈ Sb we have: ¬ξU(sb ∧ ♦ξ) ≡M
♦sb ∧ (♦ξ), and with the same argument ¬ξU sb ≡M ♦sb. Having this in mind, we retrieve:

PrM(♦ξ) =
∑

π∈Π(ξ)

Pr(π)

= PrM′ (♦ (ξ ∧ ¬Sb)) +
∑
sb∈Sb

∑
π∈Π(ξ)

π|=¬ξU
(
sb∧♦ξ

)
Pr(π).

Each path in the inner sum index set is of the form π = s1 . . . sb . . . sk with sk ∈ ξ, si ̸∈ ξ

for 1 ≤ i < k. Note that, if sb ∈ ξ, then b = k. We split the probability of each path into
the product of the probabilities of the sub-paths π1 = s1 . . . sb and π2 = sb . . . sk. For all
paths π that reach S2 via some state sb ∈ ξ, π is split into sub-paths π1 = π and π2 = sb

with PrM,sb(sb) = 1.

PrM(♦ξ) = PrM′ (♦ (ξ ∧ ¬Sb)) +
∑
sb∈Sb

∑
π1∈Π(sb)

π1|=¬ξU sb

∑
π2∈Πsb

(ξ)

Pr(π1) · Pr(π2)

= PrM′ (♦ (ξ ∧ ¬Sb)) +
∑
sb∈Sb

∑
π1∈Π(sb)

π1|=¬ξU sb

Pr(π1)
∑

π2∈Πsb
(ξ)

Pr(π2).

Using the LTL equivalence from above, we know that each path satisfying ♦sb also
satisfies ¬ξU sb, and vice versa. Thus, we can omit the condition π |= ¬ξU sb in the sum
index.

PrM(♦ξ) = PrM′ (♦ (ξ ∧ ¬Sb)) +
∑
sb∈Sb

∑
π1∈Π(sb)

PrM(π1)
∑

π2∈Πsb
(ξ)

PrM,sb(π2)

= PrM′ (♦ (ξ ∧ ¬Sb)) +
∑
sb∈Sb

PrM(♦sb) · PrM,sb(♦ξ)

= PrM′ (♦ (ξ ∧ ¬Sb)) +
∑
sb∈Sb

PrM′(♦sb) · PrM,sb(♦ξ).

The proof of (FE) follows the same schema. Recall from Section 2 that for any s ∈ S and
non-empty set of states T ⊆ S the equation

∑
π∈Πs(T ) Pr(π) · rew(π) = EM,s ( T ) holds

only if PrM,s(♦T ) = 1. If PrM,s(♦T ) < 1, we can use∑
π∈Πs(T )

Pr(π) · rew(π) =
∑

π∈Πs(T )

Pr(π) · rew(π) ·
PrM,s(♦T )
PrM,s(♦T )
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= EM,s( T | ♦T ) · PrM,s(♦T ).

This yields:

EM( ξ) =
∑

π∈Π(ξ)

Pr(π) · rew(π)

=
∑

π∈Π(ξ)
π|=□¬Sb

Pr(π) · rew(π) +
∑
sb∈Sb

∑
π∈Π(ξ)
π|=♦sb

Pr(π) · rew(π)

= EM′ ( (ξ ∧ ¬Sb) | ♦ (ξ ∧ ¬Sb)) · PrM′ (♦ (ξ ∧ ¬Sb))

+
∑
sb∈Sb

∑
π∈Π(ξ)

π|=¬ξU
(
sb∧♦ξ

)
sb

Pr(π) · rew(π).

We have a closer look at the second summand.∑
sb∈Sb

∑
π∈Π(ξ)

π|=¬ξU
(
sb∧♦ξ

)
Pr(π) · rew(π)

=
∑
sb∈Sb

∑
π1∈Π(sb)

π1|=¬ξU sb

∑
π2∈Πsb

(ξ)

Pr(π1) · Pr(π2) · (rew (π1) + rew (π2))

=
∑
sb∈Sb

∑
π1∈Π(sb)

π1|=¬ξU sb

∑
π2∈Πsb

(ξ)

Pr(π1) · Pr(π2) · rew (π1)

+
∑
sb∈Sb

∑
π1∈Π(sb)

π1|=¬ξU sb

∑
π2∈Πsb

(ξ)

Pr(π1) · Pr(π2) · rew (π2)

=
∑
sb∈Sb

∑
π1∈Π(sb)

Pr(π1) · rew (π1) ·
∑

π2∈Πsb
(ξ)

Pr(π2)

+
∑
sb∈Sb

∑
π1∈Π(sb)

Pr(π1) ·
∑

π2∈Πsb
(ξ)

Pr(π2) · rew (π2)

=
∑
sb∈Sb

EM′( sb | ♦sb) · PrM′(♦sb) · PrM,sb(♦ξ)

+
∑
sb∈Sb

PrM′(♦sb) · EM,sb( ξ) (*)

=
∑
sb∈Sb

EM′( sb | ♦sb) · PrM′(♦sb) +
∑
sb∈Sb

PrM′(♦sb) · EM,sb( ξ) (**)

=
∑
sb∈Sb

PrM′(♦sb) ·
(
EM′( sb | ♦sb) + EM,sb( ξ)

)
.

The transformations (*) and (**) arise since PrM,sinit (♦ξ) = 1 and for all states sb ∈ Sb:
PrM(♦sb) > 0. Thus, we have PrM,sb(♦ξ) = 1 for all sb ∈ Sb.

Remark 4.3 (Counter-based Adaption). In the next section, we will choose S1 and
S2 such that PrM,t(♦S1) = 0 for all t ∈ S2. Hence, for all sb ∈ Sb, when setting sb as initial
state, states in S1 are not reachable and thus can be removed. Furthermore, PrM′(♦sb) and
EM′( sb | ♦sb) are computed in the DTMC M′ where all states in Sb are absorbing and
thus states in S2 \ Sb are not reachable.
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Figure 4.2: A DTMC with counter c. Probabilities are denoted by blue transition
annotations, reward assignments are red.

4.2 Counters
The basis of counter-based simplification is: a counter. A counter is a variable of the
underlying program graph whose value never decreases. In this section we give the formal
definition of counters, and show how a counter induces a partitioning of the state set such
that factorization as defined in the previous section is applicable.

After defining counters, we transform the DTMC such that states that are reached by
transitions that update the counter can be identified. These states assume the role of
boundary states, and we obtain the base schema of counter-based factorization.

In the rest of this chapter we fix a probabilistic program graph P = (LV ,Act , ↪→) over
a non-empty set of variables Vars, and an initial location einit . Furthermore, we fix a
reward structure rew over P. The induced DTMC of P is denoted by M = (S, P, L), and
sinit = einit .

Definition 4.4 (Counters). A counter is a variable c ∈ Vars of the probabilistic program
graph P such that for all paths π ∈ Paths(M): π |= □

⋀
x∈D(c)(c = x =⇒ □c ≥ x), where

D(c) denotes the domain of c.

We say that c is a counter of M, if it is a counter of the underlying program graph P . In
the further, let c be a counter of M with minimal value 0 and maximal value n.

Example 4.5. Consider the DTMC M of Figure 4.2, arising from a probabilistic program
graph with variables c and y, and two parameters p1 and p2. Variable c is a counter, since
every transition either updates the counter or leaves its value unchanged. The maximal value
of c is n = 4. We will use this DTMC and sinit = (c = 0, y = true) as a running example,
and exemplarily compute the rational function for EM ( ((y = false ∧ c = 2) ∨ c = 4)) =
p22 + 6p21 − 2p1 − 6p2 + 6 using factorization.

Factorization makes use of a partitioning of the state space and the concept of boundary
states. In counter-based factorization, the partitioning follows the counter updates. Thus,
the boundary states are states where the counter is “freshly updated”. To uniquely identify
these states, we transform the DTMC M such that in all paths of the DTMC all states
that are reached by a transition updating the counter are flagged. This flagged DTMC M
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arises from M by duplicating the state space, flagging each new state, and transforming the
transition probability function such that each transition that updates the counter reaches
the flagged copy of the original transition’s target.

Definition 4.6 (Counter-Update-Flagged DTMC). Let Sc = {(s, f) | s ∈ S} be a
set of states that contains a flagged copy of each state in S. Let s↓M = s for all s ∈ S
and (s, f)↓M = s for all (s, f) ∈ Sc. The counter-update-flagged DTMC of M is Mf =
(Sf , Pf , Lf ) with:

• Sf = S ∪ Sc.

• For all s ∈ Sf , t ∈ S, (t, f) ∈ Sc:

Pf (s, t) =

⎧⎪⎪⎨⎪⎪⎩
P (s↓M, t) if s↓M(c) = t(c)

0 if s↓M(c) ̸= t(c)

and

Pf (s, (t, f)) =

⎧⎪⎪⎨⎪⎪⎩
P (s↓M, t) if s↓M(c) ̸= t(c)

0 if s↓M(c) = t(c).

• For all s ∈ S: Lf (s) = L(s) and for all (s, f) ∈ Sc : Lf (s, f) = L(s) ∪ f .

The states in Sc are called counter states. We write s(f) = true for all states s ∈ Sc and
s(f) = false for all s ∈ S.

Corollary 4.7. Let ξf = ξ ∪ {(s, f) ∈ Sc | s ∈ ξ} be the flagged version of ξ. Let
rewf : Sf → Q≥0 with rewf (s) = rew(s↓M) for all s ∈ Sf be the flagged version of rew . We
have PrM,sinit (♦ξ) = PrMf ,sinit (♦ξf ) and Erew

M,sinit
( ξ) = Erewf

M,sinit
( ξf ).

Example 4.8 (Counter-Update-Flagged DTMC). When flagging the DTMC of ex-
ample 4.5, (see Figure 4.3) all transitions from (c = 0, y = true) change the counter value
and thus lead to a flagged copy of the original target state. Furthermore, there is a transition
from the flagged copy (c = 1, y = false, f) to the flagged state (c = 2, y = false, f). The
original transition from (c = 2, y = true) to (c = 2, y = false) does not update the counter,
thus there is a transition from the flagged copy (c = 2, y = true, f) to the unflagged state
(c = 2, y = false). The original transition from (c = 2, y = true) to (c = 3, y = true)
updates the counter, and thus leads from the flagged copy (c = 2, y = true, f) to the flagged
copy (c = 3, y = true, f).

In the original DTMC there is a self loop in state (c = 3, y = true). Since this self loop
does not update the counter, it is still present in the unflagged state (c = 3, y = true) in M.
Furthermore, there is a transition from the flagged copy (c = 3, y = true, f) to the unflagged
state (c = 3, y = true).

The original transition from (c = 3, y = true) to (c = 4, y = true) is present in both
states in M, the original state (c = 3, y = true) and its flagged copy. Since these transitions
update the counter, they lead to the flagged state (c = 4, y = true, f).

States (c = 2, y = false) and (c = 4, y = true) are absorbing states in the original DTMC,
thus, in M these states as well as their flagged copies are absorbing, too.
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Figure 4.3: The flagged DTMC of Example 4.5. States in Sc are marked with a green
flag.

In the further, we omit the index f and assume a DTMC M that is already flagged.
We now apply the factorization approach from the previous section to the counter-flagged
DTMC, using a subset of the counter states as boundary set. This subset is the set of states
that for some path in the DTMC M is reached with the first counter update in this path.

Theorem 4.9 (Counter-based Factorization). Let M1 = (S1, P 1, L1) be the DTMC
arising from M by making all counter states absorbing. Let S1 = S1 \ Sc be the set of states
in M that can be reached from the initial state without updating the counter and S2 = S \S1
be all other states in M. Let S1

c = S1 ∩ Sc be the set of boundary states. Then:

PrM(♦ξ) = PrM1

(
♦
(
ξ ∧ ¬S1

c

))
+
∑
sb∈S1

c

PrM1(♦sb) · PrM,sb(♦ξ).

Let PrM(♦ξ) = 1. Then:

EM( ξ) = EM1

( (
ξ ∧ ¬S1

c

)
| ♦
(
ξ ∧ ¬S1

c

))
· PrM1

(
♦
(
ξ ∧ ¬S1

c

))
+
∑
sb∈S1

c

PrM1(♦sb) · (EM1( sb | ♦sb) + EM,sb( ξ))

Proof of Theorem 4.9. The proof follows directly from Lemma 4.2.

The factorization approach enables the computation of global probabilistic reachability
properties and expected accumulated rewards by computing local properties in two factors
of the DTMCs: one factor comprising only the states of M that are reached before or with
the first counter update, and one factor comprising the states that are reached with or
after the first update. Computation of properties in the latter can be further simplified by
threating the (new) initial state (which is one of the states in S1

c ) as unflagged, retrieving
a new set of boundary states (which is now the set of counter states where the counter is
updated for the second time) and using counter-based factorization on this sub-DTMC.
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Figure 4.4: Factors M1 (left) and Mr (right) arising from applying factorization to
the flagged DTMC M of Example 4.5. States in S1

c have a green shade
and appear in both factors.

This approach can be applied recursively until obtaining a factor that does not contain any
counter states except for the respective initial state.

Example 4.10. We apply factorization to the flagged DTMC M in Figure 4.3. We use
factorization twice, and thus retrieve three factors M1, M2, and M3. When factorizing
the first time, we use a set of boundary states S1

c and factorize M into two parts, M1 and
Mr. Latter one will be factorized again, using boundary states S2

c , to retrieve factors M2,
and M3.

The factors arising from applying counter-based factorization to the flagged DTMC
from Figure 4.3 are depicted in Figure 4.4. The boundary states S1

c are the first flagged
states that can be reached from the initial state (c = 0, y = true): (c = 3, y = true, f),
(c = 2, y = true, f), and (c = 1, y = false, f). These states are made absorbing in the first
factor (M1) of the DTMC. The second factor, Mr, contains the states in S1

c and all states
that are reachable from S1

c .
To compute the expected accumulated reward EM ( (y = false ∨ c = 4)), we calculate the

probability PrM1(♦ξ ∧ ¬S1
c ), which is 0. Thus, there is no need to compute the expected

reward EM1( (ξ ∧ ¬S1
c ) | ♦ξ ∧ ¬S1

c ).
Furthermore, for all boundary states sb ∈ S1

c the probability of reaching this state from
the initial state needs to be computed. We have

PrM1(♦(c = 3, y = true, f)) = 1− p1 − p2,

PrM1(♦(c = 2, y = true, f)) = p1,

PrM1(♦(c = 1, y = false, f)) = p2.
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Figure 4.5: Factors M2 (left) and M3 (right) arising from applying factorization to
Mr, when treating (c = 2, y = true, f) as initial state. States in S2

c have
a green shade and appear in both factors.

Also for all states sb ∈ S1
c , we to compute the conditional expected reward until reaching sb.

This is

EM1( (c = 3, y = true, f) | ♦(c = 3, y = true, f)) = 3 · p1
EM1( (c = 2, y = true, f) | ♦(c = 2, y = true, f)) = 3 · p1,
EM1( (c = 1, y = false, f) | ♦(c = 1, y = false, f)) = 3 · p1.

Now, for all states sb ∈ S1
c , we compute EMr,sb( ξ | ♦ξ). For sb = (c = 3, y = true, f),

this value is 6. For sb = (c = 1, y = false, f) it is p2. To compute the expected reward
EMr,(c=2,y=true,f)( ξ | ♦ξ), we apply factorization to Mr. Figure 4.5 depicts the factors
arising from factorizing Mr, when setting (c = 2, y = true, f) as initial state. The new set
of boundary states S2

c is the single state sb = (c = 3, y = true, f). We calculate in the factor
M2 the probability and expected accumulated reward of reaching a state in ξ. The only state
in ξ in this factor is (c = 2, y = false), and we obtain

PrM2,(c=2,y=true,f)(♦ξ) = 1− p1 and
EM2,(c=2,y=true,f)( ξ | ♦ξ) = 1.

Furthermore, the probability and conditional expected accumulated reward of reaching the
single boundary state are:

PrM2,(c=2,y=true,f)(♦(c = 3, y = true, f)) = p1 and
EM2,(c=2,y=true,f)( (c = 3, y = true, f) | ♦(c = 3, y = true, f)) = 1.

The expected accumulated reward of reaching ξ in the factor M3 from (c = 3, y = true, f)
was already computed in Mr (the result is 6) and can be re-used. Using the results from
factors M2 and M3, we obtain

EMr,(c=2,y=true,f)( ξ | ♦ξ) = (1− p1) · 1 + p1 · 1 + p1 · 6 = 6p1 + 1,
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and finally:

EM( ξ) =
∑
sb∈S1

c

PrM1(♦sb) · (EM1( sb | ♦sb) + EMr,sb( ξ))

= (1− p1 − p2) · (3p1 + 6) + p1 · (3p1 + (6p1 + 1)) + p2 · (3p1 + p2)

= p22 + 6p21 − 2p1 − 6p2 + 6.

4.3 Factorization for Simple Counters
In this section we define simple counters (counters, where each counter update increases the
counter by the same value), and give the factorization approach for simple counters. Then,
we dive into the special case of simple counters being observing (the counter value does not
influence the model behavior), and show how this scenario simplifies factorization.

Definition 4.11 (Simple Counters). A counter c of P is simple, if there is a natural
number x > 0 such that for all states s, t ∈ S with P (s, t) > 0 we have that either s(c) = t(c)
or s(c) = t(c)− x. The counter c is a simple counter with update value x. A counter that is
not simple is multivariant.

Each PPG having a simple counter with update value x ∈ N, x > 0, can be transformed
into a PPG having a simple counter with update value 1, by dividing each occurrence of
the counter value (in the evaluations, updates, reward structure, etc.) by x. In the further,
we assume the counter c to be simple with update value 1. Furthermore a DTMC with
multivariant counter c can be transformed such that the counter is simple, by splitting
each transition updating the counter into a chain of transitions where each new transition
updates the counter by 1 with probability 1.

The factors arising from factorization for simple counters can be defined using the counter
values.

Definition 4.12 (Factors and Counter States). Let 0 ≤ i ≤ n. The DTMC Mi =
(Si, P i, Li) with

• Si = {s ∈ S | s(c) = i} ∪ {s ∈ Sc | s(c) = i+ 1},

• P i(s, t) =

⎧⎪⎪⎨⎪⎪⎩
P (s, t) if s, t ∈ Si

0 otherwise

• Li(s) = L(s) for all s ∈ Si

is called a factor of M. The states in Si
c = {s ∈ Sc | s(c) = i} are called counter states of

factor i.

The DTMC in Figure 4.6 depicts the factors arising from simple counters, and the counter
states that are reached with an counter update. For each i, the factor Mi is the part of
the DTMC M that contains all states between the counter states of M with value i and
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Figure 4.6: Factors Mi−1, Mi, and Mi+1 arising from a simple counter c. States in ξ
are marked blue, and counter states are orange. Below the Markov chain,
the size of the matrices P(j) is depicted. For the depicted Markov chain,
P(i−1) has three rows and two columns, since |Si−1

c | = 3 and |Si
c| = 2.

the counter states with value i + 1. Thus, all states s in factor Mi we have s(c) = i or
s(c) = i+ 1. The factor M0 comprises states where c = 0 and the set of counter state S1

c ,
i.e., flagged states with counter value 1. M1 then comprises states “between the flagged
states with value 1 and value 2”, i.e., all states where the counter value is 1 plus the flagged
states in S2

c . Note that factor Mn only comprises states with counter value n, since there
are no flagged states with counter value n+ 1.

Proposition 4.13 (Well-Definedness of Mi). For each 0 ≤ i < n, the DTMC Mi is
well-defined, i.e, for all states s ∈ Si: P i(s, t) = 0 for all t ∈ Si or

∑
t∈Si P i(s, t) = 1.

Proof. Let s ∈ Si. Then s(c) = i or s(c) = i+1. We show: s(c) = i =⇒
∑

t∈Si P i(s, t) = 1
and s(c) = i+ 1 =⇒ P i(s, t) = 0 for all t ∈ Si.

Case s(c) = i: For all states t ∈ S with P (s, t) > 0 we have: Either t(c) = i and thus
t ∈ Si. Or t(c) = i + 1, since we assumed c to be a simple counter with update value 1.
Then, t is reached from s by a transition that updates the counter, thus t ∈ Sc and t ∈ Si.
Therefore, all states t that are reachable from s in M are reachable from s in Mi. Hence,∑

t∈Si P i(s, t) =
∑

t∈S P (s, t) = 1.
Case s(c) = i + 1: Then s ∈ Sc. We show that there is no state in t ∈ Si such that

P i(s, t) > 0. All states t ∈ Si with t(c) = i are not reachable from s, since c is a counter.
All states t ∈ Si with t(c) = i + 1 are counter states, and hence are only reachable from
states s′ with counter value s′(c) ≤ i. Since s(c) = i+ 1, t can not be reached from s, and
hence P i(s, t) = 0.
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Lemma 4.14. Let s0 = sinit , S0
c = {s0}, and for all 0 ≤ i < n, let

P(i) =
(
PrMi,s(♦t)

)
s∈Si

c,t∈S
i+1
c

,

p(i) =
(
PrMi,s

(
♦
(
ξ ∧ ¬Si+1

c

)))
s∈Si

c
,

p(n) = (PrMn,s (♦ξ))s∈Sn
c
,

E(i) =
(
EMi,s( t | ♦t) · PrMi,s(♦t)

)
s∈Si

c,t∈S
i+1
c

,

e(i) =
(
EMi,s

( (
ξ ∧ ¬Si+1

c

)
| ♦
(
ξ ∧ ¬Si+1

c

))
· PrMi,s

(
♦
(
ξ ∧ ¬Si+1

c

)))
s∈Si

c
,

and
e(n) = (EMn,s ( ξ))s∈Sn

c
.

Then:

PrM(♦ξ) =
n∑

i=0

⎛⎝i−1∏
j=0

P(j) · p(i)
⎞⎠

and if PrM(♦ξ) = 1, then

EM( ξ) =

n∑
i=1

∑
s∈Si

c

⎛⎝i−2∏
j=0

P(j) · E(i−1)

⎞⎠
s

+

n∑
i=0

⎛⎝i−1∏
j=0

P(j) · e(i)
⎞⎠

.

The lemma arises from recursively applying factorization to the DTMC M, as outlined
in the previous section.

Proof. Choosing S1 = S0 \ S1
c and S2 =

⋃
1≤i≤n S

i as partitioning for factorization yields
the set of boundary states Sb = S1

c and M′ = M0. Applying (FP) yields:

PrM(♦ξ) = PrM0

(
♦
(
ξ ∧ ¬S1

c

))
+
∑
s1∈S1

c

PrM0(♦s1) · PrM,s1(♦ξ).

Applying (FP) recursively to PrM,si(♦ξ) (choosing S1 = Si \ Si+1
c and S2 =

⋃
i<j≤n S

j ,
and thus Sb = Si+1

c ) yields:
PrM(♦ξ) = PrM0

(
♦
(
ξ ∧ ¬S1

c

))
+
∑
s1∈S1

c

(
PrM0(♦s1) ·

(
PrM1,s1

(
♦
(
ξ ∧ ¬S2

c

))
+
∑
s2∈S2

c

PrM1,s1(♦s2) · PrM2,s2(♦ξ)
))

. . .

= PrM0

(
♦
(
ξ ∧ ¬S1

c

))
+
∑
s1∈S1

c

(
PrM0(♦s1) ·

(
PrM1,s1

(
♦
(
ξ ∧ ¬S2

c

))
+
∑
s2∈S2

c

PrM1,s1(♦s2) ·
(
PrM2,s2

(
♦
(
ξ ∧ ¬S3

c

))
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. . .

+
∑

sn∈Sn
c

PrMn−1,sn−1
(♦sn) · PrMn,sn(♦ξ)

)))
= PrM0

(
♦
(
ξ ∧ ¬S1

c

))
+
∑
s1∈S1

c

PrM0(♦s1) · PrM1,s1

(
♦
(
ξ ∧ ¬S2

))
+
∑
s1∈S1

c

∑
s2∈S2

c

PrM0(♦s1) · PrM1,s1(♦s2) · PrM2,s2

(
♦
(
ξ ∧ ¬S3

c

))
. . .

+
∑
s1∈S1

c

∑
s2∈S2

c

. . .
∑

sn∈Sn
c

PrM0(♦s1) . . . · PrMn−1,sn−1
(♦sn) · PrMn,sn(♦ξ)

= p(0)s0

+
∑
s1∈S1

c

P(0)
s0,s1 · p

(1)
s1

+
∑
s1∈S1

c

∑
s2∈S2

c

P(0)
s0,s1 ·P

(1)
s1,s2 · p

(2)
s2

. . .

+
∑
s1∈S1

c

∑
s2∈S2

c

. . .
∑

sn∈Sn
c

P(0)
s0,s1 . . . ·P

(n−1)
sn−1,sn · p(n)sn .

Now observe that for all j ≤ n and for all sj ∈ Sj
c :∑

s1∈S1
c
. . .
∑

sj∈Sj
c
P(0)

s0,s1 · . . . ·P
(j)
sj ,sj+1 =

(
P(0) · . . . ·P(j)

)
s0,sj+1

. The product of the ma-
trices is well-defined, since for all 0 ≤i < j: matrix P(i) has size |Si

c| × |Si+1
c |, and matrix

P(i+1) has size |Si+1
c | × |Si+2

c | (cf. Figure 4.6).
PrM(♦ξ) = p(0)s0

+
∑
s1∈S1

c

P(0)
s0,s1 · p

(1)
s1

+
∑
s2∈S2

c

(
P(0) ·P(1)

)
s0,s2

· p(2)s2

. . .

+
∑

sn∈Sn
c

(
P(0) · . . . ·P(n−1)

)
s0,sn

· p(n)sn

=

n∑
i=0

∑
si∈Si

c

⎛⎝i−1∏
j=0

P(j)

⎞⎠
s0,si

· p(i)si

=

n∑
i=0

⎛⎝i−1∏
j=0

P(j) · p(i)
⎞⎠

.
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The last step arises from the fact that P(0) has size 1× |S1
c |, and for all 0 ≤ i ≤ n p(i)

has size |Si
c| × 1. Thus, for each summand the matrix product results in a single value.

The proof for expected accumulated rewards follows the same schema.

EM( ξ) =EM0

( (
ξ ∧ ¬S1

c

)
| ♦
(
ξ ∧ ¬S1

c

))
· PrM0

(
♦
(
ξ ∧ ¬S1

c

))
+
∑
s1∈S1

c

PrM0(♦s1) · (EM0( s1 | ♦s1) + Es1( ξ)) .

Recursive application and using the definition of e(i) yields
EM( ξ) =e(0)s0

+
∑
s1∈S1

c

PrM0(♦s1) ·
(
EM0( s1 | ♦s1) + e(1)s1

+
∑
s2∈S2

c

PrM1(♦s2) ·
(
EM1,s1( s2 | ♦s2) + Es2( ξ)

))
. . .

=e(0)s0

+
∑
s1∈S1

c

PrM0(♦s1) ·
(
EM0( s1 | ♦s1) + e(1)s1

+
∑
s2∈S2

c

PrM1(♦s2) ·
(
EM1,s1( s2 | ♦s2) + e(2)s2

. . .

+
∑

sn∈Sn
c

PrMn−1(♦sn) ·
(
EMn−1,sn−1

( sn | ♦sn) + e(n)sn

)))
=e(0)s0

+
∑
s1∈S1

c

PrM0(♦s1) · EM0( s1 | ♦s1)

+
∑
s1∈S1

c

PrM0(♦s1) · e(1)s1

+
∑
s1∈S1

c

∑
s2∈S2

c

PrM0(♦s1) · PrM1(♦s2) · EM1,s1( s2 | ♦s2)

+
∑
s1∈S1

c

∑
s2∈S2

c

PrM0(♦s1) · PrM1(♦s2) · e(2)s2

. . .

+
∑
s1∈S1

c

. . .
∑

sn∈Sn
c

PrM0(♦s1) · . . . · PrMn−1(♦sn) · EMn−1,sn−1
( sn | ♦sn)

+
∑
s1∈S1

c

. . .
∑

sn∈Sn
c

PrM0(♦s1) · . . . · PrMn−1(♦sn) · e(n)sn

=e(0)s0
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+
∑
s1∈S1

c

E(0)
s0,s1 +

∑
s1∈S1

c

P(0)
s0,s1 · e

(1)
s1

+
∑
s1∈S1

c

∑
s2∈S2

c

P(0)
s0,s1 · E

(1)
s1,s2 +

∑
s1∈S1

c

∑
s2∈S2

c

P(0)
s0,s1 ·P

(1)
s1,s2 · e

(2)
s2

. . .

+
∑
s1∈S1

c

. . .
∑

sn∈Sn
c

P(0)
s0,s1 · . . . ·P

(n−2)
sn−2,sn−1

· E(n−1)
sn−1,sn

+
∑
s1∈S1

c

. . .
∑

sn∈Sn
c

P(0)
s0,s1 · . . . ·P

(n−2)
sn−2,sn−1

·P(n−1)
sn−1,sn · e(n)sn

=e(0)s0

+
∑
s1∈S1

c

E(0)
s0,s1 +

∑
s1∈S1

c

P(0)
s0,s1 · e

(1)
s1

+
∑
s2∈S2

c

(
P(0) · E(1)

)
s0,s2

+
∑
s2∈S2

c

(
P(0) ·P(1)

)
s0,s2

· e(2)s2

. . .

+
∑

sn∈Sn
c

(
P(0) · . . . ·P(n−2) · E(n−1)

)
s0,sn

+
∑

sn∈Sn
c

(
P(0) · . . . ·P(n−1)

)
s0,sn

· e(n)sn

=
n∑

i=1

∑
s∈Si

c

⎛⎝i−2∏
j=0

P(j) · E(i−1)

⎞⎠
s

+
n∑

i=0

∑
s∈Si

c

⎛⎝i−1∏
j=0

P(j)

⎞⎠
s

· e(i)s

=

n∑
i=1

∑
s∈Si

c

⎛⎝i−2∏
j=0

P(j) · E(i−1)

⎞⎠
s

+

n∑
i=0

⎛⎝i−1∏
j=0

P(j) · e(i)
⎞⎠

.

Corollary 4.15. If for all s ∈ ξ: s(c) = n, then for all i < n: e(i) = p(i) = 0⃗. Thus,

PrM(♦ξ) =
n−1∏
j=0

P(j) · p(n)

and if PrM(♦ξ) = 1

EM( ξ) =

n∑
i=1

∑
s∈Si

c

⎛⎝i−2∏
j=0

P(j) · E(i−1)

⎞⎠
s

+

⎛⎝n−1∏
j=0

P(j) · e(n)
⎞⎠

.

Factorization for Simple, Observing Counters
A simple counter is observing, if the counter value has no effect on the structure, probabilities,
and rewards of the model, except for the minimal or maximal counter value.
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Definition 4.16 (Observing Counters). A simple counter c of M with maximal value
n is observing, if for each 0 < i, j < n the factors Mi and Mj are bisimilar with respect to
the labeling L(s) = s↓Vars\{c}, in the sense of [Seg95].

Thus, for a simple, observing counter all factors except for the first and the last one are
bisimilar with respect to the labeling that ignores the counter values.

Corollary 4.17. Let c be a simple, observing counter of M with update value 1. For all
s ∈ ξ, let s(c) = n. Let Se

c = S1
c , P = P(1) and E = E(1). Then:

PrM(♦ξ) = P(0) ·Pn−1 · p(n)

and if PrM(♦ξ) = 1

EM( ξ) =
∑
s∈Se

c

E(0)
s +

n∑
i=2

∑
s∈Se

c

(
P(0) ·Pi−2 · E

)
s
+
(
P(0) ·Pn−1 · e(n)

)

Proof. Since c is a simple, observing counter with update value 1, for all 0 < i, j < n we
have that Mi and Mj are bisimilar with respect to the labeling that erases the counter
value, and thus P(i) = P(j) = P and E(i) = E(j) = E. This yields the corollary.

To compute Pk, k − 1 matrix multiplications would be necessary with a naive algo-
rithm — which would cost a lot of time for large k. The well-known square-and-multiply
algorithm [Knu11] calculates the power with a logarithmic number of matrix multiplications.

When computing EM( ξ) the first summand can be computed fast, and the third
summand is calculated using the square-and multiply algorithm. For the second summand,
we first observe that

n∑
i=2

∑
s∈Se

c

(
P(0) ·Pi−2 · E

)
s

=
∑
s∈Se

c

(
P(0) ·

n∑
i=2

Pi−2 · E

)
s

=
∑
s∈Se

c

(
P(0) ·

n−2∑
i=0

Pi · E

)
s

=
∑
s∈Se

c

(
P(0) ·

(
E +

n−2∑
i=1

Pi · E

))
s.

We carry over the idea of square-and-multiply to compute
∑n−2

i=1 Pi with a logarithmic
number of matrix multiplications. Observe, that for an arbitrary matrix A and natural
numbers k, k1, k2 ∈ N such that k = k1 + k2 it holds:

k∑
i=1

Ai =

k1∑
i=1

Ai +Ak1

k2∑
i=1

Ai. (DS)
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Thus, analogously to square-and-multiply,
∑k

i=1A
i can be composed using the binary

representation of k =
∑m

j=0 aj · 2j for unique a0, . . . , am ∈ {0, 1}. We use an index set
I = {j | aj = 1}, and set k1 = 2j such that j is the smallest index in I and k2 =

∑
j′∈I,j′>j 2

j .
Then, the second summand can be composed recursively in an analogous way. Thus,
computation of the complex sum can be reduced to calculating and summing up a series of
values

∑k′

i=1A
i for k′ ∈ {2j | 0 ≤ j ≤ m}. Each of these sums can be calculated re-using

values of already computed sums with smaller index.

Example 4.18. Consider an arbitrary matrix A and k = 23 = 16 + 4 + 2 + 1:

23∑
i=1

Ai =
(
A1 + . . .+A16

)  ∑16
i=1 A

i

+
( (
A1 +A2 +A3 +A4

)  ∑4
i=1 A

i

+
( (
A+A2

)  ∑2
i=1 A

i

+ (A)∑1
i=1 A

i

·A2
)
·A4

)
·A16.

A+A2 can be computed as A+A ·A. Analogously, A+ . . .+A4 can be computed reusing
z = A+A2, which yields A+ . . .+A4 = z + z ·A2.

At the beginning of this chapter we outlined that the factorization approach will be
applied to the redo-based fault-tolerance protocol presented in the next chapter. The counter
of this PPG is a simple, observing counter with update value 1. Thus, Corollary 4.17 and the
computation simplification for

∑n−2
i=1 Pi yield the mathematical basis to apply factorization

and opens the way for resiliency configuration of the redo-based fault-tolerance protocol.

4.4 Implementation
One purpose of this work is to provide a tool that implements the factorization approach
as it is needed for the configuration presented in the next chapter. The implementation
shall not only support models for redo-based fault tolerance, but is meant to be the starting
point of counter-based factorization of arbitrary PPGs with counters. This purpose resulted
in fact, a tool for counter-based factorization written in python. fact is a tool that, given
a purely probabilistic program graph and a probabilistic reachability property or expected
accumulated reward, searches for a simple, observing counter in the model and applies the
factorization approach presented before.

Overview. fact is a object-oriented tool that takes as input a (parametric) probabilistic
program graph in the common Prism language [11b], together with a probabilistic reacha-
bility property or an expected accumulated reward, also in Prism language. The current
implementation of fact makes use of the probabilistic model checker Storm [Deh+17]
(written in C++) and the python-based computer algebra system (CAS) sympy [Meu+17].
fact implements interfaces for Storm and sympy. Thus, fact can be easily extended to
support other model checker or computer algebra systems by defining new interfaces. The
output of fact is a rational function, or, if the model does not have free parameters, a
result value for the input property. The input, output, interfaces and the work flow of fact
is visualized in Figure 4.7.

An important characteristic of fact is that almost all necessary steps are performed on
the PPG, without building the induced Markov chain. Some steps need to be performed on
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the factors of the induced Markov chain, but due to the observability of the counter and
the resulting bisimilarity of the factors, it is not necessary to explore the complete state
space of the DTMC.

fact

CAS PMC

probabilistic program
graph

probabilistic reachability
property or expected
accumulated reward

result / rational function

parsing preprocessing

counter extraction
PPG flagging and
counter states
extraction

matrix computation computation of
rational function

Figure 4.7: Input, output, interfaces and work flow of fact.

The work flow of fact starts with parsing the model and the property. The PPG is
parsed, and it is checked whether the property is a reachability property. After parsing,
some factorization-independent preprocessing steps, that ease the application of PMC to
parametric models, are performed. Then, the variables of the PPG are analyzed to find
simple, observing counters. A counter is chosen, and the PPG is flagged to identify counter
states in the induced DTMC. These states are found by exploring a small part of the DTMC’s
state space and stored for later use. The PPG is factorized, and local characteristics of the
factors are computed via Storm. Results are extracted from the Storm-output and collected
in matrices. Finally, the global rational function is computed via the CAS sympy from the
local characteristics.
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The Prism Language. The Prism language enables easy, compositional description of
PPGs. A PPG in Prism language consists of one ore more components, each describing
a single PPG. For each component, a finite set of variables and their domain are defined.
The domain can be a subset of successive integers (defined by a lower and an upper bound),
or {true, false}. These variables correspond to the local variables LV from the definition
of PPGs in Section 2. Furthermore, a component consists of a set of transitions, each
consisting of an action name, a guard (a propositional formula), and a probabilistic update
on the local variables. A probabilistic update is a list of probability - update pairs, where
each update is a set of variable updates of the form x′ = f(e). This update denotes that in
the induced DTMC, when being in state e, the value of the variable x in the next state is
defined as f(e). Variable updates of the form x′ = x are omitted.

The Prism language supports the use of constants. A constant can be seen as a variable
with single-elemented domain, i.e., no PPG component can change a constants value.
Transition probabilities, updates, and rewards can be specified in terms of functions that
depend on constant values. Constants that are used only in transition probabilities and
rewards can be left undefined and will be parameters during PMC.

Reward structures in the PRISM languages map sets of variable evaluations to rational
values. The sets of variable evaluations are described via propositional formulas. This
mapping does not have to be total. For each evaluation, i.e., for each state in the induced
DTMC, the reward of this evaluation is the sum of all rational numbers assigned to
propositional formulas that are satisfied by this evaluation.

For more details on the Prism language, see [11b].

Parsing. We implemented an LR(1)-parser to parse a PPG written in the Prism language.
The parser generation was simplified by using of the python parser library lark [18b]. The
parser is capable of parsing both the input model and the input property.

The parser supports almost the full Prism language, yet some parts, that are not relevant
for this work, are omitted. For example, the Prism language allows for defining more
advanced forms of compositions, that are out of context of this work and thus are not
supported.

We assume that the parsed PPG is purely probabilistic, which can be easily checked
by inspecting whether the PPG description is preceded by the keyword dtmc. A non-
deterministic program graph whose description is preceded by dtmc will be transformed
in a purely probabilistic program graph by Storm, by replacing all nondeterminism with
equally distributed probabilistic choices. The parser keeps the structure of the Prism model,
including, e.g., variable ordering.

The parser is able to parse the full range of LTL expressions, yet we check whether the
input property is a reachability property, by testing whether the LTL-formula is of the form
♦ψ and whether ψ is a propositional formula.

For all variables that will be handled as counters during factorization, we assume that
their domain is a range of integers, and that the lower bound is 0.

The result of both, model parsing and property parsing, is an abstract syntax tree (AST)
of python objects. fact supports arbitrary precision and exact representation of rational
numbers by parsing all rational numbers as strings and converting them to sympy objects
in the respective precision directly. The precision can be controlled via command line
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and describes the number of digits that shall be preserved. Thus, the argument of the
command-line switch --precision is an arbitrary natural number, or “exact”.

Preprocessing. Transition probabilities or rewards can be defined as arithmetic expres-
sions. Some of these expressions are not supported by Storm, or cause long run-times
when using Storm for parametric models. When replacing these expressions with constants,
and treating these constants as parameters, a significant speed up can be obtained. fact
supports automated extraction of such problematic transition probabilities or reward defini-
tions, and replaces them with undefined constants, such that they are handled as parameters
during PMC. fact traverses the AST of the model and for each mathematical expression in
the transition probabilities or rewards that satisfies one of the conditions below, it inserts a
new, undefined constant, and replaces the mathematical expression by this new constant’s
name. The conditions for being handled parametric are:

• The expression is a power with an exponent larger than some natural number m,
which can be specified using --parametrize-exponents-above “m”.

• The expression is a power with undefined exponent, i.e., the exponent is a function
containing some undefined constant. (This is not supported by Storm.)

• The expression is a power with a non-integer exponent. (This is not supported by
Storm.)

• The expression is the definition of some constant that is in the argument list of
--parameters.

Counter Extraction. The goal of this step is to find all variables that can be handled
as counters. fact currently supports only the extraction of simple counters with update
value 1. A variable c is a simple counter, if for each transition that updates the counter,
the update is of the form c′ = c + 1. The counter is observing, if for each transition the
transition probabilities do not depend on the counter value, and if the guard depends on
the counter value, then all occurrences of the counter variable are of the form v = n or
v < n, where n is the maximal value of the counter.

fact supports factorization only for one counter. In case of several simple observing
counters with update value 1, we choose the one with largest maximal value. Since we
assume the minimal value to be 0, this counter induces the largest number of factors in the
DTMC, and thus heuristically the most significant reduce in the size of the models where
PMC is applied.

Counter Flagging. In the next step, we insert a Boolean variable f , that tracks whether
the counter c has been updated. Let LV be the set of local variables of the component that
defines the counter. We define a new variable f with domain {true, false} and initial value
false, and add it to the set of local variables. For every transition in this component, and
for each update u that increments the counter value, we transform the update such that it
assigns f the value true, i.e., we add the variable update f ′ = true. For each update that
does not change the value of c, we transform the update such that it assigns f the value
false. Furthermore, for each action α which is not in the set of actions of this component,
we add a new transition t to the counter-defining component, with t = true

α
↪−→ diracu for
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the update u ∈ Upd(LV ) that assigns f the value false and does not change the value of
other variables.

Counter States. To apply factorization, we identify all counter states in Se
c and store

them as State-objects. A state in fact is a mapping (a python dictionary), assigning each
variable of the PPG a value. To find all counter states, we explore a part of the induced
DTMC’s state space.

The procedure build_model_partially(P,condition,S) (see Algorithm 1) takes as
input a PPG P, a propositional formula condition, and a set of states S. Starting from
the states in S, it explores the state space (i.e., determines the set of reachable states), but
treats states that do not satisfy condition as absorbing states. The procedure maintains
sets of states dont_explore and explored, which are initially empty. dont_explore will
be used to store states that do not satisfy the condition. Furthermore, there is a set of
states unexplored, which is initially the input set S. As long as there is a state in the
list of unexplored states, this state is removed from this list. If the state does not match
the condition, it is added to dont_explore. Otherwise, it is added to explored and is
explored: All transitions of the PPG are traversed, and for each transition where the guard
is satisfied by the state, all updates in the probabilistic update with probability greater
than 0 are applied to the state. Thus, a new set of states is obtained. Each state in the
new set of states is added to the set of unexplored states, if it is not yet in one of the set
dont_explore or explored. When the set of unexplored states is empty, the procedure
build_model_partially(P,condition,S) returns the state set dont_explore.

Lemma 4.17 requires all factors but the first and the last one to be bisimilar with respect
to the labeling arising from the variable evaluations, but ignoring the counter value. In the
implementation we allow parts of the bisimilar factors to be not reachable (cf. Figure 4.8).
The set Se

c is now defined as the set of states {s↓Vars\{c} | s ∈ Sc}, i.e., the set of counter-
state representations that arise from reachable counter states, when ignoring the counter
value. If we would explore the reachable state space of the first factor M0, and set Se

c = S1
c ,

counter state representations might be missing, since some counter states might not be
reachable in the first factor.

Algorithm 2 is used to find all counter state representations, i.e., the set Se
c . It initializes

a set counter_states as the empty set, and calls build_model_partially with the PPG,
the condition that the counter value (of some state) is smaller than 1, and the singleton
state set containing the initial state. The states in the returned list dont_explore are
counter states with value 1. We store these counter states in counter_states. Yet, it
might be that some counter states in Se

c are not reachable from the initial state directly, i.e.,
with only one counter update. Thus, these states are not included in the list dont_explore
returned by build_model_partially.

We again call build_model_partially, now with the condition that the counter value
is smaller than 2, and the previously retrieved set of counter states. The procedure will
now explore all counter states that where not explored in the last call, hence it will build
factor M1. We obtain a new list of counter states, all having counter value 2. For each of
this new states, we check whether a bisimilar state is already contained in counter_states.
If so, we ignore it, if not we add the new state to counter_states and to a set of states
explorestates. If no new state was added to counter_states, all states in Se

c are found
and we return counter_states. Otherwise, build_model_partially is called again, with
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Algorithm 1: The procedure build_model_partially(P ,condition,unex-
plored) explores the state space of the induced DTMC of P from the
states in unexplored, but treats states that do not satisfy the condition as
absorbing states.

input :A PPG P , a propositional formula condition, a list of states
unexplored

output : a list of unexplored states
1 dont_explore:= ∅;
2 explored:= ∅;
3 while unexplored ̸= ∅ do
4 s:= unexplored.pop();
5 if s ̸|= condition then
6 dont_explore.add(s);
7 else
8 explored.add(s);
9 new_states:= s.explore();

10 for s′ ∈ new_states do
11 if s′ ̸∈ explored and s′ ̸∈ dont_explore then
12 unexplored.add(s′);

13 return (dont_explore);

c’=c+1c’=c+1c’=c+1c’=c+1

c’=c+1

c’=c+1 c’=c+1

c’=c+1c’=c+1
c’=c+1

M1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

M2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>S

1
c

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

S
2

c
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> S
3

c
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Figure 4.8: Factors M0, M1, and M2 arising from a simple, observing counter c.
Counter states are marked orange. In the first factor, two counter states
(states in S1

c ) are reachable. For these states there are bisimilar states in
S2
c , S

3
c , . . . In S2

c there is a counter state that is reachable in factor M1,
but there is no reachable bisimilar state in S1

c . Nevertheless, there is a
non-reachable bisimilar state.

73



4 Counter-based Factorization

the condition that the counter value is smaller than 3, and the set explorestates of new
counter states that were previously added to counter_states. A new set of counter states
is retrieved, and so on. The while loop is left as soon as all new counter states are already
represented in counter_states. Finally, for all counter states, the value of the counter is
set to 1 to obtain counter state representations with equivalent counter value, and the set
of counter state representations is returned.

Algorithm 2: Algorithm extract_counter_states(P,c) retrieves all
counter state representations in a PPG for a simple, observing counter
with update value 1.

input :A PPG P , a counter c
output :A list of counter states Se

c

1 counter_states:= ∅ explore_states:= {P .initial_state };
2 i := 1;
3 while explore_states ̸= ∅ do
4 condition = s(c) < i;
5 new_states:= build_model_partially (P ,condition,explore_states);
6 explore_states:= ∅;
7 for s ∈ new_states do
8 if not is_represented ( s,counter_states) then
9 counter_states.add(s);

10 explore_states.add(s);

11 i := i+1;
12 for s ∈ counter_states do
13 s (c):=1;
14 return (counter_states);

Computation of Factor Matrices. To compute the matrix entries, Storm is called,
taking as input a PPG representing a factor of the original PPG, and the property that
shall be computed. The factorization approach for simple, observing counters with update
value 1 requires the computation of the matrices P and E, and the vectors P(0), E(0), p(n)
and e(n).

To retrieve the PPG representing the first factor M0, we transform P such that all
counter states are absorbing. For this purpose, we iterate all transitions and for each guard
g, we modify the guard to be g ∧ (c = 0). Hence, transition guards in the transformed
PPG are only satisfiable by states s with s(c) = 0. Since for all counter states sc we have
sc(c) ≥ 1, all counter states are absorbing, and the transformed PPG represents the factor
M0 and can be utilized to compute P(0), and E(0).

We set up two files, one containing the set of properties {PrM(♦s) | s ∈ Se
c} and one

containing {E(M s | ♦s) | s ∈ Se
c}. To compute the values of P(0) and E(0), we call Storm

on the transformed PPG (and the original initial evaluation) and the respective properties
file. The results, a series of rational functions, is extracted from the Storm log and stored
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as text in two lists. One of these lists represents P(0), and the elementwise product of
both lists represents E(0). Note that P(0) and E(0) are the same matrices as defined in
Lemma 4.17, when assuming that Mi and Mj are bisimilar for all 1 ≤ i ≤ n. If there are
counter states in Se

c that are not reachable in the first factor, P(0) and E(0) have additional
lines containing zeros, since the probability of reaching these states and the conditional
expected reward is 0 for these states.

For the computations of P and E, we use factor M1. To retrieve M1, we first change the
previously transformed transition guards to g∧c = 1. Thus, states in S2

c are absorbing states.
Iterating over all counter states sc ∈ Se

c , we set sc as initial evaluation of the transformed
PPG, and apply PMC. Since c is observing, and sc(c) = 1 was set in Algorithm 2, the PPG
with initial evaluation sc now represents factor M1. If sc is not reachable in M1, we can
use this factor to compute the probability and expected accumulated rewards anyway. The
observability of the counter guarantees the results to be correct. When setting sc as initial
state, M1 will have the same properties as all Mi where the respective bisimilar state in Si

c

is reachable.
Storm is called for each sc on the transformed PPG and the probabilistic properties input

file (with adjusted counter values), and results are extracted as before, now stored in a list
of lists that represents the matrix. The computation of E is analogous.

Finally, we to compute p(n) and e(n). We revert the previously performed transition
transformation, i.e., for each transition’s guard g ∧ (c = 1), we transform the guard to be g.
Furthermore, we set up two files, one containing the property PrM(♦ξ), and one containing
EM( ξ). Then, for each counter state sc ∈ Se

c , we transform sc such that sc(c) = n and
set sc as initial evaluation of the PPG. Thus, the PPG now represents the factor Mn with
initial state sc ∈ Sn

c . For each sc and each of the two files we call Storm on the PPG with
initial value sc and the respective file. Thus, we obtain two lists, representing p(n) and e(n).

The Global Rational Function. After computing the vectors and matrices (which
are still represented as lists, with text entries) that are necessary for factorization, the
rational functions in these lists need to be transformed to sympy mathematical objects.
This transformation is completely provided by sympy, including the construction of matrix
objects from the lists. Yet, this transformation is rather time- and memory intensive,
especially when the rational functions are large. Recall that fact automatically replaces
transition probabilities by parameters, if they are not manageable by Storm or cause time
issues. These free parameters may cause the rational functions to be larger than they
would be without these additional parameters. During configuration of the redo-based
fault-tolerance protocol, we observed that the time for transforming rational functions
represented as text can be drastically reduced when, before applying this transformation,
the free parameters that were introduced by fact, are replaced by their definitions. This
replacement is performed on a textual level. We sort the name of the parameters such that
parameters whose name is a sub-string of another parameter are replaced last. The behavior,
when fact replaces parameters by their definition, can be controlled via the command-line
switch --replace-at “v”. “v” is one of the strings “after-PMC” (replace on a textual
level), “after-mathparse” (replace after transforming the rational functions to mathematical
objects), or “after-computation” (replace after computing the global characteristic).

After transforming the PMC-results to matrix objects that have rational functions as
entries, the factorization formulas can be used to retrieve the global characteristic. To
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compute Pr(♦ξ), sympy is utilized to retrieve the matrix power and the scalar products.
To compute Pk with a logarithmic number of matrix multiplications, sympy implements
the well-known square-and-multiply algorithm [Knu11].

Algorithm 3: Algorithm to compute
∑k

i=1 A
i

input : a matrix A, a national number k
output :

∑k
i=1 A

i

1 if k = 0 then
2 return 0;
3 i := k − 1;
4 n := 0;
5 z := A;
6 result:= A;
7 while i ̸= 0 do
8 if i mod 2 = 1 then
9 result:= z + result · A2n ;

10 z := z + z · A2n ;
11 i := ⌊ i

2
⌋;

12 n := n+ 1;
13 return result;

Algorithm 3 is a dynamic algorithm in the style of square-and-multiply to compute∑n−2
i=1 Pi with a quadratic logarithmic number of multiplications. It structurally equals an

iterative implementation of the square-and-multiply approach, but differs in the variable
assignments. The main part of the algorithm is a while-loop, where in each iteration, a
natural number n, which is initially 0, is increased by 1. It represents the exponents of the
powers of two, as described in the previous section. A value i, initialized with k, is updated
to ⌊ i

2⌋ each iteration. It is used to compute the values aj : If i mod 2 = 1, then an = 1
in the respective iteration. The variable z contains the values

∑n
i=1A

i, result stores the
intermediate result computed so far. In each iteration where i mod 2 = 1, result is updated
according to Equation (DS). Afterwards, z is updated (independently from i mod 2) to
represent the value

∑2n+1

i=1 Ai, which will be used in the next iteration to update result and
z.

With this implementation, we are now ready to apply the factorization approach to
configure redo-based fault-tolerance protocols, as we do exemplarily in the next chapter.
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Every computation that is performed on a computer, every low-level operating service, and
every high-level user application is, on an abstract level, a sequence of instructions that
produces data. Many of these instruction sequences, in the further called application, and
the produced data need to be reliable. If operating system services are not protected against
bit flips, the system might become prone to malware, or data might be accessible from
unauthorized users. For high level applications like bank services or airplane software, bit
flips might cause dramatic financial loss or even harm human lives.

Redo-based fault-tolerance techniques provide protection of instruction sequences and of
the produced data against bit flips. For this purpose, redundance is added to the instruction
sequence before it is executed. The instruction sequence is, also before execution, split
into several transactions. Then, during execution, each transaction is checked for bit-flip-
caused errors in the instruction flow and in the produced data. If an error is detected, the
transaction is redone.

This opens a configuration problem: How much redundance shall be added, such that the
overhead arising due to maintaining the redundance is small, but a certain level of resilience
can be provided? How many redos shall be performed? When a transaction is redone
because of a detected error, this redo might again be affected by bit flips, another error
might be detected and cause another redo. Thus, after how many of these successive, failed
redos should the execution be aborted? And how many instructions shall be encapsulated
in one transaction?

The goal of this chapter is to show how this configuration problem can be solved with
probabilistic model checking. We exemplarily configure the former mentioned system
variables of a redo-based fault-tolerance mechanism that is inspired by haft [Kuv+16], i.e.,
each instruction is a CPU-instruction. Some of these instructions write data to memory, and
hence produce data. Redundance is added by duplicating a certain amount of instructions
and a certain amount of data. The instruction duplicates enable detection of errors in the
instruction flow, the data duplicates are used to find errors in the data.

Outline. The first section of this chapter gives more details about the principle of redo-
based fault tolerance. In Section 5.2, we present a model family for redo-based fault-tolerance
techniques. By setting model attributes, a model for a concrete redo-based fault-tolerance
technique can be obtained. Finally, in Section 5.3, we present the exemplary configuration
of the chosen redo-based fault-tolerance instance.
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Figure 5.1: Control- and data flow of factorial(n).

5.1 The Concept of Redo-Based Fault Tolerance
An application is finite sequence of instructions, the control flow, that produces a sequence
of data, the data flow. We distinguish control-flow instructions and data-flow instructions.
Data-flow instructions are instructions that produce data (at the moment of execution),
while control-flow instructions do not produce data. Data-flow instructions typically do also
affect the control flow.

Algorithm 4: factorial(n): Factorial of a natural number n
input :A natural number n
output :The factorial of n

1 if n = 0 then
2 return 1;
3 x:= 1;
4 for i ∈ (1, . . . , n) do
5 x:=x ·i;
6 return x;

Example 5.1 (An application computing the factorial). Assume an application that
computes the factorial of a natural number with Algorithm 4. Figure 5.1 shows the control
flow (above the black line in the middle) and the data flow (below the black line) of this
application. The data flow describes the changes in the memory of the algorithm. The
if-clause and the return statement are control-flow instructions, since they do not produce
data. In lines 3 and 5, a value is stored in variable x, thus these instructions are data-flow
instruction. The head of the for-loop assigns values to variable i. Thus, this instruction is a
data-flow instruction, too.

Both the control flow and the data flow can be affected by errors. Errors, if not corrected,
can cause the application to produce wrong data. Errors in the data flow obviously cause
wrong data directly, while errors in the control flow have a high chance of affecting the data
flow eventually (e.g., a wrong jump will very likely cause wrong data-flow instructions to be
performed and thus cause errors in the data flow).

The primary goal of a redo-based fault-tolerance mechanism is to prevent an application
from producing wrong output data. It enables error detection and correction in both the
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control-flow and the data flow. Redundance is added to detect errors. In this thesis, we
consider instruction and data duplicates as redundance, i.e., instructions are duplicated and
both the original instructions and the replicates are executed. The duplicated instructions
operate on the duplicated data.

Error correction is performed by redoing parts of the application. To enable partial
application redos, the application is partitioned into transactions before its execution.
Transaction management instructions (e.g., begin-of-transaction, end-of-transaction) are
included. In each transaction, original instructions and the data they produce are compared
to their duplicates. If no error is detected in a transaction, the application’s memory state
is stored, and the next transaction is executed. If an error is detected in some transaction,
the application’s memory is reset to the state of the end of the previous transaction, and
the faulty transaction is re-executed. During re-execution new errors may arise and cause
further redos. A redo-based transaction mechanism typically comes with a pre-defined
number of maximal redos that can be performed per transaction. If this number of redos
does not suffice to correct the error, i.e., if there is an error in each redo, the application is
aborted.
Example 5.2. A redo-based fault-tolerance mechanism will partition the instruction flow
into transactions. One possibility to do this is to encapsulate the if-clause in one transaction,
the assignment x := 1 in another, and each iteration of the for-loop in a separate transaction.
One way to provide resilience by adding redundance is, e.g., to duplicate each transaction
and to run it twice, in parallel. At the end of each transaction the data produced by the
original transaction and by the copied transaction is compared. If a mismatch is detected,
both the original transaction and its duplicate are redone.

The duplicates of instructions can also be affected by errors. Thus, transaction redos
might be imposed although no error occurred in the original application. We say that the
fault-tolerance mechanism has a false positive in this situation. If, on the other hand, an
original instruction is erroneous, but this error can not be detected (e.g., if the same error
occurs in the duplicate or if the instruction is not duplicated), the fault-tolerance mechanism
has a false negative. If an error is not detected, and thus an erroneous transaction is not
corrected, this error becomes a failure and can not be repaired by succeeding transactions.
Ones the application has a failure, this failure will persist until the end of the application.

Error Model. Due to the nature of formal methods we do not need to impose restrictions
on the type or number of errors occurring but simply assume the probability of an error
affecting an instruction to be known. The presence of a failure might increase the probability
of succeeding error occurrence. We also assume that this increased error probability is given.

Overhead. Error detection and correction causes overhead. This overhead can be mea-
sured, e.g., in terms of time or energy spend on error handling. The nature of formal
methods allows to easily define several overhead measurements without changing the un-
derlying model. Although the configuration in Section 5.3 focuses on time overhead, the
same procedure can be performed for other overheads. Nevertheless, we need to identify the
phases in the application run where overhead is produced. We only consider overhead that
is produced during the application run, i.e., the overhead that is needed to insert redun-
dance and transaction management instructions before execution is neglected. Overhead is
generated by
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• the transaction mechanism, i.e., by the execution of transaction management instruc-
tions,

• executing duplicated instruction,

• comparing original instructions and their duplicates (control-flow checking),

• comparing data produced by original instructions and duplicated instructions (data-
flow checking),

• reloading the application’s memory before transaction redo, and

• transaction redos.

Configuration. The main goal of a fault-tolerance technique is to protect an application
against errors in the data-flow, i.e., to avoid false negatives, with an acceptable over-
head. Redo-based fault-tolerance mechanisms as described above come with the following
configuration parameters:

• The maximal number of redos per transaction: Performing more redos increases the
chance of completing a transaction, but also increase the chance of having errors and
false negatives, since more instructions are performed.

• The number of instructions in a transaction: Short transactions cause more overhead
due to storing the application’s memory after each transaction, but in long transactions
there is a higher chance per transaction of having an error and thus a higher chance of
failures and redos. Furthermore, redos are more costly when transactions are longer.

• The number of instructions to be duplicated: The more instructions are duplicated,
the more overhead is generated, but false negatives are less likely.

5.2 A Model for Redo-Based Fault Tolerance
We give a detailed insight in the model we set up for analysis. This model contains adjustable
attributes, which are summarized in Tables 5.9 and 5.10 at the end of this section. Assigning
precise values to these attributes defines a concrete redo-based fault-tolerance mechanism,
a concrete error model, and a concrete application. Probabilistic attributes and reward
attributes can be left undefined, and then will be parameters when performing PMC on the
model.

The formal model consists of components for the underlying hardware, the application,
and the fault-tolerance protocol. The latter contains sub-modules for a control-flow checker
(CFC), a data-flow checker (DFC), and a transaction redo manager (TRM) implementing
the redo/abort-schema (cf. Figure 5.2).

Application model. An application performs a fixed number on instructions, which can
be specified by the attribute inst_num. The instruction flow is separated into transactions,
each consisting of ta_len instructions. These attributes define the number of transactions
to be performed, ta_num = inst_num / ta_len. We distinguish three types of transactions.
First, there are control-flow instructions, where errors affect only the control flow (e.g., jump

80



5.2 A Model for Redo-Based Fault Tolerance

Application

DFC CFCTRM

fault-tolerance mechanism

Hardware

Figure 5.2: The structure of our model.

or return statements). Second, there are data-flow instructions, where errors affect both
the control-flow and the data flow (e.g. add). Third, there are transaction management
instructions, introduced to implement the transaction mechanism (e.g., begin-of-transaction
and end-of-transaction). For the latter, errors do only affect the control flow. The ratio
of control-flow and data-flow instructions can be set via the attribute cf_df_ratio. The
amount of transaction management instructions per transaction is controlled by the attribute
tmi_num.

Transaction execution is modeled as an atomic step, named PERFORM_TA (cf. Figure 5.3),
in which the local counter variable ta_counter is increased. We use an ! to denote the sender
of a synchronization action, while a ? is used on the receiver side. In case of PERFORM_TA,
the receiver side is played by the hardware component (see paragraph “hardware model”
below) that synchronizes on PERFORM_TA.

start 
transaction
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terminated
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ta_counter++

ABORT?
COMMIT?

abort

transaction 
completed IF ta_counter=ta_num
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Figure 5.3: The program graph of the application.

After performing a transaction, the application is paused. During this pause, error
detection and correction is performed by the TRM, DFC, and CFC. After this, the TRM
sends either a COMMIT or an ABORT signal to the application, by executing the respective
action. The application synchronizes on this action, either ending in an abort location or
reaching location “transaction completed”. In the latter case, if ta_counter did not yet
reach ta_num, the application’s location is changed to “start” and the next transaction is
performed. Otherwise, location “terminated” is reached and the application stops.
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5 Configuration of Redo-Based Fault-Tolerance Protocols

TRM model. The transaction redo manager is the coordinative center of the fault-
tolerance protocol. Its attribute max_redos, controlling the maximal number of redos, can
be set to any natural number including zero, or ∞, indicating that infinitely many redos can
be performed. After each transaction performed by the application, the transaction redo
manager initiates checks on the data flow and the control flow, launches redos if necessary,
and finally sends a COMMIT or ABORT signal to the application.

wait

checkers 
invoked

answers 
received

RESULTS?
    p_e_TRM:  redo = ¬(redo_CFC ∨ redo_DFC)
1-p_e_TRM:  redo =  (redo_CFC ∨ redo_DFC)

PERFORM_REDO!
redo=false ; rc++ 

COMMIT! 
IF ¬redo: redo=false ∧ rc’=0; 
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redo=false ∧ rc=0
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REDO!
IF redo ∧ (rc < mr)

Figure 5.4: The program graph of the TRM. rc is short for redo_counter , mr abbrevi-
ates max_redos.

In our model, the TRM (cf. Figure 5.4) invokes the DFC and CFC with the synchronous
action CHECK simultaneously as soon as the transaction has been performed. It then waits
until within action RESULTS the results of both checkers are collected and evaluated in
location “answer received”. The TRM is also prone to errors, and thus might “misread” the
signals received from the checkers.

The next action depends on whether an error was detected and whether an error in
the TRM has occurred. If an error was detected by one of the checkers, and no error in
the TRM, e.g., falsified the signal, a redo is initiated (if the maximal number of redos
is not yet exceeded). The probability of an error in the TRM can be controlled by the
attribute p_e_TRM . If either no error was detected, or an error was detected, but another
error in the TRM occurred, no redo will be performed but a COMMIT signal will be sent.
Whether or not the TRM recommends a redo is recorded in the Boolean variable redo. If
so, and if redo_counter = max_redos, an ABORT signal will be sent to the application. If
redo_counter < max_redos, the transaction will be re-executed by the TRM. As for the
original transaction, the redo is performed in an atomic step, named PERFORM_REDO, and
redo_counter is increased. After the redo, the TRM falls back to its “wait” location, and
immediately leaves it with again invoking the checkers, since the condition “app_location
= ta_performed” still is satisfied. The checkers will then check the redo for errors.

DFC and CFC model. Both checkers are invoked via synchronizing on the CHECK
signal of the TRM (cf. Figures 5.5 and 5.6). The DFC checks all instructions where errors
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affect the data flow, i.e., all data-flow instructions. The CFC checks all instructions, since
all instructions affect the control flow.

The DFC checks the data flow in one atomic step. If an error occurred in one of the
data-flow instructions, it detects this error with probability p_detn_DFC . If no error
occurred in the original data-flow instructions, an error might still be detected, i.e., the
DFC has a false positive with probability p_fp_DFC .

wait check

DF checked

CHECK?

RESULTS!  
redo_DFC = false

DFC_check_DF 
p_dfp_DFC : redo_DFC=true

1-p_dfp_DFC : NOP

Figure 5.5: The program graph of the DFC. If an error occurred,
p_dfp_DFC = p_detn_DFC. Otherwise p_dfp_DFC = p_fp_DFC.
NOP means that no variables are changed.

To support a larger class of fault-tolerance techniques, we assume the control-flow
checker to be able to check each type of instruction (control-flow, data-flow and transaction
management) separately. We assume that all control-flow instructions are checked for
errors first, followed by all data-flow instructions, and completed by checking all transaction
management instructions. In each package, errors are detected with p_detn_CFC_df ,
p_detn_CFC_cf , and p_detn_CFC_tmi, respectively. Analogously, false positives occur
with probabilities p_fp_CFC_df , p_fp_CFC_cf , and p_fp_CFC_tmi.

Nevertheless, configuration criteria used in Section 5.3 do not distinguish in the actions
CFC_check_DF, CFC_check_CF, CFC_check_TMI or the states in-between. Thus in the
exemplary configuration we can use the results of [Seg95] (Proposition 8.7.1 on probabilistic
forward simulations) and replace the sequence of actions CFC_check_DF, CFC_check_CF,
CFC_check_TMI by the single action CFC_check, representing the sequential execution of
all three steps (cf. Figure 5.7).

When both checkers are finished, they synchronously send their results to the TRM and
fall back to their “wait” location.

Hardware model. The hardware model keeps track of the state of the internal memory
occupied by the application, i.e., it tracks errors and failures. It comes with two attributes:
the probability of an error occurring in a single instruction, when the application is correct
(p_e) and the increased probability of an error (p_e_incr) occurring in an instruction when
the application has a failure, i.e., in a former transaction an undetectable error occurred.

The hardware is characterized by its internal status (operating normally, being erroneous,
having a failure, or having a failure and another error occurred, cf Figure 5.8). Starting in
location “correct” and synchronizing on both actions PERFORM_TA and PERFORM_REDO,
an error occurs in the transaction with probability p_e_ta = 1− (1− p_e)ta_len, leading
to location “error”. With probability 1− p_e_ta, the hardware stays in location “correct”,
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CFC_check_DF 
p_dfp_CFC_df : redo_CFC=true

1-p_dfp_CFC_df : NOP

CFC_check_CF 
p_dfp_CFC_cf : redo_CFC=true

1-p_dfp_CFC_cf : NOP

CFC_check_TMI 
p_dfp_CFC_tmi : redo_CFC=true
1-p_dfp_CFC_tmi : NOP

Figure 5.6: The program graph of the CFC. p_dfp_CFC_* = p_detn_CFC_* if an
error occurred, otherwise p_dfp_CFC_* = p_fp_CFC_*. NOP means
that no variables are changed.

wait check
CHECK?

TMI 
checked

RESULTS!  
redo_CFC = false

CFC_check 
p_dfp_CFC : redo_CFC=true

1-p_dfp_CFC : NOP

Figure 5.7: The program graph of the CFC after simplifying using simulation results.
If an error occurred, p_dfp_CFC = 1 − ((1 − p_detn_CFC_df) · (1 −
p_detn_CFC_cf) · (1 − p_detn_CFC_tmi)), otherwise p_dfp_CFC =
1− ((1− p_fp_CFC_df) · (1− p_fp_CFC_cf) · (1− p_fp_CFC_tmi)).
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when synchronizing on PERFORM_TA or PERFORM_REDO. When the hardware is in
location “error”, and the TRM initiates a REDO, it falls back to the “correct” location.
When a COMMIT signal is sent while the hardware in location “error”, the error was not
detected and thus the location is changed to “failure”. Being in location “failure”, the same
behavior is modeled, but with increased error probabilities, and, when being in location
“failure and error”, both REDO and COMMIT change the location to “failure”.

correct

failureerror

failure and 
error

1-p_e_ta

COMMIT? /
REDO?

RE
DO

?

PERFORM_TA? / PERFORM_REDO?

PERFORM_TA? / 
PERFORM_REDO?
p_e_ta

PERFORM_TA? / 
PERFORM_REDO?

p_e_incr_ta    

COMMIT?
PERFORM_TA? / 
PERFORM_REDO?
1-p_e_inc_ta

Figure 5.8: The program graph of the hardware model.
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component attribute explanation

Application cf_df_ratio percentage of control-flow instructions of
inst_num

inst_num total number of instructions executed by
the application, excluding duplicates

TRM

max_redos number of transaction redos before appli-
cation is aborted

tmi_num number of instructions added per transac-
tion to implement the transaction mecha-
nism

ta_len number of instructions per transaction

p_e_TRM probability of an error in the TRM

Figure 5.9: Summary of the model attributes (part 1).
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component attribute explanation

DFC p_detn_DFC probability of error detection in data-flow
instructions of a transaction

p_fp_DFC probability of false positive in data-flow
instructions of a transaction

CFC

p_detn_CFC_df probability of detecting a control-flow error
caused by some data-flow instruction

p_detn_CFC_cf probability of detecting a control-flow error
caused by some control-flow instruction

p_detn_CFC_tmi probability of detecting a control-flow error
caused by some transaction management
instruction

p_detn_CFC combined probability of detecting control-
flow error in a transaction

p_fp_CFC_df probability of the CFC having a false posi-
tive when checking data-flow instructions
of a transaction

p_fp_CFC_cf probability of the CFC having a false pos-
itive when checking control-flow instruc-
tions of a transaction

p_fp_CFC_tmi probability of the CFC having a false pos-
itive when checking transaction manage-
ment instructions of a transaction

p_fp_CFC combined probability of the CFC having a
false positive in a transaction

Hardware p_e probability of error in a single instruction

p_e_incr probability of error in a single instruction
when the application has a failure

Figure 5.10: Summary of the model attributes (part 2).
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5.3 Configuration of Redo-Based Fault Tolerance
In this section, we exemplarily configure an instance of our fault-tolerance model with
respect to the system variables p_detn_CFC , p_detn_DFC , ta_len and max_redos. We
utilize fact to compute rational functions, using ta_num as counter, exemplarily for three
scenarios with p_e ∈ {10−10, 10−12, 10−15}.

Fault-Tolerance Setting. The model instance is mainly inspired by HAFT [Kuv+16],
i.e., instructions in our model correspond to instructions on CPU-level, and error detection
is enabled by duplicating instructions. The amount of duplicated instructions is configurable
and represents the detection probability, e.g., replicating 80% of all data-flow instructions
means p_detn_DFC = 0.8. Replicating all instructions gives error detection probabilities of
1, i.e., we neglect the probability of the same error occurring in both an original instruction
and its replicate, which would cause the error to be undetectable. Furthermore we assume
that transaction management instructions are not replicated.

Model Attributes. We fix the following model attributes: The application runs for
exactly 1012 (inst_num) instructions, 10% (cf_df_ratio) being control-flow instructions,
and two (tmi_num) transaction management instructions (“begin of transaction” and “end
of transaction”) are inserted per transaction. The increased error probability is defined as
p_e_incr = (p_e)

8
10 . False positives are errors that occur in replicated instructions or in

transaction management instructions, i.e.,

p_fp_CFC = 1−
(
(1− p_e)ta_len·cf_df_ratio·p_detn_CFC

· (1− p_e)ta_len·(1−cf_df_ratio)·p_detn_DFC

· (1− p_e)tmi_num
)

and

p_fp_DFC = 1−
(
(1− p_e)ta_len·(1−cf_df_ratio)·p_detn_DFC

)
.

Reward Structures. In the configuration, we focus on the expected time overhead arising
through error detection and correction. For this, we introduce a reward structure that
assigns one time unit each time an instruction is executed for error detection or correction.
Formally, we define a reward structure assigning states where the TRM is in location
“answers received” the following values:

If redo_counter = 0: ta_len · p_detn_CFC
+ ta_len · cf_df_ratio · p_detn_DFC
+ tmi_num and

if redo_counter > 0: ta_len · p_detn_CFC
+ ta_len · cf_df_ratio · p_detn_DFC
+ tmi_num
+ ta_len,
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and 0 to all other states. The reward assignment depends on whether an original transaction
or one of its redos was executed. If an original transaction was executed, the assigned reward
corresponds to the number of duplicated instructions. If a redo was executed, the assigned
reward is the number of original instructions plus the number of duplicated instructions.

Configuration Criteria. The goal of this section is to exemplarily find good parameter
values that optimize the chosen protocol instance with respect to the following criteria:

1. The probability of terminating correctly shall be at least 0.9995,

2. the conditional probability of aborting, in case of not terminating correctly, shall be
greater than 0.15, and

3. from all configurations meeting the above conditions, one with minimal overhead is
chosen.

Finding the Optimal Configuration. We exemplarily configure the fault-tolerance
model for all p_e ∈ {10−10, 10−12, 10−15}. For each max_redos ∈ {0, 1, 2, 3} we consider a
discrete number of combinations for the detection probabilities

p_detn_DFC, p_detn_DFC ∈ {0, 0.001, 0.1, 0.5, 0.75, 0.9, 0.95, 0.99, 0.999}

and for the transaction lengths

ta_len ∈ {100, 200, 500, 1000, 2000, 5000, 104, 106, 1010, 1012}

to fill decision tables and plot the rational functions. For each error probability, we use
these decision tables to find the optimal configuration in the selected ones.

The system variables p_detn_CFC and p_detn_DFC are attributes that arise only in
transition probabilities and reward assignments, and hence can be used as parameters. We
also handle the error probability p_e as parameter.

For each sub-model that represents one transaction, ta_len is also an attribute arising only
in transition probabilities and rewards. Nevertheless, since ta_num = inst_num/ta_len,
ta_len influences the maximal value of the counter ta_num and hence the model structure.

We apply counter-based factorization (see Chapter 4) using ta_num as counter. Thus, the
factors of the redo-based fault-tolerance model represent exactly one transaction. Therefore,
ta_len can be handled parametric when computing local characteristics. In the global
rational function, ta_len is present in the form inst_num/ta_len, since this value is the
maximal value of ta_num, arising in the sum indices and matrix exponents.

Using the counter-based factorization approach we compute matrices and vectors P, E,
P(0), E(0), p(n), and e(n) for each max_redos ∈ {0, 1, 2, 3}, and thus invoke probabilistic
model checking only once for each maximal number of redos. The matrices and vectors are
parameterized over the error probability, detection probabilities, and the transaction length.

To systematically explore the design space, we first fix the error probabilities and replace
the parameters with constants within the vectors and matrices, as these values can be
assumed to be given.
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The Maximal Number of Redos. We start with analyzing the effect of the maximal
number of redos. Without any fault-tolerance mechanism1, the probability of terminating
correctly is 3 · 10−83 for p_e = 10−10, 0.15 for p_e = 10−12, and for p_e = 10−15 it is 0.998.
Figures 5.11 and 5.12 show the probability of terminating correctly, when varying max_redos.
In Figure 5.11, a transaction lengths of 1000 is fixed, and the probability of terminating
correctly in dependence of the detection rates is depicted. Figure 5.12 depicts this probability
in dependence of the transaction lengths, when fixing the detection probabilities to be
p_detn_DFC = p_detn_DFC = 0.9.

For all chosen error probabilities and detection probabilities, performing a single redo
pays off drastically. For example, consider the setting where the transaction length is 1000
and the detection probabilities both are set to 0.9. Then, allowing a single redo increases
the probability of terminating correctly from 0.027 to 0.827, when p_e = 10−12, and from
0.996 to 0.9998 when p_e = 10−15.

When performing error detection without redo-based correction, increasing detection
probabilities causes the probability of terminating correctly to shrink, since more instructions
are replicated and thus more replicas can be affected by errors. Performing redos neglects
this effect. Also for all transaction lengths, except for the extrem case where the whole
application is a single transaction, performing redos significantly increases the probability of
terminating correctly. Allowing more than one redo increases the probability of terminating
correctly only marginally, except for transaction lengths above 1010. Figures 5.13 and 5.14
visualize the conditional probabilities of aborting when not terminating correctly. As before,
we fix ta_len = 1000 in Figure 5.13 and p_detn_DFC = p_detn_DFC = 0.9 in Figure 5.14.
The figures show that each redo decreases the chance of aborting in case of not terminating
correctly (criterion 2). For two redos, this chance is almost zero for all configurations except
for extremely large transaction lengths and small error probabilities.

The correlation of the overhead and the maximal number of redos is depicted in Fig-
ures 5.15 and 5.16. For low error probabilities, the overhead is only marginally affected by
the maximal number of redos, since, when errors are unlikely and thus error correction is
invoked only seldomly, the overhead is mainly caused by executing duplicated instructions
for error detection. For higher error probabilities, expectably more errors occur and thus
more error correction needs to be performed. Consequently, the overhead increases when
allowing more redos. Thus, choosing to perform at most one redo increases the probability
of correct termination. Allowing another redo does not significantly increase this probability,
but decreases the probability of aborting in case of not terminating correctly without
decrease in the overhead. Hence, from now on we fix max_redos = 1.

Optimal Transaction Lengths. Figure 5.17 shows the probability of terminating cor-
rectly for varying transaction lengths and detection probabilities, when fixing max_redos = 1.
For p_e = 10−10, the probability of terminating correctly is hardly affected by varying
transaction lengths below 106. Choosing longer transaction lengths decreases the prob-
ability substantially. Large transaction lengths do increase the probability again, when
p_detn_DFC is small, but short transaction lengths are in general to be preferred. For
lower error probabilities, the turning point moves to the right. For error probability 10−15

it is beyond the maximal possible transaction length.

1Due to the nature of our model and PMC, these values need to be computed in separate runs.
Applying counter-based factorization, this took less than three seconds.
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The conditional probability of aborting when not terminating correctly (cf. Figure 5.18)
first increases with increasing transaction lengths, then stays on a level near 1 for middle-
large transaction lengths and finally drops again, in the same point as the probability of
terminating correctly rises for some detection probabilities. Again, the turning points move
to the right when decreasing error probabilities.

Regarding the overhead, small transaction lengths cause less transactions to be erroneous
and thus less error correction to be performed. Nevertheless, very small transaction lengths
cause error detection to take place very often and thus lead to a higher overhead. This is
visible in Figure 5.19. For error probabilities 10−10 and 10−12, increasing the transaction
length up to 1010 decreases the overhead, but after this point, the overhead increases
significantly. For error probability 10−15 the effect is barely visible. The decrease of the
overhead also arises because the probability of aborting increases with higher transaction
length (cf. Figure 5.20). The higher this probability, the sooner the application is likely
to be aborted. After an abort no more overhead is produced. Thus, the overhead drops
with increasing abort rates and rises when very large transaction lengths cause a shrinking
abort rate. For p_e = 10−10, ta_len = 106 is optimal among the investigated lengths,
independent from the detection probabilities. For p_e = 10−12, we choose ta_len = 1010,
and for p_e = 10−15, errors are unlikely enough to handle the application as one transaction.

Error Detection Probabilities. We now fix the remaining configuration parameters
p_detn_CFC and p_detn_DFC . Figure 5.21 shows the effect of these parameters on the
probability of terminating correctly, with the previously chosen configurations for max_redos
and ta_len. Figure 5.22 shows the probability of aborting in case of not terminating correctly,
and in Figure 5.23 the effect on the expected overhead can be seen. As expected, all three
values increase when increasing the detection probabilities. Increasing only one error
detection probability certainly has a visible effect on the probability of terminating correctly,
yet it is ineffective to choose one detection probability to be very low and the other one to
be very high. To configure the remaining parameters of the fault-tolerance technique, we use
a decision table, exemplarily for p_e = 10−15. Table 5.24 shows results for max_redos = 1
and ta_len = 1012. All depicted lines satisfy the first two configuration criteria. For
p_e = 10−15, the configuration satisfying the configuration criteria is max_redos = 1,
ta_len = 1012, p_detn_DFC = 0.99, and p_detn_CFC = 0.95.

The overhead of the depicted configurations does not differ much, but the conditional
probability of aborting when not terminating correctly can be increased significantly when
accepting a little more overhead. Thus, it would be worth choosing a configuration that
replicates some more instructions, accepting a little more overhead, e.g., p_detn_CFC =
p_detn_DFC = 0.999.

Measurement Times and Size of the Rational Functions. We applied the factor-
ization approach to the redo-based fault-tolerance model and thus retrieved the rational
functions in “matrix-based” representation. The matrix-based representation of a rational
function is the respective formula presented in Corollary 4.17, without actually applying a
computer algebra system to compute the result of the formula. An explicit representation
of the formula can be obtained by using sympy to compute the result of the formulas
in Corollary 4.17. This matrix-based representation is much smaller than some explicit
representation of the rational function. Actually, an explicit representation for the rational
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functions considered in this chapter could not be computed due to the enormous size. To
give the reader an impression of the size, we computed some explicitly represented rational
functions for short applications. For a model with max_redos = 0 and ta_num = 10,
the rational function in the explicit representation computed by sympy consumed, in text
representation, 4.7 megabyte of memory. For max_redos = 0 and ta_num = 1000, the disk
space needed was 1200 megabyte. Exporting this rational function to a text file took more
than a day.

Thus, to obtain point-wise evaluations of the rational functions, we did not compute the
explicit representations. Instead, we appointed concrete values directly to the local rational
functions in the matrices, and used sympy afterwards to obtain the respective evaluation.

Experiments were performed single-threaded on a machine with a 2.5 GHz Intel Core i7
CPU and 16 GB RAM single-threaded. The computation of all matrices and vectors P, E,
P(0), E(0), p(n), and e(n) took 50 seconds for max_redos = 0, 173 seconds for max_redos = 1,
140 minutes for max_redos = 2, and about one day and three hours for max_redos = 3.
Evaluating the rational functions point-wise using the matrix-based representation to set up
decision tables took less than a second per evaluation point for max_redos = 0 and about 3
seconds per point for max_redos = 3.
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Figure 5.11: Probability of terminating correctly in dependence on the maximal
number of redos, when varying the detection probabilities and fixing
ta_len = 1000. From top to bottom: error probability 10−10, 10−12, 10−15.
Note that the y-scale in the topmost picture is in log scale.
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Figure 5.12: Probability of terminating correctly in dependence on the maximal
number of redos, when varying the transaction length and fixing
p_detn_CFC = p_detn_DFC = 0.9. From top to bottom: error proba-
bility 10−10, 10−12, 10−15. Note that the y-scale in the topmost picture is
in log scale.
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Figure 5.13: Conditional probability of aborting in case of not terminating correctly in
dependence of the maximal number of redos, when varying the detecting
probabilities and fixing ta_len = 1000. From top to bottom: error
probability 10−10, 10−12, 10−15. Note that y-scales are in log scale.
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Figure 5.14: Conditional probability of aborting in case of not terminating correctly in
dependence of the maximal number of redos, when varying the transaction
length and fixing p_detn_CFC = p_detn_DFC = 0.9. From top to
bottom: error probability 10−10, 10−12, 10−15. Note that y-scales are in
log scale.
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Figure 5.15: Expected overhead in dependence of the maximal number of redos, when
varying the detection probabilities and fixing ta_len = 1000. From top
to bottom: error probability 10−10, 10−12, 10−15.
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Figure 5.16: Expected overhead in dependence of the maximal number of re-
dos, when varying the transaction length and fixing p_detn_CFC =
p_detn_DFC = 0.9. From top to bottom: error probability
10−10, 10−12, 10−15.

98



5.3 Configuration of Redo-Based Fault Tolerance

Figure 5.17: Probability of terminating correctly in dependence of the transaction
length, when fixing max_redos = 1 and varying the detection probabili-
ties. From top to bottom: error probability 10−10, 10−12, 10−15.
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Figure 5.18: Conditional probability of aborting in case of not terminating correctly
in dependence of the transaction length, when fixing max_redos = 1
and varying the detection probabilities. From top to bottom: error
probability 10−10, 10−12, 10−15.
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5.3 Configuration of Redo-Based Fault Tolerance

Figure 5.19: Expected overhead in dependence of the transaction length, when fixing
max_redos = 1 and varying the detection probabilities. From top to
bottom: error probability 10−10, 10−12, 10−15.

101



5 Configuration of Redo-Based Fault-Tolerance Protocols

Figure 5.20: The (unconditional) probability of aborting in dependence of the trans-
action length for ranging detection probabilities, when max_redos = 1.
From top to bottom: error probability 10−10, 10−12, 10−15.
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5.3 Configuration of Redo-Based Fault Tolerance

Figure 5.21: Probability of terminating correctly in dependence of the detection
probabilities, when fixing max_redos = 1. From top to bottom: p_e =
10−10 and ta_len = 106, p_e = 10−12 and ta_len = 1010, p_e = 10−15

and ta_len = 1012. “ct” is short for correct termination.
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Figure 5.22: Conditional probability of aborting in case of not terminating correctly
in dependence of the detection probabilities, when fixing max_redos = 1.
From top to bottom: p_e = 10−10 and ta_len = 106, p_e = 10−12 and
ta_len = 1010, p_e = 10−15 and ta_len = 1012. “ct” is short for correct
termination.
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5.3 Configuration of Redo-Based Fault Tolerance

Figure 5.23: Expected overhead in dependence of the detection probabilities, when
fixing max_redos = 1. From top to bottom: p_e = 10−10 and ta_len =
106, p_e = 10−12 and ta_len = 1010, p_e = 10−15 and ta_len = 1012.
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p_detn_CFC p_detn_DFC Criterion 1 Criterion 2 Criterion 3

0.95 0.99 0.99992 0.19 1.851 · 1012

0.95 0.999 0.99994 0.21 1.86 · 1012

0.99 0.95 0.99993 0.19 1.855 · 1012

0.99 0.99 0.99997 0.43 1.892 · 1012

0.99 0.999 0.99997 0.57 1.9 · 1012

0.999 0.95 0.99994 0.23 1.864 · 1012

0.999 0.99 0.99998 0.59 1.901 · 1012

0.999 0.999 0.99998 0.88 1.909 · 1012

Figure 5.24: Decision table for p_e = 10−15, ta_len = 1012 and max_redos = 1.
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6 Conclusion and Further Work
This thesis studies the configuration of fault-tolerant systems with formal methods, in
particular probabilistic model checking. We investigated strengths and weaknesses and
exemplarily presented the systematic configuration processes. This work hopefully encour-
ages the more frequent usage of formal methods, especially in the field of fault-tolerance
configuration.

Inter-Process Communication. We showed how a domain-specific language and a
model generation tool facilitate the modeling process and reduce the risk of human mistakes.
We generated a model for a concrete set of communicating processes forming a space probe,
and we showed that this model suffers from well-known inaccuracy and time issues of
iterative solvers. We revealed a correlation between these issues and extremely small or
large transition probabilities. This further motivated the usage of non-iterative methods,
in addition to the argument that non-iterative methods can handle parametric models.
Then, we used PMC and Newton’s method to find the optimum of the space probe’s system
variable that maximized its availability.

Redo-Based Fault Tolerance. We presented a model for redo-based fault-tolerance
techniques that can be instantiated to a concrete technique by specifying attributes. The
fault-tolerance mechanism was inspired by haft [Kuv+16]. The state-explosion problem
arising in this model due to the large size of the protected application was tackled with a
new approach, counter-based factorization. Yet, the configuration process of this model
revealed that rational functions that are obtained with PMC, when not being represented
by matrices, can be huge — too huge to analyze them with mathematical methods, as
we did for the space probe model. Therefore, we used the matrix-based representation to
obtain plots and point-wise evaluations of the chosen configuration criteria. Since in this
protocol multiple system variables needed to be configured, we exemplarily presented how
to systematically explore the design space to retrieve the target configuration.

Counter-Based Factorization. Counter-based factorization is a new promising approach
to tackle the state-explosion problem for DTMCs that comprise counters. Although only
applied to the redo-based fault-tolerance model in this thesis, the results give hope that also
for other models computation times can be reduced drastically — for both the parametric
and non-parametric setting.

Further Work
Factorization. Interesting further work would be to extend fact such that it supports
other counters than simple, observing ones. Furthermore, support for multiple counters is
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intended. Other future work is the extension of the counter-based factorization approach to
arbitrary ω-regular properties, steady-state properties, and other model types. Applying
factorization to other models will reveal whether this approach is of large impact beyond
the redo-based fault-tolerance protocol. This will probably also reveal new challenges and
new possibilities of extending the factorization approach.

Fault-Tolerance Configuration. It will be beneficial to investigate the pros and cons
of formal methods for other fault-tolerance protocols than the chosen two, especially those
that do not have a DTMC as underlying model. For example, for non-deterministic models
new challenges may arise. It also would be beneficial to further investigate the correlation of
small transition probabilities and the inaccuracy and time issues of iterative methods. This
work demonstrated that these issues do not only arise in some theoretic examples but are
relevant for real-world models. Yet, it is not clear under which precise circumstances these
issues arise, and whether there are iterative solutions that can prevent both the inaccuracy
and high time consumption.

Retrieving rational functions from PMC is beneficial as long as these functions are
relatively small. For large functions we need shorter representations, like the matrix-based
representation, and optimization methods that work directly on these short representations.
Investigating such representations and methods will also be interesting future work.
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