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Abstract
The energy consumption that arises from the utilisation of information processing
systems adds a significant contribution to environmental pollution and has a big
share of operation costs. This entails that we need to find ways to reduce the energy
consumption of such systems. When trying to save energy it is important to ensure
that the utility (e.g., user experience) of a system is not unnecessarily degraded,
requiring a careful trade-off analysis between the consumed energy and the resulting
utility. Therefore, research on energy efficiency has become a very active and important
research topic that concerns many different scientific areas, and is as well of interest
for industrial companies.

The concept of quantiles is already well-known in mathematical statistics, but its
benefits for the formal quantitative analysis of probabilistic systems have been noticed
only recently. For instance, with the help of quantiles it is possible to reason about the
minimal energy that is required to obtain a desired system behaviour in a satisfactory
manner, e.g., a required user experience will be achieved with a sufficient probability.
Quantiles also allow the determination of the maximal utility that can be achieved with
a reasonable probability while staying within a given energy budget. As those examples
illustrate important measures that are of interest when analysing energy-aware systems,
it is clear that it is beneficial to extend formal analysis-methods with possibilities for
the calculation of quantiles.

In this monograph, we will see how we can take advantage of those quantiles as
an instrument for analysing the trade-off between energy and utility in the field of
probabilistic model checking. Therefore, we present algorithms for their computation
over Markovian models. We will further investigate different techniques in order
to improve the computational performance of implementations of those algorithms.
The main feature that enables those improvements takes advantage of the specific
characteristics of the linear programs that need to be solved for the computation of
quantiles. Those improved algorithms have been implemented and integrated into the
well-known probabilistic model checker Prism. The performance of this implementation
is then demonstrated by means of different protocols with an emphasis on the trade-off
between the consumed energy and the resulting utility. Since the introduced methods
are not restricted to the case of an energy-utility analysis only, the proposed framework
can be used for analysing the interplay of cost and its resulting benefit in general.
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1 Introduction
The energy consumption that arises from the utilisation of information processing
systems adds a significant contribution to environmental pollution and has a big share
of operation costs [Cla11]. Since the technological progress of our society is backed by
the usage of computing devices and their possibilities of data processing, the caused
negative effects will even further increase in the near future. An immediate effect of
the growing demand for services that are based on computing infrastructure is an
increase in the consumption of energy. Unfortunately, the generation of this energy
can not completely rely on (environmentally) sustainable methods these days, and is
therefore directly linked with extra burdens on the environment. As a consequence the
environmental pollution will pose a challenge even for future generations. Among other
duties it is important to find ways to improve the energy efficiency of the information
processing systems in order to counteract these negative effects. Therefore, the research
on energy efficiency has become a very active and important research topic that concerns
many different scientific areas, and is as well of interest for industrial companies.

The Collaborative Research Center 9121 “Highly Adaptive Energy-Efficient Com-
puting’’ (HAEC) is a research project at the Technische Universität Dresden and
focusses on the energy efficiency of future server architectures. One of the problems
that needs to be addressed by HAEC is the utilisation of computing-power in a nearly
optimal way, meaning that it is of importance to ensure that the utility (e.g., user
experience) of the computing devices is not unnecessarily degraded when trying to
reduce the energy consumption of the system. Therefore, it is required to do a careful
trade-off analysis between the consumed energy and the produced utility.

Formal methods like (probabilistic) model checking can support the analysis of
this trade-off by using well-established procedures based on mathematical formalisms.
Those methods have shown to be helpful for analysing a large number of systems
for varying areas of application [KNP05; Gar14]. In order to do a trade-off analysis
tailored to the needs of energy efficiency as described above, we want to minimise the
energy consumption and at the same time maximise the gained utility. Therefore, we
want to exploit the concept of quantiles which is already well-known in mathematical
statistics. Its benefits, however, for the formal quantitative analysis of probabilistic
systems have been noticed only recently. For instance, with the help of quantiles it
is possible to reason about the minimal energy that is required to obtain a desired
system behaviour in a satisfactory manner, e.g., a required user experience will be
achieved with a sufficient probability. Quantiles also allow the determination of the
maximal utility that can be achieved with a reasonable probability while staying within

1http://tu-dresden.de/sfb912, retrieved 28th March 2018
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1 Introduction

a given energy budget. In this monograph we will present how we can take advantage
of quantiles as an instrument for the trade-off analysis between energy and utility in
the field of probabilistic model checking, and present algorithms for the computation
of quantiles in Markovian models. We will further show results of implementations of
those algorithms by means of different case studies that are driven by the cooperations
in the Collaborative Research Center 912 HAEC.

1.1 Related work
Model checking is a formal framework consisting of techniques that allow to provide
guarantees for the behaviour of a given system. The utilised methods offer support
for a huge variety of systems used in many different application domains. Model
checking has its origin in the works of Clarke and Emerson [CE82], and Queille and
Sifakis [QS82]. It has since been developed rather quickly, and it has been extended
in order to cope with probabilistic behaviour. This extension was necessary since the
investigated systems revealed that stochastic phenomena occur quite naturally, and it
has led to the development of probabilistic model checking (or PMC for short). As an
example the usage of probabilistic behaviour is essential for the adequate modelling of
erroneous system behaviour in order to provide a feasible analysis for situations where
with some probability a normal operation of the system cannot be ensured any longer.
Randomisation also helps to increase the anonymity of data transmission, and therefore
improves the security of communication protocols. Other examples are distributed
coordination protocols where coin tossing serves as a symmetry breaker, e.g., in order
to elect a leader out of a number of possible candidates.

For the verification process the (probabilistic) model checker needs two types of
input. The first one is a formal model of the system under consideration, and the
second one is a formal specification of characteristics that should or should not hold
for the system.

Usually the model is given as some kind of transition system describing the operational
behaviour of the system. Probabilistic model checking is tailored such that the model
can be equipped with probabilities in order to express likelihoods for a specific behaviour
of the system. Due to the application of probabilities the utilisation of Markovian
models like discrete-time Markov chains (DTMCs) or Markov decision processes
(MDPs) are well established in the field of PMC. A DTMC is a model where time
elapses using discrete steps, and it can be therefore seen as a formalism which is time
abstract. Its behaviour is given probabilistically, and this entails that the successor of
a state will be specified in accordance with a given probability distribution. MDPs
are an extension of DTMCs that introduce nondeterminism, and therefore allow us
to formalise behaviour which is influenced by the environment of the system and
thus not manageable by the system itself. So, the usage of nondeterminism enables
the modelling of uncontrollable or unpredictable behaviour. Nondeterminism adds
a certain degree of freedom to the reaction of the system by not forcing a specific
operation in particular situations. This allows the system to be not restricted in its
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1.1 Related work

behaviour, and as a consequence it is possible to determine the optimal behaviour of
the system in those situations. There also exist formalisms that support the continuous
elapse of time, the so-called continuous-time Markov chains (CTMCs). This allows
us to express timings in a more natural way than is possible when using discrete time
domains. Those models are also invariant against changes of the time scale.

The formal specification of the system behaviour that has to be analysed is usually
given as a formula of some kind of temporal logic, like LTL [Pnu77] or PCTL [HJ94].
LTL (Linear Temporal Logic) is an extension of the classical propositional or predicate
logic, which allows us to refer to the infinite behaviour of a system by providing
temporal operators like ♦ (finally at some time in the future) and l (from now on
and forever), and combinations thereof like ♦l (eventually forever) and l♦ (infinitely
often). Therefore, LTL constitutes an intuitive way of reasoning about executions of
a system. PCTL (Probabilistic Computation Tree Logic) is a probabilistic extension
of CTL, which formulates statements concerning the states of a model. Unlike CTL
it does not quantify about universal or existential path characteristics. Instead, it is
equipped with a probability operator that allows us to reason about the likelihood for
characteristics of the paths starting in some state.

Probabilistic
Model checker

M |ù ϕ?

Model
M

Specification
ϕ

Probabilistic
System

System
Requirements

Probability for high utility is ą 0.95
Probability for deadlock is ă 10´8

Expected energy consumption over two days

Figure 1.1: Schematic overview of probabilistic model checking

Given both the model and the specification as input, a probabilistic model checker
then does the desired analysis by calculating the probability for the specified behaviour.
This resulting probability expresses the likelihood of the behaviour that is of interest
for the model under consideration. The verification procedure is sketched in Figure 1.1,
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1 Introduction

and works fully automatically by exploring all states of the system, and can be used
to, e.g., calculate the probability that some “bad’’ system behaviour occurs, or to
compute the expected energy consumption of the system over a specific time span. The
different types of models and specifications that are used for the verification procedure
require adapted methods in order to provide the desired results. For instance, the
usage of LTL formulas will be handled by transferring the formula under consideration
into an appropriate ω-automaton2 and building the product of the given system and
this automaton. The verification then concentrates on the analysis of the resulting
product. This approach is called the automa-theoretic approach [Var85; VW86; CY95]
and constitutes the standard methodology for the analysis of specifications given as
LTL3. It is known that model checking of LTL is PSPACE-complete for the analysis of
DTMCs and 2EXPTIME-complete for MDPs [Var85; CY95]. On the other hand,
when considering formulas specified in PCTL one can at first determine all the contained
subformulas of the given formula, and then compute the satisfiable states for each
subformula in a recursive manner. This gives an algorithm for the analysis of a PCTL-
formula with a running time that is polynomial in the size of the model and the size of
the formula [HJ94; BA95; BK98]. [HJ94] introduces PCTL and presents the treatment
of PCTL over DTMCs, whereas [BA95] extends the algorithmic treatment for models
augmented with nondeterminism, i.e., MDPs. [BK98] in particular considers the usage
of fairness for model checking of PCTL. Fairness allows one to exclude behaviour that
does not reflect a realistic operation of the system. This unrealistic behaviour may be
a result of the resolution of the nondeterminism in the model, and it is thus not in the
scope of the desired analysis. An illustrative example is the case of a process scheduler
that prefers a specific process, and therefore access to a shared resource may rarely
be granted to the other involved processes. Fairness allows one to abstract from this
behaviour for the analysis, e.g., when one wants to make sure that the shared resource
continues its operation in a valid system state after every involved process has finished
its specific task using the resource. Since fairness constraints (like, e.g., strong fairness
or weak fairness) can be expressed using ordinary LTL, the analysis of fairness in the
case of LTL boils down to usual checking of some specific LTL formula. This is not the
case for PCTL, and therefore the subformulas that constitute the fairness condition
will be replaced by the corresponding satisfying states in a specific preprocessing step.
Those state sets are then used by the analysis in order to consider the fair executions
of the system.

When doing the analysis for a model enriched with nondeterminism it is required to
resolve the nondeterminism by a scheduler (sometimes also called strategy). This then
allows us to reason about the probability for the specified behaviour under the given
scheduler, and schedulers also facilitate the possibility of computing the minimal or
maximal probabilities for the behaviour. When the specification represents a desired
“good’’ system behaviour the maximal probability serves as a measure allowing to see
how the system behaves in the optimal case, and the minimal probability gives an

2The size of this automaton can be exponential in the size of the given formula.
3Section 3.6 utilises this approach in order to analyse quantiles with side conditions.
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estimation of the behaviour in the worst case. If, on the other hand, an undesired
“bad’’ behaviour is analysed then the maximal probability shows to what extent the
undesired behaviour can occur in the worst case. Here, the minimal probability is
used in order to see how likely it is that the undesired behaviour occurs at any time.
The usage of nondeterminism fits the targeted trade-off between consumed energy and
gained utility, since this allows us to reason about the energy budget one has to pay
under any circumstances and to which extent it is possible to reduce this budget. On
the other hand, we can reason about the gained utility if the system operates in its
most efficient way and we can also reason about the outcome of the system in the
worst case.

An end component is a specific part of a given MDP whose nodes are strongly
connected and where the corresponding actions cannot reach a state that is outside
of the component. A maximal end component is an end component which is not
contained in another end component. The concept of end components is essential when
considering the analysis of MDPs4, since they play an important role for the analysis
of a multitude of specifications. Since we are analysing infinite behaviour (or paths)
over finite models, there must exist some point when the models are forced to enter
those components. In order to receive the necessary information one has to investigate
those end components. A fundamental work which covers very important aspects
for the analysis of end components can be found in [Alf98]. Alfaro presents graph
algorithms in order to compute the maximal end components of a model (the presented
algorithm has a running time that is quadratic in the size of the given MDP), and
some fundamental statements that are linked to end components and have an impact
on many model-checking algorithms.

Model-checking techniques are tailored such that they support the annotation of the
states and transitions of the Markovian models with non-negative values. Those values
are called rewards and can be for example seen as the utility that is achievable when
reaching a specific state or using a particular transition. It is also possible to interpret
these rewards as a cost which needs to be paid in order to use a state or transition. An
example for such a cost is the energy which will be consumed. Therefore, rewards allow
us to formalise the energy consumption of the system and also the utility that can be
achieved by the execution of the system. This enables us to investigate the trade-off
between the system’s energy consumption and its gained utility. [AHK03] introduces
the logic PRCTL, which is an extension of PCTL in order to take the treatment of
rewards into account. This extension allows one to reason about the expected reward
rate per time unit until the model performed a desired number of steps. It is as well
possible to analyse the instantaneous reward at a specific time instant, or the expected
accumulated reward. The running time of the presented model-checking algorithm is
polynomial in the size of the analysed system and the number of desired steps, when
only rationals or integers are considered as rewards (which is sufficient for the purpose

4Bottom strongly connected components (BSCCs) correspond to maximal end components when the
analysis concentrates on DTMCs, i.e., when there exists no nondeterminism. Those are strongly
connected components which cannot be left once the system has entered them.
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of this thesis).
[BK08] delivers a comprehensive introduction to the field of (probabilistic) model

checking, which covers most of the concepts that are used in modern system verification.
Some of these concepts are also reflected in the deliberations about the computation of
quantiles, and therefore help to build the formal basis for the created toolset that will
be presented throughout this thesis.

Multi-objective PMC We want to provide possibilities to relate the consumed energy
of a system with its produced utility. In particular, we are interested in minimising
the energy consumption by simultaneously keeping the achieved utility at a high
level. So, we need to find solutions for multi-objective criteria, and in the field of
probabilistic model checking there has already been some work concerning methods to
provide a formal analysis that aims at satisfying multiple criteria at the same time. For
instance, [CMH06] considers the computation of multiple discounted reward objectives
for MDPs, and it is shown that randomised memoryless strategies are adequate for
obtaining any possible value vector for the given objectives. The authors also show
that it is decidable in polynomial time if a given value vector can be achieved by
some strategy, and reduce the multi-objective optimisation and achievability problems
for MDPs with discounted rewards to multi-objective linear programming. [Ete+07]
demonstrates how a scheduler can be computed that satisfies multiple linear-time
properties simultaneously for a given MDP. The authors present a polynomial-time
algorithm that uses linear programming-methods for its computation. This allows us
to, e.g., maximise the sum of several different reachability probabilities. The paper
also solves qualitative multi-objective model checking problems by applying methods
that solely make use of graph-theoretic methods. [For+11b] presents a combination
of the multi-objective reachability optimisation with reward-expectations by again
utilising techniques based on linear programming. The paper also presents computation
results and statistics of an implementation of the presented theory. This extension
to reward structures comes in very useful since reward structures are a natural way
for annotating the model under consideration with its energy consumption and the
utility-gain. [Bas+15] aims at computing strategies such that the long-run averages of
multiple reward values are almost surely above a given multi-dimensional threshold
vector. The authors as well show the applicability of their approach by presenting an
analysis of the electric power distribution of an aircraft using the proposed methods.
[Bai+14b] presents among others the computation of the quotient of two accumulated
values. This allows to reason about the ratio between the consumed energy and the
provided utility of a system. [Bai+14d] aims at finding a scheduler that maximises
the probability for some temporal objective when a specific ω-regular condition is
specified. The paper presents a transformation-based approach for LTL conditions
that allows one to handle the computation of conditional probabilities like ordinary
probabilities in the transformed model. The paper as well presents results for an
implementation of the considered approach. [Mär+17] refines the implementation
presented in [Bai+14d] for the computation of conditional probabilities in DTMCs
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and MDPs, when the objective and the condition are LTL formulas. The performance
of the refined implementation is compared to the performance of the probabilistic model
checker Storm [Deh+17] which is equipped with implementations for the computation
of conditional probabilities as well. [Bai+17a] discusses the computation of maximal
conditional expectations in finite-state MDPs when a reachability constraint is given
as condition. This extends the results of [Bai+14d] since the approach presented there
is not applicable for the calculation of maximal conditional expectations.

Quantiles and PMC In order to minimise the consumed energy and maximise the
gained utility as well, we need to be able to optimise the accumulated reward over
the considered model. Therefore, the concept of quantiles is an interesting formalism
which becomes the focus of attention in order to help answering the emerging questions.
Quantiles5 were already well-known in the field of mathematical statistics (see [Ser80]
for a comprehensive overview on quantiles in the field of mathematical statistics).
For a real-valued random variable X a quantile corresponds to the minimal x such
that the probability of the event X ą x exceeds a specified probability threshold
p P [0, 1). Therefore, quantiles allow us to express, e.g., the minimal energy consumption
necessary to guarantee the successful termination of multiple computation tasks with
an acceptable high probability. This enables us to optimise the accumulation of the
energy of an energy-aware system and therefore offers useful insights into the interplay
of the consumed energy and the provided utility of the system, hence supporting the
realisation of the envisioned goal for HAEC. Since quantiles are applicable as general-
purpose methods a framework based on quantiles (as presented in this monograph)
is not just restricted to the demands of energy and utility. Instead, quantiles can be
used for various areas of application, e.g., for reasoning about minimal timings or the
minimal number of communication operations.

Quantiles recently became a very active research topic in the field of probabilistic
model checking. So, we want to outline important contributions in this field. In
[Bai+12b] quantiles were considered in the field of probabilistic model checking for the
very first time in a direct manner using a self-contained formalism6. We used PMC-
techniques in order to do a formal analysis of a test-and-test-and-set spinlock protocol
and combined this analysis with a measure-based simulation. One of the investigated
properties asks for a quantile stating the minimal time that some process has to wait
in order to access its critical computation section with a probability of at least 95%.
We used long-run quantiles for discrete Markovian models in order to provide analysis
results, and were able to align the results of our formal analysis with the measure-based
simulation. Based on the experiences made in [Bai+12b] and the resultant need for a
formal analysis of quantiles the group of Christel Baier laid the theoretical foundations

5Quantiles even build the basic blocks for a sorting algorithm named Flashsort [Neu97].
6The Prism benchmark suite [KNP12] considers series of reachability probabilities for sev-

eral protocols which can be analysed using, for instance, Prism’s experimental functionality
(see http://www.prismmodelchecker.org/manual/RunningPRISM/Experiments, retrieved 28th
March 2018) in order to analyse multiple model-checking runs. One is therefore able to extract
the information on quantiles in an indirect manner by studying the plotted results.

7

http://www.prismmodelchecker.org/manual/RunningPRISM/Experiments


1 Introduction

for the computation of quantiles for Markovian models in [UB13] and [Bai+14a]. [UB13]
presents algorithms for the computation of qualitative and quantitative quantile queries
for upper-reward bounded until properties over discrete-time Markovian models. A
graph-based polynomial-time algorithm for the computation of qualitative quantiles7

is presented in this work. For the computation of quantitative quantiles8 [UB13]
presents an exponential-time algorithm which relies on solving a linear program. The
theory was then extended by [Bai+14a] to lower-reward bounded reachability-quantiles
and upper-reward bounded expectation-quantiles. Here, the presented algorithms
rely on similar principles as already presented in [UB13]. [Bai+14a] also presents an
implementation for the computation of quantiles in Markovian models and which is
based on an approach called back-propagation (or BP for short). [Cie+08] presents
several approaches in order to improve the performance of the quantitative analysis
of Markov decision processes. One of the presented approaches is the blockwise value
iteration, which performs a topological sorting of the strongly connected components
in the model under consideration. The BP-approach presented in [Bai+14a] (and as
well in this monograph) uses similar ideas as for the blockwise value iteration in order
to improve its computational performance.

In [LS05], the authors do complexity-theoretic investigations which have a direct
influence on the computation of quantiles. It is shown that the computation of
(reward-)bounded probabilistic reachability formulae is NP-hard even for DTMCs.
The authors reduce the K-th largest subset problem (see [GJ79, page 225]) to the
problem of checking a bounded probabilistic reachability formula. This result is
directly applicable to the computation of quantiles, since we need to check multiple
bounded probabilistic reachability formulae in order to properly compute quantiles.
It can be therefore stated that the computation of quantiles is NP-hard as well. In
[HK15] the computation of accumulated costs over cost chains and cost processes is
investigated. It is shown that it is possible to decide for an arbitrary cost process
within ExpTime whether a specific (multi-dimensional) cost can be accumulated with a
desired probability when a designated goal t should be reached (a so-called cost problem).
It is as well demonstrated that a cost problem for an atomic cost formula9 considered
over acyclic cost processes is already PSPACE-complete, and therefore PSPACE-
hardness for atomic cost problems over arbitrary cost processes can be derived in a
direct manner. Since the computation of quantiles is directly related to cost problems
for atomic cost formulas10 the lower bound for the computation of quantiles received
by the considerations of [LS05] becomes even tighter. [HK15] shows as well that a

7Qualitative quantiles are quantiles where the specified probability threshold is either 0 or 1.
8The probability threshold of quantitative quantiles is strictly greater 0 and smaller 1.
9An atomic cost formula constitutes an upper bound for the accumulated value of a cost in only one

dimension, i.e., the related cost problem considers the accumulation of the cost with respect to
this dimension only.

10Given cost process C with inital state s and target t, the existential quantile qus

(
DPěp(♦ď?ttu)

)
(see Section 3.1) corresponds to the value B P N if and only if there exists a scheduler S over C
such that the cost problems PS(KC ď B) ě p and PS(KC ď B ´ 1) ă p hold. The monotonicity
of the accumulated (non-negative) costs along the paths (see Figure 3.1 in Section 3.1) immediately
implies PS(KC ď b) ă p for each b P t0, . . . , B ´ 2u in this case.
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cost problem can be decided in PSPACE for a cost chain. The authors furthermore
examine which circumstances allow to relax those computational complexities. For
the application of cost chains [HKL17] shows that the cost problems of [HK15] can
be computed within the counting hierarchy (see [AW90]), and therefore it is believed
that the computation can be done better than in PSPACE. The authors present an
implementation that decides finitary cost problems based on Parikh-Images, and do
a performance-comparison between their implemented methods and the probabilistic
model checker Prism (see [KNP11]). Inspired by the work of [UB13] and [Bai+14a]
the authors of [RRS15] present theoretical deliberations on percentiles, which extend
quantiles to multiple dimensions and combine it with several payoff functions.

Since so far we only considered models with discrete time steps, [Bai+14b] presents
an algorithm for the computation of quantiles in continuous-time Markovian models.
This algorithm is based on an exponential search with a subsequent binary search11,
and it was envisioned by the maintainers of the model checker MARCIE (see [HRS13])
to integrate an adapted form of this algorithm into their tool in order to support the
computation of quantiles for stochastic Petri nets. As part of this monograph, the
algorithm for CTMCs has been also implemented in the probabilistic model checker
Prism (see Section 3.7 and Section 5.2.2). [BDK14] presents a computation scheme for
the analysis of quantiles under conjunctive constraints. When considering constraints
that should hold for all schedulers (universal constraints), the idea is to compute
each conjunct separately and afterwards do an intersection of the resulting sets. The
minimal value in this intersection is then the result for the conjunctive constraint. The
computation of conjunctive constraints for the best scheduler (existential constraints)
uses techniques for solving standard multi-objective queries suggested in [Ete+07] and
[For+11b].

Keep in mind that the usage of positive rational reward functions can be addressed
by the same quantile algorithms as for reward functions involving natural numbers
only. The idea is to scale each value of the given reward function properly such
that the resulting denominators will correspond to the least common multiple of all
involved denominators. These denominators will be then ignored and only the resulting
numerators build the reward values for the upcoming quantile computations. As a
last point the obtained computation result then needs to be divided by the previously
ignored least common denominator in order to receive the demanded rational quantile
value. Another generalisation to the concept of quantiles, as investigated here, is the
usage of weight functions12 instead of reward functions. The usage of weight functions
makes the computation of quantiles more difficult. An important indication is the
fact that the usage of weights entails that the accumulated costs along the paths of
the considered model are no longer monotonic, which builds an essential feature that

11Of course, the computation-scheme of an exponential search followed by a binary search is also
applicable for the naïve computation of quantiles in discrete-time models, like DTMCs or MDPs.

12Weight functions permit negative annotations to the states or transitions of a Markovian model,
and it is therefore possible to formalise, e.g., the life-span of a battery-powered system which
undergoes multiple cycles where the power supply will be discharged and recharged numerous
times.
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is used throughout the computations as presented in this thesis. On the other hand
there is a related result in [Brá+10] which has a direct impact on the computation of
quantiles over weight functions. As [Brá+10] states in its Introduction and as well
in Section 4 the termination (i.e., reachability) probabilities for One-Counter Markov
decision processes13 can represent an irrational number in general. This fact makes
a computational analysis for quantiles over weight functions very challenging. The
mentioned aspects give an indication that it is not expected that it is possible to provide
an efficient analysis of quantiles over models equipped with weight functions. The paper
[Krä+15] addresses this issue in its Conclusions by citing [EY09; Brá+10; Bai+14b]
and stating that the corresponding l-weight decision problem in unit-weight Markov
chains is known to be PosSLP-hard. It is hence reasonable to restrict the discussed
quantile framework to reward functions over natural numbers only, as it is done here.
Nevertheless, the authors of [Krä+15] investigate this generalisation to weight functions
and restrict their studies to the computation of ratio- and weight-quantiles for the
qualitative case only, i.e., where the specified probability threshold is either 0 or 1. They
present polynomial-time algorithms for the computation of those quantiles in Markov
chains. The related problem concerning the computation of minimal expected weights
until reaching a specific target in an integer-weighted MDP has been analysed in
[Bai+18]. The authors present polynomial-time algorithms for computing the minimal
expected weight until reaching the target almost surely (i.e., with probability 1) when
considering all schedulers, and with positive probability (i.e., probability greater 0)
in the best case. The problem of computing the expected weight for almost sure
reachability in the best case, and the reachabiliy with positive probability over all
schedulers are shown to be in NP X coNP. The algorithms presented in [Bai+18]
take advantage of a classification of the end components of the analysed model. This
classification will be done with respect to the weights that occur within the respective
end components.

A very serious problem in the field of (probabilistic) model checking is the well-known
state-explosion problem (see [Bur+90; McM93; BK08]). The problem arises from the
fact that the number of reachable states grows in an exponential fashion with the
number of variables that occur in the formal description of the system. One possibility
to tackle this difficulty is to symbolically represent the state space of the model under
consideration by means of binary decision diagrams (BDDs) [Lee59]. A comprehensive
scientific investigation on how probabilistic model checking can be performed efficiently
when relying on BDD-based techniques can be found in [Par02]. There, the important
concepts are described which are needed in order to successfully provide a usable
analysis that is based on symbolic representations of the model under consideration.
The practical feasibility of such symbolic methods is demonstrated by a variety of
analysed protocols. [Kle+16] and [Kle+17] sketch how to effectively perform symbolic
computations to analyse quantiles with reachability constraints. In those papers we

13One-Counter Markov decision processes can be regarded as MDPs (like we use them here) which
are equipped with a weight function that assigns either the weight ´1, 0 or +1 (in other words
unit weights) to each transition of the model.
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present results of the computations and at the same time report on improvements
that could be achieved by using reordering techniques to reduce the size of the utilised
BDDs. Since smaller BDD-sizes normally have a positive impact on the computational
effort caused by dealing with those BDDs the reordering allows to directly influence
the performance of symbolic quantile-calculations.

Another method to avoid the state-explosion problem using a different approach is
the utilisation of statistical model checking [YS02; LP02], or SMC for short. Instead
of using numerical computations respecting the whole state space of the model, SMC
is based on observing multiple executions of the model in a simulation-based fashion.
Its results will be then obtained from statistical evidence and show if the desired
behaviour will be satisfied or violated by the system. This has the advantage that
the whole verification procedure does need far less memory since it needs to store
only a small fragment of the information provided by the model. This also improves
the time that is needed in order to perform the analysis. Hence, the scaling to large
system instances is not such an issue as it is for classical (probabilistic) model checking.
Therefore, SMC can also be applied to a larger class of systems. Of course, there also
exist significant disadvantages when using SMC. One major disadvantage is that the
outcome of the procedure does not give a sharp guarantee as it is the case for classical
(probabilistic) model checking. The computed result instead corresponds to a statistical
claim. In order to provide a suitable correctness of the result the sample sizes used
by the analysis tend to grow very large, thus also increasing the computation time of
the analysis. As the considered simulation runs require to be finite, SMC seems to
only handle problems that can be decided on finite executions of the system, like e.g.,
bounded reachability properties. But, there has been some work in order to overcome
this limitation, see for example [SVA05] or [RP09]. And this in fact allows to analyse
unbounded until-properties with the methods of statistical model checking. Also, there
are issues when using SMC for models comprising nondeterminism, like MDPs. The
problem here is that it is not clear how to resolve the nondeterminism for the sampling
procedure in a proper way. Nevertheless, there has been some work starting to address
this issue. For example, [Hen+12] introduces methods for analysing bounded LTL over
MDPs by using statistical model checking.

The algorithms for the computation of quantiles presented in [UB13] and [Bai+14a]
(and as well used in this monograph) do rely on solving numerous linear programs.
So, one can construct and solve a linear programming problem for calculating a
solution, but it turns out that this approach does not scale to large model sizes
[For+11a] that normally occur when applying probabilistic model checking. Therefore,
another neat and relatively fast approach to calculate the solution of a linear program,
which is proposed in the literature (see, e.g., [BK08, page 854]), is the so-called
value iteration. In [HM14] the authors investigated the correctness of the convergence
of the value iteration for reachability properties and show that there might occur
correctness issues when utilising value iteration for the case of MDPs due to insufficient
termination criteria. The authors propose a method called interval iteration in order
to address these issues, where the correct result is narrowed from below and from
above at the same time. This method is also considered for the implementations
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presented in this monograph. Since [HM14] considers the problems of the value iteration
for reachability properties, and since we will also treat quantiles over expectation
constraints, the same problems can arise for the computation of expected values.
Therefore, [Bai+17b] reformulates the interval iteration-approach for the computation
of expected accumulated weights in MDPs, and the results can be carried over in order
to support interval iteration for the calculation of expectation-quantiles. The paper also
presents a topological interval iteration which treats the strongly connected components
of the model under consideration separately14 in order to improve the performance
of the computations. The paper [HH16] is related since it presents three different
techniques for the computation of time- and reward-bounded properties in MDPs. The
first approach is a reformulation of the back-propagation approach originally published
in [Bai+14a]. The other two presented methods are scheduler enumeration and state
elimination. Both approaches are based on the fact that the reward structures for
the model under consideration do only supply rewards of either 0 or 1. For reward
structures providing higher reward values r ą 1, the authors propose to emulate the
rewards by chains of r additional states augmented with reward 1 each.

Model-checking tools Since the aim of this monograph is to provide machinery for
doing an analysis of the energy efficiency of a system, we want to list some of the well-
established tools available in the field of probabilistic model checking: A very prominent
probabilistic model checker supporting a variety of probabilistic models (CTMCs,
DTMCs, MDPs, probabilistic timed automata) and property specifications is Prism15

[KNP11]. Prism uses techniques based on (multi-terminal) binary decision diagrams
in order to symbolically represent the state space of the model under consideration,
as well as providing an engine using an explicit representation of the state space.
Prism also provides a simulation engine which allows one to do statistical model
checking for the models that were created using Prism’s guarded command language.
In this way Prism is able to provide classical (probabilistic) model checking and
statistical model checking for the same input. Many state-of-the-art model-checking
techniques are integrated into Prism for the purpose of delivering tool-support for
a wide range of application areas. In order to take advantage of the infrastructure
supported by Prism, the quantile-framework presented in this monograph has been
integrated into Prism. Another relatively young probabilistic model checker is Storm16

[Deh+17], which has its focus on the analysis of discrete-time Markov chains and
Markov decision processes, and the continuous-time variants thereof. Storm focusses
on the analysis of PCTL [HJ94] and CSL [Bai+03], and it also delivers support for the
computation of conditional probabilities and expectations as presented in [Bai+14d].
It was build with an emphasis on a modular concept such that the functionality can be
extended very easily, and this also allows one to exchange different components with
14A similar approach was presented in [Bai+14a] for improving the computation of the zero-reward

fragments of the model. This approach has been implemented for the framework presented in this
monograph as well (see Section 5.1.3).

15http://www.prismmodelchecker.org/, retrieved 28th March 2018
16http://www.stormchecker.org/, retrieved 28th March 2018
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other alternatives in order to adapt the solution algorithms to varying requirements.
Storm even supports Prism’s (guarded command) input language in order to provide
its functionality for models already developed in the context of Prism. Up to now,
Storm does not support the analysis of LTL formulas and statistical model checking.
MRMC17 [Kat+09] is a command-line tool supporting the verification of PCTL or
CSL for (discrete-time and continuous-time) Markov chains equipped with reward
structures, and continuous-time Markov decision processes as well. MRMC additionally
supports statistical model checking for CTMCs. The Modest Toolset18 [HH14] is
an agglomeration of different tools supporting a variety of widely used model types,
ranging from Markov decision processes, over (discrete- or continuous-time) Markov
chains to (stochastic) timed and hybrid automata. Modest is built in order to support
the verification of stochastic hybrid automata [Hah+13], and this enables Modest to
actually cover a variety of formalisms. Therefore, Modest delivers tool-support for many
practically relevant concepts, and it also provides a powerful high-level compositional
modelling language. IscasMC19 [Hah+14] is a model checker which follows a different
approach as the previously presented tools. It is a web-based model checker which
uses a client-server architecture where the client provides the input and delegates
the computation tasks to the server. This approach allows to provide the abilities of
model checking even for not so powerful computing devices like mobile phones, the
only requirement is a connection to a server doing the compute- and memory-intense
working tasks. IscasMC analyses Markov chains and Markov decision processes against
PCTL and PCTL˚, and also provides support for models written in Prism’s input
language. ProbDiVinE-MC20 [Bar+08] is a probabilistic model checker integrated
into the verification tool DiVinE [Bar+06]. Its focus is on checking qualitative and
quantitative LTL specifications over Markov decision processes, and as a distinctive
feature this model checker supplies parallel and distributed verification algorithms. The
parallel computations rely on a decomposition of the model under consideration into its
strongly connected components. Those components will be then solved independently
of each other whenever it is possible. A similar idea builds the basis for the parallel
quantile computations of the zero-reward fragment of a given model (see Section 5.1.4
for further details), and therefore provide a possibility to improve the performance of
the analysis methods presented in this monograph.

The following selection shows tools that have their emphasis on “classical’’ model
checking, so they do not consider the handling of probabilistic behaviour: SMV21

[Bur+90] is a tool for checking finite state systems against specifications formalised
in CTL. It is a classical model checker without support for probabilistic behaviour,
and was the very first model checker to use symbolic methods based on BDDs. Its
main focus is on providing an application of symbolic model checking for the field of

17http://www.mrmc-tool.org/trac/wiki/WikiStart, retrieved 28th March 2018
18http://www.modestchecker.net/, retrieved 28th March 2018
19http://iscasmc.ios.ac.cn/IscasMC, retrieved 28th March 2018
20http://divine.fi.muni.cz/darcs/branch-3.0/gui/help/divine/probdivine.html, retrieved

28th September 2018
21http://www.cs.cmu.edu/~modelcheck/smv.html, retrieved 28th March 2018
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hardware verification. NuSMV22 [Cim+02] is a reimplementation of SMV and also
extends the technology by integrating techniques based on propositional satisfiability
(SAT) [Bie+99] in order to allow a tool-set for certain scenarios which were not realisable
by BDD-based techniques. This allows for tool-support for the verification of a broader
range of complex scenarios. Vereofy23 [BKK; Bai+09] is a model checker which was
developed within the group of Christel Baier, and is tailored for the verification of
component-based systems. The tool uses the Reo coordination language [Arb04] in
order to formalise the communication of the participating components, and it supports
branching-time, alternating-time and linear-time model checking. It also delivers
a framework for equivalence checking based on bisimulation. UPPAAL24 [LPY97]
is a tool which supports the verification of real-time systems. The system under
consideration is hereby described using a graphical representation of the system’s
dynamic behaviour. For doing the analysis UPPAAL relies on timed automata
augmented with real-valued clocks, allowing to provide a feasible analysis for systems
where timing aspects are critical. There exist a number of extensions to the UPPAAL-
platform that extend the capabilities of the model checker and therefore allow to
apply the methods of UPPAAL to a broad variety of application areas. For example,
the extension SMC25 applies statistical model checking for supporting the analysis of
stochastic timed systems.

1.2 Contribution and outline
The intention of this monograph is to provide a formal framework for doing a multi-
objective analysis of the energy efficiency for a variety of energy-aware systems. There-
fore, several interesting measures were identified that rely on quantiles and allow to
carry out practically relevant results. The presented quantile-based approach is not
restricted to just the needs of a trade-off analysis between the consumed energy and the
provided utility of a system. Instead, it is designed to allow a general-purpose trade-off
analysis for a variety of relevant characteristics. In order to make the framework
available for practical applications we are as well interested in an implementation
allowing to perform the desired analysis efficiently.

The main contributions worked out in this monograph in order to contribute to the
given task are as follows:

Quantiles for (constrained) reachability properties: We present the computation of
quantiles over Markovian models, which allow us to analyse the minimal ac-
cumulated energy that needs to be consumed in order to reach a specific goal.
Therefore, we will consider the computation of upper-reward bounded reachability
quantiles. We also want to analyse the maximal accumulated utility that can
be provided using a specific energy budget. The described approaches allow to

22http://nusmv.fbk.eu/, retrieved 28th March 2018
23http://www.vereofy.de/, retrieved 28th March 2018
24http://uppaal.org/, retrieved 28th March 2018
25http://people.cs.aau.dk/~adavid/smc/, retrieved 28th September 2018
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optimise the accumulation of a specific reward function while at the same time a
(constrained) reachability analysis will be performed. Its core concept is based on
an iterated computation of multiple (reward-)bounded reachability probabilities.
Based on the investigations done in [UB13] (which considers reachability quantiles
where the accumulation of the reward is bounded from above) the computation
of reachability quantiles as presented in this thesis has been published previously
in [Bai+14a].

Quantiles for (constrained) reachability properties under side conditions: We are
as well interested in the analysis of reachability quantiles when some ω-regular
side condition should be respected. This allows for the computation of quantiles
when at the same time certain important objectives should be preserved for the
system under consideration, e.g., whenever there occurs some critical failure there
should happen some recovery mechanisms. The utilisation of quantiles under
side conditions allows to reason about such objectives.

Expectation quantiles: In order to relate the accumulation of the consumed energy
of the analysed system with the accumulation of its gained utility, we present
methods that allow the computation of expectation quantiles over Markov decision
processes (and discrete-time Markov chains as well). Those quantiles allow to
reason about the minimal energy budget that needs to be invested in order
to gain a desired utility-expectation. In contrast to the previously introduced
reachability quantiles we do not need to fix the accumulation of one of the two
involved values. Instead, we can directly relate the accumulation of both values
within one evaluation.
The computation of quantiles over expectation objectives has already been
presented in [Bai+14a].

Implementation of quantile-algorithms and integration into Prism: Since one aim
of this thesis is to provide a practical toolbox that allows one to realise a quantile-
based analysis, there exists an implementation of the presented quantile com-
putations that is integrated into the probabilistic model checker Prism. The
implementation considers several possibilities for improving the performance of
the utilised computations. Those optimisations make use of the specific structural
characteristics that are inherent for the linear programs that need to be solved
when computing quantile queries.
Parts of the implementation presented and used in this monograph have already
been introduced in [Bai+14a], [Kle+16] and [Kle+17].

Quantile-based analysis of energy-aware protocols: The presented implementations
are used for analysing the energy efficiency of several protocols. Therefore, we
report on the performance of the presented implementations by first analysing
already existing case studies from the Prism benchmark suite (see [KNP12]) in
order to demonstrate the efficiency of the presented quantile-based framework.
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We will also see how the framework can be utilised for analysing protocols that
have an emphasis on their energy efficiency.
In doing so we present an energy-aware job scheduling protocol already introduced
in [Bai+14a], and an analysis of this protocol has been shown in the mentioned
paper, and in [Kle+16] and [Kle+17] as well. Other protocols we consider
are the eBond protocol (originally proposed in [Häh+13]) and the HAECubie
demonstrator. Some of the results presented in this monograph for both protocols
already passed a reviewing process as those results have been integrated into
demonstrators shown to the reviewers of the Deutsche Forschungsgemeinschaft26

as a small part of the (successful) defence of the first phase of HAEC.

The document is structured in the following way. Chapter 2 provides a short introduc-
tion into the necessary theoretical basis needed for the computation of quantiles. The
computation of reachability quantiles over Markovian models is presented in Chapter 3.
In this connection Section 3.3 describes the computation of upper-reward bounded
reachability quantiles, and the computation of lower-reward bounded reachability
quantiles will be handled in Section 3.4. Reachability quantiles under side conditions
are treated in Section 3.6, and the computation of quantiles over CTMCs is considered
in Section 3.7 as well. The mentioned expectation quantiles over DTMCs or MDPs
are then subject of the analysis presented in Chapter 4. The integration of all the
provided quantile approaches into the probabilistic model checker Prism is described
in Chapter 5, which starts by presenting methods for improving the computational
performance of the quantile calculations in Section 5.1. We will also give some inform-
ation on the computation of quantiles using symbolic (MT)BDD-based methods. The
described implementation of the quantile algorithms will be then used in Chapter 6
in order to provide an analysis of several energy-aware protocols. The chapter starts
by presenting results for protocols already known from Prism’s benchmark suite
[KNP12] for demonstrating the potential of the provided implementation. Afterwards
it is shown in Section 6.2 how the presented implementation can be used for the
analysis of energy-aware systems. It is as well illustrated how the different implemented
approaches of Chapter 5 perform for a variety of different situations, and how one
can take advantage of the different optimisations presented in Section 5.1 in order
to improve the performance of the analysis. Chapter 7 then concludes this thesis by
giving a brief summary of the presented results and a classification of the analysis
results obtained in Chapter 6.

26http://www.dfg.de, retrieved 28th March 2018
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2 Preliminaries
Here, the relevant concepts will be provided which serve as the formal basis for the
analysis of reward-bounded reachability properties and quantiles in Markovian models.
As well, the specifications given as formulas in probabilistic computation tree logic
with reward-bounded modalities (PRCTL) will be introduced briefly. Further details
can be found in, e.g., [Put94; Alf98; BK08].

For all the upcoming considerations we make use of the natural numbers including
zero, i.e., N = t0, 1, 2, 3, . . .u. The cardinality of a (countable) set A is denoted
by card(A) and it characterises the number of the elements contained in A. The
(reachable) states of a given model are denoted as S. The cartesian product of the
states of a model and all natural numbers up to bound r P N is denoted by S[r], i.e.,
S[r] = Sˆ t0, 1, . . . , ru.

Distributions If X is a countable, nonempty set then a distribution on X is a function
µ : X Ñ [0, 1] such that

ř

xPX µ(x) = 1. We write Dist(X) for the set of distributions
on X. supp(µ) denotes the support of µ, i.e., the set of elements x P X where µ(x) is
positive.

Markov decision processes (MDPs) An MDP is a tuple M = (S,Act, P ), where
S is a finite set of states, Act a finite set of actions, P : S ˆ Act ˆ S Ñ [0, 1] such
that

ř

s1PS P (s, α, s
1) P t0, 1u for all states s P S and actions α P Act. The tuples

(s, α, s1) P Sˆ Actˆ S with P (s, α, s1) ą 0 are called steps and we then say that state
s1 is an α-successor of s. We write Act(s) for the set of enabled actions α, i.e., those
that have an α-successor from state s P S and require that Act(s) ‰ ∅ for all states s.

Intuitively, if the current state of M is s, then first there is a nondeterministic choice
to select one of the enabled actions α. Then, M behaves probabilistically and moves
with probability P (s, α, s1) to some state s1.

The size of an MDP M is defined as the sum of the number of its reachable states
(cardinality of S) and the number of its transitions, i.e., the number of the elements
(s, α, s1) P Sˆ Actˆ S such that P (s, α, s1) ą 0.

Paths in MDPs Paths in an MDP can be seen as sample runs where the non-
determinism has been resolved. Formally, paths are finite or infinite sequences

π = s0 α0 s1 α1 s2 α2 . . . P (Sˆ Act)˚SY (Sˆ Act)ω

that are built by consecutive steps, i.e., αi P Act(si) and P (si, αi, si+1) ą 0 for all i.
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2 Preliminaries

The very first state s0 of the path π is denoted by first(π). π[k] denotes the
(k+1)-th state in π and pref (π, k) the prefix of π consisting of the first k steps, ending
in state π[k] = sk. If π = s0 α0 s1 α1 . . . αn´1 sn is finite, then last(π) denotes the
last state that is reached by π, i.e., last(π) = sn. The probability of a finite path
ρ = s0 α0 s1 α1 . . . αn´1 sn is the product of the probabilities of its steps: prob(ρ) =
ś

0ďiăn P (si, αi, si+1).
The set FinPaths(s) denotes the set of finite paths and InfPaths(s) denotes the set

of infinite paths starting in state s.

Sub-MDPs, end components A sub-MDP of an MDP M is denoted by a pair
(T,A) where T Ď S and A : T Ñ 2Act such that for all t P T :

1. A(t) Ď Act(t) and

2. if α P A(t) and P (t, α, t1) ą 0 then t1 P T .

An end component of M is a sub-MDP (T,A) of M where A(t) is nonempty for all
t P T and the underlying directed graph with node set T and the edge relation tÑ t1

iff P (t, α, t1) ą 0 for some α P A(t) is strongly connected. An end component is said
to be maximal if it is not contained in any other end component.

Discrete-time Markov chains (DTMCs) A DTMC is a purely probabilistic in-
stance of an MDP, i.e., where the action set is a singleton for each state. As a
consequence the only enabled action that can be chosen in state s is defined by s
unambiguously, and therefore there exists no nondeterminism in the model. The
definition of P can be therefore simplified to P : Sˆ S Ñ [0, 1] as well, and we require
that

ř

s1PS P (s, s
1) = 1 for all states s P S.

Continuous-time Markov chains (CTMCs) A CTMC is a pair (M, E) where
M = (S,Act, P ) is a DTMC as before (it is called the embedded DTMC), and
E : S Ñ Rě0 specifies exit-rates for the states of the model. E(s) is the rate of an
exponential distribution specifying the frequency of taking a transition from s. The
probability to take some transitions from s within t time units is given by 1´ e´E(s)¨t

with e being the Eulerian number. The probability to take a transition from s to s1

within t time units is:

P (s, [0, t], s1) = P (s, s1) ¨
(
1´ e´E(s)¨t

)
As a consequence, 1/E(s) is the average sojourn time in state s. If in state s there
exist multiple states s1 with P (s, s1) ą 0, we say that there occurs a race condition. A
trajectory is an alternating sequence s0 t0 s1 t1 s2 t2 . . . of states si and nonnegative real
numbers ti (the corresponding sojourn times in the states) such that P (si, si+1) ą 0.
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Reward structure A reward structure R for the Markovian model M consists of
finitely many reward functions rew : SY (SˆAct)Ñ N. We call rew a transition-reward
function (or state-action reward function) if rew(s) = 0 for all s P S. rew is called a
state-reward function if rew(s, α) = 0 for each pair (s, α) P S ˆ Act. For simplicity
we will consider transition-reward functions from now on1. If we handle state-reward
functions it is stated explicitly2. Throughout this document we will use the reward
function rewe : Sˆ Act Ñ N to reason about the energy consumption of the analysed
model, and rewu : Sˆ Act Ñ N formalises its utility.

If ρ = s0 α0 s1 α1 . . . αn´1 sn is a finite path, then we can declare the accumulated
reward rew(ρ) of the path as the sum of the rewards for the state-action pairs, i.e.,
rew(ρ) =

ř

0ďiăn rew(si, αi).
When reasoning about CTMCs, state rewards are understood as rewards per time

spent in the corresponding state, and therefore need to be scaled with the corresponding
sojourn times in trajectories during their accumulation.

Schedulers and induced probability space Reasoning about probabilities for path
properties in MDPs requires the selection of an initial state and the resolution of the
nondeterministic choices between the possible transitions. The latter is formalised
via schedulers, often also called policies or adversaries, which take as input a finite
path ρ and select an action to be executed. A (deterministic) scheduler is a function
S : FinPaths Ñ Act such that S(ρ) P Act

(
sn
)

for all finite paths ρ = s0 α0 . . . αn´1 sn.
An S-path is any path that arises when the nondeterministic choices in M are resolved
using S, i.e., S

(
pref (ρ, k)

)
= αk for all 0 ď k ă n. Infinite S-paths are defined

accordingly. Given some scheduler S and state s (viewed as the initial state), the
behaviour of M under S is purely probabilistic and can be formalised by a tree-like
(infinite-state) Markov chain MS

s . One can think of the states in MS
s as finite S-paths

ρ = s0 α0 . . . αn´1 sn starting in state s0 = s, where the probability to move from ρ to
ρα s1 is simply P (sn, α, s1). Using standard concepts of measure and probability theory,
a sigma-algebra and a probability measure PrSs for measurable sets of the infinite paths
in the Markov chain MS

s , also called (path) events or path properties, is defined and
can be transferred to maximal S-paths in M starting in s.

For Markov chains, the concept of schedulers is irrelevant (as there exists no non-
determinism) and we simply write Prs for the probability measure induced by M when
s is viewed as the initial state. For further details, it is recommended to study standard
text books such as [Hav98; Kul95; Put94].

For a worst-case analysis of a system modelled by an MDP M, one ranges over all
initial states and all schedulers (i.e., all possible resolutions of the nondeterminism)
and considers the minimal or maximal probabilities for ϕ. If ϕ represents a desired
path property, then Prmin

s (ϕ) = infS PrSs (ϕ) is the probability for M satisfying ϕ that

1An arbitrary state-reward function can be realised as a transition-reward function by setting
rew(s, α) = rew(s) for each action α P Act(s).

2The later presented implementation is tailored such that it is able to handle arbitrary reward
functions.
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2 Preliminaries

can be guaranteed even for worst-case scenarios, i.e., when ranging over all schedulers.
Similarly, if ϕ stands for a bad (undesired) path property, then Prmax

s (ϕ) = supS PrSs (ϕ)
is the least upper bound that can be guaranteed for the bad behaviours. Vice versa,
the value Prmax

s (ϕ) for a desired path property ϕ is relevant when addressing the task
to synthesise a (control) mechanism for scheduling actions with the objective ϕ. In
this context, it is of interest to compute a scheduler S such that PrSs (ϕ) = Prmax

s (ϕ).
A scheduler S is called finite-memory scheduler if there exists a finite set M of

modes, a decision function dec : SˆMÑ Act, an initial mode function init : S ÑM,
and a next-mode function next : M ˆ S Ñ M such that for each S-path ρ we have
S(ρ) = dec

(
last(ρ),m(ρ)

)
. Here, m(ρ) is defined inductively on the length of finite

paths by m(s0) = init(s0) and m(ρα s) = next
(
m(ρ), s

)
. The size of a finite-memory

scheduler is the number of its modes. A finite-memory scheduler where M is a singleton
is called a memoryless scheduler.

Limits of paths It is well-known [Alf98] that for any scheduler S, the limit of
almost all S-paths constitutes an end component. Here, the limit of an infinite path
π = s0 α0 s1 α1 . . . is given by the set inf(π) of states which appear infinitely often
in π and the function that assigns to each state t P inf(π) the set of actions α with
(si, αi) = (t, α) for infinitely many i.

State and path properties Let s be a state, ’ P tă,ď,ě,ąu a relation operator,
p P [0, 1] a probability bound and ϕ a path property. We write s |ù DP’p(ϕ) if there
exists a scheduler S with PrSs (ϕ) ’ p. Similarly, s |ù @P’p(ϕ) if PrSs (ϕ) ’ p for all
schedulers S. For the extreme cases where p = 1 is used, DP=1(ϕ), DPă1(ϕ), @P=1(ϕ)
and @Pă1(ϕ) are called almost-sure properties (where the probability bound “ě 1’’
has been replaced with “= 1’’). These, as well as the properties with dual probability
bounds “= 0’’ or “ą 0’’, are called qualitative.

Given a model and a reward structure R over this model consisting of reward function
rew, sets A, B Ď S, and r P N, then A U ((rew ’ r)^B ) stands for the set of infinite
paths π such that there is some k P N with rew(pref (π, k)) ’ r and π[k] P B, π[i] P A
for all 0 ď i ă k. If rew is clear from the context (e.g., if the reward structure R
is a singleton set), we use A U’r B to abbreviate A U

(
(rew ’ r)^B

)
. Intuitively,

A U’r B denotes all paths such that some state from B will be reached eventually, and
along the way only states specified by A are allowed. The reward that is accumulated
before finally reaching B is bounded by r with respect to ’. We often use the notation
π |ù A U’r B instead of π P A U’r B. As usual, we derive the release operator R by
A R’r B =  ( A U’r  B), where  B denotes the complement of B (= SzB). The
temporal modalities ♦ (eventually) and l (always) with or without reward-bounds are
derived as usual, e.g., ♦’rB = true U’r B and l’rB =  ♦’r B, where true stands
for the full state space S.

Reward-bounded path properties such as ϕ[r] = A Uďr B are called increasing
as π |ù ϕ[r] implies π |ù ϕ[r+1]. The dual path properties ψ[r] =  ϕ[r] are called
decreasing as π |ù ψ[r+1] implies π |ù ψ[r]. Analogously, a state property Φ[r] is called
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increasing if s |ù Φ[r] implies s |ù Φ[r+1]. Examples for increasing state properties
are DPąp(ϕ[r]), @Pąp(ϕ[r]), DPăp(ψ[r]) and @Păp(ψ[r]). Decreasing state properties are
defined accordingly.

The following simple observation will be used in the upcoming considerations, and
is therefore stated here:

Proposition 2.0.1. For a path π = s0 α0 s1 α1 . . ., arbitrary sets A,B Ď S, and r P N
the following holds:

π |ù A Uďr B iff π |ù (AYB) Uďr B

Proof. The implication from left to right is a simple consequence from the fact that
A Ď AYB for arbitrary sets A and B.

So, we focus on the implication from right to left, and therefore assume that
π |ù (AYB) Uďr B. This means that there exists an index k such that sk P B, for all
m ă k holds sm P AYB, and rew(s0 α0 s1 α1 . . . αk´1 sk) ď r. Given k is the smallest
index with sk P B, then for each index m ă k it must hold sm P A, and this would imply
π |ù A Uďr B immediately. If on the other hand k is not the smallest index, we can find
the smallest index l ă k satisfying the needs. As a consequence we have sl P B, sm P A
holds for all m ă l, and rew(s0 α0 s1 α1 . . . αl´1 sl) ď rew(s0 α0 s1 α1 . . . αk´1 sk) ď r.
Here, we use the fact that we do not consider negative rewards.
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3 Reward-bounded reachability
properties and quantiles

Since the ultimate goal of the framework presented here is to reduce the expenses of the
system under consideration to a minimum while simultaneously keeping the systems
performance at a high level, we need to investigate the interplay of both measures.
Therefore, it is necessary to relate the accumulated costs to the outcome that can
be achieved by the successful operation of the system. Transferred to the setting of
HAEC this means that we want to link the energy consumption of the system to the
performance that can be achieved by the operation of the analysed system.

In order to provide a formal energy-aware analysis for the system and its components
it is therefore crucial to pay attention to the described relation between the consumed
energy and the gained utility. So, it is required to do a multi-objective analysis in order
to get insights into the energy efficiency of the system. Therefore, we will transfer
the well-known concept of quantiles into the field of probabilistic model checking in
order to provide a tailored framework for the formal analysis of energy-aware systems.
The main idea behind quantiles is the optimisation of the accumulation of a specific
reward along the paths in the given model, while at the same time a reachability
analysis will be performed. So, when considering an increasing path property one
aims at minimising the accumulated reward, whereas a maximisation of the reward is
considered for a decreasing path property.

The algorithms that will be demonstrated in the following build the basis for an
implementation presented in Chapter 5, and which will be used in order to realise the
examination of the protocols shown in Chapter 6.

3.1 Essentials
We start by introducing the essential concepts for the computation of quantiles over
discrete-time Markovian models (like DTMCs or MDPs), and will later provide
algorithms for their computation. We will further see that an iterated computation
of bounded (constrained) reachability properties builds the basis for the presented
algorithms.

We will now specify the questioned quantiles formally. Let M = (S,Act, P ) be an
MDP and rew : Sˆ Act Ñ N a distinguished reward function in its reward structure.
Given an increasing path property ϕ[r] where parameter r P N stands for some bound
on the accumulation of the reward function rew, we define the following types of
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3 Reward-bounded reachability properties and quantiles

existential quantiles for state s P S, where ψ[r] =  ϕ[r], D P tě,ąu and p P [0, 1]XQ:

qus

(
DPDp(ϕ[?])

)
= min

 

r P N : s |ù DPDp
(
ϕ[r]

)(
= min

 

r P N : Prmax
s

(
ϕ[r]

)
D p

(

qus

(
DPDp(ψ[?])

)
= max

 

r P N : s |ù DPDp
(
ψ[r]

)(
= max

 

r P N : Prmax
s

(
ψ[r]

)
D p

(

Similarly, we can define the corresponding types of universal quantiles which are
considering Prmin instead of Prmax:

qus

(
@PDp(ϕ[?])

)
= min

 

r P N : Prmin
s

(
ϕ[r]

)
D p

(

qus

(
@PDp(ψ[?])

)
= max

 

r P N : Prmin
s

(
ψ[r]

)
D p

(

When considering DTMCs there is no nondeterminism involved. Therefore, an
existential quantile coincides with an universal quantile and we can thus simply drop
this distinction:

qus

(
PDp(ϕ[?])

)
= min

 

r P N : s |ù PDp
(
ϕ[r]

)(
= min

 

r P N : Prs
(
ϕ[r]

)
D p

(

qus

(
PDp(ψ[?])

)
= max

 

r P N : s |ù PDp
(
ψ[r]

)(
= max

 

r P N : Prs
(
ψ[r]

)
D p

(

reward

pr
ob

ab
ili

ty

rmin

p

reward

pr
ob

ab
ili

ty

rmax

p

Figure 3.1: Quantiles for increasing and decreasing path properties

Figure 3.1 depicts the typical shape for quantiles. On the left-hand side of the figure
an increasing path property ϕ[r] is shown. Here, a quantile asks for the minimum
reward that needs to be accumulated in order to guarantee the desired probability
threshold p (rmin

def
= qus

(
QPDp(ϕ[?])

)
with Q P tD, @u). A typical application for such a

quantile is the reasoning about the minimal energy consumption, since normally the
utilisation of additional energy increases the reliability of achieving a desired way of
behaviour. On the right-hand side of Figure 3.1 a decreasing path property ψ[r] is
used, and here a quantile asks for the maximal reward that can be accumulated before
the probability drops below the specified threshold p (rmax

def
= qus

(
QPDp(ψ[?])

)
with

Q P tD, @u). We will benefit from those quantiles for reasoning about the maximal
obtained utility that can be achieved with some fixed energy budget.
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3.2 Dualities

The calculation of quantiles where the accumulated reward is bounded from above
was already investigated in [UB13]. So, the quantiles studied there are obtained by
considering ϕ[r] = A Uďr B and ψ[r] = ( A) Rďr ( B). In the current chapter we
pay attention to the calculation of those quantiles and also address until-properties
with lower reward bounds, i.e., ϕ[r] = A Uěr B and ψ[r] = ( A) Rěr ( B). This
work was previously published in [Bai+14a] and builds the theoretical foundation of
this monograph.

Optimal and adversarial schedulers Considering an existential quantile, say r =
qus(DPąp(ϕ[?])), scheduler S is said to be optimal if PrSs (ϕ[r]) ą p. Scheduler S is
called adversarial for the universal quantile r = qus(@Pąp(ϕ[?])) if PrSs (ϕ[r´1]) ď p.
The definition of optimal and adversarial schedulers for other quantiles is analogous.

3.2 Dualities
Each of the presented quantiles allows to derive three additional quantiles by the
application of duality arguments, e.g., Prmax

s (ϕ[r]) = 1´ Prmin
s (ψ[r]), and the fact that

mintr P N : s |ù Φ[r]u equals maxtr P N : s * Φ[r´1]u for an increasing state property
Φ[r]. Therefore, the following can be deduced:

min
 

r P N : Prmax
s

(
ϕ[r]

)
ą p

(

= min
 

r P N : Prmin
s

(
ψ[r]

)
ă 1´p

(

= max
 

r P N : Prmin
s

(
ψ[r´1]

)
ě 1´p

(

= max
 

r P N : Prmax
s

(
ϕ[r´1]

)
ď p

(

And this observation directly yields groups of four quantiles that are derivable from
each other. So, it can be concluded that:

qus

(
DPąp(ϕ[?])

)
= qus

(
DPă1´p(ψ[?])

)
= qus

(
@Pě1´p(ψ[?])

)
+ 1

= qus

(
@Pďp(ϕ[?])

)
+ 1

Using arguments like these, it is possible to present an overview on the dualities of
quantiles.

Concerning increasing state properties:
qus

(
DPąp(A Uď? B)

)
= qus

(
DPă1´p(( A) Rď? ( B))

)
= qus

(
@Pě1´p(( A) Rď? ( B))

)
+ 1

= qus

(
@Pďp(A Uď? B)

)
+ 1

qus

(
DPąp(A Rě? B)

)
= qus

(
DPă1´p(( A) Uě? ( B))

)
= qus

(
@Pě1´p(( A) Uě? ( B))

)
+ 1

= qus

(
@Pďp(A Rě? B)

)
+ 1
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qus

(
@Pąp(A Uď? B)

)
= qus

(
@Pă1´p(( A) Rď? ( B))

)
= qus

(
DPě1´p(( A) Rď? ( B))

)
+ 1

= qus

(
DPďp(A Uď? B)

)
+ 1

qus

(
@Pąp(A Rě? B)

)
= qus

(
@Pă1´p(( A) Uě? ( B))

)
= qus

(
DPě1´p(( A) Uě? ( B))

)
+ 1

= qus

(
DPďp(A Rě? B)

)
+ 1

Concerning decreasing state properties:

qus

(
DPąp(A Uě? B)

)
= qus

(
DPă1´p(( A) Rě? ( B))

)
= qus

(
@Pě1´p(( A) Rě? ( B))

)
´ 1

= qus

(
@Pďp(A Uě? B)

)
´ 1

qus

(
DPąp(A Rď? B)

)
= qus

(
DPă1´p(( A) Uď? ( B))

)
= qus

(
@Pě1´p(( A) Uď? ( B))

)
´ 1

= qus

(
@Pďp(A Rď? B)

)
´ 1

qus

(
@Pąp(A Uě? B)

)
= qus

(
@Pă1´p(( A) Rě? ( B))

)
= qus

(
DPě1´p(( A) Rě? ( B))

)
´ 1

= qus

(
DPďp(A Uě? B)

)
´ 1

qus

(
@Pąp(A Rď? B)

)
= qus

(
@Pă1´p(( A) Uď? ( B))

)
= qus

(
DPě1´p(( A) Uď? ( B))

)
´ 1

= qus

(
DPďp(A Rď? B)

)
´ 1

Those dualities are helpful, since they allow to restrict the computation to several
basic quantiles and the results for other queries can be derived based on the presented
dualities.
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3.3 Upper-reward bounded quantiles

3.3 Upper-reward bounded quantiles

Now, we investigate computation-methods for quantiles over (constrained) reachability
properties where the accumulation of the reward is bounded from above. So, we study
quantiles of the form

qus

(
QPDp(A Uď? B)

)
for arbitrary sets A,B Ď S, D P tą,ěu, and Q P tD, @u. Quantiles of the presented
form ask for the minimum reward-accumulation until a certain event occurs (i.e., a
specific state of the model has been reached) with probability of at least p, and therefore
a typical application for upper-reward bounded quantiles is the analysis of the minimal
energy that a system consumes in order to supply a desired amount of utility. Since
this allows to analyse the minimal energy consumption of a given system within a
variety of different scenarios, this nicely integrates into HAEC (see Chapter 1).

The computation of those quantiles restricted to the case of state rewards has been
previously presented in [UB13]. Here, we recall the algorithms that are necessary
to calculate the quantiles, and simultaneously the algorithms will be extended for
supporting transition rewards as well. Those algorithms serve then as the basis for
the implementation of the quantile framework used for the computations shown in
Chapter 6.

The first thing one needs to do before starting to compute the quantile values is to
ensure that the demanded quantile does actually exist. As Figure 3.2 suggests, it can be

reward

pr
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ty

p

Figure 3.2: Quantile for increasing path property

the case that the (constrained) reachability property can not be fulfilled for probability
threshold p no matter the accumulated reward. Therefore, the accumulation of the
reward in this case is absolutely meaningless, as the fulfilment of the property will not
be influenced by its accumulation. So, in order to make sure that a quantile exists, a
preceding precomputation is needed. Using such a precomputation it can be ensured
that the reachability property can be fulfilled and therefore the demanded quantile
is finite. Or, if it is not possible to fulfill the reachability property, the computation
simply returns 8 and stops.
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3 Reward-bounded reachability properties and quantiles

3.3.1 Precomputation
The precomputation for queries of the form qus(QPDp(A Uď? B)) (with Q P tD, @u) can
be done by removing the reward bound and calculating the unbounded (constrained)
maximum (or minimum) reachability probability ps

def
= Prmax

s (A U B) (or Prmin
s (A U B),

respectively) for s P S. Using standard model-checking techniques, this can be done
in time polynomial in the size of the given model (see, e.g., [BK08, Chapter 10]). As
[UB13] shows in Lemma 10 and in Lemma 13, the resulting probability ps will be
then compared with the specified probability threshold p according to D. If D = ą

and p ě ps, or if D = ě and p ą ps, it is impossible to guarantee the desired
threshold, and the computation will be stopped and 8 will be returned as the result.
Otherwise, the demanded quantile value is finite and we can use an iterative algorithm
(as sketched in the next section) for finding the least i such that Prmax

s (A Uďi B)D p
(or Prmin

s (A Uďi B)D p, respectively).
So, the intuition behind the precomputation is to ensure that the succeeding iterative

computation scheme will be only used when it can be guaranteed that this procedure
will terminate after a finite number of iterations.

3.3.2 Computation scheme
[UB13] presents a linear-programming approach for the computation of quantiles
over (constrained) reachability properties with upper reward bounds (briefly called
Uď?-quantiles) over MDPs annotated with state rewards. The paper provides related
approaches for both, existential and universal quantiles. We recall the approach for
existential Uď?-quantiles, and as [UB13] considers state rewards, the approach will be
simultaneously extended to be applicable for state-action rewards as well.

The main ingredient for the computation of quantiles is the calculation of (con-
strained) reachability probabilities for all states of the model when the accumulation
of the reward has been restricted from above to a certain bound. So, we want to
solve a linear program that incorporates multiple bounded reachability probabilities,
and Figure 3.3 depicts the linear program of [UB13] that needs to be solved for the
computation of existential upper-reward bounded quantiles, adapted for the case of
state-action rewards (rather than state rewards)1. So, we compute reachability probab-
ilities for all existing states for a sequence of bounds. Lemma 10 and Lemma 13 in
[UB13] show that it is completely sufficient to analyse the reward-bounded reachability
up to a specific (exponential) upper bound rmax. If the requested quantile is finite it
can be guaranteed that its value can not be greater than this bound. This LP-based
computation scheme can be therefore solved in exponential time, using this exponential
bound for the smallest (finite) quantile. Therefore, the computation of upper-reward
bounded Uď?-quantiles in MDPs can be evaluated in exponential time (as also stated
in Theorem 11 and Theorem 14 of [UB13]).

1The intuitive meaning of xs,i is the probability of reaching B through A-states from the state s
such that a reward budget of i will not be overspent.
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minimise
ř

(s,i)PS[r]
xs,i subject to

xs,i = 0 if s * D(A U B) and 0 ď i ď r

xs,i = 1 if s P B and 0 ď i ď r

xs,i ě
ÿ

tPS
P (s, α, t) ¨ xt,i´rew(s,α) if s R B, s |ù D(A U B) and α P Act(s)

such that rew(s, α) ď i ď r

Figure 3.3: Linear program LPr with the unique solution ps,i = Prmax
s

(
A Uďi B

)
A naïve approach thus could first compute rmax, generate the linear program with

variables xs,i for (s, i) P S[rmax] and then use general-purpose linear- or dynamic-
programming techniques to solve the constructed linear program (e.g., the Simplex
algorithm [Nas00], ellipsoid methods [GLS93] or value [Bel57] or policy iteration
[How90]). However, since the upper bound rmax is exponential in the size of M and
depends on the transition probabilities and rewards in M and the specified probability
bound p, this approach turns out to be intractable when M or the reward values are
large. It turns out that in practice the demanded quantile values are normally much
smaller than the theoretically established bound rmax (see the different analysis-results
presented in Chapter 6). Even for those cases where the calculations do not consider
all theoretically possible iterations an approach that tries to solve the linear program
in one single self-contained step by using general-purpose methods like an LP-solver
is not feasible (see Table 6.3 in Section 6.1.1 (Self-Stabilising Protocol) or Table 6.8
in Section 6.1.2 (Asynchronous Leader-Election Protocol) for more details on this
incident). Instead, it is recommended to compute the reward-bounded reachability
probabilities using the iterative back-propagation procedure described in Section 5.1.1.

Anyways, since a precomputation procedure has already been passed, we can assume
that the user-specified probability threshold p can be met. We use this information
and therefore compute the maximal probabilities ps,r = Prmax

s

(
A Uďr B

)
for increasing

reward bound r (starting with 0), until ps,r D p holds for the first time. Then, r will be
returned as the result of the computation and corresponds to the demanded quantile
value.

The computation of universal Uď?-quantiles can be done using an analogous approach
where some details need to be adapted slightly. As already stated in Section 3.2,
quantiles that refer to reward-bounded release formulas are dual and can be computed
using the same techniques.

A simple consequence of the representation of Prmax
s

(
A Uďr B

)
as the unique solution

of the linear program in Figure 3.3 is the existence of a finite-memory scheduler S
with the modes 0, 1, . . . , r that maximises the probability for A Uďr B. In particular,
we obtain:

Lemma 3.3.1 (Optimal schedulers for until-quantiles). For each of the existential
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3 Reward-bounded reachability properties and quantiles

until-quantiles there exists an optimal scheduler S such that for all finite paths ρ1 and
ρ2:

if last(ρ1) = last(ρ2) and rew(ρ1) = rew(ρ2) then S(ρ1) = S(ρ2) (3.1)

For existential quantiles r = qus(D . . .) there are optimal finite-memory schedulers
whose size is bounded by r + 1.

Similarly, the universal until-quantiles have adversarial schedulers S satisfying
statement 3.1. Thus, an analogous statement holds for universal until-quantiles and
adversarial schedulers.

[HK15] presents an ExpTime-completeness result for the computation of cost
problems for general cost processes. The authors show the ExpTime-hardness by
reducing the problem of determining the winner in a countdown game [JLS07] to a
cost problem over cost processes by constructing a cost process such that a player of
the countdown game can only win if and only if there exists a scheduler solving the
considered cost problem. Since cost problems are directly related to the computation
of quantiles over MDPs, there is no hope to improve the computation of quantiles
substantially by utilising another class of algorithms. Nevertheless, Section 5.1 presents
several methods to enhance the computation of quantiles / reward-bounded reachability
probabilities that improve the practical performance of the computations significantly.
It is even the case that the calculations carried out practically are impossible in some
places without the utilisation of those optimisations.

3.3.3 Qualitative quantiles
Now, we investigate a special case for the computation of upper-reward bounded
quantile queries, i.e., the computation of qualitative quantiles where the probability
threshold is either 0 or 1. So, we consider queries of the form

qus

(
QPθ(A Uď? B)

)
with Q P t@, Du, θ P tą 0,= 1u. The computation of qualitative quantiles allows the
usage of less expensive methods and was studied in [UB13, Section 4] restricted for the
case of state rewards. For the computation a polynomial time-algorithm was presented
in [UB13, Algorithm 1], which relies on iterated reachability computations analysing
the structure of the graph representing the model under consideration. Figure 3.4
shows this algorithm for the computation of qualitative quantiles where the considered
reward function is restricted to state rewards. As can be seen, no methods for solving
linear programs are needed in this case. So, the implementation of this algorithm could
be done straight forward by utilising the graph-based methods already available for
doing standard calculations of probabilistic model checkers.

Since the application of quantiles for the analysis of energy-critical systems revealed
that a tool support that is restricted to state rewards only does not meet the require-
ments in many cases, the demand arose that the framework should provide support for
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3.3 Upper-reward bounded quantiles

Input: MDP M = (S,Act, P ), state-reward function rew : S Ñ N,
quantile query qu(Q(A Uď? B)) with Q P t@Pą0, DPą0, @P=1, DP=1u

for each s P S do
if s P B then v(s)Ð 0 else v(s)Ð 8

done
X Ð ts P S : v(s) = 0u
RÐ t0u
Z Ð ts P S : s P AzB and rew(s) = 0u
while R ‰ H do
r Ð minR
Y Ð ts P X : v(s) ď ruzZ
for each s P SzX with s P A and s |ù Q© (Z U Y ) do
v(s)Ð r + rew(s)
X Ð X Y tsu
RÐ R Y tv(s)u

done
RÐ Rztru

done
return v

Figure 3.4: Algorithm 1 from [UB13]

transition rewards as well. In order to allow transition rewards, a transformation is used
to encode the transition-reward function rew : Sˆ Act Ñ N over system M into a new
reward function Ărew : rS Ñ N (consisting of state rewards only) over the transformed
system ĂM by introducing intermediate states. Those additional states simply serve as
an emulation for the transition rewards of the original model. This encoding then allows
the application of [UB13, Algorithm 1] (as shown in Figure 3.4) for the computation of
qualitative quantiles when the model under consideration is equipped with transition
rewards. Figure 3.5 depicts the idea of the encoding transformation when rew(s, α) = 0,
rew(s, β) ą 0, and rew(t, γ) ą 0. The figure shows that only rewards greater zero are
taken into account and the zero-reward transitions stay without any modification.

Formally, for a given MDP M = (S,Act, P ) and a specific transition-reward
function rew : S ˆ Act Ñ N, the transformation defines a new MDP ĂM = (rS, ĂAct, rP )
with

• rS = SY tsα : s P S, α P Act(s), rew(s, α) ą 0u

• ĂAct = ActY tα̂ : Ds P S s.t. α P Act(s), rew(s, α) ą 0u
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Figure 3.5: Encoding of transition rewards into state rewards

• rP (s, α, t) =

$

’

’

’

&

’

’

’

%

P (s, α, t) if rew(s, α) = 0

0 if rew(s, α) ą 0 and t ‰ sα

1 if rew(s, α) ą 0 and t = sα

P (u, β, t) if s = uβ for u P S, β P Act(u), rew(u, β) ą 0

and a new state-reward function Ărew : rS Ñ N with

Ărew(t) =
#

0 if t P S
rew(s, α) if t = sα for s P S, α P Act(s)

From a theoretical point of view it is possible to introduce a newly created intermediate
state for each state-action pair (even if its reward is zero), but since the calculation of
qualitative quantiles is currently only supported for an explicit representation of the
model’s state space (see Section 5.2), this transformation would increase the size of
the transformed model dramatically. So, for practical purposes it is much better to
consider only the states that are essential for the encoding, and therefore utilise the
presented transformation.

The following shows that the transformation indeed preserves the reachability prob-
abilities, and therefore this transformation is sound.

Lemma 3.3.2. Let s P S, A,B Ď S and r P N. For each scheduler S in M there
exists a scheduler rS in ĂM such that

PrSM,s(A Uďr B) = PrrS
ĂM,s

(A1 Uďr B),

where A1 = A Y tsα : s P A,α P Act(s)u. For each scheduler rS in ĂM there exists a
corresponding scheduler S in M fulfilling the same equation.
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3.3 Upper-reward bounded quantiles

Proof. Let ρ = s0 α0 s1 α1 . . . αn sn with s = s0 and t = sn denote a finite path from
state s to state t in M. Using the transformation M  ĂM there exists a unique
finite path rρ in ĂM starting in s and ending in t. So, it is possible to assign each finite
path in M to exactly one finite path in ĂM. Vice versa, when a path in ĂM starts in
an arbitrary state of S and also ends in a state of S it is possible to assign this path
unambiguously to a path in M. In this way one obtains a bijective function between
paths in M and paths in ĂM starting in a state of S and also terminating in a state of
S.

The probabilities along the paths ρ and rρ are the same, and also the accumulated
reward along both paths is the same since the transformation introduces exactly the
same reward to a newly created state sα when rew(s, α) ą 0.

It is possible to find a mimicking scheduler rS over ĂM for an arbitrary scheduler S
over M using the following observations:

• For s P S and α P Act(s) with rew(s, α) = 0, rS simply picks α P ĂAct(s) in ĂM as
this action was preserved by the transformation.

• If s P S and α P Act(s) with rew(s, α) ą 0, the scheduler rS will pick action
α̂ P ĂAct(s) which was introduced by the transformation. Since α̂ only has the
newly created intermediate state sα as the sole successor the positive transition-
reward rew(s,α) will be added to the accumulated reward in state sα in any case.
In sα the only available action is α and therefore will be taken and all successors
of α in M can be reached with their respective probabilities.

Therefore, it is possible to mimic any scheduler over M in ĂM and the accumulated
reward is the same for both schedulers.

Since the transformation M ĂM does not introduce any nondeterminism to the
transformed model ĂM, and since the previous observations can be inverted, each
scheduler rS over ĂM can also be mimicked by a scheduler over M, again accumulating
the same reward.

So, the following holds for arbitrary r and s P S:

PrSM,s(A Uďr B) = PrrS
ĂM,s

((AY tsα : s P A,α P Act(s)u) Uďr B)

This shows the claim.

Lemma 3.3.2 is of help when considering the computation of quantiles since direct
consequences of this lemma are as follows:

Corollary 3.3.3. Let s P S and A,B Ď S. For Q P tD, @u, D P tě,ąu, and
p P [0, 1]XQ the following holds:

quM
s (QPDp(A Uď? B)) = qu ĂM

s (QPDp(A1 Uď? B)),

with A1 = AY tsα : s P A,α P Act(s)u as in Lemma 3.3.2.
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3 Reward-bounded reachability properties and quantiles

Corollary 3.3.3 shows that the transformation is indeed quantile-preserving, and
especially the computation of qualitative quantiles (where p is either 0 or 1) over
models using a transition-reward function is therefore possible utilising the presented
transformation and afterwards the qualitative algorithm introduced in [UB13, Algorithm
1].

3.4 Lower-reward bounded quantiles
Now, we want to present methods for computing quantiles where the accumulation of
the reward is bounded from below. So, we analyse quantile queries of the form

qus

(
QPDp(A Uě? B)

)
(3.2)

with A,B Ď S, D P tą,ěu, and Q P tD, @u. Here, we calculate the maximum
accumulated reward before a certain event occurs with high probability p, and so it is
possible to ask, e.g., for the maximal utility that can be provided by an energy-critical
system when there is only a specific energy budget available. For example, one could
ask for the maximal number of videos that can be decoded on a mobile device using
only a specific portion of the power that will be provided by its battery.

But, instead of calculating the demanded values in a direct way, we propose methods
for the calculation of

qus(QPEp(A Uě? B)) (3.3)

with E P tă,ďu. Using the dualities presented in Section 3.2, we can derive the
desired quantile value 3.2 from the value 3.3 by suitable transformations. So, instead of
computing the maximum reward possible with a probability of at least p, the idea is to
compute the minimal accumulated reward such that the probability becomes smaller
than p for the first time. This enables the computation to rely on similar iteration-based
methods as already presented for the calculation of upper-reward bounded quantiles.
And, like it was already the case there we do need a mechanism guaranteeing that
the demanded quantile really exists. Therefore, the computation also starts with a
precomputation followed by the actual calculation of the demanded quantile value.

For simplicity, only the treatment of reachability (♦ě?B) with a lower reward bound
will be sketched in the upcoming considerations.

3.4.1 Precomputation
In the following the set C denotes all states t P S that are contained in some (maximal)
end component (T,A) with rew(t1, α) ą 0 for some state t1 P T and some action
α P A(t1). So, C is the union of all end components possessing a positive reward.

At first, we want to learn under which circumstances it is possible to obtain finite
quantile values for reachability quantiles with lower reward-bounds. Therefore the
following lemma is very helpful when interested in the computation of a universal
quantile.
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3.4 Lower-reward bounded quantiles

Lemma 3.4.1. For all states s in M, we have:

qus

(
@Păp(♦

ě?B)
)
= 8 iff Prmax

s

(
♦(C ^ ♦B)

)
ě p

Proof. A first observation is as follows:

min
 

r P N : Prmax
s

(
♦ěrB) ă p

(

= 8

iff there is no r P N such that Prmax
s

(
♦ěrB) ă p

iff for all r P N there exists a scheduler Sr with PrSr
s

(
♦ěrB) ě p

“ðù’’: Suppose Prmax
s

(
♦(C^♦B)

)
ě p. Let Sopt be a (finite-memory) scheduler that

maximises the probability for ♦(C^♦B) for all states. Now, pick some (finite-memory)
scheduler SC such that from each state t P C with probability 1 all states of the
maximal end component (T,A) with t P T will be visited infinitely often and each of
its actions will be taken infinitely often. Then, the accumulated reward for almost all
infinite SC-paths starting in a C-state is 8. Furthermore, let S♦B be a (memoryless)
scheduler that maximises the probability to reach B for all states. Given r P N, we
now regard the scheduler Sr that operates in three phases:

• Phase 1: As long as C has not been reached, Sr behaves as Sopt. As soon as C
has been reached, Sr switches from phase 1 to phase 2.

• Phase 2: Sr mimics SC , provided that the total accumulated reward is less than
r. If the current state belongs to C and the total accumulated reward is larger
or equal r then Sr switches from phase 2 to phase 3.

• Phase 3: Sr behaves as S♦B.

When entering a C-state in the first phase and the total accumulated reward is ě r
then Sr can move directly from phase 1 to phase 3.

Now, the fact is used that all states that belong to the same maximal end component
have the same maximal reachability probabilities [Cie+08]. This yields that for each
ρ P t0, 1, . . . , r´1u and all states t of a maximal end component (T,A) of M that
contains at least one state-action pair with positive reward:

PrSr

t|rew=ρ

(
♦ěrB

)
=
ÿ

t1PT

PrSC

t|rew=ρ

(
C Uěr t1

)
¨ PrS♦B

t1

(
♦B
)

=
ÿ

t1PT

PrSC

t|rew=ρ

(
C Uěr t1

)
¨ Prmax

t

(
♦B
)

=Prmax
t

(
♦B
)

Here, the notation PrSr

t|rew=ρ indicates the probability under Sr under the condition
that state t has been just entered by switching from phase 1 to phase 2, while the
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3 Reward-bounded reachability properties and quantiles

accumulated reward is ρ. We obtain:

PrSr
s

(
♦ěrB

)
=

ÿ

0ďρăr

ÿ

(T,A)

ÿ

tPT

PrSr
s

(
 C U ((rew = ρ)^ t)

)
¨ PrSr

t|rew=ρ

(
♦ěrB

)
+
ÿ

tPC

PrSr
s

(
 C U ((rew ě r)^ t)

)
¨ PrS♦B

t

(
♦B
)

=
ÿ

tPC

PrSopt
s

(
 C U t

)
¨ Prmax

t

(
♦B
)

=Prmax
s

(
♦(C ^ ♦B)

)
where (T,A) ranges over all maximal end components that contain a state-action pair
with positive reward.

“ùñ’’: We now suppose that the quantile for the state s and the objective @Păp(♦ě?B)
is 8. Let

(
Sr

)
rPN be a family of schedulers such that:

PrSr
s

(
♦ěrB

)
ě p

The task is to show that Prmax
s (♦(C ^ ♦B)) ě p. For this it is shown that for each

ε ą 0 there exists a scheduler S such that PrSs (♦(C ^ ♦B)) ě p´ ε.
In what follows, some positive ε is fixed. There exists some r P N such that for each

scheduler S:

PrSs
(
( C) Uěr B

)
ă ε

This is due to the fact that the limit of almost all S-paths constitutes an end component
and that the reward earned in end components not contained in C is zero. For scheduler
S = Sr we obtain:

p ď PrSs
(
♦ěrB

)
= PrSs

(
( C) Uěr B

)
+ PrSs

(
♦(C ^ ♦((rew ě r)^B))

)
ď ε+ PrSs

(
♦(C ^ ♦B)

)
Hence, PrSs

(
♦(C ^ ♦B)

)
is at least p´ ε.

Let ĂM be the MDP that results from M by adding two new states goal and fail
and a fresh action symbol τ with transition probabilities:

P (t, τ, goal) = Prmax
M,t

(
♦B
)

P (t, τ, fail) = 1´ Prmax
M,t

(
♦B
)

if t P C and P (s, τ, s1) = 0 for all states s P SzC, s1 P S. The outgoing transitions of
the new states goal and fail are irrelevant for our purposes. We then have:

Prmax
M,s

(
♦(C ^ ♦B)

)
= Prmax

ĂM,s

(
♦goal

)
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The generation of ĂM mainly requires the computation of the values Prmax
M,s(♦B) and

the computation of the maximal end components of M. The former can be done using
graph algorithms and linear-programming techniques in time polynomial in the size of
M, while the latter is possible using standard algorithms in time quadratic in the size
of the underlying graph of M.

Now, that we have seen the criteria that need to be fulfilled in order to guarantee a
finite value for a universal lower-reward bounded quantile, we want to investigate the
same in the case of an existential quantile. We therefore start our investigation with
the following logical consequences:

min
 

r P N : Prmin
s

(
♦ěrB) ă p

(

= 8

iff there is no r P N such that Prmin
s

(
♦ěrB) ă p

iff Prmin
s

(
♦ěrB) ě p for all r P N

Obviously, this is the case if under each scheduler, with probability at least p, the set
B will be visited infinitely often and the accumulated reward tends to infinity. A direct
consequence of those considerations is stated in the following lemma. Therefore, let
posRew Ď Sˆ Act be the set of state-action pairs (s, α) with rew(s, α) ą 0.

Lemma 3.4.2. For all states s in M, we have:

qus

(
DPăp(♦

ě?B)
)
= 8 iff Prmin

s

(
l♦B ^l♦posRew

)
ě p

In order to compute the minimal probability for the generalised Büchi condition
l♦B ^ l♦posRew we can rely on standard techniques. We compute the set D
consisting of states that are contained in some end component (T,A) with T XB = ∅
or with rew(t1, α) = 0 for all actions α P A(t1) and states t1 P T . We then have:

Prmin
s

(
l♦B ^l♦posRew

)
= 1´ Prmax

s

(
♦D
)

Using the previous statements, it is possible to formulate the following corollary
enabling to check if a quantile exists or if it is infinite.

Corollary 3.4.3. The following two problems are in P:

(1) decide whether qus

(
@Păp(♦ě?B)

)
= 8

(2) decide whether qus

(
DPăp(♦ě?B)

)
= 8

3.4.2 Computation scheme
The approach for computing upper-reward bounded quantiles as in Section 3.3.2 can
be adapted to the computation of quantiles for reachability formulas with lower reward
bounds, i.e., ♦ě?B. We start with the universal quantile:

qus

(
@Păp(♦

ě?B)
)
= min

 

r P N : Prmax
s

(
♦ěrB

)
ă p

(
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Clearly, if Prmax
s (♦B) ă p then the quantile for state s is 0. Furthermore (see

Lemma 3.4.1):

qus

(
@Păp(♦

ě?B)
)
= 8 iff Prmax

s

(
♦(C ^ ♦B)

)
ě p,

where C consists of all states t that are contained in a maximal end component (T,A)
with rew(t1, α) ą 0 for some state t1 P T and an action α P A(t1). Intuitively, when
entering C one can stay in C until the accumulated reward is greater or equal than
r, before entering B. Otherwise, we apply the same idea as before and compute the
values ps,r = Prmax

s (♦ěrB) for increasing r until ps,r ă p. The values ps,r are obtained
as the unique solution of the following LP with variables xs,i2 for (s, i) P S[r] and the
following constraints for s P S and 1 ď i ď r:

xs,0 = Prmax
s

(
♦B
)

xs,i ě 0

xs,i ě
ÿ

tPS

P (s, α, t) ¨ xt,` if α P Act(s) and ` = maxt0, i´ rew(s, α)u

The objective is to minimise
ř

(s,i)PS[r] xs,i. To speed up the computation, one can add
the following constraints: xs,i = 1 if Prmax

s

(
♦(C ^ ♦B)

)
= 1 for s P S.

The existential quantile

qus

(
DPăp(♦

ě?B)
)
= min

 

r P N : Prmin
s

(
♦ěrB

)
ă p

(

can then be computed by an analogous approach, using the fact that the values
ps,r = Prmin

s

(
♦ěrB

)
are the greatest solutions in [0, 1] of the linear constraints

xs,0 = Prmin
s

(
♦B
)

xs,i = 0 if i ě 1,Prmin
s (♦B) = 0 or Prmin

s (♦posRew) = 0

xs,i ď
ÿ

tPS

P (s, α, t) ¨ xt,` if i ě 1,Prmin
s (♦B) ą 0 and Prmin

s (♦posRew) ą 0,

α P Act(s) and ` = maxt0, i´ rew(s, α)u

where posRew Ď SˆAct is the set of state-action pairs (s, α) with rew(s, α) ą 0. Then,
qus

(
DPăp(♦ě?B)

)
= 8 iff Prmin

s

(
l♦B ^ l♦posRew

)
ě p (see Lemma 3.4.2). Again,

one could add the following constraints: xs,i = 1 if Prmin
s (l♦B ^l♦posRew) = 1 for

s P S.

3.5 Energy-utility quantiles
The aim of the previously presented methods is to provide a framework for the formal
analysis of the trade-off between the consumed energy and the gained utility of an

2Intuitively, xs,i denotes the probability of reaching B from the state s such that a reward of i still
needs to be accumulated. Therefore, the very first iteration i = 0 corresponds to the maximal
unbounded reachability probability when there is no reward left that needs to be accumulated.
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3.5 Energy-utility quantiles

energy-critical system. Now, we want to see how those tools can be employed for this
task.

Defining

λe,u = ♦
(
(energy ď e)^ (utility ě u)

)
,

for a fixed energy budget e P N and a desired amount of utility u P N, allows to relate
the energy consumption of the system with the utility that can be provided.

For an infinite path π, we have π |ù λe,u iff π has a finite prefix ρ with rewe(ρ) ď e
and rewu(ρ) ě u. Likewise, λe,u can be interpreted as an instance of an until-property
with an upper or a lower reward bound. For a fixed utility threshold u, the property
λe,u = ♦ďe(utility ě u) corresponds to an increasing path property ϕ[e], while ψ[u] =
λe,u = ♦ěu(energy ď e) is decreasing for some fixed energy budget e. The task to
compute the existential quantiles

qus

(
DPąp(λ?,u)

)
= min

 

e P N : Prmax
s (λe,u) ą p

(

qus

(
DPąp(λe,?)

)
= max

 

u P N : Prmax
s (λe,u) ą p

(

corresponds to the problem of constructing a scheduler that minimises the energy
ensuring that the achieved utility is at least u with probability ą p or to maximise the
achieved degree of utility for a given energy budget e. Analogously, universal quantiles
can provide the corresponding information on the energy-utility characteristics in
worst-case scenarios.

So, the energy-utility quantile qus

(
DPąp(λ?,u)

)
allows to compute the minimal energy

needed in order to obtain the desired utility u with probability p. This quantile can
be computed using the same techniques as explained for reachability quantiles of the
form qus

(
DPąp(♦ď?B)

)
(see Section 3.3). For this purpose, the accumulated utility

will be encoded into the state space of the model under consideration. Since the
utility is bounded by u, one might use an automaton Uu with states q0, q1, . . . , qu´1, qu
describing the accumulation of the utility value. The goal state qu represents the fact
that the system achieved an utility of at least u. The transitions of Uu are then given
by qi Ñ qj for j ě i. Now, the representation M for the system and Uu can be put in
parallel and a new MDP M b Uu with a single reward function for the energy and
synchronous transitions that capture the meaning of Uu’s states is obtained. Formally,
Mb Uu = (Sˆ tq0, . . . , quu,Act, P 1) where

P 1(xs, qiy, α, xt, qjy) =

#

P (s, α, t) if j = mintu, i+ rewu(s, α)u

0 else

The reward structure of M b Uu consists of the energy reward function rewe lifted
to the product. That is, we deal with the reward function rew1

e for M b Uu given
by rew1

e(xs, qiy, α) = rewe(s, α) for all s P S, 0 ď i ď u and α P Act. By setting
B = Sˆ tquu, we then have

Prmax
M,s

(
♦((energy ď e)^ (utility ě u))

)
= Prmax

MbUu,xs,q0y

(
♦ďeB

)
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3 Reward-bounded reachability properties and quantiles

and therefore

quM
s (DPąp(λ?,u)) = quMbUu

xs,q0y
(DPąp(♦

ď?B)).

The quantile qus(DPąp(λe,?)) can be computed using an analogous automata-based
approach. Here, the energy consumption of the system is encoded using an automaton
Ue, and the maximal accumulated utility can be obtained using the methods suggested
for the computation of quantiles with lower reward bounds (see Section 3.4).

Various other energy-utility quantiles can be computed with the presented framework
using reductions to the case of reward-bounded until formulas or derived path properties,
such as

max
 

u P N : Prmax
s

(
(utility ě u) R (energy ď e)

)
ą p

(

.

It is obvious that an analogous automata-based approach is applicable for quantiles
where the objective is a probability constraint on path properties of the form ♦((rew ’

r) ^ κ), where κ is a Boolean combination of constraints of the form rewi ’i ri for
multiple reward functions rew1, . . . , rewk (other than rew).

3.6 Quantiles under side conditions
So far, we presented methods for computing quantiles for plain reward-bounded until
path properties. We now address quantiles for reward-bounded until properties with
ω-regular side conditions. That is, we consider path formulas of the form

ϕ[r] = (A Uďr B)^ ϕ and
ψ[r] = (A Uěr B)^ ϕ

where ϕ is an ω-regular path property. Those side conditions allow to compute optimal
quantile values (or quantile values for the worst case) while at the same time certain
objectives should be preserved by the protocol under consideration. This allows
to compute quantiles when for example some failure-preserving mechanisms can be
guaranteed, e.g., some recovery procedure will be initiated as soon as some storage
device crashes during its operation.

We will see that the task to compute probability quantiles for ϕ[r] or ψ[r] is reducible
to the problem of computing plain until-quantiles (as presented previously in Section 3.3
and Section 3.4). For this purpose, we provide transformations (M, s) ÞÑ (ĂM, rs) such
that for each r P N the maximal resp. minimal probabilities for ϕ[r] (resp. ψ[r]) in
M with starting state s agrees with the maximal resp. minimal probability for a
plain reward-bounded until-property in ĂM with starting state rs. Thus, quantiles for
ϕ[r] (resp. ψ[r]) in M are computable by applying the methods of Section 3.3 (resp.
Section 3.4) to the transformed ĂM, and also the optimisations that will be presented
in Section 5.1 are applicable for the computation as well.

The presented reduction is performed in two steps. In a first step, we rely on the
standard approach for handling ω-regular path properties by representing the side
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3.6 Quantiles under side conditions

condition ϕ by a deterministic automaton A that runs in parallel to M, yielding a
product MDP MbA (see Notation 10.128 in [BK08, page 881] on how to construct
the product of a given MDP M and an automaton A). This permits to replace ϕ with
A’s acceptance condition, lifted to the product MbA. As usual, when considering
the paths starting in a state s in M, we have to consider the corresponding paths
starting in the corresponding product state in MbA derived from the initial state of
the automaton A. It thus remains to consider the computation of quantiles for path
formulas of the form

ϕ[r] = (A Uďr B)^ Acc and
ψ[r] = (A Uěr B)^ Acc

in an MDP M, where Acc is some ω-regular acceptance condition for paths of
M, such as a Rabin or Streett condition, with the requirement that Acc is prefix
independent, i.e., that an infinite path π satisfies Acc iff all suffixes of π likewise satisfy
Acc. Additionally, we have to be able to compute Prmax

M,s(Acc) and Prmin
M,s(Acc), which

can be done in polynomial time for the standard acceptance condition types such as
Rabin, Streett or parity.

To deal with side conditions Acc, we provide a second set of transformations for the
four cases of upper and lower reward bounds and existential and universal quantification.
Speaking roughly, for schedulers maximising or minimising the probabilities for ϕ[r]
resp. ψ[r], the prefix independency of Acc allows to “postpone’’ the treatment of Acc
until the event A U’r B has occurred.

3.6.1 Upper reward bounds
We first address the task to compute probability quantiles for the path formulas
ϕ[r] = (A Uďr B)^ Acc and a lower probability bound p and the induced quantiles:

quM,s

(
@PDp(ϕ[?])

)
= min

 

r P N : Prmin
M,s

(
ϕ[r]

)
D p

(

quM,s

(
DPDp(ϕ[?])

)
= min

 

r P N : Prmax
M,s

(
ϕ[r]

)
D p

(

Such quantiles for upper reward-bounded until properties under ω-regular side con-
ditions can be computed by a reduction to quantiles for pure upper reward-bounded
until properties. For this purpose, we define the transformation M  ĂM mapping
M to a new MDP ĂM = Mup

min or ĂM = Mup
max arising from M by inserting two fresh

trap states goal and fail both equipped with reward zero. The behaviour of the target
states s P B in M will be purely probabilistically in ĂM. That is, their enabled actions
in Act get discarded and new probabilistic transitions to goal or fail via fresh action τ
will be added. The probability to move to goal is given by the minimal or maximal
probability for satisfying Acc from s, depending on whether we compute the universal
or existential quantile. Formally:

Mup
min = (rS,ActY tτu, P up

min, Ărew)
Mup

max = (rS,ActY tτu, P up
max, Ărew)
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3 Reward-bounded reachability properties and quantiles

where rS = S Y tgoal, failu and τ is a fresh action symbol not contained in Act. The
reward function in the transformed MDP is given by Ărew(s, act) = rew(s, act) if s P S,
act P Act(s) and Ărew(goal, τ) = Ărew(fail, τ) = 0. For s P S,

ActMup
min

(s) = ActMup
max(s) = ActM(s) if s R B

ActMup
min

(s) = ActMup
max(s) = tτu if s P B

If s R B then P up
min(s, act, t) = P up

max(s, act, t) = P (s, act, t) for all act P Act and t P S.
For the states s P B:

P up
min(s, τ, goal) def

= Prmin
M,s

(
Acc

)
P up

max(s, τ, goal) def
= Prmax

M,s

(
Acc

)
and for ˚ P tmin,maxu:

P up
˚ (s, τ, fail) = 1´ P up

˚ (s, τ, goal)

The states goal and fail are traps, e.g., we may deal with

ActMup
˚
(goal) = ActMup

˚
(fail) = tτu

and P up
˚ (goal, τ, goal) = P up

˚ (fail, τ, fail) = 1.
Intuitively, the constructed MDP Mup

˚ can simulate M-paths satisfying ϕ[r] =
(A Uďr B) ^ Acc by paths satisfying (A Y B) Uďr goal and M-paths satisfying
(A Uďr B) ^  Acc by paths satisfying (A Y B) Uďr fail, and vice versa. We use
(A Y B) on the left side of the until operator in Mup

˚ to allow goal to be reached
even if there are B-states that are not A-states. This is safe due to the fact that
A Uďr B ” (AYB) Uďr B (see Proposition 2.0.1), as the until formula is satisfied as
soon as the first B-state is reached and reaching the goal-state in Mup

˚ requires passing
through a B-state. The transition probabilities in Mup

˚ to move from a B-state to goal
or fail reflect the objective in M to maximise or minimise the probability for ϕ[r].

Lemma 3.6.1. For all states s of M and r P N:

(a) Prmin
M,s

(
(A Uďr B)^ Acc

)
= Prmin

Mup
min,s

(
(AYB) Uďr goal

)
(b) Prmax

M,s

(
(A Uďr B)^ Acc

)
= Prmax

Mup
max,s

(
(AYB) Uďr goal

)
Proof. To prove statement (a) we first show that the minimal probability for (A Uďr

B)^Acc in (M, s) is bounded from above by the minimal probability for (AYB) Uďr

goal in (Mup
min, s). For this, we pick a scheduler T for Mup

min. Furthermore, let Smin be
a scheduler for M such that

PrSmin
M,s

(
Acc

)
= Prmin

M,s

(
Acc

)
for all states s of M. We now combine T and Smin to construct a scheduler S for M
as follows. In its initial mode, S simulates T, unless the last state of the generated
path is a B-state, in which case S switches to its second mode where it behaves as
Smin. Formally, this means:
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3.6 Quantiles under side conditions

• S(ρ) = T(ρ) for all finite paths ρ in M that do not contain a B-state,

• S(ρ) = Smin(ρB) for all finite paths ρ in M containing at least one B-state and
where ρB is the suffix of ρ starting in the first B-state of ρ.

In the following calculation, let FP[A Uďr t] denote the set of all finite S-paths
ρ = s0 act0 s1 act1 . . . actn´1 sn in M with s0 = s and ts0, s1, . . . , sn´1u Ď AzB such
that sn = t and rew(ρ) ď r. We write Pr(ρ) for the probability of ρ given by the
product of the transition probabilities. Note that each ρ P FP[A Uďr t] is also a T-path
with the same probability. Furthermore, we write S[ρ] for the scheduler “S after
ρ’’ which means S[ρ](ρ1) = S(ρ ˝ ρ1) if last(ρ) = first(ρ1) and where ˝ denotes the
concatenation of finite paths. We then have:

PrSM,s

(
(A Uďr B)^ Acc

)
=

ÿ

tPB

PrSM,s

(
((A^ B) Uďr t)^ Acc

)
=

ÿ

tPB

ÿ

ρPFP[AUďrt]

Pr(ρ) ¨ PrS[ρ]
M,t

(
Acc

)
(˚)
=

ÿ

tPB

ÿ

ρPFP[AUďrt]

Pr(ρ) ¨ Prmin
M,t

(
Acc

)
=

ÿ

tPB

ÿ

ρPFP[AUďrt]

Pr(ρ) ¨ P up
min(t, τ, goal)

= PrTMup
min,s

(
(AYB) Uďr goal

)
where (˚) holds because S[ρ] = Smin for each ρ P

Ť

tPB FP[A Uďr t]. Recall that S
mimics Smin after having visited a B-state. In summary, for every scheduler T for
Mup

min we can construct a scheduler S for M such that

PrSM,s

(
(A Uďr B)^ Acc

)
= PrTMup

min,s

(
(AYB) Uďr goal

)
This yields:

Prmin
M,s

(
(A Uďr B)^ Acc

)
ď Prmin

Mup
min,s

(
(AYB) Uďr goal

)
Vice versa, given a scheduler S for M, we construct a scheduler T for Mup

min such that
the probability for (AYB) Uďr goal under T is less or equal than the probability for
(A Uďr B) ^ Acc under S as follows. As long as no state s P B has been reached,
scheduler T for Mup

min behaves as S. If the input path for T ends in a state of B then
T has no choice and must schedule τ from this moment on. That is, T(ρ) = τ for all
finite paths ρ in Mup

min that contain a B-state. (Note that these paths either end in a
B-state or in one of the trap states goal or fail.)

We can now use the same calculation as before, but replace the equality symbol in
(˚) with ě as:

PrS[ρ]
M,t

(
Acc

)
ě Prmin

M,t

(
Acc

)
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3 Reward-bounded reachability properties and quantiles

This yields that for every scheduler S for M there is a scheduler T for Mup
min with

PrSM,s

(
(A Uďr B)^ Acc

)
ě PrTMup

min,s

(
(AYB) Uďr goal

)
As a consequence we obtain:

Prmin
M,s

(
(A Uďr B)^ Acc

)
ě Prmin

Mup
min,s

(
(AYB) Uďr goal

)
The proof of statement (b) is analogous. To show that the maximal probability for

(A Uďr B) ^ Acc in the pointed MDP (M, s) is greater or equal than the maximal
probability for the event ((AY B) Uďr goal) in (Mup

max, s), we pick a scheduler T for
Mup

max and a scheduler Smax for M such that

PrSmax
M,s

(
Acc

)
= Prmax

M,s

(
Acc

)
for all states s of M. We design a scheduler S for M that operates in two modes. In
its initial mode, scheduler S simulates T, unless a B-state has been reached, in which
case S switches to its second mode and behaves as Smax from then on. Formally, the
behaviour of S for a given finite input path ρ in M is as follows:

• S(ρ) = T(ρ) if ρ does not contain a B-state

• S(ρ) = Smax(ρB) if ρ contains at least one B-state and ρB is the longest suffix
of ρ starting in a B-state

Using analogous calculations as in the proof of statement (a), we get:

PrSM,s

(
(A Uďr B)^ Acc

)
ě PrTMup

max,s

(
(AYB) Uďr goal

)
This shows:

Prmax
M,s

(
(A Uďr B)^ Acc

)
ě Prmax

Mup
max,s

(
(AYB) Uďr goal

)
It remains to prove that the maximal probability for (A Uďr B)^ Acc in the pointed
MDP (M, s) is less or equal than the maximal probability for (A Y B) Uďr goal in
(Mup

max, s). To see this, we take an arbitrary scheduler S for M. Let T be the scheduler
that behaves as S as long as no B-state has been reached. For all input paths for T
that contain at least one B-state, T schedules action τ . With analogous arguments as
in the proof of statement (a), we obtain:

PrTMup
max,s

(
(AYB) Uďr goal

)
ě PrSM,s

(
(A Uďr B)^ Acc

)
As a consequence, we get:

Prmax
M,s

(
(A Uďr B)^ Acc

)
ď Prmax

Mup
max,s

(
(AYB) Uďr goal

)
This yields the claim.

As a consequence of Lemma 3.6.1, the transformations M Mup
min and M Mup

max
can be used to compute quantiles for upper reward-bounded until properties under side
conditions by means of the linear programming techniques discussed in Section 3.3:

quM,s

(
@PDp((A Uď? B)^ Acc)

)
= quMup

min,s

(
@PDp((AYB) Uď? goal)

)
quM,s

(
DPDp((A Uď? B)^ Acc)

)
= quMup

max,s

(
DPDp((AYB) Uď? goal)

)
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3.6 Quantiles under side conditions

3.6.2 Lower reward bounds
Let ψ[r] = (A Uěr B) ^ Acc where Acc is an ω-regular acceptance condition on the
paths of M, as before. We now address the task to compute the quantiles:

quM,s

(
DPDp(ψ[?])

)
= max

 

r P N : Prmax
M,s

(
ψ[r]

)
D p

(

quM,s

(
@PDp(ψ[?])

)
= max

 

r P N : Prmin
M,s

(
ψ[r]

)
D p

(

Again, we provide transformations M Mlo
min and M Mlo

max such that for each
r P N the minimal (resp. maximal) probability for ψ[r] in M agrees with the minimal
(resp. maximal) probability in Mlo

min (resp. Mlo
max).

3.6.2.1 Maximal reachability probabilities

Let us first consider the task to compute the maximal probabilities for ψ[r]. The
MDP Mlo

max is obtained from M as follows. In each state of B, there is the choice
between two fresh actions τ and ι. Similar to Mup

max, the action τ represents the choice
of maximising Acc, going to states goal and fail with the corresponding probabilities.
The action ι from a state b P B represents the choice of continuing normally, going
with probability one to a fresh copy bc, where the actions for b in M are enabled.
Effectively, each B-state is split into two parts, with the first part allowing to choose τ
and the second part allowing the original choices.

Formally, Mlo
max = (rS,ActY tτ, ιu, P lo

max, Ărew) arises from M by adding trap states
goal and fail and fresh and pairwise distinct copies bc for each state b P B, i.e.,

rS = SYBc Y tgoal, failu

with Bc = tbc : b P Bu. The action set of Mlo
max is ActY tτ, ιu where:

ActMlo
max

(s) = ActM(s) if s P SzB
ActMlo

max
(s) =

 

τ, ι
(

if s P B
ActMlo

max
(sc) = ActM(s) if s P B

The probabilistic effect of the actions act P Act in Mlo
max is the same as in M. More

precisely, for t P S and act P Act:

P lo
max(s, act, t) = P (s, act, t) if s P SzB

P lo
max(sc, act, t) = P (s, act, t) if s P B

Furthermore, for s P B:

P lo
max(s, τ, goal) = Prmax

M,s

(
Acc

)
P lo

max(s, τ, fail) = 1´ P lo
max(s, τ, goal)

P lo
max(s, ι, sc) = 1
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3 Reward-bounded reachability properties and quantiles

Furthermore, P lo
max(goal, τ, goal) = P lo

max(fail, τ, fail) = 1 and no other action is enabled
in states goal and fail. The reward structure Ărew for Mlo

max is given by:

Ărew(s, act) = rew(s, act) for s P SzB
Ărew(sc, act) = rew(s, act) for s P B

Ărew(s, τ) = 0 for s P B Y tgoal, failu
Ărew(s, ι) = 0 for s P B

Each infinite path rπ in Mlo
max where action τ is never scheduled induces a path rπ|M

in M by dropping all occurrences of action ι and the Bc-states. Vice versa, whenever π
is an infinite path in M then a corresponding path rπ in Mlo

max is obtained by replacing
each B-state s in π with s ι sc. Analogous transformations can be provided for finite
paths in Mlo

max and M. For the transformation of a finite path ρ in M that ends in a
B-state, we skip the copy at the end and suppose that last(rρ) = last(ρ) P B.

Intuitively, Mlo
max can simulate M-paths satisfying ψ[r] = (A Uěr B) ^ Acc by

paths satisfying (A1 Uěr goal), and vice versa, where A1 consists of the A-states, the
B-states and those Bc-states bc where b P A. For an infinite path π in M that satisfies
(A Uěr B) ^ Acc, the corresponding path rπ is obtained by choosing action τ and
going to goal the first time B is visited with an accumulated reward ě r. As all
B-states visited on π strictly before that point have to be included in A (otherwise,
A Uěr B would not hold), the corresponding Bc-states visited along rπ in Mlo

max are
included in A1, as are all the B-states. Thus, rπ satisfies (A1 Uěr goal). Vice versa,
paths in Mlo

max satisfying (A1 Uěr goal) induce paths satisfying (A Uěr B)^Acc, with
path fragments rρ in Mlo

max satisfying (A1 Uěr B) inducing path fragments rρ|M in M
satisfying (A Uěr B).

Lemma 3.6.2. For all states s of M and all r P N:

Prmax
M,s

(
(A Uěr B)^ Acc

)
= Prmax

Mlo
max,s

(
A1 Uěr goal

)
where A1 = AYB Y tbc P Bc : b P Au.

Proof. As for Lemma 3.6.1, the proof relies on a scheduler transformation.

Part 1. To prove that the maximal probability for ψ[r] = (A Uěr B) ^ Acc is
bounded from above by the maximal probability for A1 Uěr goal in Mlo

max, we pick an
arbitrary scheduler S for M and define a scheduler T for Mlo

max as follows. In its first
mode, scheduler T simulates S by scheduling ι in the B-states, i.e., T(rρ) = S(rρ|M) if
last(rρ) P rSzB and T(rρ) = ι if last(rρ) P B. As soon as a finite path rρ with

rρ = rs0 act0 rs1 act1 . . . rsn where rs0, . . . , rsn´1 P A
1, rsn P B and Ărew(rρ) ě r

has been generated, T switches mode and schedules τ from now on.
Obviously, whenever rρ is a finite T-path not ending in goal or fail, then by dropping

the ι-actions and the states sc P Bc, we obtain an S-path in M.
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Let FP[A Uěr B] denote the set consisting of all finite S-paths ρ in M that have
the following form:

ρ = s0 act0 s1 act1 . . . sn where sn P B, s0, . . . , sn´1 P A and rew(ρ) ě r

such that no proper prefix of ρ belongs to FP[A Uěr B], i.e., if m ă n and sm P B

then rew(s0 act0 s1 act1 . . . actm´1 sm) ă r. Similarily, let ĂFP[A1 Uěr B] denote the set
consisting of all finite T-paths rρ in Mlo

max that have the following form:

rρ = rs0 act0 rs1 act1 . . . rsn where rsn P B, rs0, . . . , rsn´1 P A
1 and Ărew(rρ) ě r

such that no proper prefix of rρ belongs to ĂFP[A1 Uěr B].
Note that each finite path ρ P FP[A Uěr B] in M has a corresponding path

rρ P ĂFP[A1 Uěr B] in Mlo
max with rρ|M = ρ and vice versa. For t P B, we define

FP[A Uěr t] as the set of paths ρ P FP[A Uěr B] with last(ρ) = t and ĂFP[A1 Uěr t] as
the set of paths rρ P ĂFP[A1 Uěr B] with last(rρ) = t.

As in the proof of Lemma 3.6.1, we write Pr(ρ) for the probability of ρ given by the
product of the transition probabilities. Note that Pr(rρ) = Pr(rρ|M) for rρ P ĂFP[A1 Uěr B],
i.e., that the transformation of adding or dropping the ι actions and Bc-states does
not change the probability. We then have:

PrSM,s

(
(A Uěr B)^ Acc

)
=

ÿ

tPB

ÿ

ρPFP[AUěrt]

Pr(ρ) ¨ PrS[ρ]
M,t

(
Acc

)
ď

ÿ

tPB

ÿ

ρPFP[AUěrt]

Pr(ρ) ¨ Prmax
M,t

(
Acc

)
=

ÿ

tPB

ÿ

rρPĄFP[A1Uěrt]

Pr(rρ) ¨ P lo
max(t, τ, goal)

(:)
= PrTMlo

max,s

(
A1 Uěr goal

)
Equation (:) in the above calculation holds because the set of infinite T-paths satisfying
A1 Uěr goal consists of all infinite paths in Mlo

max that have a prefix rρ in ĂFP[A1 Uěr t]
for some t P B and move from last(rρ) = t to goal (rather than fail) via action τ . It can
be concluded:

Prmax
M,s

(
(A Uěr B)^ Acc

)
ď Prmax

Mlo
max,s

(
A1 Uěr goal

)
Part 2. For proving that the maximal probability for (A Uěr B)^Acc in the pointed
MDP (M, s) is greater or equal than the maximal probability for A1 Uěr goal in
(Mlo

max, s), we consider an arbitrary scheduler T for Mlo
max. Let Smax be a scheduler

for M maximising the probability for Acc from all states s P S. We now construct a
scheduler S for M as follows. In its initial mode, S mimics T by using T’s choice in
the bc copy for states b P B, provided that T does not select action τ in b. As soon as
T schedules action τ , scheduler S switches its mode and simulates Smax from then on.
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3 Reward-bounded reachability properties and quantiles

Let ĂFPτ [A
1 Uěr B] be the set of T-paths rρ in Mlo

max of the form

rρ = rs0 act0 rs1 act1 . . . actn´1 rsn with rs0, . . . , rsn´1 P A
1, rsn P B,

with rew(rρ) ě r and T(rρ) = τ , i.e., up to the B-state where T schedules τ for the first
time. Obviously, no path rρ P ĂFPτ [A

1 Uěr B] is a proper prefix of some other path in
ĂFPτ [A

1 Uěr B]. Similarily, let FPτ [A Uěr B] be the set of S-paths ρ in M with

ρ = s0 act0 s1 act1 . . . actn´1 sn with s0, . . . , sn´1 P A, sn P B,

and rew(ρ) ě r and such that T(rρ) = τ , where rρ is the path in Mlo
max corresponding to

ρ (by adding the ι actions and Bc copies) and such that no proper prefix of ρ belongs
to FPτ [A Uěr B].

Then:

S[ρ] = Smax for all ρ P FPτ [A Uěr B]

Additionally, we have a one-to-one correspondence between the paths ρ P FPτ [A Uěr B]

and rρ P ĂFPτ [A
1 Uěr B], satisfying rρ|M = ρ, Ărew(rρ) = rew(ρ) and Pr(rρ) = Pr(ρ). For

t P B, let FPτ [A Uěr t] be the set of finite paths ρ P FPτ [A Uěr B] with last(ρ) = t.
Likewise, let ĂFPτ [A

1 Uěr t] be the set of finite paths rρ P ĂFPτ [A
1 Uěr B] with last(rρ) = t.

We get:

PrSM,s

(
(A Uěr B)^ Acc

)
=

ÿ

tPB

ÿ

ρPFPτ [AUěrt]

Pr(ρ) ¨ PrS[ρ]
M,t

(
Acc

)
=

ÿ

tPB

ÿ

ρPFPτ [AUěrt]

Pr(ρ) ¨ PrSmax
M,t

(
Acc

)
=

ÿ

tPB

ÿ

ρPFPτ [AUěrt]

Pr(ρ) ¨ Prmax
M,t

(
Acc

)
=

ÿ

tPB

ÿ

rρPĄFPτ [A1Uěrt]

Pr(rρ) ¨ P lo
max(t, τ, goal)

= PrTMlo
max,s

(
A1 Uěr goal

)
In summary, this yields for every scheduler T for Mlo

max a scheduler S for M with

PrSM,s

(
(A Uěr B)^ Acc

)
= PrTMlo

max,s

(
A1 Uěr goal

)
Hence:

Prmax
M,s

(
(A Uěr B)^ Acc

)
ě Prmax

Mlo
max,s

(
A1 Uěr goal

)
This completes the proof of Lemma 3.6.2.
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3.6.2.2 Minimal reachability probabilities

Finally, we address the task of computing the minimal probabilities for ψ[r]. The
MDP Mlo

min is fairly the same as Mlo
max except that we assign reward 1 to the self-loop

in the goal state and that we deal with the minimal probability for Acc in M in the
definition of the transition probabilities for the τ -transitions from the B-states to the
goal state.

Formally, Mlo
min = (rS,ActY tτ, ιu, P lo

min, Ărew), where rS as well as the action set and
the enabled actions are as for Mlo

max. Likewise, P lo
min is as for P lo

max, except for the
probabilities in the B-states, i.e., for s P B,

P lo
min(s, τ, goal) = Prmin

M,s

(
Acc

)
P lo

min(s, τ, fail) = 1´ P lo
min(s, τ, goal)

P lo
min(s, ι, sc) = 1

The reward structure for Mlo
min is given by:

Ărew(s, act) = rew(s, act) for s P SzB
Ărew(sc, act) = rew(s, act) for s P B

Ărew(s, τ) = 0 for s P B Y tfailu
Ărew(s, ι) = 0 for s P B
Ărew(s, τ) = 1 for s = goal

As for Mlo
max in the previous transformation, we can transform between paths in M

and Mlo
min.

Intuitively, Mlo
min can simulate M-paths satisfying ψ[r] = (A Uěr B)^Acc by paths

satisfying (A1 Uěr C), and vice versa, where A1 consists of the A-states, the B-states,
those Bc-states bc where b P A and the goal state. The right hand side C of the until
consists of all Bc-states and the goal state. In contrast to Mlo

max, the goal state is
included on the left side of the until to ensure (in conjunction with the self-loop on goal
with reward 1) that every finite path rρ that satisfies (A1 U goal) will be extended to an
infinite path that satisfies (A1 Uěr goal), regardless of the concrete value of r. Without
the positive reward loop for the goal state, a minimising scheduler could ensure by
scheduling τ that every path fragment rρ consisting of A1-states, ending in a B-state
b and having reward Ărew(rρ) ă r is extended in such a way that (A1 Uěr goal) (and
thus also (A1 Uěr C)) is never satisfied. With the presented construction of Mlo

min, a
minimising scheduler has the following choice for continuing these paths: If it chooses
τ , (A1 Uěr C) will be satisfied with Prmin

M,b(Acc). Essentially, choosing τ focuses on
minimising the probability of ψ[r] = (A Uěr B)^ Acc by minimising the probability
only of Acc, ignoring the possibility of minimising the probability for (A Uěr B). The
choice ι in this situation postpones the minimisation of the probability of Acc to a
later moment. For a path fragment consisting of A1-states, ending in a B-state b and
having reward Ărew(rρ) ě r that has not yet satisfied (A1 Uěr C), the choice of τ becomes
attractive in all cases, as choosing ι will surely lead to satisfaction of (A1 Uěr C), as a
Bc-state is reached in the next step.
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3 Reward-bounded reachability properties and quantiles

Lemma 3.6.3. For all states s of M and all r P N:

Prmin
M,s

(
(A Uěr B)^ Acc

)
= Prmin

Mlo
min,s

(
A1 Uěr C

)
where A1 = AYB Y tbc P Bc : b P Au Y tgoalu and C = Bc Y tgoalu.

Proof. As before, we will provide scheduler transformations in both directions.

Part 1. We first show that the minimal probability for (A Uěr B) ^ Acc in M is
greater or equal than the minimal probability for A1 Uěr C in Mlo

min. For this, we
consider an arbitrary scheduler S for M. We define a scheduler T for Mlo

min as in Part
1 of the proof of Lemma 3.6.2, i.e., which first simulates S and switches to schedule τ
continuously as soon as a finite path

rρ = rs0 act0 rs1 act1 . . . rsn where rs0, . . . , rsn´1 P A
1, rsn P B and Ărew(rρ) ě r,

has been generated.
With the above definition of T, there is no finite T-path of the form:

rs0 act0 rs1 act1 . . . rsn where rs0, . . . , rsn´1 P A
1, rsn P Bc and Ărew(rρ) ě r

Note that for such paths we would have rsn´1 P B and actn´1 = ι, which conflicts with
T(rs0 act0 rs1 act1 . . . actn´2 rsn´1) = τ . This yields:

PrTMlo
min,s

(
A1 Uěr goal

)
= PrTMlo

min,s

(
A1 Uěr (goal_Bc)

)
= PrTMlo

min,s

(
A1 Uěr C

)
With a calculation as in the proof of Lemma 3.6.2 we get:

PrSM,s

(
(A Uěr B)^ Acc

)
ě PrTMlo

min,s

(
A1 Uěr goal

)
Hence, we get:

PrSM,s

(
(A Uěr B)^ Acc

)
ě PrTMlo

min,s

(
A1 Uěr C

)
As a consequence we obtain:

Prmin
M,s

(
(A Uěr B)^ Acc

)
ě Prmin

Mlo
min,s

(
A1 Uěr C

)
Part 2. To prove that the minimal probability for A1 Uěr C in Mlo

min is greater or
equal than the minimal probability for (A Uěr B)^ Acc in M, we pick an arbitrary
scheduler T for Mlo

min. Let Smin be a scheduler for M that minimises the probabilities
for Acc from all states. We now construct a scheduler S for M as follows. In its initial
mode, S mimics T, provided that T does not select action τ . As soon as T schedules
action τ , scheduler S switches its mode and simulates Smin from then on. The goal is
now to show that:

PrSM,s

(
(A Uěr B)^ Acc

)
ď PrTMlo

min,s

(
A1 Uěr C

)
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The set of T-paths in Mlo
min that satisfy A1 Uěr C can be partitioned into two sets,

those that satisfy A1 Uěr Bc and those that satisfy A1 Uěr goal. As it can be the case
that a path satisfies both A1 Uěr Bc and A1 Uěr goal, i.e., with a prefix that satisfies
A1 Uěr Bc before the τ -action is scheduled at a later point, we partition according to
which of the two path formulas is satisfied first. Formally, let ĂFP[A1 Uěr Bc] denote
the set of finite T-paths of the form

rρ = rs0 act0 rs1 act1 . . . rsn where rsn P Bc, rs0, . . . , rsn´1 P A
1 and rew(ρ) ě r

such that no proper prefix of rρ belongs to ĂFP[A1 Uěr Bc], i.e., if m ă n and sm P Bc

then rew(rs0 act0 rs1 act1 . . . actm´1 rsm) ă r. Let ĂFPτ [A
1 U B] be the set of T-paths rρ in

Mlo
min of the form

rρ = rs0 act0 rs1 act1 . . . actn´1 rsn with rs0, . . . , rsn´1 P A
1, rsn P B,

with T(rρ) = τ , i.e., up to the B-state where T schedules τ for the first time and which
do not have a prefix in ĂFP[A1 Uěr Bc]. Obviously, no path rρ P ĂFPτ [A

1 U B] is a
proper prefix of some other path in ĂFPτ [A

1 U B] and all infinite T-paths that satisfy
A1 Uěr goal have a prefix in ĂFPτ [A

1 U B]. We write ĂFPτ [A
1 U t] for t P B to denote the

set of paths in ĂFPτ [A
1 U t] ending in t, with an equivalent notation for ĂFP[A1 Uěr t].

Then:

PrTMlo
min,s

(
(A1 Uěr C)

)
= PrTMlo

min,s

(
ĂFP[A1 Uěr Bc]

)
+
ÿ

tPB

ÿ

rρPĄFPτ [A1Ut]

Pr(rρ) ¨ P lo
min(t, τ, goal)

Let FP[A Uěr B] be the set of finite M-paths ρ with rρ|M = ρ and rρ P ĂFP[A1 Uěr Bc]

and let FPτ [A U B] be the set of finite M-paths ρ with rρ|M = ρ and rρ P ĂFPτ [A
1 U B].

No path in FP[A Uěr B] has a prefix in FPτ [A U B] and vice-versa. Additionally, all
paths in FP[A Uěr B] or FPτ [A U B] are S-paths.

In particular, all S-paths that satisfy (A Uěr B) ^ Acc have a prefix in either
FP[A Uěr B] or FPτ [A U B]. However, not all infinite S-paths that have a prefix
in FP[A Uěr B] satisfy (A Uěr B) ^ Acc, as Acc is not guaranteed to be satisfied.
Likewise, not all infinite S-paths that satisfy Acc with a prefix in FPτ [A U B] satisfy
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3 Reward-bounded reachability properties and quantiles

(A Uěr B)^ Acc, as it is not guaranteed that (A Uěr B) holds. Thus, we have

PrSM,s

(
(A Uěr B)^ Acc

)
= PrSM,s

(
FP[A Uěr B]^ Acc

)
+ PrSM,s

(
FPτ [A U B]^ (A Uěr B)^ Acc

)
ď PrSM,s

(
FP[A Uěr B]

)
+ PrSM,s

(
FPτ [A U B]^ Acc

)
= PrSM,s

(
FP[A Uěr B]

)
+
ÿ

tPB

ÿ

ρPFPτ [AUt]

Pr(ρ) ¨ PrSM,t(Acc)

= PrSM,s

(
FP[A Uěr B]

)
+
ÿ

tPB

ÿ

ρPFPτ [AUt]

Pr(ρ) ¨ PrSmin
M,t (Acc)

= PrTMlo
min,s

(
ĂFP[A1 Uěr Bc]

)
+
ÿ

tPB

ÿ

rρPĄFPτ [A1Ut]

Pr(rρ) ¨ P lo
min(t, τ, goal)

= PrTMlo
min,s

(
(A1 Uěr C)

)
Thus, for every scheduler T in Mlo

min we can construct a scheduler S in M with

PrSM,s

(
(A Uěr B)^ Acc

)
ď PrTMlo

min,s

(
A1 Uěr C

)
Hence, we get:

Prmin
M,s

(
(A Uěr B)^ Acc

)
ď Prmin

Mlo
min,s

(
A1 Uěr C

)
This completes the proof of Lemma 3.6.3.

As a consequence of Lemma 3.6.2 and Lemma 3.6.3 the transformations M Mlo
min and

M Mlo
max permit to apply the methods presented in Section 3.4 for the computation

of quantiles for lower reward-bounded until properties under side conditions:

quM,s

(
DPDp((A Uě? B)^ Acc)

)
= quMlo

max,s

(
DPDp(A1 Uě? goal)

)
quM,s

(
@PDp((A Uě? B)^ Acc)

)
= quMlo

min,s

(
@PDp(A1 Uě? C

)
where A1 and C are defined as in Lemma 3.6.2 and Lemma 3.6.3, respectively. Please
note that the definition of A1 slightly differs in both cases.

3.7 Reachability quantiles and continuous time
Quantiles for continuous-time Markov chains can be defined in a similar way as for
discrete-time Markov chains (see Section 3.1). However, in the case of CTMCs we
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3.7 Reachability quantiles and continuous time

have to consider trajectories rather than paths, in which case the quantile can be a
real number (rather than an integer) and min and max in the definitions need to be
replaced with inf and sup, respectively. As an example, the quantile

inf
 

t P R : Prs
(
♦ďtΦ

)
ě p

(

asks for the “smallest’’ time-bound t such that the probability of reaching states
statisfying Φ within the given time is at least p starting from some fixed state s.

The theoretical basis for the computation of reachability quantiles in CTMCs relies
on an approximation scheme that was already proposed in [Bai+14b]3. The presented
scheme consists of a combination of an exponential search with a succeeding binary
search in order to find the demanded quantile value. As a very first step, it is checked
that the quantile is finite using a precomputation similar to the calculations required for
reachability quantiles in DTMCs or MDPs (see Section 3.3.1 or Section 3.4.1). Then,
the mentioned exponential search is used to determine the smallest i P N such that
Prs
(
♦ď2iΦ

)
ě p holds for the first time. The existence of such an i can be guaranteed

due to the already completed precomputation. If i ě 1, then a binary search is
performed in the interval [2i´1, 2i] to find a t P [2i´1, 2i] such that Prs

(
♦ďt´ ε

2Φ
)
ă p

and Prs
(
♦ďt+ ε

2Φ
)
ě p holds for a user-defined accuracy of ε ą 0. Due to the preceding

precomputation such a t exists, and it corresponds to an ε-approximation of the
demanded quantile inf

 

t P R : Prs
(
♦ďtΦ

)
ě p

(

. If it is the case that the exponential
search aborts immediately for i = 0, the binary search will be performed in the interval
[0, 1].

3.7.1 Dualities
When handling continuous time the only considered models are CTMCs. Since a
CTMC does not involve any nondeterminism, there is no need to distinguish between
existential or universal quantiles.

So, the following dualities can be established when considering increasing state
properties:

qus

(
Pąp(A Uď? B)

)
= qus

(
Pă1´p( ( A) Rď? ( B ) )

)
= qus

(
Pě1´p( ( A) Rď? ( B ) )

)
= qus

(
Pďp(A Uď? B)

)

qus

(
Pąp(A Rě? B)

)
= qus

(
Pă1´p( ( A) Uě? ( B ) )

)
= qus

(
Pě1´p( ( A) Uě? ( B ) )

)
= qus

(
Pďp(A Rě? B)

)
3The group of Monika Heiner planned to integrate an adapted form of this scheme into a development

version of the tool MARCIE [HRS13] in order to support the computation of quantiles in the
context of stochastic Petri nets.
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For the case of decreasing state properties the following dualities can be introduced:

qus

(
Pąp(A Uě? B)

)
= qus

(
Pă1´p( ( A) Rě? ( B ) )

)
= qus

(
Pě1´p( ( A) Rě? ( B ) )

)
= qus

(
Pďp(A Uě? B)

)

qus

(
Pąp(A Rď? B)

)
= qus

(
Pă1´p( ( A) Uď? ( B ) )

)
= qus

(
Pě1´p( ( A) Uď? ( B ) )

)
= qus

(
Pďp(A Rď? B)

)
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4 Expectation Quantiles
To investigate the interplay of two reward functions (such as one for the consumed
energy and one for the achieved utility) we address here path formulas where instead
of sets A,B Ď S (as done for reachability quantiles, see Chapter 3), constraints for
some other reward function are imposed. For instance, given two reward functions
rewe : S ˆ Act Ñ N (for the energy) and rewu : S ˆ Act Ñ N (for the utility), the
energy-utility trade-off (as introduced in Section 3.5)

λe,u = ♦
(
(energy ď e)^ (utility ě u)

)
directly relates the accumulation of the reward function for the energy with the
accumulation of the reward function for the gained utility.

So, the objective is the minimal or maximal expected value of a random variable
f [r] : InfPaths Ñ N Y t8u. For instance, if f [r] is increasing in r and θ stands for
some rational threshold, then an expectation quantile can be defined as the least r P N
such that the expected value of f [r] is larger than θ for all or some scheduler(s). As an
example for quantiles with expectation objectives, we consider a Boolean condition cond
for finite paths and the random variable f [e] = utility|cond : InfPaths Ñ NY t8u that
returns the utility value that is earned along finite paths where cond holds. Formally:

utility|cond(π) = sup
 

rewu

(
pref (π, k)

)
: k P N, pref (π, k) |ù cond

(

That is, if π is an infinite path with π |ù ♦cond (i.e., pref (π, k) |ù cond for some k P N)
then utility|cond(π) = rewu(ρ), where ρ is the longest prefix of π with ρ |ù cond. If
π |ù lcond (i.e., pref (π, k) |ù cond for all k P N) then utility|cond(π) can be finite or
infinite, depending on whether there are infinitely many positions i with rewu(si, αi) ą 0.
Given a scheduler S and a state s in M, the expected utility for condition cond is
the expected value of the random variable utility|cond under the probability measure
induced by S and s:

ExpUtilSs
(
cond

)
=

ÿ

rPN

r ¨ PrSs
 

π P InfPaths : utility|cond(π) = r
(

Note that ExpUtilSs
(
cond

)
= 8 is possible if PrSs

(
♦l(cond)

)
ą 0. We define

ExpUtilmax
s

(
cond

)
= sup

S
ExpUtilSs

(
cond

)
and

ExpUtilmin
s

(
cond

)
= inf

S
ExpUtilSs

(
cond

)
.

Expectation energy-utility quantiles can be formalised by dealing with conditions
cond[e] that are parameterised by some energy value e P N. Examples are the following
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4 Expectation Quantiles

quantiles that fix a lower bound u for the extremal expected degree of utility and ask
to minimise the required energy:

qus

(
DExpUąu(energy ď?)

)
= min

 

e P N : ExpUtilmax
s

(
energy ď e

)
ą u

(

qus

(
@ExpUąu(energy ď?)

)
= min

 

e P N : ExpUtilmin
s

(
energy ď e

)
ą u

(

where a path ρ |ù (energy ď e) if and only if rewe(ρ) ď e. We now want to discuss how
to compute expectation quantiles in MDPs with the two reward functions rewe and
rewu. The approach will be shown computing

ED
s = qus

(
DExpUąu(energy ď?)

)
and

E@
s = qus

(
@ExpUąu(energy ď?)

)
when the utility-bound u has been fixed. Using known results for standard MDPs, it
can be obtained that ExpUtilmax

s (energy ď e) is finite, provided that Prmin
s (♦(energy ą

e)) = 1. If, however, M contains end components where all the state-action pairs have
zero energy reward then Prmin

s (♦(energy ą e)) ă 1 and ExpUtilmax
s (energy ď e) = 8 is

possible. Therefore, a precomputation is necessary as already used for the computation
of reachability quantiles (see Chapter 3).

4.1 Computation scheme
In order to introduce the computation of expectation quantiles we start by restricting
ourselves to models where the demanded expectation quantile turns out to be finite and
therefore the presented computation will terminate. This renders a precomputation
unnecessary for those specific models, and allows to concentrate on the required steps
for computing the quantile values.

So, let us make the simplifying assumption that all end components are both energy-
and utility-divergent, i.e., whenever (T,A) is an end component of M then there exist
state-action pairs (t, α) and (v, β) with t, v P T and α P A(t), β P A(v) such that
rewe(t, α) and rewu(v, β) are positive. This assumption yields that Prmin

s (♦(energy ą
e)) = 1 and hence, ExpUtilmax

s (energy ď e) and ExpUtilmin
s (energy ď e) are finite for

all states s P S and arbitrary energy bounds e P N. Moreover, for each scheduler S we
have limeÑ8 ExpUtilSs (energy ď e) = 8. This yields the finiteness of the expectation
quantiles ED

s and E@
s . The computation of ED

s and E@
s can be carried out using an

iterative approach as it was done for reachability quantiles.
For E@

s , we compute iteratively the values us,e = ExpUtilmin
s (energy ď e) until

us,e ą u for the first time, in which case E@
s = e. It remains to explain how to compute

us,e. We can use an LP-based approach and characterise the vector (us,i)(s,i)PS[e] as
the unique solution of the LP with variables xs,i for (s, i) P S[e] and the objective to
maximise the sum of the xs,i’s (for i ď e) with subject to:

xs,i ď rewu(s, α) +
ÿ

tPS
P (s, α, t) ¨ xt,i´rewe(s,α) if rewe(s, α) ď i for α P Act(s)

xs,i ď 0 if rewe(s, α) ą i for α P Act(s)

56
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For computing ED
s , the values vs,e = ExpUtilmax

s (energy ď e) can be computed by a
similar schema. Here, the objective is to minimise the sum of the variables xs,i with
subject to:

xs,i ě rewu(s, α) +
ÿ

tPS
P (s, α, t) ¨ xt,i´rewe(s,α)

if α P Act(s) and rewe(s, α) ď i ď e.
Obviously, the linear programs which need to be solved are quite related to the

linear programs we already solved for the computation of reachability quantiles (see
Section 3.3.2). Therefore, most of the techniques for computing reachability quantiles
are applicable for the computation as well. We will take advantage of this observation
in order to improve the performance of the implemented algorithms (see Chapter 5
and especially Section 5.1 for more details).

4.2 Arbitrary models
Now, we turn to the computation of expectation quantiles for the general case, where
no assumptions on the end components are imposed. That is, there might exist
end components that contain no state-action pair with positive energy or utility
reward. Basically, this computation relies on an analogous LP approach, but re-
quires a preprocessing step to identify the states where ExpUtilmax

s (energy ď e) = 8,
respectively ExpUtilmin

s (energy ď e) = 8 and computing those states where the
quantile is infinite. Essentially, we can use the same linear program as sketched in
Section 4.1, restricted to those variables xs,e where ExpUtilmax

s (energy ď e) ă 8 resp.
ExpUtilmin

s (energy ď e) ă 8. Furthermore, we have to identify those states s where
the quantile is infinite. The main feature for this preprocessing is an analysis of end
components, similar as in [Alf99; For+11a].

Zero-reward and reward-divergent end components An end component (T,A) of
M with rewe(t, α) = 0 for all states t P T and actions α P A(t) is called a zero-energy
end component. (T,A) is called energy-divergent if there is some state-action pair (t, α)
with t P T , α P A(t) and rewe(t, α) ą 0. ZE denotes the set of all states t P S that are
contained in some zero-energy end component, and ED stands for the set of all states
t that belong to some energy-divergent end component.

Similar notations are used for the reward function rewu characterising the utility.
End components (T,A) with rewu(t, α) ą 0 for some state-action pair (t, α) where
t P T and α P A(t) are said to be utility-divergent. End components that are not
utility-divergent are called zero-utility end components. UD denotes the set of states
that are contained in some utility-divergent end component, while ZU stands for the
set of states that are contained in some zero-utility end component.

The sets UD and ED are obtained using standard algorithms for computing maximal
end components, see, e.g., [CY95] and [Alf98; BK08]. Note that t P UD if and only if
there exists a maximal end component of M that contains t and that is utility-divergent.
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The analogous statement holds for ED. This, however, does not hold for ZE and ZU
since zero-energy end components might be contained in energy-divergent maximal
end components. Nevertheless, the computation of ZE and ZU can also be carried out
using algorithms to determine maximal end components of the sub-MDPs M|rewe=0

and M|rewu=0, respectively. For instance, M|rewe=0 results from M by successively
removing actions and states. We start dropping all actions α with rewe(s, α) ą 0 from
Act(s). Afterwards, all states s with Act(s) =H are removed, and all actions β with
P (s1, β, s) ą 0 get removed from Act(s1) as well (i.e., we remove the actions where some
successors have been removed), and so on. This process carries on until all relevant
states and actions have been finally removed, and it needs to terminate since there are
only finitely many states and actions available. The previous considerations directly
lead to the following statement:

Lemma 4.2.1. The sets ZE, ED, ZU and UD can be computed in time quadratic in
the size of the underlying graph of M.

Expected accumulated utility for fixed energy budget For each infinite path π =
s0 α0 s1 α1 s2 α2 . . . and fixed energy budget e P N, utility|energyďe(π) = 8 if and only
if for each u P N there exists a finite prefix ρ of π such that energy(ρ) ď e and
utility(ρ) ą u. As the energy budget e is fixed, this is only possible if there exists some
k P N such that rewe(si, αi) = 0 for all i ě k and rewu(si, αi) ą 0 for infinitely many
indices i. Hence, if π = s0 α0 s1 α1 s2 α2 . . . then utility|energyďe(π) = 8 if and only if
there exists k P N such that

(1) energy(pref (π, k)) ď e

(2) @j ě k.rewe(sj, αj) = 0

(3)
8

D j P N.rewu(sj, αj) ą 0

Let ZEUD denote the set of all states t P S that are contained in some zero-energy
utility-divergent end component.

Lemma 4.2.2. For all states s in M and all e P N:

(a) ExpUtilmax
s (energy ď e) ă 8 iff s * D♦((energy ď e)^ ZEUD))

(b) ExpUtilmin
s (energy ď e) ă 8 iff Prmin

s (ϕ) = 0

where ϕ denotes the path property given by π |ù ϕ iff there exists some k P N such that
conditions (1), (2) and (3) hold.

Proof. To prove part (a), we first suppose s |ù D♦((energy ď e)^ ZEUD)) and show
that there is a scheduler S with ExpUtilSM,s(energy ď e) = 8. Let T be any finite-
memory scheduler with PrTt (lZEUD) = 1 for all states t P ZEUD and such that
the limit of almost all T-paths that start in some state t P ZEUD is a zero-energy
utility-divergent end component. We may pick any scheduler S that generates a finite
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4.2 Arbitrary models

path ρ with energy(ρ) ď e and last(ρ) P ZEUD and that behaves as T as soon as a
state in ZEUD has been reached. Then, utility|energyďe(π) = 8 for almost all infinite
S-paths π in the cylinder set of ρ. This yields:

ExpUtilSM,s(energy ď e) = 8

To prove the second part of statement (a), we suppose s * D♦((energy ď e)^ ZEUD)).
The task is to show that ExpUtilmax

M,s(energy ď e) is finite. We regard the MDP Me

that arises from M by mimicking the energy function rewe of M by a counter with
values in t0, 1, . . . , eu. The enabled actions of state xt, fy P S[e] in Me are the actions
α P ActM(t) where rewe(t, α) ď e´f . Furthermore, Me collapses all zero-energy
zero-utility end components of M into a single state and discards M’s actions inside
zero-energy zero-utility end components1. Then, Prmin

Me,xs,0y(♦final) = 1 where final is
an atomic proposition characterising all states of Me that do not have any enabled
action. Thus, ExpUtilmax

Me,xs,0y(♦final) is finite, and we have:

ExpUtilmax
M,s(energy ď e) = ExpUtilmax

Me,xs,0y(♦final)

We now turn to the proof of part (b). Let us first consider the case where ExpUtilmin
s (energy ď

e) is finite, i.e., ExpUtilSs (energy ď e) ă 8 for some scheduler S. Then:

PrSs
 

π P InfPaths : utility|energyďe(π) = 8
(

= 0

But then, PrSs (ϕ) = 0.
Vice versa, suppose Prmin

s (ϕ) = 0. We pick some finite-memory scheduler S with
PrSs (ϕ) = 0. Then, the limit of almost all S-paths from s is either an energy-divergent
end component or a zero-energy zero-utility end component. Let Me be the MDP as
above. When regarding S as a scheduler for Me (as done in the proof of Lemma 4.2.3),
PrSMe,xs,0y(♦final) = 1 as Me has no zero-energy zero-utility end components (by
construction). Moreover:

ExpUtilSM,s(energy ď e) = ExpUtilSMe,xs,0y(♦final) ă 8

Hence, ExpUtilmin
M,s(energy ď e) is finite.

4.2.1 Existential expectation quantiles
The procedure to compute the expectation quantiles qus(DExpUąu(energy ď?)) and
qus(@ExpUąu(energy ď?)) by an iterative search e = 0, 1, 2, . . . as explained in Sec-
tion 4.1 requires a preprocessing that identifies all states where the quantile has value 8.

1We drop here the precise definition of Me. A similar construction of the MDP ĂM that arises from
M by identifying all states that belong to some zero-utility end component is presented in the
proof of Lemma 4.2.3.
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4 Expectation Quantiles

We start with explanations for the case of existential expectation quantiles. Obviously,
for each utility bound u P R:

qus

(
DExpUąu(energy ď?)

)
= 8 iff

 

e P N : ExpUtilmax
s (energy ď e) ą u

(

=H

iff sup
ePN

ExpUtilmax
s (energy ď e) ď u

iff ExpUtilSs (energy ď e) ď u

for all e P N and all schedulers S.
Let Lim(UD) denote the event consisting of all infinite paths π such that the limit

of π is a utility-divergent end component. Likewise, we write Lim(ZU ) to denote the
event given by π |ù Lim(ZU ) iff the limit of π is a zero-utility end component. Hence,
Prmin

s (Lim(UD)_ Lim(ZU )) = 1.

Lemma 4.2.3. For each state s:

s |ù D♦UD iff sup
ePN

ExpUtilmax
s (energy ď e) = 8

Proof. To prove “ùñ’’, we suppose s |ù D♦UD and pick some utility bound u P Q. The
task is to show that there exists an energy bound e P N with ExpUtilmax

s (energy ď e) ą
u. The latter amounts proving the existence of some scheduler U with ExpUtilUs (energy ď
e) ą u.

As s |ù D♦UD, we may choose a shortest finite path ρ starting in s and ending in
some state in UD. Let S be a (memoryless) scheduler such that ρ is a S-path. With
e1 = energy(ρ) and p the probability of ρ we get

PrSs
(
♦((energy ď e1)^ UD)

)
ě p ą 0.

Let k P N be a positive natural number with p ě 1/k. We now consider any finite-
memory scheduler T that “realises’’ the utility-divergent end components, i.e., the limit
of almost all infinite T-paths starting in some state t P UD is a utility-divergent end
component. Clearly, along all these infinite T-paths, the accumulated utility tends to
8. Hence, there exists some e2 P N such that for all states t P UD:

PrTt
(
♦((energy ď e2)^ (utility ą 2k ¨ u))

)
ą

1

2

Let U = S ˝T be the scheduler that behaves like S as long as no state in UD has been
visited. As soon as a state in UD is visited, then U mimics T. We get:

PrUs
 

π : π |ù ϕ
(

ą
1

2k

where ϕ is the following LTL-like formula:

ϕ = ♦
(
(energy ď e1)^ UD

)
^ ♦

(
(energy ď e)^ (utility ą 2k ¨ u)

)
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4.2 Arbitrary models

and e = e1 + e2. Hence:

ExpUtilUt
(
energy ď e

)
ą

1

2k
¨ 2k ¨ u = u

This yields the claim.
We now turn to the proof of the implication “ðù’’. The task is to show that

s * D♦UD implies the existence of some u P Q such that

ExpUtilmax
s (energy ď e) ď u

for all energy bounds e P N. The assumption that no utility-divergent end component
is reachable from s yields that all end components that are reachable from s enjoy the
zero-utility property. Since under each scheduler the limit of almost all infinite paths
is an end component we get:

Prmin
s (Lim(ZU )) = 1

In what follows, we define a new MDP ĂM with a reward function rew and a goal
state that will be reached almost surely under each scheduler for ĂM such that, for
each e P N, the value ExpUtilmax

M,s(energy ď e) is bounded by the maximal expected
reward until reaching the goal state in ĂM.

The idea for the definition of ĂM is to collapse the effect of all transitions inside
zero-utility end components. Intuitively, this is justified as for the accumulated utility
in M, the behaviour inside zero-utility end components is irrelevant. The accumulated
energy might increase inside zero-utility end components. However, we are interested
only in an upper bound for the expected total accumulated utility in the new MDP
ĂM.

We first define an equivalence relation „ZU on ZU . For t1, t2 P ZU , t1 „ZU t2 holds
iff there exists some zero-utility end component that contains t1 and t2. For t P ZU ,
let [t]ZU denote the „ZU -equivalence class of t and let

ActZU (t) =
 

β P Act(t) : rewu(s, β) = 0, tt1 P S : P (t, β, t1) ą 0u Ď [t]ZU
(

denote the set of actions of t inside some zero-utility end component. We write „ to
denote the following equivalence relation on the state space S of M:

s1 „ s2 iff (s1 = s2)_ (s1, s2 P ZU ^ s1 „ZU s2)

Let [s] denote the equivalence class of s with respect to „. Thus, [s] = tsu if s P SzZU ,
while [t] = [t]ZU for t P ZU . The state space of the new MDP ĂM is:

rS =
 

[s] : s P S
(

Y
 

goal
(

For simplicity, let us suppose that the actions in M have been renamed such that
Act(s1)X Act(s2) =H if s1 ‰ s2. Then, the action set of ĂM is

ĂAct = ActY tτu

The transition probability function rP of ĂM is defined as follows.
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4 Expectation Quantiles

• If s P SzZU and α P Act(s), then rP ([s], α, [s1]) = P (s, α, [s1]) for s1 P S,
rP ([s], α, goal) = 0 and rew(s, α) = rewu(s, α)

2. Action τ is not enabled in
the states [s] where s P SzZU . Thus, the set ĂAct([s]) of actions that are enabled
in [s] equals Act(s).

• Let Z Ď ZU be a „ZU -equivalence class. The set of actions that are enabled in
Z is:

ĂAct(Z) = tτu Y
ď

tPZ

Act(t)zActZU (t)

If t P Z and α P Act(t)zActZU (t) then rP (Z, α, [s1]) = P (t, α, [s1]) for s1 P S,
rP (Z, α, goal) = 0 and rew(Z, α) = rewu(t, α). Furthermore, rP (Z, τ, goal) = 1
and rew(Z, τ) = 0.

• The fresh state goal is a trap with a single τ -labeled zero-reward self-loop, i.e.,
rP (goal, τ, goal) = 1 and rew(goal, τ) = 0.

As Prmin
M,s(Lim(ZU )) = 1, the only end component that is accessible from state s in ĂM

consists of the goal state. In particular:

Prmin
ĂM,[s]

(♦goal) = 1

Moreover, for each scheduler S for M there exists a corresponding (randomised)
scheduler rS for ĂM that mimics S’s behaviour inside zero-utility end components by a
probabilistic choice. Speaking roughly, if the current state is neither the goal state nor
a „ZU -equivalence class, then rS behaves as S. When entering a „ZU -equivalence class
Z, then rS selects an action in ĂAct(Z) probabilistically according to the probabilities
for S to generate a finite path ρ = t0 β0 t1 β1 . . . βn´1 tn α v where t0, . . . , tn and their
actions β0, . . . , βn´1 belong to Z and α R ActZU (tn) or to stay forever in ZU (in which
case rS moves to the goal state by scheduling τ). Then, the expected total accumulated
utility for S from state s in M equals the expected total utility for rS from state [s] in
ĂM, which again agrees with the expected accumulated utility until reaching goal from
[s] under scheduler rS. That is:

ExpUtilSM,s(true) = ExpRewrS
ĂM,[s]

(♦goal)

Recall that the limit of almost all S-paths is a zero-utility end component in M. Thus,
the expected total accumulated utility exists in M. Hence, for all e P N we have:

ExpUtilmax
M,s(energy ď e) ď ExpRewmax

ĂM,[s]
(♦goal)

and therefore:

sup
ePN

ExpUtilmax
M,s(energy ď e) ď ExpRewmax

ĂM,[s]
(♦goal)

The latter is finite as ♦goal holds almost surely under each scheduler for ĂM.
2Here and in what follows, for s P S, α P Act and R Ď S, we write P (s, α,R) for

ř

s1PR P (s, α, s1).
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4.2 Arbitrary models

Corollary 4.2.4 (Infinite existential expectation quantiles). For each u P Q, the
following statements are equivalent:

(a) qus

(
DExpUąu(energy ď?)

)
= 8

(b) sup
ePN

ExpUtilmax
s (energy ď e) ď u

(c) s * D♦UD and ExpRewmax
ĂM,[s]

(♦goal) ď u

where ĂM is defined as in the proof of Lemma 4.2.3.

Proof. The equivalence of (a) and (b) is obvious. The implication “(c) ùñ (b)’’ has
been shown in the proof of Lemma 4.2.3.

It remains to prove the implication “(b) ùñ (c)’’. The fact that (b) implies s * D♦UD
is a consequence of Lemma 4.2.3. To see why (b) implies ExpRewmax

ĂM,[s]
(♦goal) ď u we

pick some scheduler rS for ĂM. It suffices to show that there exists a scheduler S for
M such that the expected total accumulated utility under S agrees with the expected
accumulated reward until reaching the goal state in ĂM under the scheduler rS. That
is:

ExpUtilSM,s(true) = ExpRewrS
ĂM,[s]

(♦goal)

To prove the existence of such a scheduler S, we pick a finite-memory scheduler T
for M realising the zero-utility end components in the sense that PrTM,t1(ZU U t) = 1
for all states t, t1 P ZU with t „ZU t1, where ZU U t is used as a short form notation
for all infinite paths that have a finite prefix s0 α0 s1 α1 . . . αk´1 sk with sk = t and
rewu(si, αi) = 0 for 0 ď i ă k.

Let S be the scheduler that behaves as rS for the states s P SzZU (where we identify
s and the singleton [s] = tsu) and mimics rS’s decisions for the „ZU -equivalence classes
by simulating the actions α P Act(t)zActZU (t) for t P ZU by first following T’s decisions
until state t has been reached, and then selecting action α. If rS moves to the goal
state via the action τ from some „ZU -equivalence class Z P rS, then S changes mode
and behaves as T from then on. We obtain:

ExpRewrS
ĂM,[s]

(♦goal) = ExpUtilSM,s(true)

= sup
ePN

ExpUtilSM,s(energy ď e)

As sup
ePN

ExpUtilSM,s(energy ď e) ď u by assumption (b), this yields the claim.
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4 Expectation Quantiles

4.2.2 Universal expectation quantiles
Now, universal expectation quantiles are considered. Obviously, for each utility bound
u P Q we have the following:

qus

(
@ExpUąu(energy ď?)

)
= 8 iff

 

e P N : ExpUtilmin
s (energy ď e) ą u

(

=H

iff sup
ePN

ExpUtilmin
s (energy ď e) ď u

iff for each e P N there is some scheduler Se

such that ExpUtilSe
s (energy ď e) ď u

We first observe that for reasoning about ExpUtilmin
s (energy ď e) it suffices to

consider schedulers that stay forever in ZU as soon as they have reached some state in
ZU , see Lemma 4.2.5 below.

With abuse of notations, we interpret ZU as a set of states or as a set of states and
actions. Thus, if π = s0 α0 s1 α1 s2 α2 . . . is an infinite path then:

π |ù ♦ZU iff sk P ZU for some k P N
π |ù lZU iff sk P ZU and rewu(sk, αk) = 0 for all k P N.

Moreover, π |ù l(ZU Ñ lZU ) if and only if either ZU X tsj : j P Nu = H or
there is some k P N with ZU X ts0, . . . , sk´1u = H and suff (π, k) |ù lZU , where
suff (π, k) = sk αk sk+1 αk+1 sk+2 αk+2 . . . denotes the suffix of π starting at position k.

Lemma 4.2.5. Let S be a scheduler for M. Then, there exists a scheduler S1 for M
such that for each state s and each energy bound e P N:

ExpUtilS1

s (energy ď e) ď ExpUtilSs (energy ď e)

and

PrS1

s

(
l(ZU Ñ lZU )

)
= 1

Proof. Again, let T be a finite-memory scheduler realising the zero-utility end compon-
ents, i.e., PrTt (lZU ) = 1 for each state t P ZU . Given an arbitrary scheduler S, we
define S1 to be a scheduler that behaves as S until some ZU -state has been reached,
in which case S1 switches mode and behaves as T from then one.

Lemma 4.2.6. If S is a scheduler for M such that PrSs (Lim(UD)) ą 0, then

sup
ePN

ExpUtilSs (energy ď e) = 8

Proof. We first observe that

ExpUtilSs (true) = sup
ePN

ExpUtilSs (energy ď e)

is the expected total utility under scheduler S from state s. The claim then follows from
the fact that the accumulated utility value of the prefixes along paths whose limit is a
utility-divergent end component converges to 8. The assumption PrSs (Lim(UD)) ą 0
yields that these paths have positive measure.
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An immediate consequence of Lemma 4.2.6 is as follows:

Corollary 4.2.7. If Prmin
s (Lim(UD)) ą 0 then sup

ePN
ExpUtilmin

s (energy ď e) = 8.

Now, we address the case Prmin
s (Lim(UD)) = 0, in which case Prmax

s (Lim(ZU )) = 1.
We will rely on the following assumptions that can be ensured by some adequate
preprocessing. Lemma 4.2.5 allows to suppose that M satisfies the following property:

(A1) Whenever t P ZU and P (t, α, t1) ą 0 then t1 P ZU and rewu(t, α) = 0.

Furthermore, we suppose that t |ù D♦ZU for all states t in M. Hence, there is a
scheduler S such that from all states t, the limit of almost all S-paths is a zero-utility
end component. In particular:

(A2) Prmax
M,t(♦ZU ) = 1 for all states t

Let V be a deterministic memoryless scheduler for M such that PrVM,t(♦ZU ) = 1 for
all states t and

(A3) ExpUtilVM,t(♦ZU ) = ExpUtilmin
M,t(♦ZU ) for all states t

The existence of such a (deterministic and memoryless) scheduler V has been shown
by de Alfaro [Alf99]. Note that ExpUtilVM,t(♦ZU ) is the expected total utility from t
under scheduler V.

Lemma 4.2.8. Suppose assumptions (A1) and (A2) hold. Then, for all u P Q and all
states s of M:

sup
ePN

ExpUtilmin
M,s(energy ď e) = ExpUtilmin

M,s(♦ZU )

Proof. To prove “ě’’ we consider a deterministic memoryless scheduler V minimising
the expected total utility (see (A3)). Then:

ExpUtilmin
M,s(♦ZU ) = ExpUtilVM,s(♦ZU )

= ExpUtilVM,s(true)
= sup

ePN
ExpUtilVM,s(energy ď e)

ě sup
ePN

ExpUtilmin
M,s(energy ď e)

The remaining task is to prove “ď’’. Let

umin = sup
ePN

ExpUtilmin
M,s(energy ď e)

For each e P N there is a (deterministic) scheduler Se such that

ExpUtilSe
s (energy ď e) ď umin
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The sequence (Se)ePN can be used to generate a scheduler S such that for each k P N
there are infinitely many e P N with S(ρ) = Se(ρ) for all finite paths ρ of length at
most k. For this scheduler S and each e P N, we have:

ExpUtilSs (energy ď e) = sup
kPN

ExpUtilSs
(
(energy ď e)^ (steps ď k)

)
ď umin

where steps serves as a step counter. Thus:

sup
ePN

ExpUtilSs (energy ď e) ď umin

In particular, PrSs (Lim(UD)) = 0 by Lemma 4.2.6. Therefore, PrSs (Lim(ZU )) = 1 and:

ExpUtilSs (♦ZU ) = ExpUtilSs (true)
= sup

ePN
ExpUtilSs (energy ď e)

Putting things together, we obtain:

ExpUtilmin
s (♦ZU ) ď ExpUtilSs (♦ZU ) ď umin

This yields the claim.

Corollary 4.2.9 (Infinite universal expectation quantiles). Under assumptions (A1)
and (A2), for each u P Q, the following statements are equivalent:

(a) qus

(
@ExpUąu(energy ď?)

)
= 8

(b) sup
ePN

ExpUtilmin
s (energy ď e) ď u

(c) Prmax
s (♦ZU ) = 1 and ExpUtilmin

s (♦ZU ) ď u

Statements (c) of both, Corollary 4.2.4 and Corollary 4.2.9, provide criteria to check
whether a given expectation quantile has a finite value. Those checks can be done in
polynomial time. Therefore, an immediate consequence is as follows:

Corollary 4.2.10. The following two problems are in P:

• decide whether qus

(
DExpUąu(energy ď?)

)
= 8

• decide whether qus

(
@ExpUąu(energy ď?)

)
= 8

So, the statements (c) of the referred corollaries serve as the basis for the precompu-
tations of the expectation quantiles (see Section 5.2 for details on the importance of
precomputations for the quantile calculations).
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5 Implementation
Since the presented computation methods were designed in order to analyse and
optimise the energy efficiency of adaptive systems, it is of high interest to have reliable
tools for supporting an energy-efficient analysis based on the so far presented methods.
Therefore, the current chapter introduces a realisation of the framework for providing
quantiles as an instrument for the analysis. The probabilistic model checker Prism
[KNP11] hereby serves as the basis for the implementation, since an integration of the
methods into Prism allows one to have support for some of the necessary fundamental
methods that are required for the computation of quantiles in Markovian models.
For example, Prism delivers some of the necessary infrastructure for the handling
of the Markovian models themselves or the related reward structures, and one can
therefore utilise the shipped model-support and focus on the implementation of the
computation methods for the quantiles. Another important fact is that Prism is a
well-established tool within the formal methods community. So, the integration of
the quantile computations into Prism might help to make the presented framework
publicly available to a large audience. And moreover there exists a variety of already
created models for a large number of protocols. Those protocols cover various areas of
application and can be analysed using the presented framework immediately.

Before starting to describe the integration into Prism, we first take a look at
computational optimisations that can be done in order to improve the calculations of
quantiles and that help to decrease the memory consumption of the computations as
well as improving the timings needed for doing the desired analysis. All the described
optimisations have been integrated into the implementation in order to improve the
performance of the calculations.

5.1 Computation optimisations
Since model checking is a data- and compute-intensive task it is very important
to provide different optimisation techniques to reduce the memory- and the time-
requirements of the performed analysis. Since a reduction in the consumed memory
can cause an increase in computation-times, and as reduced computation-times may
need an increased amount of memory one needs to find a suitable trade-off between the
utilised resources for the desired analysis. Therefore, different mechanisms to adapt the
performed calculations to varying needs are proposed in the following with respect to the
computation of quantiles. The provided methods mainly rely on structural information
inherently given by the type of linear programs that need to be solved when computing
quantile queries. Therefore, there exist a number of technological possibilities that have

67



5 Implementation

a thorough impact on the performance of the quantile computations. In the following
we want to outline the possibilities and go into some necessary details.

5.1.1 Back propagation
The main bottleneck of the LP-approach for computing quantitative quantiles (see,
e.g., Figure 3.3 on page 29) is the possibly exponential size of the linear program, and
that the complete linear program is solved in one huge chunk. Therefore, an iterative
approach is proposed that computes the values ps,i = Prmax

s (A Uďi B) successively for
i = 0, 1, 2, . . . by decomposing the complete linear program that needs to be solved into
smaller ones, i.e., one linear program for i = 0 (called LP0), one for i = 1 (LP1), and so
on. This allows to solve the linear programs separately and reusing already computed
values as much as possible by propagating those values. Therefore, due to the reuse
and propagation of already computed values, this approach is called back-propagation
approach or simply BP-approach.

Given that the solution (ps,j)0ďjăi for LPi´1 is known when considering LPi, the
constraints for variable xs,i in the third case of the linear program in Figure 3.3 on
page 29 (i.e., if s R B, s |ù D(A U B) and α P Act(s)) can be rewritten as follows:

xs,i ě
ÿ

tPS
P (s, α, t) ¨ xt,i if rew(s, α) = 0

xs,i ě cs,i if rew(s, α) ą 0

where

cs,i
def
= max

#

ÿ

tPS
P (s, α, t) ¨ pt,i´rew(s,α) : α P Act(s), rew(s, α) ą 0

+

.

The linear programs obtained in this manner will be denoted by LP1
i. We can now use

standard methods to solve LP1
i with variables (xs,i)sPS consisting of the above linear

constraints together with the terminal cases xs,i = 0 if s * D(A U B) and xs,i = 1
if s P B, where the objective is to “minimise

ř

sPS xs,i’’. LP1
i has indeed a unique

solution which agrees with the (unique) solution (ps,i)sPS of LPi for the variables xs,i.
An immediate consequence of the back-propagation approach is the fact that the
computation of the positive-reward fragment of the model becomes quite simple within
every single iteration of the BP-approach. Only the treatment of the zero-reward
fragment remains a task that is a bit more involved.

Suppose the task is to compute qs = qus

(
DPąp(A Uď? B)

)
for all states s. Let

n = card(S), m =
ř

sPS card(Act(s)) and z be the number of state-action pairs (s, α) for
which s P S, α P Act(s) and rew(s, α) = 0. Then, with the proposed back-propagation
approach, (qs)sPS is obtained by first computing Prmax

s (A U B) for all states s (which
can be done in time polynomial in the size of M [BA95; BK08] and serves to identify the
states s P S where qs = 8) and then solving the LPs LP1

0,LP
1
1, . . . ,LP

1
r consecutively

(where r P maxtqs : Prmax
s (A U B) ą pu) with n variables and z + n linear constraints

each.
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5.1.2 Reward window

The usage of the BP-approach takes advantage of reusing already calculated values from
previous iterations. This enables optimisation techniques for reducing the memory-
consumption needed to store the previously calculated values. In order to reduce
the memory requirements, one can use the observation that the constants cs,i in LP1

i

are obtained from the values pt,i´rew(s,α) where α P Act(s) and rew(s, α) ą 0. As a
consequence, the solution

(
pt,i
)
tPS for LP1

i can be discarded as soon as LP1
i+w has been

solved for the maximal reward value w = max
 

rew(s, α) : s P S, α P Act(s)
(

in M. A
further improvement considers the maximum reward of all incoming transitions per
state. That is, the value of pt,i is not needed any more as soon as LP1

i+w has been solved
where w equals the maximal reward of the state-action pairs (s, α) with P (s, α, t) ą 0.

Since there is only a reference to a previously calculated value when there occurs a
positive reward (see the third case of the linear program in Figure 3.3 on page 29), only
the values of direct successors of positive-reward states occur at the right-hand side of
the inequation. Whereas, when there is no reward involved the references inside LP1

i

do belong to the very same linear program and therefore the referenced value was not
calculated previously. Therefore, only the values of direct successors of positive-reward
states will be propagated by the BP-approach, and as a consequence it is only necessary
to store the computed values of such states.

Using those observations we can utilise a reward window for storing the already
computed values from previous iterations. This reward window has a fixed capacity
determining the number of iterations within the BP-approach that the stored values
should be available for supply. New values will be than added to the storage by
simply replacing values that are no longer needed. The implementation of the quantile
calculations supports three different approaches for storing the previously calculated
values using a reward window:

All states

Using this approach the values for each state of the model are stored, regardless
whether the values are needed in the necessary computations or not. Therefore,
each state can be addressed directly without any need to do an index-recalculation
whenever a reference is needed. In a precomputation-step the maximal reward value
w = max

 

rew(s, α) : s P S, α P Act(s)
(

of the whole model will be determined
and every state has a reward window of size w. Therefore, it can be the case that
many values will be stored despite the fact that the values may not be needed by the
computations of the BP-approach.

Depending on the investigated model this approach can waste a huge amount of
memory for values that will never be used during the whole calculations. But, on the
other hand there are no additional index-recalculations needed like it is the case for
the two approaches described next. So, when there is a model where almost all states
are positive-reward successors this approach might be a good decision.
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Uniform positive-reward successors

As stated earlier there is only a need to store values for the successors of positive-reward
states (either positive state-rewards or positive transition-rewards or both). Therefore,
this approach stores only the computed values for those successors. Depending on the
model and the corresponding reward function this allows one to save a lot of memory
compared to the previous approach. But, in order to be able to assign the stored values
to the corresponding states of the model, it is required to use an additional data structure
that takes care of the correct mapping. So, as a downside one has to do a mapping-
computation each time an access to a stored value is needed. That is why one has to see if
the memory savings will make up for the overhead of the additional index-recalculations.
Again, a uniform reward window of size w = max

 

rew(s, α) : s P S, α P Act(s)
(

will
be used for each stored state, like it is done for the previous approach.

Depending on the model and the reward structure this approach might be a good
compromise between the used memory for the storage and the time spent on the
computations.

Individual positive-reward successors

As before, this approach only stores the calculated values for the successors of positive-
reward states. But here, each state has an individual reward window that is exactly
tailored for the specific state, meaning that each state s P S has its own reward window
of size ws = max

 

rew(s, α) : α P Act(s)
(

. So, the consumed memory is minimised
using this approach, and this approach becomes useful when it is the case that there
are only a few states that need a very large reward window and most of the states
come along with just a small window. Because using the two previous approaches in
this case would allocate huge reward windows even for states that do not need those
huge windows, so a significant amount of memory would be consumed without any use
for the calculations.

As a drawback this approach needs more operations for resolving the references to
the corresponding stored values from the previous iterations. Therefore, the time for
the computation might be effected in a negative way in comparison to the other two
approaches.

See the eBond-protocol on page 140 for performance statistics on the usage of the
different reward window-approaches. There the number of elements that is stored by
each approach (see Figure 6.20) can be related with the computation time that is
needed in order to compute a complete query (see Figure 6.21). It can be seen that the
approaches where we only store values for the positive-reward successors can reduce the
memory consumption in a substantial way, but this reduction has to be paid in terms
of increased computation times due to the additional operations needed for resolving
the correct references within the stored values.
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5.1.3 Topological sorting of zero-reward sub-MDPs

The back-propagation approach can yield a major speed-up compared to the naïve
approach solving one huge single linear program. However, if the number of state-action
pairs with zero reward is large compared to the full set of actions in S, the numerous
linear programs LP1

i need still to be solved for several i. In order to improve the
computation performance for solving a linear program LP1

i the idea is to decompose
LP1

i and treat the sub-LPs in a specific order. Let G be the directed graph with node
set S and the edge relation ÑĎ Sˆ S given by sÑ t iff P (s, α, t) ą 0 for some action
α P Act(s) with rew(s, α) = 0. Applying standard graph algorithms1, the strongly
connected components in G will be computed and also a topological sorting C1, . . . , Ck

for those components. This will be done once initially and the derived topological
order will be stored to use it throughout each required iteration. The SCCs C1, . . . , Ck

are then the finest partition of S such that:

if s P Ch, t P Cj, P (s, α, t) ą 0 and rew(s, α) = 0, then h ď j.

Thus, it is possible to decompose LP1
i into multiple linear programs LP1

i,1, . . . ,LP
1
i,k,

where LP1
i,h consists of the linear constraints

xs,i ě cs,i and
xs,i ě

ÿ

tPCh

P (s, α, t) ¨ xt,i +
ÿ

uPCąh

P (s, α, u) ¨ pu,i

for s P Ch, α P Act(s), rew(s, α) = 0. Here, Cąh = Ch+1 Y . . . Y Ck and (pu,i)uPCj

denotes the solutions of LP1
i,j . The objective of LP1

i,h is to minimise the sum
ř

sPCh
xs,i.

Assuming that the sub-MDP M|rew=0 of M resulting by removing all actions α
from Act(s) with rew(s, α) ą 0 is acyclic, no linear program needs to be solved using
this approach. In this case, the sets C1, . . . , Ck are singletons, say Ch = tshu, and the
solution

(
ps,i
)
sPS is obtained directly when processing the states in reversed topological

order sk, sk´1, . . . , s1.

5.1.4 Parallel computations

Another direct advantage of the BP-approach (as described in Section 5.1.1) is that it
allows the usage of parallel computation-techniques. Here, we consider the possibilities
to parallelise the calculations within the respective iterations of the BP-approach. In
principal, there are two opportunities where it is possible to exploit parallelism within
such an iteration:

1The topological sorting can be realised by utilising, e.g., the algorithm of Tarjan (see [Tar72]) over
the zero-reward fragment of the given model, and its running-time is therefore linear in the size of
this zero-reward fragment.
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Positive-reward states

Since in each linear program LP1
i a positive-reward state has only references to values

that were calculated in linear programs LP1
j with j ă i, the values for positive-reward

states can be computed directly by propagating the known values from those previous
iterations. So, there are no cyclic dependencies between two different positive-reward
states s1 and s2, and it is therefore completely irrelevant if xs1,i will be computed
before xs2,i in iteration i, or the other way round. Therefore, within LP1

i all positive-
reward states can be calculated completely independently from each other and this
allows one to compute all those states in parallel. There is no additional overhead
needed, except the overhead that usually arises when employing parallel computation
techniques (additional overhead emerges due to the coordination needs of the parallel
tasks [Gra+03]).

Zero-reward states

The topological sorting of the zero-reward sub-MDPs (see Section 5.1.3) gives the
opportunity to calculate the zero-reward sub-MDPs (and therefore the zero-reward
states) in parallel. For the parallel computation of the zero-reward components it
is essential to know which sub-MDP refers to values from other sub-MDPs. So,
the DAG2 of all sub-MDPs will be computed, and whenever there is an edge from
component Ci to component Cj inside the DAG, the values of component Ci can not
be calculated before the values of Cj are known. But, at the time when Ci refers only
to components where all values can be provided, it is then possible to resolve the values
for the states of Ci. Therefore, it is possible to calculate all components Ci1 , . . . , Cik in
parallel whenever the values of all referenced components have been already computed
previously.

Of course, the determination of the DAG leads to an additional overhead compared
to the sequential computation of the zero-reward states. But this needs to be done
only once, and the information will be used for each iteration of the BP-approach. So,
every single iteration will benefit from the DAG-generation, and usually this overhead
can be neglected.

As parallel computations usually involve some overhead, the current implementation
of the quantile algorithms supports the independent activation of the two different
approaches. So, whenever it is the case that the determination of the DAG for the
zero-reward states is too expensive, one can only utilise the parallelism for the positive-
reward states. Or, if it is the case that there are only a few positive-reward states,
but many independent zero-reward sub-MDPs, it is supported to only calculate the
zero-reward states in parallel. However, the computation statistics for the parallel
Explicit-engine presented in Chapter 6 do make use of both parallel approaches.

2Directed Acyclic Graph, i.e., a directed graph that has no cycles. Therefore, a specific topological
order is inherently defined by the DAG.
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Therefore, all presented timings for parallel calculations involve the generation of the
DAG for the zero-reward sub-MDPs.

5.1.5 Multi-thresholds
Assume we fix a specific model and also some quantile query that is of interest. Nor-
mally, the aim is then to compute the resulting quantile values when the provided
threshold varies. One observation that can be done in this case is that each com-
putation requires exactly the same initialisation phase. And as well the iterative
computation steps are the same regardless of the given threshold, since the threshold
comes into play for determining the termination criterion of the computation. This
observation demonstrates that there is potential to reuse already calculated results
for the computation of quantiles with different probability thresholds. This has the
benefits of doing the required precomputation steps just once and simply reuse the
results for other requested thresholds. Also, the computed (and stored) values can
be used for different thresholds and the whole computation will terminate as soon as
the results for all demanded thresholds were determined. This allows us to calculate
multiple quantile values for a fixed query in just one run. So, instead of calculating
quantiles for a number of different thresholds like

qus

(
DPą0.2(A Uď? B)

)
,

qus

(
DPą0.5(A Uď? B)

)
and

qus

(
DPą0.7(A Uď? B)

)
separately, it is possible to use a multi-threshold query like

qus

(
DPąt0.2,0.5,0.7u(A Uď? B)

)
and calculate the demanded quantile values in just one run. This characteristic is of
course not restricted to the usage of reachability quantiles and is also applicable for
the computation of expectation quantiles.

5.1.6 Multi-state solution methods
Let C denote a zero-reward sub-MDP (see Section 5.1.3) that needs to be solved for
the linear program LP1

i. When card(C) = 1 then there is only one state that needs to
be calculated and all the referenced values of this state have already been calculated
earlier (this is ensured by the topological sorting of the zero-reward components). This
means that there are no cyclic references involved when solving C, and therefore the
computation of C can be carried out in a direct manner.

When on the other hand it is the case that C consists of multiple states, the values
for all states of C need to be solved interdependently, since the states of C have
cyclic references amongst themselves. Therefore, it is a good choice to utilise multi-
state solution methods already known from the literature. The implementation of
the presented quantile framework supports the following three different computation
methods:
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LP-solver

This approach uses the Mixed Integer Linear Programming (MILP) solver lp_solve3

in order to compute the values for all the states of C. The usage of an LP-solver
provides the computation of exact solutions, but as a drawback the approach does not
really scale (see [For+11a]). So, the usage of this approach may be inappropriate for
the analysis of very large models and it is recommended to use one of the other two
approaches in this case.

value iteration

Here, value iteration is used for the computation of values for the states of C. This
approach works by successively iterating the necessary operations on a specific initial
vector until the vector has reached a fixpoint. This fixpoint then serves as the demanded
result of the computation. Value iteration allows fast computations and the memory-
requirements are also very moderate, making it a very prominent approach which is
rather often used in practice. Further details on value iteration can be found in [BK08,
Theorem 10.100].

interval iteration

It is stated in [HM14] that some problems may arise when the value iteration-approach
is utilised in practice. Since there needs to be a specific stopping criterion in order
to ensure the termination of the fixpoint computations in practice, the literature
proposes to stop the calculations as soon as the difference between the results of
the current iteration and the results of the previous iteration is smaller than some
user-defined ε ą 0 for all states. This leads to the fact that there is no guarantee that
the computed values indeed correspond to ε-approximations of the exact values, and
therefore influences the accuracy of the computation results in a way that could have
problematic consequences. So, in [HM14] the authors came up with an alternative
approach called interval iteration which allows to tackle this problem. In order to do
so interval iteration approximates the correct result by approaching from above and
from below at the same time, narrowing the correct result within each iteration by
some kind of hallway that is getting closer and closer. As soon as both the lower and
the upper values meet within an ε-environment, interval iteration stops and returns
the computed values. This way it is possible to ensure that the computed results are
in fact ε-approximations of the requested exact values.

Interval iteration does need several preconditions to work properly (see [HM14] for
the details). Therefore, the conditions need to be ensured inside the quantile framework
to allow the usage of interval iteration as a method for the computation of zero-reward
sub-MDPs.

So far, interval iteration is only supported for the computation of reachability
quantiles (see Chapter 3) and thus there is no support for the computation of ex-

3http://lpsolve.sourceforge.net/5.5/, retrieved 28th March 2018
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pectation quantiles (see Chapter 4) using interval iteration. Therefore, the following
considerations refer to the computation of reachability quantiles only.

Universal quantiles In order to compute universal quantiles one needs to apply the
calculation of minimal reachability probabilities, and for this case the authors propose
to use the min-reduction (see [HM14, Definition 3]). The main idea of this reduction
is to avoid reaching the target-states when possible. So, whenever there is an end
component which does not contain any target-state the adversary will simply stay
in this respective end component. This means that all end components that do not
contain any target-states (or, as in the case of lower-reward bounded quantiles the
end component does not contain any positive reward) should be merged into a fresh
trap state, meaning that its minimal reachability probability is zero. Since those states
were already recognised previously by the necessary precomputation of the quantile
framework, and their value is declared to be zero for all iterations of the BP-approach,
there is no need to manipulate the model in such a way. Instead, it is possible to
directly apply the interval iteration-algorithm [HM14, Algorithm 1] on the zero-reward
sub-MDPs obtained by the topological sorting.

Existential quantiles When facing the computation of existential quantiles (and
therefore maximal reachability probabilities are calculated) a bit more effort is needed,
because some kind of model-transformation is required. The basis is built by the
max-reduction of [HM14, Definition 7], and the transformation works as follows. All
zero-reward end components are collapsed into a designated representative and the
necessary computations will be done using the collapsed model. The goal-states of
the original model do also need an adaptation, since with probability one each state
inside an end component will be reached from any other state as long as the scheduler
decides to stay in the respective end component (see [BK08, Lemma 10.119]). Since
we collapse the zero-reward end components, each state inside such an end component
can be reached without consuming any reward. So, if it is the case that a goal-state is
contained in an end component each state of the end component will transition to a
goal-state with probability one. Therefore, the representative of such a collapsed end
component will be added to the set of goal-states. If on the other hand there is an
end component which cannot be left and which has no goal-state, there is no chance of
reaching a goal-state from this end component. So, the reachability probability of the
representative of this end component will be viewed as zero for the upcoming quantile
computations. This transformation allows the usage of the usual quantile calculations
on the collapsed model, and whenever there is a zero-reward sub-MDP, the adapted
form of [HM14, Algorithm 1] for maximum reachability probabilities as described on
[HM14, page 11] can be utilised. Of course, in the end we are forced to properly remap
the computed results from the collapsed model to the original model in order to assign
the results to the appropriate states.
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Topological sorting The topological sorting of the zero-reward sub-MDPs (see
Section 5.1.3) and hence the separate computation of the individual zero-reward sub-
models (by applying interval iteration) can lead to the fact that the desired accuracy
of the computations can not be ensured any longer (see [Bai+17b, Section 4]). The
reason is that the ε-approximation of the value for a state s is given by an upper and
lower bound of the actual value for the state. For calculating the ε-approximation of a
state t that depends on s the approximation of s is needed. When s and t do belong to
different zero-reward sub-MDPs, and hence the states are examined within separate
interval iteration-computations, the state t may refer to any value between the upper
and lower bound of the approximation for state s. This entails a numerical error of at
most ε for the value of t. This error may propagate and become more pronounced in
the following. Therefore, it is important to consider the numerous different interval
iteration-computations in an aggregated way to prevent an accumulation of those
numerical errors, since the aim of the whole interval iteration-procedure is to guarantee
suitably precise approximations of the correct values. [Bai+17b, Section 4] considers
this fact for the computation of expected accumulated weights and presents the so-called
topological interval iteration4. The authors propose the construction of a new MDP
integrating the computed lower-estimates of the demanded values, and one MDP that
incorporates estimates for the upper bounds from previously performed computations.
So, for an upcoming interval iteration the previously computed estimates are taken
into account and the computations will be performed on the newly constructed models
instead of the original model, and as the authors show this ensures that the final
result indeed corresponds to an ε-approximation of the exact results after all interval
iteration-computations have finished, and therefore the user-defined precision will be
acquired.

A similar idea is reflected in the quantile framework as well for performing multiple
interdependent interval iterations over the topologically sorted zero-reward components
of the model (Section 5.1.3). Here, we simply keep the already computed lower-
estimates and the upper-estimates for the states obtained by previously performed
interval iterations. For this purpose, two value-vectors for the states of the model will
be stored, one for the lower-estimates and one for the upper-estimates. Those stored
values will be then simply reused whenever the corresponding states are referenced
by a component that will be treated currently (the topological order determines the
computational sequence of the components). So, when approaching the correct result for
the states of a zero-reward component from below, and there occur references to states
from other components that have been computed already, the previously calculated
lower-estimates will be used for those references (instead of an ε-approximation of
these lower-estimates). When on the other hand approaching the results from above,

4[HH16] also considers the problem for multiple consecutive value iteration-computations. There,
the authors propose to counteract the computational imprecision by modifying the user-defined
ε-precision depending on the given structure of the model under consideration. So, in the end this
may result in longer runtimes before the value iteration will terminate due to the fact that an
increased precision entails a higher number of iteration-steps. For models with huge zero-reward
sub-MDPs the impact on the computational performance might be significant.
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the already known upper-estimates are applied for the corresponding references. The
effect of this procedure is that the interval iteration references the values exactly
the way it would do if no topological order would be assumed, and all states would
be computed in one huge interval iteration-procedure at once. The difference to an
iteration without the topological order is that not all the values will be computed at
the same time. Instead, all components can be computed one after another and the
number of state-updates is therefore greatly reduced.

5.1.7 Storage for integer sets
By doing the topological sorting of the zero-reward sub-MDPs (see Section 5.1.3) and
storing the results of the sorting-procedure a serious problem emerges very soon, since
one has to struggle with memory constraints very fast when utilising the reference-
implementation of the BitSet-class found in the standard-library of the programming
language Java5. It is essential to store the zero-reward sub-MDPs and their topological
order in a way that allows efficient access and also grants the ability to be economical
with the available memory. So, the utilisation of the quantile framework revealed that
there are issues (see Section 6.1.3 or Section 6.2.1), which need to be tackled in order
to allow the usage of the presented framework in practice.

The problem with the usage of the standard implementation is that a lot of memory
is consumed when the integer set which needs to be represented by a BitSet is sparsely
populated and the represented values correspond to huge numbers. This is in fact what
happens when storing state indices of the zero-reward sub-MDPs used in the context
of quantiles. Therefore, the implementation runs into memory problems very soon
by storing the topological order. So, a way to fix this problem is to provide a data
structure that typically deals with sets that only contain a small number of indices,
but as soon as it is required there should be the possibility to increase the storage
capabilities. Therefore, the idea is to use a dynamically adapting data structure which
uses an ordered array of integers for storing small amounts of elements, and as soon as
more and more elements need to be stored, the data structure automatically switches
to the BitSet-implementation for storing the increased number of elements.

Since it turned out that normally a zero-reward sub-MDP consists of only a few
states, the integer-array is usually completely sufficient and therefore the switching to
the BitSet-data structure is not needed frequently. As well the different integer sets
used for the quantile framework are manipulated only once (during their initialisation),
and after that they stay fixed and the sole operation that will be performed with this
data structure is an iteration over the set values until the required quantile computation
has ended. Therefore, there is no real need for sophisticated manipulation operations
for the used sets, and the proposed approach is completely fine for the presented
computations. This allows us to use the proposed implementation even for huge models
and being efficient in terms of memory and computation times. Another positive effect

5Since the main parts of Prism were written in Java, it is quite natural to begin with the BitSet-class
as a starting point.
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from the fact that the stored sets are manipulated only once and stay stable for the
rest of the calculations is that the overhead that emerges from keeping the elements in
a sorted manner pays off during the computations. One has to ensure the order only
once during the initialisation, and there normally exist no operations like adding or
deleting elements that may destroy the order after this initialisation. Therefore, the
sorting leads to faster searching and iteration methods as soon as the array has been
constructed.

5.1.8 Elimination of zero-reward self-loops
Another heuristics that can be integrated to speed up the computation time or to
decrease the memory requirements, is for instance, that zero-reward self-loops can be
removed by a quantile-preserving transformation M M1. The MDP M1 has the
same state space S as M and the same rewards for all state-action pairs. For s, t P S
the transition probability function P 1 of M1 is given by

P 1(s, α, t) =

$

&

%

P (s, α, t)
1´ P (s, α, s)

if rew(s, α) = 0, t ‰ s and 0 ă P (s, α, s) ă 1

P (s, α, t) else

The following lemma shows that the transformation M  M1 is indeed quantile-
preserving:

Lemma 5.1.1 (Soundness of the transformation). Let A,B Ď S denote subsets of the
state space. For all states s P S we then have:

(a) quM
s (DPDp(A Uď? B)) = quM1

s (DPDp(A Uď? B))

(b) quM
s (@PDp(A Uď? B)) = quM1

s (@PDp(A Uď? B))

Proof. In order to prove statement (a), suppose that S is a scheduler for the original
MDP M that is optimal for the existential quantile quM

s (DPDp(A Uď? B)) and enjoys
condition 3.1 in Lemma 3.3.1. As all paths in M1 are paths in M and the enabled
actions in M and M1 agree, ActM(s) = ActM1(s) for all s P S, the scheduler S can
also be viewed as a scheduler for M1. We consider the case where M and M1 differ
for a single state-action pair (t, α), the general case with multiple state-action pairs
then follows from repeated application of the same arguments.

Let (t, α) be the state-action pair where M and M1 differ, i.e, with 0 ă P (t, α, t) ă 1
and rew(t, α) = 0. If S never schedules action α for paths ending in t then the
probabilities for A Uďr B under S viewed as scheduler in M and in M1 are the same
for all states s. Suppose now that S(ρ) = α for some finite S-path ρ with last(ρ) = t.
Then, all finite paths of the form ρα t α t α . . . α t have the same accumulated reward
as ρ. By condition 3.1, they are S-paths too. Almost all infinite S-paths in M that
start with ρ will eventually take a step t

α
ÝÑ t1 with t ‰ t1, after having taken the
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self-loop at t finitely often. In M, the probability of the set consisting of all infinite
paths of the form

ρα t α t α . . . α t α t1

under S is prob(ρ) ¨ P 1(t, α, t1), which is the probability of the finite path ρα t1 in M1.
Since no other paths are affected by the switch from M to M1, this yields that for
each state s, the value PrSs (A Uďr B) does not depend on whether we consider S as a
scheduler for M or M1. This yields that the existential quantile in M is less or equal
than in M1:

quM
s

(
DPDp(A Uď? B)

)
ď quM1

s

(
DPDp(A Uď? B)

)
Vice versa, let us suppose that S1 is a scheduler for M1. We then consider the scheduler
S for M where S(ρ) is S1(ρ1) when ρ arises from ρ by erasing all steps t α

ÝÑ t. Since
rew(t, α) = 0, the probability PrSs (A Uďr B) in M agrees with PrS1

s (A Uďr B) in M1

for all states s. Hence:

quM
s

(
DPDp(A Uď? B)

)
ě quM1

s

(
DPDp(A Uď? B)

)
The argument for universal quantiles (statement (b)) is analogous, except that ad-
versarial schedulers are considered.

The transformation M M1 indeed can simplify the computation of quantiles by the
presented algorithm. This is in particular of interest in combination with the SCC-based
decomposition techniques of the LPs LP1

r. If Prmax(A Uďr B) for all α-successors t1
with t1 ‰ t has already been computed the inequality for state t and α in the linear
program reduces to xt ď c for some constant c. There is even no need to consider state
t in LP1

r when the quantiles for all successors different from s are already known.

5.2 Integration in Prism
The results stated in the sections of Chapter 3 and Chapter 4 can be transferred into a
specific pattern for handling the computation of quantiles. So, in principal we need
the following two essential stages:

precomputation: The starting point for the computation of quantiles is a stage determ-
ining if the considered quantile has either a finite or an infinite value. This stage
is called precomputation. The necessary steps needed for the precomputation are
determined by the type of the quantile under consideration. The objective of
this precomputation-step is to ensure that the subsequent computation-stage will
not end in a non-terminating loop. Therefore, the necessary algorithms will be
processed to make sure that the quantile exists. If on the other hand the quantile
is infinite the precomputation will prevent the execution of the following stage.
For the precomputation-stage, the implementation can rely on the machinery
delivered by Prism for the computation of unbounded minimal / maximal
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reachability probabilities (see Section 3.3.1), or adapted forms of Prism’s methods
for finding and analysing the (maximal) end components of the model (see
Section 3.4.1 and Section 4.2).

iterative computations: In this stage, the intended computation of the quantile values
will be performed by an iterative algorithm using the back-propagation approach
(see Section 5.1.1). So, the values xs,r will be calculated for all the states s P S
and for increasing r = 0, 1, 2, 3, . . . until the specified probability or expectation
threshold q has been reached. Since the precomputation has already been com-
pleted it is guaranteed that q will be reached and therefore the computation-stage
will terminate at some point. Here, all the necessary computations determined
by the special type of the quantile will be performed (see the different sections
for the details on the respective computations), and after the termination of this
stage the demanded quantile value will be returned.
This stage supports all the different computation options presented in Section 5.1.
So, it is possible to adapt the computation of quantiles to specific characteristics
of the model under consideration by activating or deactivating the desired options.

Each quantile query passes through the two described stages for calculating and
providing the demanded results.

Prism is equipped with four different computation-engines in order to perform model-
checking calculations, which are MTBDD, Sparse, Hybrid, and Explicit. The first
three engines use symbolic techniques based on multi-terminal binary decision diagrams
(MTBDDs6) either partly or entirely for representing the model under consideration
efficiently in terms of consumed memory. The MTBDD-engine relies completely on
MTBDDs to perform all the necessary computations, whereas the Sparse-engine
utilises sparse matrices built from the MTBDD-representation of the system. The
Hybrid-engine is a combination of the first two approaches by representing the system’s
transition-matrix using MTBDDs and the solution vector for the states of the model
is represented explicitly. The Explicit-engine does not use any symbolic techniques
for the representation. Instead, the model and the solution-vector for the states will
be represented in an explicit manner. So, this engine suffers more from the serious
state-explosion problem (see [BK08, Section 2.3]) than the symbolic ones, since the
memory needed for the explicit representation of the model might grow exponentially
with the model itself. Therefore, it is crucial to optimise the memory consumption of
the quantile calculations to such a degree that its usage is practically feasible for the
protocols under investigation. Using the techniques presented in Section 5.1 allows us
to tune the implementation such that the computations are applicable even for huge
models.

The main focus of the implementation of the quantile framework presented here is
on the Explicit-engine. But, in order to also support symbolic quantile calculations
there exist implementations for the different symbolic engines done by Joachim Klein

6For a comprehensive introduction into binary decision diagrams and how they can be utilised for
performing model-checking techniques it is recommended to see [Par02].
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that borrow ideas originally conceived to improve the performance of the Explicit-
engine (like, e.g., the back-propagation approach presented in Section 5.1.1, or the
multi-thresholds from Section 5.1.5). Due to the use of the BP-approach the states
having a positive reward will be treated by reusing previously calculated values, and the
states with no reward at all will be computed using an adapted version of the symbolic
value iteration implemented for the respective engines of Prism. The implementation
for the MTBDD-engine stores the computed values from previous iterations of the
back-propagation using one MTBDD per reward bound i. So, all state-action pairs
having the same reward are stored using the same MTBDD and will be therefore
handled at the same time. Therefore, this engine might be a good choice when there are
many state-action pairs, but at the same time only a few different reward values occur
in the model. Using the Hybrid-engine the previously calculated values will be stored
explicitly, while the transition matrix is stored symbolically. This results in a higher
memory usage but at the same time the access to the stored values might be faster
compared to the MTBDD-engine. The computations for the Sparse-engine make use
of similar techniques like the Hybrid-engine using sparse matrices for the positive-
reward and zero-reward fragments of the model. More details on the computation of
the symbolic quantiles can be found in [Kle+16] or [Kle+17].

Due to the fact that the focus of this monograph is on the Explicit-engine the
symbolic engines do only provide support for the reachability quantiles as they were
discussed in Chapter 3 (currently without support for quantiles under side conditions
as proposed in Section 3.6). At the moment there is no tool-support for qualitative
reachability quantiles (see Section 3.3.3), or for expectation quantiles (see Chapter 4)
using symbolic techniques. For now, only the Explicit-engine of Prism is equipped
with full support for all the various methods of the discussed quantile framework.

5.2.1 Computation of reward-bounded reachability probabilities
Formulas of the form Prmax(♦ďrA) are examples for reward-bounded reachability path-
formulas over MDPs. Here, the standard reachability operator ♦A (“eventually a
state of A will be reached’’) is augmented with reward bound r, i.e., of the form ♦ďrA
(“eventually some state of A is reached while at most a reward of r was accumulated
along the way’’). The accumulated reward for a given path fragment in the model
corresponds to the sum of the rewards that are assigned to the states and actions that
comprise the path fragment.

Since the algorithm for the computation of quantiles relies on an iterated computation
of reward-bounded reachability probabilities, the employed computation methods are
indeed capable of computing reward-bounded reachability probabilities. Only a few
adaptations needed to be done in order to correctly support the necessary computations.
In contrast to a quantile query a reward-bounded reachability query does not need any
precomputation to check if there exist computational impossibilities which may result
in a non-terminating loop. Instead, the reward-bounded reachability query is already
equipped with a certain bound determining the exact number of iterations that need
to be performed in order to calculate the demanded reachability probabilities.
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Since there was no tool-support for the calculation of reward-bounded reachability
probabilities integrated into Prism, using the quantile backend an efficient support was
added. The utilisation of the quantile backend does of course take advantage of all the
improvements described in Section 5.1 that were implemented for the computation of
quantiles, and this also improves the performance of the computation of reward-bounded
reachability probabilities.

Lower reward bounds, i.e., of the form ♦ěrA, are supported as well.

5.2.2 Computation of quantiles in CTMCs
Since Prism currently does not support the computation of reward-bounded reachability
probabilities in CTMCs, the implementation of the described approach of Section 3.7
in Prism only supports quantiles with upper or lower time bounds on simple path
formulas for now. But once support for reward-bounded reachability probabilities is
added to Prism (e.g., using the duality between reward- and time-bounds [Bai+00]),
the implementation for quantile computations can easily be adapted to also handle
arbitrary reward-bounded quantiles in CTMCs. Both, the Explicit and the symbolic
engines, are equipped with an implementation of the scheme presented in Section 3.7.

To give a brief example of the performance of this computation scheme, an instance
of the “tandem’’ case study7 from the Prism benchmark suite is considered here,
with parameter c set to 10. To obtain an ε-approximation of the quantile value for a
precision of ε = 10´6 and the quantile

inf
 

t P R : Prs
(
♦ďt “network becomes full’’

)
ě 0.1

(

,

the exponential search requires 14 probability computations to find the upper bound
4 096, which is then refined by the binary search using 31 additional probability
computations to obtain the result t = 2954.281344. The overall computation time was
106.41 s (Explicit), 5 224.89 s (MTBDD), 42.75 s (Hybrid) and 20.44 s (Sparse).
In order to relate the timings, the computation of the probability for the result of the
quantile computation, i.e.,

Prs
(
♦ďt “network becomes full’’

)
for t = 2954.281344,

takes 3.15 s (Explicit), 153.9 s (MTBDD), 1.27 s (Hybrid) and 0.61 s (Sparse).
The computation of time-bounded probabilities for CTMCs in Prism relies on the

computation of a finite sum using the uniformised DTMC (see, e.g., [Bai+03; Par02]),
where the number of summands is chosen depending on a user-supplied value for the
desired precision. In general, it can be expected that computations with a coarser
precision require fewer iterations in the computation of the sum. Therefore, experiments
with an approach that gradually refines the precision for the probability computations
were done: Start with a coarse precision, e.g., allowing imprecision of up to 0.1. As
long as there are definitive results for the probability-threshold computations when

7http://www.prismmodelchecker.org/casestudies/tandem.php, retrieved 28th March 2018
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taking the imprecision of the result value into account, just keep the same precision for
the upcoming computations. If at some point there occurs an inconclusive result, i.e.,
the threshold p lies inside the possible values when taking the imprecision into account,
the precision can be refined, e.g., by a division by 10. Unfortunately, the realised
experiments indicate that the potential savings in runtime due to the coarser precision
tend to be negated by the required additional probability computations during the
refinement step when encountering an inconclusive result. The reason is that there
currently exists no possibility for reusing the already carried out computations done
by the coarser precision when refining the precision for the same time bound. This
entails that the very same computations need to be done multiple times. For example,
when considering an initial precision of 0.1 and a desired precision of ε = 10´6 for
the quantile value, the computation time for the Explicit-engine has increased to
118.83 s. Of course, the number of iterations slightly increased as well: The exponential
search now required 15 computations since the precision needs to be set to 0.01 at one
point, and the binary search used 35 additional computations. So, in total 5 additional
iterations are necessary to perform the calculations (this is clear since there need to be
5 refinements in order to improve the precision from 0.1 to 10´6).

Each of those additional iterations could be improved by reusing the information
already computed previously for a coarser precision. Therefore, as a possible improve-
ment, it is suggested to integrate the threshold check into the computation of the
time-bounded reachability probabilities in Prism using an adaptive precision as future
work: During the computation of the sum, a periodic check against the threshold could
be carried out, taking the achieved bound on the precision into account and returning
early if it can be conclusively determined that the threshold is satisfied or can never
be satisfied.
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6 Analysed Protocols
Here, the applicability of the shown quantile-computation schemes is presented by
means of different analysed protocols. We start in Section 6.1 by presenting a selection
of already well-known protocols from Prism’s benchmark suite [KNP12], demonstrating
the feasibility of a quantile-based multi-objective analysis using the framework developed
throughout this monograph. Afterwards, in Section 6.2 we will analyse protocols where
the primary goal is on the optimisation of their energy consumption in such a way that
the waste of energy will be minimised and that the utility generated by the protocol
does not suffer from this optimisation. The characteristics of those protocols are of
interest and also serve to show the applicability of the developed framework for different
situations that arise in complex scenarios, and it is demonstrated how the analysis
results of the quantile framework help to organise systems more efficiently in terms of
consumed energy.

All the following presented calculations were carried out on a server system equipped
with two Intel E5-2680 8-core CPUs at 2.70 GHz with 384 GB of RAM in total. For
each respective calculation a specific memory limit needed to be specified in order
to guarantee that all the calculations could be done without any swapping effects.
For reducing variations in the computation times and in order to deliver reproducible
statistics, techniques like Hyper-Threading [Mar+02] or Turbo Boost1 were disabled
for all the computations.

Since the calculations were carried out for both the Explicit-engine of Prism and
the different symbolic engines (see Section 5.2), the automated variable reordering
described in [Kle+16] and [Kle+17] was executed beforehand. This technique aims
at reducing the size of the MTBDD representation of the model under consideration
by rearranging its state variables. Therefore, this enables the symbolic engines to
reduce their memory consumption and it is very likely that the performed computations
happen much faster. This does not influence the behaviour of the Explicit-engine.
Due to the fact that the models of Section 6.1 were taken from Prism’s benchmark
suite [KNP12] the size-reduction gained by the variable reordering for the models of
this section turns out to be marginal. The reason might be that the authors of the
models already tried to minimise their symbolic representations by using different
heuristics2, since the symbolic engines were mainly used for the calculations presented
in the respective cases. But, since the models introduced in Section 6.2 were crafted
inside the formal-methods group headed by Christel Baier, the utilisation of the tools

1see https://www.intel.com/content/www/us/en/architecture-and-technology/
turbo-boost/turbo-boost-technology.html, retrieved 28th March 2018

2Section 4.1.2 and Section 4.2.2 of [Par02] present more details on heuristics that help to find good
orders of the variables.
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described in [Kle+16] and [Kle+17] is recommended before executing the computations
using the symbolic engines. This improves the analysis of the presented queries using
the symbolic calculations.

All graphical representations of the computation results depicted in the current
chapter were generated with the help of the Python-based framework Matplotlib3

originally created by John D. Hunter [Hun07].

Note on the presentation of the computation statistics Due to space constraints
the presented tables depicting the statistics of the analyses are divided into two parts.
One depicts the performance of the Explicit-engine (Table 6.1), and the other contains
the statistics for the three symbolic engines Hybrid, Sparse and MTBDD (Table 6.2).

Table 6.1: Columns for the statistics of explicit quantiles
Model Explicit

sequential parallel
Instance States tbuild Iters tpre tquery tquery

Table 6.2: Columns for the statistics of symbolic quantiles
Model symbolic computations

Hybrid Sparse MTBDD
Instance States Mtbdd tbuild Iters tpre tquery tpre tquery tpre tquery

The column Instance depicts the analysed instance of the protocol, the second column
(States) gives the size of the reachable state space for the Markovian model. Since the
symbolic engines do represent their model by means of binary decision diagrams there
exists the additional column Mtbdd, which denotes the size of the MTBDD-nodes. The
column tbuild stands for the time that was needed in order to construct the Markovian
model out of the formal description using Prism’s guarded-command input language.
Iters gives the number of iterations that were needed by the back-propagation approach
(see Section 5.1.1) in order to compute the desired quantile values. Since there needs
to be a precomputation the column tpre shows the time in seconds that was needed for
this stage of the computation. Finally, tquery depicts the overall time that the complete
quantile computation needed in order to provide the desired results. The time for the
precomputation (tpre) is included in tquery. Since all three symbolic engines at first build
a symbolic representation of the model using the same MTBDD-techniques, Table 6.2
shows only one column for tbuild. The different analysed protocols showed that all
realised computations delivered nearly the same building-time for all three symbolic
engines (the highest deviation for building-times over 1 second was below 1.2%), and
therefore the differences between the symbolic building-times are negligible. Therefore,

3https://matplotlib.org/, retrieved 28th March 2018
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the column tbuild in tables for symbolic computations depicts the building-time for the
MTBDD-engine. Table 6.1 for the Explicit computations shows only one column
for the precomputation. The reason is simply that the sequential and the parallel
computations do exactly the same up to the point when they have finished their
precomputation phase, and thereafter the methods differ in their behaviour. If not
stated otherwise the column for the parallel computation always depicts the timings
when using a parallelity of six, meaning that the algorithm splits its tasks among six
processors in order to perform the independent parts of the necessary calculations
simultaneously.

6.1 Prism Benchmark Suite
This section presents a small selection of protocols obtained from Prism’s benchmark
suite [KNP12]. It is shortly described how the respective protocols work and sub-
sequently the results of the multi-objective quantile-based analysis are shown. Since
the models of the selected protocols have different structural characteristics, they do
present challenges for various aspects of the implementation and therefore serve as
a presentation for the applicability of the developed quantile framework. This also
shows the performance of the implementation when situations vary and therefore
the demands on the implementation change. A comparison between the different
implemented approaches (see Section 5.2) will be presented as well.

6.1.1 Self-Stabilising Protocol
The aim of the Self-Stabilising Protocol by Israeli and Jalfon [IJ90] is to establish a
stable configuration within a finite number of steps autonomously without instrumenting
or influencing this procedure from the outside. This protocol is modelled4 as an MDP
for N equal processes organised in a ring structure. Initially, the N processes all are
active, i.e., have a token assigned to each of them. A stable configuration in this setting
is reached when there is only one process left in the entire ring structure controlling
the last remaining token. In each step an active process randomly sends tokens to its
left or right neighbour and receives tokens from its neighbours. If, on this occasion, one
process ends up with multiple tokens all the tokens from the process will be merged
into one single token. This procedure will go on until there is only one token left and
the ring is therefore in a stable state.

The quantile framework is used here for computing the minimal number of steps
required for reaching a stable state with probability of at least p for some schedulers
(existential quantile) or all schedulers (universal quantile). The latter problem has as
well been answered in the referred Prism case study by iteratively increasing the step
bound until the demanded probability bound p was met. Each adjustment of the step
bound hereby involves a separate query that needs to be computed. The approach

4http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij, retrieved
28th March 2018
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using quantiles is more elegant by implicitly computing the probability values and
answering only one (quantile) query.

Formally, the desired quantiles can be stated as

qus

(
DPěp(♦

ď?Stable)
)

and
qus

(
@Pěp(♦

ď?Stable)
)
,

where s is the initial state in which each process holds its own token and where
Stable is the set of all configurations where there exists only one process owning
the last remaining token. The results of the computations for the existential and
universal quantiles for N P t3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 20, 24u with probability bounds
p P t0, 0.01, 0.05, 0.1, . . . , 0.95, 0.99u are depicted in Figure 6.1, and the corresponding
performance metrics can be found in Table 6.4 (explicit computations) on page 92,
and in Table 6.5 (symbolic computations) on page 93 for the existential quantile. In
Table 6.6 (explicit computations) on page 94 and Table 6.7 (symbolic computations)
on page 95 the statistics for the universal quantile are depicted. Those tables do

Figure 6.1: Results for Self-Stabilising Protocol

show the performance when utilising the back-propagation approach described in
Section 5.1.1 for the different computation engines available in Prism. As can be seen
the performance of the Hybrid-engine is nearly the same as it is for the Sparse-
engine. Another eyecatcher is that the Explicit-engine suffers most from the time
needed in order to construct the model. While the different symbolic engines do only
need a few milliseconds in order to build the model, the time for constructing the
explicit model corresponds to half an hour for N = 24 processes. The time for the
necessary precomputation which relies on the methods provided by Prism to compute
minimal / maximal reachability probabilities is also noticeable for the Explicit-engine,
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whereas the calculations for the symbolic engines do not even need one second for the
computation of maximal reachability probabilities. But, the effective calculation of
the quantiles using the Explicit-engine happens very fast when utilising the parallel
computation techniques (see Section 5.1.4). In a way this behaviour is surprising since
the symbolic representation of the model is extremely compact (1 629 MTBDD-nodes
represent 16 777 215 reachable states in the model for N = 24), and therefore one is
willing to expect that the symbolic engines do outperform the explicit computations
easily. Using the MTBDD-engine for N = 24 even led to a timeout, since the
computations needed more than 24 hours. Another interesting observation is that the
computation times for the universal quantile using the Explicit-engine are also much
higher compared to the existential quantile. The reason for this is that the time for
the precomputation is much higher than it is for the existential quantile (for N = 24
the precomputation for the universal quantile needs 4 629.97 s, whereas the existential
quantile needs 227.11 s). For the symbolic engines the times for the precomputation are
also higher than for the existential quantile, but not to such an extent. Therefore, as
expected the overall computation times for the symbolic engines are slightly increased
for the universal quantile when compared to the existential quantile, but mainly due
to the fact that the universal quantile needs a few more iterations than the existential
one.

Please note that the part of the plot in Figure 6.1 that considers the results for the
universal quantiles, presents almost the same information as the plot for the minimal
probability of reaching a stable configuration presented in Prism’s model description5.
But there the parameterisation was done over the number of steps, in contrast to the
parameterisation over the probability bound p typically done using quantiles.

Note on the utilisation of the LP- and the BP-approach A comparison between
the back-propagation approach (BP) and an approach where the whole linear program
is solved by using an external LP-solver (LP) can be found in Table 6.3. For the
BP-approach the sequential Explicit-engine was utilised. The time for BP covers
the entire computation of the respective quantile values, including the time needed for
the necessary precomputation. For an appropriate comparison the underlying linear
program used for LP is arranged in such a way that it only consists of the iterations
that need to be considered in order to obtain the requested quantile value. So, the
depicted time for LP corresponds to the time needed for solving the linear program
LPr (see Section 5.1.1) with r being the result for the requested quantile. In [UB13],
a theoretical upper bound rmax for the reward was established that is exponential
in the size of the model. For the given bound it is guaranteed that solving LPrmax

yields the desired quantile. However, for the protocol under consideration it can be
observed that this theoretical upper bound rmax is hardly reached and usually much
greater than the actual calculated quantile value r. For the evaluation of the naïve
LP-approach LPr rather than LPrmax is considered, as it is known that solving LPr

5see http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij, retrieved
28th March 2018
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Table 6.3: Comparison between LP- and BP-approach (Self-Stabilising Protocol)
Model Existential Quantile

Instance States tbuild p Result BP LP
N = 5 31 0.02 s 0.1 4 0.07 s 0.09 s

0.5 8 0.07 s 0.09 s
0.99 27 0.08 s 0.22 s

N = 10 1 023 0.09 s 0.1 18 0.14 s 95.18 s
0.5 38 0.15 s 712.28 s

0.99 117 0.17 s 8 144.49 s
N = 15 32 767 1.08 s 0.1 42 1.03 s ą 6 h

0.5 89 1.61 s ą 6 h
0.99 270 3.72 s ą 6 h

N = 20 1 048 575 53.57 s 0.1 76 40.37 s ą 6 h
0.5 162 69.81 s ą 6 h

0.99 484 173.11 s ą 6 h

is sufficient for computing the desired quantile. The computational effort for solving
LPr´1, LPr´2, … that would normally occur in the iterative scheme is also ignored,
since the correct quantile value r is known by a prior analysis using the BP-approach.
Therefore, the LP-solver only computes one linear program that is as huge as necessary,
and iterations that do not contribute to the result are not considered. As can be seen
the BP-approach clearly outperforms the LP-approach, and that the LP-approach
turns out to be infeasible already for very small instances of the model and queries
where several iterations are needed. Already for N = 15 processes, the LP-approach
exceeded the timeout bound of 6 hours, whereas the BP-approach is still applicable
with computation times of only a few seconds. Table 6.3 also reveals that especially
within the LP-approach the time spent for evaluating the quantile increases significantly
when the probability bound p is high (and hence, also the corresponding quantile value
is high). So, for a relatively small model consisting of only 1 023 states (N = 10)
the computation-times increase from 95 seconds for p = 0.1 to more than 2 hours
for p = 0.99. In summary, it can be stated that it is recommended to not use the
LP-approach for huge models that normally occur when utilising a formal analysis
based on probabilistic model checking.

Note on the implementation of step-bounded until For quantiles using a step-
bounded until, the implementation of the BP-approach for reward-bounded until is
utilised by assigning a reward of 1 to each state of the model. As a consequence
there is no further need of solving any linear program for zero-reward cycles, since
every state holds a positive reward. This procedure allows the direct application of
the BP-approach for all the states inside the model without using such a method
as value iteration, interval iteration or an external LP-solver. Another advantage
is that each state needs to reference only those values in iteration i ą 0 that were
computed previously during iteration i´ 1, and therefore a reward window of size 1
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(see Section 5.1.2) is sufficient for each state.

Note on parallel computations using the Explicit-engine Since it is possible to
enable parallel computations for the calculation of quantiles in the Explicit-engine, we
do consider the performance of this approach by looking at the resulting computation
times. Figure 6.2 shows the running times for computing the explicit existential quantile
for N = 24. The plot depicts the running times together with the time necessary

Figure 6.2: Parallel computations for Self-Stabilising Protocol

for the precomputation used by the quantile query. Since the parallel approach does
only influence the iterative computations determining the quantiles the time for the
precomputation is not influenced by any parallelism at all. So, the precomputation
time serves as some kind of lower bound for the time necessary for doing the quantile-
based analysis. Keep in mind that the considered quantile uses a step-bounded until.
Therefore, each state of the model holds a positive reward (see previous paragraph),
and because of this fact there is no necessity of generating a DAG for the zero-reward
components of the model. So, the parallel computations can be done without providing
any further requirements (see Section 5.1.4).

Due to the fact that the utilised computing device has 16 physical cores the degree
of parallelism was restricted to at most 15 in order to keep the device responsive
for important operating-system tasks. As can be seen the usage of parallelism scales
really well for this model and the normally occuring overhead of parallel computations
is negligible due to the gained performance out of the parallel utilisation. Another
message of Figure 6.2 is that an increase of the parallelity to more than 8 does not
really boost the computations that much, but the involved tasks do not interfere with
each other in a way that has a negative effect on the computation such that it gets
noticeably slower.
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Table 6.4: Statistics for explicit existential quantile (Self-Stabilising Protocol)
Model Explicit

sequential parallel
Instance States tbuild Iters tpre tquery tquery

N = 3 7 0.02 s 9 0.01 s 0.01 s 0.01 s
N = 4 15 0.02 s 17 0.01 s 0.01 s 0.01 s
N = 5 31 0.02 s 28 0.01 s 0.01 s 0.02 s
N = 6 63 0.03 s 41 0.01 s 0.01 s 0.02 s
N = 7 127 0.04 s 57 0.01 s 0.02 s 0.03 s
N = 8 255 0.04 s 75 0.01 s 0.03 s 0.04 s
N = 9 511 0.06 s 95 0.01 s 0.04 s 0.06 s
N = 10 1 023 0.09 s 118 0.03 s 0.09 s 0.08 s
N = 12 4 095 0.22 s 172 0.08 s 0.34 s 0.24 s
N = 16 65 535 2.63 s 308 0.55 s 9.39 s 4.16 s
N = 20 1 048 575 53.13 s 485 10.81 s 185.79 s 62.12 s
N = 24 16 777 215 2 210.48 s 701 227.11 s 5 633.58 s 1 796.87 s
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Table 6.6: Statistics for explicit universal quantile (Self-Stabilising Protocol)
Model Explicit

sequential parallel
Instance States tbuild Iters tpre tquery tquery

N = 3 7 0.02 s 9 0.05 s 0.07 s 0.08 s
N = 4 15 0.02 s 18 0.05 s 0.08 s 0.09 s
N = 5 31 0.02 s 29 0.06 s 0.08 s 0.1 s
N = 6 63 0.03 s 44 0.06 s 0.09 s 0.12 s
N = 7 127 0.04 s 61 0.06 s 0.1 s 0.14 s
N = 8 255 0.04 s 82 0.07 s 0.12 s 0.16 s
N = 9 511 0.06 s 105 0.08 s 0.14 s 0.19 s
N = 10 1 023 0.09 s 131 0.1 s 0.19 s 0.21 s
N = 12 4 095 0.22 s 192 0.16 s 0.46 s 0.36 s
N = 16 65 535 2.63 s 349 0.83 s 9.63 s 3.91 s
N = 20 1 048 575 53.13 s 553 27.77 s 215.83 s 91.31 s
N = 24 16 777 215 2 210.48 s 804 4 629.97 s 9 711.2 s 6 142.87 s

94



6.1 Prism Benchmark Suite

Ta
bl

e
6.

7:
St

at
ist

ic
s

fo
r

sy
m

bo
lic

un
iv

er
sa

lq
ua

nt
ile

(S
el

f-S
ta

bi
lis

in
g

Pr
ot

oc
ol

)
M

od
el

sy
m

bo
lic

co
m

pu
ta

tio
ns

H
yb

ri
d

Sp
ar

se
M

T
B

D
D

In
st

an
ce

St
at

es
M

tb
dd

t b
ui

ld
It

er
s

t p
re

t q
ue

ry
t p

re
t q

ue
ry

t p
re

t q
ue

ry

N
=

3
7

36
0.

02
s

9
ă

0.
01

s
0.

02
s

ă
0.

01
s

0.
01

s
ă

0.
01

s
0.

02
s

N
=

4
15

56
0.

02
s

18
ă

0.
01

s
0.

02
s

ă
0.

01
s

0.
02

s
ă

0.
01

s
0.

03
s

N
=

5
31

10
3

0.
02

s
29

ă
0.

01
s

0.
02

s
ă

0.
01

s
0.

02
s

ă
0.

01
s

0.
03

s
N

=
6

63
14

1
0.

02
s

44
ă

0.
01

s
0.

02
s

ă
0.

01
s

0.
02

s
ă

0.
01

s
0.

05
s

N
=

7
12

7
19

9
0.

02
s

61
ă

0.
01

s
0.

02
s

ă
0.

01
s

0.
02

s
ă

0.
01

s
0.

08
s

N
=

8
25

5
26

2
0.

02
s

82
ă

0.
01

s
0.

02
s

ă
0.

01
s

0.
02

s
ă

0.
01

s
0.

16
s

N
=

9
51

1
30

9
0.

02
s

10
5

0.
01

s
0.

03
s

ă
0.

01
s

0.
03

s
0.

01
s

0.
35

s
N

=
10

10
23

36
9

0.
02

s
13

1
0.

01
s

0.
05

s
0.

01
s

0.
04

s
0.

01
s

0.
87

s
N

=
12

40
95

50
1

0.
03

s
19

2
0.

02
s

0.
19

s
0.

02
s

0.
17

s
0.

03
s

5.
79

s
N

=
16

65
53

5
81

3
0.

03
s

34
9

0.
21

s
5.

61
s

0.
21

s
4.

92
s

0.
22

s
37

2.
45

s
N

=
20

10
48

57
5

11
89

0.
04

s
55

3
3.

04
s

18
8.

0
s

3.
02

s
15

2.
09

s
3.

05
s

16
89

0.
45

s
N

=
24

16
77

72
15

16
29

0.
04

s
80

4
37

.8
1

s
55

07
.5

7
s

37
.9

3
s

46
32

.5
4

s
38

.0
3

s
ą

24
h

95
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6.1.2 Leader-Election Protocol
Leader-election protocols aim to elect a leader, i.e., a uniquely designated process out
of N equal processes organised in a ring structure. Each process can hereby send
messages to the other processes. A synchronous and an asynchronous variant of such a
protocol, both developed by Itai and Rodeh [IR90] and also described in the context
of probabilistic model checking within the benchmark suite of Prism [KNP12], is
considered here. The emphasis of the upcoming analysis is on the minimal number of
rounds or steps that is necessary in order to successfully elect a leader with a desirable
probability. For this purpose quantiles with reward-bounded until properties are used
for the realisation of the analysis.

Asynchronous leader election In the asynchronous setting (see Section 3 in [IR90])
the processes are located in a ring, and initially the processes are all active. Inactive
processes are able to still pass along messages to their neighbours. The protocol
operates in rounds consisting of three phases. In the first phase each active process
probabilistically selects its preference, i.e., whether to remain active or to become
inactive. Then, a process communicates its preference to the next process along the
ring. A process is then allowed to become inactive only if the active process preceding
it prefers to remain active. In a third phase, the processes send a counter around the
ring to determine if only one active process remains, which then becomes the leader.
Otherwise the protocol proceeds with a further round.

The MDP model of the Asynchronous Leader-Election Protocol obtained from
Prism’s benchmark suite6 will be analysed using the presented quantile framework.

Synchronous leader election The synchronous variant of the protocol (see Section 2
in [IR90]) fixes a number K of probabilistic choices, where in each round every process
selects an ID from the set of allowed IDs t1, . . . , Ku uniformly. This ID will be then
synchronously passed over the ring. If a process has chosen an ID which is unique, the
process with the maximal unique ID will be the elected leader. As long as there is
no unique ID, a new round starts where the processes choose their ID randomly from
t1, . . . , Ku again.

The analysis will be carried out on the Markov chain model of the Synchronous
Leader-Election Protocol from Prism’s benchmark suite7.

Analysis results A very important quantitative measure for both, the synchronous
and the asynchronous variant of the protocol, is the minimal number of rounds r
required to elect a leader with a certain probability p for some/all schedulers. Note
that in a Markov chain, the probabilities to elect a leader agree for all schedulers,
i.e., the minimal number of rounds r is the same for all schedulers in the synchronous

6http://www.prismmodelchecker.org/casestudies/asynchronous_leader.php, retrieved 28th
March 2018

7http://www.prismmodelchecker.org/casestudies/synchronous_leader.php, retrieved 28th
March 2018
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protocol variant. As noticed in the Prism case study, this is also the case for the
asynchronous variant, although the considered model is an MDP. Hence, only the
following existential quantile is of interest, whose value agrees with the value of the
universal quantile:

qus

(
DPěp(♦

ď?LeaderElected)
)
,

interpreted over step-bounded reachability and round-bounded reachability. Besides
reasoning over quantiles with step-bounded until properties, as it was done in the
previously presented Self-Stabilising Protocol (see Section 6.1.1), the utilised quantile
framework also allows for quantiles with reward-bounded until properties over arbit-
rary reward functions. Therefore, it is possible to reason about the minimal number
of rounds by using such a tailored reward function. Figure 6.3 shows the experi-
mental results for N P t3, 4, 5, 6u processes, K P t2, 4, 6, 8u and probability bounds
p P t0, 0.1, 0.2, . . . , 0.9, 0.95, 0.99u for the synchronous protocol-variant. It can be seen

Figure 6.3: Results for Synchronous Leader-Election Protocol

that with increasing K the necessary rounds respectively steps become smaller for
successfully electing a leader. So, an increase in the parameter K enables the protocol
to terminate earlier. The number of involved processes does not play such an important
role on the outcome of the analysis, instead the highest impact on the number of needed
operational steps is determined by an appropriate choice of K. Figure 6.3 delivers the
exact same message as the plots presented in http://www.prismmodelchecker.org/
casestudies/synchronous_leader.php#mc (retrieved 28th March 2018) for comput-
ing the bounded reachability query

Pr(♦ďL¨(N+1)(s1 = 3 ^ . . . ^ sN = 3)) =?

with the upper bound L ¨ (N + 1) being altered by using multiple values for L (for the
model under consideration N is already fixed as the number of involved processes).
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The product in the upper bound was used in order to emulate the number of rounds,
since in the protocol a round consists of N + 1 steps. So, instead of needing some
smart encoding like this product, the quantile framework allows to calculate the results
by just specifying the desired reward function. And instead of solving multiple queries
for altered L the calculation of just one query is completely sufficient thanks to the
usage of multiple thresholds (see Section 5.1.5).

The statistics for the calculation of the minimal number of rounds for the synchronous
variant of the protocol can be found in Table 6.9 on page 101 for the operation of
Prisms Explicit-engine, whereas Table 6.10 on page 102 shows the corresponding
statistics for the different symbolic engines. The statistics for the minimal number of
steps for the Synchronous Leader-Election Protocol is depicted in Table 6.11 (Explicit-
engine) on page 103 and in Table 6.12 (symbolic engines) on page 104. As can be seen
the Hybrid-engine has some issues with this protocol, whereas the Explicit-engine
performs really well here. A factor that surely contributes to the higher run times for
the symbolic engines is the size of the binary decision diagram encoding the state space.
The number of the MTBDD-nodes is much higher than the actual number of reachable
states. For this protocol it is even the case that the parallel computation turns out
to be slower than the sequential computation of the Explicit-engine for most of the
considered models. An explanation is that the state space is relatively small and there
are just a few quantile iterations necessary in order to compute the desired results. So,
the additional overhead introduced by instrumenting the parallel computations does
not really pay off in this case. There are simply not enough iterations required (and
along with this computation-tasks) to compensate for the overhead.

Figure 6.4 depicts the results for the asynchronous variant of the protocol for
N P t2, 3, . . . , 9u processes. As can be seen the plot for the minimal number of

Figure 6.4: Results for Asynchronous Leader-Election Protocol
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steps corresponds to the plot presented in http://www.prismmodelchecker.org/
casestudies/asynchronous_leader.php#mc (retrieved 28th March 2018) depicting
the minimum/maximum probability of electing a leader within k steps. There, the plot
was generated by computing the bounded reachability query

Prmin(♦ďk(s1 = 4_ . . ._ sN = 4)) =?

such that the parameter k was changed during multiple model-checking runs. Using
the discussed quantile framework, the result could be generated by calculating just one
single quantile query specifying multiple thresholds (see Section 5.1.5).

Table 6.13 on page 105 depicts the computational performance for the calculation
of the minimal number of rounds for the asynchronous protocol-variant using the
Explicit-engine, whereas Table 6.14 depicts the statistics when applying the different
symbolic engines. The corresponding performance for the minimal number of steps can
be found in Table 6.15 (Explicit-engine) on page 106, and in Table 6.16 (symbolic
engines) on the same page. It is obvious that the building process of the model using
the Explicit-engine is a bottleneck again. Whereas the models for the symbolic
engines were constructed within a few seconds, the Explicit-engine needs up to 13
minutes. Due to the number of states (167 748 115) it was not possible to build the
model for N = 9 using the Explicit-engine. Therefore, the calculations were only
possible up to N = 8, and results for N = 9 could only be generated when utilising one
of Prisms symbolic engines. One interesting fact is that, when considering the minimal
number of rounds, the parallel Explicit-engine is slower than the sequential engine.
This observation will be discussed in more detail in the upcoming paragraph. The
explanation can be found in the necessity of generating the DAG (see Section 5.1.4)
of the zero-reward components in combination with the small number of required
iterations. When instead considering the number of steps each state of the model
has a positive reward, and therefore there is no need for computing a DAG for the
zero-reward states. As well the number of required iterations is much higher (238
for N = 8) and therefore the parallelism is used more frequently. So, the parallel
Explicit-engine is really fast in this case.

Note on parallel computations using the Explicit-engine As already stated earlier,
the parallel computation (using a parallelism of six) of the minimal number of rounds
for the asynchronous variant of the protocol is slower than the sequential quantile
computation. Therefore, it is of interest how the computations for the asynchronous
variant perform for different degrees of parallelism. Figure 6.5 depicts the computation
performance for the analysis of the minimal number of rounds for the asynchronous
variant in the case N = 8. As it was also done for the Self-Stabilising Protocol (see
Section 6.1.1), the degree of parallelism was restricted to at most 15 in order to preserve
the reactivity of the computing device. It can be seen in the figure that there is no
benefit of utilising the parallel computations. Instead, all the parallel executions are
slower than the sequential one. The reason is that the generation of the DAG (see
Section 5.1.4) for the zero-reward components needs a considerable amount of time
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Figure 6.5: Parallel computations for Asynchronous Leader-Election Protocol

in order to be constructed (the average generation time for all parallel computations
is 200.83 seconds in the case N = 8). Since there are only 13 iterations needed for
determining the quantile in the case N = 8, the time for building the DAG does not
pay off during the complete computation. Instead, each parallel computation starts
its calculations with a delay of roughly 200 seconds compared to the sequential one.
And this delay is huge enough to keep a distance between the times for the sequential
computation and the parallel computations.

Note on the utilisation of the LP- and the BP-approach For a performance com-
parison between the LP-approach and the BP-approach a round-bounded reachability
analysis is given in Table 6.8 for the asynchronous variant of the protocol. It can be
seen that the BP-approach outperforms the LP-approach even for very small model-
instances. For models with a slightly larger state space LP could not even calculate
the demanded result in a reasonable time, whereas the BP-approach was able to do
the analysis in a few seconds, which was the case for N = 6 processes. Due to the
need of considering an increased number of reward iterations the computation time
for N = 5 processes increased dramatically when the probability threshold p increased
while utilising the LP-approach. Instead, the computation times remained stable for
the BP-approach even when the number of the required iterations almost doubled.
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Table 6.8: Comparison between LP- and BP-approach (minimal number of rounds,
Asynchronous Leader-Election Protocol)

Model Existential Quantile
Instance States tbuild p Result BP LP
N = 3 364 0.05 s 0.1 2 0.12 s 0.16 s

0.5 3 0.11 s 0.22 s
0.99 9 0.12 s 1.09 s

N = 4 3 172 0.15 s 0.1 3 0.19 s 7.67 s
0.5 4 0.2 s 14.96 s

0.99 10 0.22 s 108.86 s
N = 5 27 299 0.75 s 0.1 3 0.58 s 597.94 s

0.5 5 0.59 s 2 398.42 s
0.99 11 0.64 s 14 502.94 s

N = 6 237 656 6.26 s 0.1 4 2.65 s ą 6 h
0.5 5 2.73 s ą 6 h

0.99 11 3.19 s ą 6 h
N = 7 2 095 783 58.13 s 0.1 4 22.55 s ą 6 h

0.5 6 24.54 s ą 6 h
0.99 12 30.26 s ą 6 h

Table 6.9: Statistics for explicit quantile (minimal number of rounds, Synchronous
Leader-Election Protocol)

Model Explicit
sequential parallel

Instance States tbuild Iters tpre tquery tquery

N = 3, K = 2 22 0.02 s 5 0.01 s 0.01 s 0.01 s
N = 3, K = 4 135 0.03 s 3 0.01 s 0.02 s 0.02 s
N = 3, K = 6 439 0.05 s 3 0.01 s 0.02 s 0.04 s
N = 3, K = 8 1 031 0.08 s 3 0.02 s 0.03 s 0.05 s
N = 4, K = 2 55 0.03 s 8 0.01 s 0.01 s 0.02 s
N = 4, K = 4 782 0.07 s 4 0.01 s 0.03 s 0.04 s
N = 4, K = 6 3 902 0.16 s 3 0.03 s 0.07 s 0.1 s
N = 4, K = 8 12 302 0.34 s 3 0.09 s 0.15 s 0.23 s
N = 5, K = 2 136 0.04 s 14 0.01 s 0.02 s 0.03 s
N = 5, K = 4 4 124 0.18 s 4 0.04 s 0.08 s 0.1 s
N = 5, K = 6 31 133 0.72 s 3 0.19 s 0.33 s 0.52 s
N = 5, K = 8 131 101 2.56 s 3 0.65 s 1.15 s 1.74 s
N = 6, K = 2 329 0.05 s 24 0.01 s 0.03 s 0.05 s
N = 6, K = 4 20 524 0.57 s 4 0.14 s 0.24 s 0.36 s
N = 6, K = 6 233 340 4.68 s 3 1.06 s 1.92 s 3.03 s
N = 6, K = 8 1 310 780 26.57 s 3 6.77 s 12.75 s 20.83 s

101



6 Analysed Protocols

Table
6.10:Statistics

for
sym

bolic
quantile

(m
inim

alnum
ber

ofrounds,Synchronous
Leader-Election

Protocol)
M

odel
sym

bolic
com

putations
H

ybrid
Sparse

M
T

B
D

D
Instance

States
M

tbdd
tbuild

Iters
tpre

tquery
tpre

tquery
tpre

tquery

N
=

3,K
=

2
22

394
0.03

s
5

ă
0.01

s
ă

0.01
s

ă
0.01

s
ă

0.01
s

ă
0.01

s
0.01

s
N

=
3,K

=
4

135
1808

0.03
s

3
ă

0.01
s

0.01
s

ă
0.01

s
0.01

s
ă

0.01
s

0.01
s

N
=

3,K
=

6
439

5659
0.05

s
3

0.01
s

0.03
s

0.01
s

0.02
s

0.01
s

0.03
s

N
=

3,K
=

8
1031

10622
0.07

s
3

0.02
s

0.08
s

0.02
s

0.05
s

0.02
s

0.05
s

N
=

4,K
=

2
55

941
0.03

s
8

ă
0.01

s
0.01

s
ă

0.01
s

0.01
s

ă
0.01

s
0.01

s
N

=
4,K

=
4

782
10834

0.06
s

4
0.02

s
0.09

s
0.02

s
0.05

s
0.03

s
0.05

s
N

=
4,K

=
6

3902
58357

0.25
s

3
0.12

s
1.45

s
0.12

s
0.31

s
0.14

s
0.35

s
N

=
4,K

=
8

12302
165658

1.35
s

3
0.73

s
13.76

s
0.48

s
2.57

s
0.55

s
2.42

s
N

=
5,K

=
2

136
1764

0.04
s

14
0.01

s
0.01

s
0.01

s
0.01

s
0.01

s
0.03

s
N

=
5,K

=
4

4124
41561

0.17
s

4
0.12

s
1.2

s
0.12

s
0.27

s
0.14

s
0.31

s
N

=
5,K

=
6

31133
337141

5.19
s

3
2.72

s
103.21

s
2.42

s
10.77

s
1.86

s
7.86

s
N

=
5,K

=
8

131101
1274346

53.13
s

3
7.36

s
3822.38

s
10.28

s
76.47

s
9.72

s
69.96

s
N

=
6,K

=
2

329
3202

0.04
s

24
0.01

s
0.03

s
0.01

s
0.03

s
0.01

s
0.07

s
N

=
6,K

=
4

20524
140774

1.2
s

4
0.99

s
19.78

s
1.04

s
3.44

s
1.24

s
4.16

s
N

=
6,K

=
6

233340
1732135

129.42
s

3
30.95

s
9891.37

s
26.19

s
184.49

s
20.47

s
173.87

s
N

=
6,K

=
8

1310780
8899587

8814.66
s

3
316.57

s
ą

24
h

315.25
s

9288.16
s

294.03
s

9098.35
s

102



6.1 Prism Benchmark Suite

Table 6.11: Statistics for explicit quantile (minimal number of steps, Synchronous
Leader-Election Protocol)

Model Explicit
sequential parallel

Instance States tbuild Iters tpre tquery tquery

N = 3, K = 2 22 0.02 s 17 ă 0.01 s 0.01 s 0.01 s
N = 3, K = 4 135 0.03 s 9 ă 0.01 s 0.01 s 0.01 s
N = 3, K = 6 439 0.05 s 9 0.01 s 0.01 s 0.02 s
N = 3, K = 8 1 031 0.08 s 9 0.01 s 0.01 s 0.02 s
N = 4, K = 2 55 0.03 s 36 ă 0.01 s 0.01 s 0.02 s
N = 4, K = 4 782 0.07 s 16 0.01 s 0.02 s 0.02 s
N = 4, K = 6 3 902 0.16 s 11 0.03 s 0.04 s 0.06 s
N = 4, K = 8 12 302 0.34 s 11 0.06 s 0.09 s 0.1 s
N = 5, K = 2 136 0.04 s 79 ă 0.01 s 0.01 s 0.02 s
N = 5, K = 4 4 124 0.18 s 19 0.03 s 0.05 s 0.07 s
N = 5, K = 6 31 133 0.72 s 13 0.13 s 0.18 s 0.21 s
N = 5, K = 8 131 101 2.56 s 13 0.53 s 0.69 s 0.62 s
N = 6, K = 2 329 0.05 s 162 0.01 s 0.02 s 0.04 s
N = 6, K = 4 20 524 0.57 s 22 0.09 s 0.14 s 0.18 s
N = 6, K = 6 233 340 4.68 s 15 0.96 s 1.22 s 1.1 s
N = 6, K = 8 1 310 780 26.57 s 15 6.38 s 7.09 s 7.21 s
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6.1.3 Randomised Consensus Shared Coin Protocol
A consensus protocol aims at achieving an agreement on a selected value out of a
variety of different values when there are multiple participants involved. The consensus
protocol of Aspnes and Herlihy [AH90] was analysed using formal methods in [KNS01]
by separating the protocol into two different parts, one without any probabilistic
behaviour and the other equipped with probabilism, as it was proposed in [PSL00].
Each part was then analysed separately using different methods and tools. For the
analysis of the non-probabilistic part the authors of [KNS01] chose Cadence SMV8

(an extension of SMV [McM93]) and the second part equipped with probabilistic
behaviour was analysed using the probabilistic model checker Prism. Since the aim
of this monograph is to demonstrate the practical viability of the developed quantile
framework and since this puts the emphasis on the treatment of probabilistic behaviour,
the focus here is on the probabilistic part of the protocol, the so-called Randomised
Consensus Shared Coin Protocol. It is publicly available9 and will be analysed using
the quantile framework discussed so far.

The protocol consists of N processes (participants) and provides a shared counter,
which is accessible by each of the processes. It works in a way such that it performs
multiple rounds, where in each round, a process flips a coin and, depending on the
outcome of the coin toss, either the respective process increments or decrements the
counter. The protocol fixes a constant K ą 1 to establish barriers for specifying the
desired value of a process. The barriers help to prevent processes to move the value
of the counter into a specific direction, and therefore minimise the influence of an
adversary on the outcome of the protocol. So, with increasing K the influence of an
adversary decreases.

Since the operational behaviour of the described protocol depends on coin tosses, the
minimal number of flips necessary for a successful termination is of peculiar interest.
Therefore, there are several questions which are of interest for the protocol:

1. What is the minimal number of coin-flips needed in order to guarantee a termin-
ation of the protocol with a given probability?

2. What is the minimal number of coin-flips needed to guarantee a successful
protocol termination with a specific probability, i.e., all involved processes agree
on the same value?

Also, the required number of steps can be seen as a significant measure for the
performance of the protocol:

3. How many steps does the protocol need in order to guarantee its termination
with a given probability?

4. How many steps are at least necessary to guarantee a successful protocol termin-
ation with a specific probability?

8http://www.kenmcmil.com/smv.html, retrieved 28th March 2018
9http://www.prismmodelchecker.org/casestudies/consensus_prism.php, retrieved 28th

March 2018
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Figure 6.6: Results for Randomised Consensus Shared Coin Protocol

Formal analysis Since a successful protocol termination is highly important the formal
analysis will answer the questions 2 and 4 formalised using the following existential
quantile:

min
�

r P N : Prmax(♦ďr(Finished ^ Agreement)) ą p
(

,

with r denoting either the number of coin-flips or the number of steps done in the
protocol, and p P t0, 0.01, 0.05, 0.1, . . . , 0.9, 0.95, 0.99u is the respective probability
threshold. The labelling Finished hereby means that each process has finished the
decision for itself, i.e., every involved participant selected its preferred value, and
the label Agreement denotes situations where the selected value for all participants
is the same. The considered queries can be computed using the proposed quantile
framework, and the results of those computations are depicted in Figure 6.6, whereas
the corresponding statistics for the computation of the minimal number of coin-flips
can be found in Table 6.17 (Explicit-engine) on page 111, and Table 6.18 (symbolic
engines) on page 112. The corresponding statistics for the minimal number of steps
are denoted in Table 6.19 (Explicit-engine) on page 113, and in Table 6.20 (symbolic
engines) on page 114.

As can be seen by the number of the required iterations in the corresponding tables,
and as well in the plots of Figure 6.6 the resulting quantile values for this protocol
are very high compared to the previously investigated protocols. The higher the value
for K the more iterations are needed in order to find an agreement for the involved
processes. Therefore, the overall time to calculate all necessary iterations is also very
high compared to the previous ones. For this reason it is impossible to have statistics
for the LP-approach for this protocol, since the linear program that needs to be solved
by this approach would consist of too many variables simply because of the number of
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the iterations that need to be considered. But, this high number of required iterations
comes in handy for the parallel computations of the Explicit-engine. The overhead
that needs to be paid in order to prepare the parallel computations is negligible because
of the huge number of required iterations, meaning that the investment of the overhead
pays off in each iteration. Therefore, it is not that surprising that the timings for the
parallel computations are really fast when compared to the other engines. Another
thing is that the precomputation of the Explicit-engine is the fastest out of all
four available engines. For the previously investigated protocols the opposite was
true. This is a bit surprising since the model has an extremely compact symbolic
representation in terms of MTBDD-nodes. The performance of the Sparse-engine and
the sequential Explicit-engine is nearly the same, whereas the MTBDD-engine and
the Hybrid-engine seem to have their issues with this protocol.

Another interesting observation is that reasoning over the minimal number of coin-
flips and over the minimal number of steps is done in nearly the same time for all the
considered engines although the required iterations for the number of steps are roughly
three times higher than for the number of coin-flips. Since the computation of the
minimal number of steps does not need to consider any zero-reward states and therefore
there is no need of topologically sorting any zero-reward SCCs, the BP-approach can
be applied for each state directly in each considered iteration. And this improves the
computational performance to a high degree.

Note on the storage of zero-reward sub-MDPs As the analysis of the minimal
number of coin-flips reveals the model consists of many zero-reward sub-MDPs which
have a positive probability of reaching the desired goal-states and therefore need to
be treated adequately by the framework (see Section 5.1.3 on page 71). Since for
larger instances of the model there are quite a lot of those zero-reward sub-MDPs,
for the Explicit-engine it was not even possible to store them in memory by using
the standard BitSet-implementation shipped with version 1.8.0_72-b15 of the Java
programming language. So, without the utilisation of the self-built storage for integer
sets (see Section 5.1.7 on page 77) the computation would not have been possible for
the Explicit-engine due to problems with the memory.

Note on parallel computations using the Explicit-engine This protocol needs a
huge amount of iterations in order to compute the desired quantile values, and this fact
is beneficial for the application of the parallel computations of the Explicit-engine.
Therefore, we give an overview over the performance of the parallel computations as it
was also done for the Self-Stabilising Protocol (see Section 6.1.1) or the asynchronous
variant of the Leader-Election Protocol (see Section 6.1.2). In contrast to the Self-
Stabilising Protocol the protocol here involves many zero-reward sub-MDPs when
analysing the minimal number of coin-flips. It is therefore necessary to do a topological
sorting of those sub-MDPs by constructing the corresponding DAG as explained
in Section 5.1.4. Figure 6.7 shows the running times for the computation of the
explicit existential quantile for computing the minimal number of coin-flips in the case

109



6 Analysed Protocols

N = 6, K = 8. As already seen in Figure 6.5 the plot depicts the running times for the

Figure 6.7: Parallel computations for Randomised Consensus Shared Coin Protocol

whole quantile calculation together with the time necessary for the precomputation and
the time for the generation of the DAG. As before the maximal degree of parallelism
was restricted to 15 in order to keep the computing system responsive. The generation
of the DAG is negligible in relation to the amount of time that is consumed by the
precomputation. So, the overall performance is not effected in a negative way by
establishing the requirements for the parallel computations. And since the needed
iterations are relatively high (9 051) there is a lot of potential for the parallel Explicit-
engine to reduce the computation times. What this all amounts to is that the parallel
computations do perform really well in this case, reducing the overall computation
time by roughly 65% for a parallelism of 15.
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Table 6.17: Statistics for explicit quantile (minimal number of coin-flips, Randomised
Consensus Shared Coin Protocol)

Model Explicit
sequential parallel

Instance States tbuild Iters tpre tquery tquery

N = 2, K = 2 272 0.04 s 63 0.01 s 0.04 s 0.07 s
N = 2, K = 4 528 0.05 s 251 0.02 s 0.06 s 0.16 s
N = 2, K = 8 1 040 0.06 s 1 005 0.06 s 0.24 s 0.4 s
N = 2, K = 16 2 064 0.09 s 4 023 0.32 s 1.6 s 1.59 s
N = 3, K = 2 2 720 0.13 s 141 0.1 s 0.19 s 0.26 s
N = 3, K = 4 5 216 0.2 s 565 0.3 s 0.85 s 0.8 s
N = 3, K = 8 10 208 0.27 s 2 263 1.57 s 5.8 s 3.59 s
N = 3, K = 16 20 192 0.4 s 9 051 9.76 s 34.15 s 20.83 s
N = 4, K = 2 22 656 0.5 s 251 0.88 s 2.15 s 1.58 s
N = 4, K = 4 43 136 0.78 s 1 005 4.44 s 18.99 s 8.34 s
N = 4, K = 8 84 096 1.33 s 4 023 27.21 s 149.9 s 56.6 s
N = 4, K = 16 166 016 2.43 s 16 091 175.26 s 843.68 s 394.92 s
N = 5, K = 2 173 056 3.3 s 393 12.31 s 36.9 s 24.11 s
N = 5, K = 4 327 936 5.89 s 1 571 71.43 s 230.31 s 125.25 s
N = 5, K = 8 637 696 11.1 s 6 285 451.0 s 1 611.13 s 823.92 s
N = 6, K = 2 1 258 240 27.74 s 565 133.67 s 423.46 s 216.51 s
N = 6, K = 4 2 376 448 46.6 s 2 263 750.82 s 2 725.51 s 1 249.19 s
N = 6, K = 8 4 612 864 106.25 s 9 051 4 134.19 s 19 499.24 s 8 027.4 s
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s

37.75
s

230.56
s

313.77
s

N
=

5,K
=

4
327936

5164
0.13

s
1571

253.32
s

600.64
s

86.42
s

234.89
s

1259.44
s

1779.99
s

N
=

5,K
=

8
637696

5216
0.2

s
6285

1657.43
s

4553.45
s

471.3
s

1630.34
s

6514.38
s

9603.54
s

N
=

6,K
=

2
1258240

8506
0.15

s
565

572.01
s

1279.57
s

153.86
s

419.69
s

967.2
s

1316.03
s

N
=

6,K
=

4
2376448

8492
0.21

s
2263

3368.72
s

8913.29
s

788.37
s

2819.84
s

4061.78
s

5802.06
s

N
=

6,K
=

8
4612864

8604
0.34

s
9051

20321.39
s

63502.53
s

4615.25
s

20138.23
s

26010.39
s

37059.0
s
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Table 6.19: Statistics for explicit quantile (minimal number of steps, Randomised
Consensus Shared Coin Protocol)

Model Explicit
sequential parallel

Instance States tbuild Iters tpre tquery tquery

N = 2, K = 2 272 0.04 s 187 0.01 s 0.02 s 0.04 s
N = 2, K = 4 528 0.05 s 751 0.01 s 0.07 s 0.1 s
N = 2, K = 8 1 040 0.06 s 3 013 0.06 s 0.36 s 0.39 s
N = 2, K = 16 2 064 0.09 s 12 067 0.31 s 2.75 s 1.81 s
N = 3, K = 2 2 720 0.13 s 421 0.06 s 0.19 s 0.15 s
N = 3, K = 4 5 216 0.2 s 1 693 0.25 s 1.25 s 0.69 s
N = 3, K = 8 10 208 0.27 s 6 787 1.51 s 9.47 s 6.28 s
N = 3, K = 16 20 192 0.4 s 27 151 9.64 s 53.87 s 28.33 s
N = 4, K = 2 22 656 0.5 s 751 0.77 s 2.92 s 1.49 s
N = 4, K = 4 43 136 0.78 s 3 013 4.37 s 22.33 s 8.44 s
N = 4, K = 8 84 096 1.33 s 12 067 28.63 s 121.89 s 62.62 s
N = 4, K = 16 166 016 2.43 s 48 271 173.1 s 884.62 s 384.89 s
N = 5, K = 2 173 056 3.3 s 1 177 10.99 s 31.88 s 18.88 s
N = 5, K = 4 327 936 5.89 s 4 711 67.19 s 211.2 s 108.57 s
N = 5, K = 8 637 696 11.1 s 18 853 435.82 s 1 542.89 s 765.15 s
N = 6, K = 2 1 258 240 27.74 s 1 693 132.66 s 369.97 s 181.92 s
N = 6, K = 4 2 376 448 46.6 s 6 787 746.37 s 2 360.51 s 1 163.84 s
N = 6, K = 8 4 612 864 106.25 s 27 151 4 131.67 s 19 360.68 s 8 015.83 s
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Table
6.20:Statistics

for
sym

bolic
quantile

(m
inim

alnum
ber

ofsteps,R
andom

ised
C

onsensus
Shared

C
oin

Protocol)
M

odel
sym

bolic
com

putations
H

ybrid
Sparse

M
T

B
D

D
Instance

States
M

tbdd
tbuild

Iters
tpre

tquery
tpre

tquery
tpre

tquery

N
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2
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s
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s
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s
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s
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s
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s
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s

N
=
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=

4
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s
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s
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s
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s
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s
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s
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=
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=

8
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s
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s
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s
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=
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=
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s
27151
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s
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s
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s
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2
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4
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s
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s
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s

N
=
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s
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s
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s
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s
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s

6311.22
s

784.23
s

2127.69
s

4105.01
s

6059.45
s
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s
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6.2 Energy-Aware Protocols
The following section addresses protocols where the emphasis is on their respective
energy efficiency. It is shown how the presented quantile framework can support
the analysis of systems that adapt their configurations and utilisations to varying
requirements in order to save energy (of course the application of a quantile-based
multi-objective analysis is not restricted to just the demands of this case). So, we
are interested in minimising the energy and simultaneously maximising the provided
utility.

6.2.1 Energy-Aware Job-Scheduling Protocol
Here, we turn to the Energy-Aware Job-Scheduling Protocol which has been introduced
previously in [Bai+14a]. For this protocol we want to do an energy-utility analysis
using the presented quantiles. The system consists of a fixed number of processes which
want to successfully perform tasks within a given deadline. During the completion of
such a task a process needs to enter a critical section where it utilises a shared resource.
The access to this resource will be granted exclusively by a scheduler selecting the
process out of the pool of processes which requested access to the resource. When a
process states such a request, a deadline counter is set and decreased over time even if
the process did not enter the critical section yet. Since the computation of a task also
requires a certain amount of time in the critical section, deadlines can be exceeded.
Utility is hence provided in terms of tasks finished without exceeding their deadline.
Each process consumes energy, especially if it is in the critical section, and the global
energy consumption equals the sum of energy consumed by all processes. Additional
dependencies between utility and energy arise as the scheduler can activate a turbo
mode for the critical section, doubling the computation speed but also tripling energy
consumption as a drawback.

Operational behaviour of the protocol The operational behaviour of the protocol
is provided by means of control-flow graphs representing MDPs: one for the processes
(see Figure 6.8) and one for the shared resource (see Figure 6.9). The number N is
fixed and will denote the number of involved processes. Similar to the input language
of Prism, such control-flow graphs define MDP modules which are denoted by Pi for
each process i = 1, ..., N and R for the resource. Using standard parallel composition
[Seg95], these MDP modules yield the MDP semantics M = P1} ¨ ¨ ¨ }PN}R of the
whole protocol, which is subject of the analysis.

Each control-flow graph Pi of the i-th process is described by the four different
locations starti, ncriti, waiti and criti (see Figure 6.8). Starting in the initial
location starti, the process moves to its noncritical location ncriti, indicating that
process i has not requested access to the resource yet. At this transition, the timer ti
is randomly set according to a distribution τ , representing the time where the process
stays in ncriti. Afterwards, it requests access to the shared resource by entering its
waiting location waiti and randomly choosing a deadline counter di and a computation
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criti waiti

ncritistarti

ti := random(τ) if ti ą 0:
ti := ti ´ 1

if ti = 0:
di := random(δ)
ci := random(γ)

if user ‰ i:
di := di ´ 1

if user = i:
di := di ´ 1

if  turbo and ci ą 0:
ci := ci ´ 1
di := di ´ 1

if turbo and ci ą 0:
ci := ci ´ 2
di := di ´ 1

if ci = 0:
ti := random(τ)

Figure 6.8: Control flow for process Pi (Energy-Aware Job-Scheduling Protocol)

timer ci according to distributions δ and γ, respectively. Intuitively, the timer ci
represents the time required to finish the desired task while process i uses the shared
resource, and the deadline counter di formalises the time until the task needs to be
finished. Clearly, ci is required to be smaller than di but greater than 0. Waiting
for the access to the shared resource, di is decreased if it is greater than zero (this is
expressed by the operation di := di ´ 1 in Figure 6.8, where ´ stands for the positive
difference, i.e., m´n = max(0,m´n) for natural numbers m,n P N). Since the access
to the shared resource is exclusive, the decision which process can access the resource
is performed by a scheduler, which will be detailed later on. The scheduler decides to
grant access to process i by setting user = i, allowing the process to move to its critical
location criti. The process then performs the task which requires access to the shared
resource. In order to meet the deadline, the scheduler may decide to activate a turbo
mode (turbo = true), doubling the computation speed of the task. This is modelled by
subtracting 2 instead of the standard 1 from the computation timer ci at every time
step in the critical section. After the computation of the task has finished, the process
leaves the critical location, enters its noncritical location and the procedure starts over
again. All N processes are synchronously composed, i.e., at each step of the protocol,
all processes perform exactly one transition in their control-flow graph.

Now, we turn to the resource module R, which settles the rules for the access to
the shared resource. The control-flow graph of R is depicted in Figure 6.9, where k
and i range over all processes, i.e., one transition in the graph involving k or i stands
for multiple transitions replacing k and i by 1, . . . , N . Synchronously composed with
the processes’ behaviour P1} ¨ ¨ ¨ }PN , the resource behaviour depends on the processes
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(guards ci = 0 indicating that process i has finished its computation and therefore leaves
the critical section, and waitk standing for process k’s request to enter the critical
section) and the processes depend on the resource (the guards user = i if process i
has the right to be in the critical section and turbo standing for the case whether the
turbo mode is activated (formally, true) or deactivated (false)). Whereas the processes’
behaviour is deterministic, the model of the resource involves nondeterminism, e.g., if
multiple processes are in their respective waiting location, or for the decision if the
turbo mode will be utilised. At the beginning, the resource is not in use, meaning that
user is undefined (user = K) and the turbo mode is deactivated (turbo set to false).
Whenever there is a process k waiting (i.e., k is in location waitk) and no process
has access to the resource (user = K), the resource can be assigned to the waiting
process by setting user := k. In this turn, it is also decided whether to activate the
turbo mode or not. As long as the computation counter ci of the process i in the
critical section is set, i.e., the task of process i is still computed, the resource does not
change its parameters. Only if the computation is finished (ci = 0 and user = i), then
either the resource is directly handed to another waiting process k, also activating or
deactivating the turbo mode, or the user of the resource is set undefined if no process
is in its waiting location.

resource

user := K
turbo := false

if ci = 0^waitk ^ user = i:
user := k
turbo := false

if waitk ^ user = K:
user := k
turbo := true

if waitk ^ user = K:
user := k
turbo := false

if  (ci = 0^ criti)^ user = i

if ci = 0^waitk ^ user = i:
user := k
turbo := true

if ci = 0^ user = i^
Ź

j‰i waitj:
user := K
turbo := false

if user = K ^
Ź

j  waitj

Figure 6.9: Control flow for resource R (Energy-Aware Job-Scheduling Protocol)

Energy, utility and model parameters For the analysis certain parameters were
fixed while the number of involved processes varies. The probability distributions for
each process is provided in the form (p:n, 1´p:m), where p P [0, 1] is the probability
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for value n and 1´ p the probability that value m occurs. The deadline distribution
is fixed to δ =

(
1
3
:7, 2

3
:9
)
, the computation distribution for the critical section is set

to γ =
(
1
3
:2, 2

3
:3
)
, and the timer distribution for the non-critical section is fixed to

τ =
(
2
3
:4, 1

3
:5
)
.

By a synchronous parallel composition of the models for processes (see Figure 6.8) and
the resource model (see Figure 6.9) the MDP M arises, which models the behaviour
of the complete protocol. The energy consumption and the achieved degree of utility of
the model are represented using distinct reward functions over M. Utility is specified
as the number of successfully finished tasks, i.e., a transition reward of 1 is granted if
some process i takes a transition from criti to ncriti and the value of the deadline
counter di is greater than 0. The energy consumption of the system is modelled by
state rewards, where the global energy consumption in a state of M is the sum of the
energy consumption of all processes in their respective local states. Depending on the
local state of a process, the consumed energy differs as it is detailed in Table 6.21.

Table 6.21: Rewards modelling the energy consumption of a process (Energy-Aware
Job-Scheduling Protocol)

location of assigned energy consumption
process i i mod 3 ‰ 0 i mod 3 = 0

turbo = false turbo = true turbo = false turbo = true
ncriti 2 2 4 4
waiti 1 1 2 2
criti 3 9 6 18

In order to model a heterogeneous architecture, the energy consumption of every
third process is doubled. The scheduler has to take this heterogeneity into account,
e.g., it needs to decide whether to schedule a job immediately to a process having a
higher energy consumption and to process the job as soon as possible, or to postpone
the processing of the job in order to utilise a process with a lower energy consumption.
But the last alternative may result in a deadline miss for the job to be scheduled.

There is the possibility of activating a turbo mode whenever a process performs a
computation in its critical section. The turbo mode results in a computation twice
as fast as normal, but it comes at the cost of tripling the energy consumption (see
Table 6.21). Since the doubled computation speed allows to leave the critical section
twice as fast, the overall accumulated energy consumption is 50% higher in the critical
section with activated turbo mode than it is with deactivated turbo.

Formal analysis The discussed quantile framework is used in order to analyse the
trade-off between energy and utility. The analysis concentrates mainly on the following
two values:

• The minimal amount of energy emin that is required to exceed a desired utility
bound u with a probability higher than p.
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• The maximal utility umax that can be obtained with a probability greater than p
such that the consumed energy is kept within a fixed energy budget e.

Formally, these values can be expressed using the following existential energy-utility
bound quantiles:

emin = qus

(
DPąp(♦

ď?(utility ą u))
)

= min
 

ê P N : Prmax
s ( ♦(energy ď ê ^ utility ą u) ) ą p

(

umax = qus

(
DPąp(♦

ě?(energy ă e))
)

= max
 

û P N : Prmax
s ( ♦(energy ă e ^ utility ě û) ) ą p

(

It needs to be taken into account that the respective fixed energy- or utility-bound will
be encoded into the state space of the model (see Section 3.5), and as a consequence
this encoding results in an increased number of states for the model under consideration.
The influence of the encoding for the produced utility is not of such a big deal and
can be therefore addressed without any problems. But, the required energy budget
to produce some utility is orders of magnitude larger than the utility resulting from
this investment. Therefore, the encoding of the fixed energy bound results in a model
where the state space is dramatically larger than without the inevitable encoding. This
is the reason why the definition of umax has been changed slightly:

umax = qus

(
DPąp(♦

ě?(energy1 ă e))
)

= max
 

û P N : Prmax
s ( ♦(energy1 ă e ^ utility1 ě û) ) ą p

(

In all the previous formulas, utility and energy correspond to the accumulated utility
and energy rewards of all N processes, whereas utility1 and energy1 stand for the
accumulated utility and energy of process 1 only. Hence, emin describes a “global’’
quantile, whereas the final definition of umax stands for a “local’’ quantile. Considering
the local accumulated rewards only with respect to process 1 and not with respect to
another process is without loss of generality, since process 1 always consumes minimal
energy compared to the processes i with i mod 3 = 0 (see Table 6.21).

Analysis results The Energy-Aware Job-Scheduling Protocol was modelled in Prism,
encoding the program graphs detailed in Figure 6.8 and Figure 6.9 in the guarded-
command input language of Prism. Since both energy and utility are provided as reward
functions in M, the automata-based approach detailed in Section 3.5 was employed,
e.g., the utility threshold u was encoded into the states of the model. This yields a
model Mu on which the quantile emin can be computed using the implementation for
upper reward-bounded quantiles. The same pattern is used for computing the quantile
umax in a model Me, which arises from encoding the energy budget e into the states of
the considered model M, and afterwards the implementation for lower reward-bounded
quantiles is used.

The Figures 6.10 and 6.11 document the results of the upper- and lower-bound
quantiles detailed above and computed for the Energy-Aware Job-Scheduling Protocol,
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parameterising over the number N of processes. In Figure 6.10, emin for Mu with
N = 2, . . . , 6 processes is shown with a fixed utility threshold of u = N . It can be
seen that the gap between the curves for N = 2 and N = 3 has a larger distance
than the gap between the curves for N = 3 and N = 4. The same phenomenon is
recognised when comparing the gap between the curves for N = 4 and N = 5 with
the gap between the curves for N = 5 and N = 6. This can be explained by the fact
that the energy consumption of every third process is doubled (see Table 6.21). The
model for N = 2 does not contain any process with a doubled energy consumption,
the models for process numbers between 3 and 5 contain exactly one process with
an increased energy consumption, and the model for 6 processes contains two such
processes. So, the doubled energy consumption of every third process groups the plots
depending on the specific number of processes with an increased energy consumption.

Figure 6.10: Results for quantile emin (Energy-Aware Job-Scheduling Protocol)

Figure 6.11 depicts umax for N = 2, . . . , 9 processes and a fixed energy budget of
e = 50 ¨N . It can easily be seen that the plots in Figures 6.10 and 6.11 have the typical
shape for quantiles as depicted in Figure 3.1: Figure 6.10 clearly shows an increasing
quantile for the minimal required energy budget, whereas Figure 6.11 represents a
decreasing quantile for the maximal gained utility.

On page 123 the statistical data for the computation of quantile emin using the
Explicit-engine can be seen in Table 6.23, and as well the corresponding statistics
for the symbolic engines are depicted in Table 6.24. The statistics for quantile umax
are listed in Table 6.25 (Explicit-engine) and in Table 6.26 (symbolic engines) on
page 124. All tables illustrate that even for large model sizes with millions of states,
the implementation of the BP-approach is feasible, whereas none of the quantile
computations for emin and umax finished within 24 hours when trying to utilise the
LP-approach instead of BP.
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Figure 6.11: Results for quantile umax (Energy-Aware Job-Scheduling Protocol)

As already recognised earlier the construction of the model using the Explicit-
engine is very time-consuming for both emin and umax. For instance, for emin and
N = 6 the Explicit-engine needed nearly one hour in order to construct the model,
whereas the symbolic engines did this construction process in only half a minute. But,
the Hybrid-engine needed more than 13 hours for the calculation of the quantile
itself, whereas the Explicit-engine needed only half an hour in total using parallel
computations. This is interesting since the symbolic representation of the state space
is compact (1 394 808 nodes represent 44 072 357 states for N = 6), and since even the
precomputation is much faster using the symbolic engines (Explicit needs more than
twice the time as the symbolic engines).

For the computation of umax the things have changed completely, due to the fact that
the precomputation for the Explicit-engine is very slow compared to the symbolic
engines. Since the calculation of umax requires the computation of a lower-bounded
quantile, the precomputation relies on an analysis of the maximal end components
of the model (see Section 3.4.1). And the procedure for finding the end components
seems to be implemented more efficiently for the symbolic engines. For example, the
time for the precomputation for the case N = 8 needs nearly 7 hours, whereas the
same procedure finishes in less than 5 seconds using any of the three symbolic engines.
The solving-step of the linear program itself on the other hand is efficient when using
the Explicit-engine. The required 19 iterations could be entirely computed in less
than 30 minutes, which corresponds more or less to the time the Hybrid-engine needs
for this portion of the quantile computation. So, the overall computation time for
the Explicit-engine is completely dominated by the precomputation that relies on
the methods shipped with Prism in order to properly calculate the end components
of the model. For N = 9 the precomputation needed even more than 20 hours, and
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that caused the time for the overall computation to be a little higher than the allowed
24 hours. So, Prisms current implementation for doing the end component analysis
using the Explicit-engine seems to be a candidate for some improvement. It might
be beneficial to further investigate this implementation, since the computation of end
components is an important basis for many model-checking algorithms.

It can be seen in Tables 6.25 and 6.26 that the size of the model scales well due to
the fact that the energy consumption and utility gain of just one selected process is
considered. Therefore, the analysis can be carried out for a higher number of processes
than it is the case for the computation of emin, where the global energy consumption
of all involved processes was considered.

Note on the storage of integer-sets for the Explicit-engine Please keep in mind
that the timings given in Table 6.25 do utilise the data structures presented in Sec-
tion 5.1.7. The statistics for the same computations using the standard BitSet-
implementation shipped with Java in version 1.8.0_72-b15 is shown in Table 6.22. It

Table 6.22: Statistics for explicit quantile umax (without tailored storage, Energy-Aware
Job-Scheduling Protocol)

Model Explicit
sequential parallel

Instance States tbuild Iters tpre tquery tquery

N = 2 12 828 0.3 s 7 0.36 s 0.53 s 0.66 s
N = 3 143 155 2.33 s 8 3.31 s 8.53 s 8.21 s
N = 4 872 410 15.67 s 11 48.11 s 211.28 s 140.67 s
N = 5 3 049 471 66.59 s – 336.58 s memory-error
N = 6 7 901 694 181.10 s – 1 996.73 s memory-error
N = 7 17 037 097 460.14 s – 10 704.06 s memory-error
N = 8 32 442 898 994.94 s – 34 657.52 s memory-error

can be seen that without the usage of the tailored data structures the performance of
the computations is worse. For N = 4 the precomputation lasted roughly 20% longer,
and the overall sequential computation was even 80% slower. For N = 8 the precompu-
tation needed 30% more time, whereas the initialisation-phase of the BP-approach (see
Section 5.1.1) even led to a memory-error. As part of this initialisation there happens
the topological sorting of the zero-reward sub-MDPs (see Section 5.1.3). The resulting
topological order needs to be stored somehow to be accessible during the particular
iterations of the quantile calculations. Even for the case N = 5 a heap-space of 128 GB
was not sufficient for this storage when using the standard BitSet-implementation for
saving the topological order of the components. Whereas for the usage of the tailored
data structures presented in Section 5.1.7 128 GB were completely fine for doing the
complete quantile computation up to the case N = 810.
10Since the model for the case N = 9 has a huge number of reachable states the heap-space for the

Java-process needed to be increased, and was set to 250 GB.
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6.2 Energy-Aware Protocols

6.2.1.1 Energy-Aware Job-Scheduling Protocol with side conditions

Now, we want to analyse the minimal energy consumption as before, but we want to
take specific side conditions into account. Therefore, quantiles with side conditions (see
Section 3.6) are used to carry out the upcoming analysis. Formally, we are interested
in the computation of

eϕmin = min
�

ê P N : Prmax
s (♦(energy ď ê ^ utility ą u) ^ ϕ) ą p

(

where ϕ is defined according to the desired side condition.

Prohibit turbo mode: We want to get a feeling for the impact of the deactivation
of the turbo mode on the energy consumption of the protocol. Therefore, we like to
disable the turbo mode for our analysis, and use the following side condition:

ϕ = l(turbo = false)

The side condition that is induced by ϕ is an invariance, and therefore it needs to
hold for all reachable states of the investigated model. The results of the analysis are
depicted in Figure 6.12 and the computational statistics can be found in Table 6.27.
The reference-values depicted in Figure 6.10 also appear as transparent shapes in

Figure 6.12: Results for quantile emin with side conditions (Energy-Aware Job-
Scheduling Protocol, no turbo mode)

Figure 6.12 in order to allow a better visualisation of the impact of the deactivation of
the turbo mode. As can be seen this deactivation dramatically increases the energy
consumption of the protocol in order to achieve the same utility as before. For
N = 2 there is not a huge difference between the case without side conditions and
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Table 6.27: Statistics for quantile emin with side conditions (Energy-Aware Job-
Scheduling Protocol, no turbo mode)

Model Explicit
A Product sequential parallel

Instance States States ttransform Iters tpre tquery tquery

N = 2 3 1 329 0.18 s 77 0.07 s 0.31 s 0.37 s
N = 3 3 20 999 0.64 s 295 0.27 s 1.41 s 1.3 s
N = 4 3 465 603 9.42 s 379 5.14 s 41.92 s 22.32 s
N = 5 3 6 798 695 107.89 s 489 230.3 s 689.03 s 424.1 s
N = 6 3 47 227 099 1 096.43 s 692 3 798.33 s 7 744.49 s 5 930.83 s

the case where the turbo mode has been prohibited. But for an increased number of
processes there exists a specific probability where the results of both cases start to
differ enormously. For N = 3 this difference starts at a probability of around 0.45, and
for N = 4 the boundary is at a probability of roughly 0.35. With an increase in the
number of involved processes this probability is lowered even more, resulting in the
fact that the energy consumption is getting even worse when the number of involved
processes increases. In the end, the invested energy needs to be increased by nearly
40% in order to achieve the desired utility with a probability of 99% (except for the
case N = 2). In conclusion, it can be said that it pays off to invest three times the
energy (when turbo mode is active) for a computation twice as fast.

Since currently only the Explicit-engine supports the computation of quantiles
with side conditions there are only statistics for this engine available. As explained
in Section 3.6 the algorithm works with a deterministic automaton A encoding ϕ.
Here, A consists of 3 states together with one Rabin-pair (see [GTW02]), and the
parallel composition of A to the model presented previously results in the number of
states depicted in Table 6.27 (compare Table 6.23 for statistics of the original model).
Therefore, the model under consideration is a bit larger than the original model. The
column ttransform in Table 6.27 depicts the time that was needed to transform the
original model to the model used for the analysis. This transformation includes the
building of the deterministic Rabin automaton A (consisting of 3 states for this case),
and the subsequent construction of the product-model out of the original model and
automaton A, followed by the necessary model-transformations described in Section 3.6
for computing quantiles with side conditions. As it is clear that there exists the necessity
to do a transformation soonest after the complete quantile query has been parsed, the
time for doing the transformation (ttransform) is included in the time for computing the
complete quantile (tquery). That explains the increased quantile-calculation times in
comparison to, e.g., Table 6.23 where no side conditions were demanded.

Force turbo mode after first deadline-miss: When there exists a task which could
not be handled in time (its deadline has not been kept) by a specific process we want to
give any further job the opportunity to finish in time by the means that are supplied by
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6.2 Energy-Aware Protocols

the protocol. Therefore, we do activate the turbo mode for all incoming calculations as
soon as a deadline has been missed for the first time. The corresponding side condition
can be specified as follows:

ϕ = l

((
N

ł

p=1

critp ^ cp = 0 ^ dp = 0

)
ùñ l(user ‰ K ùñ turbo = true)

)

Here, the boolean formula critp ^ cp = 0 ^ dp = 0 describes a situation where the
deadline of a job assigned to process p has not been kept. This event triggers the
activation of the turbo mode for all incoming jobs, and from now on there is only the
possibility of doing all the critical calculations twice as fast. But, as a drawback the
energy consumption inside the critical section is three times higher (see Table 6.21).
Since the turbo mode only influences computations done in their respective critical
section there is no need to make any demand on the usage of the turbo when there
currently exists no process located in its critical section (defined by user = K). So,
we only specify the usage of the turbo when the resource is occupied by some process
(user ‰ K).

Figure 6.13: Results for quantile emin with side conditions (Energy-Aware Job-
Scheduling Protocol, enable turbo after first miss)

The results of the analysis are depicted in Figure 6.13 and the corresponding statistics
can be found in Table 6.28. As before, the results from Figure 6.10 are shown as well
to allow a direct comparison to the case without any side conditions. As can be seen
the consumed energy is increased in comparison to having the freedom of activating
or deactivating the turbo mode at will. This is in a way clear, since the desired side
condition eliminates a possibility for adapting the system to the current workload
dynamically. But, the consumed energy does not increase to such an extent as it is the
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Table 6.28: Statistics for quantile emin with side conditions (Energy-Aware Job-
Scheduling Protocol, enable turbo after first miss)

Model Explicit
A Product sequential parallel

Instance States States ttransform Iters tpre tquery tquery

N = 2 4 2 107 0.23 s 75 0.07 s 0.41 s 0.47 s
N = 3 4 34 115 1.08 s 205 0.33 s 2.31 s 1.94 s
N = 4 4 606 831 14.38 s 283 5.35 s 59.17 s 29.34 s
N = 5 4 9 180 455 245.75 s 344 267.9 s 1 460.07 s 700.21 s
N = 6 4 65 361 499 3 177.46 s 462 6 709.81 s 21 755.49 s 13 345.27 s

case when deactivating the turbo mode completely (compare to the results shown in
Figure 6.12). So, the bottom line is that it is a better choice to keep the turbo mode
active instead of ignoring it completely.

The computation statistics reveal that the parallelisation of this analysis is beneficial
since the calculation times were almost halved (only for N = 2 the parallelism slightly
slowed the overall performance due to the necessary overhead).

Round-robin scheduling: Quantiles with side conditions turn out to be useful for the
analysis of specific scheduling mechanisms. Therefore, we want to further investigate
round-robin scheduling in this paragraph. Round-robin scheduling is a method in order
to allow a fair scheduling, such that all involved processes are able to perform their
computation tasks. A formal specification tailored to the needs of the Energy-Aware
Job-Scheduling Protocol and using temporal logics can be done in the following way:

ϕ = l

( N
ľ

p=1

(
user = p ùñ

(user = p_ user = K) U (user = p+ 1 mod N)
))

Here, ϕ adapts to the number of used processes (N), and therefore ϕ becomes more
complex as N increases. This entails that the automaton used for the encoding of ϕ
grows with N . So, the parallel composition of the automaton and the model of the
protocol becomes more expensive for larger N .

Figure 6.14 depicts the results when a round-robin scheduler will be chosen in order
to manage access to the shared resource. Since the results for N = 5 are really large,
Figure 6.15 shows a more detailed view to depict the results for smaller N . As can be
seen for N = 2 the usage of a round-robin scheduler delivers the same performance as
without a specific scheduling strategy (compare Figure 6.10). This can be explained
by the fact that there are only two processes involved. Since the protocol needs to
keep the deadlines for the tasks by simultaneously minimising the energy consumption
the protocol has no other choice than alternating the access to the shared resource for
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Figure 6.14: Results for quantile emin with side conditions (Energy-Aware Job-
Scheduling Protocol, round-robin scheduling)

Table 6.29: Statistics for quantile emin with side conditions (Energy-Aware Job-
Scheduling Protocol, round-robin scheduling)

Model Explicit
A Product sequential parallel

Instance States States ttransform Iters tpre tquery tquery

N = 2 11 942 0.19 s 75 0.06 s 0.33 s 0.4 s
N = 3 89 22 945 1.06 s 178 0.25 s 1.77 s 1.7 s
N = 4 459 414 314 16.61 s 498 4.05 s 42.74 s 26.08 s
N = 5 2 109 6 249 946 471.56 s 18 501 853.71 s 4 981.67 s 2 986.43 s
N = 6 9 131 44 212 114 58 257.76 s 0 2 894.49 s 61 158.43 s

the two processes. Therefore the protocol behaves implicitly as if it is scheduled by a
round-robin scheduler in this case. This is also true to some extent for N = 3. But,
for more than three processes the energy consumption of the round-robin scheduling
increases dramatically. The point here is that the energy consumption of every third
process is increased (see Table 6.21) and the scheduler forces the usage of those more
expensive processes whenever they are next in line. Therefore, a more expensive
process will be scheduled regardless if there is a cheaper process that could do a task.
Another factor is that the considered scheduling forces to do the calculation in a fixed
order. Therefore, no dynamic reactions to environmental demands are possible, and the
waiting times of the participating processes (and their energy consumption) increase
as well. This also causes more deadline-misses to the protocol due to the fact that
processes that wait for access to the shared resource are forced to drop their working
package since the access to the shared resource cannot be granted in time. So, all
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Figure 6.15: Results for quantile emin with side conditions (Energy-Aware Job-
Scheduling Protocol, round-robin scheduling, zoomed)

the energy that was spent in the uncritical section is gone without any outcome and
another energy-portion needs to be spent for the completion of another job. For N = 6
it is even the case that the desired amount of utility cannot be obtained using the
proposed scheduling-technique.

As can be seen in Table 6.29 the calculation times for the computation of the quantiles
grow fast when considering more than four processes. The reason is that the states of
the model grow and the most important fact is that the number of required iterations is
really high for the case N = 5. For N = 6 no iterations were needed since according to
the precomputation there is no chance of achieving the desired utility in this case. But
the transformation process for the model, that contributes to the time for the quantile
query when considering quantiles with side conditions, is expensive here. The most
time-consuming part was the translation of ϕ to a representation using a deterministic
automaton A, which needed around 15 hours. Since ϕ depends on the number of
involved processes the automaton representing ϕ has different characteristics for the
different instances of the protocol. Therefore the number of states for A increases with
the value of N . After building the product model the quantile computation performed
in the usual manner.

In conclusion it can be seen that the usage of quantiles with side conditions is an
elegant way of analysing management strategies without the need of manually encoding
the strategies into the state space of the model, and this allows to avoid errors that
can occur in the modelling phase.
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6.2.1.2 Energy-Aware Job-Scheduling Protocol and expectation quantiles

For the previously considered energy-utility analysis we had to fix one of the two
quantities (either the energy or the utility) and encode those fixed values into the state
space of the model (see Section 3.5), and this directly contributes to an increase in
the number of states of the model. Instead, when interested in the minimal energy
consumption for an arbitrary expected amount of utility we can help ourselves by using
expectation quantiles as introduced in Chapter 4, and calculate the minimal energy
that needs to be spent in order to gain this utility using the methods presented there.
We therefore compute the quantile query

ED
s = qus

(
DExpUąu(energy ď?)

)

for doing the analysis, where u can be specified arbitrarily.

Figure 6.16: Results for quantile ED
s (Energy-Aware Job-Scheduling Protocol)

Table 6.30: Statistics for quantile ED
s (Energy-Aware Job-Scheduling Protocol)

Model Explicit
sequential parallel

Instance States tbuild Iters tpre tquery tquery

N = 2 349 0.05 s 2 403 0.11 s 0.27 s 0.4 s
N = 3 4 584 0.22 s 3 890 0.24 s 2.34 s 1.3 s
N = 4 78 289 1.86 s 3 838 1.66 s 70.93 s 18.39 s
N = 5 1 032 733 28.06 s 4 295 26.72 s 688.21 s 239.7 s
N = 6 6 367 337 180.23 s 5 210 169.27 s 4 974.5 s 1 698.98 s
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The results of the analysis for u P t0, 1, 2, . . . , 10, 20, 30, . . . , 100u are depicted in
Figure 6.16 and the corresponding statistics can be found in Table 6.30. As can be seen
the state space of the analysed models is much smaller when compared to the number
of states for the reachability quantile emin (see Table 6.23 on page 123). As already
stated, the reason is that the desired goal for the computation does not need to be
encoded into the state space of the model, and instead an additional reward function
for the gained utility is used. This would also allow to analyse the protocol for even
higher numbers of N , but since the previously investigated quantiles emin used N = 6
as its highest number of processes we do not exceed six here. The parallel computation
is really beneficial here, since due to the number of required iterations there exist so
many iterations that they can easily pay off for the additional parallel overhead that
needs to be invested. So, the whole computation profits from the parallel approach,
and we were able to reduce the overall computation time by roughly 65% in the case
N = 6.

Figure 6.16 shows that the energy consumption of N = 3 and N = 4 is nearly the
same, and the curve for N = 5 appears also rather close to both curves. The reason is
that more processes mean a higher energy consumption, but at the same time more
processes can produce the desired utility in a shorter period of time. Therefore, the
desired utility-gain is reached earlier and this helps to keep the energy consumption at
a comparable level. For N = 5 there occurs a noticeable shortage of the shared resource
more frequently (in comparison to N = 3 or N = 4), and therefore the processes need
to wait for the resource for longer times (increasing their needed energy due to waiting).
With an increased number of involved processes the impact of this shortage-effect
will increase as well. But, the major part of the increased energy consumption can
be illustrated with the help of Table 6.21. As already explained for the analysis of
emin (Figure 6.10) there exist groups depending on the specific number of processes
with an increased energy consumption (every third process consumes twice as much
energy). This is also the case here, and therefore the energy consumption of N = 3,
N = 4 and N = 5 is quite similar, whereas N = 2 consumes much less energy, and the
consumption of N = 6 is much higher.

6.2.1.3 Multiple shared resources

For the Energy-Aware Job-Scheduling Protocol there exists also a variant where there
are two shared resources instead of just one. In order to have a second resource, a
duplication of the model for the resource (see Figure 6.9) was composed to M. As a
consequence, two processes can enter their respective critical section simultaneously
without the risk of blocking each other. Since mutual exclusion effects do not appear
when analysing the case N = 2, it is not very interesting to analyse the protocol in
this case. Therefore, the analysis will be started for at least 3 processes, and we will
concentrate on the computation of emin and umax as before. The results are depicted
in Figure 6.17 and in Figure 6.18. Since there is an additional resource it is more
likely for a process to access one of the shared resources, and therefore the waiting
times for starting the critical section are lower. The benefits of this fact can be seen
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Figure 6.17: Results for quantile emin (Energy-Aware Job-Scheduling Protocol, 2 shared
resources)

in Figure 6.17 in terms of reduced energy-costs for accumulating the same amount of
utility as for the case of one shared resource (compare Figure 6.10). In Figure 6.18
the second resource ensures that the same amount of utility can be accumulated with
much higher probability (compare to Figure 6.11).

The corresponding computation statistics for quantile emin can be found in Table 6.31
(Explicit-engine) and Table 6.32 (symbolic engines) on page 135. In contrast to just
one shared resource, the scaling of the model becomes worse, and therefore it was only
possible to receive results for up to five processes. Due to the number of reachable
states (1 071 272 795) the Explicit-engine was not able to build the model for N
= 6, and even the Sparse-engine failed to do the calculations because of memory-
issues. Only the MTBDD- and Hybrid-engine would have been able to perform the
calculations. But, since a timeout of 24 hours was set, the result could not be computed
in time. So, there are no results for six processes with two shared resources. Up to five
processes the Explicit-engine performs well. As already mentioned earlier it suffers
from the model-building procedure, but the computation-times for the quantiles are
short. Thanks to the size of the model and also the number of required iterations the
parallel computation is really an option here.

Table 6.33 (Explicit-engine) and Table 6.34 (symbolic engines) on page 136 show
the statistics for the computation of quantile umax. As expected, the used engines
perform in the way as they already did for the case of one shared resource. For example,
the precomputation for the Explicit-engine again constitutes the bigger part of the
calculation time. So, there are not that many new facts for the protocol-variant that
have not already been discussed for the case of a single resource. But, one interesting
observation is that the scaling behaviour of the model changes dramatically when an
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Figure 6.18: Results for quantile umax (Energy-Aware Job-Scheduling Protocol, 2 shared
resources)

additional resource is being attached to the protocol. Even the circumstance that the
energy and utility of just one single process is considered does not provide a good
scaling of the model. This leads to the fact that Prism’s Explicit-engine is not
able to handle the states of the model, even when N is relatively small. Therefore,
the symbolic engines are handy in this case, since they allow to handle models with
more involved processes. One approach that might be beneficial here for tackling
the bad scalability of the model, is the symmetry-reduction as proposed in [Bai+12a]
or [Bai+15]. Especially for umax this could lead to an improved scaling since the
behaviour of only one process is investigated, whereas the energy and utility of the
remaining processes is not of interest. So, these other processes could be identified
using counters, and in the end it would be possible to obtain a more condensed model
hopefully allowing to investigate a higher number of processes.
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6.2.2 Energy-Aware Bonding Network Device (eBond)
The eBond protocol tries to reduce the energy consumption of network devices in
server systems by adapting to dynamically changing bandwidth demands. The key
feature of this reduction relies on the fact that typical server systems are equipped
with redundant infrastructures for network communication in order to compensate the
breakdown of such a device and therefore ensure the availability of the system. If those
different network devices are now chosen such that they have different specifications
in terms of consumed energy and provided bandwidth there arises the opportunity of
adapting the energy consumption of the overall network communication to dynamically
changing bandwidth demands. So, in a specific workload situation the network device
will be utilised that is able to provide the required bandwidth and has the least energy
consumption. The protocol was published in [Häh+13] and the authors evaluated
the protocol using a tailored simulator. We did a formal PMC-based analysis of the
protocol in collaboration with the developers of the protocol, and the analysis utilised
the quantile framework discussed here.

The protocol consists of several network interface cards (NICs) offering different
performance in terms of maximal provided bandwidth. The energy characteristics of
the respective cards are hereby different for themselves. The main idea of the protocol
is that the system uses the card with the lowest power consumption as long as the
provided bandwidth is enough to serve the bandwidth needed to handle the requests to
the server. This will save energy as long as cards with higher power consumption can
be turned off in favour of using cards with a lower power consumption such that the
provided bandwidth still meets the requirements for the needed bandwidth. If on the
other hand the required bandwidth exceeds the offered bandwidth of the system, then
a card supplying higher bandwidths must be used as this will avoid package delays. Of
course, the energy consumption of the system will increase for such situations.

In [Häh+13] the authors picked two exemplary NICs at varying bandwidths, and
chose on the one hand the card EXPI9301CTBLK11, providing a maximum bandwidth
of 1 GBit per second at the cost of an average power consumption of around 1.35 W to
1.92 W (see [Häh+13, Table 1]). The second chosen NIC is the X520-T212 card, which
provides a maximum bandwidth of 10 GBit per second and has a power consumption
of around 7.88 W to 8.10 W (see [Häh+13, Table 1] as well).

In [Häh+13] the authors stated that this approach allows to save up to 75% of the
consumed energy for the network connection of the server. This was done using a
tailored simulation based on precise measurements for the different energy profiles. The
authors also came up with three different energy-saving heuristics used for controlling
the activation/deactivation of the involved NICs and adapting the system to changing
requirements (compare [Häh+13, Table 2]):

11https://www-ssl.intel.com/content/www/us/en/ethernet-products/
gigabit-server-adapters/gigabit-ct-desktop-adapter-brief.html, retrieved 28th
March 2018

12http://www.intel.de/content/www/de/de/ethernet-products/converged-network-adapters/
ethernet-x520-t2.html, retrieved 28th March 2018
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aggressive: Whenever there is a situation where the requests did not need more than
1 GBit/s within the last time step the NIC EXPI9301CTBLK is utilised and
X520-T2 will be deactivated.

This heuristics saves the highest amount of energy but it also provides the highest
rate of package drops, as the 10 GBit-card will be turned off as soon as possible.

high savings: The switching from the 10 GBit-card to the 1 GBit-card is done like for
aggressive, but a predictor of 10% more bandwidth will be used. The predictor
works as a kind of buffer that increases the required bandwidth for the last time
step by the specified percentage value. So, the required bandwidth for the last
time step is higher than it is for aggressive and therefore switching to a card
with a lower energy consumption is only possible when the elevated required
bandwidth can be served.

This heuristics produces less package drops than aggressive, but on average it
also consumes more energy.

balanced : This heuristics works as high savings, but an additional cooldown timer of
30 minutes is used. The cooldown timer serves to counteract situations where
the bandwidth requirements drop unexpectedly but will reach the original level
very soon again.

The balanced heuristics provides a high degree of service-availability but at the
same time the energy consumption is also the highest out of the three presented
heuristics.

Formal analysis The analysis described in the following concentrates on an invest-
igation of the mentioned energy-saving heuristics, and it is based on real server logs
equipped with information on the bandwidth required for the network communication.
The traffic was observed over 43 days for a Debian/Ubuntu FTP mirror, and every
5 seconds the bandwidth requirements were recorded (see [Häh+13]). The presented
formal analysis is based on those logs, but we will use a coarser grid for the time and
for the precision of the bandwidth requirements. The grid for the time has a resolution
of 4 minutes, meaning that 1 time step in the model corresponds to 4 minutes in the
recorded data. The precision of the bandwidth on the other hand has been set to 50
MBit, describing that 1 unit for the bandwidth requirements in the model is associated
with a bandwidth requirement of 50 MBit/s in the recorded data. This coarser grid is
necessary since it allows to obtain model sizes that can be analysed by the means of
Prism using the presented quantile framework. All observed days were folded into one
single day, allowing to have all bandwidth requirements probabilistically distributed for
this folded day. Therefore, all the recorded information could be taken into account for
the analysis. The folded bandwidth profile was then formalised using Prism’s guarded
command language, and combined with a formalisation of the measured power profiles
for the different NICs (see [Häh+13, Figure 2]). In the end the model was enriched by
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a formalisation of the three different energy-saving heuristics, and finally the formal
analysis utilising the discussed quantile framework was done.

The analysis concentrates on minimising the energy consumption for ensuring that
there is no package delay in u per cent of the time until the day has ended. This
should be certificated with a high confidence of at least p. The following quantile query
formalises this requirement for probability threshold p:

eu
min = minte : Prmax

s ( ♦energyďeEndOfDay ^ utility ą u ) ą p
(

The results of the analysis for u = 95% are depicted in Figure 6.19 and the corresponding
runtime characteristics can be found in Table 6.35.

Figure 6.19: Results for quantile e95%
min (eBond)

Table 6.35: Statistics for quantile e95%
min (eBond)

Model Explicit
sequential parallel

Instance States tbuild Iters tpre tquery tquery

10 GBit 9 749 0.6 s 7 900 0.23 s 12.46 s 4.82 s
aggressive 516 309 21.75 s 2 336 13.37 s 182.1 s 130.32 s
balanced 1 634 188 74.16 s 5 145 33.52 s 912.61 s 498.6 s

high savings 577 137 24.39 s 2 652 14.87 s 227.79 s 147.64 s
theoretical optimum (99%) 28 234 049 1 116.14 s 4 514 97.11 s 2 712.14 s 2 507.43 s

theoretical optimum 30 462 467 1 182.41 s 2 514 122.69 s 3 080.04 s 2 596.8 s

It can be seen that choosing the aggressive heuristics has the least energy consumption,
but at the same time its provided level of service-availability is poor compared to, e.g.,

139



6 Analysed Protocols

the balanced heuristics. It is only possible to provide a guarantee that 95% of the
packages will not drop with a certainty of roughly 60%. So, when there are cases where
the service-availability is very important, it is not a good idea to stick to the aggressive
strategy, since the risk of package drops due to insufficient provided bandwidth is too
high. But, when the energy consumption of the system is more important than the
availability of the services, the aggressive strategy might be a good choice. The high
savings heuristics provides a better degree of service-availability at the cost of a bit
more energy compared to agressive. But, in the end the trade-off between consumed
energy and provided bandwidth of both strategies does not differ much where the
energy consumption of both strategies is close to the minimum that can be achieved
by the protocol with a strategy that always picks the optimal decision (theoretical
optimum). The balanced heuristics on the other hand provides the highest level of
service-availability, so a delay of the packages is very unlikely when one decides to
employ this heuristics. But, this has the drawback that the energy consumption is the
worst out of the three investigated strategies. Of course, its energy consumption is
still much better than keeping the 10 GBit-card active the whole time (compare to
10 GBit). So, balanced should be used when the availability of the service is essential.
Another thing that can be recognised by the presented plot is the fact that the curve for
theoretical optimum (99%) is situated right from the curves for the heuristics aggressive
and high savings. This means that there is no possibility for both heuristics to provide
the desired objectives for u = 99%, since their consumed energy is not sufficient. In
conclusion, it can be seen that the presented results do deliver a theoretical justification
for the observations stated in [Häh+13], which were derived by utilising a custom-
made simulator. The presented results as well allow to rank the performance of the
investigated heuristics in comparison to different theoretical optima.

The computation of the DAG for the zero-reward states is not that expensive for
this protocol, and the required iterations are also a bit higher when compared to
most of the previously presented protocols. Those facts are beneficial for the parallel
quantile computation using the Explicit-engine. In fact this can be observed in
Table 6.35, illustrating that the parallel execution is a very good choice for this
protocol. Unfortunately, the symbolic engines have their problems with this protocol,
and therefore the time limit of 24 hours was exceeded throughout the calculations.
Even the model-building process was not completed within the time frame. So, the
quantile calculations could not even start for the symbolic engines, and that is the
reason why there is no statistical data for the symbolic computations available.

Note on different reward windows As explained in Section 5.1.2 the framework
integrated into the Explicit-engine provides three different mechanisms for storing
the computed values from previous iterations. Since the reward function modelling
the consumed energy of the eBond-protocol is equipped with different values for
different states, there exists potential for taking advantage of the several implemented
mechanisms.

Figure 6.20 shows a comparison between the different mechanisms. In the figure
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Figure 6.20: Storage for different reward windows (eBond)

the necessary sizes for the different reward window implementations are depicted by
means of their stored elements. Instead of presenting the absolute numbers for the
stored elements, Figure 6.20 depicts a percentual storage for those stored elements.
This means that the number of stored elements is related to the number of elements
when using the storage method all states (see Section 5.1.2). This supports the visual
comparison of the storage needs for the depicted reward window approaches as the
absolute numbers of the stored elements differ from each other by orders of magnitude.
The storage mechanism all states stores values for every state of the model and each
state uses a window corresponding to the largest reward that occurs in the whole model.
Uniform positive-reward successors uses the same window for all the states that are
stored, but it does not store information for each state of the model. Instead, only
values for those states reachable when investing some positive reward will be saved.
Individual positive-reward successors stores also the values for each positive-reward
successor, but in comparison to uniform positive-reward successors there is no fixed
window size for all the stored states. Every involved state has its own window which
is justified by the maximal reward that needs to be invested in order to reach the
respective state.

The mechanism of storing just the values for the positive-reward successors reduces
the needed memory in a nice way. E.g., for the aggressive-heuristics the storage for the
values can be reduced to 40% when using uniform positive-reward successors, and the
usage of individual positive-reward successors even reduces the memory consumption
for the storage to 24%. Therefore, much less memory is required in order to perform the
calculations. But, this reduction in memory causes some overhead because there need
to be additional computations in order to find the correct entry for the desired states.
Therefore, Figure 6.21 shows the timings for the sequential quantile computation, and
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Figure 6.21: Timings for different reward windows (eBond)

it can be seen that the calculations become slower for the methods uniform positive-
reward successors or individual positive-reward successors, where only values for the
positive-reward successors are stored. For aggressive, high savings or 10 GBit the
difference is not really recognisable, since there are only a few states involved. But,
for the both optimal cases (theoretical optimum and theoretical optimum (99%)) the
impact is recognisable, since both models contain around 30 million states. Therefore,
a lot of remapping is involved in order to ensure a proper mapping for the states in
the used data structure, and this causes a computational overhead that can influence
the computation times in a noticeable way. So, as can be seen, the reduction in the
used memory has to be paid with an increased run time.

6.2.3 HAECubie Demonstrator
Now, we turn to the analysis of a complex service platform providing video downloading
and video transcoding as a web service. This platform shows a closed energy-control
loop embedded into a real server system, enabling the system to automatically adapt
to dynamic environmental changes and to provide energy efficient services.

The HAECubie system consists of 30 Cubieboards13 (abbreviated as CB) organised
in six groups, where each group consists of 5 Cubieboards and a switch. All Cubieboards
inside a group can communicate with each other using the corresponding switch of
the group. A local storage is attached to each Cubieboard, which is a 32 GB SD-card,
and serves to store the videos of the board. All six groups are connected directly
to an additional switch bundling the connections of all the groups, and providing a
connection to another distinguished Cubieboard, called master. This particular board
13http://cubieboard.org/, retrieved 28th March 2018
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serves as a controller managing the operational behaviour, and controlling the energy
management of the complete system. A schematic overview of the system is depicted
in Figure 6.22.

Requests

Switch 1 Master

DB

Switch 2

CB 1

SD 1

CB 5

SD 5

Switch 7

CB 26

SD 26

CB 30

SD 30

. . .

. . . . . .

Figure 6.22: Topology of HAECubie demonstrator

The usage of PMC for this protocol has the objective to support the management
system at run time by providing the results of an energy-utility trade-off analysis
whenever the system needs to deal with complex situations that influence the system’s
energy efficiency to a large extent. Therefore an analysis of the behaviour of the system
for specific situations was done at design time and the results were stored in a database
to make them available at run time. This supports the decision making of the running
system by providing the precomputed results of a specific system behaviour for a
specific situation, and therefore allowing the management of the system to base its
configuration adaptations in complex situations on the outcome of a formal analysis. In
such situations it is difficult to make an appropriate system adaptation that is efficient
in terms of consumed energy.

Since the structure and the operational behaviour of this protocol is rather complex,
the PMC-based analysis of the HAECubie demonstrator can not be carried out on
a model that describes all the details of the protocol. Instead, the analysis needs to
be realised on an abstract model where all the important operational behaviour is
taken into consideration and at the same time all the details that are not crucial are
left out for the analysis. Otherwise an analysis is not possible due to the well-known
state-space explosion problem (see [BK08, Section 2.3]). In order to avoid this problem,
the behaviour of multiple boards will be condensed into clusters and those clusters
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are then used as operational units. The different clusters mainly differ in terms of the
stored videos that can be provided. So, the modelled behaviour is therefore coarse-
grained, but in the end it is sufficient to get useful insights into the behaviour of the
real-world protocol. The abstracted model for the analysis is depicted in Figure 6.23.
The abstract operational behaviour of one such cluster is then represented by the

Requests

Switch Master

Cluster 1

Storage 1

Cluster 2

Storage 2

Cluster 3

Storage 3

Figure 6.23: Topology of abstracted HAECubie demonstrator

operational behaviour depicted in Figure 6.25.

6.2.3.1 Operational behaviour of the protocol

We use an MDP for modelling the abstract HAECubie demonstrator. Its behaviour is
defined by the parallel composition of the several components depicted in Figure 6.23,
that are detailed in the following using control-flow graphs.

Switch The main task of a switch is to enable the communication of every component
that it is connected to. Since the scenario tries to be energy efficient, the model reflects
the fact of turning a switch completely off. But of course the boards attached to it
are then separated from other parts of the system since there is no other connection
to those parts. The operational behaviour of a switch is depicted in Figure 6.24. A
switch uses 1 Watt if it is turned on but idling, i.e., no communication to the attached
boards is active, and it needs 3 Watts when it is under load, i.e., at least one attached
board communicates over the channels provided by the switch. Of course the switch
consumes 0 Watts if it is turned off completely.

There exist communication signals that can be triggered by the master in order to
influence a switch. Those commands are onSwitch and offSwitch. The first command
signalises a switch that it should turn on, and therefore all functions provided by the
switch will be available after the necessary initialisation was done, i.e., some time has
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offs ons

t := 0
c := false

onSwitchs ?:
t := Ts
c := true

if t ą 0:
decrease t

if t = 0 and c:
c := false

offSwitchs ?

Figure 6.24: Control flow of a switch (HAECubie)

passed specified by variable t. After the command onSwitch has arrived, the timer is
set to a specific constant Ts, and this amount of time needs to pass before the switch is
able to operate. The second command will be sent to the respective switch whenever
the master decides to turn the switch off in order to reduce the energy consumption of
the system. Whenever a switch receives such a command from the master it reacts by
changing its location appropriately and instantly.

Cluster A cluster is the most complex component of the protocol, since it is responsible
for processing the work packages. It stores a number of videos in different formats which
are then available for the streaming-service of the platform. There is the possibility
of installing new videos or to delete already available videos if needed, and therefore
the storage changes dynamically during run time. The cluster does also provide the
possibility of transcoding a specific video from one format into another format if
demanded. Figure 6.25 depicts the control-flow graph of a cluster. The operational
behaviour is hereby inspired by the behaviour of a Cubieboard. The commands onCB,
offCB, trans and copy are triggered by the master and have the aim to power up a
cluster in order to prepare for upcoming tasks (onCB), to turn a cluster completely off
to save energy (offCB), to transcode a specific video object into a specific target format
(trans), and to copy a video object from one cluster to another cluster (copy). Each
of the specific commands results in a particular reaction of the cluster. The variables
xv and xf used in the control-flow graph are hereby needed for storing information
on the video object the component is currently working with. The variable xr is used
in order to have knowledge about the request that will be served by the component.
The cluster works by starting in location off, and after the signal onCB was received
from the master, it transitions to idle (after some initialisation was done). There
the component is able to perform multiple operations. It can transition to trans,
signalising that an existing video will be transcoded from one format into another
format. This transition sets a timer corresponding to the duration of the transcoding
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Figure 6.25: Control flow of a cluster (HAECubie)

process. In trans the timer will be decreased until it reaches zero, and the component
will transition to idle again in order to accept new instructions. When a video
in a specific format should be duplicated to another cluster, the transition copycÑd

lets the component transition into send. The copy-command hereby needs to be
synchronised with another cluster-component. The synchronisation partner at the
same time transitions to its location receive. In send the cluster continuously sends
the video data to its partner (modelled by the send-command) and by the way decreases
a timer specifying the duration of the sending-process. The partner hereby continuously
receives the command send and can therefore not leave its location receive. As
soon as this duplication-process has finished a finSend-signal will be sent, and both
synchronisation partners will simultaneously transition back to idle. When the cluster
receives a deliver-signal from the master it will transition to its corresponding location
deliver. Here, the demanded video-file will be delivered to the user of the system in
order to generate some utility for the protocol. This delivering-process works closely
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related to the environment (Figure 6.26).
Since the behaviour of the cluster is inspired by a Cubieboard its energy consumption

was adapted to that of a Cubieboard as well. Therefore, it consumes 1 Watt if it is
idling and it needs 3 Watts when it is under load, e.g., a video is streamed, copied or
transcoded. This has the effect that the energy consumption of a switch and a cluster
is quite similar.

Requests Here, the interplay of the system with the surrounding environment is
specified. It formulates and sends the requests that arrive to the system. Each request
consists of a video identifier in combination with several parameters, i.e., the demanded
format and a deadline defining the maximal time span in which the request should
be successfully answered by the system. Utility for the whole HAECubie-system is
granted in terms of successfully delivered videos where the given deadline was kept.
Figure 6.26 shows a control flow graph formalising the environment by specifying a

req

id1 := K
dl1 := K...
idq := K
dlq := K
t := random(T)

if t = 0^ Dr : (idr = K _ dlr = 0):
t := random(T)
idr := (random(V ), random(F ))
dlr := random(DL)

if t > 0:
decrease t
set idr := K for all r P t1, . . . , qu with dlr = 0
decrease dlr for all r P t1, . . . , qu with dlr ą 0

if t = 0^ @r : (idr ‰ K^ dlr ą 0):
t := random(T)

if finDeliverc ? r
idr := K

Figure 6.26: Control flow of environment (HAECubie)

timer t that regularly triggers a system-request and a queue with capacity q that stores
the incoming requests to the system. The timer is continuously decreased, and when
its value reaches zero a new request arrives to the system specifying the demanded
characteristics, and the timer is set to a new value in order to prepare for the next
arriving request. Hereby the new value for the timer is chosen randomly from the
specific distribution T, whereas the deadline for the new request is randomly chosen
from the distribution DL, and the data specifying the demanded video are taken
randomly from V (set of available videos) and F (set of supported video-formats).
Whenever the queue is filled to capacity and therefore there is no possibility of accepting
a new request, the incoming request will be dropped. This will result in a missed
deadline for this particular request, and is therefore not wanted by the user of the
system and should be avoided. If on the other hand the capacity of the queue has
not yet been reached, the incoming request will be stored in order to further process
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it. When the finDeliver-signal was sent by cluster c the corresponding request r gets
deleted from the queue and a slot for a new request is freed. A slot will be freed as
well when the deadline timer of a specific request has reached zero, and the request
has not been processed. This case corresponds to a negative outcome of the protocol,
and should be avoided.

Video storage The service platform needs to know what videos are available on which
cluster and which format is provided for the respective videos in order to successfully
process the requests. If a video file is not available in the requested format the video
needs to be transcoded in order to get the format right. For this mechanism the storage

storage finSendcÑd ? (v, f):
pos(v, f) := pos(v, f)Y tdu

finTransc ? (v, f):
pos(v, f) := pos(v, f)Y tcu

deletec ? (v, f):
pos(v, f) := pos(v, f)ztcu

Figure 6.27: Control flow of video-storage (HAECubie)

as depicted in Figure 6.27 is the foundation used to encode the mapping function
pos : V ˆ F ÝÑ 2CB, where V is the set of videos, F the set of formats, and CB the
set of available clusters. Therefore, pos stores for each video v P V in format f P F
the respective clusters where (v, f) is currently available, and therefore one of the
respective clusters is a candidate for the streaming of v in format f .

Master The main task of the master is the management of all involved components.
It has the ability to directly influence the behaviour of the complete system. Therefore
it uses commands to trigger a specific behaviour of all the other components. All
the commands have the aim to ensure the usability of the system by simultaneously
trying to be as energy efficient as possible. Therefore the operational behaviour of the
master is split into two different fields of responsibility. The first one is controlling
the dynamic handling of the video files among the different clusters (see Figure 6.28).
The operations of the master allow to trigger a deletion of a video file or to start a
transcoding process on a specific cluster. So, whenever a video is available on a cluster,
the master can trigger the command trans to start a transcoding process on the specific
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videos

if Dc P pos(v, f)^ idlec ^ Dd R pos(v, f)^ idled:
copycÑd ! (v, f)

if Dc P pos(v, f)^ idlec:
deletec ! (v, f)

if Dc P pos(v, f1)^ c R pos(v, f2)^ idlec:
transc ! (v, f2)

if Dr : idr = (v, f)^ dlr ą 0^ Dc P pos(v, f)^ idlec:
deliverc ! r

Figure 6.28: Control flow of the master (controlling video storage, HAECubie)

energy

if Dc : offc

onCBc !
if Dc : idlec

offCBc !

if Ds : offs

onSwitchs !
if Ds : ons:

offSwitchs !

Figure 6.29: Control flow of the master (controlling energy consumption, HAECubie)

cluster component, in order to have the video available in another format. Whenever a
video file is not available on some cluster it can be copied from another cluster holding
the video by using the copy-command. Since this command requires two different
clusters in order to work properly the corresponding clusters receive the command
simultaneously, and afterwards start their working package. The master also links
the request-queue with some cluster that is able to serve a request from this queue.
Therefore, it checks whether there exists an idling cluster which stores the demanded
video object. If this is the case a deliver-signal will be sent and the referenced cluster
starts streaming the video and as soon as it finishes the corresponding request can be
dropped from the queue, and some utility for the system has been generated.

The second component depicted in Figure 6.29 is responsible for turning the different
involved switches and clusters on or off. This is used in order to instrument the system
to save energy by keeping nonessential resources off.
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So, all different adaptation strategies make use of the master-component and its
provided commands. Arbitrary management strategies can be therefore implemented
by interacting with the presented components of the master.

6.2.3.2 Formal analysis

Now, we want to analyse the trade-off between the consumed energy and the gained
utility of the abstracted system (see Figure 6.23) in specific situations, and therefore it
is necessary to describe the specific scenario where the demonstrator should operate as
energy efficient as possible. The interesting situations of the scenario are characterised
by a workload contradicting a usual system workload, and therefore it is hard to predict
the best way to react (or anticipate) in order to satisfy the user’s demands and on the
other hand keeping the system as energy efficient as possible. Such a situation may
arise whenever a paying user, a so-called premium user, logs to the system. Since this
user is paying for the service, it is not beneficial to not satisfy the demands of the user.
Otherwise, it is very likely that the user will not pay for the service in the future, and
the video platform will lose its financial basis. Therefore, it is highly recommended
to instruct the system in a way that the needs of the premium user can be satisfied
and at the same time the energy efficiency of the whole system can be kept at an
acceptable degree. So, for the analysis we assume that a premium user logs to the
system and based on the experiences with this user in the past it is quite likely that
this specific user will demand a video which is unpopular for the majority of the users.
This fact can be represented using suitable probability distributions inside the control
flow graph for the environment (see Figure 6.26). Therefore, the distribution of the
requested video among all Cubieboards is very restricted, and only a small number of
Cubieboards do have the requested video available on their local storage. Therefore, it
is inevitable that one of the Cubieboards storing the video is involved into the process
of streaming the video to the demanding user.

The analysis concentrates on determining the minimal energy that needs to be
spent in order to stream a specific amount of video files while simultaneously keeping
user-specified deadlines. Therefore, we analyse the (constrained) reachability quantile
query

eu
min = min

 

e : Prmax
s

(
( SlaViolation) U energyďe (streamedV ideos ě u)

)
ą p

(

with u being the desired amount of streamed videos, and p the probability threshold.
SlaViolation hereby characterises states within the model where the protocol cannot
guarantee a specific quality for its provided services. The protocol considers several
situations where the availability of the services is insufficient. The first situation reflects
the fact that a deadline of a premium user’s request has not been kept before the
streaming of the requested video has completed. The second situation that violates the
service level of the protocol for premium users is by simply dropping the request out of
the queue due to too many pending requests, since the queue has reached its capacity.
So, the usage of the complement of SlaViolation characterises all states where the
sketched situations do not occur. The result of the formal analysis using the previously
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mentioned reachability quantile is depicted in Figure 6.30 for a desired utility bound
of u = 3. In order to satisfy the demands of premium users the system needs to

Figure 6.30: Results for HAECubie (minimal energy consumption until 3 videos were
streamed successfully)

operate preemptive. As can be seen in Figure 6.30 it is very likely that the system
can not satisfy the demands of the paying user when there are no additional boards
involved. So, it might be a good option to turn on additional boards storing barely
demanded videos at the moment when the user logs to the system, in order to have
them ready whenever an unusual request arrives. Another possibility for improving
the performance of the system in this scenario is to increase the cooldown timer of
the boards. Therefore, the boards are more responsive in this situation and it is more
likely that the needs of the premium user can be satisfied in this case. A combination
of both, increased cooldown timers and additional boards, stand a good chance of
satisfying the requirements by simultaneously keeping the system as energy efficient
as possible. The performance of the case where the cooldown timer was set to 6 and
the additional boards were activated early enough, comes already quite close to the
theoretical optimum. Therefore, the handling of the situation in this fashion would be
most helpful.

To compare the results depicted in Figure 6.30 to a normal daily workflow of the
system, Figure 6.31 shows the results for the expectation quantile

ED
s = qus

(
DExpUąu(energy ď?)

)

for a variety of utility thresholds u. For the considered situation it is assumed that no
user has logged to the system whose preferences contradict the normal daily workload.
So, keeping any additional board active over a longer period of time is not feasible in
terms of energy efficiency since the operation of those boards does not really support
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Figure 6.31: Results for HAECubie (minimal expected energy consumption for specific
utility)

the system in order to serve usual requests (see Figure 6.31). Therefore, there is no
noticeable utility-gain by operating the additional boards, but as a drawback the
energy consumption is much higher. As a consequence, it is recommended to turn the
additional boards off, and try to handle the requests without utilising those additional
boards. The average overall performance of the system is not affected, but as an
outcome the energy consumption of the system will be reduced significantly. A further
observation that follows from Figure 6.31 is the fact that an increased cooldown timer
for the Cubieboards has a positive effect on the energy efficiency of the system. But it
needs to be taken into account that the timer cannot be increased arbitrarily since the
energy efficiency for a system without any cooldown timer (specified as no timer) is
worse than for the systems where the timer has been set to 6. The performance for the
case where there are no additional boards involved and the timer was set to 6 entails
the most energy efficient possibility out of the different investigated alternatives, and
its performance is also very close to the optimum that is theoretically achievable.

The corresponding calculation statistics for the computation of the expectation
quantiles can be found in Table 6.36. Due to the fact that the different symbolic engines
do currently not support the computation of expectation quantiles, only statistics for
the Explicit-engine are considered here. In Table 6.37 (Explicit-engine) and in
Table 6.38 (symbolic engines) on page 154 the statistics for the computation of the
reachability quantile eu

min are depicted. Due to the number of reachable states of the
corresponding models the Explicit-engine of Prism could not handle the building
process for the cases when the timers are set to 4 or 6. It was therefore also not possible
to utilise the quantile calculations for Prisms Explicit-engine in those cases. And as
can be seen as well, the parallelisation of the computations for the Explicit-engine
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does not improve the calculation times that much. The reason is that the number of
required quantile iterations is small (63 is the maximum out of all required iterations).
So, the generation of the DAG for the zero-reward sub-MDPs (see Section 5.1.4) needs
a noticeable amount of time for the considered models, e.g., the calculation of the DAG
needed almost 40 seconds in order to finish successfully when considering the case timer
2. So, the parallel computation started its calculations with a delay of 40 seconds and
there were simply not enough iterations in order to compensate this delay throughout
the processing. The time required for the computation within the Hybrid-engine is
fairly high, whereas Sparse and MTBDD perform quite well on this protocol.

Table 6.36: Statistics for expectation quantile (minimal expected energy consumption
for specific utility, HAECubie)

Model Explicit
sequential parallel

Instance States tbuild Iters tpre tquery tquery

more boards (no timer) 474 865 29.48 s 1 583 15.94 s 198.68 s 71.27 s
more boards (timer 2) 3 377 698 208.49 s 2 569 207.52 s 2 188.03 s 679.28 s
more boards (timer 4) 8 092 061 500.2 s 1 642 945.04 s 4 310.2 s 1 879.66 s
more boards (timer 6) 14 760 739 929.76 s 1 455 3 053.11 s 9 979.0 s 5 329.94 s

no timer 123 463 7.84 s 1 379 4.02 s 57.48 s 23.24 s
timer 2 710 589 51.06 s 2 123 44.48 s 357.51 s 131.49 s
timer 4 1 560 165 112.7 s 1 426 100.81 s 631.78 s 236.09 s
timer 6 2 719 389 190.05 s 1 278 256.55 s 1 138.9 s 484.2 s

theoretical optimum 1 544 263 81.83 s 1 208 66.83 s 562.61 s 186.97 s

As seen in Table 6.36 the time for the precomputation constitutes a noticeable part
of the overall computation time for the considered expectation quantile. Since the
precomputation-step for existential expectation quantiles requires to build a new model
where the zero-utility end components are collapsed into a single state (see Section 4.2),
it is necessary to utilise the model-building process of Prisms Explicit-engine. As
already seen in previous statistics this model-building process seems to be a part of the
implementation where it might be beneficial to further improve it. Another fact that
contributes to the computation times is simply the number of required calculation-
iterations that need to be performed. But, this high amount of iterations suits the
parallel computations, since this allows to compensate the additional overhead induced
by parallel computations (like, e.g., the construction of the DAG).
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Table
6.37:Statistics

for
explicit

reachability
quantile

(m
inim

alenergy
consum

ption
until

3
videos

were
stream

ed
successfully,

H
A

E
C

ubie)
M

odel
E

xplicit
sequential

parallel
Instance

States
tbuild

Iters
tpre

tquery
tquery

m
ore

boards
(tim

er
2)

26330358
1774.59

s
50

193.26
s

845.95
s

804.87
s

tim
er

2
35500849

2501.28
s

49
269.44

s
1237.65

s
1227.71

s
theoreticaloptim

um
6177052

287.33
s

63
49.65

s
149.58

s
129.98

s

Table
6.38:Statisticsforsym

bolic
reachability

quantile
(m

inim
alenergy

consum
ption

until
3

videoswere
stream

ed
successfully,

H
A

E
C

ubie)
M

odel
sym

bolic
com

putations
H

ybrid
Sparse

M
T

B
D

D
Instance

States
M

tbdd
tbuild

Iters
tpre

tquery
tpre

tquery
tpre

tquery

m
ore

boards
(tim

er
2)

26330358
457306

27.78
s

50
331.35

s
1556.41

s
91.36

s
517.38

s
428.2

s
768.4

s
m

ore
boards

(tim
er

4)
92185311

650996
51.23

s
54

1039.29
s

6086.04
s

263.81
s

1915.43
s

940.55
s

1790.93
s

m
ore

boards
(tim

er
6)

217883034
674101

68.88
s

64
1785.84

s
15952.35

s
564.23

s
5249.64

s
1445.16

s
3251.64

s
tim

er
2

35500849
310859

24.66
s

49
287.08

s
1854.02

s
96.42

s
661.2

s
267.74

s
490.18

s
tim

er
4

117053984
383943

67.59
s

52
762.24

s
6795.08

s
273.73

s
2495.89

s
478.64

s
1000.66

s
tim

er
6

271683232
405790

93.06
s

53
1583.06

s
17892.82

s
627.45

s
5965.02

s
772.71

s
1366.86

s
theoreticaloptim

um
6177052

62329
1.11

s
63

24.04
s

282.1
s

11.55
s

103.84
s

19.71
s

73.32
s

154



7 Conclusion
We start to conclude this thesis by giving a short summary of the contributions that
were developed throughout this monograph in order to analyse the trade-off between
the consumed energy and the produced utility of an energy-aware system. For this
purpose we presented a quantile-based framework that allows to analyse different
aspects of a variety of energy-aware systems1, and all the presented quantile metrics
have their specific field of application where they can deliver valuable information about
the system under consideration. This directly supports the refinement of the system
specification by its maintainers in order to tailor the system in a more energy-efficient
way.

Whereas Chapter 1 and Chapter 2 contain introductory material in order to support
the understanding of this monograph, the presentation of the intended contributions
starts in Chapter 3 with the introduction of the computation of upper- and lower-reward
bounded reachability quantiles. Those quantiles allow to minimise the accumulated
energy (respectively another important cost factor) or to maximise the accumulated
utility (respectively another desired outcome that originates from the successful utilisa-
tion of the protocol under consideration). The desired effect is achieved by solving a
linear program that minimises or maximises the accumulation of a reward structure by
applying an iterative solution method. In order to deliver the same analysis for cases
where it needs to be ensured that the protocol under consideration preserves specific
objectives as well, we presented the utilisation of quantiles under side conditions on
the other hand. This allows to perform the quantile-based analysis by doing a tailored
transformation of the model and afterwards relying on the same mechanisms as already
presented for the computation of quantiles without any side conditions.

For a minimisation of the specified cost when an arbitrary expected value should be
guaranteed we demonstrated the computation of expectation quantiles in Chapter 4.
The presented algorithms hereby rely on methods that are related to the already
known routines from Chapter 3, and consider the simultaneous accumulation of two
separate reward functions. This allows to handle the practical computation of expecta-
tion quantiles with similar approaches as already carried out for the computation of
reachability quantiles.

Since our aim was also to provide an efficient tool-support for the introduced methods
we presented an implementation and its integration into the well-known probabilistic
model checker Prism in Chapter 5. The chapter starts by showing several possibilities

1Keep in mind that the presented framework is not restricted to the needs of energy-aware systems
only. Instead, it is possible to apply the presented methods for the analysis of other costs like, e.g.,
time.
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that greatly improved the performance of the provided computation methods in terms
of used memory and needed computation times. Those techniques do rely on the
specific structure of the linear program that is typical for the computation of quantiles
or reward-bounded reachability properties.

All the previously presented methods were utilised in Chapter 6 to present the
successful analysis of a couple of protocols that are of practical interest. It was shown
that the different implemented computation methods have their specific strengths
and weaknesses depending on the protocol under consideration. And since there exist
multiple settings that allow to adapt the implementation to the analysed protocol
there is the possibility to adjust the computational performance of the analysis to the
needs of the specific protocol. In the end this helps to deliver the desired results in an
efficient manner.

7.1 Classification
The presented quantile framework is tailored such that the analysis can be adjusted
to the various needs of the protocols under analysis. Chapter 6 shows that it would
have been impossible to deliver an efficient support for the computation of quantiles
without the utilisation of the different optimisations presented in Section 5.1. Table 6.3
(Self-Stabilising Protocol) and Table 6.8 (Asynchronous Leader-Election Protocol)
reveal that an approach that relies on general-purpose methods for solving the linear
programs reaches its limitations even for very small models and when there are only a
few iterations required. Therefore, the introduction of the back-propagation approach
was an essential step in order to provide a tool-support as desired.

Chapter 6 as well shows that the different implementations for the engines available
in Prism have their individual strengths and weaknesses. E.g., it can be said that the
parallel execution of the Explicit-engine improves the performance for the majority
of the analysed cases. But there also exist situations where there is no benefits when
utilising the parallel computation scheme. The analysis of the Asynchronous Leader-
Election Protocol (see Section 6.1.2) corresponds to such a scenario, and it reveals
that the generation of the DAG for the zero-reward components consumes such a huge
amount of time in relation to the complete quantile computation that it would be the
best choice to stick to the sequential computation in this case. The primary reason
that negates the positive effects of parallel computations in this specific case is the
circumstance that the demanded quantile can be computed within only a few required
iterations. This fact entails that there are not enough possibilities to compensate for
the characteristic overhead that occurs when using parallel computation methods. If
on the other hand the number of required iterations is really high, then it is beneficial
to invest the additional overhead in order to enable the parallel computations, and
therefore benefit from the time saving. A good example is the Randomised Consensus
Shared Coin Protocol in Section 6.1.3. There are so many iterations needed that the
additional overhead can be easily neglected during the whole computation. It is also
the case that parallel computations are a good choice when there are many reachable
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states for the model under consideration (see all analysed protocols in Section 6.2).
The sheer size of the model supports the parallel computations due to the fact that
there exists a huge work package which can be parallelised within each of the required
iterations.

As long as the model does not contain too many reachable states the Explicit-
engine performs really well. Due to the fact that model checking has to deal with the
state-explosion problem at some point we are forced to rely on approaches that do
not represent the reachable states in an explicit fashion. One such popular approach
is the utilisation of symbolic (MT)BDD-based methods. It can be seen that the
model-building process of the Explicit-engine reaches its limitations for some protocol
instances presented in Section 6.2. In order to compute the desired quantile values we
sometimes were dependent on the usage of Prisms symbolic engines. The HAECubie
demonstrator presented in Section 6.2.3 constitutes such a case. There it was not
possible to do the explicit computations for instances of the protocol that needed more
than 35 million states. But, on the other hand the analysis of the eBond protocol in
Section 6.2.2 shows a case where the symbolic engines were unable to perform the
building process within an acceptable time frame of 24 hours although there were not
more than 30 million reachable states for an instance of the model. The Explicit-
engine was able to perform the analysis in an acceptable way without any problems
for this protocol.

The utilisation of expectation quantiles relaxes the problem of the state explosion
to some extent since we do directly relate the accumulation of two reward functions
and this entails that we do not need to encode the accumulation of one of the two
reward functions into the state space of the model under consideration. This directly
results in a much smaller number of reachable states compared to the needed states for
the analysis of reachability quantiles, and allows us to calculate expectation quantiles
for cases where it was not possible to achieve the results in the case of reachability
quantiles. See the reachable states for the analysis using expectation quantiles for the
Energy-Aware Job-Scheduling Protocol (Table 6.30) or for the HAECubie demonstrator
(Table 6.36).

In summary, it can be said that there is no implementation that embodies the best
alternative over all the others and delivers the best performance for each and every given
situation. Instead, each implementation has its advantages over other implementations
depending on the model under consideration, and therefore each implementation has
its area of application where it is best suited. The conglomeration of all the considered
implementations as a whole forms an efficient framework that delivers support for a
wide range of protocols and scenarios for doing a multi-objective analysis focussing on
the trade-off between the cost and the provided utility for a given protocol.

7.2 Future prospects
Quantiles could be already considered previously in the literature in an indirect manner
throughout various case studies performed by numerous researchers using different
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probabilistic model checkers. The diagrams illustrating the results of the performed
experimental evaluation hereby help to infer information about various quantiles.
Therefore, there seems to be an interest in the results that can be obtained by the
quantile framework, and this entails some demand in a possibility for computing those
results in a direct manner. It might be therefore beneficial to provide the presented
framework to the formal methods community by integrating it into a future release of
the probabilistic model checker Prism. By the way, this does also extend Prism in
order to compute reward-bounded reachability probabilities.

Of course, the framework presented here does not cover each and every aspect
relevant for a multi-objective energy-aware analysis. There exist several interesting
aspects that were not considered in this monograph, but might be rewarding for further
investigations. One such interesting open task is the combination of quantiles with
the computation of conditional reachabilities and expectations (see [Bai+14d]). The
combination of conditionals and quantiles over DTMCs can be done straightforward by
doing the required conditional transformations of the model and afterwards computing
the desired quantile over the model that results from this transformation. A prototypical
implementation has already been carried out (in collaboration with Steffen Märcker)
for the computation of conditional quantiles over DTMCs, but in order to support
nondeterministic models it is not immediately clear how this could be achieved in an
efficient way. This entails that there need to be done further investigations regarding
this task beforehand.

As stated in this monograph there is no tool-support for some of the presented
methods using Prisms symbolic engines. Therefore, it is of interest to deliver support
for the computation of expectation quantiles for symbolic computation methods, or
for the computation of quantiles under side conditions. This would really help to
provide a versatile framework that is applicable to a broad variety of protocols, since
we have seen in Chapter 6 that there needs to be a tool-support for each of the engines
supported by Prism in order to provide the best performance.
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