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Zusammenfassung 

Gewebe sind nicht nur durch ihre biochemische Zusammensetzung definiert, sondern auch 

durch ihre individuellen mechanischen Eigenschaften. Inzwischen ist es weithin akzeptiert, 

dass Zellen ihre mechanische Umgebung spüren und darauf reagieren. Zum Beispiel werden 

Zellmigration und die Differenzierung von Stammzellen durch die Umgebungssteifigkeit 

beeinflusst. Um diese Effekte in vitro zu untersuchen, wurden viele Zellkulturstudien auf 2D 

Hydrogelsubstraten durchgeführt. Zusätzlich dazu steigt die Anzahl von Studien an, die 

hydrogelbasierte 3D-Scaffolds nutzen, um 2D Studien zu validieren und die experimentellen 

Bedingungen der Situation in vivo anzunähern. Jedoch erweist es sich weiterhin als schwierig 

den Effekt von Mechanik in 3D in vitro zu untersuchen, da in den gemeinhin genutzten 3D 

Hydrogelsystemen immer eine Kopplung zwischen Gelporosität und Steifigkeit besteht. 

Zusätzlich hängt die Konzentration der biologisch aktiven Bindungsstellen für Zellen oft 

ebenfalls von der Steifigkeit ab.  

Diese Arbeit präsentiert die Entwicklung und Optimierung neuer 3D Hydrogelkugel-Scaffolds, 

in denen die Steifigkeit von der Porosität schließlich entkoppelt wird. Mit Hydrogelkugeln als 

Scaffold-Bausteine ist es nun möglich 3D Scaffolds mit definierten mechanischen 

Eigenschaften und konstanter Porengröße zu generieren. Während der Methoden-

entwicklung wurden verschiedene Prinzipien und Kultivierungskammern konstruiert und 

überarbeitet, gefolgt von der theoretischen Betrachtung der Sauerstoffdiffusion, um die 

Eignung der gewählten Kammer hinsichtlich Zellvitalität und Zellwachstum zu überprüfen. 

Eine Kombination aus mehreren getesteten Filtern wurde ausgewählt um Hydrogelkugel-

Scaffolds erfolgreich in der ausgewählten Kammer zu generieren. Im Weiteren wurden 

verschiedene Hydrogelmaterialien untersucht hinsichtlich der erfolgreichen Produktion 

monodisperser Hydrogelkugeln und der Erzeugung stabiler Scaffolds. Hydrogelkugeln aus 

Polyacrylamid (PAAm) wurden als Scaffold-Bausteine ausgewählt um damit die Eignung des 

entwickelten Systems zu demonstrieren lebende Zellen zu mikroskopieren. Außerdem wurde 

das Überleben von Fibroblasten über vier Tage in unterschiedlich steifen Hydrogelkugel-

Scaffolds erfolgreich gezeigt. Weiterhin war es möglich erste Zellmigrationsexperimente 

durchzuführen. Dafür wurden sowohl einfache PAAm-Hydrogelkugeln als auch mit 

Adhäsionsmolekülen funktionalisierte Hydrogelkugeln genutzt, um unterschiedlich steife 

Schichten in einem Scaffold zu erzeugen. Dadurch war es möglich nicht nur Zellmigration 

anhand von Zelladhäsion in 3D Scaffolds mit Steifigkeitsgradienten zu beobachten, sondern 

auch Zellmigration ohne Zelladhäsion.   
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Abstract 

Tissues are defined not only by their biochemical composition, but also by their distinct 

mechanical properties. It is now widely accepted that cells sense their mechanical 

environment and respond to it. For example, cell migration and stem cell differentiation is 

affected by stiffness. To study these effects in vitro, many cell culture studies have been 

performed on 2D hydrogel substrates. Additionally, the amount of 3D studies based on 

hydrogels as 3D scaffold is increasing to validate 2D in vitro studies and adjust experimental 

conditions closer to the situation in vivo. However, studying the effects of mechanics in vitro 

in 3D is still challenging as commonly used 3D hydrogel assays always link gel porosity with 

stiffness. Additionally, the concentration of biologically active adhesion sides often also 

depends on the stiffness.  

This work presents the development and optimization of novel 3D hydrogel bead scaffolds 

where the stiffness is finally decoupled from porosity. With hydrogel beads as scaffold 

building blocks it was possible to generate 3D scaffolds with defined mechanical properties 

and a constant pore size. During the method development, different culture devices were 

constructed and revised, followed by oxygen diffusion simulations to proof the suitability of 

the chosen device for cell survival and growth. A combination of different filter approaches 

was selected to generate hydrogel bead scaffolds in the culture device. Furthermore, different 

hydrogel materials were investigated regarding successful production of monodisperse beads 

and stable scaffold generation. Polyacrylamide (PAAm) hydrogel beads were chosen as 

scaffold building blocks to demonstrate live-cell imaging and successful cell survival over four 

days in differently compliant hydrogel bead scaffolds. Moreover, first cell migration 

experiments were performed by using plain PAAm hydrogel beads as well as PAAm hydrogel 

beads functionalized with adhesion molecules with differently stiff layers in one scaffold. 

Thereby fibroblast migration was observed not only in adhesion-dependent migration manner, 

but also in an adhesion-independent mode.  
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1 Introduction 

Progress in engineering and development is always driven by new ideas, the spirit to perform 

better or the will to understand mechanisms and procedures in detail, and thereby leads to a 

continuous evolution of new methods and systems in every research field. Every time a field 

is evolving based on new insights, novel connections are made and existing ones are 

developed. This goes together with the development and optimization of established and new 

technologies.  

Such evolution is also now happening in the interdisciplinary fields of biology, biophysics, 

polymer chemistry and material science with respect to the mechanical properties of 

biological systems and how to study and use its parameters, effects and outcomes.  

With the newly developed method of compliant 3D hydrogel bead scaffolds presented in this 

thesis, a contribution to the fast-evolving field is made to promote further understandings of 

mechanosensitivity in biology.  

1.1 Mechanics play a role in biology 

Over the last decades, researchers investigated intensively if and how cells and tissue 

stiffness is altered during diseases, how this affects processes like wound healing and 

regeneration and how important mechanical properties are for biological processes. It is now 

starting to get accepted that tissue stiffness is an additional important key player for biological 

processes as migration, differentiation and proliferation [1–3]. 

It has been shown that cells sense their mechanical environment and respond to it, a process 

also called “mechanosensing”. Stem cells differentiated into neurogenic lineage or into 

myogenic lineage when cultured on collagen-coated substrates with stiffness comparable to 

the respective tissue [1]. Fibroblasts demonstrated directional migration towards stiffer 

polyacrylamide substrates [2] and inflammatory response was increased with higher stiffness 

[4]. These are just some examples of the increasing amount of performed studies about 

effects of substrate stiffness and mechanisms of mechanosensing in vitro and in vivo.  

In order to survey in vivo cell behaviour reproducible together with limiting animal experiments 

as well as to simulate the in vivo situation, different 2D and 3D in vitro cell culture systems 

have been developed. Using 2D systems (i.e. growing cells on plane substrates) is often less 

cost intensive and relatively easy in performance. However, they might simplify the in vivo 

situation too much and can introduce artefacts [5–7]. Thus, the observed cell behaviour might 

not reflect the natural situation [8]. To overcome this issue and to converge in vitro closer to 

in vivo, the third dimension can be introduced to the 2D systems [9]. By this, the complexity 



1.2 3D cultures and scaffolds 

2 

 

of in vitro cell culture systems is increased and still various of existing in vivo interactions can 

be decoupled and studied independently in vitro. These advantages lead to an increasing 

amount of different 3D in vitro model systems to address diverse questions [10–13], e.g. 

mechanosensitivity in 3D [14].  

1.2 3D cultures and scaffolds 

Three-dimensional cultures in its variants have been used for more than a century, initially 

driven by the motivation to understand organogenesis [13]. Based on technical advances and 

the understanding of the importance of 3D for functional cells and tissues, mimicking the third 

dimension is under intensive development, especially in the field of tissue engineering [9,15]. 

Components of the in vivo 3D microenvironment are extracellular matrix (ECM), neighbouring 

cells as well as different soluble factors [16]. The interlinked factors of a complex cell-laden 

in vivo microenvironment are shown in Figure 1. The orange-coloured parts illustrate different 

parameters that are involved in the mechanical status of the microenvironment, whereas the 

blue-coloured areas mark other factors that can guide cell function [6,14–18]. The individual 

effects on cell function are in this complexity hard to identify, as previously mentioned [18]. 

Thus, 3D in vitro model systems are chosen to study how one factor, e.g. stiffness, or a 

defined combination of several factors is affecting cell function.  

To generate a functional 3D culture model, it is important to take into account certain 

engineering parameters [7,19]. To provide a third dimension for cells in vitro, a scaffold as 

support structure is needed. First, a suitable scaffold material has to be chosen. The 

biomaterial needs to be biocompatible and should provide tuneable mechanical (e.g. stiffness) 

and (bio)chemical properties (e.g. adhesion sites) similar to the in vivo microenvironment. 

Other important attributes are porosity and permeability of the scaffold to ensure transport of 

nutrients, waste and oxygen as well as cell spreading and growth. 
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Possible biomaterials, that were already used as in stem cell research and tissue engineering, 

cover a broad range of materials. Biomaterials can be metals, ceramics, inorganic porous 

materials (e.g. graphene foams, carbon nanotubes) as well as polymers. Within the polymers, 

it is differentiated between natural polymers (e.g. gelatin, laminin, chitosan, alginate, collagen, 

hyaluronic acid) and synthetic polymers (e.g. polyurethane, poly(ethylene glycol), polylactic 

acid, polyglycolic acid) [7,20–23]. For most tissues and cells polymer hydrogels are seen as a 

highly suitable biomaterial for in vitro studies. Hydrogels are biocompatible, can be 

functionalized with (bio)chemical molecules, are porous and provide a certain permeability. It 

is also possible to adjust the mechanical properties of hydrogels, which is one of the major 

key points to study mechanosensitivity [8].  

 

Figure 1: Schematic representation of various biochemical and mechanical parameters that 

characterize the complex in vivo microenvironment of cells. The parameters are interacting with each 

other and represent cues to guide cell function [6,14–18]. The orange-coloured parts illustrate the 

parameters affecting the mechanical properties of the microenvironment, whereas the blue-coloured 

parts label other factors guiding cell function. 
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1.3 3D hydrogel systems to study effects of mechanics 

Hydrogels are defined as three-dimensional polymeric networks that swell in water [24]. 

Based on their tuneable stiffness in combination with the possibility to adjust (bio)chemical 

properties, they have been the material of choice for multiple mechanosensitivity studies.  

Available hydrogel systems can be divided into natural ones (e.g. collagen, Matrigel, agarose 

and fibrin), synthetic ones (e.g. poly(ethylene glycol) (PEG), polyacrylamide (PAAm)) and hybrid 

materials that combine the first two [25–27]. Table 1 summarizes reported advantages and 

disadvantages researchers have to consider when choosing the appropriate hydrogel system 

for their study. Lee et al. reviewed in 2017 numerous natural and synthetic hydrogel systems 

regarding positive and negative aspects as well as their use as 3D model applications 

[8,25,28].  

Natural hydrogels like collagen, agarose and gelatine are biocompatible and bioactive. By their 

presentation of endogenous factors, they can promote cell adhesion and cell function. 

However, depending on the type of hydrogel, it might result in limited cell adhesion, 

unwanted degradation processes or contractions. Tuning of the hydrogels’ mechanical 

properties to cover a broad range of stiffness can be challenging. Due to their complexity as 

natural polymer systems, it can be difficult to determine the acting signal for the observed 

cell behaviour. Based on the natural source, batch-to-batch variabilities can occur resulting in 

different cell responses for the same system.  

Table 1: Summarized advantages and disadvantages of natural and synthetic hydrogels as scaffolds 

for 3D in vitro cell culture models. Lee et al. listed these for individual hydrogels [8,25,28] 

 Natural hydrogels Synthetic and hybrid hydrogels 

+ 

biocompatible, bioactive highly reproducible 

present endogenous factors simple tuning of mechanics 

degradation possible modification with additional biologically active 

molecules possible 

- 

complex, sometimes ill-defined lack endogenous factors 

tuning of mechanics & possible range 

can be difficult 

appropriate formation process must be chosen to 

avoid creation of damaging molecules 

batch-to-batch variability non-degradability possible 

too fast degradation or unwanted 

contraction possible 

degradation products might be toxic 

 might be cytotoxic 

 

Synthetic hydrogel systems as PAAm or PEG are reported to be highly reproducible. Their 

mechanical properties can be tuned in simple ways and cover a broad range. They can be 

modified by addition of molecules for adhesion and degradation or with growth factors to 

enhance their biocompatibility. Some synthetic hydrogels lack endogenous factors or might 
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be non-degradable. On the other side, synthetic hydrogels might be cytotoxic or products 

resulting from the formation or degradation process might result in cell damaging molecules.  

Many hydrogel systems (2D and 3D) have been evolved for mechanosensitivity studies over 

the last decades, resulting in an increased amount of data on observed effects of hydrogel 

mechanics on cell behaviour for different hydrogels and various cell types. It has been 

demonstrated that human mesenchymal stem cells cultured on differently stiff PAAm 

substrates (coated with collagen) differentiated into different lineages (neurogenic: 

0.1 – 1 kPa; myogenic: 8 – 17 kPa; osteogenic: 25 – 40 kPa) [1]. When human mesenchymal 

stem cells were grown in differently stiff 3D collagen-hyaluronic acid-scaffolds, the cells 

differentiated into glial (10 kPa) or neuronal (1 kPa) lineages [29]. Another study illustrated that 

also murine embryonic stem cells differentiated into glial and neuronal lineages when cultured 

in different 3D scaffolds and highlighted the large impact of matrix type (i.e gelatine, collagen, 

hyaluronic acid), composition, stiffness combined with concentration and type of used 

signalling molecules on the differentiation outcome [30].  

Fibroblasts demonstrated durotactic behaviour on PAAm substrates (coated with collagen), 

meaning they migrated towards the stiff area of the prepared 2D hydrogels [2]. Also in 3D 

collagen gels fibroblasts migrated towards stiffer regions reproducing the durotactic 

behaviour also in 3D [31]. Another study using fibroblasts illustrated with 3D alginate 

hydrogels the effect of additional adhesion components on cellular behaviour. By 

complementing alginate hydrogels with Matrigel and generating RGD-conjugated alginate 

hydrogels respectively, it was possible to change the fibroblast migration mode from 

mesenchymal migration (Matrigel) to amoeboid migration (RGD-conjugates) for comparable 

stiffness ranges. Additionally, compliant scaffolds led to fibroblast elongation and stiffening 

of the gel led to inhibition of elongation independently of the used hydrogels [32]. 

Mouse preosteoblasts were cultured in 3D PEG hydrogels with matrix metalloproteases 

(MMP) sensitive and insensitive linkers to form degradable and non-degradable hydrogels 

respectively. It was demonstrated that 3D cell migration depended on biochemical (MMP 

degradable or not) and biophysical properties. Migration speed was decreased with increasing 

stiffness, more for non-degradable than for degradable hydrogels [33]. 

When studying neuronal cells on different stiff 2D PAAm substrates coated with laminin, it 

was demonstrated that astrocytes were small and lacked stress fibres on compliant PAAm 

substrates but showed highly spread morphology on stiff ones. Neurons grew well on 

compliant PAAm substrates and had 30% more F-actin structures compared to the stiff PAAm 

substrates. However, neurite outgrowth showed only insignificant differences when grown 
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on the stiffer hydrogels. [34]. Others published that neurite branching decreased with 

increasing stiffness on 2D PAAm substrates coated with Matrigel [35] and the elongation of 

chick dorsal root ganglia was lower in stiffer 3D agarose hydrogels than in compliant ones 

[36]. For an even deeper insight, several reviews can be recommended [14,18,25,27,37]. 

Taken the published observations in mechanosensitivity studies together, it is clear that cell 

behaviour is affected among others by the mechanics of the microenvironment. However, 

due to the large variety and complexity of available 3D in vitro models, it is a big challenge to 

figure out the underlying mechanisms as well as the effect explicitly evoked by mechanical 

changes.  

One important challenge while studying the effect of mechanics on cell behaviour is the 

coupling of stiffness with porosity and adhesion binding sites (Figure 2), that has been 

described in detail by Trappmann and Chen in 2013 [26]. 

While in natural gels a stiffness increase is a result of either a higher crosslinking ratio or a 

higher protein concentration together with an elevated amount of cell adhesion sites, stiffer 

synthetic gels can be generated by an increase of their crosslinking ratio while keeping the 

cell adhesion sites constant. Shan et al. extensively reviewed possibilities how mechanics 

can now be changed independently from functional adhesive sites for different hydrogel 

systems. However, there is very often a change in pore size of the polymer network while 

 

Figure 2: “Structural features of protein gels (a) and synthetic hydrogels (b) at the micron-scale and 

nano-scale. Substrate mechanics influence matrix density, ligand availability (a) and hydrogel pore 

size (b).” Reprinted from [26].  
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adjusting the stiffness. This entanglement makes it hard to identify the explicit effect of 

mechanics on cells [8,25,26,38].  

1.4 Decoupling stiffness and porosity in 3D scaffolds 

The need to decouple the effects of porosity and scaffold mechanics on cell behaviour is now 

evident and ways of decoupling are developed to generate scaffolds with constant porosity 

and tuneable stiffness. In 2010 da Silva et al. extended rigid inverted colloidal crystal scaffolds 

[39,40] into inverted colloidal crystals made from PAAm hydrogels. Thereby scaffolds were 

generated that were able to be used for mechanosensitivity studies [41]. These inverse 

colloidal crystals still come with some challenges: mainly static cultures are possible, the 

scaffold is relatively small and layers of different stiffness in one scaffold are hard to achieve.  

Another approach to decouple porosity and stiffness is to use colloidal crystals directly as 

scaffold. By using beads of same size but with different 

mechanical properties as scaffold building blocks, a 

differently stiff microenvironment can be built, where 

the constant microporous voids between the micro-

beads served as growth volume for cells (Figure 3).  

Pautot et al. published in 2008 a possible approach to 

use rigid silica beads as scaffold building blocks for 3D 

neuronal networks. The authors generated bead-neuron-

scaffolds by repeatedly adding silica beads and neurons 

into a cavity making use of the self-arrangement of monodisperse particles in solution [42]. 

However, these scaffolds were only stable due to the cellular network. The silica beads were 

not additionally annealed with each other to form a steady scaffold. To generate stable 

scaffolds as in vitro models, microbeads would either have to be trapped into a confined space 

or annealed in some way. Since almost two decades microbead scaffolds have been used in 

tissue regeneration, especially, but not exclusively in bone regeneration. It turned out that 

one of the biggest challenges was (and still is) annealing of the beads [20,43]. The group of 

Tatiana Segura extended approaches of microbead sintering as well as hydrogel bead 

production and utilizing them as scaffold building blocks [44] to combine them into covalently 

linked 3D hydrogel scaffolds as injectable scaffolds for wound healing applications [45].  

To the best knowledge, this was the first direct decoupling of scaffold stiffness and porosity 

by generating microporous annealed particle (MAP) scaffolds from PEG [45]. The microbeads 

were produced by microdroplet formation in a microfluidic device. In the following two years, 

they demonstrated their ability to form annealed hydrogel bead scaffolds from hyaluronic acid 

 

Figure 3: Scaffolds generated from 

hydrogel beads as building blocks 

with different mechanical properties 

but same diameter.  
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hydrogels to enhance the application capacity in tissue regeneration of their injectable 

hydrogel bead scaffolds [46,47]. By using hydrogel as microbead material, it was possible to 

cover the tissue-specific stiffness ranges necessary for wound healing applications. However, 

the focus of this group lies on tissue engineering and they demonstrated the biocompatibility 

of the system in vitro with fibroblasts.  

To use this approach for more complex questions as to unravel the mechanosensitivity 

mechanisms in vitro in detail, the published system would need further extensions. The 

possible stiffness range as well as the annealing behaviour with changing mechanical 

properties were not determined so far and the generation of differently stiff layers within one 

scaffold was not established. Thus, there is a need for an advanced 3D in vitro hydrogel 

system that decouples porosity and stiffness.  

Independent from the work of Tatiana Segura and colleagues, the here presented compliant 

3D hydrogel bead scaffolds was developed, optimized and characterized to provide a method 

to perform mechanosensitivity studies in vitro. The methodical approach to generate 3D 

hydrogel bead scaffolds by using monodisperse hydrogel beads with tuneable stiffness as 

scaffold building blocks, resulted in in vitro scaffolds with the possibility to form layers of 

different stiffness within one scaffold (as depicted in Figure 3). Thereby, an advanced 3D 

hydrogel bead scaffold was built where stiffness and porosity was finally decoupled.  

Now the effects of stiffness on cell behaviour can be investigated independently from 

porosity. The system provides scaffold layers of different mechanical properties and thereby 

an additional advanced method to unravel the complex mechanisms behind 

mechanosensitivity. Furthermore, the possibility of different ways of culturing cells (i.e. static 

and dynamic cell cultures) favours a broad field of applications. For example, it will be possible 

to rebuild tissue structures in their mechanical features to investigate developmental or 

regeneration processes in vitro as well as to study migration processes within defined 

compliant 3D scaffolds.  
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2 Materials 

Table 2: General materials 

Name Company Order No. 

10 mM MEM non-essential Amino Acids 

(MEMNEAA) 

life technologies 11140-035 

1H,1H,2H,2H-Perfluoro-1-octanol (PFO) Sigma Aldrich Chemie GmbH 370533-25G 

2,2-Thiodiethanol (TDE) Sigma Aldrich Chemie GmbH 88561-1L 

absolute Ethanol (absolute EtOH) VWR 1117272500 

accutase life technologies A6967-100ML 

acrylamide (AAm) Sigma Aldrich Chemie GmbH A8887 

acrylic acid N-hydroxysuccinimide ester, ≥ 

90% (NHS) 

Sigma Aldrich Chemie GmbH A8060 

agarose (Type IX Ultra-low Gelling 

Temperature) (ULGP agarose) 

Sigma Aldrich Chemie GmbH A5030-5G 

AlexaFluor®488 hydrazide (1 mg) Life technologies (“molecular 

probes”) 

A30634 

ammonium persulphate (APS) GE Healthcare 17131101 

Aquapel® Pittsburgh Glass Works LLC  

Blasticidin life technologies R210-01 

bovine serum albumine (BSA) Sigma Aldrich Chemie GmbH A7906-100G 

CellTak, Cell and Tissue Adhesive Fisher Scientific  CB-40240 

DMEM (high glucose), no pyruvate, no 

glutamine (Gibco) 

life technologies 11960-085 

fetal bovine serum (FBS), Lot: 426273K life technologies 10270 

fluorescent diacetate Sigma Aldrich Chemie GmbH F7378 

glycerol Merck 1040921000 

HEPES (PUFFERAN®) ≥ 99.5 % Carl Roth 6762.1 

hexane Carl Roth KK48.1 

HFE-7500 3M  

L-Glutamine life technologies 25030081 

N, N′, N′-Tetramethylethylenediamine 

(TEMED) 

Sigma Aldrich Chemie GmbH T9281 

N,N′-Methylenebisacrylamide (BIS) Sigma Aldrich Chemie GmbH 146072 

NIH3T3/GFP (10^6 cells) Hölzel diagnostika AKR-214 

penicillin-Streptomycin (Pen-Strep) life technologies 15140-122 

Picosurf-1 (FC40 + 2%) Dolomite  3200215 

Poly-L-Lysine FITC labeled  Sigma Aldrich Chemie GmbH P3543-25MG 

Poly-D-lysine hybrobromide Sigma Aldrich Chemie GmbH P7280 

Poly-L-Lysine, Cy3 labeled (PLL-Cy3) Nanocs Inc. PL1-S3-1 

Poly-L-Lysine, Cy5 labeled (PLL-Cy5) Nanocs Inc. PL1-S5-1 

Propidium Iodide Sigma Aldrich Chemie GmbH P4170 

Rhodamine-6G chloride (Lot 562009) invitrogen R634 1g 

Sodium acetate (C2H3NaO2 · 3H2O) Sigma Aldrich Chemie GmbH S-9513 

sodium(meta)periodate (NaIO4) Sigma Aldrich Chemie GmbH 31878-25G 

Span® 80 Sigma Aldrich Chemie GmbH 85548 
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Table 3: Solutions 

Name Composition 

acrylamide stock 

solution (AAm) 

40% w/w in Tris-buffer 

ammonium Krytox® 

surfactant  

prepared at Institute for Polymer Research [48], see also 

chapter 3.8  

APS stock solution 0.05% w/w in Tris-buffer 

bis-acrylamide stock 

solution (BIS) 

2% w/w in Tris-buffer 

HEPES 50 mM, pH 8.02 

NIH3T3/GFP medium DMEM (high glucose) + 10% FBS + 0.1 mM MEMNEAA + 

2 mM L-glutamine + 1% Pen-Strep (+ optional 10 µg/mL 

Blasticidin to sort for fluorescence) 

PBS without Mg2+ and Ca2+ 

PBS+ with Mg2+ and Ca2+ 

periodate solution 10 mM NaIO4 in 100 mM sodium acetate buffer (pH 5.5). 

Store in fridge. Attention! Periodate is toxic! 

Tris-buffer 10 mM, pH 7.48 

 

 

Table 4: Equipment 

Name Brand Order No. 

15 mL tubes GBO 188261 

2 mL Micrewtube®, selfstanding Simport GmbH T341-6T 

27 µm PMMA beads microparticles GmbH PMMA-F-27.0 

33 mm syringe filter, hydrophilic PVDF 

0.22 µm membrane 

Merck Chemicals GmbH SLGV033RS 

42 µm PMMA beads microparticles GmbH PMMA-F-42.0 

5 µm PS beads microparticles GmbH PS-F-5.0 

50 µm PMMA beads microparticles GmbH PMMA-F-50.0 

50 mL tubes GBO 227261 

Abbe-refractometer 2WAJ Arcarda GmbH  ABBE-2WAJ 

epoxy glue Faserverbundwerkstoffe ® 1551000 

cantilever ArrowTL1x20-50, nominal 

spring constant k = 0.035 - 0.045 N/m 

NanoAndMore GmbH  

cellulose fibre filter Ziczac (cigarette filters slim)  

centrifuge with 50 mL and 2 mL tube 

holder & moving arms 

Eppendorf Centrifuge 5804 

R 

CMOS camera (part of RT-DC setup) Mikrotron EoSens® CL 

cover slides (ø 18 mm) Carl Roth HKH7.1 

elbow Luer Connector ibidi GmbH 10802 

Eppendorf tubes with safety lock 

(1.5 mL) 

VWR 211-2140DE 

FEP tubing (ID 250 µm, OD 1.5 mm) Postnova Analytics GmbH Z-JR-T-6812C 

Fluigent MFCS™-EX microfluidic 

controller 

Fluigent  

   



2 Materials 

11 

 

 

 

Name Brand Order No. 

forceps (unsharp tweezer tips) Fine Science Tools 11220-21 

microscope slides VWR 631-1552 

glassbottom petri dishes (FluoroDish, 

35 mm) 

World Precision 

Instruments 

FD35-100 

ibidi µ-slide VI 0.4 Uncoated (#1.5 

polymer coverslip, hydrophobic, 

sterilized.) 

ibidi 80601 

inverted microscope (part of RT-DC 

setup) 

Zeiss  

luer Lock Connector Female ibidi GmbH 10825 

luer Plug Male (stopper) ibidi GmbH 10822 

magnetic stirrer IKA®-Werke KM2 basis 

Nanowizard I AFM JPK Instruments  

oven/heating cabinet Memmert UM 200 

Parafilm   

peristaltic pump (REGLO Digital) Ismatec ISM597 

petri dish (10 cm diameter, height 2 

cm) 

Nunc 172931 

PetriDish Heater JPK Instruments  

polystyrene beads microparticles GmbH PS-F-51.0 

surgical disposable scalpel (Type 10) VWR (Braun) 233-5310 

silica beads Whitehouse Scientific MS0040 

silica beads (sicastar) Lot: 1791343-01 micromod 43-00-204 

silicone tubing (ID 1.6 mm) ibidi GmbH 10842 

Silikon Tube Tube, DC 732 RTV 

CLEAR (Dow Corning) 

Distrelec 110-41-156 

stirring bars (15 x 4.5 mm) VWR 442-4522 

T75 flask GBO 658175 

Temperature control (PID control) BelektroniG K20 

VitraPOR Spezialfilterplatte, Por. F, 

rechteckige Form 3 mm x 3 mm ± 

0.25 mm. Stärke biplan 1.5 mm ± 0.25 

mm, Kanten fein gesägt 

ROBU Glasfilter - Geräte 

GmbH 

16999 

   

Light Microscopy Facility systems:   

Microscope (inverted) Axiovert 200M Zeiss  

Microscope (inverted) DMI6000  Leica  

Leica HC PL APO 10x 0.4 Leica  

Leica HC PL APO 20x 0.7 Imm Corr Leica  

Zeiss Plan-Apochromat 20x 0.8 Zeiss  

Zeiss C-Apochromat 40x 1.2 W Zeiss  

Zeiss Plan-Apochromat 10x 0.45 Zeiss  
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3 Methods 

3.1 Laser scanning microscopy and microscopy data processing 

To perform fluorescence imaging (3D images and time lapse) confocal laser scanning 

microscopes were chosen.  

For scaffold characterization an inverted Axiovert200M from Zeiss equipped with 10x and 20x 

air objectives was used. When working with air objectives and z-stacks, the refractive index 

correction included in the ZEN software needed to be adopted to achieve correct 3D objects. 

For PMMA bead scaffolds a refractive index correction factor of 1.49 was used and for 

aqueous samples 1.33. Additionally, manual brightness correction with spline interpolation 

and extrapolation was applied to realize the best images possible.  

Microscopy data were processed using FIJI [49]. For the characterization of PLL-Cy5 

functionalized PAAm hydrogel bead scaffolds, the objective C-Apochromat 40x 1.2 W (Zeiss) 

was used. 1 µm z-step size was chosen, laser power of the 633 nm laser was 6.5% and the 

sum of two lines was acquired. The resulting 3D images (first 30 slices) were filtered with a 

3D median filter (2 px, 2 px, 2 px), the brightness and contrast was adjusted (min: 0 and 

max: 109) and the threshold algorithm “minimum” with the setting 36 – 255 was applied to 

generate a binary image. The plugin “Voxel counter” was then applied to the binary image. 

To compare PAAm scaffolds with regular PMMA lattices, filtering of PMMA images was not 

necessary. Brightness and contrast was adjusted (min: 0 and max: 157) and the threshold 

algorithm “minimum” was applied (0 – 131 for first data set, 0 – 159 for second data set) 

For overnight time lapse imaging an inverted DMI6000 from Leica equipped with a high 

resonant scanner to enhance imaging speed was used. For resonant scanner imaging, a line 

average of 8 was taken to decrease the blurring. In addition to time lapse imaging of z-stacks, 

multiple areas were imaged over the whole time (using “Mark and Find” function). Maximum 

projections as well as 3D views were generated with FIJI.  

3.2 Atomic force microscopy (AFM) 

AFM indentation measurements are performed using a Nanowizard I AFM (JPK Instruments) 

mounted on an inverted microscope (Axiovert 200, Zeiss). Cantilevers used for elasticity 

measurements were modified by gluing polystyrene beads (radius (RI) of 2.5 µm or 5 µm) to 

the end of the tip-less cantilever (ArrowTL1x20-50) using a two-component epoxy glue. The 

cantilevers were calibrated by thermal noise method prior to each experiment. The beads to 
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measure were immobilized in a petri dish by coating the dish bottom with 1 µL CellTak and 

adding the beads onto the bottom. Then 2 – 3 mL of PBS were carefully added into the dish 

to avoid beads floating away and the beads were incubated for at least 10 min. All 

measurements were performed in PBS at room temperature, if not indicated differently (dish 

was heated with PetriDish Heater).  

During the experiments the cantilever tip was positioned over the center of the bead and 

individual force-distance curves were acquired with up to 3 µm/s approach and retract velocity 

and with a contact force ranging from 1 – 12 nN.  

The apparent Young’s modulus E was extracted from approach force-distance curves using 

JPK data processing software and analysing only the first 1 – 2 µm indentation depth. The tip 

geometry (parabolic indenter with respective radius from equ. (2)) was adjusted according to 

the experiment. The resulting data were additionally corrected by the so-called “double 

contact mode” [50] taking the deformation of the bottom part of the hydrogel bead also into 

account. It expands the conventional Hertz model by a factor k (compression from the 

substrate) and prevents significant underestimations of the bead’s Young’s modulus EB [48].  

 

𝛿(𝐹𝐶) = [
3 𝐹𝐶(1 − 𝜈𝐵)2

4𝐸𝐵𝑅𝐼𝐵
1/2

]

2/3

×  
1

𝑘
 (1) 

with   𝑘 =  
𝑅𝐵𝑆

1/3

𝑅𝐼𝐵
1/3+ 𝑅𝐵𝑆

1/3   

Fc represents the acting force on the cantilever resulting in an indentation depth δ. For the 

used hydrogel beads a Poisson ratio νB of 0.5 was assumed indicating an incompressible 

material. The factor k is influenced by geometrical dimensions of indenter bead radius (RI), 

hydrogel bead radius (RB) and the infinite radius of the substrate (RS) (eqn. (2) and (3)).  

1

𝑅𝐼𝐵 
 =  

1

𝑅𝐼

+  
1

𝑅𝐵

 (2) 

1

𝑅𝐵𝑆 
 =  

1

𝑅𝐵

+  
1

𝑅𝑆

 (3) 
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3.3 Refractive index matching of PMMA beads 

 Mix 100 µL of 17 µm PMMA beads (stock from company) with 100 µL EtOH 

 wash 2x in EtOH (200 µL) 

 pipet 1.5 µL of bead suspension (200 µL) on glass slide and distribute (be sure to mix 

the solution properly directly before you take them out 

 let EtOH evaporate 

 add mixed dH2O-TDE-solution to the beads 

 cover with cover slides 

 observe under microscope with phase contrast 

The refractive index of the beads was reached when the beads switched from dark to bright 

in their appearance.  

The refractive index of the solution was determined by means of a manual refractometer.  

3.4 Regular PMMA bead scaffolds for developing analysis algorithm 

For regular PMMA bead scaffolds in ibidi µ-slide VI0.4 chambers, 50 µm PMMA beads were 

used.  

Preparation: 

 Prepare bead-EtOH-suspension by washing 1.5 mL bead stock 3x with 1.5 mL EtOH 

 Remove paper from cellulose filter, cut lengthways into half and immerse in small 

tube filled with EtOH. Take one filter half out, place it on petri dish lid and cut into 

3 mm long pieces with the help of tweezer and scalpel. 

 Prepare staining solution Rhodamine-6G-TDE:  

8.15 mL TDE + 1.85 mL 5 mM Rhodamine-6G in dH2O. Mix properly and filter it with 

a 0.45 µm filter 

Creating regular bead scaffolds: 

 Fill all 6 channels of the ibidi µ-slideIV with pure EtOH and place a filter piece into each 

channel outlet 

 Degas for 5 min 

 Add 100 – 120 µL into each inlet to fill the channel completely with beads 

 Plug inlet and outlet with EtOH-filled stopper and cover back of the channels with 

Parafilm 

 Place the µ-slide in the slide holder and incubate in ultrasound bath (in cold room) for 

4.5 h 

 Transfer the slide holder in oven (37°C) overnight 
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 Fill 5 mL syringe with staining solution and connect a 5 cm silicone tubing + elbow 

connector to it 

 Remove the parafilm from the back and remove the stopper by pulling them out fast 

 Plug the elbow connector of the filled syringe in the inlet and carefully fill in ~ 300 µL 

into each channel. Remove the liquid from the outlet with a pipet 

 Let the staining equilibrate in the dark overnight to enable imaging heights of up to 

400 µm 

3.5 Cell culture standards 

Cell thawing and seeding 

Medium for cells to seed was prewarmed in water bath to 37°C. Cells in cryo tube (106 cells) 

from liquid nitrogen were slowly thawed in the hand. 5 mL warm medium was added into 

15 mL tube and the liquid cell suspension was transferred into the tube. The cells were added 

dropwise and the cryo tube was flushed with 1 mL medium. The cells were spun down at 

800 rpm for 5 min. Meanwhile a T75 tissue culture flask was filled with 14 mL warm medium. 

The supernatant from the tube was removed, the cell pellet was resuspended in 1 mL warm 

medium and transferred into the t75 flask. Incubation took place at 37°C and 5% CO2.  

Splitting cells 

The medium was preheated in the water bath. The old medium was removed from 90% 

confluent T75 flask and the cell layer was flushed carefully with 10 mL PBS to remove any 

dead cells. 5 mL Accutase was added into the flask and incubated for 5 min (in the incubator). 

The flask was flushed with 10 mL medium to detach any remaining cells from the flask 

bottom. The cell suspension was transferred into 50 mL tube and the flask was washed with 

10 mL medium to catch any cells left in the flask. The cells were spun down at 800 rpm and 

5 min. The supernatant was discarded and the cell pellet was resuspended in 1 mL warm 

medium. The cells were counted and 0.5 – 1 x 106 cells were transferred into a new T75 flask 

filled with 14 mL warm medium. Incubation took place at 37°C and 5% CO2.  
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3.6 Fluorescent labelling of ULGP agarose 

Fluorescent labelling of agarose was based on the functionalization protocol from Spencer et 

al. [51].  

Table 5: Material for fluorescent labelling of ULGP agarose 

Material Company 

PBS+  

ULGP agarose Sigma Aldrich Chemie GmbH 

6 cm glass petri dish with lid  

100 mL Schott flask  

6-well plates (2 – 4 pieces) Nunc 

Cell strainer (Nylon mesh with 70 µm 

pore size; Falcon 70µm Cell Strainer) 

Corning  

 

Preparation of stock solutions:  

Periodate solution – 10 mM NaIO4 in 100 mM sodium acetate buffer (pH 5.5). Store in fridge. 

Attention! Periodate is toxic! 

Dye stock – dissolve 1 mg dye (AlexaFluor®488 hydrazide (1 mg)) in 300 µL dH2O (final conc. 

3.33 mg/mL). Store at -20°C 

Agarose film preparation for 2 mL of 1% ULGP agarose stock: 

 0.02 g of ULGP agarose into 100 mL Schott flask. Add 2 mL of PBS+ 

 Close flask and heat consecutively in microwave until the powder is dissolved 

 Place the glass petri dish on a scale (set to zero) and take the liquid out of the flask by 

using a pipet (usually around 1.2 g) 

 Add 500 µL to the flask and “wash” the bottom to get all the agarose out. Fill the 

liquid also into the dish. Fill up the petri dish until 2 g are reached.  

 Mix carefully with the tip in the dish (avoid air bubbles) and ensure a wetting of the 

whole dish. Thereby a thin agarose layer is created 

 Let the agarose solidify in the fridge (around 1 h) 

Creating reactive aldehyde groups on the agarose film: 

 Fill 2 mL of cold periodate solution onto the agarose film and incubate overnight in the 

fridge. Store 500 mL PBS+ as well in a fridge.  

 Next day: Carefully detach the film from the glass dish by moving a small round spatula 

under the agarose.  

 Place the cell strainer into a well of a 6-well plate and pour all agarose with the 

periodate solution into the strainer. The agarose film (and its fragments) will stay in 

the strainer, whereas the liquid will be collected in the well. Fill the rest of the wells 
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with cold PBS+ (10 mL into each well) and transfer the strainer with the agarose into 

the next well. Try to avoid big air bubbles below the strainer. Wash 10 min in the well 

(just leave it in the well) while keeping in the fridge.  

 Every 10 min, transfer the cell strainer into a new well until you washed with at least 

250 mL PBS+ (24-30 washing steps). (Keep always cold!) 

 Discard the used PBS+ in a waste bottle suitable for toxic material and discard 

according to the rules (periodate waste).  

Fluorescent labelling:  

 Mix 120 µL of the dye stock with 1.88 mL dH2O to get a dye solution of 0.2 mg/mL 

 Carefully transfer all parts of the agarose film back into the petri dish with the help 

of the spatula.  

 Add the 2 mL dye solution to the agarose film and incubate over night at room 

temperature and in the dark.  

 Repeat washing procedure from day before (wash with at least 250 mL PBS+).  

 Discard the used PBS+ in a waste bottle suitable for toxic material and discard 

according to the rules (hydrazide waste).  

The stained and washed agarose was transferred into a 2 mL Eppendorf tube. To heat up 

agarose to ~ 90-95°C a Thermomix (usually used for PCR) was used. A tube with safety lock 

was used to avoid liquid evaporation. When the agarose was liquid, it was mixed properly and 

aliquoted (150 – 200 µL aliquots). Storage at 4°C until usage.  

 

3.7 Production of polydisperse ULGP agarose beads 

Polydisperse ULGP agarose beads were used as filter beads to generate 3D hydrogel bead 

scaffolds.  

Table 6: Material for polydisperse ULGP agarose beads 

Material Company 

2% ULGP agarose  

Picosurf-1 (new or 1x used and filtered with 0.1 µm filter) Dolomite 

Sterile PBS+  

1 very small magnetic stirrer and 1 small magnetic stirrer   

2 mL Micrewtube® + lid  

Thermomixer  

Magnetic mixer  

1H,1H,2H,2H-Perfluoro-1-octanol (PFO) Sigma 
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1. Production of polydisperse agarose beads 

 Preheat 200 µL agarose aliquot in Thermomixer at 95°C (Figure 4) 

 Place the magnetic stirrers into the tube as shown in Figure 5.  

 

Figure 4: Agarose aliquot in Thermomixer 

 

Figure 5: Magnetic stirrer in tube  

 Tape the tube with the magnetic stirrers on the magnetic mixer (Figure 6) 

 Add 200 µL of the Picosurf-1 into the tube 

 Start mixing with ~ 1000 rpm 

 Add 200 µL of liquid agarose solution into the tube, close the tube with the lid 

(Figure 7) 

 Mix 20 min at maximum rotation (1100 rpm) (will get milky, Figure 8) 

 Store in fridge for at least 2 h to get all agarose solidified.  

 

Figure 6: Tube taped on 

magnetic mixer 

   

Figure 7: Mixing of oil 

and agarose 

    

Figure 8: After 

mixing for 20 min 

 

2. Purification of polydisperse agarose beads 

 Move to sterile hood  

 Add 400 µL of sterile PBS+ into the tube (beads will now be a white layer between 

the oil and the PBS+) 



3.8 Hydrogel bead production via microfluidics 

19 

 

 Add 100 µL PFO to transfer the beads from the oil phase into the water phase 

(chemical is taking the surfactant from the beads and allows them to move into 

the water phase) 

 Tilt tube and mix the two solutions carefully, so that the PFO is distributed well 

everywhere 

 Incubate for 30 min or until no white layer is existing anymore  

i. If this is not happening, add another 50 µL PFO  

 Transfer the upper, now clear layer into a sterile 1.5 mL tube. Be careful not to 

suck up any oil.  

i. It helps to tilt the tube to get the last rest of the upper layer without taking 

up oil.  

Clean the magnetic stirrers with water, Hellmanex and EtOH.  

3.8 Hydrogel bead production via microfluidics 

PAAm beads, non-covalent starPEG heparin beads and ULGP agarose beads were produced 

together with the µ-structure Facility of the CRTD/CMCB and Dr. Salvatore Girardo. Hydrogel 

beads were produced via microfluidics. The principle sketch of the microfluidic droplet 

generator chip is shown in Figure 9. Both phases were filtered before they entered the droplet 

production area as demonstrated in the channel of the discontinuous polymer phase.  

The microfluidic devices were 

produced by the µ-structure 

Facility and their “inner walls 

were functionalized by 

flushing Aquapel® inside the 

microchannel. The solution 

was removed by blowing the 

device with an air gun and 

leaving it in the oven at 65°C 

for 10 min.” [48] The 

continuous oil phase consisted of fluorinated oil (HFE-7500) with 1.5% w/w ammonium 

Krytox® surfactant or of Picosurf-1 (FC40 + 2% surfactant). They were filtered before using 

through a 33 mm syringe filter (0.22 µm membrane). The discontinuous phase consisted of 

the respective polymer solution. “Two vials containing respectively 1 mL of oil and 100 µL of 

hydrogel solutions were connected to the inlet chambers of the device via FEP tubing. The 

flow, through the tubing towards the device, was activated and controlled by pressurizing the 

 

Figure 9: Principle sketch of microfluidic droplet generator chip 
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liquids inside the vials by using the Fluigent MFCS™-EX microfluidic controller. It was 

equipped with two channels able to provide a maximum pressure of 1000 mbar. The resulting 

gel mixture in oil emulsion was collected in a 1.5 mL Eppendorf® tube through a FEP tubing 

connected to the outlet chamber of the device.” [48] For agarose, additional temperature 

control of the polymer reservoir tube was established.  

For PAAm beads, 0.4% v/v TEMED was added into the oil solution as well as 0.1% w/v N-

hydroxysuccinimide ester for NHS-modified beads. The polymer solution was obtained by 

mixing acrylamide (AAm), bis-acrylamide (BIS) and ammonium persulphate (APS) in different 

amounts to reach the respective total monomer concentration cT (% w/v) with a constant 

crosslinking to monomer concentration of 3.25%. The molar ratio of BIS to AAm was kept 

constant at 1:61.5. The final volume of each PAAm solution was adjusted to 545 µL by adding 

Tris-buffer to the mixture. The produced droplets were incubated at 65°C for 12 h to complete 

polymerization. “The final hydrogel beads in oil were washed three times via centrifugation 

(5000 rcf, 1 min) with each of 20% v/v PFO in HFE-7500, 1 %v/v Span® 80 in Hexane and 

1x PBS (without Mg and Ca) solutions. The final bead suspension in PBS was stored at 4°C.” 

[48] 

For non-covalent starPEG beads [52], KA7-RGDSP-starPEG (2.5 mM) with and without 

covalent fluorescein was mixed together with heparin (0.1 mM – 0.5 mM). The solutions 

were prepared by Dr. Robert Wieduwild (BCube). The produced droplets were stored in the 

fridge over night to complete polymerization. The final hydrogel beads were washed by adding 

PBS and 20% PFO to the bead-oil mixture. The upper layer was transferred with a pipet into 

a new tube.  

For ULGP agarose beads, ULGP agarose aliquot was preheated in Thermomixer at 95°C 

(Figure 4) for at least 45 min and shaking at 300 rpm. The agarose vial was heated during 

production by heat foil at 56°C set point. The actual temperature was 10 K higher. The control 

settings for temperature control were P: 3.1 V/°C, t_N: 2 s, t_V: 1 s and T1: 1 s. The produced 

droplets were stored in the fridge over night to complete polymerization. The final hydrogel 

beads were washed by adding PBS and 20% PFO to the bead-oil mixture. The upper layer 

was transferred with a pipet into a new tube. 

3.9 PAAm bead functionalization 

PAAm beads were modified with NHS during their production. HEPES was used to activate 

the NHS groups and to remove NHS from the solution as this is cytotoxic. Poly-L-Lysine (PLL) 
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molecules were then interacting with the activated groups and bound via ionic interactions to 

PAAm. This functionalization was working for all proteins containing amine groups.  

 Prepare 1.5 mL Eppendorf tubes with Parafilm (wrap 2x folded Parafilm piece around 

the upper part in order to fit the tubes in the centrifuge holder (centrifuge with moving 

arms!)) 

 Use 100 µL of vortexed bead stock (~ 70 x 106 beads) 

 Centrifuge 1 min at ~ 4000 rcf 

 Optional: label pellet height on the tube wall 

 Remove ~ 50 µL supernatant (change tips for different samples!) 

 Add 500 µL HEPES (50 mM, pH 8.0), vortex and centrifuge again 

 Remove the supernatant and wash 5x  

 After last centrifugation step remove 450 µL supernatant: ~ 100 µL bead solution with 

50 mM HEPES  

 Add 40 µL of PLL stock (4 mg/mL  0.3 mg/mL final concentration) or 

functionalization molecule you want (undiluted) to the solution and vortex. 

 Incubate in the fridge at least overnight, better several days 

 Wash the functionalized beads as before 

 Centrifuge as before, remove supernatant, fill up with 500 µL PBS+ and repeat the 

washing step 5x 

 Last step: remove supernatant and resuspend pellet in 50 µL PBS+ 

3.10 Real-time fluorescence and deformability cytometry (RT-fDC) 

RT-fDC was used to determine PAAm hydrogel bead deformability and fluorescence intensity 

in parallel [53]. In short, a microfluidic chip with channel with of 20 µm was used. The buffer 

(0.5% methylcellulose in PBS) was filtered with 0.22 µm syringe filter and centrifuged 

afterwards to remove all possible crystals. The sheath flow syringe was filled with buffer and 

the chip was filled with the solution. 100 µL of buffer were filled in an Eppendorf tube (1.5 mL) 

and 5 µL of PAAm bead pellet was added. The solution was carefully mixed by slow pipetting 

up and down. The sample syringe was filled with 500 µL buffer and the attached tubing as 

well. Then 50 µL of the sample were sucked into the syringe through the tubing without any 

air bubbles trapped in the tubing (-2 µL/s). Specific ShapeIn parameters were min. length & 

height: 10; min. aspect ratio: 0; max. aspect ratio: 2; min grey value: 1 (for cT = 7.9%) and 2 

(for cT = 9.9% and 11.8%).  



3.11 3D scaffolds made from hydrogel beads 

22 

 

Experiments were run at different flow rates (0.024 µL/s, 0.04 µL/s, 0.08 µL/s, 0.12 µL/s, 

0.24 µL/s). The 640 nm laser was set to 100% power and detection was taking place at 

700 nm. For all experiments 5000 events were recorded.  

Data analysis was done in ShapeOut with an area ratio 1.0 – 1.5. Deformability between 0.005 

and 0.05 were selected for further analysis.  

3.11 3D scaffolds made from hydrogel beads 

The following protocol was developed and optimized to generate reliable and stable 3D 

hydrogel bead scaffolds.  

Table 7: Material to create 3D hydrogel bead scaffolds 

Material 

ibidi µ-slide VI 0.4 Uncoated (#1.5 polymer coverslip, hydrophobic, sterilized.)  

cellulose filter (slim cigarette filter) 

scalpel, tweezer (unsharp tweezer tips) 

parafilm (whipped with EtOH to sterilize, cut into small rectangles, ~ 1 cm x 1 cm)  

absolute EtOH, 15% EtOH (in dH2O) 

Sterile dH2O 

petri dish (10 cm diameter, height 2 cm, e.g. Nunc: 172931), can be reused 

6-10 stopper (ibidi: Luer Plug Male. Order no. 10822), reuse them!  

27 µm PMMA beads 

42 µm PMMA beads 

slide holder (red 3D printed holder) 

sterile PBS and medium 

filter beads: polydisperse beads made from 2% ULGP agarose (production see production protocol 

for polydisperse agarose beads) 

hydrogel beads for the hydrogel scaffold according to experimental plan 
 

Necessary Lab Equipment:  

 Vacuum box to degas filled chamber and liquid 

 Centrifuge with 50 mL tube holder + balance equipment 

 Oven at 115 – 117°C 

Declaration of inlet and outlet in ibidi chamber 

Usually 2 – 4 channels were needed per experiment. All 6 channels were prepared to have a 

backup, if something was not working as expected. Unused channels with filter stacks could 

be kept for further experiments as long as they were not dried out (i.e. closed with Parafilm).  

 
Figure 10: Declaration of inlet and outlet  

inlets 

outlets 
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1. Preparation of PMMA Filter Stack (1 day in advance to cell culture experiment!) 

 Remove paper from cellulose filter, cut lengthways into half and immerse in small 

tube filled with EtOH 

 Degas 15% EtOH solution for approx. 5 min 

 Meanwhile take one filter half out, place it on petri dish lid and cut into 3 mm long 

pieces with the help of tweezer and scalpel 

 Use tweezer to place one filter piece into each outlet (see declaration in Figure 10). 

Squeeze filter pieces down to bottom. By this, the channel will be filled with pure 

EtOH. If the channel is not completely filled, add as much EtOH to the outlet as 

needed to fill the channel but NOT the reservoirs (if the reservoirs are filled, empty 

them carefully) 

 Add 50 µL of degassed 15% EtOH to outlets and let equilibrate (~ 1 min), so that the 

inlet is starting to fill with liquid 

 Move to vacuum in closed petri dish and degas for 5 min (chamber lid NOT on the 

reservoirs) 

o If channels are empty, fill the channel again with absolute EtOH and add 50 µL 

of degassed 15% EtOH into outlets again 

o Degas again for 5 min (repeat maybe again until all channels are still filled after 

degassing) 

 Close inlets with parafilm pieces 

 Fill a stopper with 15% EtOH without any air bubbles, fill the outlet with 15% EtOH 

and close the outlet with the stopper by merging the two liquids. Take care that no 

large air bubbles appear in the stopper.  

  Important: Pull slightly on the stopper to check, if it is tightly closing the outlet. If you 

can pull it out easily, repeat the closing procedure with another stopper or wrap a small 

piece of parafilm around the stopper to seal it properly. If outlets are not properly 

closed, air will come in easily during the next steps.  

 Repeat this for all channels 

Goal by degassing: No or only few small air bubbles in the channels. Tilt channel with the 

inlet upwards to try to move them into the inlet.  

 Prepare the centrifuge as shown in Figure 11.  
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Figure 11: Centrifuge preparation. Place the lead in tissue paper into the tube holder, position the 

chamber on the tube holder with outlets at the bottom and stopper/reservoirs facing outwards. Take 

care that the holders are properly inserted into the centrifuge.  

 Shortly centrifuge the chamber to move all remaining air bubbles upwards into the 

inlet (press “short” on centrifuge for 3-4 sec) 

 Move to sterile hood if not already done  

 Remove parafilm from inlet 

 Add PMMA beads to channel (place pipet tip directly at the channel inlet in the inlet). 

Important: Only swirl the flask to disperse the beads in their bottle. Tilt them up and 

down to check whether all beads are detached from the bottom. Do NOT use the 

vortexer as this is introducing to much air into the system! Take care that the beads 

are always well suspended in the flask before you take the corresponding volume out 

o First 10 µL of 27 µm PMMA beads directly into the channel inlet 

o Then 30 µL of 42 µm PMMA beads into the reservoir 

 Close inlets again with parafilm 

 Centrifuge 1 min at 500 rpm 

o  If the degassing was working properly, the beads are NOT sticking to the 

channel walls! That’s how it should be (see Figure 12) 

  

Figure 12: PMMA beads before (A) and after (B) first centrifugation. Beads are not sticking everywhere 

in the channel.  

 Let the beads settle for ~ 5 min 

 Centrifuge 2x 1 min at 500 rpm. Maybe let the chamber fall on the table from little 

height to detach the beads from the inlet wall. Wait 2-3 min before you centrifuge 

again. Take care that no beads are left in the inlet.  

A B 
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 Place the chamber in the slide holder (vertically! Figure 13A) and bake in an oven at 

117°C for 7min (technical drawing of slide holder in Appendix) 

 Take the holder out (holder hot!). If the chamber is turned upside down, the beads 

should not fall apart. The beads should not be distributed in the whole channel or 

melted together so they appear transparent (Figure 13B). If this is the case, they were 

boiling (maybe due to a large air bubble in the outlet stopper) and you can’t use this 

channel. 

   

Figure 13: A) Position of chamber in holder before baking. B) First channel is unusable as the bottom 

part is melted together completely after baking (indicated by transparent appearance). The second 

channel is ok, but a few beads are in the channel above the stack. C) Perfect channel with no beads in 

the channel after baking.  

 Move back to sterile hood. Remove parafilm from the inlets with the help of the 

tweezer. Remove remaining liquid from the inlet and fill 130 µl of sterile PBS into each 

inlet to wash out the leftover EtOH 

 Remove stoppers from the outlet 

 Place the chamber lid with the open area upwards into the dish and place the chamber 

into the dish on the positioned lid. Close the dish lid and store in incubator at 37°C.  

 Wash 2 times with PBS by filling up the inlet and emptying the outlet. Use filter paper 

to enhance washing efficiency. Place a rolled piece of filter paper into the outlet and 

the liquid will be sucked through due to acting capillary forces.  

 Wash 2 times with cell culture medium according to the planned experiment and keep 

the lid in the petri dish in the incubator until usage, so that the bottom of the chamber 

has direct contact to the air (at least overnight to saturate the medium with oxygen). 

If dead cells shall be stained, add 5 µg/mL propidium iodide (PI) into the medium.  

Note: Take care that the liquid level of the outlet is always lower or equal to the inlet one. 

If not, the equilibration of the liquid levels from outlet to inlet might cause instabilities.  

 If the created stacks are now checked under the microscope, one will see a mixture 

of PMMA beads with pores in between and a small gap between stack and channel 

B A C 



3.11 3D scaffolds made from hydrogel beads 

26 

 

wall on one side of the stack (Figure 14). This gap is caused by swelling of the PMMA 

beads in EtOH and shrinkage when transferred back to aqueous medium.  

 If the bead mixture is not perfect, the first layers might be mainly of small beads. 

These are not melted properly together, so that they can fall little bit apart. This is fine 

as the introduced 2nd filter stack will catch and hold those beads.  

 

Figure 14: Gap between channel wall and PMMA filter stack 

2. Preparation of 2nd Filter Stack 

The 2nd filter stack was used to block the occurring gap between stack and channel wall, 

to catch free PMMA beads and to decrease the pore size of the PMMA stack in order to 

finally stack up the small hydrogel beads for the scaffold. 

 Close all unneeded channels with parafilm (first outlet, then inlet. Leave liquid in the 

reservoirs.) 

For all channels needed for the experiment: 

 Close the nearly filled outlets with parafilm 

 Add ~ 5 µL of filter beads (2% ULGP agarose, directly from the dense pellet) into inlet, 

directly towards the channel (depending on the density of the bead stock, a bit more 

or less might be useful) 

 Close inlet with parafilm 

 Centrifuge 1 min at 550 rpm 

 Let the beads settle for ~ 5 min (best in incubator)  

 Centrifuge 3 min at 550 rpm 

 Let the beads settle again for ~ 5 min (best in incubator) 

 Centrifuge 3 min at 550 rpm 

 Now a proper layer of beads should have established in front of the PMMA filter stack. 

You can see this by holding the chamber against the light and under the microscope. 

There will be always a few agarose beads still attached to the channel bottom. You 

can try to increase the speed to 550 or 600 rpm (NOT higher) and centrifuge again, to 
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move more into the stack. However, you will always have some agarose beads at the 

bottom.  

Note: If one channel is going to dry out during centrifugation, fill up the inlet with new 

medium (tilt the chamber slightly and carefully fill medium directly into the channel to 

avoid air trapped in the channel) and renew the parafilm on outlet and inlet. The drying is 

caused by leaking liquid.  

3. Scaffold Assembly and Static Cell Culture Experiment 

Depending on the experimental design different hydrogel beads were used to create 

scaffolds and layers of differently stiff scaffolds. However, the procedure of scaffold 

generation was the same for all. Go ahead with the scaffolds after finishing the last filter 

stack centrifugation. 

 Remove parafilm from the inlet and all medium from the inlet to remove any remaining 

agarose beads. Fill up with ~ 20 µL warm medium.  

 Add ~ 4 µL of the dense hydrogel bead pellet towards the channel and close inlets 

again with parafilm. 

 Centrifuge 1 min at 550 rpm 

 You can check under the microscope, if the new bead 

layer starts to form while the beads in the inlet are settling 

down (~ 2-5 min) 

 Centrifuge again 3 min at 550 rpm  now a proper layer 

should have built up. If this is not the case, add more beads and repeat the 

centrifugation.  

 Keep the chamber tilted in the dish in the incubator (place the chamber lid on the 

bottom of the petri dish, place the closed and filled chamber with the inlet side on the 

lid (Figure 15)) 

 Detach cells and count them.  

o Note: For fibroblast experiments, 20 000 cells per 

channel were fine for an 18 – 20 h experiment (e.g. 

overnight imaging) 

  Depending on the experimental plan, you can seed the cells 

in two ways.  

o For a stack without any stiffness gradient (Figure 

16A), add 2 – 3 µL of the hydrogel bead pellet into 

 
Figure 15: Tilted chamber 

position during degassing 

         
Figure 16: Two different 

experimental plans 

A B 



3.11 3D scaffolds made from hydrogel beads 

28 

 

the inlet and add 20 000 cells on top (note seeding time for your experiment if 

necessary) 

o For a stack with two different stiffness (Figure 16B), empty inlet (to remove 

any left beads), add 30 µL new medium and only the cells and centrifuge 

immediately after closing inlet. 

 Close inlet again with parafilm and wait ~ 1 min 

 Centrifuge 3 min at 550 rpm  a layer of mixed cells and beads should occur (check 

at microscope) or a single cell layer. This is also visible by eye as a slightly opaquer 

layer (cells) when holding against the light. 

 Open inlet again and add second bead layer by adding ~ 3 – 5 µL of hydrogel bead 

pellet into the inlet towards the channel 

 Close inlet again with parafilm and wait ~ 2 min 

 Centrifuge again 3 min at 550 rpm (twice) 

 Open inlet again and add 5 – 8 µL of PLL-coated stopper beads into the inlet to hold 

the scaffolds in place. Close inlet again with parafilm and centrifuge 3 min at 550 rpm 

(three times) 

 Keep the inlet and outlet closed with parafilm. Place the chamber on the lid in the petri 

dish so that the bottom has contact with the air and incubate until you start imaging. 

Incubate at least 2 h before start imaging as the stack is still relaxing.  

 When using uncoated PAAm beads, an additional PLL-coated PAAm layer has to be 

added to prevent the stack from fading out too much. 

 

4. Imaging and Analysis 

Notes: 

 For overnight imaging at 37°C, the microscope should be heated up in advance (at 

least 2 hours) as the optical components expand a bit.  

 Time lapse imaging + z-stack were done at SP5-MP (in the CRTD)  used high 

resonant scanner speed up imaging time (6 stacks ~ 200 µm each take around 

10 – 15 min with 488 nm laser only), but needed line average of 8 and one-directional 

scanning. Otherwise it got too blurry. 

 For static culture and over-night imaging, in- and outlets were closed with parafilm to 

avoid liquid evaporation. Another solution would be to overlay the medium in in- and 

outlet with oil. But it has to be kept in mind that mineral oil is destroying the bottom 

of the chamber.  
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 Medium can be refilled by placing a rolled piece of filter paper into the outlet and filling 

the inlet. 

 For long-term culture, where manual medium exchange is not working, it is the 

easiest way to build up the whole pump system in the incubator to ensure warm 

medium and the right CO2 concentration (Figure 17A-D). This system can also be 

transferred to the microscope (Figure 17E,F). It is possible to time pump stops with 

the imaging times to avoid too strong movement of the stack due to pumping in new 

medium. 

o To set up the flow conditions, have a look at Figure 17.  

o Fill the medium into a 100 mL Schott-flask and use it as shown in Figure 17B. 

By this, air can flow in sterile through the filter and the medium is flowing into 

the tubing, supported by the height difference of bottle and chamber [54]. 

Tubing clamps are used to set up the bottle without spilling liquid.  

o Before connecting the tubing to the filled chambers, take care that all tubings 

are filled without any air bubbles. The medium will flow into the tubings 

without connecting the pump (due to the height difference).  

o Connect first the tubing to the inlets by elbow connectors, then connect the 

outlets (outlets filled with medium) 

o Position the pump behind the chamber as the sucking of medium is with less 

pulsation as the pushing of the peristaltic pump after the pump. The pump can 

be programmed regarding pumping time, pause time, amount of liquid 

pumped through.  

o Preincubate tubing and medium 1 day before you start the cultivation in order 

to saturate everything with oxygen. This is very crucial to avoid any air bubbles 

in the tubing in front of the culture chamber.  

o After long-term culture, clean the tubing with water, Mikrozid and again water 

and autoclave everything.  

o Use the orange holder to place the chamber horizontally in a transport plastic 

box and to have it more stable. It doesn’t have to be tilted with the orange 

holder. It’s only shown here for better visibility (Figure 17C and D). 
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Figure 17: Flow setup for long-term culture and over-night imaging. A) Overview of flow setup for 

long-term culture. From left to right: medium bottle on stage, inlet tubing connected to flow chamber 

(on beige tissue), outlet tubing connected to peristaltic pump and waste beaker. B) Close up of 

medium bottle positioned in bottle holder on stage to avoid air bubbles in the flow setup. C, D) Flow 

setup that can be used to stack up hydrogel beads. Flow chamber is fixed in slide holder (from 

Microfluidic ChipShop) to ensure stable position during stacking, but also during cell culturing. E) For 

live-imaging, medium bottle in red flask holder is placed in the microscope incubator to keep 

temperature and CO2 concentration constant. Tubings are placed carefully on the microscope stage 

(inlets facing towards the user) and the chamber itself is clamped onto the microscope stage to 

ensure stable positions during stage movement. Outlet tubing (facing to the back to the microscope 

arm) are connected to the peristaltic pump (F), which is also placed in the microscope incubator to 

limit tubing length.  
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3.12 Statistics 

All box plots were generated with the software OriginPro 9.1. Median was displayed as 

straight line, the mean as small box and the box (interquartile regime) was defined between 

25% and 75% of the data points. Whisker definitions were given at the individual figures as 

well as the sample number (n). Data points outside the whiskers were defined as outliers. For 

statistical analysis, non-parametrical Mann-Whitney test was used.  
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4 Results 

4.1 Design of a suitable scaffold device 

The proposed 3D cell culture system is based on hydrogel beads as scaffold building blocks. 

The first step towards stable hydrogel bead scaffolds is the availability of a device that can 

serve as frame for the scaffold. Two concepts to create bead stacks were investigated, that 

were also among published methods to generate colloidal crystals [40]. Figure 18A shows the 

concept of cell culture inserts where the filter mesh at the bottom serves as barrier to block 

the hydrogel beads. Figure 18B displays the concept of flow chambers where a filter mesh is 

introduced into the outlet area to block the hydrogel beads in the channel.  

 

Figure 18: Concepts to create 3D bead scaffolds. A) shows concept of cell culture inserts where 

the filter at the bottom serves as barrier to block beads. B) shows a flow chamber with introduced 

filter in the outlet that serves as barrier to block beads.  

These two concepts have been investigated regarding several design considerations listed in 

Table 8. One important aspect was the existence of a filter to block the hydrogel beads and 

thereby to create a bead stack. The scaffold had to be at least 150 µm high to ensure 3D 

culture conditions for cell growth. Additionally, the optical access for at least 50 µm into the 

bead stack without destroying the device was crucial for live imaging to study cell migration 

and mechanosensitivity in detail.  

Table 8: Design considerations for 3D hydrogel bead scaffold device 

 

 

 

 

Taken all design considerations together, concept A (cell culture inserts) was not followed in 

detail as the optical access deep into the scaffold was hard to achieve. Cell culture inserts 

e.g. ThinCertTM from Greiner bio-one, Figure 19, with membrane pores of 3 µm resulted in 

bead layers on the membrane. The difficulty was then however, that one needed to take out 

the insert from the medium onto a cover slip to image the stack through the membrane. 

Design considerations 

Introduction of filter to stop and stack up beads 

High enough for 3D culture (at least 150 µm) 

Optical access to bead stack w/o destroying device for at least 50 µm 

Static culture and long-term cultures 

Oxygen content in the channel, diffusion of gas 

Handling 
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Moreover, after imaging the first scaffold layer, it was necessary to image through this to 

reach the next scaffold layer. This could lead to extensive bleaching of the complete scaffold 

and cells inside. Optical access was also limited by the working distance of the objectives 

available at the microscopes. 

The development of the scaffold device was therefore focused on the flow chamber concept. 

First ideas were based on a biofilm flow chamber 

[55], where a cover glass is glued onto the chamber 

to close the channels. Based on the cover glass 

top, optical access was ensured. The channel 

dimensions got smaller compared to the initial 

design and different ways of introducing filters 

were tested (Figure 20). Prototype devices were 

manufactured by selective laser sintering at PTZ-

Prototypenzentrum GmbH, Dresden, and 

polyamide was used as material for the prototypes. 

As first filter pieces, special glass filter plates (pore size 4 – 5.5 µm) from ROBU Glasfilter – 

Geräte GmbH were checked. However, no successful filter plate incorporation into the flow 

chamber was achieved by gluing filters into prepared molds (Figure 20A) with silicone sealant 

(Dow Corning). The biggest issue was that liquid always leaked out. Another approach was 

the use of cellulose fiber filters cut into small pieces, but still larger than the actual filter area. 

These pieces were pushed into the channel before closing with cover slip or connecting with 

tubing (performed at design shown in Figure 20B). This method turned out to be very easy 

and independent from the actual device design. Thus, all further device designs worked with 

this filter approach.  

Based on the adapted biofilm flow chamber designs, developed flow channels became 

smaller during the design process to 

decrease the number of beads needed 

to fill the channel. 3D printing was 

tested to produce newly designed 

devices as their size and detail 

resolutions reached the limits of the 

SLS technique available at PTZ-

Prototypenzentrum GmbH. 

EnvisionTEC GmbH used Digital Light 

 

Figure 19: ThinCertTM from Greiner bio-

one. Image from 

https://shop.gbo.com/en/row/products/bi

oscience/cell-culture-products/thincert-

cell-culture-inserts/ 

 

Figure 20: Adapted biofilm flow chambers as potential 

scaffold devices (design based on [55]. A) Flow 

chambers with different ways of introducing filter 

pieces by gluing. B) Flow chamber for cellulose fibre 

filter introduction. Technical drawings with exact 

dimensions can be found in Appendix A. 
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Processing (DLP) and manufactured different prototypes of devices like flow cells (Figure 21B) 

and static chambers (Figure 21C) as well as masks (Figure 21D) or parts for assemblies (Figure 

21E) (technical drawings available in appendix). All devices shared the drawback of leaking 

after assembly. The use of 3D printed masks to create PDMS-based fluidic chips (Figure 21D) 

had the weakness of too rough mask surfaces to properly attach a PDMS chip, made from 

the mask, to glass slides via plasma bonding. Even spin-coating of the glass slide with PDMS 

did not worked out. The use of micro structuring to create 200 – 400 µm high channels was 

not followed up, as another device came into the view. The commercially available flow 

chamber “µ-Slide VI0.4” (Figure 21F) from ibidi GmbH showed ideal properties to work as 

scaffold device.  

The ibidi µ-Slide VI0.4 contained six channels with a height of 400 µm. The bottom of the 

chamber is made of “ibidi Polymer Coverslip”, which is gas diffusible allowing additional 

oxygen supply by diffusion. This point was always hard to achieve for the custom-made 

devices, as they were usually closed with a glass coverslip to enable microscopy. However, 

oxygen cannot properly diffuse through glass. The ibidi Polymer Coverslip enables additionally 

microscopy techniques as confocal microscopy and provides a standard coverslip thickness 

of 180 µm. The system allows also the possibility of static and dynamic cultures as inlet and 

outlet are compatible with luer connectors.  

Thus, all considerations for a scaffold device are taken into account with the commercially 

available flow chamber “ibidi µ-Slide VI0.4”. To characterize the theoretical amount of oxygen 

available in the flow channel and to investigate oxygen consumption in these 3D cultures, a 

simulation of oxygen supply was performed.  

 

Figure 21: Design and optimization steps during development of scaffold device. Shown devices 

represent concepts and assemblies, but not in their correct scales (technical drawings can be found 

in the appendix). A is the adapted biofilm flow chamber manufactured by PTZ-Prototypenzentrum 

Dresden GmbH. B - E show different designs produced by envisionTEC GmbH. F shows the 

commercially available flow chamber “ibidi µ-Slide VI0.4”. Technical drawings of A and E with exact 

dimensions can be found in Appendix A.  
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4.2 Theoretical oxygen supply in 3D culture system is sufficient for cell 

survival and proliferation 

Appropriate oxygen supply in 3D cultures is important as limitations in oxygen affect cell 

survival and proliferation, and can also result in changes in cell behavior as migration [56,57]. 

Thus, it was investigated, if the theoretical supply of oxygen by diffusion through the “ibidi 

Polymer Coverslip” was sufficient for the chosen ibidi chamber. After implementing the 

diffusion problem with an inward flux of oxygen, 𝑁𝑜,𝑐
̇ , an oxygen consumption rate, 𝑅𝑖

̇ , (Figure 

22) and its parameters (Table 9) into COMSOL Multiphysics 5.2, the correct implementation 

was checked by tuning diffusion coefficient, D, and cell concentration, ncell.  

 

Figure 22: Schematic diagram of cross-section of ibidi µ-Slide VI0.4 (channel width B, channel height 

H1, bottom height H2) with oxygen diffusion parameters (initial oxygen concentration c0, ambient 

partial pressure of oxygen pg, mole fraction solubility for oxygen in water XO2, diffusion coefficient 

DO2 and permeability of plastic bottom PO2), inward flux 𝑁𝑜,𝑐
̇  and oxygen consumption rate 𝑅𝑖̇ . 

Oxygen diffuses through different materials with different speed. Therefor it is important to 

consider the material properties when defining the oxygen influx, 𝑁𝑂,𝐶
̇ . Corresponding to ibidi 

GmbH (personal communication) oxygen diffuses through their polymer bottom (“ibidi 

Polymer Coverslip”). They determined its area-related permeability for foils and membranes, 

P, at 23°C, 𝑃23°𝐶  =  153
𝑐𝑚3

(𝑚2∙𝑑∙𝑏𝑎𝑟)
 . Permeability 𝑃 =  

100 𝑐𝑚3

(𝑚2∙𝑑∙𝑏𝑎𝑟)
 is defined as 100 cm³ oxygen 

gas (at norm conditions) diffusing through the sample volume with defined thickness for 

defined area (1 m²), time (24 h = 1 d) and oxygen partial pressure difference (1 bar) [58,59]. It 

is stated that permeability increases drastically with temperature [60]. Oxygen permeability 

at 37°C could only be estimated as it was not determined by ibidi GmbH. By assuming a direct 

proportional dependence between permeability and temperature, the oxygen permeability at 

37°C, 𝑃37°𝐶  =  2.8487 ∙  10−3 
𝑐𝑚3

(𝑚2∙𝑠∙𝑏𝑎𝑟)
, was extrapolated. This value probably underestimated 

the actual permeability. In addition, the oxygen volume “cm³” was transformed into “mole” 

to ensure compatible units for the simulation equations. Considering oxygen as ideal gas, the 

general gas equation 𝑝 ∙  𝑉 =  𝑛 ∙  𝑅 ∙  𝑇 was used to determine the molar mass, n, of 1 cm³ 
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oxygen at 37°C as 𝑛𝑂2
(1 𝑐𝑚3, 310,15 𝐾) =  1 / 25450 𝑚𝑜𝑙. Therefore, the final oxygen 

permeability used for the oxygen simulations was 𝑃37°𝐶  =  1.1193 ∙  10−7 
𝑚𝑜𝑙

(𝑚2∙𝑠∙𝑏𝑎𝑟)
. 

It was assumed that diffusion of oxygen through hydrogels is similar to oxygen diffusion in 

water [61]. Even though a diffusion coefficient of oxygen in aqueous solutions 

𝐷𝑂2 =  3.0 ∙  10−9 𝑚2

𝑠
 is often used [62], it has been shown that medium components such as 

salts and sugar decrease the diffusion coefficient [63]. Thus, the effective oxygen diffusion 

coefficient in cell culture medium, 𝐷1 =  2.69 ∙  10−9 𝑚²

𝑠
, was defined for 37°C from the 

literature [64].  

The mole fraction solubility for oxygen in water, XO2, was used to determine the amount of 

oxygen dissolved in the medium after diffusing into the channel, meaning it transformed the 

ambient partial pressure of oxygen, p, into oxygen concentration, c, within the channel 

(𝑝 ∙  𝑋𝑂2 = c).  The mole fraction solubility at 1 atm for 37°C, 𝑋𝑂2 =  1.9358 ∙  10−5 
𝑚𝑜𝑙𝑒 𝑂2

𝑚𝑜𝑙𝑒 𝐻2𝑂
, 

was further adapted to the molar volumes of water and oxygen at 37°C and 1 atm [65], 

resulting in 𝑋𝑂2 =  1.053 
𝑚𝑜𝑙𝑒 𝑂2

𝑚³∙𝑏𝑎𝑟
. The calculated and used value for mole fraction solubility is 

comparable with values used in different studies [64,66].  

An area, A, of 3.8*10 mm² was studied, which displayed a small area of the channel where 

cells were distributed homogeneously. The channel itself was 400 µm high (H1) and the ibidi 

polymer bottom was 170 µm high (H2).  

Oxygen consumption rates (OCR) depend highly on the cell type [67] and can also depend on 

the medium [61] as well as on the dimension of the microenvironment (2D vs. 3D) [68]. For 

fibroblasts, an experimentally determined OCR from human dermal fibroblasts in 3D was 

chosen [68]. Oxygen uptake rates are often modeled with the Michaelis-Menten kinetic, 

which describes the dependence of the maximum uptake rate (here OCR) on the actual 

oxygen concentration, c, and the Michaelis-Menten constant for oxygen, kMO = 1 µM 

[61,62,67–69]. Michaelis-Menten constant, km, describes the concentration where the 

maximum uptake rate is halved. It was assumed, that glucose, which is usually used as 

substrate for cell growth, was always available.  
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Table 9: Parameters for oxygen simulation performed in COMSOL 

Parameter Value Unit Definition 

D1  2.69*10-9 [m2/s] 
Oxygen diffusion coefficient in medium 

at 37°C [64] 

OCR  1.19*10-17 [mol/(s)]  
Oxygen consumption rate (OCR) per 

fibroblast [68] 

ncell  20 000  Cell number 

A  3.8*10 [mm2] Area 

H1  400 [µm] Liquid height/channel height 

P  1.1193*10-7 [mol/(m2*s*bar)]  
Permeability (personal communication 

with ibidi GmbH) 

H2  170 [µm] Height membrane 

XO2 1.053 [mol/(m3*bar)] mole fraction solubility 

pg  0.21 [bar] Ambient partial pressure oxygen 

KmO  1.0*10-3 [mol/m3] 
Michaelis-Menten Constant for Oxygen, 

[67] 

B  3.8 [mm] Channel width 

µmax 9.627*10-6 [1/s] Maximal growth rate NIH3T3 

D1,small 2.69*10-13 [m²/s] Small diffusion coefficient 

D2 
1.6*10-9 [m2/s] 

Reduced oxygen diffusion coefficient for 

hydrogels [70] 

P1 5*10-7 [mol/(m2*s*bar)]  Permeability 

P2 2*10-7 [mol/(m2*s*bar)]  Permeability  

P3 1.5*10-7 [mol/(m2*s*bar)]  Permeability  

 

For first simulations to check whether oxygen supply was sufficient for short cell culture 

experiments (around 20 h), cell proliferation was not taken into account. To simulate the 

oxygen diffusion and its concentration evolution over time, the channel cross-section 

geometry was defined as rectangle with 3.8 mm width, B, and 400 µm height, H1 (Figure 22). 

As material for the channel content “water” was selected. To implement the oxygen 

concentration change over time, physics of “Transport of diluted species (tds)” was selected, 

equ. (4), with user defined reaction Ri (consumption of oxygen by cells). By applying the 

mentioned Michaelis-Menten kinetic on the oxygen uptake, the reaction term for the total 

volume was defined in equ. (5).  

𝜕𝑐𝑖

𝜕𝑡
+ 𝛻 ∙ (−𝐷𝑖𝛻𝑐𝑖) = 𝑅𝑖  (4) 

𝜕𝑐

𝜕𝑡
+ 𝛻 ∙ (−𝐷𝛻𝑐) = − (𝑂𝐶𝑅 ∙ (

𝑐

𝐾𝑚𝑜+𝑐
)) ∙

𝑛𝑐𝑒𝑙𝑙

𝐴∙𝐻1
  (5) 

The initial value for oxygen concentration was 𝑐0 =  𝑝𝑔 ∙ 𝑋𝑂2 and an isotropic diffusion 

coefficient, D1, was assumed. For the boundary conditions, only one inward flux of oxygen 
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was defined as equ. (6), corresponding to oxygen diffusion through the ibidi Polymer bottom 

(Figure 22).  

𝑁𝑂,𝐶 = 𝑃 ∙ (𝑝𝑔 −
𝑐

𝑋𝑂2
)  (6) 

The simulation mesh was of user controlled size with maximum element size of 20 µm and 

minimum element size of 0.076 µm. Time unit for time dependent study was seconds and 

the time range was (0, 100, 72000) s – starting at 0 s, going in 100 s steps towards 72000 s. 

The oxygen concentration evolution over 20 h is shown in Figure 23. The oxygen content 

reached a plateau in the whole channel depth at around 22000 s (6.1 h) and stayed constant 

over the whole time at around 0.162 M (Figure 23A and B). Comparing the initial oxygen 

concentration in the channel with the final one (Figure 23C), it is obvious that the oxygen 

diffusion was fast enough to keep the concentration at a steady-state and no gradient 

occurred due to limited inward flux of oxygen. When decreasing the oxygen diffusion rate D1 

to D1,small, a gradient in oxygen over time and channel depth established (Figure 23D). This 

gradient was determined by inhibited oxygen diffusion through the top of the channel and too 

slow diffusion through the channel volume from the bottom towards the top. This 

demonstrated a correctly implemented model and cells should survive at least 20 h cultivation 

assuming a diffusion coefficient D1. However, until then only cell maintenance was 

considered, but no cell proliferation. To implement cell growth, it was published to exchange 

Michaelis-Menten kinetic with Monod kinetic [71,72], equ. (7) and (8):  

 

Figure 23: Simulation of oxygen concentration (mol/m³) with cell maintenance. A) Evolution of 

oxygen concentration over time and channel height (µm) with D1, 20 000 cells and P. B) Evolution of 

oxygen concentration over time for a random point within the channel with D1, 20 000 cells and P. 

C) Starting point (t = 0 s) and end point (t = 72 000 s) of oxygen concentration evolution over time 

for complete channel cross-section. D) Evolution of oxygen concentration over time and channel 

height (µm) with D1,small, 20 000 cells, and P. Colour scales are for all images the same.  
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𝑅𝑖 = −
1

𝑌𝑋/𝑂2
∙ µ ∙ 𝐶𝑥(𝑡) , 

(7) 

µ = µ𝑚𝑎𝑥 ∙
𝐶𝑠

𝐾𝑚𝑆+𝐶𝑠
∙

𝐶𝑂2

𝐾𝑚𝑂+𝐶𝑂2
= µ𝑚𝑎𝑥 ∙

𝐶𝑂2

𝐾𝑚𝑂+𝐶𝑂2
 , (8) 

where µmax is the maximal cell growth rate, Cx(t) covers cell growth by proliferation and YX/O2 

the yield of cells per unit oxygen. The substrate limitation by 
𝐶𝑠

𝐾𝑚𝑆+𝐶𝑠
 with Kms << CS was 

neglected based on the already made assumption that glucose was always available.  

Cx(t) was evolved by solving the differential equ. (9) and applying the initial cell concentration 

𝐶𝑥,0(𝑡 = 0) =
𝑛𝑐𝑒𝑙𝑙

𝐴∙𝐻1
 into equ. (10). 

𝑑𝐶𝑥

𝑑𝑡
= µ ∙ 𝐶𝑥  (9) 

𝐶𝑥(𝑡) =
𝑛𝑐𝑒𝑙𝑙

𝐴∙𝐻1
∙ exp (µ𝑚𝑎𝑥 ∙

𝐶𝑂2

𝐾𝑚𝑂+𝐶𝑂2
∙ 𝑡)  (10) 

µ𝑚𝑎𝑥 =  9.627 ∙  10−6 𝑠−1 was determined using equ. (10) and a published doubling time of 

20 h for NIH3T3 fibroblasts (German Collection of Microorganisms and Cell Culture, DSMZ, 

Braunschweig). Combining these equations, the oxygen consumption rate Ri with cell growth 

resulted in equ. (11).  

𝑅𝑖 = −𝑂𝐶𝑅 ∙
𝐶𝑂2

𝐾𝑚𝑂+𝐶𝑂2
∙

𝑛𝑐𝑒𝑙𝑙

𝐴∙𝐻1
∙ exp (µ𝑚𝑎𝑥 ∙

𝐶𝑂2

𝐾𝑚𝑂+𝐶𝑂2
∙ 𝑡)  (11) 

The simulation (Figure 24A) visualized a continuous decrease of oxygen within the channel 

with increasing time and cell concentration by cell growth. Thus, for long-term culture (i.e. 

longer than overnight), manual medium exchange to reboot the system with oxygen to the 

initial state every 24 h or the implementation of a slow continuous or discontinuous flow 

would be recommended. Hulst1989 showed that diffusion coefficient is decreasing with 

increasing gel density (e.g. agarose at 30°C) from 2.6 to 1.6 (*10-9 m²/s), D2 [70]. Colom et al.  

(2014) also showed a decrease of the diffusion coefficient in gels compared to water [69]. 

This slight decrease led to no effect in the simulated oxygen concentration (Figure 24B). Thus, 

the assumption using oxygen diffusion coefficient of medium for diffusion problems [61] hold 

true also for the here presented system. By tuning initial cell concentration to 40 000 cells 

and 10 000 cells, the effect of cell growth on available oxygen in the chamber was visualized 

(Figure 24D, E). It became obvious that cellular oxygen consumption is one limiting factor as 

seeding 40 000 cells into the chamber resulted in a very low oxygen concentration already 

after 5.5 h.  
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Figure 24: Simulation of oxygen concentration (mol/m³) over time and channel height with cell 

growth implemented for different diffusion constants (D), cell numbers (n) and permeabilities (P). A) 

D1, n, P. B) D2, n, P. C) D1, small, n, P. D) D1, 2n, P. E) D1, n/2, P. F) D1, n, P1. G) D1, n, P2. H) D1, n, P3. 

All parameters were defined in Table 9. 
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The here presented simulation showed cell survival even though the permeability at 37°C was 

probably underestimated [60]. With higher permeability, more oxygen would diffuse into the 

channel. How strong the permeability is affecting the available oxygen was investigated by 

tuning the permeability, P, from 𝑃1 =  5 ∙  10−7 
𝑚𝑜𝑙

𝑚²∙𝑠∙𝑏𝑎𝑟
 to 𝑃3 =  1.5 ∙  10−7 

𝑚𝑜𝑙

𝑚²∙𝑠∙𝑏𝑎𝑟
 (Figure 

24F – H). Already a small increase in P (from P to P3) led to an increase of oxygen 

concentration from 0.078 mol/m3 to 0.115 mol/m3 after 27 h (Figure 24H). It has been 

reported that cells respond with anaerobic metabolic processes at hypoxic conditions, defined 

with 5 – 15 mmHg O2 (corresponding to ~ 0.02 mol/m³) [73]. Considering these facts, cellular 

function should stay in physiological conditions even for the lower oxygen concentration 

presented here (for D1, n and P). 

The developed oxygen diffusion model in the chosen device for parameters defined from 

literature demonstrated theoretical cell survival and ability to proliferate. Based on these 

observations, the optimization of the 3D device was extended.  

4.3 Further optimization of 3D scaffold device 

In order to use the ibidi chamber as 3D scaffold device, beads have to be blocked in the 

channel to form a scaffold. It had to be determined what kinds of filters are suitable for this. 

As first filter layer a cellulose fiber filter was used to stop beads in the channel as it was easy 

to adjust in the chamber by pushing it into the inlet. This filter was however causing problems 

with small compliant hydrogel beads, because they could squeeze through the fibers and 

thereby disappeared. Thus, a second filter layer will be necessary. This is generated by small 

rigid plastic beads that were commercially available and easy to use.  

 

Figure 25: Principle of creating a regular scaffold in the chosen device 

4.3.1 PMMA beads can be arranged in stable scaffolds 

To block small compliant hydrogel beads in the chamber, stable 3D scaffolds of rigid beads 

were generated by annealing beads. Additionally, the obtained scaffolds should be used to 

establish an algorithm to characterize regular 3D scaffolds. Therefore, they also needed to be 

imageable by fluorescence microscopy by using refractive index matched medium to enable 

large imaging depth.  
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Different rigid monodisperse beads available on the market (Table 10) have been analyzed 

regarding handling like annealing as well as refractive index nD. To ensure stable filter scaffolds 

made from rigid beads, the beads have to be able to be annealed. This can be done either by 

high temperatures (melting the material) or by means of chemicals (gluing the material). 

However, the treatment also has to leave pores open in the bead scaffolds as liquid still needs 

to pass through to allow washing steps and medium exchange. To enable scaffold 

characterization, the bead’s refractive index has to be able to be matched with a liquid to 

minimize light scattering during microscopy. So optical imaging depth can be increased and 

scaffold heights corresponding to channel height of 400 µm can be visualized.  

Table 10: Rigid beads and their corresponding refractive index n 

Material 
Refractive index nD 

(according to company data) 

Silica (Whitehouse Scientific) 1.52 

Silica (sicastar, biomod) 1.45 

Polystyrene (PS) 1.59 

Polymethylmethacrylate (PMMA) 1.48 

 

Combining the described needs, Polymethylmethacrylate (PMMA) beads have been selected 

as the material of choice. Annealing temperatures for silica beads were too high for the ibidi 

chamber and resulted in destroyed chambers. Also chemicals like Poly-L-Lysine were not able 

to glue these beads together successfully. An additional problem was that the beads stick to 

pipet tips and surfaces during handling. Polystyrene (PS) as material for beads was not chosen 

for filter scaffolds since it did not allow the development of regularity analysis as the material’s 

refractive index was very high with 1.59. PMMA beads could be annealed into scaffolds by 

means of ethanol incubation, since ethanol leads to swelling of the material and the beads 

become sticky. This combined with a higher temperature (37°C up to 119°C) creates stable 

scaffolds. Additionally, the refractive index of PMMA beads was low enough with 1.48 to 

allow the search for refractive index matching solutions. Thus, PMMA scaffolds were used 

further.  

 

To match the refractive index of PMMA beads, different solutions were tested for their ability 

to match a refractive index of around 1.48 and 2,2-Thiodiethanol (TDE) was finally selected. 

With this, the refractive index of PMMA beads of around 1.488 was determined. Alginate 

solutions in PBS (10 g/L, 40 g/L, 50 g/L and 100 g/L) resulted in refractive indices between 

1.38 and 1.348. Glycerol had a starting refractive index of 1.473, which was still too low for 

PMMA beads. Also bovine serum albumin (BSA) resulted in a too low refractive index of 1.422 

for an 80% (w/v) solution. Producing a 90% (w/v) solution was too viscous and sticky to get 
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reliable data from. In 2007 a water soluble mounting medium for high resolution microscopy, 

2,2-Thiodiethanol, has been published [74]. 2,2-Thiodiethanol has an initial refractive index of 

1.521 what allows a refractive index matching by diluting TDE with water. Additionally, its 

viscosity is low enough to work with compared to high concentrated BSA solutions and it is 

compatible with fluorescent dyes. Thus, TDE was used to obtain PMMA matched solutions.  

By mixing TDE and water in variable concentration together, solutions with different refractive 

indices have been created. The refractive index nD of each solution was determined with a 

refractometer. Afterwards washed and dried PMMA beads have been immersed in the 

respective solution and imaged with a phase contrast microscope. The refractive index of the 

PMMA beads was defined by the switch of bead appearance from dark to bright (compared 

to the background). The results are shown in Figure 26. It is clearly visible that the beads 

become brighter for nD = 1.4865 compared to lower nD and appear brighter than the 

background for nD = 1.4895. This results in an approximate refractive index of 1.488 for 

PMMA beads.  

 

Figure 26: Refractive index matching of 17 µm PMMA beads with 2,2-Thiodiethanol water 

mixtures with defined refractive index nD. The refractive index of PMMA beads is defined by 

the switch of bead appearance from dark to bright in phase contrast. Scale bar 50 µm.  

The next step to visualize and characterize rigid PMMA scaffolds was to introduce a staining 

of either the bead surface or the interstitial space to enable confocal laser scanning 

microscopy. A homogeneous staining of PMMA bead surfaces with PLL-FITC (before as well 

as after stacking) was not achieved, but the staining of the interstitial space with Rhodamine-

6G-TDE solution was successful. To image the complete stack height, several things had to 

be kept in mind. The refractive index matched Rhodamine-6G-TDE solution needed to 

equilibrate in the PMMA bead stack over night after filling it into the stack with the help of a 

syringe. This ensured a complete filling of the interstitial space with the staining solution by 

diffusing into the smallest areas of the pores during this time. By applying this method, a 
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Rhodamine-6G-TDE solution with nD = 1.4885 enabled 400 µm imaging depth and thereby 

visualization of the complete PMMA bead scaffold. Furthermore, while imaging large scaffold 

areas with z-stacks and with a low magnification air objective, additional refractive index 

correction should be applied in the microscope software, if available (ZEN software, ZEISS 

GmbH). By this, the different scattering of the light in liquid than in air is taken into account 

when creating the z-stack stacks. A correction of 1.488 was applied for the here presented 

experiments and by this the beads appeared spherical and not distorted in z-direction.  

With the help of Rhodamine-6G-TDE solutions and PMMA beads, stable rigid bead scaffolds 

were created and imaged. These data were then further processed and analyzed to create 

regular scaffolds and to develop a way to characterize this regularity.  

4.3.2 Regular PMMA bead scaffolds can be achieved and analysed 

In order to characterize regular scaffolds and to find out what stacking steps do create a 

regular rigid bead scaffold, obtained PMMA scaffolds were filled with TDE-Rhodamine 

solution and imaged after the solution has been equilibrated in the scaffold (over-night). The 

acquired images were processed and analyzed with a regularity analysis algorithm.  

 

Figure 27: Stable regular PMMA bead scaffolds stained with Rhodamine-6G-TDE solution. 50 µm 

PMMA beads were used to create these scaffolds. In the close-up six random stacks are shown, 

demonstrating also small defects and grain boundaries in regular scaffolds. The right end 

demonstrates irregular structures resulting from the fibre filter. Scale bar 2000 µm.  

Six stacks per channel (randomly taken from beginning of the stack to the end) have been 

acquired. The last stack was not used for regularity analysis as there were lots of artefacts 

resulting from the fiber filter (Figure 27). These areas were not relevant for any experiments 

so far and could be neglected for the regularity analysis.  



4.3 Further optimization of 3D scaffold device 

45 

 

 

Figure 28: Work flow of regularity characterization A) Amount of available data of a bead 

stack per channel. B) Work flow of Fiji script to obtain all necessary data from fluorescent 

microscopy images of the z-stacks. C) Work flow of the Python script (written by Paul 

Müller) to obtain the fitting parameter (variance x and amplitude A) of the first 7 peaks (red 

and green peaks) that are used to characterise the regularity of perfectly ordered bead 

stacks.1 

The regularity analysis employed custom-made algorithms in Fiji and Python (Figure 28, 

Appendix B). The analysis assumed that monodisperse beads arrange in a hexagonal or cubic 

close-packed structure to form a perfectly ordered crystal. Upon Fourier transformation, this 

structure will yield a hexagonal peak lattice of intensity maxima in the Fourier image. Using 

all acquired images (Figure 28A), a Fiji macro obtained all necessary information from every 

slice (Figure 28B) by creating for each slice the Fourier image, counting intensity maxima and 

storing these information additionally to the complex Fourier images. The Python script 

(written by Paul Müller) used these information (Figure 28C) to create the assumed hexagonal 

peak lattice and to overlay it with the complex Fourier image. It processed the very first seven 

peaks (green and red peaks in Figure 28C) as they describe the regularity of the bead stack. 

By performing a Gaussian fit of these peaks, the resulting output files contained the fitting 

parameter variance (x) and amplitude (A). They characterize the stack regularity. By using an 

artificial bead structure image for theoretical analysis, a perfect crystal was defined as 

“7 peaks have x < 2 and A > 0”. The number of peaks with x < 2 and A > 0 was determined 

for all slices per stack and the median per stack was calculated using a custom made MS 

Office Excel macro (Appendix B). It has to be mentioned that resulting values can only cover 

0, 1, 3, 5 and 7 as a result of the internal symmetries of the FFT images. 
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To form regular scaffolds two parameters were 

investigated in detail. The scaffolds were 

generated by introducing PMMA beads in EtOH-

filled channels and placing the closed chamber 

in the slide holder as demonstrated in Figure 29. 

The slide holder was then placed in an ultrasonic 

bath after a defined sedimentation time. 

Sedimentation time before ultrasonic treatment 

was varied as well as ultrasonic treatment time 

itself. Comparing the median number of peaks 

(x < 2 and A > 0) of all stacks for different sedimentation times and ultrasonic treatment 

times, 4.5 h ultrasonic treatment achieved the result closest to perfect arrangement (7 peaks 

with x < 2 and A > 0) (Figure 30). The beads arranged in a regular close-packed structure, 

based on the ultrasonic 

treatment immediately 

after closing the channels 

and placing the chamber in 

the slide holder. The 

ultrasound rearranged the 

beads until they could not 

move any more, which was 

usually the position in the 

close-packed structure. The 

variation in medians for 0 h 

sedimentation and 4.5 h 

ultrasonic treatment was 

based on grain boundaries 

and very small defects 

within the regular scaffolds 

(also shown in Figure 27). 

The obtained results are in 

correlation with already observed crystal growth behavior under oscillatory shear conditions 

[75].  

 

Figure 29: Chamber position in slide holder to 

generate regular scaffolds 

 

Figure 30: Effect of sedimentation time and ultrasonic treatment 

time on PMMA bead stack regularity, where a value of 7 represents 

a perfectly ordered bead stack. Median distribution of n bead stacks 

from 2-3 independent experiments are analysed by Mann-Whitney 

Test. The boxes represent 25% to 75% interquartile of the 

distribution. n represents the number of analysed stacks. * p < 0.05, 

** p < 0.01. Whiskers are defined as 1.5x interquartile regime and 

outliers as data points outside the whiskers.  
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As demonstrated with these stable regular PMMA bead scaffolds and the comparison with 

the artificial bead crystal, the Python algorithm was able to determine very regular bead 

scaffolds built from monodisperse beads. For the function as filter scaffold, the stable PMMA 

bead scaffolds did not need to be highly regular. Therefore, the following filter scaffolds were 

produced without ultrasonic treatment, but with an optimized protocol to generate stable 

PMMA bead scaffolds with smaller pores to block small hydrogel beads by centrifuging 

PMMA beads onto the cellulose fiber filter.  

4.3.3 PMMA bead scaffolds and agarose bead scaffolds act as combined filter to stack 

up hydrogel beads 

 During production of stable PMMA bead scaffolds and their functional test as filter, the 

appearance of a gap between scaffold and channel wall was observed (Figure 31). This gap 

affected stacking efficiency of small hydrogel beads, because they could easily flow through 

the gap into the cellulose fiber filter and disappeared by this. Thus, the generated PMMA 

bead scaffolds, that serve as filter to block small hydrogel beads in the channel, could only be 

used with an additional filter layer as they were not able to cover all necessary functions alone.  

The stable PMMA bead scaffolds shrank, when the EtOH was replaced with aqueous 

solutions. The beads swell a little when immersed in EtOH (not stable without swelling 

regarding company data) and shrink again when transferred back into aqueous solution. As 

the annealing of the scaffold happens in the swollen state, the whole scaffold shrinks back 

resulting in a gap between PMMA bead scaffold and channel wall.  

As stacking in EtOH was necessary to form a stable scaffold with PMMA beads, this step 

could not be changed. However, by adjusting EtOH concentration from 100% to 15%, the 

gap could be minimized while PMMA bead scaffolds were still stable. To overcome the 

disappearance of small hydrogel beads through this gap, an additional filter layer containing 

polydisperse beads made of ultra-low gelling point agarose (ULGP agarose) was established.  

These ULGP agarose beads were produced by emulsification (i.e. vortexing oil-surfactant 

solution with liquid ULGP agarose). After polymerization and transferring into PBS, these 

 

Figure 31: Generation of gap between PMMA bead (50 µm) scaffold and channel wall over time by 

bead shrinkage, when replacing EtOH with PBS. Scale bar: 200 µm 
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beads were introduced into the channel. They were centrifuged on top of the washed and 

stable PMMA bead scaffold to form a third filter in form of a second filter scaffold. As the 

bigger ULGP beads have more weight, they are faster at the PMMA bead scaffold during 

centrifugation than the smaller ones. Big ULGP agarose beads then blocked the gap and 

smaller ones piled up in front of them. However, it was observed that smaller ULGP agarose 

beads flowed through the pores of the 50 µm PMMA bead scaffold. Therefore, the PMMA 

bead scaffold composition was adjusted to hinder smaller hydrogel beads to flow through the 

scaffold pores. This was successfully achieved with a mixture of 27 µm and 42 µm PMMA 

beads (ratio 1:3). This ratio is important to keep as the PMMA bead scaffold will not be stable 

otherwise.  

In addition, it was observed that a successful and reproducible generation of stable PMMA 

bead scaffolds highly depended on appropriate degassing of chamber and stacking medium 

(decrease of air bubbles during annealing) and annealing time in the oven.  

  

Thus, to stack up small compliant hydrogel beads, that would squeeze through the cellulose 

fiber filter, the knowledge of stacking and stabilizing PMMA beads was used to generate first 

a stable PMMA bead scaffold in front of the cellulose fiber filter, containing 27 µm and 42 µm 

PMMA beads (ratio 1:3). The problem of the gap between this bead scaffold and the channel 

wall was overcome by using polydisperse ULGP agarose beads as second filter scaffold which 

closed the gap. This combination of different filters allowed the production of hydrogel 

scaffold made of small hydrogel beads (Figure 32).  

 

 

Figure 32: Principle of generating bead scaffold with different stiffness (E) and the applied filter 

layers (i.e. cellulose fibre filter, PMMA bead filter and agarose bead filter).  
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4.4 PAAm hydrogel beads produced by microfluidics are suitable to 

create compliant 3D scaffolds 

After successful determination of scaffold device and optimizing it regarding the applied 

filters, it was necessary to specify suitable hydrogel systems to generate hydrogel beads as 

scaffold building blocks. Appropriate hydrogel beads had to be stable in production to 

generate beads with monodisperse size in the range of cells and low variation in stiffness 

within produced batches. Their overall stiffness needed to be tunable to create scaffolds with 

different stiffness and ideally the hydrogel system would also offer the possibility of 

incorporating adhesion molecules to enhance cell attachment.  

One of the first questions regarding hydrogel beads was, what bead diameter was actually 

needed to obtain a regular 3D scaffold (with a hexagonal or cubic close-packed structure) 

where pores between the beads served as growth area for cells. As the theoretical scaffold 

structure was assumed to be a close-packed structure, theoretical pore size dimensions in a 

colloidal crystal could be determined based on the colloidal radius (rbead) using basics of solid 

state chemistry [76]. In a close-packing of equal spheres, the volume of the pore is defined 

by the size of the largest sphere that can fit into the void. In close-packed structures, two 

pore types exist: tetrahedral and octahedral pores (Figure 33). Radius of tetrahedral pores xt 

is defined as 0.225 * rbead and radius of octahedral pores xo = 0.414 * rbead. Considering that 

cells need a certain amount of space to migrate without disrupting their compartments (i.e. 

pore cross-section above 7 µm²) [77], a pore radius of approx. 2 µm (pore cross-section 

~ 12.5 µm²) was chosen. This led to a working bead diameter of 10 – 17 µm.  

 

  

 

 

 

 

 

Hydrogel beads of different materials were produced by microfluidic approach (non-covalent 

poly(ethylene glycol) (PEG) [52], ultra-low gelling point (ULGP) agarose, and polyacrylamide 

(PAAm)) or by a mesofluidic approach (starPEG [78]). The mesofluidic approach was based on 

a publication in 2009 [79] and developed and realized at the Institute for Polymer Research 

(IPF) in Dresden (Figure 34). The microfluidic approach was established at the Microstructure 

Facility (CMCB, TU Dresden) in co-operation with Dr. Salvatore Girardo as Head of the Facility.  

 

Figure 33: Theoretical pore size dimensions in regular colloidal crystals with the largest sphere 

(red) that fits into the void. A) Tetrahedral pore. B) Octahedral pore.  



4.4 PAAm hydrogel beads produced by microfluidics are suitable to create compliant 3D 

scaffolds 

50 

 

The microfluidic approach used a flow-focusing PDMS-based microfluidic device, where the 

flows of the oil-surfactant phase (continuous phase) and polymer phase (dispersed phase) 

was controlled by a pressurized pump. By tuning channel geometry as well as pressure of 

these two phases different droplet sizes could be generated (Figure 35) [48]. These droplets 

polymerized afterwards to form hydrogel beads and were transferred by various washing 

steps from oil phase into aqueous phase. During optimization of droplet production, it turned 

out that the right choice of oil and surfactant was important to get a stable and fast production.  

 

Four different materials that were already used as hydrogel systems for cell cultures 

[36,41,52,80,81] were available and investigated as possible candidates for hydrogel beads 

as scaffold building blocks. For this, hydrogel bead production as well as stiffness 

determination by atomic force microscopy (AFM), visualization by fluorescence microscopy 

and the possibility to functionalize with adhesion molecules was studied for all chosen 

materials. The observations are summarized in Table 11. 

 

Figure 34: Mesofluidic approach to produce hydrogel beads with a Co-Flow device at the Institute 

for Polymer Research (IPF), Dresden. Image courtesy: Steffen Vogler 

 

Figure 35: Hydrogel bead production with microfluidic approach (i.e. flow-focusing PDMS-

microfluidic device). A) Demonstration of flow focussing principle. Scale bar: 100 µm. B) Production 

frequency and droplet diameter depend on the used pressure of the oil phase at constant hydrogel 

flow pressure (700 mBar) (scale bar in inset: 50 µm). Reprinted from [48].  
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Table 11: Investigation of hydrogel bead qualification as scaffold building blocks for covalent starPEG 

heparin (produced at IPF [78]), non-covalent starPEG heparin (material provided from Dr. Robert 

Wieduwild, BCube, Dresden [52]), ultra-low gelling point agarose and polyacrylamide. 

Material Observations 

Covalent starPEG 

heparin (IPF) [78] 

 unstable in production and material properties 

 extensive swelling 

 smallest diameter 60 µm possible (status 2016) 

 polydisperse bead size within one batch 

 high adhesion (at AFM measurements)  

 cell attachment 

Non-covalent 

starPEG heparin 

(Dr. Wieduwild, 

BCube, Dresden) 

[52] 

 unstable in production efficiency and material properties 

 monodisperse bead size 

 fluorescent label possible 

 cell attachment 

Ultra-low gelling 

point (ULGP) 

agarose 

 heating (vial) during production necessary 

 slightly unstable production due to changing viscosity (polymer started 

gelling despite vial heating) 

 partly monodisperse bead size (two fractions) 

 high stiffness difficult 

 temperature effect 

 oil effect  

 no cell attachment w/o additional functionalization 

 able to be functionalized with fluorescence 

Polyacrylamide 

(PAAm) 

 stable production and material properties 

 monodisperse in bead size 

 no cell attachment w/o additional functionalization  

 able to functionalize with fluorescently labelled Poly-L-Lysine (PLL) 

 

For all four materials it was possible to adjust the stiffness by changing concentration of the 

containing components. Stiffness was determined by nano-indentation based measurements 

with atomic force microscopy. In brief, a small polystyrene bead (diameter: 5 µm or 10 µm) 

was glued to the tip of tipless cantilevers. The hydrogel beads were then indented with these 

cantilevers and the apparent Young’s Modulus (E) was extracted from recorded force-distance 

curves by applying the simple Hertz model with additional radius correction by using the 

double contact model [48,50]. By this, the deformation of a small hydrogel bead at the bottom 

due to the substrate was also taken into account.  

It turned out that the production of non-covalent starPEG-heparin hydrogel beads was not 

stable enough to ensure reproducible size and stiffness. Also, the material properties changed 

even though the same batches of initial materials had been used. Thus, the properties of non-
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covalent starPEG heparin hydrogel beads were not further investigated at this point. Also 

covalent starPEG heparin hydrogel beads were not investigated in great detail as their size 

and stiffness was not reproducible so far and the achieved minimum diameters were 60 µm.  

For the ultra-low gelling point (ULGP) agarose beads it was observed that the determined 

stiffness was dependent on temperature (Figure 36A). ULGP agarose beads decreased in 

stiffness from 230 Pa for 25°C to 120 Pa for 37°C. The agarose hydrogel solidifies at 

temperatures lower than its gelling temperature and does not depend on any further cross-

linker molecule as it is necessary for polyacrylamide or starPEG heparin gels. The decrease 

of stiffness with increasing temperature was based on the thermosensitive behavior of 

agarose hydrogels [82,83]. Additionally, the apparent Young’s Modulus was affected by the 

used oil phase during production (Figure 36B). It turned out that hydrogel beads produced in 

fluorinated oil HFE-7500 with 1.5% Krytox® surfactant [48] led to a 3-fold decrease of 

stiffness compared to hydrogel beads produced in a commercially available oil supplemented 

with a surfactant (Picosurf-1, Dolomite). The decrease of stiffness depending on the used oil 

phase resulted probably from the different molecular weights of the used surfactants (Figure 

36C). Molecular transport of agarose molecules from the still liquid agarose over the interface 

“oil – hydrogel” into the oil phase was favored by smaller surfactant molecules (e.g. 

18 000 g/mol vs 7 000 g/mol) as more molecules can fit onto the interface. This is illustrated 

in Figure 36C by the different distances d between surfactant molecules on the droplet 

surfaces. Furthermore, the relatively high concentration of small surfactant molecules in the 

oil phase (total concentration 1.5%) promoted a constant turnover of surfactant molecules on 

the interface. Thus, more agarose molecules, that were not bound into the hydrogel network 

yet, were transported from the droplet into the oil phase by exchanged surfactant molecules 

and thereby decreased the actual agarose concentration in the droplet as illustrated in Figure 

36C (correspondence with Dr. Julian Thiele, IPF). If necessary, this problem could be 

overcome by decreasing the surfactant concentration stepwise down to 0.5% to diminish the 

transport across the interface.  

For ULGP agarose it was not possible to reach stiffness values higher than 2.3 kPa (2% ULGP 

agarose, produced in Picosurf-1) with the available setup. The 2% ULGP agarose hydrogel 

started to solidify too fast for higher concentration, which resulted in clogged tubings. Heating 

the tubing towards the PDMS microfluidic chip could not be achieved with the equipment 

available, which was also used to heat the vial where the hydrogel was stored. However, with 

ULGP agarose it was possible to reach very low stiffness values (i.e. 100 Pa and lower). Thus, 

ULGP agarose beads were further considered to generate hydrogel bead scaffolds.  
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By using polyacrylamide (PAAm), it was possible to reproducibly generate stable and small 

monodisperse hydrogel beads with a wide range of stiffness values [48] (Figure 37) reflecting 

cell and tissue stiffness [84]. In cooperation with colleagues, these hydrogel beads have been 

further characterized in depth, e.g. regarding homogeneity, stiffness variation and 

reproducibility. It also turned out that PAAm hydrogel beads could be easily functionalized 

with adhesion molecules by incorporating NHS groups during the hydrogel bead production 

and further addition of adhesion molecules after hydrogel polymerization [48]. This complexity 

extension of material properties promoted cell adhesion on PAAm hydrogels.  

 

Figure 36: Ultra-low gelling point agarose stiffness and effects influencing it. A) Temperature effect 

on ULGP agarose stiffness (0.5% ULGP agarose in PBS). Young’s Modulus was corrected for mean 

bead diameter. B) Oil effect on ULGP agarose stiffness (2% ULGP agarose in PBS). Young’s Modulus 

was corrected individually for each bead diameter. Number of measured beads = n; Box plot 

whiskers = SD. C) Sketch of molecular agarose transport over the interface “oil – droplet” leading 

to a decrease in agarose concentration followed by a decrease in stiffness. (correspondence with 

Dr. Julian Thiele, IPF).  
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Figure 37: Polyacrylamide (PAAm) hydrogel beads can cover a wide range of stiffness (determined 

by AFM measurements). A) Young’s Modulus with varied total monomer concentration (cT) from 

5.9% to 11.8% (n stated in graph, reproduced from [48]). B) Young’s Modulus of different PAAm 

hydrogel bead batches (cT varied) functionalized with PLL-Cy5 (0.3 mg/mL and ~ 70 x 106 beads) 

(n = 34), data points as dots in graph. Whiskers were defined as 1.5x interquartile regime and outliers 

as data points outside the whiskers. 

 

In order to characterize the amount of bound PLL-Cy5 to the PAAm network for different stiff 

hydrogel beads, confocal fluorescent images were acquired as well as RT-fDC measurements 

were performed (Figure 38). Figure 38 demonstrates clearly the dependency of fluorescence 

intensity to Young’s Modulus. The PAAm functionalization, that based on reactive NHS 

molecules, relied on the polymer network [85]. The more polymer chains are available, the 

more NHS-groups will be generated in the polymer network during hydrogel bead production. 

Thus, the amount of covalently bound PLL correlates with stiffness, meaning an increase of 

bound PLL for stiffer hydrogel beads. A direct correlation between fluorescence intensity and 

stiffness within one batch has not been observed. However, it seems obvious that the 

amount of bound PLL varies for differently stiff hydrogel beads.  

PAAm hydrogel beads were further considered to obtain hydrogel bead scaffolds as they 

were easy to produce, stable and reproducible in production and it was possible to 

functionalize the hydrogel beads and label them fluorescently. 
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Figure 38 Correlation between PLL-Cy5 fluorescence intensity and PAAm-PLL-Cy5 hydrogel bead 

stiffness determined by RT-fDC measurement. A – C) Confocal images of PAAm hydrogel beads (A) 

7.9% cT, B) 9.9% cT, C) 11.8% cT) functionalized with PLL-Cy5 (0.3 mg/mL and ~ 70 x 106 beads). 

Image acquisition was done with same settings for all confocal images. Scale bar: 25 µm. 

D) Histogram of Young’s Modulus distribution (determined with RT-fDC) with fitted normal 

distribution for respective PAAm composition. E) Histogram of fluorescence intensity distribution 

(determined with RT-fDC) with fitted normal distribution for respective PAAm composition. RT-fDC 

scatter plots – FL-Maxima vs Young’s Modulus. F) RT-fDC scatter plots (Young’s Modulus vs. 

fluorescence intensity) of all three PAAm hydrogel bead samples (flow rates: 7.9% cT: 0.024 µL/s; 

9.9% cT: 0.08 µL/s;11.8% cT: 0.12 µL/s) 
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4.5 Reproducible, regular and stable 3D scaffolds made of hydrogel 

beads 

 After defining potential hydrogel bead candidates (ULGP agarose, PAAm), they were 

combined with the developed filter combinations to build the actual hydrogel bead scaffolds. 

It was studied how this hydrogel scaffold 

could be obtained best and its characteristics 

(packing/porosity, stability, reproducibility) 

were determined. Additionally, the possibility 

to build up layers on top of each other and 

their stability was investigated. These layers 

were necessary to build up cell culture 

experiments as sketched in Figure 39. By 

generating scaffolds with layers of different 

stiffness, it was possible to study 

mechanosensing and durotaxis in 3D as it 

was done previously in 2D [2].  

The hydrogel bead scaffolds were generated by centrifuging the hydrogel beads onto the filter 

layers. Even though existing covalent and non-covalent starPEG heparin hydrogel beads 

turned out to be not reproducible in their properties at the studied time point, all four materials 

were additionally investigated in their ability to form stable 3D hydrogel bead scaffolds. The 

covalent starPEG heparin hydrogel beads were achieved by a continuous flow setup (Figure 

40A). Only polydisperse and large hydrogel beads (minimum size ~ 60 µm) were available at 

that time point, which often contained still oil residuals from the production. They turned out 

to be very sticky due to the material composition. However, if a hydrogel bead scaffold was 

once assembled, it was stable. It was easily stained by introduction of 5 µg/mL Rhodamine-

6G (Rhodamine-6G binds to some molecular parts of the gel) to enable confocal fluorescence 

microscopy to visualize the 3D structure of the hydrogel bead scaffold (Figure 40B, C). It was 

observed that especially the large hydrogel beads deformed during stacking and kept this 

deformation even though the pressure introduced by the pump was released for imaging 

(Figure 40C). 

 

Figure 39: Principle sketch of possible cell 

culture experiments in hydrogel bead scaffolds 

(stacks) where cells are introduced as layer 

between hydrogel bead stacks either with 

different stiffness or the same stiffness.  
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This could be seen as indication for viscoelastic properties of the covalent starPEG heparin 

hydrogel, even though the material was previously determined to be almost elastic [86].  

 

Figure 41: 3D hydrogel bead scaffolds made from non-covalent starPEG heparin hydrogel beads. 

A) Orthogonal view of hydrogel bead scaffold stained with Rhodamine-6G (2.5 mM (KA)7-RGDSP-

starPEG and 0.5 mM heparin). Scale bar: 100 µm. B) Orthogonal view of hydrogel bead scaffold 

(2.5 mM (KA)7-RGDSP-starPEG+fluorescein and 0.25 mM heparin). White arrow indicates fading out 

of the scaffold. Scale bar: 300 µm.  

 

  

Figure 40: Generation of covalent starPEG heparin hydrogel beads scaffolds. A) Continuous flow 

setup to generate hydrogel bead scaffolds. B) Orthogonal view of obtained hydrogel bead scaffold 

with large hydrogel beads stained with Rhodamine-6G (γ = 1). C) Orthogonal view of obtained 

hydrogel bead scaffold with intermediate hydrogel beads stained with Rhodamine-6G (γ = 0.5). Scale 

bars: 200 µm 



4.5 Reproducible, regular and stable 3D scaffolds made of hydrogel beads 

58 

 

The non-covalent starPEG heparin hydrogel beads were assembled both in the continuous 

flow setup and by centrifugation (Figure 41). The obtained hydrogel bead batches showed a 

small polydispersity in size with only a few large beads. Also these hydrogel beads were 

sticky, which resulted in a stable scaffold. However, in Figure 41B a fading out of the hydrogel 

bead scaffold can be observed (YZ plane, white arrow). This occurred as the hydrogel bead 

stack was built up while the chamber was positioned vertically, which resulted in a straight 

border (Figure 42A). This straight border then faded out after the chamber was placed back 

into its horizontal position (Figure 42B).  

As outlook it can be said that for both covalent and non-covalent starPEG heparin hydrogels 

scaffold generations would be possible, if suitable and reproducible hydrogel beads were 

available.  

Ultralow-gelling point (ULGP) agarose hydrogel beads were assembled in 3D hydrogel bead 

scaffolds by centrifugation. The 3D structure of the scaffold was only visible for fluorescently 

labelled ULGP agarose as fluorescent molecules from the liquid surrounding (to stain 

interstitial space) also diffused into the beads. Thus, a protocol to fluorescently label ULGP 

agarose was established by adapting a published modification protocol for agarose [51]. The 

ULGP agarose beads were monodisperse in size and resulted in densely packed hydrogel 

bead scaffolds (Figure 43). Like this the scaffolds were not very stable resulting in large areas 

where it faded out over time. To use them, it would be necessary to stabilize the obtained 3D 

structure in some way. Additionally, a coating with adhesion molecules would enhance the 

usability of the hydrogel bead scaffold.  

 

Figure 42: Sketch of fading out of hydrogel bead scaffold after stack generation. A) Scaffolds are 

generated while the chamber is in a vertical position. B) Scaffolds fade out after chamber is 

positioned again horizontally.  
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Figure 43: Orthogonal views of 3D hydrogel bead scaffolds made from ultra-low gelling point 

agarose beads. A) 2% ULGP agarose functionalized with Alexa-488 nm. B) 1% ULGP agarose 

functionalized with Cy2. Scale bar:100 µm.  

Polyacrylamide (PAAm) hydrogel beads were also stacked up by centrifugation as 3D hydrogel 

bead scaffolds. With the monodisperse PAAm hydrogel beads it was possible to generate 

densely packed 3D scaffolds (Figure 44). For uncoated PAAm hydrogel beads it was already 

visible with bright field microscopy that they arranged in highly regular structures (Figure 44A). 

However, 3D imaging of these scaffolds by confocal microscopy was not possible as any dye 

diffused from the interstitial space of the scaffold into the bulk of the beads due to the large 

pore size of the polymer mesh compared to tried fluorescence molecules (polymer mesh size: 

15 – 60 nm vs. maximum steric diameter of Rhodamine 6G: 1.5 nm [48,87]). The application 

of large fluorescence molecules, as dextran, to stain the interstitial space would induce the 

problem of potential osmotic deformation of the beads [88] and could thereby distort the 

appearance of the scaffold structure. Thus, PAAm hydrogel bead scaffolds presented the 

same problem regarding visualization as the ULGP agarose bead scaffolds. Their 3D structure 

could only be visualized by incorporating fluorophores irreversibly into the hydrogel. This was 

done by functionalizing the PAAm hydrogel with fluorescent Poly-L-Lysine (PLL) [48]. By this, 

it was possible to image the 3D structure of PAAm hydrogel bead scaffolds.  

For the uncoated PAAm hydrogel bead scaffolds, it was observed that they strongly faded 

out as no sticky PLL was on their surface. If the chamber was tilted the wrong way, the 

complete scaffold disassembled and rearranged. Also the functionalized PAAm hydrogel bead 

scaffolds faded out, but not as much as the uncoated PAAm hydrogel bead scaffolds.  
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Figure 44: 3D hydrogel bead scaffolds made from PAAm hydrogel beads. A) Bright field image of 

uncoated PAAm hydrogel bead scaffold (cT = 13.8%; light grey) with NIH3T3/GFP cell clusters 

incorporated (dark grey clusters) in the scaffold structure. Scale bar: 100 µm. B) and C) Confocal 

slices of PLL-Cy5 functionalized PAAm hydrogel bead scaffolds (cT = 11.8%). Scale bars: 25 µm (B) 

and 50 µm (C). 

An approach to avoid or at least decrease the observed fading out of the 3D hydrogel bead 

scaffolds was the generation of an additional (sticky) hydrogel bead layer as “stopper layer” 

on top of the hydrogel bead scaffold to hold the scaffold beads in place. It turned out that this 

additional layer minimized the movement of the hydrogel bead scaffold. Before imaging 

(especially for time-lapse imaging) the scaffolds should settle at least two hours after stacking 

to avoid any large scaffold movement due to rearrangement and fading out during imaging. 

Another way of holding the scaffolds in place would be the introduction of a fibre filter piece 

into the channel. However, this approach was not working when tested. An advanced way 

would be to anneal the hydrogel beads after stacking either by UV light (might be problematic, 

if cells are already embedded) or chemically, as it has been recently done for hyaluronic acid 

microporous annealed particle hydrogels [45,46].  

One way of characterizing bead scaffolds had been demonstrated with PMMA bead scaffolds 

(chapter 4.3). However, this characterization was only sufficiently working for highly regular 

and well stained structures. It was observed that hydrogel bead scaffolds generated from 

ULGP agarose beads did not arrange in any regular structure as previously observed for 

PMMA beads (Figure 43 and Figure 45A, B). With functionalized PAAm hydrogel beads regular 

structures could be achieved, but the staining was irregular (Figure 45C) based on the already 

observed differences within a batch (compare Figure 38).  
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To determine the repeatability and porosity, PAAm hydrogel bead scaffolds were imaged with 

confocal microscopy with a z-step size of 1 µm. The acquired 3D images were further 

processed (filtering and thresholding to generate binary images) and analyzed with the FIJI 

plugin “Voxel counter”. The plugin calculated beside different areas also the volume fraction, 

which was used to compare different hydrogel bead scaffolds with each other. Figure 45 

compares the volume fractions of regular PMMA bead scaffolds with irregular and regular 

PAAm hydrogel bead scaffolds. It was possible to generate regular PAAm hydrogel bead 

scaffolds with a volume fraction comparable to the regular PMMA bead scaffolds. Also the 

irregular hydrogel bead scaffolds showed volume fractions similar to regular plastic bead 

scaffolds (Figure 45E). Important for a proper analysis was bright and regular staining of the 

structure (either hydrogel beads or interstitial space), small step sizes in z-direction as well as 

a suitable threshold adjustment for the microscopy images to limit data misinterpretation by 

false-positive pixel determination. Such data misinterpretation can be observed in Figure 45, 

where a regular PMMA scaffold (Figure 45A) resulted in a volume fraction of 76.9%. Based 

on necessary volume interpolation during volume fraction determination, the points where 

the beads were connected with each other appeared either larger or smaller than they actually 

were (Figure 45A vs B, second part). Volume fractions of randomly close packings vary 

between 0.60 and 0.74 for spheres of same size [89]. So far, it has been demonstrated that 

it is not possible to reach a higher volume fraction than ~ 74% for any packing of 

monodisperse spheres [90,91]. Thus, a smaller step size in z-direction is recommended for 

future analysis to diminish the interpolation error during volume fraction calculation resulting 

in an overestimated volume fraction. Further data misinterpretations were generated by the 

irregular staining of the PAAm hydrogel beads. Figure 45D compares a filtered confocal slice 

from the middle of the z-stack with its binary counterpart. The binary image was not able to 

visualize the boundaries of the hydrogel beads at the connection points adequately. This was 

based on the initial weak and irregular staining in combination with light scattering during 

microscopy. Suitable refractive index matching of the medium (e.g. with TDE or iodixanol) to 

the refractive index of the hydrogel beads should lead to an increase of imaging quality by 

decreasing loss of detectable photons due to light scattering [92].  
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Figure 45: Characterization and comparison of regular, well stained PMMA bead scaffolds and 

irregular stained PAAm hydrogel bead scaffolds. Volume fractions (%) of binary 3D confocal stacks 

were determined by FIJI plugin “Voxel counter” A) Two exemplary images of a highly regular PMMA 

scaffold at different z-positions and with volume fraction of 76.9%. Scale bar: 100 µm. B) Two 

exemplary images of a regular PMMA scaffold with defects at different z-positions and a volume 

fraction of 63.71%. Scale bar: 100 µm. C) and D) Exemplary confocal images at different z-positions 

and respective processed binary images of a regular PAAm hydrogel bead scaffold (functionalized 

with PLL-Cy5) (C and D are from same stack). Scale bar: 25 µm. E) Volume fractions of different 

PMMA bead scaffolds (A, B), irregular PAAm bead scaffolds (n = 6) and regular PAAm bead scaffolds 

(n = 9, including C). 74% illustrates the maximal volume fraction that can be achieved based on 

theory [90,91]. Whiskers were defined as standard deviation and outliers as data points outside the 

whiskers. 
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One advantage of the developed scaffold generation method was the ability to create 

differently stiff layers within one hydrogel bead scaffolds. The scaffold layers were 

successfully stacked up on top of each other by alternating the centrifugation steps and 

addition of new hydrogel beads. The scaffold interfaces were stable over night with the help 

of large stopper layers to hold the scaffolds in place.  

Taken together, it was possible to generate reproducible, partly regular and stable hydrogel 

bead stacks with PAAm hydrogel beads. Due to the material properties of PAAm, a broad 

stiffness range could be covered and hydrogel beads with and without functionalization were 

generated. Additionally, the best results in scaffold generation and characterization based on 

these properties were achieved for PAAm hydrogel beads. Thus, PAAm was the material of 

choice for first cell culture applications.  
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4.6 NIH-3T3/GFP cell migration within 3D hydrogel bead scaffolds 

After successful scaffold generation and characterization, PAAm hydrogel bead scaffolds 

were generated with stiffness layers of ~ 2-3 kPa (cT = 7.9%), 5 – 6 kPa (cT = 9.9%) and 

around 11 – 12 kPa (cT = 11.8%) (Figure 37). Fibroblasts were used to investigate cell survival 

as well as performing initial cell migration studies within differently stiff hydrogel scaffolds. 

GFP-labelled fibroblasts (NIH3T3/GFP) were chosen as they are a robust cell type, easy to 

handle and they already demonstrated distinct reactions to stiffness changes of their 

microenvironment [2,31].  

By random cell seeding into hydrogel bead scaffolds and daily manual medium exchange, cell 

survival of NIH3T3/GFP fibroblasts was checked. Figure 46 illustrates successful survival of 

 

Figure 46: NIH3T3/GFP (green) survival over 4 days in PAAm hydrogel beads with different stiffness 

(cT = 7.9%, 9.9% and 11.8% respectively) and functionalized with PLL-Cy5. Dead cells were stained 

with 5 µg/mL propidium iodide. Maximum projections of representative confocal microscopy stacks, 

same settings for all images. Scale bar: 100 µm. 
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fibroblasts in 3D over four days in differently stiff hydrogel bead scaffolds (cT = 7.9%, 9.9% 

and 11.8% respectively). After four days no massive cell death was observed. The acquired 

confocal stacks were of the same dimension for all time points for the respective position 

within the scaffold. Even though the respective imaging positions were initially saved and 

selected again for the next imaging session by using a motorized microscope table, the exact 

positions could not be adjusted based on the available slide holder. Thus, quantification of cell 

death over time based on these images was not representative. Microscopy settings were 

kept the same during image acquisition and image processing (increase of propidium iodide  

(PI) intensity) was done the same for all images. 

 

Figure 47: NIH3T3/GFP (green) network formation in PAAm hydrogel bead scaffolds functionalized 

with PLL-Cy5 (magenta) and different stiffness (cT = 7.9%, 9.9% and 11.8% respectively). 3D 

projections. Day 4 does not show beads as the fluorescence intensity was too low to be detected. 

Dead cells were stained with 5 µg/mL propidium iodide (red).  
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Figure 47 visualizes 3D projections of the same positions and time points already shown in 

Figure 46, but additionally with PLL-Cy5 functionalized PAAm hydrogel beads in magenta. It 

turned out that at day 4 the hydrogel beads were not able to be visualized anymore as the 

Cy5 was apparently bleached at this time point due to daily handling (medium exchange). In 

the 3D projections the cell network in the hydrogel bead scaffolds formed by NIH3T3/GFP 

fibroblasts can be seen. The fluorescence intensities of the hydrogel beads were not 

enhanced manually, resulting in differently bright hydrogel scaffolds for different stiffness. as 

already observed in chapter 4.4.  

However, one can still clearly see how cells elongated and “wrapped “around hydrogel beads 

and formed connected cell clusters and networks. The bright magenta spots indicate hydrogel 

beads trapped in the cell clusters. Figure 48 shows more clearly how hydrogel beads were 

ensheated by cells. Some hydrogel beads (examples indicated with white arrow) were 

deformed and compressed by the surrounding cells and resulting in an intensity increase due 

to the same number of fluorophores in a smaller volume. Deformed hydrogel beads have 

been observed for all used hydrogel bead compositions. A further characterization of number 

of deformed beads or the detailed deformation was not done so far.  

Initial cell migration studies were 

performed by seeding fibroblasts as layer 

between two hydrogel bead scaffolds of 

functionalized PAAm hydrogel beads with 

different stiffness (cT = 9.9% vs. 

cT = 11.8%; 5 – 6 kPa vs. 11 – 12 kPa). Cell 

migration was then recorded over night by 

confocal time lapse imaging. 

Figure 49 illustrates a single fibroblast 

migrating through a stiff PAAm hydrogel 

bead scaffold functionalized with PDL 

(50 µg/mL) (cT = 11.8%, 5 kPa). The 

individual maximum projections 

demonstrate how the cell interacted with 

the hydrogel beads and formed 

protrusion-like structures usually found 

during adhesion-based cell migration [93,94]. The hydrogel beads served as 3D environment 

for the fibroblast indicated by the dark grey spot in the cell maximum projections, where the 

 

Figure 48: NIH3T3/GFP (green) in 3D PAAm 

hydrogel bead scaffold (cT = 9.9%) functionalized 

with PLL-Cy5 (magenta) after 24 h. Examples of 

deformed hydrogel beads are indicated with white 

arrows. Confocal microscopy slice; scale bar: 

100 µm. 
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cell shaped itself around the beads. The cell explored its environment also in z-direction, but 

was not visualized in these maximum projections.  

While observing fibroblasts migrating through PDL functionalized PAAm hydrogel bead 

scaffolds, the question occurred how cells interact with the hydrogel beads and if the hydrogel 

beads were moved by migrating cells. Therefore, PLL-Cy5 functionalized PAAm hydrogel 

bead scaffolds were generated using the same compositions as before (i.e. cT = 9.9% vs. 

cT = 11.8%; 5 – 6 kPa vs. 11 – 12 kPa). Figure 50A demonstrates how cells migrated at the 

scaffold interface (indicated by dashed line), when facing scaffolds with either a median 

Young’s modulus of 6 kPa or 12 kPa in close vicinity to each other. The maximum projections 

were overlaid with each other over time (grey) with the starting point (t = 0 min) in green and 

the end point (t = 912 min) in red. So far, no clear migration direction of fibroblasts in these 

3D hydrogel bead scaffolds was observed.  

To overcome the disadvantages of missing details while overlaying maximum projections and 

to illustrate how single cells interact with the hydrogel beads, two close up montages were 

generated from selected areas (Figure 50A insets). Figure 50B and C show the same single 

confocal slice over time (see respective time stamp). Fibroblasts (green) interacted with the 

PLL-Cy5 functionalized PAAm hydrogel beads (magenta).  

 

Figure 49: NIH3T3/GFP fibroblast migrating through PAAm hydrogel bead scaffold (cT = 11.8%) 

functionalized with PDL. Maximum projection and overlay of all 47 time points (time increment 

20 min) with yellow line illustrating migration track as well as individual maximum projections for two 

selected time points. Scale bar: 25 µm.  
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Figure 50: NIH3T3/GFP fibroblasts migrating through 3D PAAm hydrogel bead scaffolds 

functionalized with PLL-Cy5 (magenta) over 15 h at scaffold interface: cT = 9.9% to 11.8% (dashed 

line) A) Maximum projection of fibroblast fluorescence signal for each time point and overlay of all 

time points (grey; time increment 15 min). t = 0 min: green; t = 912 min: red. Scale bar: 50 µm. B, C) 

Confocal slices of close ups of indicated areas in A) with fibroblasts (green) migrating through 3D 

PAAm hydrogel bead scaffold (magenta). Scale bar: 20 µm.  
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Fibroblasts attached to PAAm hydrogel beads and migrated into the stiff scaffold by 

elongation and pulling the rear behind them, indicated by the movement of the bright 

fluorescent hydrogel beads at the bottom of the images (Figure 50B). The cell then detached 

from these beads at t = 535 min as they could not be pulled further into the existing scaffold. 

Figure 50C illustrates that fibroblasts could also move hydrogel beads around, if the scaffold 

was not dense enough. Starting at t = 645 min a fibroblast attached to a compliant PAAm 

hydrogel bead (compliance was indicated by the weak fluorescent Cy5-signal) and pulled the 

bead towards the cell-bead cluster. Comparing the last two shown time points, the 

fluorescence intensity of the “collected” hydrogel bead increased, indicating a compression 

of the hydrogel bead by cellular forces. The acting cellular forces were not quantified further.  

The successful migration experiments demonstrated one difficulty already mentioned in the 

previous chapter. As soon as the stabilization time of the scaffold after production was below 

two hours or the stopper layer was too small, the scaffolds moved and the initially selected 

scaffold area drifted away. Thus, cell migration tracking needed further image processing 

when the cells of interest where still in the field of view. To re-adjust the time points, the 

stacks acquired for each position were corrected for a 3D drift over time by using a FIJI 

registration plugin and the dead cell nuclei stained with propidium iodide as registration points.  

 

Furthermore, it was possible for the first time to demonstrate how fibroblasts migrate in 3D 

hydrogel bead scaffolds without any adhesion binding sites. NIH3T3/GFP fibroblasts were 

seeded randomly in PAAm hydrogel bead scaffolds with cT = 13.8%, E = 6.6 kPa (Figure 44A) 

and observed by confocal microscopy over-night. All cells showed a completely different 

morphology with their round shape compared to the ones observed in PLL-Cy5 coated, where 

they appeared elongated and spread. This indicated that fibroblasts were indeed not able to 

adhere on the PAAm hydrogel beads and a coating of PAAm beads with adhesion molecules 

was necessary to promote cell adhesions. Nevertheless, fibroblasts survived successfully 

within the non-functionalized PAAm hydrogel bead scaffolds. Some fibroblasts even used an 

amoeboid-like migration mode to move from one cell cluster to another (Figure 51). This 

migration behavior could be compared with already observed migration mode with low 

adhesion, i.e. absence of focal adhesions, and high cortical contractility [95]. 

This migration experiment demonstrated another strength of the developed 3D in vitro 

system as no other in vitro model is known where cell migration can be studied in 3D without 

active cell adhesions but defined porosity and stiffness.  



4.6 NIH-3T3/GFP cell migration within 3D hydrogel bead scaffolds 

70 

 

 

 

 

Figure 51: Maximum projection of NIH3T3/GFP (green) fibroblasts migrating in amoeboid-like 

migration mode through PAAm hydrogel bead stack (cT = 13.8%, E = 6.6 kPa) within a total imaging 

time of 15 h. Dead cells were stained with 5 µg/mL PI (red). Scale bar: 50 µm.  
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5 Discussion and Concluding Remarks 

With the aim to develop 3D scaffolds with hydrogel beads as scaffold building blocks and to 

decouple mechanical properties from porosity (and if possible active binding sites), a new cell 

culture method was developed from scratch. Necessary parameters for a culture device were 

defined and based on these, the commercially available ibidi µ-SlideIV was established as 

suitable culture chamber. With simulations of the theoretical oxygen supply by diffusion and 

oxygen consumption of cells by maintenance and proliferation, it was determined that oxygen 

supply would be sufficient theoretically in this device. A filter combination of different 

materials (cellulose fibre filter, PMMA and agarose beads) was developed to ensure a 

successful generation of the actual hydrogel bead scaffold in the chosen device. Hydrogel 

beads of different materials were then investigated (reproducibility, stiffness range, 

fluorescent visualization, functionalization possibilities) and hydrogel bead scaffolds were 

generated with them acting as scaffold building blocks. The achieved scaffolds were 

characterized by fluorescence microscopy (stability, handling, regularity/porosity) and PAAm 

was chosen as the best material within the investigated ones to generate hydrogel bead 

scaffolds with tuneable stiffness and constant pore size. With these novel scaffolds that 

decoupled stiffness and porosity, initial cell culture experiments were successfully performed 

to check cell survival as well as cell attachment and migration. Differently stiff PAAm hydrogel 

beads were used to demonstrate the suitable application of the developed system for 

mechanosensitivity studies in 3D. Additionally, it was possible to generate 3D scaffolds with 

tuneable stiffness, constant pore size and no active binding sites to prevent cell adhesion. 

With this combination it was possible for the first time to study mechanosensitivity and cell 

migration of cells in 3D without active cell adhesions in scaffolds with decoupled porosity and 

stiffness.  

During the development of the 3D in vitro cell culture method, two aspects appeared to be 

very prominent.  

It was observed that the hydrogel beads could be moved around by cells when migrating 

through the scaffold, if the bead packing has not reached the close-packed structures Figure 

45C. To generate stable scaffolds with close-packed structures as in vitro models, microbeads 

would either have to be filled into a confined space as done in the here presented project by 

using a channel geometry and additional “stoppers” or the microbeads have to be annealed 

in a suitable way. In the last decade it turned out that one of the biggest challenges in 

microbead based scaffolds was (and still is) the annealing of beads to generate stable 
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scaffolds [20]. This statement was as well observed in during the method development, 

where an intensive protocol optimization was necessary to generate stable PMMA filter 

scaffolds as well as stable hydrogel bead scaffolds.  

One way to stabilize the here presented hydrogel bead scaffolds was to add another filter of 

either hydrogel beads or a fiber filter on top of the hydrogel scaffolds. By using a large layer 

of PAAm hydrogel beads with PLL-functionalization, it was tested whether these bead layer 

(“stopper layer”) was already sufficient to hold the actual scaffolds in place. These “stopper 

layer” faded out as observed before. By using a large amount of beads, the hydrogel bead 

scaffolds were successfully hold in place and the fading could be prevented.  

When different hydrogel beads would be used as scaffold building blocks, this method might 

not work. If this is the case and the actual scaffold used to study the mechanisms of interest 

cannot be annealed chemically without harming cells, another possibility would be that the 

“stopper layer” is chemically or physically annealed. Stiffness as well as exact pore size does 

not play a role for these layers as their only purpose is to hold the previously generated 

hydrogel bead scaffold in place. If another fiber filter should be used as stopper, it has to be 

kept in mind that the scaffold layers need to end at (or even in) the inlet as the fiber filter 

cannot be directly pushed into the channel due to geometrical limitations.  

One example to chemically link hydrogel beads was presented by the group of Tatiana Segura, 

who developed covalently linked 3D hydrogel scaffolds as injectable scaffolds [45]. The 

resulting scaffolds were not varied in stiffness and were mainly used for in vivo applications 

(i.e. wound healing). Other gelation strategies that could be used to anneal hydrogel bead 

scaffolds were reviewed in 2016, also in combination with suitable hydrogel materials [83]. 

Generally, when choosing a chemical or physical strategy to anneal hydrogel beads, it is 

important to avoid cytotoxic conditions, if cells are incorporated into the scaffold prior 

annealing. 

 

The second aspect was, that the chosen hydrogel bead size and the resulting pore size of the 

scaffold might have an effect on the cell behaviour. It has been shown for implants that an 

optimal pore size exists for tissue regeneration in dependence of the cell and tissue type [22]. 

Cell migration can be limited based on cell-scaffold properties to degrade the scaffold and the 

nucleus as migration-limiting compartment in small-porous scaffolds [77]. For fibroblasts, an 

optimal implant pore size was determined as 5 – 15 µm [22], which fits to the here presented 

scaffolds. If other cell types are going to be studied in the developed system, an adjustment 

of the hydrogel bead diameter and thereby of the scaffold pore size might be necessary.  
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One big challenge in using hydrogels as scaffold material for mechanosensitivity applications 

is the effect adhesion molecules have on cell behaviour. It has been shown, that the amount 

and type of adhesion sites available for cells affected. Migration speed and spreading area 

varied for fibroblasts growing on PAAm substrates coated with different amounts of RGD-

motifs or fibronectin (constant stiffness) [96]. For human mesenchymal stem cells it was 

observed that adhesion as well as focal adhesion formation was changed when grown on 

differently stiff PDMS substrates coated with fibronectin [97]. It has also been observed that 

the amount of laminin on differently stiff PAAm substrates coated with PDL and Matrigel was 

constant while axonal sprouting was affected by the stiffness change in 2D [35].  

Thus, one remaining question is whether adhesion sites (i.e. by PLL coating) remain constant 

on PAAm hydrogel beads with increasing stiffness. To analyze the amount of bound PLL-Cy5 

was to quantify the fluorescence already available by the label of the used adhesion molecule. 

Confocal images illustrated that PAAm hydrogel beads were completely stained in the bulk 

with PLL-Cy5 (Figure 38A-C). We demonstrated, that the functionalization started at the 

surface of the beads [48]. Therefore, it was plausible that the surface polymer chains were 

saturated with PLL-Cy5, when the bulk of the bead was also stained completely and evenly. 

By using RT-fDC observations from the confocal microscopy experiments were confirmed 

that PLL-Cy5 intensity increased with higher total monomer concentration (cT) (i.e. higher 

stiffness) (Figure 38). However, it was not possible to quantify a direct correlation within 

single hydrogel bead batches between stiffness variation and fluorescence intensity variation. 

Additionally, the number of available adhesion points on the bead surface remained unknown. 

Another possibility to quantify the amount of available adhesion molecules would be to use 

western blots together with a suitable antibody. Using this method, Flanagan et al. 

determined the amount of laminin on Matrigel coatings on differently stiff 2D PAAm gels [35]. 

However, it would display the total amount of the PLL-Cy5 incorporated into the beads  and 

not only the molecules on the bead surface available for cell adhesions. Thus, the results 

would be complementary to the RT-fDC results.  

Another labelling technique could be to use radioactive adhesion molecules. For 2D gels the 

number of adhesion molecules per area was defined by using radioactivity labelling of the 

adhesion molecules [96]. Based on the radioactivity labelling the total amount of radioactivity 

(i.e. adhesion molecules) was correlated with the gel area, but gel thickness was not taken 

into account. Thus, the actual adhesion points on the surface remained unknown. Therefore, 

also the radioactivity labelling appeared not to be suitable for beads or curved objects to 

determine the molecules bound to the surface. 
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In general, the difference between labels on 2D hydrogels and hydrogel beads, where the 

surfaces serve as attachment area for cells, is, that the number of accessible adhesion points 

for cells on the bead surface are hard to distinguish due to small curvature of the beads. 

The cell survival study demonstrated for compliant PAAm hydrogel beads (cT = 7.9%) that 

cells attached well to the beads and formed cell clusters. However, so far it could not be 

determined whether the different amounts of bound PLL-Cy5 were affecting cell behaviour. 

To produce PAAm hydrogel beads with the same amount of bound adhesion molecules but 

different stiffness, it will be necessary to perform hydrogel bead functionalization with 

different concentrations of PLL-Cy5 and differently stiff beads to generate a standard curve. 

With this, the amount of bound PLL (determined by fluorescence intensity) can then be 

correlated with applied PLL concentration and hydrogel bead stiffness. Based on this 

correlation, hydrogel beads with different stiffness but same PLL amount can be chosen. 

Furthermore, hydrogel bead scaffolds of the same stiffness but with different PLL amounts 

could be generated to compare the effect of PLL concentration on cellular behaviour with the 

developed method of this study.  

Successful cell survival and cell migration was demonstrated for fibroblasts within the 

developed 3D model for scaffolds of different stiffness and same porosity as well as with and 

without adhesion molecules present.  

Fibroblast migration in 3D is known to work in at least three different ways – lobopodial, 

lamellipodial which is also observed in 2D, and amoeboid mode (also called blebbing [94]) [93]. 

The first two are integrin-based adhesion modes, which are also called mesenchymal 

migration modes, whereas the latter one is generally used for integrin-independent or 

adhesion-independent migration modes [98].  

Compared to 2D migratory behaviour where focal adhesions are crucial, it was questioned 

whether 3D cell migration depended mainly on focal adhesions [99]. In 2011 it was possible 

to visualize distinct focal adhesion complexes in 3D in collagen gels [100]. On the contrary, 

others found only a diffuse signal of the proteins involved in forming focal adhesions in 3D 

collagen gels [101]. Over different adhesion-dependent fibroblast migration experiments, it 

appeared that a specific durotactic behaviour (i.e. cell accumulation in stiffer environments) is 

conserved across 2D and 3D [2,31,32,38,99]. In Figure 50A a similar durotactic behavior might 

be existing when the amount of cells migrating to the stiffer scaffolds are compared with the 

one migrating to the compliant scaffold (i.e. red marks illustrate final time point). However, 

this was just an initial successful experiment and repetitions are needed to verify this 

observation. Additionally, cells might have migrated out of the acquired stack region towards 



5 Discussion and Concluding Remarks 

75 

 

the bottom and were thereby not displayed anymore at the end, as the starting height of the 

z-stack was at least 10 µm above the channel bottom. Figure 50B, C illustrate well that the 

fibroblasts adhere to the PAAm hydrogel beads (functionalized with PLL-Cy5) and interact 

with the hydrogel beads. The cell in Figure 50B seems to have squeezed through the pores 

between the hydrogel beads without moving them around in the dense scaffold, indicating a 

proper packing and suitable resulting pore sizes for migration [22,77]. 

 

The amoeboid-like migration of fibroblasts that was observed within non-functionalized PAAm 

hydrogel scaffolds (Figure 51), illustrates another application of the developed method. Focal 

adhesion-independent migration modes are promoted by different cell-intrinsic and –extrinsic 

factors. Cells lacking integrins or expressing integrins at very low levels as well as high 

actomyosin contractility favour non-adhesive migration as well as high confinement levels 

[93,98]. Since the substrate interactions during amoeboid migration are poorly understood,  

this new method could provide a tool to gain insights. Four possible force transmission 

mechanisms have been proposed for focal adhesion-independent migration: swimming 

migration, cell-substrate intercalation, chimneying force transmission and flow-friction-driven 

force transmission [98]. The migration seen in Figure 51 could not be assigned to any of these 

as the hydrogel beads were not visible. Thus, it is not known whether the cells pushed the 

hydrogel beads around or swam through pores in the scaffold.  

Other studies for 3D migration without adhesion are usually performed in confinements in 

stiff PDMS microfluidic channels [102] or in sandwich models [95,103,104]. First known 

mechanosensitivity studies for non-adhesive migration were performed by Pebworth et al. in 

2014. Cancer cells were grown on plastic and overlaid with alginate of different concentration 

(i.e. different stiffness). The alginate gels did not present any ligands for cell adhesions. The 

cancer cells migrated less into stiffer alginate layers [105]. However, this method included 

the already discussed problem that stiffness and porosity are coupled within bulk gels. With 

the developed 3D scaffolds, this decoupling opens the field to study 3D mechanosensitivity 

and 3D migration.  

 

Initial cell migration experiments were further analyzed using cell tracking algorithms provided 

by the FIJI plugin “TrackMate” [106]. With the help of an additional extension “Track 

analysis”, it is possible to determine the total travel distance in 3D as well as migration 

speeds. The “TrackMate” was developed to track single particles and might have issues with 

tracking spread cells in 3D, as the algorithms are optimized for spot-like objects.   
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So far, cell tracking has only been tested using GFP-labelled fibroblasts, being fluorescent 

over the entire cell. It would be feasible to use nuclear dyes or other cellular stains that 

improves discrimination of single cells in 3D and in a cell collective during migration. In this 

project two nuclear dyes, Hoechst 33258 (3 µM) and Vybrant™ DyeCycle™ Ruby stain (5 µM), 

have been tested for over-night time-lapse imaging sessions. For Hoechst, cell death was 

observed already after 3 – 4 h. This was expected as the fluorophore emitted blue 

fluorescence when excited with UV light. UV light itself damages DNA and the binding of 

Hoechst to the DNA inhibits cell processes [107]. For the Vybrant dye, it turned out that cell 

death was increased drastically for the light-exposed areas of the scaffold compared to the 

areas that haven’t been exposed to light. Imaging frequency was around 3 – 4 3D stacks per 

hour with an acquisition time of 3 – 5 min per stack and the application of a high resonant 

scanner and a line average of 8 lines per frame. The experiment was performed for 16 h. The 

intensive light exposure of DNA interacting fluorophores reached apparently the phototoxicity 

level for the cells [108], although Invitrogen stated a low cytotoxicity (but not explicitly for 

long-term live imaging). Alternatively, DRAQ5 could be checked, as no photobleaching was 

observed in a study. However, experiences in long-term live imaging was not reported [107]. 

To decrease phototoxicity in general, fluorophores of the (far) red spectrum should be 

preferred as the transported energy of these light waves is lower than for blue light. Another 

possibility could be SiR-Hoechst as DNA stain that is suitable for long-term live imaging at 

concentrations below 1 µM in the imaging medium [109]. Even though this staining 

mechanism is also based on the minor grooves as Hoechst does, it is supposed to be not as 

cytotoxic as Hoechst is. To decrease cytotoxicity, any staining not interfering with the cellular 

DNA would be recommended.  

Live imaging of cell migration within the developed 3D scaffolds can become problematic for 

cells deep in the scaffolds as light is scattered a lot in the dense colloidal crystal and thereby 

areas with depth of more than 200 µm become very blurry. To overcome this problem, 

refractive index matched cell culture medium could be used by using Iodixanol as supplement 

to the culture medium [92]. It has been demonstrated that Iodixanol does not affect cell 

growth or death in cultured HeLa cells. However, it has to be kept in mind that this chemical 

might alter cell behaviour, even though it is thought not to be likely. Fixation and 

immunohistochemistry protocols to stain cells in the system are possible without destroying 

the system. With the help of filter paper to accelerate liquid exchange within the scaffold, 

washing steps can be performed within appropriate time and only small amounts of liquid 
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(~ 150 – 200 µL) are needed to completely exchange the liquid within one channel (i.e. one 

experimental condition) of the chamber. 

 

For the simulation of the oxygen supply a random cell distribution was assumed. As the cells 

showed a tendency to form cell clusters by cell migration, this assumption was not valid for 

longer cultivation times than 24 h. Thus, implementation of large cell clusters might change 

the resulting oxygen profiles. Peter Buchwald demonstrated necrotic cores for pancreatic 

islets with a diameter of 150 µm and larger for static culture conditions [62]. The 

implementation of cell growth took only oxygen limitations into account. Cell growth and 

proliferation might also be affected due to limited amount of glucose. Cell death was also not 

considered. This could be done by a step-down function [62]. Different cell types also have 

different oxygen consumption rates [67]. Implementing a discontinuous flow to supply the 

system regularly with fresh medium and more oxygen is possible with the developed method. 

The implementation of a continuous flow, which is necessary for certain cell types (e.g. 

endothelial cells), is also possible. Further oxygen diffusion simulations could be performed 

to study the effects of different flow settings on oxygen supply. Additionally, it would be 

interesting to perform experiments to check the oxygen concentration distribution in the 3D 

system. This could be done by oxygen-sensitive nanoparticles, that are incorporated into the 

cells by endocytosis (e.g. NanO2 from ibidi). Other possibilities to quantify the oxygen 

distribution in 3D could either be water-soluble molecules or nanobeads embedded in the 

hydrogel [110]. Oxygen detection can be based on phosphorescence quenching by oxygen 

[111,112], that will be optically detected by lifetime imaging, or by intensity-based imaging.  

 

For a better understanding of the system, the hydrogel bead scaffold structure needs further 

optimization to demonstrate its reproducibility, not only for functionalized hydrogel beads, but 

also for non-functionalized ones (i.e. without adhesion molecules). Therefore, the staining 

needs to be optimized by using new prepared PAAm hydrogel beads with NHS-

functionalization as well as exact refractive index matched medium. For non-functionalized 

PAAm beads, a way to visualize the 3D structure has to be developed. One possibility would 

be to use already fluorescently labelled acrylamide monomers to directly produce fluorescent 

PAAm hydrogel beads. Another way could be to functionalize PAAm beads with fluorescent 

molecules without adhesion molecules present. Therefore, a fluorescent molecule with 

amine groups included would be needed, as these are interacting with the activated NHS-
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groups to form covalent bonds. By this, fluorescent PAAm hydrogel beads could be produced 

to generate PAAm hydrogel bead scaffolds without adhesion sites.  

Furthermore, other materials like covalent starPEG heparin gels could be tested as hydrogel 

bead material to even enhance the broad application range of the developed system.  

 

This innovative new approach of 3D in vitro hydrogel bead scaffolds opens multiple 

opportunities to investigate cell migration and mechanosensitivity in 3D and unravel 

underlying mechanisms. PAAm hydrogel bead scaffolds with layers of different Young’s 

moduli (e.g. 3 kPa, 6 kPa and 12 kPa and even higher) can be generated to investigate cell 

mechanosensitivity and cell migration in 3D with constant scaffold porosity. By using non-

functionalized and functionalized PAAm hydrogel beads, a direct comparison of 

mechanosensitivity with and without adhesion molecules present is now possible. Thus, 

adhesion-independent cell migration studies in defined 3D microenvironments can now be 

performed to identify and better understand cell migration mechanisms in confinements 

without adhesive molecules. In addition, these scaffolds can be used to study 

mechanosensitivity in 3D without integrin-based cell migration.  
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Appendix B 

FIJI macro for FFT analysis maxima: 

 

run("FFT Options...", "fft complex"); 

run("Set Measurements...", "  shape redirect=None decimal=1"); 

input="E:\\folder of input data \\"; 

output="E:\\folder for output data\\"; 

 

setBatchMode(true); 

list=getFileList(input); 

for(i=0; i<list.length; i++){ 

 open(input+list[i]); 

 run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel"); //scale in pixel and not in 

µm. results defaults in Phyton program 

 stacksize=nSlices; 

 for (j=1; j<=stacksize; j++) { 

  run("Next Slice [>]"); 

  resetMinAndMax(); 

  run("Enhance Contrast", "saturated=0.35"); 

  run("FFT"); 

  selectWindow("Complex of "+list[i]); 

  saveAs("Text Image", output+list[i]+"_"+j+"_FFT_real"); 

  run("Next Slice [>]"); 

  saveAs("Text Image", output+list[i]+"_"+j+"_FFT_imag"); 

  close(); 

  selectWindow("FFT of "+list[i]); 

  run("Find Maxima...", "noise=25 output=[Point Selection] exclude"); 

  run("Measure"); 

  close(); 

  selectWindow("Results"); 

  saveAs("Text", output+list[i]+"_"+j+"_results"); 

  selectWindow("Results"); 

  run("Clear Results"); //necessary to save only the actual measurements from 

the actual FFT image 

  } 

close(); 

} 

setBatchMode(false); 
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Python script to determine regularity of PMMA bead scaffolds 

HexPeakAmpl.py 

 

Analysis of beads. Given are Fourier transform ("*_FFT_real/imag.txt") 

and the position of peaks ("*_results.txt"). Assuming a hexagonal 

lattice and intperpolating missing peak locations, finds Amplitude and  

standard deviation of Gaussian fit to every peak in the image 

(even those not detected). 

 

What this script does: 

 

1. Make a list of all files ending with "_results.txt" in this directory 

   -load_peak_loc 

2. From each file, use the position of peaks to extrapolate for all 

   positions on a hexagonal lattice. In lattice fitting, weights are 

   used that are linear proportional to their distance from the origin. 

   -find_lowest_7  (the center peaks) 

        If these are not found correctly (also because the particle 

        detection algorithm might not hae succeeded), tune the  

        `STANDARD_R` and `STANDARD_PHI` parameters with expected values.  

   -find_grid (fit a hecagonal lattice to the peaks using magic) 

        -make_hex_grid (lattice-creator) 

        -reduce_lattice (fit function, has `weighting` parameter) 

        -zero modulus (like modulus, but with abs()) 

3. Identify the lattice peaks with the particle detected peaks and 

   distribute ids. 

   -match_peaks 

4. Find the actual center of each lattice point using center of mass COM 

   and then fit a gaussian on the radial pixel profile for each peak. 

   (This takes the longest time) 

   -load_FFT (loads FFT data from *_FFT_real.txt and *_FFT_imag.txt) 

   -center_of_mass 

   -fit_gauss_to_peak 

   -fit_gauss_to_multiple_peaks 

5. Exported files are: 

   *_bead_image.png (The inverse (disc-filtered) Fourier transform) 

   *_peak_plot.png (A plot of the peaks in Fourier space) 

        - black crosses: particle-detected peaks 

        - blue cirles: hexagonal grid 

        - black circles with white interior: COM peaks from lattice 

   *_all_peaks.txt (Full output of all peaks) 

        id 

        lattice_x : lattice x coordinate 

        lattice_y : lattice y coordinate 

        part_det_dx : distance between lattice point and particle (x) 

        part_det_dy : distance between lattice point and particle (y) 

        COM_dx : distance between lattice point and COM (x) 
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        COM_dy : distance between lattice point and COM (y) 

        sigma : standard deviation of Gauss fit 

        amplitude : amplitude of Gauss fit 

        offset : zero-offset for Gauss fit 

 

Author:  Paul Müller 

Version: 0.3.9 

 

Changelog 

--------- 

0.3.9 

 - do not use matplotlib "Agg" renderer by default 

""" 

 

from __future__ import division, print_function 

 

import gc 

import matplotlib 

from matplotlib import pylab as plt 

import numpy as np 

import os 

from scipy import optimize as spopt 

import sys 

import warnings 

 

# Is used if not (STANDARD_R - R_PM < R0 < STANDARD_R + R_PM) 

STANDARD_R = 14.9 

R_PM = 1.0 

STANDARD_PHI = np.pi/4 

 

 

def center_of_mass(a, threshold = 0.2, inverted=False): 

    """ Find weighted center coordinates of array. 

     

    Paramteres 

    ---------- 

    a : ndarray 

        input array 

    threshold : float 

        threshold b/w min and max of array for weighting 

    inverted : bool 

        compute the center of mass of inverted image 

         

    Returns 

    ------- 

    (x,y) : tuple 

        center coordinates 
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    """ 

    b = a.copy() 

    if inverted: 

        b *= -1 

    b -= np.min(b) 

     

    b[np.where(b <= 0.2*b.max())] = 0 

     

    x = np.arange(b.shape[1]).reshape(1,-1) 

    y = np.arange(b.shape[0]).reshape(-1,1) 

     

    btot = np.sum(b) 

    SPx = np.sum(x*b) / btot 

    SPy = np.sum(y*b) / btot 

     

    return (SPy,SPx) 

 

 

def find_grid(peaks, N, no_offset=True, fname=None): 

    """ given peaks, find lattice orientation and constant 

     

    Returns list 

    [xoffset, yoffset, rotation angle, R] 

    """ 

    p = np.array(peaks) 

    #p[:,1] -= N/2 

    #p[:,2] -= N/2 

    # Compute radius 

    rad = np.sqrt(p[:,1]**2+p[:,2]**2) 

    minids = find_lowest_7(rad) 

     

    minids2 = np.unique(minids) 

     

    if len(minids2) != len(minids): 

        warnings.warn("{}: There are only {} ".format(fname,len(minids2))+\ 

                      "datapoints. Finding the grid is very unaccurate!") 

        minids = minids2 

        # turn off weighting in fitting the grid 

        weighting = False 

    else: 

        weighting = True 

         

    ## first approximation for lattice constant 

    # first peak is the center peak 

    # copmute distance from all other peaks 

    distances = np.zeros(len(minids)-1) 
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    for i in range(1,len(minids)): 

        distances[i-1] = np.sqrt( (p[minids[i],1] - p[minids[0],1])**2 + 

                                (p[minids[i],2] - p[minids[0],2])**2   ) 

    R0 = np.average(distances) 

 

    pc = np.zeros(p.shape) 

 

    # Move offset coordinates to center 

    if no_offset: 

        pc = 1*p 

    else: 

        (pc[:,1], pc[:,2]) = (p[:,1]-p[minids[0],1], p[:,2]-p[minids[0],2]) 

 

     

    ## first approximation for lattice angle 

    # compute all angles modulo PI/3 

    angles = np.zeros(len(minids)-1) 

    for i in range(1,len(minids)): 

        angles[i-1] = np.arctan2((pc[minids[i],2]), 

                                 (pc[minids[i],1]) ) 

    A0 = np.average(angles % (np.pi/3)) 

 

    ### ! R0 should stay around STANDARD_R for Katrins beads. 

 

    if R0 > STANDARD_R + R_PM or R0 < STANDARD_R - R_PM: 

        warnings.warn("{}: I assume that the center peaks were not".format(fname)+\ 

                      " correctly detected in first stage."+\ 

                      " Trying with `STANDARD_R`!") 

        R0 = STANDARD_R 

        A0 = STANDARD_PHI 

         

    pcr = np.zeros(p.shape) 

 

    # Rotate input coordinates with A0 

    (pcr[:,1], pcr[:,2]) = (p[:,1]*np.cos(A0) + p[:,2]*np.sin(A0), 

                            - p[:,1]*np.sin(A0) + p[:,2]*np.cos(A0)) 

 

    data = (p[:,1], p[:,2]) 

 

    if no_offset: 

        x0 = (0, 0, A0, R0) 

    else: 

        x0 = (p[minids[0],1], p[minids[0],2], A0, R0) 

    ##  

    #res = reduce_lattice(x0, data) 

 

    # brutal way of determining correct orientation 
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    N = 200 

    ress = list() 

    minps = list() 

    angles = A0 + np.arange(N) * np.pi / N 

     

 

    for i in range(N): 

        if no_offset: 

            # no offset as of v. 0.3.1 

            #x0 = (0, 0, angles[i], R0) 

            x0 = (angles[i], R0) 

        else: 

            # no offset as of v. 0.3.1 

            #x0 = (p[minids[0],1], p[minids[0],2], angles[i], R0) 

            x0 = (angles[i], R0) 

        with warnings.catch_warnings(): 

            warnings.simplefilter("ignore") 

            minparms = spopt.leastsq(reduce_lattice, x0, (data,no_offset,weighting)) 

        res = reduce_lattice(minparms[0], data, weighting=weighting) 

        ress.append(np.sum(res)) 

        minps.append(minparms) 

     

    idmin = np.argmin(ress) 

    theminps = minps[idmin] 

     

    while theminps[0][1] < STANDARD_R-R_PM: 

        theminps[0][1] *= 2 

        warnings.warn("{}: I assume that the center peaks were not".format(fname)+\ 

                      " correctly detected in second stage (fitting)."+\ 

                      " Doubling lattice constant to {:.2f}!".format(theminps[0][1])) 

 

    while theminps[0][1] > STANDARD_R+R_PM: 

        theminps[0][1] /= 2     

        warnings.warn("{}: I assume that the center peaks were not".format(fname)+\ 

                      " correctly detected in second stage (fitting)."+\ 

                      " Halving lattice constant to {:.2f}!".format(theminps[0][1])) 

     

    print("...Found lattice. Residuals: worst={:.2f}   best={:.2f}".format( 

           np.max(ress), np.min(ress))) 

    print("...Lattice constant: {} 1/px".format(theminps[0][1])) 

    print("...Lattice rotation: {} rad".format(theminps[0][0])) 

 

    return theminps[0] 

 

 

def find_lowest_7(a): 

    """ Find lowest seven numbers in array and return sorted ids 
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    """ 

    b = a.copy() 

    ids = np.zeros(7, dtype=int) 

    for i in range(7): 

        ids[i] = b.argmin() 

        b[ids[i]] = b.max()+1 

     

    return ids 

 

 

def fit_gauss_to_peak(image,x,y,R): 

    """ Fit gaussian function on fraction of image 

     

    (x,y) : coordinates in image 

    R : cut-off radius 

     

    Returns two tuples: 

    1 : sigma0, N0, offset 

    2 : x0, y0 (center of mass) 

    """ 

    x,y = y,x 

    N = len(image) 

    X = np.arange(N)-N/2 

    X = X.reshape((-1,1)) 

    Y = X.reshape((1,-1)) 

    data = image*((X-x)**2 + (Y-y)**2 < R**2) 

    (x0,y0) = center_of_mass(data) 

     

    #fig = plt.figure() 

    #ax = fig.add_subplot(111, aspect=1) 

    #ax.set_aspect("equal") 

    #plt.imshow(data) 

    #plt.show() 

     

    # get radius of each pixel 

    radii = list() 

    values = list() 

     

    coo = np.where( data != 0 ) 

 

    for i in range(len(coo[0])): 

        xi = coo[0][i] 

        yi = coo[1][i] 

        r = np.sqrt( (xi-x0)**2 + (yi-y0)**2 ) 

        radii.append(r) 

        values.append(data[xi,yi]) 
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    radii = np.array(radii) 

     

    # Fit gaussian to that radius. 

    Gauss = lambda p, r: p[2] + p[1]/np.sqrt(2*np.pi*p[0]**2) * np.exp(-r**2/(2*p[0]**2)) 

    Minimize = lambda p, r: Gauss(p,r) - values 

     

    sigma0 = 2 

    offset = np.min(data) 

    N0 = np.max(data) - offset 

 

    p0 = (sigma0, N0, offset) 

    res = spopt.leastsq(Minimize, p0, (radii,)) 

     

    if res[1] in [1,2,3,4]: 

        parms = res[0] 

        # no negative sigma 

        parms[0] = abs(parms[0]) 

    else: 

        parms = [np.nan]*3 

     

    #plt.figure() 

    #plt.plot(radii, values, "kx") 

    #plt.plot(radii, values + Minimize(res[0], radii), "bo") 

    #radi2 = np.linspace(0, np.max(radii),100) 

    #plt.plot(radi2, Gauss(res[0], radi2), "r-") 

    #print(x,y,x0-len(image)/2,y0-len(image)/2) 

    del data 

     

    return (parms, (y0-len(image)/2-y, x0-len(image)/2-x)) 

 

 

def fit_gauss_to_multiple_peaks(image, peaks, grid): 

    """ Does what fit_gauss_to_peak does for many peaks 

     

    peaks : array with 2nd column x and 3rd column y values 

    grid : 4th element contains lattice constant 

     

    """ 

    out = list() 

 

    for i in range(len(peaks)): 

    #for i in range(2,30): 

        #print(i) 

        print("...Fitting peaks - {:.2f}%".format((i+1)/len(peaks)*100), end="\r") 

        sys.stdout.flush() 

        with warnings.catch_warnings(): 

            warnings.simplefilter("ignore") 
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            (parms, loc) = fit_gauss_to_peak(image, 

                                         peaks[i,1],peaks[i,2],grid[1]/2) 

        outval = list(peaks[i]) + list(loc) + list(parms)  

        out.append(outval) 

     

    print(".") 

    return np.array(out) 

 

 

def load_FFT(fname, res=["_FFT_real.txt", "_FFT_imag.txt"]): 

    """ Load FFT image 

    """ 

    fr = open(fname+res[0], "r") 

    datar = fr.readlines() # header 

    # id, X, Y, Circ., AR, Round, Solidity, R, Theta 

    fr.close() 

 

    fi = open(fname+res[1], "r") 

    datai = fi.readlines() # header 

    # id, X, Y, Circ., AR, Round, Solidity, R, Theta 

    fi.close() 

         

    clist = [] 

    for i in range(len(datar)): 

        clist.append(np.array(datar[i].split(), dtype=np.dtype(float))+ 

                     1j*np.array(datai[i].split(), dtype=np.dtype(float)) 

                     ) 

 

    carr = np.array(clist) 

 

    if carr.shape[0] != carr.shape[1]: 

        warnings.warn("Input FFT image is not square shaped.") 

 

    return carr 

 

 

def load_peak_loc(fname, res="_results.txt", filterrad=None, size=None): 

    """ Peak coordinates (id, x, y) from *_results.txt files 

     

    filterrad (float) defines a circle arounf freq=(0,0) of points 

    that are kept. All others will be removed. 

     

    size is the image size (row/column) of the fft image in pixels 

    """ 

    f = open(fname+res, "r") 

    data = f.readlines() # header 

    data.pop(0) 
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    # id, X, Y, Circ., AR, Round, Solidity, R, Theta 

     

    peaks = np.array([ (int(i.split()[0]), 

                       float(i.split()[1]), 

                       float(i.split()[2])) for i in data ]) 

    f.close() 

     

    if size is not None: 

        peaks[:,1] -= size/2 

        peaks[:,2] -= size/2 

    else: 

        warnings.warn("Did not center the peak coordinates."+\ 

                      "This might lead to alignment/filtering errors!") 

 

    if filterrad is not None: 

        peaks = peaks[np.where( 

                    (peaks[:,1]**2 + peaks[:,2]**2) < (filterrad)**2)] 

    

    return peaks 

 

 

def make_hex_grid(griddata, N): 

    """ Return coordinates of hexagonal grid on square cart coord system 

     

    Input data: [xoffset, yoffset, rotation angle, R] 

    N is size of the image 

    """ 

    # Create vertical coordinate list first 

     

    (A, R) = griddata 

     

    # no offset as of v. 0.3.1 

    xoff = yoff = 0 

 

    num = int(np.floor((2*N)/R)) 

     

    if num %2 == 0: 

        num+=1 

     

    # Coordinates for center vertical line 

    y = R*np.linspace(-(num-1)/2, (num-1)/2, num, endpoint=True) 

    x = 2*R*np.cos(np.pi/6)*np.linspace(-(num-1)/2, (num-1)/2, num, endpoint=True) 

     

    # Coordinates for side lines 

    y2 = y + R*np.sin(np.pi/6) 

    x2 = x + R*np.cos(np.pi/6) 
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    X,Y = np.meshgrid(x,y) 

    X2,Y2 = np.meshgrid(x2,y2) 

 

     

    ## Rotate 

    Xr, Yr = X*np.cos(A) + Y*np.sin(A), -X*np.sin(A) + Y*np.cos(A) 

    X2r, Y2r = X2*np.cos(A) + Y2*np.sin(A), -X2*np.sin(A) + Y2*np.cos(A) 

     

    ## Offset 

    Xro = Xr + xoff 

    X2ro = X2r + xoff 

     

    Yro = Yr + yoff 

    Y2ro = Y2r + yoff 

 

    #fig = plt.figure() 

    #ax = fig.add_subplot(111, aspect=1) 

    #ax.set_aspect("equal") 

    #plt.plot(Xro.flatten(), Yro.flatten(), ".") 

    #plt.plot(X2ro.flatten(), Y2ro.flatten(), ".") 

 

    coordx = np.array([Xro, X2ro]).flatten() 

    coordy = np.array([Yro, Y2ro]).flatten() 

     

    coo = np.zeros((len(coordx),2)) 

    coo[:,0] = coordx 

    coo[:,1] = coordy 

     

    ## Filter with image size 

    c = coo 

    d = c[np.where((c[:,0]**2 + c[:,1]**2) < (N/4)**2)] 

    return d 

 

 

def match_peaks(peaks, coords, grid, struct=False): 

    """ Create new array for all peaks with full information 

     

    peaks : measured coordinates of peaks (id, x, y) 

    coords : coordinates of hexagonal grid (x,y) 

    grid : determined grid [xoffset, yoffset, rotation angle, R] 

     

    Returns array (id, x, y, dx, dy) with length of `coords` 

    First three rows describes peaks as in `peaks`. dx and dy are 

    distances to the matched peaks in `coords`. 

     

    struct: bool, return structured array 

    """ 
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    out = list() #np.zeros((len(coords), 5)) 

     

    # go through coords 

    rad = grid[1]/2 

     

    idcounter = np.max(peaks[:,0]) + 1 

     

    peakcounter = 0 

     

    for i in range(len(coords)): 

        x = coords[i,0] 

        y = coords[i,1] 

     

        # find closest peak within Radius R/2 

        a = (peaks[:,1]-x)**2 + (peaks[:,2]-y)**2 

        minid = np.argmin(a) 

        if a[minid] <= rad**2: 

            dx = peaks[minid,1]-x 

            dy = peaks[minid,2]-y 

            idp = peaks[minid,0] 

            peakcounter += 1 

        else: 

            dx = np.nan 

            dy = np.nan 

            idp = idcounter 

            idcounter += 1 

        out.append(( idp, x, y, dx, dy)) 

       # out[i,0] = idp 

       # out[i,1] = x 

       # out[i,2] = y 

       # out[i,3] = dx 

       # out[i,4] = dy 

     

    dtype = [("id", int), ("x", float), ("y", float), ("dx", float), ("dy", float)] 

    arra = np.array(out, dtype = dtype) 

    arra.sort(order="id") 

     

    if len(peaks) > peakcounter: 

        warnings.warn("A total number of {} peaks were not within".format(len(peaks) - 

peakcounter)+\ 

                      " the radius of a hex lattice point and will be ignored!") 

     

    if struct: 

        return arra 

    else: 

        return np.array(arra.tolist()) 
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def reduce_lattice(parms, data, no_offset=True, weighting=True): 

    """ 

        Map all points of a hexagonal lattice to one and return total 

        mean square distance. 

         

    For cartesian coordinates, calculate most-likely superposition in 

    new discrete base (k,l,m) with s0, s1, and s2. 

     

    s0 = R*(        0,          1) 

    s1 = R*(cos(PI/6),  sin(PI/6)) 

    s2 = R*(cos(PI/6), -sin(PI/6)) 

     

    As of version 0.3.1, the option `no_offset` does not do anything. 

    Default is now no offset. 

     

    If weighting is set to false, there will be boundaries for R between 

    STANDARD_R - 2*R_PM and +2*R_PM. 

    """ 

    (x, y) = data 

 

    if weighting: 

        weights = np.sqrt(x**2+y**2) 

        weights -= np.min(weights) 

        weights /= np.max(weights) 

        weights = 1-weights 

    else: 

        weights = 1 

     

    # As of version 0.3.1 we do not use offsets anymore 

    #(xoff, yoff, angle, R) = parms 

    (angle, R) = parms 

     

    if weighting is False: 

        # Set boundaries for R, because we have very few data points 

        if R > STANDARD_R + 2*R_PM: 

            R = STANDARD_R + 2*R_PM 

        if R < STANDARD_R-2*R_PM: 

            R = STANDARD_R-2*R_PM 

     

    xoff = yoff = 0 

    ## Correct for offset: 

    if no_offset: 

        (xc, yc) = (x,y) 

    else: 

        (xc, yc) = (x+xoff, y+yoff) 
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    ## Rotate lattice 

    xcr, ycr = ( xc*np.cos(angle) - yc*np.sin(angle), 

                 xc*np.sin(angle) + yc*np.cos(angle)) 

     

    ## Reduce in y-direction 

    ycrr = zero_modulus(ycr,R) 

     

    ## Reduce in x-direction 

    xcrr = zero_modulus(xcr,2*R*np.cos(np.pi/6)) 

 

    ## compute distance of all coordinates from center point and four 

    ## surrounding points (y-axis is symmetry axis). 

    ## 

    ##    (x) 

    ##  4     1 

    ##     0 

    ##  3     2 

    ##    (x) 

    ## 

 

    rx = R*np.cos(np.pi/6) 

    ry = R*np.sin(np.pi/6)     

     

    # minimal distances from center 0 

    d0 = np.sqrt(xcrr**2 + ycrr**2) * weights 

    # minimal distances from corner 1 

    d1234 = np.sqrt((np.abs(xcrr)-rx)**2 + (np.abs(ycrr)-ry)**2) * weights 

    #d0 = (np.abs(xcrr) + np.abs(ycrr**2)) * weights 

    #d1234 = (np.abs(xcrr-rx) + np.abs(ycrr-ry)) * weights 

     

    D = np.array([d0,d1234]) 

     

    return np.min(D, axis=0) 

 

 

def zero_modulus(a,m): 

    """ Compute modulus of array with values closest to zero 

    """ 

    c = a % m 

    c[np.where(c>m/2)] -= m 

    return c 

 

for line in __doc__.split("\n"): 

    if line.startswith("Version:"): 

        __version__ = line.split("Version:")[1].strip() 
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if __name__ == "__main__": 

    mysysargs = { 

                  "numpeaks" : 0 

                } 

         

    for arg in sys.argv: 

        if arg.count("=") == 1: 

            arg = arg.split("=") 

            if arg[0] == "numpeaks": 

                mysysargs[arg[0]] = int(arg[1]) 

            else: 

                print("UNKNOWN PARAMETER: {}".format(arg)) 

     

    doc = __doc__.split("\n") 

    for line in doc: 

        if line.startswith("Version:"): 

            print("..."+line) 

        elif line.startswith("Author:"): 

            print("..."+line) 

     

     

    DIR = os.path.split(os.path.realpath(__file__))[0] 

    os.chdir(DIR) 

     

    resid = "_results.txt" 

     

    fs = os.listdir(DIR) 

    files=list() 

    for f in fs: 

        if f.endswith(resid): 

            files.append(f) 

    #files.pop(0) 

    for f in files: 

         

        name = f.split(resid)[0] 

        print("...processing file '{}'.".format(name)) 

        fft = load_FFT(name) 

        N=len(fft) 

         

        peaks = load_peak_loc(name, filterrad=N/4, size=N) 

 

        try: 

            grid = find_grid(peaks, N=N, fname=os.path.split(name)[1]) 

        except TypeError: 

            warnings.warn("Could not process {} - ".format(name)+\ 

                     "probably because not enough peaks were detected.") 

            # go to next file 
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            continue 

 

        coords = make_hex_grid(grid, N=N) 

         

        newpeaks = match_peaks(peaks, coords, grid, struct=False) 

 

 

        ## Plot image 

        im = np.fft.ifft2(np.fft.ifftshift(fft)) 

        fig = plt.figure(dpi=150, figsize=(10,10)) 

        ax = fig.add_subplot(121) 

        ax.set_title("original image") 

        ax.imshow(im.real, cmap=matplotlib.cm.gray_r, interpolation="nearest") 

         

        x = np.linspace(-N/2, N/2, N, endpoint=False) 

        x = x.reshape(-1,1) 

        y = x.reshape(1,-1) 

        fftfilt = fft*(x**2+y**2<=(N/4)**2) 

        im2 = np.fft.ifft2(np.fft.ifftshift(fftfilt)) 

        ax2 = fig.add_subplot(122) 

        ax2.set_title("disc filter, max_freq={}".format(N/4)) 

        fig.tight_layout(pad=1.0) 

 

        ax2.imshow(im2.real, cmap=matplotlib.cm.gray_r, interpolation="nearest", 

                  vmin=np.min(im.real), vmax=np.max(im.real)) 

        fig.savefig(name+"_bead_image.png") 

 

        # Plot a ring filtered image, filtered out from the first peaks. 

        fmin = grid[1]*.9 

        fmax = grid[1]*1.1 

        fftfilt = fft*(x**2+y**2<=(fmax)**2)*(x**2+y**2>=(fmin)**2) 

        #fftfilt = 

fft*(x**2<=fmax**2)*(y**2<=fmax**2)*(x**2>=(fmin)**2)*(y**2>=(fmin)**2) 

        im2 = np.fft.ifft2(np.fft.ifftshift(fftfilt)) 

        ax2.set_title("ring filter, min_freq={:.2f}, max_freq={:.2f}".format(fmin,fmax)) 

        fig.tight_layout(pad=1.0) 

        ax2.imshow(im2.real, cmap=matplotlib.cm.gray_r, interpolation="nearest") 

        fig.savefig(name+"_bead_image_bandpass_rescaled.png") 

        del im2, fig, ax2 

        plt.close() 

 

        #np.savetxt(name+"_all_peaks.txt",newpeaks, 

        #           fmt=["%04d", "%.4f", "%.4f", "%.4f", "%.4f"]) 

        ##               id      x       y       dx      dy 

        ##                                   (particle detection) 

 

        # Sort peaks according to distance from center 
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        distfromc = newpeaks[:,1]**2 + newpeaks[:,2]**2 

        idsort = np.argsort(distfromc) 

        newpeaks = newpeaks[idsort] 

         

 

        if mysysargs["numpeaks"] != 0: 

            # Only get the maximum number of peaks 

            newpeaks=newpeaks[:mysysargs["numpeaks"]] 

            peakname="{}_{}_peaks.txt".format(name,mysysargs["numpeaks"]) 

        else: 

            peakname=name+"_all_peaks.txt" 

 

 

        full_data = fit_gauss_to_multiple_peaks(np.abs(fft), newpeaks, grid) 

 

        f = open(peakname, "wb") 

        f.write(b"#created with HexPeakAmpl.py v.{}:\n".format(__version__)) 

        f.write(b"#lattice constant: {} 1/px\n".format(grid[1])) 

        

f.write(b"#\tlattice_x\tlattice_y\tpart_det_dx\tpart_det_dy\tCOM_dx\tCOM_dy\tsigma\tamplit

ude\toffset\n") 

        np.savetxt(f,full_data, delimiter="\t", 

                   fmt=("%04d", "%.2f", "%.2f", "%.2f", "%.2f", "%.2f", "%.2f",  "%.3f", "%.2f", 

"%.2f")) 

        #               id      x       y       dx      dy      dx      dy       sigma   A       offset  

        #                    (hex. lattice)   (particle det.)     (COM)           (Gaussian fit at COM) 

        f.close() 

 

        logfft = np.log(np.abs(fft)) 

        fig = plt.figure(dpi=600, figsize=(40,40)) 

        ax = fig.add_subplot(111, aspect=1) 

        ax.set_aspect("equal") 

        plt.imshow(logfft, interpolation="nearest", origin='u', extent=(-N/2,N/2-1,-N/2,N/2-1)) 

        plt.plot(newpeaks[:,1], newpeaks[:,2]+.25, "o", alpha=0.3, 

                 markeredgecolor="blue", markerfacecolor="None", 

                 markersize=20) 

 

        plt.plot(peaks[:,1], peaks[:,2]+.25, "x", alpha=0.5, 

                 markeredgecolor="black", 

                 markersize=20) 

 

        plt.plot(full_data[:,1]+full_data[:,5], 

                 full_data[:,2]+full_data[:,6]+.25, "o", alpha=0.3, 

                 markeredgecolor="black",  markerfacecolor="white", 

                 markersize=20) 

        ax.set_xlim(-N/2,+N/2) 

        ax.set_ylim(-N/2,+N/2) 
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        plt.savefig(name+"_peak_plot.png") 

         

        # Cleanup 

        del fft, fftfilt, peaks, newpeaks, logfft, full_data 

        del fig, ax 

        plt.close() 

         

        gc.collect() 
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Excel macro to determine number of peaks for regularity analysis 

Analysis.xlsm – Excel macros to work further on Regularity data analysis 

Modul3 (saved as “excelmacro_7peaks_sigmadistribution.bas”) 

Private Sub Transform_7_peaks_txt_in_xls_determine_sigma_distribution() 

 'This file transfers the 7 peak.txt from the Fourier transformation into a .xls file, it adds the filename and determines the sigma 

distribution 

 'It adds the lattice constant and uses the amplitude as additional parameter 

 'It also takes into account, that the .txt is english style and the excel worked with in german style 

  

Dim MyFolder As String 

 Dim myfile As String 

 Dim folderName As String 

 

 With Application.FileDialog(msoFileDialogFolderPicker) 

 .AllowMultiSelect = False 

 If .Show = -1 Then 

 

 folderName = .SelectedItems(1) 

 End If 

 End With 

 

 myfile = Dir(folderName & "\*_7_peaks.txt") 

 

 Do While myfile <> "" 

'open the txt.file and change decimal separator from english "," to german "." as the used Excel is in german language 

 Workbooks.OpenText Filename:=folderName & "\" & myfile, Origin:=xlMSDOS, StartRow:=1, DataType:=xlDelimited, 

TextQualifier:= _ 

        xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=True, Semicolon:=False, _ 

        Comma:=False, Space:=False, Other:=False, DecimalSeparator:=".", ThousandsSeparator:=" ", 

TrailingMinusNumbers:=True 

 'change the format of lattice_x and _y to numbers 

    Range("B4:C10").NumberFormat = "0" 

  'no screen update 

    Application.ScreenUpdating = False 

 'Insert Name of File 

    Range("K5").Select 

    DateiName = ActiveWorkbook.Name 

    ActiveCell.FormulaR1C1 = DateiName 

       

 'Determine Sigma Distribution 

    Range("L4").Select 

    ActiveCell.FormulaR1C1 = "x<=1" 

    Range("M4").Select 

    ActiveCell.FormulaR1C1 = "x<2" 

    Range("N4").Select 

    ActiveCell.FormulaR1C1 = "2<=x<3" 

    Range("O4").Select 

    ActiveCell.FormulaR1C1 = "3<=x<4" 

    Range("P4").Select 

    ActiveCell.FormulaR1C1 = "4<=x<5" 

    Range("Q4").Select 

    ActiveCell.FormulaR1C1 = "5<=x<10" 

    Range("R4").Select 

    ActiveCell.FormulaR1C1 = "10<=x<20" 

    Range("S4").Select 

    ActiveCell.FormulaR1C1 = "20<=x<30" 

    Range("T4").Select 

    ActiveCell.FormulaR1C1 = "x>=30" 

    Range("V4").Select 

    ActiveCell.FormulaR1C1 = "nan" 

    Range("W4").Select 

    ActiveCell.FormulaR1C1 = "sum" 

    Range("Y4").Select 

    ActiveCell.FormulaR1C1 = "x<2 + A<0" 
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    Range("Z4").Select 

    ActiveCell.FormulaR1C1 = "x<2 + A>0" 

    Range("AB4").Select 

    ActiveCell.FormulaR1C1 = "Lattice constant" 

    Range("L5").Select 

    ActiveCell.FormulaR1C1 = "=COUNTIF(R[-1]C[-4]:R[10050]C[-4],""<=1"")" 

    Range("M5").Select 

    ActiveCell.FormulaR1C1 = _ 

        "=COUNTIF(R[-1]C[-5]:R[10050]C[-5],""<2"")" 

    Range("N5").Select 

    ActiveCell.FormulaR1C1 = _ 

        "=COUNTIF(R[-1]C[-6]:R[10050]C[-6],""<3"")-COUNTIF(R[-1]C[-6]:R[10050]C[-6],""<2"")" 

    Range("O5").Select 

    ActiveCell.FormulaR1C1 = _ 

        "=COUNTIF(R[-1]C[-7]:R[10050]C[-7],""<4"")-COUNTIF(R[-1]C[-7]:R[10050]C[-7],""<3"")" 

    Range("P5").Select 

    ActiveCell.FormulaR1C1 = _ 

        "=COUNTIF(R[-1]C[-8]:R[10050]C[-8],""<5"")-COUNTIF(R[-1]C[-8]:R[10050]C[-8],""<4"")" 

    Range("Q5").Select 

    ActiveCell.FormulaR1C1 = _ 

        "=COUNTIF(R[-1]C[-9]:R[10050]C[-9],""<10"")-COUNTIF(R[-1]C[-9]:R[10050]C[-9],""<5"")" 

    Range("R5").Select 

    ActiveCell.FormulaR1C1 = _ 

        "=COUNTIF(R[-1]C[-10]:R[10050]C[-10],""<20"")-COUNTIF(R[-1]C[-10]:R[10050]C[-10],""<10"")" 

    Range("S5").Select 

    ActiveCell.FormulaR1C1 = _ 

        "=COUNTIF(R[-1]C[-11]:R[10050]C[-11],""<30"")-COUNTIF(R[-1]C[-11]:R[10050]C[-11],""<20"")" 

    Range("T5").Select 

    ActiveCell.FormulaR1C1 = "=COUNTIF(R[-1]C[-12]:R[10050]C[-12],"">=30"")" 

    Range("V5").Select 

    ActiveCell.FormulaR1C1 = "=COUNTIF(R[-1]C[-14]:R[10050]C[-14],""nan"")" 

    Range("W5").Select 

    ActiveCell.FormulaR1C1 = "=SUM(RC[-1]:RC[-10])" 

    'Use Amplitude as additional criterion for sigma < 2 

    Range("Y5").Select 

    ActiveCell.FormulaR1C1 = "=COUNTIFS(R[-1]C[-17]:R[10050]C[-17],""<2"",R[-1]C[-16]:R[10050]C[-16],""<0"")" 

    Range("Z5").Select 

    ActiveCell.FormulaR1C1 = "=COUNTIFS(R[-1]C[-18]:R[10050]C[-18],""<2"",R[-1]C[-17]:R[10050]C[-17],"">0"")" 

    'Copy value from lattice constant from A2 into F2 and copy value w/o unit into R5. 

    Range("F2").Select 

    ActiveCell.FormulaR1C1 = "=RIGHT(RC[-5],LEN(RC[-5])-19)" 

    Range("AB5").Select 

    ActiveCell.FormulaR1C1 = "=LEFT(R[-3]C[-22],LEN(R[-3]C[-22])-5)" 

'save as excel file 

 ActiveWorkbook.SaveAs Filename:=folderName & "\" & Replace(myfile, ".txt", ".xls") 

'use below 3 lines if you want to close the workbook right after saving, so you dont have a lots of workbooks opened 

 Application.DisplayAlerts = False 

 ActiveWorkbook.Close 

 Application.DisplayAlerts = True 

 myfile = Dir 

 Loop 

Application.ScreenUpdating = True 

End Sub 

 

Private Sub variance_merge_all_distri_7peaks_data_in_one_file() 

'this file merges all the distri_#_7peaks-data from the script above into Worksheet1 to analyse the sigma and amplitude further 

 On Error GoTo errExit 

Dim WBQ As Workbook 

Dim WBZ As Workbook 

Dim varDateien As Variant 

Dim lngAnzahl As Long 

Dim lngLastQ As Long 

  

Set WBZ = ActiveWorkbook 

'Altdaten auf Zielblatt löschen 
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WBZ.Worksheets(1).Range("A5:IV65536").ClearContents 

  

varDateien = _ 

Application.GetOpenFilename("Datei (*.xls),*.xls", False, "Select file(s) (Bitte gewünschte Datei(en) markieren)", False, True) 

  

With Application 

  .ScreenUpdating = False 

  .EnableEvents = False 

  .Calculation = xlCalculationManual 

End With 

'K5 until AB is copied in the file 

For lngAnzahl = LBound(varDateien) To UBound(varDateien) 

Set WBQ = Workbooks.Open(Filename:=varDateien(lngAnzahl)) 

  lngLastQ = WBQ.Worksheets(1).Range("A65536").End(xlUp).Row 

  WBQ.Worksheets(1).Range("K5:AB" & lngLastQ).Copy _ 

  Destination:=WBZ.Worksheets(1).Range("A" & WBZ.Worksheets(1).Range("A65536").End(xlUp).Row + 1) 

WBQ.Close 

Next 

  

With Application 

  .ScreenUpdating = True 

  .EnableEvents = True 

  .Calculation = xlCalculationAutomatic 

End With 

  

MsgBox " " & UBound(varDateien) & " files were merged.", 64 

  

Exit Sub 

  

errExit: 

With Application 

  .ScreenUpdating = True 

  .EnableEvents = True 

  .Calculation = xlCalculationAutomatic 

End With 

  

If Err.Number = 13 Then 

MsgBox "No files selected" 

  Else 

MsgBox "Error occurs!" & vbCr _ 

& "Fehlernummer: " & Err.Number & vbCr _ 

& "Fehlerbeschreibung: " & Err.Description 

End If 

  

End Sub 
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Modul4 (saved as “excelmacro_7peaks_absolute_lattice.bas”) 

Private Sub Transform_7_peaks_txt_in_xls_and_add_filename() 

 'This file transfers the 7 peak.txt from the Fourier transformation into a .xls file, it adds the filename and defines the absolute 

 'values for lattice_x and lattice_y. It also takes into account, that the .txt is english style and the excel worked with in german 

style 

   Dim MyFolder As String 

 Dim myfile As String 

 Dim folderName As String 

 

 With Application.FileDialog(msoFileDialogFolderPicker) 

 .AllowMultiSelect = False 

 If .Show = -1 Then 

 

 folderName = .SelectedItems(1) 

 End If 

 End With 

 

 myfile = Dir(folderName & "\*_7_peaks.txt") 

 

 Do While myfile <> "" 

 'open the txt.file and change decimal separator from english "," to german "." as the used Excel is in german language 

  Workbooks.OpenText Filename:=folderName & "\" & myfile, Origin:=xlMSDOS, StartRow:=1, DataType:=xlDelimited,_ 

TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=True, Semicolon:=False, Comma:=False, Space:=False, 

Other:=False, DecimalSeparator:=".", ThousandsSeparator:=" ",_ TrailingMinusNumbers:=True 

  'change the format of every cell to numbers 

   Range("B4:D10").NumberFormat = "0" 

 'Inserting a column at Column A 

    Range("A1").EntireColumn.Insert 

   

 'Insert Name of File 

    Range("A5").Select 

    DateiName = ActiveWorkbook.Name 

    ActiveCell.FormulaR1C1 = DateiName 

     

 'Inserting a column after lattice_x 

    Range("D1").EntireColumn.Insert 

    Range("D3").Select 

    ActiveCell.FormulaR1C1 = "absolute lattice_x" 

 

 'Inserting a column after lattice_y 

    Range("F1").EntireColumn.Insert 

    Range("F3").Select 

    ActiveCell.FormulaR1C1 = "absolute lattice_y" 

 

'creating absolute values of lattice_x and lattice_y 

    Range("D4").Select 

    ActiveCell.FormulaR1C1 = "=ABS(RC[-1])" 

    Selection.AutoFill Destination:=Range("D4:D10"), Type:=xlFillDefault 

    Range("F4").Select 

    ActiveCell.FormulaR1C1 = "=ABS(RC[-1])" 

    Selection.AutoFill Destination:=Range("F4:F10"), Type:=xlFillDefault 

     

' Remove duplicates from absolute lattice_x and absolute lattice_y 

   Range("B5:M10").Select 

   ActiveSheet.Range("$B$5:$M$10").RemoveDuplicates Columns:=Array(3, 5), Header _ 

        :=xlNo 

     

'save as excel file 

 ActiveWorkbook.SaveAs Filename:=folderName & "\" & "distri_" & Replace(myfile, ".txt", ".xls") 

'use below 3 lines if you want to close the workbook right after saving, so you dont have a lots of workbooks opened 

 Application.DisplayAlerts = False 

 ActiveWorkbook.Close 

 Application.DisplayAlerts = True 

 myfile = Dir 

 Loop 
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Application.ScreenUpdating = True 

End Sub 
 

Private Sub merge_all_single_peaks_in_worksheet2() 

'this file merges all single peaks (with the reduced peaks due to duplicates) from the above script in worksheet2 

 On Error GoTo errExit 

Dim WBQ As Workbook 

Dim WBZ As Workbook 

Dim varDateien As Variant 

Dim lngAnzahl As Long 

Dim lngLastQ As Long 
  

Set WBZ = ActiveWorkbook 

'Altdaten auf Zielblatt löschen 

WBZ.Worksheets(2).Range("A2:IV65536").ClearContents 

  

varDateien = _ 

Application.GetOpenFilename("Datei (*.xls),*.xls", False, "Select file(s) (Bitte gewünschte Datei(en) markieren)", False, True) 
  

With Application 

  .ScreenUpdating = False 

  .EnableEvents = False 

  .Calculation = xlCalculationManual 

End With 

'A5 until M7 is copied in the file; (2) indicates worksheet 2 in analysis-file; last used cell in column by 

range("A65536").End(x1up).. 

For lngAnzahl = LBound(varDateien) To UBound(varDateien) 

Set WBQ = Workbooks.Open(Filename:=varDateien(lngAnzahl)) 

  lngLastQ = WBQ.Worksheets(1).Range("A65536").End(xlUp).Row 

  WBQ.Worksheets(1).Range("A5:M7" & lngLastQ).Copy _ 

  Destination:=WBZ.Worksheets(2).Range("A" & WBZ.Worksheets(2).Range("A65536").End(xlUp).Row + 3) 

WBQ.Close 

Next 

  

With Application 

  .ScreenUpdating = True 

  .EnableEvents = True 

  .Calculation = xlCalculationAutomatic 

End With 

  

MsgBox " " & UBound(varDateien) & " files were merged.", 64 

 Exit Sub 

  

errExit: 

With Application 

  .ScreenUpdating = True 

  .EnableEvents = True 

  .Calculation = xlCalculationAutomatic 

End With 

  

If Err.Number = 13 Then 

MsgBox "No files selected" 

  Else 

MsgBox "Error occurs!" & vbCr _ 

& "Fehlernummer: " & Err.Number & vbCr _ 

& "Fehlerbeschreibung: " & Err.Description 

End If 

 

 End Sub 

 

 

 


