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ABSTRACT

Over the past two decades, controlling thermal transport properties at the nanoscale has become

more and more relevant. This is mostly motivated by the need of developing novel energy-

harvesting techniques based on thermoelectricity and the necessity to control the heat dissipation

in semiconductor devices. In this field, two major research lines can be identified: On one

side "phononics", which aims at developing devices such as thermal diodes, thermal transistors,

and thermal logic gates, among others, and on the other side, phonon engineering aiming at

controlling heat transport by producing or structurally modifying heterostructures made of novel

nanomaterials (e.g., two-dimensional (2D) materials, nanotubes, organic systems). In order to

gain insight into the factors controlling nanoscale heat flow and to be able to design highly-

efficient thermal devices, the development of new computational approaches is crucial.

The primary goal of the present thesis is the implementation of new methodologies address-

ing classical and quantum thermal transport at the nanoscale. We will focus on three major

issues: (i) We will study thermal rectification effect in nanodevices made of novel 2D materi-

als by means of nonequilibrium molecular dynamics simulations. The influence of structural

asymmetry and substrate deposition on the thermal rectification will be investigated. (ii) To

address quantum ballistic thermal transport in nanoscale systems, we will implement a nonequi-

librium Green’s functions (NEGF) treatment of transport combined with a density-functional

based approach. Here, we will explore the dependence of the thermal transport properties of

2D materials and nanotubes on different intrinsic (structural anisotropy and grain boundaries)

and external (molecular functionalization, strain engineering, and doping) factors. Finally, (iii)

a time-dependent NEGF formalism will be developed and implemented to probe the transient

and steady thermal transport in molecular junctions.

In short, our results show that the mechanisms governing the thermal rectification effect in

the 2D thermal rectifiers proposed in this work are shape asymmetries, interface material (planar

stacking order), and changes in the degree of spatial localization of high-frequency modes (under
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nonequilibrium heat transport conditions). The rectification effect can be also controlled by sub-

strate engineering. Moreover, we found that quantum ballistic thermal transport in 2D puckered

materials displays an anisotropic behavior. The presence of structural disorder in the form of

grain boundaries in graphene reduces overall its thermal transport efficiency. Dynamical disorder

induced by coupling to a thermostat has however a weaker effect, suggesting that structural de-

fects are playing a major role. External factors have a noticeable influence on the heat transport

in new 2D materials and BNC heteronanotubes. On the other hand, we have also been able to

characterize, from a quantum point of view, the phonon dynamics in carbon-based molecular

junctions. We expect that the results obtained within this thesis will yield new insights into the

thermal management of low-dimensional materials, and thus open new routes to the design of

thermoelectric and phononic devices.
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ZUSAMMENFASSUNG

In den letzten zwei Jahrzehnten hat die Kontrolle der thermischen Transporteigenschaften im

Nanobereich immer mehr an Bedeutung gewonnen. Dies ist vor allem auf die Notwendigkeit

zurückzuführen, neue Energiegewinnungstechniken zu entwickeln, die auf Thermoelektrizität

basieren, sowie auf die Problematik, die Wärmeabfuhr in Halbleiterbauelementen kontrollieren

zu müssen. In diesem Bereich lassen sich zwei große Forschungslinien identifizieren: Auf der einen

Seite "Phononik", die unter anderem auf die Entwicklung von Bauelementen wie thermischen

Dioden, Transistoren und Logikgattern abzielt, und auf der anderen Seite die Phononentechnik,

die den Wärmetransport durch Herstellung oder strukturelle Modifikation von Heterostrukturen

aus neuartigen Nanomaterialien (z.B. zweidimensionalen (2D) Materialien, Nanoröhren, organ-

ischen Systemen) steuert. Um einen Einblick in die Faktoren zu erhalten, die den Wärmefluss

im Nanobereich steuern, und um hocheffiziente thermische Bauteile entwickeln zu können, ist die

Entwicklung neuer Berechnungsansätze entscheidend.

Das Hauptziel der vorliegenden Arbeit ist die Implementierung neuer Methoden, die sich

mit dem klassischen und dem quantenthermischen Transport auf der Nanoskala befassen. Wir

werden uns auf drei Hauptthemen konzentrieren: (i) Wir werden den thermischen Rektifika-

tionseffekt in Nanobauteilen aus neuartigen 2D-Materialien mit Hilfe von Nichtgleichgewichts-

Molekulardynamiksimulationen studieren. Der Einfluss von Strukturasymmetrie und Substrat-

ablagerung auf die thermische Rektifikation wird untersucht. (ii) Um den quantenballistis-

chen Wärmetransport in nanoskaligen Systemen anzugehen, werden wir eine NEGF-Behandlung

(Nichtgleichgewichts-Greensche Funktionen) des Transports in Kombination mit einem dichte-

funktionalen Ansatz implementieren. Hier wird die Abhängigkeit der thermischen Transporteigen-

schaften von 2D-Materialien und Nanoröhrchen von verschiedenen intrinsischen (strukturelle

Anisotropie und Korngrenzen) und externen (molekulare Funktionalisierung, Stammtechnik und

Dotierung) Faktoren untersucht. Schließlich wird (iii) ein zeitabhängiger NEGF-Formalismus

entwickelt und implementiert, um den transienten und stetigen Wärmetransport in molekularen

Verbindungen zu untersuchen.

9



Unsere Ergebnisse zeigen, dass die wesentlichen Mechanismen für die thermische Gleichrich-

tung in 2D thermischen Gleichrichtern durch Asymmetrien der Bauteilform, das Interface-Material

(planare Stapelung Reihenfolge), und änderungen im Grad der räumlichen Lokalisierung von

Hochfrequenz-Modi (unter Nicht-Gleichgewicht Wärmetransport-Bedingungen) gegeben sind.

Der Gleichrichteffekt kann auch durch die Wahl des Substrats gesteuert werden. Darüber hinaus

haben wir festgestellt, dass der quantenballistische Wärmetransport in 2D-Puckered-Materialien

ein anisotropes Verhalten zeigt. Das Vorhandensein von strukturellen Störungen in Form von

Korngrenzen in Graphen reduziert insgesamt die Effizienz des Wärmetransports. Dynamische

Störungen, die durch die Ankopplung an einen Thermostaten hervorgerufen werden, haben je-

doch eine schwächere Wirkung, was darauf hindeutet, dass strukturelle Defekte eine große Rolle

spielen. Externe Faktoren haben einen nachweislichen Einfluss auf den Wärmetransport in neuen

2D-Materialien und BNC-Heteronanotubes. Weiterhin konnten wir auch die Phononendynamik

in kohlenstoffbasierten molekularen Verbindungen quantitativ charakterisieren. Wir erwarten,

dass die Ergebnisse dieser Arbeit neue Erkenntnisse über das Wärmemanagement von niedrigdi-

mensionalen Materialien liefern und damit neue Wege für das Design von thermoelektrischen

und phononischen Bauelementen eröffnen.
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1 INTRODUCTION

1.1 NANOPHONONICS: A ROUTE FOR THERMAL MANAGEMENT

Over the past half-century, the drive for faster, cheaper computing and its long-associated

requirements of increasing device density and progressive device miniaturization have served to

push scientists and engineers to continually develop new and ever-improving materials, tools,

processes, and design methodologies [1]. However, these exciting technological advances and

emerging applications are also creating thermal management challenges that may serve to ul-

timately limit their effectiveness, scope of implementation, or overall feasibility. Consequently,

the novel field of nanophononics has emerged and a wealth of new physics and applications

has been demonstrated [2–5]. Nanophononics aims at developing efficient strategies to control

the heat flow in organic and inorganic nanostructures, and it arose with the goal of realizing

thermal (or phononic) devices such as diodes, transistors, and logic gates [2, 6]. Recent efforts

in nanophononics have stimulated completely new applications in the fields of nanoelectronics

[7, 8], renewable energy harvesting [9, 10], nano-and optomechanics [11], quantum technologies

[12, 13], and medical therapy, imaging and diagnostics [14].

An important breakthrough in the field was the theoretical prediction [15] and subsequent

observation in a mesoscopic nanostructure [16] of the quantization of the phononic thermal con-

ductance at low temperatures in analogy to the conductance quantization for charge transport.

Recently, it was also shown that the thermal conductance of gold metallic wires down to single-

atom junctions is quantized at room temperature and that the Wiedemann-Franz law relating

thermal and electrical conductance is satisfied even in single-atom contacts [17, 18]. In contrast

to the electrical conductance quantization (with conductance quantum=e2/h), the quantum of

thermal conductance κ0 is not a constant, but depends on the temperature T : κ0 = π2k2B T/3h,

with kB being the Boltzmann’s constant and h the Planck’s constant. This already demonstrates

a fundamental difference between charge and phonon transport. Another basic difference relies

on the different energy ranges determining the corresponding transport properties: in the case of

19



electrons the relevant energy window lies around the Fermi level, while for phonons the thermal

conductivity is formally an integral result of the whole vibrational spectrum. The difficulty of

working with a broad spectrum of excitations naturally possesses major challenges in design-

ing thermal devices such as cloaks and rectifiers [2, 4], or processing information with phononic

computing [6].

From the experimental point of view, it is considerably more difficult to control the heat

flow in a nanostructure than it is to control the flow of charges. Unlike electrons, the quantum

carriers of heat (phonons for periodic systems or vibrons in the case of finite-size structures) are

not particles with defined properties but bundles of energy that have neither mass nor charge and

can therefore not be influenced by electromagnetic fields in a straightforward way. Also, while

in nanoscale electronics considerable progress has been achieved in designing and implementing

local electrodes and gates over very short length scales, establishing well-defined temperature

gradients −the most natural way to control heat flow− at the nanoscale still remains a major

experimental challenge. In this sense, the characterization of thermal devices has promoted

the development of new sophisticated experimental techniques (e.g., 3ω method [19, 20] and

frequency domain thermoeflectance [21]) pioneered by D. Cahill et al. [22]. As a result, this

has led to the modification of atomic force microscopes for thermometry [17, 23] and the use of

Scanning Thermal Microscopy [18, 24].

Thus, to turn nanophononics from a dream into reality different approaches are required

based on nanoscale engineering of the transport properties, i.e., tailoring the material’s struc-

ture to gain control over its thermal response. This strategy has already been successfully

implemented in nanostructured thermoelectric materials. Although the fundamental tool to

understand nanophononics, i.e., non-equilibrium thermodynamics, has been well established in

the macroscopic scale, there are many open questions in the nanoscale. These questions have

deep implications on how to transport and control heat over such length scales. The fact that

low-dimensional materials have finite cross sections and a large surface-to-volume ratio, can

induce strong modifications of the vibrational spectrum as well as of the heat transport mech-

anisms. Results related to these issues have been summarized in recent comprehensive reviews,

see Refs. [2–4]. These differences to macroscopic heat transport can lead to new devices which

require a new theoretical understanding and new experiments to characterize them. There have

been many theoretical/computational methods to study heat transport in nanostructures [4, 25].

These methods can be largely grouped into three categories. The first category includes meth-

ods based on molecular dynamics (MD) simulations such as equilibrium MD (EMD) which is

based on the Green-Kubo formula [26] and nonequilibrium MD (NEMD) which is related to the

Fourier’s law [27, 28]. The second category includes methods based on the Boltzmann transport

equation (BTE) [29, 30] and the lattice dynamics (LD) [31]. Finally, the third category includes

methods based on the Landauer formula or more generally the nonequilibrium Green’s functions

(NEGF) formalism [32–35]. These methodologies have been already successfully applied to pre-

dict the thermal transport properties of a variety of low-dimensional materials, providing the

correct trend and comparable results with respect to experimental investigations [36–38]. Hence,
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it has been shown that the thermal conductivity is sensitively affected by different factors such as

geometry, doping, and defects [37, 39–41]. Moreover, the spatial confinement of phonons is fur-

ther influenced by the rigidity of the boundaries, which in turn affects the phonon group velocity,

the phonon relaxation time and ultimately may lead to a reduction of the thermal conductivity

[42, 43].

Additionally, in non-stationary situations, where time-dependent (TD) external parameters

can strongly affect a nanoscale system, the dynamics of the vibrational system becomes crucial.

For example, a time-varying temperature bias [44, 45] or strong local heating by laser fields

[46, 47] can be used to exert additional control over thermal transport. In this context, novel

nonequilibrium effects like molecular heat pumping [48, 49], cooling [50], and rectification [51, 52]

have been proposed. The description of such phenomena often requires working directly in the

time domain, which is very challenging from a numerical point of view. In this respect, noticeable

progress has been achieved in the description of TD transport of spins [53, 54] and electrons [55–

60]. However, less attention has been paid to a similar treatment of vibrational degrees of

freedom. Thus, only recently new approaches, only focusing on simple model systems, have been

developed to deal with TD thermal phenomena in molecular scale nanojunctions [61–63], which

are the ultimate level achievable regarding device miniaturization [64–66].

Despite this promising progress in the development of methodologies to understand thermal

transport at the nanoscale, there are still many fundamental questions about the thermal man-

agement of, e.g., thermoelectric materials, phononic devices, and integrated circuits, that need to

be addressed. In this sense, to achieve an optimal thermoelectric response (high figure of merit

(ZT)), a given material should simultaneously have very good electronic properties and low ther-

mal conductance, ideally implementing an electron crystal and a phonon glass [9]. Regarding

to phononic devices, the main building-block of phononics is the thermal rectifier, which aims

to control heat current similar to electronic rectifiers in microelectronics [67]. Similarly, when

applying a temperature bias across a thermal rectifier, the thermal resistance is small when the

bias is applied in one direction, while the thermal resistance becomes large in the other direction.

In short, the field of nanophononics is currently providing several routes for thermal management

which will lead to design and improve novel nanoscale technological applications.

1.2 THERMAL TRANSPORT IN LOW-DIMENSIONAL MATERIALS

The outcomes produced by the studies on thermal management have promoted the rise of

novel low-dimensional systems such as two-dimensional (2D) materials, nanotubes, and molec-

ular nanojunctions (see Fig. 1.1). Several works have already been performed to explore the

applicability of these materials for the development of potential thermoelectric and phononic

devices. For instance, the first solid-state active three-terminal thermal device based on VO2

with large rectification of the heat current has recently been demonstrated [68]. Other success-

ful experimental findings are thermal rectifiers based on carbon or boron-nitride nanotubes with
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its physical properties has been demonstrated [88–94]. In this respect, Luo et al. have reported

anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by

micro-Raman spectroscopy [88]. Here, it was also found that, independent of the number of

layers, the thermal conductivity for the zigzag (ZZ) direction is larger than for the armchair

(AC) direction; for black phosphorus films thicker than 15 nm values of ∼ 40 W/mK and ∼ 20

W/mK for ZZ and AC directions, respectively, were reported. This effect has been theoreti-

cally described by using BTE [89, 90] and NEGF techniques [91]. Electronic anisotropy has

also been experimentally observed in layered black phosphorous [92, 93]. The results indicate

that the AC direction is the most preferable electron transport direction. Taking advantage of

these anisotropic properties, Fei et al. have shown, by performing first-principles band structure

calculations, that the thermoelectric performance of phosphorene can indeed be enhanced for

transport in the AC direction, with values of ZT ∼ 1.0 at room temperature [94].

Materials analogous to phosphorene have been also recently discovered, e.g., arsenene (a

single layer of arsenic) and monolayer tin sulphide (SnS). They all may exist, like in phosphorene,

orthorhombic puckered structures and semiconducting band gaps and, more interestingly, they all

display anisotropic features in their physical properties [95–100]. Unlike arsenene, SnS nanosheets

have been successfully synthesized by several techniques [99, 101]. It has also been found that

SnS thin films display a strong angle-dependent Raman response, indicative of anisotropy in

their optical properties [101]. The large Seebeck coefficient and the low thermal conductivity

theoretically found in SnS bulk produce comparative thermoelectric performance compared to

SnSe bulk [102], which has been proclaimed to be an excellent candidate for thermoelectric

devices [103]. Moreover, Guo et al. have shown that the thermal conductivity for SnS bulk is

very low compared to other 2D materials and is also anisotropic [102]. Based on the studies

performed in other phosphorene analogues [94, 98], it is expected that the anisotropic effect

remains in monolayer form of SnS. However, to the best of our knowledge, this statement has

not been yet verified.

Inside the fascinating group of TDM materials, molybdenum disulphide (MoS2) monolayer

has been shown as the most promising material for implementing field effect transistors (FET)

and optical devices due to its sizable electronic band gap [104, 105]. Moreover, its thermoelec-

tric properties suggested potential applications for thermal energy harvesting and thermopower

generation [106, 107]. Experimental studies of thermal transport have reported that the thermal

conductivity of MoS2 monolayer depends on the number of layers (34.5 ± 4 W/mK for a mono-

layer [108] and 52 W/mK for an 11-layer sample [109]) and it is lower than that of bulk MoS2

[110] and of graphene [111]. In addition to the suspended sample, a relatively higher thermal

conductivity 62 W/mK was observed in supported MoS2 monolayer [112]. There have also been

several theoretical investigations to study intrinsic thermal conduction of this novel material.

For instance, Cepellotti et al. claimed that the room temperature thermal conductivity of MoS2

sheet reaches a values of around ∼300 W/mK after using the exact solution of the BTE [113].

Besides, it has been found, by combining the NEGF approach with first-principles, that the
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thermal conductivity for armchair and zigzag MoS2 nanoribbons at 300 K is about 674 W/mK

and 841 W/mK, respectively [114]. On the other hand, Li et al. found that the thermal con-

ductivity for a typical sample size of 1µm is 83 W/mK using ab-initio calculations [115]. Very

close values were also found by using BTE combined with a relaxation time approximation [116]

and NEGF [117]. Consequently, comparing these results to those from the experimental results,

the exact intrinsic thermal conductivity of MoS2 monolayer remains almost unclear. It is also

worth mentioning that similar to carbon based materials, nowadays, the transport properties

of the nanoscale allotropes of MoS2 [118] and phosphorene [119] like nanorods, nanoribbons,

nanotubes, and fullerenes are being discussed as possible candidates for designing thermoelectric

phononic devices.

Heterostructures made of 2D materials have also drawn tremendous attention since they offer

additional tunability of the electrical and thermal response [120, 121]. Although most of these

investigations have naturally focused on the study of electronic properties due to potential appli-

cations in next generation electronic devices, engineered heterostructures also offer a new avenue

for engineering thermal transport properties [122–124]. Thus, graphene/hexagonal boron-nitride

(G/hBN) heterojunctions have been extensively studied due to the small lattice mismatch (2%)

of the precursors [125–128], and the synthesis of coplanar hybrid graphene and hBN monolayers

has been successfully reported in several studies [125, 126]. In particular, it has been shown

that hBNC nanoribbons can be half-metallic or semiconducting depending on how graphene

nanoribbons are embedded in the hBN matrix [129]. Interesting electrical rectifying effect and

negative differential resistance have been theoretically predicted for graphene/hBN nanoribbon

heterojunctions by using NEGF-DFT [130]. Moreover, the electron transport properties of BNC

heteronanotubes have been widely investigated [131–133], finding that these materials have tun-

able electronic bandgap and exhibit negative differential resistance and rectifying behavior.

On the other hand, an increasing interest in the thermal transport properties in such het-

erojunctions is also taking place [134, 135]. Hong et al. [136] have found, by using NEMD

simulations, that the interface thermal resistance decreases with increasing length of the G/hBN

heterojunction and increases with increasing tensile strain independently of the heat flux direc-

tion. However, Chen et al. [137] have recently demonstrated that heat current runs preferentially

from the hBN to G domain, which enhances the thermal rectification in this heterostructure.

Thermal conductivity in symmetric G/hBN heterojunctions has also been found, by using a

normal mode decomposition approach, to depend on the periodicity and interface configuration

of the superlattices [138, 139]. A minimum in the thermal conductivity at a critical pitch in

G/hBN superlattices was reported in Refs. [140, 141]. By using Green’s function techniques,

it has been shown that the bond type (C-N or C-B) along the interface sensitively controls the

probability of scattering between the available phonon transport channels [142]. Barrios-Vargas

et al. [127] showed by a finite-element based model that the thermal conductivity of polycrys-

talline structures of graphene and hBN is minimized for a hBN grain density of 70%, while this

minimum was previously reported to occur at a density of 50% and 40% by using a real-space
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Kubo approach [143] and EMD [139], respectively. MD simulations were used to study ther-

mal transport in planar BNC heterostructures, finding that BC2N monolayer displays a strong

anisotropy of the in-plane thermal transport [144]. Combining the phonon and electron trans-

port properties of armchair BNC nanoribbons, Yang et al. [145] have shown that, in comparison

to pristine graphene ribbons, ZT for these systems gets enhanced 10-20 times, while for zigzag

nanoribbons, ZT could be increased by a factor of 2-3. All these novel effects reported in BNC

heterostructures strongly depend on their structure and configuration, which can be controlled

with by the dimension of BN and C domains.

It is well-known that many of these novel 2D materials have a high potential for nanoelec-

tronics and energy applications [81, 113]. Therefore, currently, it is of great interest to reveal

how their physical properties can be tailored by varying different control parameters. Here, be-

sides altering the geometrical shape and chemical composition to build phononic devices, strain

engineering has been proved to be a powerful tool to manipulate and control both electron and

thermal transport properties of 2D materials [89, 91, 134, 146–153]. In experiments, several

straining techniques have been developed, but due to the challenge of manipulating nanoscale

matter, only few of them have already been proved to be feasible [154, 155]. For instance, Wang

et al. [148], by employing in-situ strained Raman spectroscopy, found that the influence of

strain on the vibrational modes in few-layer black phosphorus is anisotropic. This effect was

also recently observed by using a modified bending technique to apply uniaxial strain in ultra-

thin black phosphorous [156]. A reduction of the band gap in single- and bilayer MoS2 has also

been reported, induced by bending the flexible substrate in which they are supported [149] and

by considering cylindrical cavities [146]. Strain-induced phonon softening has been observed in

MoS2 [149] and WS2 [157] monolayers, which may alter their thermal behavior. From the mod-

elling point of view, NEMD simulations have been widely used to study the influence of strain on

the thermal conductivity of 2D materials [134, 147], revealing clear differences in their thermal

response. While the thermal conductivity in silicene [150] and hBN [134] first increases with

the tensile strain and then decreases, for other materials like graphene [147] and MoS2 [158] it

decreases with increasing strain, similar to their bulk phase. It has also been shown, by employ-

ing first-principle calculations, that the thermal anisotropy in phosphorene is strain dependent,

increasing under uniaxial strain [89]. Moreover, using NEGF technique, it has been shown that

tensile strain leads to a semiconducting-to-metal transition in single layer MoS2 for elongations

of the order of 11% [153] and to an anomalous strain dependence of the thermal conductance in

phosphorene [91].

Besides inorganic materials, thermal management of nanojunctions has become a very rele-

vant issue in the field of nanophononics. This is mainly due to the uncontrollable generation of

high levels of heating when electron current goes through the junctions, affecting the nature of the

transmission and possibly undermining its structural integrity [64, 65]. In general, heat transfer

in molecular junctions has been addressed mostly as special case in connection to electron trans-

port [3, 159]. Thermoelectric properties and energy conversion in molecular junctions has also
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been became feasible to probe in rencent experimental works [66, 160, 161]. Nevertheless, some

direct studies have looked at toy models with quantum mechanical effects, and noticed that the

steady state heat transport is equivalent to classical heat transport with temperature relaxation

[162], leaving open many questions about the properties of heat flow far away from equilibrium.

Additionaly, it has been found, by atomistic simulations, that the thermal conductance strongly

depends on the contact-molecule coupling [163, 164]. Other studies on the non-equilibrium dissi-

pation of heat in molecular devices have been performed, reporting an energy dependence of their

electronic transmission characteristics [66, 165]. New experiments have also found that ultrafast

effects are crucial for heat transport over these length scales [166]. Hence, thermal management

of novel low-dimensional materials shown in this section has became a relevant issue for the future

of nanoelectronics and nanophononics, confirming the necessity for more profound experimental

and theoretical investigations of their electron and thermal transport properties.

1.3 OBJECTIVES AND OUTLINE

The main topic of this thesis is the theoretical study of classical and quantum heat transport

in low-dimensional materials. Two major issues will be (i) to rationalize the factors influencing

heat transport in such nanosystems in a systematic way and from both the classical and quantum

points of view, and based on it, (ii) to propose appropriate material design strategies allowing

for the control of heat flow in realistic nanomaterial structures. Main targets of the thesis will

be novel two-dimensional materials and molecular nanojunctions. The 2D materials that we

will deal with have different numbers of atomic layers perpendicular to the plane: hBN is a

single atom layer material like graphene, phosphorene contains two atomic layers, and MoS2

monolayer consist of three atomic layers, with the outer layers being the S-species and the inner

layer includes the Mo atoms [82]. In this way, we can explore the influence of these atomic scale

differences in systems which are globally two-dimensional. While nanojunctions will be formed

by carbon-based molecules such as polyethylene and polyacetylene.

Initially, items (i) and (ii) will be addressed using nonequilibrium molecular dynamics sim-

ulation which is already available is several simulation softwares. On the other hand, from the

methodological point of view, this thesis is aiming at (a) implementing nonequilibrium Green’s

function formalism to study quantum ballistic transport, this will be combined with a DFT

method to ensure a realistic description of the transport properties, and (b) developing the nec-

essary formalism to treat the influence of phonon dynamics on the quantum thermal transport

properties at the atomistic level. Due to the novelty of this last item, we will first demonstrate

the method, as a proof of concept, in simple nanoscale junctions based on polyethylene and

polyacetylene dimers.

The present thesis is structured as follows. In Chapter 2, nonequilibrium molecular dy-

namics is described and employed to study heat transport in thermal rectifiers made of novel

two-dimensional materials. Here, the influence of substrate deposition on the thermal transport
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properties of these devices is also discussed. This is an attempt to understand the long existing

controversy over the device-substrate relationship. Consequently, phonon ballistic transport in

low-dimensional materials is engineered by varying various control parameters. A brief descrip-

tion of the NEGF-DFT method and the outcomes of its application are presented in Chapter

3. In Chapter 4, a new atomistic framework for time-dependent quantum thermal transport is

developed and, then, applied to study carbon-based molecular junctions. Finally, the conclusions

and outlook of the work are displayed in Chapter 5.
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2 TWO-DIMENSIONAL THERMAL

RECTIFIERS

In general, the heat energy is transmitted trough a material by electrons, phonons or other

excitations as spin waves, depending on the type of material. The present chapter will be

only focused on energy transfered by lattice dynamics, which is the dominant mechanism in

semiconductors. Specially, the main goal will be the search and control of the thermal rectification

effect in nanodevices made of novel 2D materials. As it was mentioned in Chapter 1, to have an

optimal thermal rectifier, the device should provide a large heat flow for a certain temperature

gradient, but ideally be insulating when the direction of the gradient, and thus of the heat flow,

is reversed [2].

To understand heat transport across these novel nanodevices, molecular dynamics (MD)

simulations are carried out. This is a powerful tool for materials modeling at the nanoscale and

it allows us to have atomic scale resolution observations which is, most of the times, not possible

in experiments. Moreover, when dealing with rectification effects, a special kind of MD has to

be used, i.e., nonequilibrium molecular dynamics (NEMD), which has been widely used for the

study of carbon-based thermal rectifiers [2, 37]. NEMD method is already implemented in the

LAMMPS code [167] and, hence, this will be the software used to perform all MD simulations

in the present chapter. In the following, the main concepts of NEMD simulations are discussed.

2.1 CLASSICAL MOLECULAR DYNAMICS

It is known that to study the dynamical properties of a many-body problem, numerical

simulations are necessary because of the limitations of analytic approaches. Starting from the

Born-oppenheimer approximation which assumes a separability of time scales for nuclear and

electron motion and, consequently, the total Hamiltonian of the system can be split into two

parts, electron and nuclei Hamiltonian [168]. As a result, the electron Hamiltonian parametrically
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depends on the nuclear positions which can be obtained by using, e.g., molecular dynamics

(MD) simulations [169, 170]. MD is a deterministic method in which the electronic structure

information of the system is contained in the interatomic potential U , as it will be discussed in

the following sections. This method has been successfully used to investigate both equilibrium

and nonequilibrium state of materials at different length scales. Thus, besides the goal of the

thesis (i.e., thermal rectification effect), applications of MD simulations have covered a wide

range of research topics, such as liquids, defects, fatigue, clusters, and biomolecules [170].

Molecular dynamics is a method based on the numerical integration of Newton’s equation of

motion, i.e.,

mi
d2ri
dt2

=
N
∑

j=1,j 6=i

Fij (i = 1, 2, · · · , N), (2.1)

where N is the number of particles in the system and Fij denotes the force exerted on particle i

by particle j and corresponds to the gradient of the interatomic potential between such particles

given by

Fij = − ∂U

∂rij
. (2.2)

The summation is carried out over all other particles in the system. Eq. (2.1) represents 3N

equations due to the three Cartesian components of rij. The major task of an MD simulation is

to solve these 3N equations and then analyze the simulation results to obtain the information

of interest.

MD simulation is a statistical mechanics approach, which relates the microscopic behavior in

a system with its thermodynamics. According to statistical mechanics, physical quantities can be

evaluated by averaging over configurations distributed according to a certain statistical ensemble.

For the N-particle system, MD simulation calculates the trajectory in a 6N -dimensional phase

space (3N positions and 3N momenta) at each instantaneous time. This trajectory obtained

from MD simulation provides such a set of configurations. Thus, to get the thermodynamic

variables such as temperature, it relies on the ergodicity hypothesis of statistical mechanics,

which asserts that the phase space can be fully recovered in the long-time limit and the time

average is equivalent to the ensemble average. Therefore, thermodynamic variables of interest

can be obtained by the time average along the trajectory in an MD simulation [171].

Nevertheless, to get the MD trajectory, the equations of motion have first to be numerically

solved. Indeed, various techniques have been developed to integrate the equations of motion [172],

e.g., Runge-Kutta model, predictor-corrector method, Verlet method, etc. For our purpose, the

simplest, stable, and time-reversible is the Verlet algorithm [173], which can be derived through

a series of Taylor expansions. In the first place, let’s expand the position vector,

r(t+∆t) = r(t) + v(t)∆t+
F(t)

2m
∆t2 +

∆t3

3!

...
r +O(∆t4) . (2.3)
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Similarly,

r(t−∆t) = r(t)− v(t)∆t+
F(t)

2m
∆t2 − ∆t3

3!

...
r +O(∆t4) . (2.4)

Summing up these two equations,

r(t+∆t) = 2r(t)− r(t−∆t) +
F(t)

2m
∆t2 +O(∆t4) . (2.5)

Hence, the estimate of the new positions contains an error that is of order ∆t4, where ∆t is

the time step in the MD simulation. Then, the velocity can be derived from knowledge of the

trajectory as:

v(t) =
r(t+∆t)− r(t−∆t)

2∆t
+O(∆t2) . (2.6)

This expression for the velocity is only accurate of order ∆t2. To obtain more accuracy in the

calculations, velocity-Verlet algorithm has been developed, in which the positions are calculated

as [174]

r(t+∆t) = r(t) + v(t)∆t+
F(t)

2m
∆t2 , (2.7)

and the velocities by

v(t+∆t) = v(t) +
F(t+∆t) + F(t)

2m
∆t . (2.8)

Notice that in this algorithm, the new velocities can only be computed after the new positions

are known and from these, the new forces. Eq. (2.8) is accurate to order ∆t4 and it can be

proven rigorously that Eqs. (2.7) and (2.8) are equivalent to the original Verlet algorithm. Thus,

it is obvious that in any integration algorithm, the time step is always an important factor.

Too large time step may give problems in the integration algorithm due to high energy overlaps

between atoms and, then, lead to a program failure. Too small time step will result in much more

computer time. Usually, in one time step, the motion of the particle should be approximately

one order of magnitude smaller than the atom-atom bond length. For most solid state materials,

the suggested time step at room temperature is from 0.1 fs to 1 fs (1 fs = 10−15s).

Furthermore, the atomic positions and velocities must be initialized to start with an MD

simulation. In crystalline solids, for example, the starting positions will be defined by the crystal

symmetry and the positions of the atoms within the unit cell of the crystal. Then, periodic

boundary conditions are considered to simulate a large system. Whereas, for amorphous solids,

the particles can be randomly distributed in the simulation cell. The initial velocities are set

by assuming a Maxwell-Boltzmann distribution for velocities along the three dimensions. This

can be done using Gaussian-distributed random numbers, with the condition that the total

momentum of the particles is equal to zero and specifying the temperature and total energy of

the system. Notice that another crucial input to start the MD simulation is the interatomic

potential (or force field), in which lies the accuracy of the simulation results (see section below).

2.1 Classical molecular dynamics 31



2.1.1 Empirical interatomic potentials

The investigation of the physical properties of any material by means of molecular dynamics

simulations strongly depends on how the interactions among the constituent atoms are described.

Nowadays, firs-principle methods are available to carried out these kind of studies [175], but

they are time consuming when dealing with large systems (hundred of nanometers) and become

practically impossible most of the time. In these situations, empirical interatomic potentials are

desirable because they do not require tedious quantum mechanical calculations. However, their

accuracy and transferability need to be proved. Consequently, tremendous efforts have been

done to develop reliable force fields for many material systems that can accurately describe the

interatomic interactions and easily be applied to a large system size. Generally speaking the

total potential can be decomposed in the following sum,

U =
∑

i

U1(ri) +
∑

i<j

U2(ri, rj) +
∑

i<j<k

U3(ri, rj, rk) + · · · , (2.9)

where the first term represents the one-body contribution to the potential and is often associated

to an external field, e.g., an electric field. The second and third terms represent two-body and

three-body interatomic potentials, respectively. The choice of the interatomic potential depends

on the problem at hand (type of atomic structure and on the properties to be studied), and on

the necessity of modeling experimental findings.

One of the simplest and most popular two-body potential used in condensed matter physics

is the Lennard-Jones (LJ) potential, where the total potential decomposes in a sum of pair

potentials

U =
∑

i

∑

j>i

Uij , (2.10)

with,

Uij =



















4ε

[

(

σ

rij

)12

−
(

σ

rij

)6
]

if rij < 2.5σ

0 otherwise.

. (2.11)

Here, ε and σ are the LJ energy and length scales, corresponding to the zero-energy pair-

separation distance and the potential well depth. The first term in Eq. (2.11) models the

strong repulsive interaction between atoms at small separation distances, while the second term

models the attractive van der Waals interaction between electrically neutral molecules or atoms.

The values ε and σ are chosen to reproduce thermodynamic properties of the gas phase [169].

For this work, the LJ potential has been truncated by imposing a cut-off radius of 2.5σ. So when

calculating the potential felt by a particle, one only needs to consider particles within this cutoff

distance. This can be used to speed up the simulations avoiding unnecessary force calculations.
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Despite not being able to fully account of the physical and chemical properties in current

relevant materials (e.g., nanoparticles, nanotubes, two-dimensional materials), LJ potential can

not be underestimated as it represents an important model to describe the vdW interaction. For

instance, LJ potential has been widely used to model graphene-substrate interaction and inter-

layer interaction in multi-layer graphene [176]. This approach will be also used for studying the

influence of substrate on the thermal transport properties of coplanar graphene/BN nanoribbons

(see Sec. 2.2.2). Accordingly, because of the limitations of LJ potential, in some situations, it

is required to use more sophisticated semi-empirical potentials whose parameters are chosen to

reproduce either microscopic or macroscopic properties of a model system. These semi-empirical

potentials are usually no longer pair potentials like the LJ potential but many-body, where the

many-body terms describes how does the potential energy of an atom depends on its coordina-

tion. One such example is the Tersoff potential, which was first proposed for Silicon [177] and

later for Carbon [178]. J. Tersoff abandoned the use of N-body potential form and proposed

a new approach by effectively coupling two-body and higher multi-atom correlations into the

model. As for the Biswas and Hamann potential, the Morse form is adopted, related to the

exponential decay dependence of the electronic density. Thus, the potential is written in the

following form:

U =
∑

i

Ei =
1

2

∑

i 6=j

Uij , (2.12)

with

Uij = fC(rij) [fR(rij) + bijfA(rij)] , (2.13)

where the potential energy is decomposed into a site energy Ei which is expressed then as a

bonding energy Uij . rij is the distance between the atoms i and j. fA and fR are the attractive

and repulsive pair potentials, respectively; and fC is a smooth cut-off function. These functions

are given by

fR(rij) = Ae−λ1rij , (2.14)

fA(rij) = −Be−λ2rij , (2.15)

fC(rij) =











1 if r < R−D
1

2
− 1

2
sin
[π

2
(r −R)/D

]

if R−D < r < R+D

0 if r > R+D.

. (2.16)

Notice that the parameters R and D are not systematically optimized but are chosen so as

to include the first-neighbor shell (mainly for high-symmetry bulk structure). The fC function,

thus, decreases from 1 to 0 in the range R−D < r < R+D. The main feature of this potential is

the presence of the bij term. As explained before, the basic idea is that the strength of each bond

depends upon the local environment and is lowered when the number of neighbors is relatively

high. This dependence is expressed by bij , which can increase or reduce the attractive force
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relative to the repulsive force, according to the environment, such that

bij =
1

(

1 + βnζnij

)1/2n
, (2.17)

ζij =
∑

k 6=i,j

fC(rij)g(θijk)e
[λ3

3(rij−rik)
3] , (2.18)

g(θijk) = 1 +
c2

d2
− c2

[d2 + (h− cos θ)2]
. (2.19)

The term ζij defines the effective coordination number of atom i, i.e., the number of nearest

neighbors, taken into account the relative distance of two neighbors rij − rik and the bond angle

θ. The function g(θ) has a minimum for h = cos θ, the parameter d determines how sharp

the dependence on angle is, and c expresses the strength of the angular effect. This potential

and the parameters were chosen to fit theoretical and experimental data obtained for realistic

and hypothetical silicon configurations, namely the cohesive energy of several high-symmetry

bulk structures, the lattice constant and bulk modulus of the silicon lattice in the diamond

configuration.

Additionaly, as it was mentioned above, the force field parameters are usually developed for

individual element only. However, besides single element materials, alloys offer a continuously

variable system with a wide range of crystal lattices and band gaps, leading to various new phys-

ical and chemical properties. To model the interatomic interaction in multi-component system,

the force field parameters are approximated by a combination of single-element parameters. The

most frequently used mixing rules are the arithmetic average (Lorentz rule) for length parameters

[179]

σij =
σi + σj

2
, (2.20)

and the geometric average (Berthelot rule) for energy parameters

εij =
√
εiεj . (2.21)

2.1.2 Heat bath

Conventional MD generates a microcanonical ensemble (NVE), in which the total number

of particles, the volume, and the energy are conserved. The conservation of energy allows the

numerical stability of the simulation to be tested. However, to compare the simulations with

experiments, it is better to use the canonical ensemble (NVT), in which the temperature, instead

of the energy, is controlled. The temperature of a system, based on the equipartition theorem,

is defined as

T =
2

3NkB
〈

N
∑

i=1

mivi · vi

2
〉 , (2.22)
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where N is total number of atoms in the system, kB is Boltzmann constant, mi and vi is the mass

and velocity vector of atom i, respectively. The angular bracket denotes the ensemble average.

Thus, for a NVT simulation, it is essential the definition of a heat bath, which is also called

thermostat. The heat bath maintains a fixed temperature for a particular part of the system.

It works by adding an additional force term to the system’s Hamiltonian. This additional force

interacts with the particles in the system. Hence, the momentum of the particles is adjusted

corresponding to the target temperature. If the momentum is too large, the themperature will be

reduced, otherwise, it will be increased. Depending on the nature of the extra force (excitation),

there are two kinds of heat baths widely used in MD simulations [180]. One is the deterministic

type, such as Berendsen and Nose-Hoover (NH) heat baths, and the other is the stochastic type,

such as Langevin heat bath.

In general, a deterministic heat bath is preferred as it is time reversible and the results are

reproducible. Here, the Berendsen heat bath is the simplest thermostat to implement due to that

it modifies the bath temperature by only scaling the particle velocities [181]. However, because

of its inability to reproduce a fully canonical ensemble, this thermostat has been reported to

cause artifacts in various studies [182]. Consequently, in the present work, NH heat bath will be

used for all temperature equilibration and NEMD simulations.

In the scheme of the NH thermostat, the equation of motion for a particle i in the heat bath

is:
dri
dt

=
∂H

∂pi

,
dpi

dt
= −∂H

∂ri
− ζpi, (2.23)

where H is the Hamiltonian of the system, pi = mivi and ri are the momentum and coordinate

of particle i, respectively, and ζ is an auxiliary variable modeling the microscopic action of the

heat bath. The dynamics of ξ is governed by the following equation:

dζ

dt
=

1

τ2

[

T (t)

T0
− 1

]

, T (t) =
2

3NkB

∑

i

pi · pi

2mi
, (2.24)

where T0 and τ are the aimed temperature and the relaxation time of the heat bath, respectively,

and N is the total number of particles that is in contact with heat bath. The relaxation time

τ should be properly chosen to avoid unrealistically low-temperature fluctuations with small τ ,

and the inactive sampling with large τ (e.g. τ → ∞) [183].

On the other hand, with Langevin heat bath, the equation of motion can be written as

dpi

dt
= −∂H

∂ri
+ ξ − λpi , (2.25)

where the random force ξ and the dissipation rate λ are introduced into the system simultane-

ously. This kind of stochastic excitation is consistent with the microscopic picture of Brownian

motion. The random force ξ follows the Gaussian distribution with zero mean value and variance

of 2mλkBT according to the fluctuation-dissipation theorem.
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calculated trough the Fourier’s Law,

κ = − J

∇T . (2.26)

There are several ways of controlling the temperature in the thermal reservoirs. An option, which

will be used in the present work, is to apply thermostat, e.g., velocity scaling, Nosé-Hoover,

Langevin, as described above. Alternatively, one can apply the reverse-NEMD approach, in

which the stationary heat flux is induced by swapping the momenta of particles between the

heat source and sink [27, 185]. Although it has been pointed out that the choice can alter the

convergence speed or conservation of momentum and energy, these appear to have little influence

to the calculated values of thermal conductivity [184, 185].

Despite the simplicity of the simulation, there are several methodological issues that are

worth addressing. For instance, for the linear response theory to be applicable, the temperature

gradient needs to be sufficiently small. Since it is not possible to prove a priori, it needs to be

checked by performing multiple simulations with different temperature gradients and heat fluxes

[186]. Moreover, on carrying out NEMD simulations by locally applying the thermostat at the

ends of the system, the interface between the temperature-controlled part and the central region

often gives rise to a nonlinear temperature profile near the thermostats [187]. This appears due

to the mismatch of lattice-vibrational spectra between the heat bath and the rest of the system.

This mismatch causes reflection of vibrational modes and alters the scattering dynamics at the

boundary, and thus, give rise to local nonequilibrium phonon distribution, which can signifi-

catly alter the overall heat conduction when the system length is smaller than the characteristic

phonon mean free path. The most intuitive approach to minimize this effect is by choosing the

appropriate thermostat parameters [187]. In the present work, a benchmark of the parameters

for Nose-Hoover thermostat has been performed for MoS2 nanoribbons, see Appendix A.

2.1.4 Vibrational modes analysis

To rationalize the process of thermal rectification in the studied nanoscale systems, a vi-

brational mode analysis in real space is performed [188, 189]. Here, it is assumed that the

normal-mode solution of the atom i takes the form of uiα,λ = (1/
√

(m))εiα,λ exp(iωλt). Hence,

to find the normal-mode frequencies ωλ and their corresponding vector components εiα,λ of the

vibrational modes, the lattice dynamical equations must be solved [189]:

ω2
λεiα,λ =

∑

jβ

Φiα,jβεjβ,λ, (2.27)

where Φ is the mass-weighted force constant matrix and its elements are given by

Φiα,jβ =
1

√
mimj

∂2U

∂uiα∂ujβ
. (2.28)
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Here uiα is the displacement of ion i in the α Cartesian direction, mi is the mass of ion i, and

U is the total potential energy employed for the molecular dynamics simulation. The dynamical

matrix can be thought of as representing the connection between the forces acting on the atoms

and the displacements from their equilibrium positions of those atoms. Then, the atomic forces

are calculated numerically using a finite-difference approach. The vibrational modes of a system

with N atoms are calculated by diagonalizing the 3N × 3N matrix given by Eq. (2.28). In the

present study, time and configurational averages are performed for all the quantities related to

this analysis.

The first important characteristic of the vibrational properties is the vibrational density of

states (VODS) which measures number of vibrations within a given frequency range. Consid-

ering the presence of edges and interfaces in nanostructures, it is useful to examine the relative

contribution of a given group of atoms to the total VDOS. Thus, the partial VDOS (PVDOS) is

defined as [189]:

S(ω) =
∑

jA

∑

λ

∑

α

|εjAα,λ|2δ (ω − ωλ) , (2.29)

where εjAα,λ is the vibrational eigenvector component of mode λ with polarization α = X,Y, Z,

and ωλ is the frequency of the corresponding mode. Notice that the sum over jA only includes

atoms of a given type. Summing then over the index A gives the total VDOS. On the other hand,

Dickey and Paskin [190] found that S(ω) is also equal to the Fourier transform of the velocity

autocorrelation function of the system f(t), i.e.,1

S̄(ω) =

∫

f(t) cosωtdt , (2.30)

where f(t) describes correlations between velocities at different times along an equilibrium tra-

jectory and it is calculated as [191]:

f(t) =
〈∑N

i=1 vi(t0) · vi(t)〉
〈∑N

i=1 v
2
i (t0)〉

. (2.31)

Nevertheless, the information provided by the VDOS analysis does not reveal the degree of

localization or delocalization of the vibrational modes in different spectral ranges. Hence, to

characterize each mode λ with respect to these features, the participation ratio (PR) has been

calculated, which is defined according to:

P−1
λ = N

∑

i

(

∑

α

ε∗iα,λεiα,λ

)2

. (2.32)

Here, εiα,λ is the vibrational eigenvector component of atom i and N is the number of atoms in

the system. The PR measures the fraction of atoms participating in a mode and hence varies

between 1 for delocalized modes to O(1/N) for localized modes.
1Here, the notation S̄(ω) has been used to distinguish the vibrational density of states computed by using the

velocity autocorrelation function from this one calculated within the real-space vibrational mode analysis, S(ω).
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To complement the previous analysis, the spatial distribution of the vibrational modes lo-

cated within a specific spectral range (Λ) was analyzed by defining the quantity φiα,Λ, which is

computed as: [192]

φiα,Λ =

∑

λ∈Λ ε
∗
iα,λεiα,λ

∑

1≤j≤N

∑

λ∈Λ ε
∗
jα,λεjα,λ

. (2.33)

A large value of φiα,Λ indicates a strong contribution of the ith atom to vibrational modes

belonging to the spectral region defined by Λ. Moreover, while the participation ratio only gives

information about the degree of localization, there are extra quantities that describe additional

features of the vibrational modes in the system. Thus, the polarization vector eiα,λ of an atom

i, for a given mode λ, is defined as:

eiα,λ =
εiα,λ

∑

α ε
∗
iα,λεiα,λ

. (2.34)

In a crystal without defects, the normal modes are all modes with well-defined polarization

vectors [193]. For example, for an LA mode, if the polarization vector is parallel to k (say, the

Z direction), then each ion has a unit polarization vector component of ±1 in the Z direction

and 0 in the X and Y directions.

Another relevant quantity is the phase quotient Φλ of a mode λ, which is given by [188]:

Ψλ =

∑

〈i,j〉 (
∑

α εiα,λεjα,λ)
∑

〈i,j〉 |
∑

α εiα,λεjα,λ|
, (2.35)

where i and j are nearest neighbors. Ψλ is a discriminant of the acoustic versus optical nature

of the mode. Ψλ values near 1.0 indicate that nearest-neighbors atoms vibrate mostly in-phase

like an acoustic mode, while, values near −1 indicate that they vibrate out-of-phase in a manner

characteristic of an optical mode.

2.2 TUNING THE PROPERTIES OF THERMAL RECTIFIERS

It has been proved that equilibrium thermal transport properties (e.g., thermal conductivity)

of nanomaterials can be tuned by modifying some features of the material. However, regarding

to nonequilibrium effects such as thermal rectification, there is only information about carbon-

based materials [37, 40, 73, 76–78]. Hence, in this section, thermal rectifiers made of MoS2 [194]

and coplanar graphene/hBN [195] nanoribbons will be proposed. The main idea is to study the

influence of two relevant factors: the geometry of the nanomaterial and the substrate type on

which they are deposited. To know the efficiency of a material as a rectifier, the heat flux in

forward Jf and backward Jb directions have to be measured. The backward direction of the heat

flux is computed by reversing the temperature gradient direction. To quantify the performance

as rectifier, a thermal rectification (TR) ratio η is defined as:

η[%] =

( |Jf − Jb|
Jb

)

× 100 . (2.36)
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The heat currents Jf,b induced by the temperature bias ∆T are computed as

Jf,b =
1

2

(

∂Ef,b
L

∂t
+
∂Ef,b

R

∂t

)

, (2.37)

where Ef,b
L and Ef,b

R are the total energies that have been added to or subtracted from the atoms

in the left (L) and right (R) heat baths, respectively. Notice that once the system reaches the

steady state, the absolute values of the time derivatives have to be almost the same for left and

right baths. As it is shown in Appendix A, a wrong choice of thermostat parameters may lead

to an improper interpretation of the simulation results.

2.2.1 Structural asymmetry

Here, the influence of the geometry on the thermal rectification is first studied. Based on

previous works, it is known that symmetric nanoribbons made of a single material do not display

thermal rectification effect [2]. In fact, the geometry of the material must present a structural

asymmetry in order to produce this effect. Thus, to improve the performance of the material as

thermal rectifiers the degree of structural asymmetry has to increase. This geometrical factor is

quantified using the dimensionless quantity WLR = WLeft/WRight with WLeft and WRight are the

widths of the left and right ends of the nanoribbon, respectively (see Fig. 2.2(a)). The case

WLR = 1.0 corresponds to a fully symmetric rectangular structure. The length (L) and width

(W ) of the central region of the nanoribbon change by the same scale, WLeft =
√
3L/2, when its

size increases. Only WRight is reduced to generate the structural asymmetry.

In this section, for all NEMD simulations, the temperatures for left and right heat baths are

defined as TL = (1+α)T0 and TR = (1−α)T0 for the forward direction of the heat flux (heat flows

left-to-right or wider-to-narrower) and the opposite case for the backward direction (heat flows

right-to-left or narrower-to-wider). Then, the temperature bias is equal to ∆T = |TL−TR| = 2αT0

(α > 0). To avoid spurious effects related to the specific choice of initial velocities, an average over

five random choices of the initial velocity distribution is additionally performed. Nanoribbons are

simulated with free boundary conditions in all directions. The ends in X-direction (one layer)

have been fixed to avoid global rotations of the system during the simulation. The standard

velocity Verlet algorithm is used to integrate Newton’s equations of motion, and the MD time

step depends on the study, for MoS2 nanoribbons is set to 0.5 fs, while for coplanar graphene/hBN

nanoribbons is 0.1 fs. All investigated nanostructures have been initially relaxed using a quickstep

method.

MoS2-based thermal rectifier

Besides graphene, there are meanwhile a variety of novel two-dimensional materials which

are expected to display different transport properties due to the differences in their chemical
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Figure 2.2: (a) Schematic of MoS2 monolayer. Top and side view in armchair direction. Asym-
metric geometrical shapes selected for the MoS2 nanoribbons (WLeft =

√
3L/2). (b)

Temperature profile for trapezoidal nanoribbons of length equal to 5.9 nm with WLR =
1.0 (blue lines) and WLR = 3.0 (red lines). Both, forward (©) and backward (�) di-
rections of the heat flux are shown. Variation of the (c) heat flux and (d) thermal
rectification after increasing WLR parameter for each geometrical shape. For these
calculations, T0 = 300 K and α = 0.1 have been considered.

composition (see Chapter 1), and thus offer a new broad playground to explore and develop

nanoscale devices, e.g., thermal rectifiers. One of these materials is molybdenum disulphide

(MoS2) monolayer, which has atracted considerable attention mainly because of its sizable elec-

tronic bandgap and lower thermal conductivity compared to graphene [104, 105, 107]. Although

a variety of theoretical studies has been published, addressing the phonon dispersion and thermal

conductivity of MoS2 layers and ribbons [114, 115, 117, 151, 158, 196–198] , less attention has yet

been devoted to the possibility of engineering the thermal response of MoS2 nanostructures via

structural asymmetries. Thus, in the present section, three geometrical shapes of MoS2 nanorib-

bons have been considered to study possible thermal rectification effects: T-shaped, trapezoidal,

and triangular (see Fig. 2.2a). Hence, as it was mentioned above, a crucial issue in all MD

simulation is the choice of the appropriate force field. In the case of MoS2 several force fields

have recently been developed [158, 197]. However, they turned out to have different problems

when applying them to simulate systems with open boundary conditions (e.g., nanoribbons) at
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room temperature. Consequently, after careful checks, a force field developed on the basis of

tight-binding quantum chemistry calculations by Onodera et al. [199] has been used to perfome

the NEMD simulations. This force field includes ionic, covalent, and van der Waals interactions

among Mo and S atoms. This interatomic potential has already been successfully applied to

study mechanical [199, 200] and thermal [106] properties of MoS2 monolayer.

After geometry optimization, the lattice constant for MoS2 obtained is a = 3.38 Å. This value

is close to the one reported in previous works [158, 197]. Then , equilibration MD in the NVT

ensemble is first run for 2 ns and at T0 = 300 K with a Nosé-Hoover thermostat using a relaxation

time equal to 0.1 ps. The choice of thermostat is a sensitive issue in NEMD simulations, but as

discussed in Ref. [71], different algorithms in NEMD simulations only led to negligible differences

in the computed heat flows2. Once the temperature reached the required value, the thermostat

was removed, and the NEMD simulations were carried out for 20 ns. Each heat bath extended

over four atomic layers corresponding to a length of roughly ∼ 2.3 nm. Time averages of the

temperature and the heat current were carried out over the last 10 ns of the simulation.

Fig. 2.2(b) shows the temperature profiles at a bias of α = 0.1 for trapezoidal MoS2 nanorib-

bons of length L = 5.9 nm with WLR = 1.0 (symmetric) and WLR = 3.0 (asymmetric). For

symmetric nanoribbons, the temperature profile has a symmetric and nearly linear behavior for

both directions, forward and backward, of the applied temperature bias, so that no rectification

of the thermal current can take place, as expected. Whereas, for WLR = 3.0, the temperature

gradient along the nanoribbon becomes non-linear and displays a different dependence on the

spatial distance from the heat baths for forward and backward heat flows. Notice that the mean

temperature is mainly controlled by the wider heat bath (left bath), and this shows up in the

strong non-linear evolution of the temperature profile after increasing distance from the wider

bath. As a consequence, the corresponding thermal currents are also different and heat rectifi-

cation can take place, see Fig. 2.2(c). In other words, the heat flux runs preferentially from the

wider to the narrower region, so that the device behaves as a “good” thermal conductor in that

direction. This behavior is improved when the temperature bias is increased, as shown in the

inset of Fig. 2.5. In Fig. 2.2(d), one can see that for the different nanoribbon shapes, the quali-

tative trends are rather similar: with increasing structural asymmetry the degree of rectification

increases and can achieve rather high values of roughly 30 %, values which are comparable with

those found in more complex engineered graphene nanoribbons [37, 78]. This is related to the

increasing difference in the number of atoms involved in the nanoribbon-heat bath interaction at

both ends with increasing WLR, which increasingly breaks the heat flux symmetry as the tem-

perature bias is reversed. These effects have been also reported for graphene ribbons [37, 40, 73].

There is however a clear quantitative difference in the heat rectification efficiency of T-shaped

ribbons when compared to the triangular and trapezoidal ones. Namely, the former has a larger

TR ratio for the same length L. This is largely related to how the transition from the wider

to the narrower region is built in: in the triangular and trapezoidal nanoribbons the transition

2See Appendix A for a discussion of the thermostat parameters used in these simulations
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Figure 2.3: Total and partial (a) vibrational density of states and (b) participation ratio for the
T-shaped MoS2 nanoribbon with length L = 5.9 nm and WLR = 3.0 as obtained from
NEMD simulations in the forward temperature bias direction (α = 0.1). For reference,
the corresponding total VDOS for the structurally relaxed (i.e. before starting the
NEMD simulation) T-shaped MoS2 nanoribbon with WLR = 3.0 is also shown.

is smooth (it can be called adiabatic as done with quantum point contacts [201]), while for the

T-shaped ribbon there is a narrow interface region where an abrupt transition from wider to

narrower sections takes place. Hence, heat flow differences resulting from the global asymmetry

of the nanoribbon will be enhanced due to this sharp interface. Notice that upon increasing

the system size, the effect of the structural asymmetry in the thermal rectification weakens and

eventually disappears, i.e. η → 0 for L(or W ) → ∞. Fig. 2.2(d) shows this tendency for T-

shaped ribbons with two different lengths: L = 5.9 nm and L = 9.4 nm and highlights the fact

that, besides structural asymmetry, another major factor influencing thermal rectification is the

transversal finite size of the nanostructures [2, 37, 73].

Next, to rationalize the process of thermal rectification in asymmetrically structured MoS2

nanoribbons, a real-space mode analysis is performed [202] (see Sec. 2.1.4). For the sake of

clarity, this part is only focused on T-shaped nanoribbon with L = 5.9 nm and WLR = 3.0, since

the results for the other geometries are qualitatively similar [194]. In Fig. 2.3(a), the total and

partial vibrational density of states (PVDOS) of the T-shaped ribbon are displayed. Here, the

VDOS of the structurally relaxed T-shaped nanoribbon before running the NEMD simulation

(black solid line) is showed as reference. The major difference to the VDOS obtained from the

NEMD simulation (green solid line) is the spectral broadening, which manifests more clearly for

the high-frequency vibrational modes above 400 cm−1. Regarding to the PVDOS for Mo and S

atoms in the nanoribbon, it can be roughly identified three different spectral regions [197]: a low

frequency range (up to 200 cm−1) where both S and Mo atoms carry similar spectral weights,

although the contributions of the S atoms are slightly larger; an intermediate range (∼200-380

cm−1), where the spectral weight is carried almost exclusively by S atoms; a high frequency range

(> 380 cm−1) where again both atom types contribute similarly to the total VDOS, although
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Figure 2.4: Projections of the polarization vectors onto Y-X and Z-Y planes for the T-shaped
MoS2 nanoribbon with WLR = 3.0 after NEMD simulation in the forward direction
(T0 = 300 K and α = 0.1 ) in the frequencies: (a,d) 50 cm−1, (b,e) 350 cm−1 , and
(c,f) 560 cm−1.

here Mo atoms have a slightly larger spectral weight. For the backward heat flow direction a

similar qualitative behavior was obtained (not shown).

Accordingly, the participation ratio (PR) has been calculated to characterized the degree of

localization or delocalization of the vibrational modes (see Fig. 2.3(b)). Similar to the VDOS

plot in Fig. 2.3(a), the PR for the relaxed T-shaped nanoribbon previous to starting the NEMD

simulation is also showed. Moreover, partial PRs associated to Mo and S atoms are also shown

[193]. The first point to notice is that the nonequilibrium vibrational spectrum is mostly modified

in the higher frequency part with modes lying roughly above 400 cm−1. While for the relaxed

nanoribbon can be identified two clear groups of modes in this frequency range with PR∼0.4

and 0.25. The nonequilibrium modes show a considerably larger degree of localization with PR

below 0.1. For lower frequencies the differences between these two cases are much weaker, though.

The partial PRs show that modes with a higher degree of delocalization (larger PR) involve in

general a larger contribution from S atoms. In short, apart from the very low frequency vibrations

below 100 cm−1 and a narrow region between 150 cm−1 and 220 cm−1, almost all modes in the

nanoribbon display a stronger tendency to localization with PRs smaller than 0.4, which is a

signature of the strong impact of structural asymmetries, finite cross-section of the nanoribbons,

and temperature.
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Fig. 2.4 shows the projections of the polarization vectors onto the Y-X and the Z-Y planes for

the T-shaped MoS2 nanoribbon with WLR = 3.0 after NEMD simulations with heat flowing in the

forward direction. Only three representative frequencies have been selected for this analysis: 50

cm−1 (Fig. 2.4(a,d)), 350 cm−1 (Fig. 2.4(b,e)), and 560 cm−1 (Fig. 2.4(c,f)). The results show

that frequencies <90 cm−1 behave like a propagon mode, while frequencies between 90 cm−1 and

550 cm−1 are diffuson modes with frequency dependence of their participation ratio [188, 189].

Highest frequencies, >550 cm−1, tend to have a unit polarization vector component in the Z

direction and are expected to be locon modes as discussed in the context of amorphous systems

[189]. Therefore, the atoms are essentially vibrating in the plane during the NEMD simulation

but this phenomena depends on the frequency of the vibrational mode. Similar behavior has

been found for the other geometries studied in the present work.

Furthermore, in Fig. 2.5, the phase quotient Ψλ for the T-shaped MoS2 nanoribbon with

WLR = 3.0 is showed. For low frequencies values, independently of the heat flux direction, Ψλ is

near 1.0 indicating that nearest-neighbors atoms vibrate mostly in-phase like an acoustic mode,

while, for high frequencies, Ψλ values are close to -1.0 which says that they are vibrating out-

of-phase in a manner characteristic of an optical mode. Also, one can see that the frequency

dependence of the phase quotient for forward or backward direction forms a band of monoton-

ically decreasing values. However, there is an increase of phase quotient in the range 200-230

cm−1. As was reported in Ref. [189], this increase coincides with the end of the transverse

acoustic TA branch in MoS2 bulk which is 210 cm−1, which is related to the presence of a

local minimum in the vibrational density of states. As the TA branch ends, the modes begin

to acquire features akin to LA, leading to an increase in the phase quotient. These properties

have been properly invoked for diffusion modes in amorphous silicon, but apparently similar
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Figure 2.6: Spatial distributions, φ, of vibrational modes for T-shaped MoS2 nanoribbons of L =
5.9 nm and WLR = 3.0 (XY plane). Here, only vibrational modes with P < 0.1 have
been considered for the system obtained after NEMD simulation in the (left panel)
forward and (right panel) backward direction of the heat flux (α = 0.1). The color
scale has the same meaning for all the cases, i.e., cyan balls mean highest contribution
while pink balls lowest contribution for the vibrational modes. In these pictures, only
contributions arising from the top S-layer as well as the Mo-layer are shown.

physics is taking place in asymmetric MoS2 nanoribbons because of the finite size effects and the

non-equilibrium conditions.

To complement the previous analysis, the spatial distribution of the vibrational modes located

within a specific spectral range (Λ) is analyzed by defining the quantity φiα,Λ (see Sec. 2.1.4).

To define the set Λ, three possible PR regions are selected as shown in the central panel of Fig.

2.6: I) P > 0.4, II) 0.1 < P < 0.4, and III) P < 0.1. φiα,Λ for the domains I and II turns out

to have almost the same behavior for forward and backward heat flows (see Appendix A). Thus,

modes in those spectral ranges do not seem to strongly determine the rectification of the heat

current. Major differences were however found for region III as displayed in the left and right

panels of Fig. 2.6. Here, in contrast to other 2D materials, which consist of a single atomic

layer like graphene or BN, MoS2 nanoribbons are built up of three atomic layers. This makes the

visualization of the quantity φiα,Λ more involved. However, by analyzing the contribution of each

atomic layer separately, it was found that the two sulfur planes contribute in similar ways to the

spatial distribution of the modes, something to be expected for symmetry reasons. Therefore,

contributions arising from the top S-layer as well as from the Mo-layer are only shown in Fig. 2.6.

The left and right panels of Fig. 2.6 illustrate the spatial distribution for modes in region III for

the forward (left panel) and backward (right panel) directions. The main observed feature is the

strong increase, in the backward flow direction, of the number of atoms giving a low contribution

(0.2-0.3) to modes in spectral region III, i.e. for frequencies above 350 cm−1. This mainly affects

a set of atoms in the bulk of the nanoribbon, while atoms along the edges do not appreciably
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Figure 2.7: Dependence of M parameter with the asymmetry degree, WLR, for the T-shaped
and trapezoidal MoS2 nanoribbons. Values obtained by considering frequencies with
P < 0.1 have been only considered. Inset: variation of M parameter (♦) and heat
flux (B−forward and C−backward direction) after increasing the temperature bias
for the T-shaped nanoribbon with WLR = 3.0.

change the degree of their contribution to the selected spectral range. Moreover, it was found

that S atoms are mostly influenced upon reversal of the heat flow, while the contribution from

Mo atoms is considerably less modified and remains relatively high (φiα,Λ > 0.5). A simple

mathematical relationship between the degree of spatial localization of the vibrational modes and

the heat current as computed in a NEMD run is difficult to establish. In this sense, these results

only hint at the fact that the strong modification in the spatial distribution of certain groups of

modes upon reversal of the direction of heat current flow in asymmetric nanostructures is a major

factor determining the size of the thermal rectification effect found in the structurally asymmetric

MoS2 nanoribbons. Trapezoidal shaped nanoribbons also show a very similar behavior (see

Appendix A). To this effect, which has been highlighted in earlier works on graphene nanoribbons

[37, 72], one also needs to add, as mentioned previously, the finite transversal size of the ribbons,

which modifies the boundary conditions for the vibrational spectrum as well as its localization

properties, and thus also strongly determines the heat transport features of the system. Clearly,

these factors − asymmetry, finite size, modes localization− are not independent from each other

and their interplay induces the observed rectification features in the MoS2 nanoribbons.

Finally, to round off our discussion and to provide a better illustration of the influence of the

lateral confinement on the thermal rectification, the parameter M is introduced as:

M [%] =

( |Πf −Πb|
Πb

)

× 100, (2.38)

with Π = 〈P 〉λ as the frequency averaged participation ratio. λ modes belong to a specified

spectral range Λ. It was found that, as expected from the previous discussion, the average
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Figure 2.8: (a) Schematic representation of hBN-G heterojunctions with zigzag interface (B-C
bridge bonding). The degree of asymmetry is measured by WLR = WLeft/WRight.
(b) Variation of heat flux after increasing the asymmetry degree for hBN-G and G-
hBN nanoribbons. Results for two different system size (L= 6.1 nm and 9.2 nm) are
compared. (c) Thermal rectification as a function of WLR for both type of nanorib-
bons. η values for pure graphene and hBN nanoribbons are also shown.

participation ratios in forward and backward direction for the spectral ranges I and II defined

above are almost identical, implying M ∼ 0. Hence, Fig. 2.7 only shows the dependence of M

with the WLR parameter corresponding to the case III with P < 0.1 for T-shaped and trapezoidal

MoS2 nanoribbons. Alike the behavior of the thermal rectification factor η, M increases when

the nanoribbon becomes more asymmetric and consistently, the effect is stronger for the T-

shaped ribbon. Moreover, the inset of Fig. 2.7 suggests that another alternative to increase the

rectification ratio is to enhance the applied temperature bias, as has been reported for other

systems [37, 71, 73].

hBN/C-based thermal rectifier

In the search of novel thermal rectifiers, it has been found that the presence of interfaces can

considerably improve the thermal rectification in the device. As mentioned in Chapter 1, het-

erojunctions composed by graphene and hexagonal boron-nitride (hBN) domains have attracted

considerable attention [125–128] and, specially, the synthesis of coplanar hybrid graphene/hBN

48 Chapter 2 Two-dimensional thermal rectifiers



monolayers has been successfully reported [125, 126]. Moreover, their thermal transport proper-

ties have been extensively studied in several experimental and theoretical works[127, 134, 136–

143]. However, up to now, the influence of the geometry on these properties is still an open

issue. Hence, coplanar symmetric and asymmetric graphene/hBN nanoribbon heterojunctions

with zigzag interface (B-C bridge bonding) have been studied in this section (see Fig. 2.8(a)).

Interactions among C, B, and N atoms are simulated by using an optimized Tersoff potential

parametrized by Kinaci et al. [139], which has been successfully used to study thermal transport

properties of many BNC nanomaterials [139, 143]. Temperature equilibration runs at T0 = 300 K

are carried out for 5 ns by considering an NVT ensemble with a Nosé-Hoover thermostat (relax-

ation time equal to 0.1 ps). Once the temperature reached the required value, the thermostat is

removed, and the NEMD simulations are carried out for 40 ns. Each heat bath extended over six

atomic layers corresponding to a length of roughly ∼ 2.6 nm. Time averages of the temperature

and the heat current are carried out over the last 15 ns of the simulation.

Firstly, the thermal transport properties of both types of free-standing nanoribbon hetero-

junctions, hBN-G and G-hBN, are studied. For the sake of clarity, only the results for T-shaped

nanoribbon with L = 6.1 nm and WLR = 3.0 will be shown, since the results for the triangular

shape are qualitatively similar [195]. Fig. 2.8(b) shows that independently of the system size

and transport direction the heat flux decreases after increasing degree of asymmetry, as given

by the parameter WLR. This is a result of edge effects getting stronger once the number of

atoms involved in the heat transfer is reduced [37, 194]. The heat flux for forward direction

(from hBN towards graphene nanoribbons) is always greater than the backward direction for

all hBN-G structures, which is in agreement with the results of Chen et al. [137]. For the

fully symmetric case (WLR = 1.0), it has been proven that this effect vanishes when periodic

boundary conditions on the axis perpendicular to the transport direction are considered. In fact,

the heat flux is independent of the transport direction and JhBN→G = JG→hBN [136]. In this

study, the thermal rectification in hBN-G structures roughly displays a linear dependence on the

asymmetry parameter WLR, reaching values ∼21% for L = 6.1 nm. However, the forward and

backward heat fluxes for G-hBN nanoribbon crosses in the range WLR ∈ [2.0, 3.0]. As a result,

JG→hBN > JhBN→G for WLR > WC , and therefore, the corresponding thermal rectification dis-

plays a non-monotonous dependence with respect to WLR with a minimum at the crossing point

of the forward and backward heat fluxes, see Fig. 2.8(c). Notice that unlike single-material (hBN

or Graphene) based nanoribbons, symmetric heterojunctions display rectification effects owing

to interface effects which induce an asymmetric temperature profile and, hence, alter the heat

flux intensity. A similar phenomenon was reported for heterojunctions made of carbon isotopes

[77] and graphene/silicene monolayers [203].

Similar to MoS2 nanoribbons case, to gain insight into the influence of the degree of asym-

metry on the thermal transport of the heterojunctions, a real-space mode analysis in the device

region has been performed [37, 194]. Figs. 2.9(a, b) show S(ω) of T-shaped hBN-G and G-hBN

nanoribbons with L = 6.1 nm and different WLR. The vibrational density of states for G-hBN
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Figure 2.9: Real-space mode analysis of asymmetric heterojunctions. Vibrational density of states
and participation ratio at different asymmetry degree WLR for (a,c) hBN-G and (b,d)
G-hBN nanoribbons, respectively. The results are for the forward direction of the
heat flux. The frequencies corresponding to the vibrational modes of BN atom pairs
(solid bar line) and C atoms (dashed bar line) are highlighted.

nanoribbons reduces with increasing WLR. Whereas, S(ω) of hBN-G nanoribbons is stronger

modified in the frequency region ω ∈ [430, 1350] cm−1, which is related to the fact that most

of the vibrational modes involving carbon atoms are located within this spectral region. On

the contrary, in G-hBN nanoribbons, vibrational modes at lower (ω ∈ [0, 430] cm−1) and higher

(ω ∈ [1100, 1700] cm−1) frequencies are suppressed due to the reduction of B and N atoms after

increasing WLR. Besides, in order to gain information on the degree of localization of the vibra-

tional modes in different spectral ranges −which has been proven to be one of the mechanisms

for thermal rectification− the participation ratio Pλ of each mode λ has been calculated. In Fig.

2.9(c) and (d), one can see that the localization behavior of the vibrational modes in asymmetric

nanoribbons is complex and strongly depends on two factors: the planar stacking order and the

frequency range. Thus, low frequency modes (up to 350 cm−1) in hBN-G nanoribbons are not

much affected with increasing ribbon asymmetry, while the participation ratio is reduced for G-

hBN nanoribbons. This effect gets stronger for hBN-G nanoribbons in the range ω ∈ [350, 540]

cm−1, where the reduction in the number of C atoms localizes these vibrational modes. For

G-hBN, the mode delocalization can increase, P ∼ 0.45 for ω ∈ [390, 560] cm−1, by making the
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Table 2.1: Lennard-Jones parameters for the interaction between the nanoribbon heterojunc-
tions and the different substrates used in the present study. LJ potential, V (r) =
4ε
[

(σ/r)12 − (σ/r)6
]

. A cut-off= 6Å has been considered.

Substrate ε [meV] σ [Å] Substrate ε [meV] σ [Å]

Graphite
B-C 3.108 3.411

Si(100)
B-Si 10.268 3.421

N-C 4.068 3.367 N-Si 12.616 3.595
C-C 2.635 3.369 C-Si 8.172 3.597

SiC(0001)

B-Si 10.268 3.421

SiO2

B-Si 7.357 3.639
N-Si 12.616 3.595 N-Si 9.039 3.595
C-Si 8.172 3.597 C-Si 5.855 3.597
B-C 3.610 3.357 B-O 5.236 3.303
N-C 4.435 3.313 N-O 6.434 3.259
C-C 2.873 3.315 C-O 4.168 3.261

nanoribbons more asymmetric. Higher frequency modes (ω > 1500 cm−1) are strongly localized

for both types of heterojunctions. In short, heat transfer will be dominated by different spectral

ranges depending on the junction type.

2.2.2 Substrate deposition

During the last descades, most of studies about thermal transport properties of two-dimensional

materials (e.g., Graphene/hBN heterojunctions) have been carried out on free-standing struc-

tures, thus neglecting substrate effects. However, very recently, the impact of the substrate on

the thermal conductance has been shown for graphene [45, 176, 204], silicene [205–207], molyb-

denum disulfide MoS2 [208], and phosphorene monolayers [209]. For instance, both experimental

and theoretical investigations have shown that the substrate has always a negative effect on

phonon transport in graphene [45, 176, 204]. Whereas, the thermal conductivity of silicene

can be either enhanced or suppressed by changing the surface crystal plane of a SiC substrate

[205, 206]. Moreover, the thermal conductivity of silicene displays a large reduction of almost

80% at 300 K by considering an amorphous SiO2 substrate [207]. It has been also found that

the interaction between MoS2 monolayers and an amorphous SiO2 substrate causes a lifting of

the long-wavelength flexural modes leading to a reduction of the in-plane thermal conductivity

[208]. This strong dependence of the thermal transport properties on the substrate features high-

lights the importance of studying coplanar graphene/hBN heterojunctions deposited on several

substrates, which is the main goal in this section. Thus, the atomic interactions in graphite,

Si(100), SiC(0001), and SiO2 substrates have been modelled by a Tersoff potential [210–212].

The coupling between the heterojunctions and substrates are described by a LJ potential, see

Eq. (2.11). The parameters of the LJ potential for each element were taken from Refs. [213, 214]

and are listed on Table 2.1. The distance between graphene/hBN heterojunctions and substrate

is taken as ∼3.4 Å (after geometry optimization). Periodic boundary conditions on the XY

plane have been considered and the substrate is large enough to avoid any interaction between

the nanoribbon and its replica.
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Figure 2.10: (a) Scheme of the setup used to perform NEMD simulations of deposited hetero-
junctions. (b) Temperature profiles for forward (©) and backward (�) direction of
the heat flux for a hBN-G nanoribbon with WLR = 2.0 deposited on Si(100) and
SiC substrates. The profiles for the free-standing case are also shown. Vibrational
density of states, computed by using Eq. (2.30), of (c) the heat baths in a hBN-G
nanoribbon with WLR = 1.0 for a heat flux in forward direction and (d) the studied
substrates at 300 K.

Fig. 2.10(a) shows the transport setup for all MD calculations. Here, the heat baths are

only located in the nanoribbons and the temperature bias is fixed to ∆T = 60 K. The following

results have been obtained by equilibrating the substrates at Tsubst = 300 K which is the mean

temperature in the nanoribbons. In Fig. 2.10(b), one can see that the temperature profile

for forward and backward directions of free-standing hBN-G nanoribbons for WLR = 2.0 is

slightly affected by the substrate. The main changes are at the central region and at the heat

bath-device interface. Moreover, the temperature drop at the interface for the heat flux in

backward direction, ∆̄Tb, is larger than the corresponding for forward direction, ∆̄Tf . Actually,

independently of the substrate, ∆̄Tf and ∆̄Tb decreases and increases after increasing WLR,

respectively, i.e., heat flows preferentially in forward direction (direction of decreasing width).

This happens for both heterojunctions and it is correlated with the previous discussion of heat

flux in free-standing graphene/hBN nanoribbons. Similar observations were reported for pristine-

hydrogenated carbon nanotube junction by increasing the H coverage [215].

Next, the vibrational density of states S̄α(ω) is calculated by performing the Fourier transform
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of the normalized autocorrelation function of atomic velocities in each polarization direction

(α = x, y, z) [71, 75]. S̄(ω) is different to the one computed by the real-space mode analysis

(S(ω), see Eq. (2.29)), because here scattering of vibrational modes coming from the anharmonic

terms included in the force fields is also considered, while S(ω) is computed within the harmonic

approximation. Fig. 2.10(c) shows S̄(ω) for the left (hBN) and right (G) heat baths in the

forward direction of the heat flux for a free-standing hBN-G nanoribbon. Clearly, S̄(ω) values

for G ribbons at 270 K are lesser than those one for hBN ribbons at 330 K in almost all the

frequency range, but the overlap between both S̄(ω) is very large, which is favorable for heat

transport. Also, each substrate presents their main peaks of S̄(ω) at different frequencies, as it

can be seen in Fig. 2.10(d). Graphite covers the same frequencies as the heterojunctions, whereas

the power spectrum at 300 K for Si(100), SiC(0001), and SiO2 substrates goes up to ∼800 cm−1,

∼1100 cm−1, and ∼1350 cm−1, respectively. In Fig. 2.11, one can see that the substrates

strongly alter vibrational modes at low frequencies, almost fully suppressing them until a certain

material-dependent critical frequency value ω = ωC . This effect is mainly due to the coupling of

the long-wavelength flexural modes with the substrate. The SiC(0001) substrate has the largest

ωC because it presents the strongest Van der Waals interaction with the heterojunction, which

is measured by the ε parameter in the Lennard-Jones potential (see Table 2.1). Graphite and

SiO2 substrates suppress less vibrational modes because of their smaller coupling parameter (see

insets of Fig. 2.11). It was also found that the mode suppression only affects the out-of-plane

power spectrum (S̄z) rather than in-plane one (S̄xy). Indeed, S̄z at low frequencies is reduced

and its magnitude varies with the substrate (see insets in Fig. 2.11). This phenomenon has

also been theoretically reported in graphene and MoS2 monolayers deposited on SiO2 substrates

[208].

As a consequence of these changes in S̄(ω), it is expected that the overlap Λ between the

power spectrum of heat baths could change. Then, the overlap of S̄(ω) for the forward direction

of the heat flux is analyzed. To compute Λ, the same expression as described in Ref. [75] has

been used. Here, it was found that independently of the planar stacking order of materials,

the power spectrum overlap increases by effect of the substrate, i.e., the heat flux is enhanced.

Notice that Λ for the heat flux flowing from hBN→G is larger than that one for the flux from

G→hBN for symmetric free-standing and deposited nanoribbons, which is in agreement with the

previous heat flux values shown in Fig. 2.8(b). The maximum increment in hBN-G nanoribbons

with WLR = 1.0 occurs when it is deposited on a Si(100) substrate and amounts to 5.7% of

the corresponding value for the free-standing case (ΛhBN−G
f (free) = 1.516). Despite showing

the strongest suppression of out-of-plane modes at low frequencies, the overlap slightly increases

for deposition on SiC(0001) substrate (3.8%). For a G-hBN nanoribbon deposited on Si(100),

the overlap is also maximal and equal to ΛG−hBN
f (Si(100)) = 1.584, which corresponds to an

increment of 6.4% of ΛG−hBN
f (free). The SiO2 substrate improves the power spectrum overlap

for both nanoribbons: ΛhBN−G
f (SiO2) = 1.589 and ΛG−hBN

f (SiO2) = 1.570. Moreover, the
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Figure 2.11: Total vibrational density of states of the heat baths in symmetric (a,c) hBN-G and
(b,d) G-hBN nanoribbon heterojunctions (WLR = 1.0) deposited on a given substrate
(Tsubst = 300 K). The results are for the forward direction of the heat flux. Inset: the
out-of-plane mode contribution, S̄z. For comparison, the results for the free-standing
case are also shown (solid lines with circles). ωC represents the lift in frequency after
substrate deposition.

overlap of S̄xy(ω) does not change at all after depositing the nanoribbons on substrates (< 4% of

Λf (free)xy, hBN-C=1.714 and C-hBN=1.701). On the contrary, for S̄z(ω), the overlap increases

up to ∼11% of Λf (free)z for hBN-G (1.889) and G-hBN (1.685) nanoribbons, becoming larger

than the corresponding values to in-plane contributions. Accordingly, out-of-plane modes will

have an important contribution for the thermal transport properties in these nanomaterials,

as it has been previously reported for other 2D nanostructures [122, 134, 203, 208]. A similar

phenomenon happens for the heat flux in the backward direction and varying asymmetry degrees.

It is worth mentioning that the magnitude of the variations in spectral overlap can be controlled

by the temperature bias ∆T between the heat baths. Hence, the increment of power spectrum

overlap in the heterojunctions will enhance their heat flux and alter the performance of the

material as a thermal rectifier.

In order to better capture the influence of the substrate on heat transport, the interface

thermal conductance (ITR, or Kapitza resistance) is computed [75, 77], which is defined as
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Figure 2.12: Interface thermal resistance of deposited (a) hBN-G and (b) G-hBN nanoribbon
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(Kb) direction. Ratios of ITR Kb/Kf vs ratios of heat flux Jf/Jb for deposited (c)
hBN-G and (d) G-hBN nanoribbon heterojunctions. The results for the free-standing
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Kf,b =
A∆̄Tf,b
Jf,b

, with ∆̄T as the temperature drop at the material interface and J the heat flux.

A =WAh is the transversal area of the nanoribbon, WA = (WL+WR)/2.0 (effective width) and

h = 0.33 nm (height of the ribbon). For hBN-G nanoribbons, ITR for backward direction of

the heat flux is always greater than the forward direction (see Fig. 2.12(a)). Whereas, this only

happens for G-hBN nanoribbons withWLR ≥ 2.0 (see Fig. 2.12(b)). The large difference between

Kf and Kb for WLR ≥ 3.0 is mainly caused by the large ΠTb produced by the strong structural

asymmetry of nanoribbons. For example, for a hBN-G nanoribbon with WLR = 5.0 deposited on

Si(100) substrate: ∆̄Tf ∼ 8 K and ∆̄Tb ∼ 32 K. Similar effect has been found for all the studied

substrates. The interface thermal resistance, independently of the flux direction, is reduced after

deposition, i.e., the thermal conductivity is enhanced in presence of a substrate, which confirms

the preceding analysis. Interestingly, our results are in contrast to those found in supported

graphene, where the substrate produces a negative effect in its thermal conductivity [45, 176, 204].

For hBN-G heterojunctions deposited on Si(100) substrate, Kf,b shows the strongest reduction

after increasing the asymmetry degree. On the other hand, Graphite and SiO2 substrates lead to

the largest increase of the thermal conduction in asymmetric G-hBN nanoribbons. Notice that
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Figure 2.13: Substrate temperature dependence of the in-plane mode contribution S̄xy(ω) to the
total vibrational density of states of the heat baths in symmetric hBN-G nanoribbon
deposited on SiC(0001) substrate. The results are for the (a,c) forward and (b,d)
backward direction of the heat flux. Inset: out-of-plane mode contributions, S̄z(ω).

ITR for G-hBN heterojunction also displays the same crossing point found in the analysis of the

J(WLR)-curve for forward and backward directions (see Fig. 2.8(b)).

Consequently, the variation of the ratios Kb/Kf and Jf/Jb at each WLR value has been

plotted for both heterojunctions deposited on all the substrates (see Figs. 2.12(c, d)). The

behavior of Jf/Jb for free-standing and deposited nanoribbons is very similar. It was founf that

the thermal rectification (related to Jf/Jb, see Eq. (2.36)) for deposited hBN-G nanoribbons

with WLR ≤ 5.0 is smaller than the corresponding values for free-standing ribbons. Whereas, at

WLR = 7.5, all the substrates, with the exception of Si(100), improve the thermal rectification

of the heterojunction, which can reach values up to ∼24%, comparable to other asymmetric

structures [37, 194], and heterojunctions [77]. The scenario is quite different for deposited G-

hBN nanoribbons. Their η(WLR)-curve also presents a minimum at WLR = 2.0 as in the free-

standing case, but its value has been increased for ribbons with WLR ≥ 3.0 up to ∼20%. Also,

the rectification effect in G-hBN nanoribbons with WLR = 2.0 can be strongly suppressed by

depositing it on a graphite substrate, η ∼ 0.7%. These trends are verified by computing the

interface thermal rectification defined using Kb/Kf instead of Jf/Jb, as it has been done in

other related works [77]. Clearly, Kb/Kf only increases because of the considerable magnitude
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Figure 2.14: Variation of the heat flux in the forward (.) and backward (/) directions for sym-
metric hBN-G nanoribbons deposited on (a) graphite and Si(100) substrates and (b)
SiC(0001) and SiO2 substrates as a function of the substrate temperature, Tsubst.
The arrows indicate the situation Jf = Jb for each substrate. (b,d) Substrate tem-
perature dependence of thermal rectification for hBN-G nanoribbons.

of Kb. Notice that a non-linear behavior for Kb/Kf vs Jf/Jb was obtained for asymmetric

nanoribbons, which is different to the linear behavior expected by varying the temperature bias

between the heat baths [75, 216].

Finally, the influence of the substrate temperature Tsubst on the thermal transport properties

of the heterojunctions is studied (see Fig. 2.14). For the sake of simplicity, this issue is only

addressed in the case of a structurally symmetric hBN-G nanoribbon (WLR = 1.0). It was

found that, independently of the type of substrate, the heat flux for forward direction slightly

decreases by increasing Tsubst, while by reversing the temperature bias a considerable increment

of the heat flux is obtained. Fig. 2.14(a) shows the results for graphite and Si(100) substrates

which correspond to the weakest and strongest influence on the heat flux as a function of Tsubst,

respectively. The variation of Tsubst yields an intersection between Jf -and Jb-curves at Tsubst ∼
380 K for graphite and Tsubst ∼ 313 K for Si(100), which produces a full suppression of the

rectification effect, i.e., η = 0. This occurs due to the fact that S̄(ω) at low frequencies increases

by heating up the substrate (see Fig. 2.13). Hence, the power spectrum overlap of the heat baths
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is modified and, consequently, the heat flux. It has also been found that the high density peaks at

low frequencies in the power spectrum of Si(100) (see Fig. 2.10(c)) make nanoribbons (deposited

on this substrate) to have the largest increment of S̄(ω), followed by SiO2 and SiC(0001). In Fig.

2.14(b), one can see that the thermal rectification can reach values up to ∼79% when the Si(100)

substrate is equilibrated at 100 K, whose magnitude is of the same order as values reported for

more complex structures such as graphene Y-junctions [78] and graphene/CNT heterostructures

[124, 217]. On the contrary, nanoribbons deposited on graphite substrates display the lowest

thermal rectification for almost the entire temperature range [100,500] K. Around Tsubst = 300

K, which is the mean temperature of the nanoribbon (NEMD run), the influence of the type of

substrate varies. Results for SiC(0001) and SiO2 substrates are between those extreme cases, see

Fig. 2.14(c,d). In brief, the thermal transport properties of the heterojunctions can be sensitively

controlled by tuning the substrate temperature without the need of modifying the geometry of

the heterojunctions.

2.3 SUMMARY

In the present chapter, thermal rectification effects have been studied in novel nanodevices

made of two-dimensional materials such as MoS2 monolayer, graphene, and hexagonal boron-

nitride. To do this, NEMD simulations were carried out as implemented in LAMMPS software.

Here, two main issues have been addressed: i) the influence of structural asymmetry and ii) the

influence of substrate deposition on the thermal transport properties of these nanodevices.

Firstly, it was found that the performance as a thermal rectifier of both MoS2 nanoribbons and

coplanar graphene/hBN nanoribbons can be enhanced by increasing structural symmetry. Thus,

they can achieve rather high thermal rectification values of roughly 30 % (for MoS2) and 20 %

(for graphene/hBN), values which are comparable with those found in more complex engineered

nanostructures [37, 78]. One of the reasons to have this effect is the difference in the localization

degree (at the edges) of vibrational modes for the forward and backward direction of the heat flux.

This effect is however reduced after increasing the size of the nanostructures. Moreover, unlike

MoS2 nanoribbons, thermal rectification effects in coplanar graphene/hBN nanoribbons can be

suppressed by effect of the structural asymmetry. For both two-dimensional thermal rectifiers,

T-shaped nanoribbons display the largest thermal rectification comparing to other geometrical

shapes.

In the second place, the calculations after substrate deposition showed that thermal conduc-

tion in coplanar graphene/hBN nanoribbons is improved by the effect of the interaction between

the nanoribbons and the surface, which is described by Van der Waals forces. Moreover, it was

found that substrates strongly affect vibrational modes at low frequencies (mostly out-of-plane

modes), almost fully suppressing them until a certain material-dependent critical frequency value

ωC . Hence, the heat flux will be altered and, then, the thermal rectification. On the other hand,

besides having a dependence on the type of substrate, thermal rectification effects can be tuned
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by the substrate temperature. In fact, thermal rectification values up to ∼80 % and ∼40 % can

be obtained when Si(100) substrate is heated up at 100 K and 500 K, respectively.
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3 QUANTUM PHONON TRANSPORT

In this chapter, quantum phonon transport in nanomaterials will be treated by combining the

nonequilibrium Green’s functions (NEGF) formalism with the density functional tight-binding

(DFTB) method. Unlike nonequilibrium molecular dynamics whose implementation was already

efficiently working in LAMMPS software, here, NEGF-DFTB approach had to be numerically

implemented. This implementation was inserted as a tool in the DFTB+ software (in-house

version). The idea of combining NEGF formalism with DFTB method mainly raised because

of the necessity of an atomistic method to deal with thermal transport, from a quantum point

of view, in nanoscale systems up to ∼2000 atoms, which goes beyond the current capabilities

of density functional theory. Moreover, comparing to NEMD simulations, in which anharmonic

interactions are included, in the present work, NEGF-DFTB method will deal only with harmonic

interactions.

The NEGF-DFTB method relies on two main pillars: i) the first-principle computation of the

relevant dynamical matrix encoding information on the vibrational spectrum of the system, and

ii) Green’s function technique to deal with the quantum thermal transport problem. Thus, the

influence of several intrinsic and external factors (e.g., structural anisotropy [218], topological

defects [219], molecular functionalization [220], uniaxial strain [221], doping) on the ballistic

phonon transport of nanoscale systems can be addressed. The most important concepts of

NEGF formalism and DFTB method will be introduced in the following sections.

3.1 THEORETICAL BACKGROUND

3.1.1 Ballistic phonon transport

The formulation of the phonon transport problem is dependent on the length scale of the

material under study. For instance, in bulk materials, the heat carriers can be visualized as
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behaving like little beads with Brownian-like trajectories, i.e., suffering frequent and random

changes of directions. These movements are produced by continous collisions between the carrier

due to their high density (diffuse regime). However, when this density decreases, the distance

traveled by a heat particle between two collisions can exceed the characteristic length scale of the

material. The particle will then enter into more collisions with the walls of the system than with

its counterparts inside it. Hence, this regime is no longer Brownian, but ballistic, because the

particle will basically move in a straight line at constant speed between consecutive reflections

from the system boundaries. The word ’particle’ is used to cover the more detailed reality of

a localized wave packet. This wave packet or phonon is made up of several waves in different

resonant or normal modes, which contain the energy of the system [222].

One of the most effective approaches to study ballistic phonon transport in nanoscale systems

is Green’s functions formalism [35, 223]. The most general description for this method is based

on nonequilibrium Green’s functions. The NEGF method has its root in quantum field theory

[224], and has been developed to study the many-particle quantum system under equilibrium and

nonequilibrium conditions. In the early 1960s, various formulations have been derived by Martin

and Schwinger [225], Kadanoff and Baym [226], and Keldysh [227]. Keldysh developed a diagram

approach by using the Feynman diagrams; Kadanoff and Baym created an equation of motion

approach. Both approaches are suitable for studying a dynamic system in nonequilibrium. Thus,

one can obtain formal expressions of the current and other quantities such as electron density

by using the Keldysh formalism of NEGF, which has also been generalized to cases of correlated

initial states [228]. The NEGF method is an elegant and powerful method to calculate steady

state properties of a finite system connected to leads, hence, it has been already successfully

adapted to study electron transport properties [229, 230]. However, the application of NEGF

method to thermal transport is relatively new. In recent years, the NEGF approach has been

used on thermal transport not only in ballistic regime [180, 231, 232] but also including nonlinear

interaction, and thus phonon-phonon scaterring [233–236]. For more information regarding the

application of NEGF method see Refs. [35, 223]. In the present work, NEGF formalism will be

applied to study ballistic phonon transport in nanostructures1.

The main difference between the NEGF formalism and ordinary equilibrium theory is that

all time-dependent functions are defined for time-arguments on a contour, called the Keldysh

contour. A general contour widely used with NEGF is the Schwinger/Keldysh-contour (see Fig.

3.1). However, a simplification occurs when t0 → −∞ is set (Keldysh contour). If the interactions

are coupled adiabatically, the contribution from the [t0, t0 + β] piece vanishes. The information

lost by this procedure is related to initial correlations. In many physical situations, for example,

in steady state transport, it appears plausible that the initial correlations have been washed out

by the interactions when one reaches the steady state. On the contrary, if one study transient

response, the role of initial correlations can be important (see Chapter 4). Here, it has been

considered the t0 → −∞ limit. Then, the Keldysh contour thus consists of two branches running
1For the thermal transport including nonlinear interactions, the procedure is similar, except for the self-energy

which must be treated self-consistently and using Feynman diagrams [35, 223].

62 Chapter 3 Quantum phonon transport



t0

(+)

(-)
(-)

(t0, -i )

t1

t2

t

Figure 3.1: Schwinger/Keldysh-contour C in the imaginary time plane, C = {t ∈ C,< t ∈
[t0,∞]= t ∈ [t0,−β]}. For more clarity, the different contour branches are displayed
slightly off the axes. Time-ordering: time t2 is later on the contour than time t, and
t is larger than t1.

from −∞ to ∞ and from ∞ to −∞. Therefore, based on the definition of the contour-ordered

Green’s function which read as

G(τ, τ ′) = −i
〈

TCA(τ)B
T (τ ′)

〉

(3.1)

with TC as the time-order operator, six real-time Green’s functions can be defined as [237]:

- The lesser GF, G<(t, t′) = −i
〈

A(t′)BT (t)
〉

.

- The greater GF, G>(t, t′) = −i
〈

A(t)BT (t′)
〉

.

- The retarded GF, Gr(t, t′) = −iθ(t− t′)
〈

[A(t), BT (t′)]
〉

.

- The advanced GF, Ga(t, t′) = iθ(t′ − t)
〈

[A(t), BT (t′)]
〉

.

- The time-ordered GF, Gt(t, t′) = θ(t− t′)G>(t, t′) + θ(t′ − t)G<(t, t′).

- The anti-time-ordered GF, Gt̄(t, t′) = θ(t′ − t)G>(t, t′) + θ(t− t′)G<(t, t′).

Where A(t) and B(t) are operators in the Heisenberg picture and θ(t) is the step function. The

angular brackets denote trace with the canonical density matrix, i.e., 〈· · ·〉 = Tr(ρ · · · ), with

ρ = e−βH/Tr(e−βH) and β = 1/(kBT ). H represents the Hamiltonian of the system. The

notation
〈

[A,BT ]
〉

represents a matrix and should be interpreted as
〈

ABT
〉

−
〈

BAT
〉T .

In equilibrium or non-equilibrium steady states, the Green’s functions depend only on the

difference in time, t − t′. The Fourier transform of Gr(t − t′) = Gr(t, t′) is defined as Gr[ω] =
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∫ +∞

−∞
Gr(t)eiωtdt. The following linear relations hold in both frequency and time domains from

the basic definitions [237]:

Gr −Ga = G> +G<,

Gt +Gt̄ = G> +G<, (3.2)

Gt −Gt̄ = Gr +Ga.

Among the six Green’s functions, only three of them are linearly independent. However, in

systems with time translational invariance, the functions Gr and Ga are Hermitian conjugate

of one other, i.e., Ga[ω] = (Gr[ω])†. Moreover, only two of them are independent in general

nonequilibrium steady-state situations. One of the best choices is to consider Gr and G<, but

other combinations are possible. Extra relations in the frequency domain are also defined and,

for bosons (phonons), they read as [171]:

G<[ω]† = −G<[ω],

Gr[−ω] = Gr[ω]∗, (3.3)

G<[−ω] = G>[ω]T = −G[ω]∗ +Gr[ω]T −Gr[ω]∗.

Based on the last two equations, it is only needed to compute the positive frequency part of the

functions. Eqs. (3.2) and (3.3) are generally valid for nonequilibrium steady states. Nevertheless,

for systems in thermal equilibrium, since equilibrium systems satisfy the fluctuation-dissipation

theorem [238], there is an additional equation relating Gr and G<:

G<[ω] = f(ω) (Gr[ω]−Ga[ω]) , (3.4)

where f(ω) =
(

e
~ω

kBT − 1

)−1

is the Bose-Einstein distribution function at temperature T . kB is

the Boltzmann constant. In fact, the correlation functionG< contains information of fluctuations,

while Gr −Ga describes dissipation of the system. The relation G>[ω] = eβωG<[ω] also applies

for equilibrium systems. Thus, in equilibrium, there is only one independent Green’s function.

In a typical phonon transport calculation, one connects a central region (also known as

device region) to two or more thermal baths on the left (L) and right (R) (see Fig. 3.2). Similar

setup was also used to performed NEMD simulations. However, by using NEGF formalism, the

thermal baths are composed of semi-infinite ideal systems, in which phonon transport experiences

no scattering. Therefore, it will be assumed that all the scattering processes only occur in the

central part. Since we focus on thermal transport mediated by the vibrational system, the phonon

Hamiltonian of the whole system will be given by

H =
∑

α=L,C,R

Hα + (uL)TV LCuC + (uC)TV CRuR + Vn, (3.5)
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definition, the heat flux out of the left lead is

JL = −
〈

ḢL(t)
〉

= i 〈[HL(t), H]〉 = i
〈[

HL(t), V
LC(t)

]〉

. (3.7)

In the steady state, energy conservation means that JL+ JR = 0. For simplicity, ~ = 1 has been

set in this section. Then, using the Heisenberg equation of motion, JL can be written as

JL =
〈

(u̇L)T (t)V LCuC(t)
〉

=
∑

j,k

〈

(u̇Lj )
T (t)V LC

jk uCk (t)
〉

= lim
t′→t

∑

j,k

V LC
jk

〈

(u̇Lj )
T (t′)uCk (t)

〉

. (3.8)

Consequently, the heat flux depends on the expectation value of (u̇Lj )
T (t′)uCk (t), which can be

expressed in terms of the lesser Green’s function G<
CL(t, t

′) = −i
〈

uL(t′)uC(t)T
〉T . Since opera-

tors u and u̇ are related in Fourier space (frequency domain) as u̇[ω] = −iωu[ω], the derivative

is eliminated and, as a result,

JL = − 1

2π

∫ ∞

−∞
Tr
(

V LCG<
CL[ω]

)

ωdω. (3.9)

Hence, the heat flux can be calculated by only knowing G<
CL[ω], which mixes the degrees of

freedom of the left lead and the central region. An efficient method to obtain the Green’s

functions of interacting systems is through their equation of motion (EOM) [223]. This topic

will be expanded with more details in Chapter 4. In this section, equations of motion are used

in a straightforward way in order to get the expressions for the retarded and lesser GF of the

central region. Thus, by considering the system as a whole, the contour ordered Green’s function

G(τ, τ ′) = −i
〈

Tτu(τ)u(τ
′)T
〉

satisfies the following equation

− ∂2G(τ, τ ′)

∂τ2
−KG(τ, τ ′) = Iδ(τ, τ ′) (3.10)

Then, the equation per each region is obtained by partitioning the matrices G and K into

submatrices Gα,α′
and Kα,α′

, α, α′ = L,C,R. Consequently, the free Green’s function for the

system decoupled g is easily achieved through the solution of

− ∂2gα(τ, τ ′)

∂τ2
−Kαgα(τ, τ ′) = Iδ(τ, τ ′). (3.11)

Also, their corresponding free Green’s functions in frequency domain can be written as

grα[ω] =
[

(ω + iη)2 −Kα
]−1

, (3.12)

where η is an infinitesimal positive quantity to single out the correct path around the poles when

performing an inverse Fourier transform, such that gr = 0 for t < 0. Other Green’s functions

can be obtained using the general relations among them (see Eqs. (3.2) and (3.3)).
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Additionally, the contour-ordered non-equilibrium Green’s function can be expressed as

GLC(τ, τ ′) =

∫

dτ ′′gL(τ, τ ′′)V LCGCC(τ ′′, τ), (3.13)

GCC(τ, τ ′) = gC(τ, τ ′) +

∫

dτ1

∫

dτ2g
C(τ, τ1)Σ(τ1, τ2)G

CC(τ2, τ
′), (3.14)

with Σ(τ1, τ2) as the total self-energy which includes all the effects with the baths and is given

by

Σ(τ1, τ2) = ΣL(τ1, τ2) + ΣR(τ1, τ2) = V CLgL(τ1, τ2)V
LC + V CRgR(τ1, τ2)V

RC (3.15)

Here, gL and gR are the GF of the isolated semi-infinite thermal lead (also known as the surface

GF). The surface Green’s function can be calculated by a simple iteration method [239] or by a

more efficient decimation approach [240] (the latter method is used in the present work). Then,

the above Dyson equation (see Eq. (3.14)) has the following solutions in the frequency domain:

Gr
CC [ω] =

(

(ω + iη)2I −KC − Σr[ω]
)−1

, (3.16)

G<
CC [ω] = Gr

C [ω]Σ
<[ω]Ga

C [ω]. (3.17)

In short, up to know, all Green’s functions have been successfully defined and it has been ex-

plained the procedure to compute them. Hence, physical quantities are calculated by using these

relations. Let’s start with the phonon density of states (PDOS). Assuming that the system has

3N degrees of freedom. The nth phonon mode has a frequency of ωn and an eigenvector of |un〉
whose ith component is uni . Thus, this system will follow the dynamical equation given by

K|un〉 = ω2|un〉 . (3.18)

Therefore, its phonon DOS will be defined as

η(ω) =
∑

n

δ(ω − ωn) =
∑

i

ηi(ω) (3.19)

Where ηi(ω) is the phonon local DOS (LDOS) of the ith degree of freedom, which is expressed

as

ηi(ω) =
∑

n

|uni |2δ(ω − ωn). (3.20)

Moreover, the phonon DOS satisfies the relation
∫ ∞

0
dωη(ω) = 3N . However, it can be also

given in terms of Green’s functions:

Gr[ω] =
1

(ω + iδ)2 −K

=
∑

n

|un〉〈un|
2(ω + iδ)

(

1

ω + iδ − ωn
+

1

ω + iδ + ωn

)

. (3.21)
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This can be further simplified,

− 2ω

π
(ImGr[ω])ii =

∑

n

|uni |2 [δ(ω − ωn) + δ(ω + ωn)] . (3.22)

When ω > 0, δ(ω + ωn) = 0. As consequence, the phonon LDOS can be written as

ηi(ω) = −2ω

π
(ImGr[ω])ii , (3.23)

and, then, the total phonon DOS is η(ω) =
∑N

i=1 ηi(ω). Although Eq. (3.23) is obtained from

a special case of no phonon-phonon interactions, the same formula work also for cases including

phonon-phonon interactions providing that the quasi-particle picture does not break down. The

phonon DOS and LDOS gives the distribution of phonons in frequency space and in real space

[171]. This kind of information is very helpful to analyze quantum thermal transport processes,

as it will be shown below.

To continue the description of relevant physical quantities, two useful functions in the NEGF

formalism are defined. The first one is the spectral function,

A[ω] = i (Gr[ω]−Ga[ω]) = i
(

G>[ω]−G<[ω]
)

. (3.24)

and, the second one, is the Γ function, which describes the scattering rate of phonons, given by

Γ[ω] = i (Σr[ω]− Σa[ω]) = ΓL[ω] + ΓR[ω] (3.25)

Moreover, there is an important relation between them: A[ω] = Gr[ω]Γ[ω]Ga[ω]. Then, by

applying the Langreth theorem4 to Eq. 3.13, the lesser GF G<
CL turns into

G<
CL[ω] = Gr

CC [ω]V
CLg<L [ω] +G<

CC [ω]V
CLgaL[ω]. (3.29)

Consequently, the heat flux coming from the left lead (see Eq. (3.9)) can be written as

JL = − 1

2π

∫ +∞

−∞
dωωTr

(

Gr[ω]Σ<
L [ω] +G<[ω]Σa

L[ω]
)

, (3.30)

4In dealing with the contour-ordered Green’s functions, we often encounter convolution of the form

B(τ, τ ′) =

∫

dτ1

∫

dτ2 · · ·A1(τ, τ1)A2(τ1, τ2) · · ·An(τn−1, τ
′). (3.26)

This form of expression can be easily translated into the retarded and lesser Green’s functions in frequency domain
by the Langreth theorem as [223]

B
r,a[ω] = A

r,a
1 [ω]Ar,a

2 [ω] · · ·Ar,a
n [ω], n = 2, 3, · · · (3.27)

B
<,>[ω] = A

r
1[ω] · · ·A

r
n−1[ω]A

<,>
n [ω]+

A
r
1[ω] · · ·A

r
n−2[ω]A

<,>
n−1[ω]A

a
n[ω]+

· · ·+A
<,>
1 [ω]Aa

2 [ω] · · ·A
a
n−1[ω]A

a
n[ω]. (3.28)
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For notational simplicity, the subscripts C on the Green’s functions denoting the central region

have been dropped. After symmetrization with respect to left and right lead, the heat flux

expression becomes explicitly real and is given by [33]

J =
1

4
(JL + J∗

L − JR − J∗
R) (3.31)

In the end, one can get the Landauer-like formula

J =

∫ ∞

0

dω

2π
~ωτph[ω] (fL − fR) , (3.32)

where fL,R are the Bose-Einstein distributions for the left and right leads. τph[ω] is known as

the phonon transmission function and it is expressed as

τph[ω] = Tr (Gr[ω]ΓL[ω]G
a[ω]ΓR[ω]) . (3.33)

Here, the retarded GF of the central region connected to two leads is defined as:

Gr[ω] =
[

(ω + iη)2I −KC − Σr
L[ω]− Σr

R[ω]
]−1

(3.34)

Notice that the two thermal leads always give the same total current for steady states. However,

their spectral functions can be different if asymmetry exists. A thorough investigation of thermal

rectification requires such information. Hence, the thermal conductance is defined as

κph = lim
∆T→0

J

∆T
, (3.35)

where ∆T is the difference of the temperatures between the two thermal leads, assuming that

the temperature of the left and right leads are TL = T +∆T/2 and TR = T −∆T/2, respectively.

Thus, by performing a linear expansion of the Bose-Einstein distribution in ∆T , the thermal

conductance can be written as

κph =
1

2π

∫ ∞

0
dωωT [ω]

∂f(ω)

∂T
. (3.36)

To gain insight of the phonon transport properties, the in-plane and out-of-plane mode con-

tribution to the total transmission function and thermal conductance can be computed, i.e.,

(τ, κ)total = (τ, κ)in + (τ, κ)out.

3.1.2 Density functional tight-binding method

Based on the equations of NEGF formalism, the main inputs to describe the quantum phonon

transport properties of nanomaterials are the mass-reduced force constant matrix per each region

Kα (α = L,C,R) and the coupling matrices of the left and right lead to the central region,
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V LC and V CR, respectively. The accuracy of the results will depend on the reliability of these

quantities to catch all the features of the whole system. Thus, the choice of the method to

compute the total system energy is very important and, hence, K and V matrices. In fact,

despite the tremendous success of the Schrodinger equation to describe the quantum mechanical

effects in several nanoscale systems, full electronic description of even simple structures (say small

molecules) is very complex and it is usually unfeasible to solve them analytically. In practice,

one has to resort to approximate methods that can be solved in a numerical fashion [241]. In this

sense, DFT has become very popular during the last decades and is now widely accepted as a tool

for quantitative studies on molecular and atomic levels [168]. DFT implementations are widely

used in chemistry and physics mainly due to its beneficial accuracy-to-computational-time ratio.

The overwhelming progress in accuracy due to gradient corrected and hybrid functionals such as

PBE and B3LYP curing deficiencies of older models contributed fundamentally to its popularity.

On the other hand, the accuracy of DFT comes, however, at the trade-off to be computationally

very demanding. DFT calculations using well-established implementations are currently limited

to a maximum of a few hundred of atoms, depending on the chemical species. One solution to

this problem is the use of parametrized force fields to simulate interatomic interactions. This is

mainly used for molecular dynamics simulations, as discussed in Chapter 2. Computing force

constant matrices with parametrized force fields allow us to deal systems with thousands of

atoms. However, such classical force fields can be very accurate for the system they have been

parametrized for, but may suffer from a limited transferability and, also, they do not provide

any information about the electronic structure.

Consequently, another option is to turn to semiempirical methods, which lie conceptually be-

tween empirical force fields and first principle methods and allow for the treatment of thousands

of atoms [242]. Semiempirical electronic structure methods can be understood as direct approx-

imations to more accurate methods (usually DFT or Hartree-Fock), but additionally include

empirical parameters that can be tuned to reproduce reference data. One particular example

of a semiempirical method is the density functional tight-binding method [243–245]. Here, the

parameters are consistently obtained from DFT calculations of few molecules per pair of atoms

types. Whereas, the electronic structure equations are solved by means of the tight-binding ap-

proach (see Appendix B). During the last decades, a great amount of studies have been carried

out by using DFTB method, e.g., proton-transfer barrier in biological systems [246], trans-

port properties of two-dimensional materials [153, 247, 248], stability and mechanical properties

[249], vibrational properties [250], absorption spectra of molecules [251], charge transfer excita-

tion energy of a donor-acceptor pair [252], spectroscopic properties for large systems [253]. More

information can be found in recent review papers [254–256].

To have a better understanding of DFTB method, a brief description of DFT is given. Density

functional theory is based on the two theorems by Hohenberg and Kohn [257]. The first theorem

states that the ground state properties of many-electron system are uniquely determined by

an electron density ρ(r); r is a vector specifying the spatial coordinates. The second theorem
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proves that the energy E[ρ(r)] of this system takes its minimum value when the density is the

ground-state density ρGS(r). Moreover, the energy of a molecular system is calculated within

the Born-Oppenheimer approximation [258], i.e., due to the great difference in mass the motion

of the nuclei and the motion of the electrons are examined separately. It is common to describe

the nuclei as classical particles and the electrons moving within their Coulomb potential. Hence,

the DFT total energy can be written as a functional of the electron density,

EDFT [ρ(r)] = T [ρ(r)] + Ene[ρ(r)] + EJ [ρ(r)] + Ẽxc[ρ(r)] + Enn, (3.37)

where T is the kinetic energy of the electrons, Ene the energy of the nucleus-electron interaction,

EJ is the classical portion of the electron-electron energy, Ẽxc the exchange-correlation energy

(the non-classical portion of the electron-electron interaction), and Enn the nucleus-nucleus in-

teraction. The energy contributions are defined as

Ene[ρ(r)] =

∫

V ne(r)ρ(r)dr = −
∑

a

∫

Zaρ(r)

|Ra − r|dr

EJ [ρ(r)] =
1

2

∫ ∫

V J [ρ(r′)]ρ(r)dr′dr =
1

2

∫ ∫

ρ(r)ρ(r′)

|r− r′| dr
′dr (3.38)

Enn =
1

2

∑

a,b 6=a

ZaZb

|Ra −Rb|

where a and b are indices for atoms, Z is the nuclear charge, R the coordinates of the nucleus,

and V the potential of the respective energy. The exact functionals T [ρ(r)] and Ẽxc[ρ(r)] are

not known such that several approximation were developed [168]. DFT methods become more

practical only after Kohn and Sham published their famous idea of approximating the kinetic

energy by introducing so called Kohn-Sham orbitals ψ(r) [259]. Then, the Schrodinger equation

is separated for an imaginary non-interacting system of one-electron equations of the form

[

−1

2
∇2 + V (r)

]

ψi(r) = εiψi(r) ∀i (3.39)

with the requirement that

ρ(r) =
∑

i

niψ
∗
i (r)ψi(r) and

∫

ρ(r)dr =
∑

i

ni = N (3.40)

where −∇2/2 is the kinetic energy operator of the Schrodinger equation, V (r) is the one-electron

potential and ni is the electron occupation number of an orbital and N the total number of

electrons in the system [259]. Eq. (3.39) can be interpreted as one electron moving within an

effective potential V (r). That electron, however, is not interacting directly with other electrons.

Therefore, the kinetic energy of such a non-interacting system T s[ρ(r)] can be written as

T s[ρ(r)] =
∑

i

ni

∫

ψ∗
i

(

−1

2
∇2

)

ψi(r)dr =
∑

i

niεi −
∫

V (r)ρ(r)dr. (3.41)
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In order to have a formally exact theory the difference between T s and the kinetic energy of a

system of interacting electrons T is added to the exchange-correlation energy

Exc = Ẽxc + (T − T s). (3.42)

Accordingly, the total energy is then given by

EDFT [ρ(r)] = T s[ρ(r)] + Ene[ρ(r)] + EJ [ρ(r)] + Exc[ρ(r)] + Enn, (3.43)

After that, to yield the ground state energy, the energy EDFT [ρ] is minimized in a variational

search in the space of ρ with the constraint that [168]
∫

δρ(r)dr = 0 (3.44)

As a result,

δEDFT [ρ]

δρ

∣

∣

∣

∣

ρ=ρ(r)

= −V (r) +
[

V ne(r) + V J [ρ] + V xc[ρ]
]

ρ=ρ(r)
+ const = 0, (3.45)

where

V xc[ρ(r)] =
δExc[ρ(r)]

δρ(r)
. (3.46)

Solving for V (r) yields

V (r) =
[

V ne(r) + V J [ρ]V xc[ρ]
]

ρ=ρ(r)
+ const. (3.47)

This forms a self-consistent condition which can be solved iteratively using a proper starting

condition: The potential V (r) can be evaluated by Eq. (3.47) for a given ρ(r) which in turn is

generated by solving Eqs. (3.39) and (3.40) where V (r) enters. With the idea of Kohn and Sham,

the dominant part of the kinetic energy, i.e., the kinetic energy of a non-interacting system T s

can be calculated indirectly but exactly. Inserting Eqs. (3.38) and (3.41) into Eq. (3.43), the

DFT total energy can be written as

EDFT [ρ(r)] =
∑

i

niεi −
1

2

∫

V J [ρ(r)]ρ(r)dr−
∫

V xc[ρ(r)]ρ(r)dr+ Exc[ρ(r)] + Enn . (3.48)

This is the basic equation to start the derivation of the DFTB total energy. Here, a Taylor series

expansion of the KS density functional total energy (see Eq. (3.48)) around a properly chosen

reference density, ρ(r) =
∑

i

niψ
∗
i (r)ψi(r) = ρ0(r) + ∆ρ(r), is performed. Then, the DFT total

energy can be expressed as

E
[

ρ0 +∆ρ
]

=
∑

i

ni

∫ ∫

ψ∗
i

(

−∇2

2
+ V ne +

∫ ′ ρ0′

|r− r′| + V xc[ρ0]

)

ψi

− 1

2

∫ ∫ ′ ρ0′ρ0

|r− r′| +
1

2

∫ ∫ ′ ∆ρ′∆ρ

|r− r′|

−
∫

V xc[ρ0]ρ0 −
∫

V xc[ρ0]∆ρ+ Exc[ρ0 +∆ρ] + Enn. (3.49)
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With this rearrangement it is not clear anymore how to obtain the exact Kohn-Sham wave

functions ψi. However, within the DFTB formalism one can obtain approximate ψi by a linear

combination of atomic orbitals (LCAO) centered on the nuclei (see Appendix B). In a last step

the exchange-correlation energy is expanded in a Taylor series expansion as

Exc
[

ρ0 +∆ρ
]

= Exc[ρ0] +

∫ [

δExc[ρ]

δρ

]

ρ0
∆ρ+

1

2

∫ ∫ ′ [δ2Exc[ρ]

δρδρ′

]

ρ0,ρ0′
∆ρ∆ρ′

+
1

6

∫ ′′ ∫ ′ ∫ [ δ3Exc[ρ]

δρδρ′δρ′′

]

ρ0,ρ0′,ρ0′′
∆ρ∆ρ′∆ρ′′ + · · · (3.50)

Applying Eq. (3.46), the DFT total energy can be written as

E
[

ρ0 +∆ρ
]

=
∑

i

ni

∫ ∫

ψ∗
i

(

−∇2

2
+ V ne +

∫ ′ ρ0′

|r− r′| + V xc[ρ0]

)

ψi

− 1

2

∫ ∫ ′ ρ0′ρ0

|r− r′| −
∫

V xc[ρ0]ρ0 + Exc[ρ0] + Enn

+
1

2

∫ ′ ∫ ( 1

|r− r′| +
δ2Exc[ρ]

δρδρ′
|ρ0,ρ0′

)

∆ρ∆ρ′

+
1

6

∫ ′′ ∫ ′ ∫ [ δ3Exc[ρ]

δρδρ′δρ′′

]

ρ0,ρ0′,ρ0′′
∆ρ∆ρ′∆ρ′′ + · · · (3.51)

Approximations of different levels of sophistication can be introduced by truncation of the Taylor

series [260]. For instance, standard tight-binding methods like non-self-consistent DFTB (non-

scc DFTB) does not consider the second and higher order terms in the density fluctuations ∆ρ

[244], i.e., the generalized eigenvalue problem has to be diagonalized only once. Therefore, the

total energy will be only composed for the terms in the first two lines of Eq. (3.51) and can be

expressed as

Enscc−DFTB =
∑

i

niεi + Erep , (3.52)

with Erep as the repulsive energy between the atoms. The procedure to calculate εi within the

DFTB scheme is given with more details in Appendix B. However, to improve on the requirement

of local charge neutrality, Elstner et al. [245] suggested to go beyond the first-order expansion of

the Kohn-Sham energy functional and to include the second order corrections to the exchange-

correlation energy. This new method is called self-consistent charge DFTB (scc-DFTB) and it

is very important for systems with sizable charge reorganization. Hence, the scc-DFTB total

energy finally reads [261]

Escc−DFTB =
∑

i

niεi −
1

2

∑

ab

∆qb
(

qaγba + q0aγab
)

+ Erep . (3.53)

Here, ∆qx = qx − q0x is the Mulliken charge (charge fluctuation) for the atom x = a or b, where

q0x is the charge of the valence electrons of a neutral atom x and qx is the charge of that atom
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within the molecule. γ represents the interaction between the charge density fluctuations (see

Appendix B).

The choice of the DFTB method depends on the system under study. For instance, nscc-

DFTB method is more suitable for system where the charge transfer between the atoms is

small, typically homonuclear systems or systems with atoms of similar electronegativity, e.g.,

hydrocarbons [262]. Ionic systems like NaCl with large charge transfer between the atoms have

been also treated successfully with this method [263]. On the other hand, for systems with

delicate charge balance, a self-consistent charge treatment is usually required. This is often the

case for biological and organic systems containing oxygen [260, 264]. Moreover, recently, it has

been developed a new DFTB method which considers up to the third order term in the Taylor

expansion of the exchange-correlation energy functional (see Eq. (3.51)). However, this issue

is beyond the goal of this thesis, thus, for more details go to Refs. [256, 261]. Accordingly,

based on the potential of DFTB method to deal with large systems (few thousand of atoms),

force constant matrices (or Hessian matrices) of the studied nanosystems have been numerically

obtained by applying finite difference method to compute the second derivatives of the total

energy respect to the atomic displacements, as implemented in DFTB+ software.

3.2 THERMAL TRANSPORT IN LOW-DIMENSIONAL SYSTEMS

After implementing NEGF-DFTB method to study quantum phonon transport as a tool in

the DFTB+ code (in-house version), several studies were carried out in novel low-dimensional

systems.5 From electron transport studies, it is well-known that transport properties of nanoscale

systems can be tailored by varying various control parameters. This can include covalent or non-

covalent chemistry [265, 266], atomic doping [237, 267], topological defects [268, 269], quantum

confinement [119], and mechanical strain [154, 155], among others. However, this is still an open

issue when dealing with thermal transport properties. Thus, in the present section, the influence

of intrinsic and external factors on the quantum phonon transport of low-dimensional materials

will be studied. This is done with the aim of understanding the possible features that could

make a nanomaterial becoming a potential candidate for the design of phononic devices.

3.2.1 Structural anisotropy

Firstly, the effect of anisotropic atomic structure on the phonon transport of two-dimensional

puckered materials is presented [218]. From this new family of 2D materials [85, 95, 97, 100],

three representative members have been selected: phosphorene, arsenene, and SnS monolayer;

which display the main features of this family. The unit cell of these materials is composed by

four atoms, as it is depicted in Fig. 3.3. Each atom is pyramidally bonded to three neighboring

5See details of the PHONON tool in the Appendix B.
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Figure 3.3: Phonon band structures for homo-and heteroatomic puckered materials. (a) phos-
phorene, (b) arsenene, and (c) tin sulphide (SnS) monolayer. It is also shown the
atomistic view of the 2D nanostructures, highlighting the zigzag (ZZ) and armchair
(AC) transport direction.

atoms of the same (phosphorene and arsenene, for homoatomic) or different (tin sulfide (SnS),

for heteroatomic) species forming a puckered-like honeycomb lattice. As shown in Table 3.1,

the lattice constants computed with the DFTB approach quantitatively agree (error ≤ 5%) with

those obtained at the full DFT level by other authors for all three materials.

Before computing transport properties, a phonon dispersion analysis of these materials is

performed. Phonon dispersion is constructed by diagonalizing the dynamical matrix at arbitrary

k-point vectors. Dynamical matrices are obtained by Fourier transforming the real-space force

constants. This methodology is also included in the tool implemented in the DFTB+ software.

Based on this analysis, all studied systems are mechanically stable and do not show imaginary

modes (see the three lower panels of Fig. 3.3). As it can be seen in the phonon spectrums,

the acoustic branches display the typical dispersion of 2D materials: the longitudinal (LA) and

transversal (TA) acoustic branches have linear dispersion as the wave vector approaches the Γ

point, while out-of-plane ZA branches exhibit quadratic dispersion due to the rapid decay of

transversal forces. Moreover, the distribution and dispersion of the phonon branches for homo-

atomic puckered materials are almost identical, except for their maximum frequency value, which

is a consequence of the mass difference between As (∼75 uma) and P (∼31 uma).Thus, the DFTB

phonon band structures for P and As agree quite well with those computed with DFT [218]. Only

for SnS the high frequency optical modes are shifted upwards.
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Table 3.1: Calculated lattice constants of 2D puckered materials along zigzag (ZZ) and armchair
(AC) directions. For comparison, the lattice constants from other published theoretical
studies are given. In general , the difference between the DFTB lattice parameters agree
quite well (error ≤ 5%) with those at the full DFT level.

Systems
Transport direction

Other works (ZZ, AC) [Å]
ZZ [Å] AC [Å]

Phosphorene 3.49 4.34 (3.28, 4.43)[89] (3.32, 4.58)[270]
Arsenene 3.81 4.75 (3.68, 4.77)[96] (3.69, 4.77)[98]
SnS monolayer 3.93 4.51 (4.03, 4.26)[100] (4.01, 4.35)[271]

Furthermore, comparing the group velocities (i.e., the slope of the acoustic branches ) for ZZ

(Γ → X) and AC (Γ → Y ) transport directions, it is expected that these materials will display

strong thermal anisotropy. In fact, the group velocities for the longitudinal acoustic (LA) branch

in phosphorene are 8.35 Km/s and 4.74 Km/s along the Γ-X (ZZ) and Γ-Y (AC) directions,

respectively, which are very close to previous DFT results [90, 94, 270]. The vlaues for arsenene,

ZZ-5.01 Km/s and AC-2.71 Km/s, are also in agreement with those reported by Zeraati et al.

[98]. While, SnS monolayer gives group velocities of ZZ-6.48 Km/s and AC-2.14 Km/s. Notice

that, up to now, thermal anisotropy has only been reported for phosphorene [89, 94] and arsenene

[96, 98], but not for SnS monolayers. Hence, it is expected that SnS monolayers will display the

largest anisotropy in the thermal conductance due to the predominance of acoustic modes in the

thermal transport.

Consequently, phonon transport calculations are carried out using periodic boundary condi-

tions in the perpendicular direction to transport and with the same number of unit cells for all

materials. Also, to avoid additional effects arising from different material compositions of the

phonon reservoirs and of the scattering region, the reservoirs consist of the same material as the

scattering region. With this, intrinsic transport features of the different systems will be revealed.

The ptransmission function is calculated for each material along the zigzag (ZZ) and armchair

(AC) direction at equilibrium conditions. As it is expected from the phonon dispersion analysis

presented before, phosphorene and arsenene display relatively similar phonon transmission func-

tions (Figs. 3.4(a) and 3.4(c)). The only differences are the phonon bandgaps (∼ 67cm−1 and

∼ 45cm−1, respectively) and the maximum frequency value in the phonon dispersion. Likewise,

it was found that transmission function values in the ZZ direction are larger than in the AC

direction for almost the whole frequency range. Specially, SnS monolayer turns out to display

the strongest thermal anisotropy.

This effect is also reflected on their thermal conductance, see Figs. 3.4(b,d,f). In fact, κph for

ZZ direction is larger than the corresponding for AC direction for the three puckered materials.

The anisotropic effect rapidly enhances at low temperatures. Moreover, it is found that κph
remains constant above 200 K, independently of the transport direction, since the whole phonon

spectrum has been already covered by the frequency integration in Eq. (3.36). To measure

the anisotropic influence on the thermal conductance, PAZ = κph−ZZ/κph−AC is defined. Thus,
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Figure 3.4: Phonon transmission function and thermal conductance along the ZZ (blue line) and
AC (red line with shadow) transport direction: (a,b) phosphorene, (c,d) arsenene, and
(e,f) SnS monolayer, respectively.

As it is expected due to the strong anisotropy in its phonon transmission function and group

velocities, SnS monolayer displays the highest thermal anisotropy at 300 K, PAZ ∼ 2.5, followed

by phosphorene (PAZ ∼ 1.6), which is slightly more thermal anisotropic than arsenene (PAZ ∼
1.35). The PAZ value for phosphorene is slightly different from that obtained by employing DFT

calculations,[91, 270] while for arsenene there is more discrepancy from that reported by Zeraati

et al. [98], which is mainly due to the methodology used. In the latter work they employed

self-consistent calculations to solve the Boltzmann transport equation.

3.2.2 Nanoscale grain boundaries

Secondly, the influence of one-dimensional topological defects, also known as grain bound-

aries (GBs), is studied. Because of the relevance for the development of the next generation

of nanoelectronic devices, gran boundaries in polycrystalline graphene has attracted consider-

able attention during the last decades and it is the chosen material to analyze in this section.

These GBs have been experimentally shown to be formed by non-hexagonal rings (pentagons,

heptagons, nonagons etc) among misoriented, but crystallographically perfect, graphene lattices.

Hence, effects of integrity (structure and dynamics) and the geometry (linear and curved [272],
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Figure 3.5: Top and side views of the structures of linear (GB1 and GB2) and curved (GB3-
GB8) graphene grain boundaries. LGB is the length of the grain boundary. The same
width (W) has been used for all the systems. For similar LGB, different defects were
considered. For GB1, it is also shown a schematic representation of the partition
scheme for transport calculation using the Green’s function technique. The carbon
atoms in blue color are the atoms mainly forming the grain boundary while the carbon
atoms in pink color are the atoms far from the boundary region.

see Fig. 3.5) of the GB on phonon transport properties will be addressed [219]. Here, the crys-

tallographic orientations of the grains are armchair and zigzag at opposite sides. The two initial

seeds are located approximately 10 to 25 Å apart, depending on the target GB geometry. For

the generation of a linear boundary (GB1 and GB2), the initial seeds have clean linear edges

and, then, carbon atoms are added one by one to cover the available sites. The positions of the

added atoms are determined by taking into account the positions of the nearest neighbor atoms.

Addition of carbon atoms to random sites continues until the grains converge together. After-

wards, excess atoms, which give rise to coordination numbers larger than three are removed. To

generate curved boundaries, edges that have asperities towards each other were initially used.

The asperities are thin ribbons of graphene. GBs with larger curvatures (GB7 and GB8) were

obtained by increasing the length of the asperity. The growth process is carried out so as to
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Figure 3.6: Phonon transmission (left panel) and thermal conductance (right panel) for graphene
grain boundaries. The results are compared with the corresponding functions for
pristine graphene (labeled as graph). Inset of right panel shows the temperature
dependence of PGB = κGB/κgraph.

fulfill periodic boundary conditions in the transverse direction (y-direction) and spurious effects

due to edges are avoided.

Structural optimizations of GBs were performed by using DFTB method until the absolute

value of the inter-atomic forces is below 10−5 atomic units, with a k-point mesh of 1x12x1.

A width of ∼ 6.4 nm for all the grain boundaries and periodic boundary conditions along y-

direction have been considered. The GB length and curvature are measured by LGB. Structures

with similar LGB present different type of non-hexagonal rings. In this study, the device region

includes the periodic linear/curved defect (grain boundary), whereas the left and right leads are

taken as a unit cell of the 2D graphene grains in each side, i.e., armchair and zigzag, respectively

(see Fig. 3.5 for the case of GB1). These grains are considered semi-infinite along x-direction

based on the Green’s function formalism [33].

Fig. 3.6 shows the transmission spectra of different GB structures. For comparison, τph[ω] of

pristine graphene is included (pink solid line). One can see that the transmission over the entire

spectrum is lowered as expected due to local structural defects [220, 273]. Moreover, transport

channels in linear GBs present higher transmission than those in curved GBs, mainly in the high

frequency region which corresponds to in-plane mode contributions. GB3 displays the lowest

transmission probability because of its curved structure and the out-of-plane distortions (see

Fig. 3.6), which strongly reduces τin. In graphene, out-of-plane distortions locally couple in-

plane and out-of-plane degrees of freedom, which are decoupled otherwise, and this coupling is

the main scattering mechanism for phonons in deformed graphene structures [274]. Accordingly,

linear GBs show higher values of thermal conductance. However, slight differences in κ for GB1

and GB2 are also found, being more pronounced for T < 200 K, see the inset in the right panel

of Fig. 3.6. Here, PGB = κGB/κgraph as a function of the temperature is showed, being κGB and

κgraph the thermal conductance for a given grain boundary and graphene pristine, respectively

[275]. This behavior is related to the reduction of the transmission probability for low frequency
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Figure 3.7: (a) Schematic representation of the mechanism for introducing atomic defects (struc-
tural disorder) into the boundaries. MGB parameter as a function of mode frequency
for (b) total and (c) in-plane phonon transmission of graphene GBs at different level
of atomic defects. (d) Temperature dependence of PGB parameter. For all the graphs,
solid and dashed lines correspond to 5% and 10% of atomic defects, respectively. The
high peak around ω ∼ 1500 cm−1 on panels (b) and (c) is coming from the small
values on the phonon transmission.

modes induced by the out-of-plane distortions at the boundary. This effect also takes place for

GB4, GB5, and GB6, which have similar LGB but different thermal conductances. GB6 presents

the highest thermal conductance among the three due to the smaller number of structural defects

at the boundary. In addition, it was found that from all the curved GBs, independently of LGB,

GB3 displays the lowest κ as result of the large suppression of transmission over the whole

frequency range, while GB7 shows the second lowest thermal conductance indicating that the

influence of curvature (LGB) is weaker than the out-of-plane structural distortions [219].

Then, the influence of structural modifications of the boundaries, which are produced by

randomly removing atoms (see Fig. 3.7(a) for GB1), is studied. All the results are averaged over

three random configurations. To gain a better quantitative understanding, the parameter MGB =

τGB(%)/τGB(0) is defined, where τGB(%) is the phonon transmission for a given percentage of

atomic defects and τGB(0) is the initial transmission (i.e., without extra defects). The phonon

transmission for both types of GBs is reduced after increasing the percentage of atomic defects
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[276], the effect being more dramatic for linear GBs because of its higher degree of structural

order compared to curved GBs (see Fig. 3.7(b)). This is a consequence of τin and τout being

influenced by the atomic defects in different frequency ranges. As it is shown in Fig. 3.7(c), τout

is the most affected for ω < 200 cm−1 while the reduction of transmission probability for in-plane

modes becomes larger at high frequencies ω > 1000 cm−1. In addition, PGB = κGB(%)/κGB(0)

is computed to study the variation of the thermal conductance with the level of atomic defects

for the GBs (see Fig. 3.7(d)). Here, GB1 shows the highest reduction of thermal conductance at

any percentage of atomic defects. Whereas curved GBs, independent of the LGB value, display

similar reduction of their corresponding thermal conductance, which is slightly reduced at very

low temperatures T < 50 K. The later effect is a consequence of the small variation on τph for

ω < 200 cm−1 where out-of-plane modes are dominant. It has been observed that κ for linear

and curved GBs with 5% of atomic defects is reduced by the same factor at T > 200 K, i.e.,

PGB remains constant. On the contrary, PGB decreases as a function of the temperature at

10%. Moreover, regardless the type of GBs, all of them have very similar thermal conductance

at 10% of atomic defects. These findings are in agreement with the recent thermal conductance

measurements in single graphene grains done by Yasaei et al. [277].

As a final point, the influence of dynamical disorder produced by coupling a Nose-Hoover

thermostat only to the device region of the transport setup is addressed, (see Fig. 3.8(a)).

Thus, the magnitude of atomic displacements around the equilibrium position (i.e., at 0 K)

will be controlled by the device temperature TD. Quantum molecular dynamics simulations

QM/MD are carried out using the DFTB+ code [278], i.e., the corresponding total energy is

calculated every MD step and the Verlet algorithm is used for the time integration of the New-

ton’s equation of atomic motion with a time step of 0.5 fs. The results are then averaged over

10 configurations which were taking every 0.05 ps after the device region reached the tempera-

ture equilibration (∼2.5 ps). Phonon transmission functions obtained at different temperatures,

τGB(T ), has been compared with the corresponding to zero temperature, τGB(0), by redefining

MGB = τGB(T )/τGB(0).

In Fig. 3.8(b), one can see that the phonon transmission of GBs is reduced when the de-

vice temperature TD increases. Similar effect was found in the case of the structural disorder.

However, transmission probability for ω < 1300 cm−1 remains almost the same at TD = 100 K,

i.e., MGB ∼ 1.0. At TD = 500 K, the transmission function has been completely altered for low

(ω < 500 cm−1) and high (ω > 1000 cm−1) frequency modes. Unlike the effect observed with

atomic defects, in which both τin and τout are strongly affected, the reduction at low frequencies

modes is mainly due to the strong suppression of transfer channels belonging to out-of-plane

modes since τin is slightly reduced after increasing TD (see Fig. A.3(c)). It was also found that

the influence of the dynamics is stronger for linear GBs. The parameter PGB = κGB(T )/κGB(0)

is now used to find out the impact of dynamical disorder on κph of graphene GBs (see Fig.

A.3(d)). Hence, the thermal conductance for linear GBs is the most altered, specially, at low

temperature of the leads (T < 100 K), PGB → 0, showing an opposite behavior to this with
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Figure 3.8: (a) Schematic representation of the transport setup to perform the MD simulations.
The thermostat is only imposed to the atoms on the device region (blue balls). MGB

parameter as a function of mode frequency for (b) total and (c) in-plane phonon
transmission of graphene GBs at different TD. (d) Temperature dependence of PGB

parameter. For all the graphs, solid, dashed, and dotted lines correspond to TD = 100
K, 300 K, and 500 K, respectively. The high peak around ω ∼ 1500 cm−1 on panels
(b) and (c) is coming from the small values on the phonon transmission.

atomic defects where κph is slightly reduced at this temperature range (PGB ∼ 1). This effect

is related to small modifications on the in-plane phonon transmission. GBs with large curvature

are more influenced by TD. Besides, the reduction factor of κph for all the GBs at a given TD is

the same when T > 200 K, i.e., PGB is invariant. Notice that despite considering very high TD,

the thermal conductance is still larger to those obtained at 10% of structural disorder.

3.2.3 Molecular functionalization

Thermal transport properties can be also controlled by ad-atoms and molecular functional-

ization. Thus, one possible strategy to influence the properties of graphene GBs can be their

functionalization with molecules or ad-atoms [265, 279], which can act as electronically active

dopants controlling their electronic and phonon transport properties and, hence, its thermoelec-

tric behavior. Therefore, the influence of ad-atoms (Hydrogen and Oxygen) and chemisorbed
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Figure 3.9: (a) Atomistic representation of the two graphene grain boundary models investigated
in this study: symmetric (model I) and asymmetric (model II). (b) Phonon thermal
conductance for pristine graphene and the two models of grain boundaries. Inset:
their corresponding phonon transmission functions.
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Figure 3.10: Temperature dependence of the phonon thermal conductance in the (a) GB model I
and (b) GB model II upon functionalization with H- and O-atoms. The insets show
the corresponding phonon transmission functions. In all figures, the lines correspond
to pristine grain boundaries (solid lines), hydrogen ad-atoms (©), and oxygen ad-
atoms (�).

molecules (Hydroxyl-OH, Methyl-CH3, and nitrophenyl-NO2C6H4 (NPD)) on the thermal trans-

port properties of two possible graphene GBs, symmetric (model I) and asymmetric (model II),

is explored [220]. The model I consists of two graphene sheets with the same orientation (8◦) but

in opposite directions, clockwise and counterclockwise, whereas model II has been built with a

graphene sheet oriented in the armchair direction and another in the zigzag (10◦ in the clockwise)

direction (see Fig. 3.9(a)). Both GBs are composed by pentagons and heptagons, and model II

also presents a nonagon.

As shown in Fig. 3.9(b), the phonon thermal conductance, κph, for both graphene GBs is

lower than the corresponding one to pristine graphene for the whole range of temperature because

of local structural defects which induce additional phonon scattering. Moreover, when comparing

κph for the two GBs, one can see that model II has the smallest phonon thermal conductance.

This is related to the more disordered structure of the GB region in model II. After geommetry
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Figure 3.11: Phonon transmission and phonon thermal conductance for functionalized grain
boundaries: (a,b) GB model I and (c,d) GB model II. In all plots, the transport
coefficients for the pristine grain boundaries are shown with solid lines, Hydroxyl-
OH (�), Methyl-CH3 (�), and Nitrophenyl-NPD (©). The insets in panels (b)and
(d) show the component of the phonon transmission function corresponding to the
out of plane modes to highlight the impact of the functionalization on these vibra-
tional modes. Notice that the strongest modification of the transmission in this case
takes place at low frequencies, below 200 cm−1.

optimization of ad-atoms, it was found that H atoms prefer to be located on top of carbon sites

(C-H bond length is 1.14 Å), while O atoms are attached to bridge (B) sites (the C-O bond length

is 1.49 Å) for both GBs, in good agreement with results reported by Mu et al. [280]. The phonon

transmission of both grain boundaries is reduced over the whole spectrum of frequencies by the

inclusion of ad-atoms (see Fig. 3.10). H and O ad-atoms strongly affect out-of-plane modes which

correspond to ω < 750 cm−1. The analysis of the projected vibrational density of states reveals

that the lighter H atoms have a stronger influence at high frequencies (ω ∈ [1000− 1500]cm−1)

and O atoms at lower frequencies (ω < 900 cm−1). The major contribution to the transmission

spectrum comes from a spectral region between 250 cm−1 and 750 cm−1, which coincides with

the range where oxygen functionalization shows up in phonon transport, i.e, attaching oxygen

atoms has a stronger influence on the thermal conductance of both GBs (see Fig. 3.10).

Additionally, OH, CH3, and NPD molecules are covalently bonded to carbon atoms to the

grain boundaries on T sites. For both GB models, the largest influence of the functionalization is

seen in the low frequency domain (ω ≤ 400 cm−1) as well as at higher frequencies ω > 1100 cm−1

(see Fig. 3.11). Besides of this reduction on the phonon transmission, thermal conductance of GB
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Figure 3.12: (a) Atomistic view of the studied two-dimensional materials: hexagonal boron-
nitride, phosphorene, and molybdenum disulfide (MoS2) monolayer. (b) Schematic
representation of the partition scheme for transport calculation using Green’s func-
tion technique. The transport setups under consideration are also shown. For all the
2D materials, phonon transport is along the zigzag direction (X-axis).

model II turns out to be less sensitive to changes in the type of molecule for T > 200 K (see Fig.

3.11(b,d)). The variations at low temperatures come from the strong suppression of out-of-planes

modes produced by the functionalization group, as shown in the inset of Fig. 3.11(b,d). For GB

model I, CH3 and NPD molecules affect in a very similar magnitude its phonon transmission

which is reflected in the thermal conductance values (see Fig. 3.11(a,b)). Whereas for OH

groups, κph shows a higher decrement due to the fact that high frequency in-plane modes were

suppressed after bonding. Deviations from the conductance of non-functionalized GB clearly

increase with temperature as molecular higher frequency modes become thermally activated.

3.2.4 Uniaxial strain

Strain engineering is a powerful route to tailor the physical properties of novel nanomaterials,

and it opens up the possibility of new potential device applications in nanophononics. Thus,

NEGF-DFTB method is applied to address the influence of strain engineering of the transport

setup on the phonon transport properties of two-dimensional materials, focusing on hexagonal

boron-nitride (hBN), phosphorene, and MoS2 monolayer (see Fig. 3.12(a)) [221]. Based on the

partitioning scheme shown in Fig. 3.12(b), two possible theoretical setups are considered, which

may mimic different experimental ones: I) the device region is uniaxially strained (along ZZ

direction) while the contact regions are not and II) both the device and contact regions have the

same strain level (i.e., homogeneously strained system). Here, it has been considered the same

box length along the y-direction for all strain levels in x-direction (ZZ), which produces an extra

force in the periodic direction after increasing the strain. To gain additional insight into the

influence of strain on the thermal transport properties, the parameter D is defined as:

Di−j = Trace
[

Ki−j(KT )i−j

]

. (3.54)
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Figure 3.13: Bond lengths at first and second neighbors as a function of the applied strain for
(a, d) hexagonal boron-nitride, (b, e) phosphorene, and (c, f) MoS2 monolayer,
respectively. Here, the population of each bond has been analyzed by separating first
and second neighbors and it is shown in all the graphs. These results correspond to
homogeneously strained materials, setup II.

Here, the indices i, j denote neighboring atoms in the corresponding structure. The real number

Di−j is obtained by using the 3×3 sub-matrix Ki−j associated with the force constants of atoms i

and j. Di−j thus gives information on the bond strength for each atomic pair (i− j). Moreover,

to have a better understanding of the transport setups defined in this work, the results are

compared to those corresponding to the standard model of uniaxial strain, i.e., not fixing the

box length along the periodic direction (y-axis), which removes the imposed extra force.

The strain dependence of the nearest-neighbor (first and second) bonds is shown in Fig. 3.13.
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Figure 3.14: The change of the thermal conductance as a function of the applied strain for hexag-
onal boron-nitride (left panel), phosphorene (center panel), and MoS2 monolayer
(right panel). For comparison, the results for the standard uniaxial strain are also
plotted (dashed lines).

The initial bond lengths f(unstrained systems) found after geommetry optimization are: hBN:

A1 = A2 = 1.48 Å, P: B1 = 2.334 Å, B2 = 2.328 Å, and MoS2: C1 = C2 = 2.50 Å. These

values are comparable to those obtained by performing full DFT calculations [94, 281]. Fig.

3.13 shows that bonds along the transport direction are strongly influenced by the applied strain

with exception of C1 due to the more compact structure of the MoS2 monolayer. Whereas, the

strain dependence of A2, B2, and C2 bonds depends on the number of atomic layers. In fact, the

A2 bond slightly increases in magnitude, but after 6% of strain it starts to decrease again. On

the contrary, for the other 2D materials composed of more than one atomic layer, the influence

of strain on the bonds is quite different: the B2 and C2 bonds monotonically decrease and

increase, respectively. This effect mainly occurs due to the periodic boundary conditions (extra

force) and the corresponding reduction of the interlayer distance after stretching the material. It

disappears, though, by applying standard uniaxial strain [221]. Besides, when the bond analysis

goes to second neighbors (see Fig.3.13(d)-(f)), the B-B (AA1,2), N-N (AA3,4), and Mo-Mo (CC1,2)

bonds generate planar isosceles triangles whose size uniformly increase with the strain. However,

because of the number of atomic layers, P-P and S-S bonds also display an extra bond between

atoms located at different layers, which slightly increases for P-P (BB2) bonds and decreases for

S-S (CC5) bonds upon increasing the strain. In short, bond lengths in phosphorene and MoS2

monolayers display a non-monotonous strain dependence, while those for hBN are uniformly

stretched.

As it can be seen in Fig. 3.14, the thermal conductance depends on the transport setup.

Here, to have a better comparison to other works, a length of 100 nm has been considered

in order to convert thermal conductance units [in units of W/K] into thermal conductivity [in

units of W/mK]. Among the three studied two-dimensional materials, hBN monolayer displays

the highest thermal conductance κph at 300 K (∼ 310 W/mK), followed by phosphorene (∼ 90
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Figure 3.15: D parameter as a function of the applied strain for (a, d) hexagonal boron-nitride,
(b, e) phosphorene, and (c, f) MoS2 monolayer, respectively. The population of the
each bond is the same as presented in Fig. A.2. In the graph (f), D values for
CC5 has been reduced by a factor of 20. These results correspond to homogeneously
strained materials, setup II.

W/mK). However, by analyzing the Dij parameter (bond strenght) introduced in Eq. (3.54),

phosphorene shows the weakest bonds and hBN the strongest ones (see Fig. 3.15), a result

related to their difference in Young’s modulus [282]. Based on the strain dependence of bond

lengths in the hBN monolayer (see Fig. 3.13(a) and (d)), it is expected that with the exception

of the A2 bond, the strength of the first and second neighbor bonds will decrease after increasing

the strain (see Fig. 3.15(a) and (d)). Consequently, the components of the dynamical matrix

associated to these bonds (the strongest ones) become smaller and, then, the thermal conductance

continuously decreases with increased applied strain, see Fig. 3.13(a)). This reduction of κph is

higher for setup I because of the presence of an additional interface resistance between contact

and device regions, which strongly blocks phonon transfer at higher frequencies, > 800cm−1

[221]. Notice that κph at room temperature (300 K) shows an slightly increment by considering

setup II. Similar results were reported by Zhu and Ertekin [134] using non-equilibrium molecular

dynamics and Boltzmann transport equation methods. Other one-atom thick layer materials

have been found to show similar effect by performing a self-consistent study of the linearized

Boltzmann-Peierls equation for phonon transport [152].

The influence of the strain in phosphorene and MoS2 monolayer is qualitatively different

because of the presence of additional transport channels related to high frequency out-of-plane
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Figure 3.16: The change of in-plane and out-of-plane mode contributions to the the thermal con-
ductance at 300 K as a function of the applied strain for hexagonal boron-nitride
(left panel), phosphorene (center panel), and MoS2 monolayer (right panel). For
comparison, the results for the standard uniaxial strain are also plotted (dashed
lines).

modes, which have their origin in the additional atomic layers [221]. The thermal conductance in

phosphorene monotonously decreases (setup I) and increases (setup II) with the strain, see Fig.

3.14. The interlayer distance is reduced by the increment in strain and, hence, the strength of

the B2 bonds increases, becoming higher than the B1 bond (see Fig. 3.15(b)). Accordingly, the

transmission probability increases at low frequencies (in-plane modes) and so does the thermal

transport, as it was also observed by Z.-Y. Ong et al. [91]. For MoS2 monolayer, despite the

relatively small change of first neighbor bonds (∼ 10−2 Å), itsD parameter considerably increases

with the strain (see Fig. 3.15(c)). This sensitivity to the strain level is more pronounced for

out-of-plane bonds (C1 and CC5 bonds) which increase 8 times their initial strength at 13.8%

of strain, see Figs. 3.15(c, f). Hence, the range of transmitting frequencies and the vibrational

band gap increase and, after ∼ 7.3% of strain, new transmission peaks emerge at the edge of the

acoustic branch. As a result, κph decreases for low strain levels and then it increases reaching

values close to the initial ones at zero strain independently of the temperature (see Fig. 3.14).

In the case of unstrained contact regions, κph only decreases with increasing strain level due to

the continuous suppression of high frequency in-and out-of-plane modes.

To gain further insight into the phonon transport properties, in-plane and out-of-plane mode

contributions to the thermal conductance have also been analyzed (see Fig. 3.16). The approach

to compute these contributions is quite different to that one explained in previous section, for

more information see supplementary information of Ref. [221]. It was found that mostly in-plane

modes are responsible for thermal transport in homogeneously strained hBN and phosphorene

monolayers (setup II). Whereas, for setup I, in-plane mode contribution to κph is, as expected,

strongly affected by imposing an extra device-contact interface. Consequently, the total thermal

conductance will be reduced as it was shown in Fig. 3.14. For MoS2 monolayer (see right panel in
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Figure 3.17: Atomistic view of BNC heteronanotubes with helical, horizontal, and random dis-
tribution of BN domains. We also show a schematic representation of the partition
scheme for transport calculation in helical BNC heteronanotubes by using the Green’s
function technique. For all nanotubes, electron and phonon transport is along the Z
direction. Carbon atoms (cyan), Boron atoms (pink), and Nitrogen atoms (blue).

Fig. 3.16), the situation is different, the contributions of in-plane and out-of-plane modes to κph
are quite similar due to the large overlap in their associated frequencies. In fact, in homogeneous

strained MoS2 systems, both contributions monotonically increases up to strain level of ∼9.0%,

then it starts to decrease. Therefore, the total κph changes its trend and slightly increases. This

effect is strong at high temperatures. Also, by considering setup II, the strain dependence of the

thermal conductance for hexagonal boron-nitride and phosphorene is similar to that obtained by

employing the standard model for unixial strain (see dashed lines in Fig. 3.14 and Fig. 3.16). On

the contrary, for MoS2 monolayer, unlike the effect on the transmission function observed with

the setup II, the transmission probability increases at low frequencies by applying unixial strains

and, hence, κph will only increase. Hence, by imposing the extra force in the periodic direction

(y-direction), transport channels corresponding to low frequencies which strongly influences the

conduction through out-of-plane modes are blocked, as one can see in Fig. 3.16.

3.2.5 Doping distribution

The last parameter treated for controlling the thermal transport properties of nanomaterials

is doping concentrarion. In particular, BNC heteronanotubes are expected to play an important

role as new generation of thermoelectric materials, and are also of great interest in environmen-

tally relevant issues such as waste heat recovery and solid-state cooling [9]. Thus, in this study

three different BN doping distribution patterns of a carbon nanotube are considered: helical,

horizontal, and random. For this, a (6,6)-CNT of length 43.3 Å will be the reference structure

(supercell composed by 432 C atoms). Helical BN strips, BN chains (parallel to the transport
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Figure 3.18: Phonon transport properties of BNC heteronanotubes. (a) Phonon transmission
function, τph, of helical BNC heteronanotubes for different BN concentrations, c. (b)
Comparison of τph for several doping distribution patterns with 50% of BN concen-
tration. (c) Phonon thermal conductance as a function of the BN concentration for
the studied doping distributions.

direction, which corresponds to the Z-axis), and BN rings (one ring containing 3B and 3N atoms)

have then been introduced in an otherwise perfect (6,6)-CNT to represent helical, horizontal, and

random impurity distributions, see Fig. 3.17. For the helical distribution, the BN concentration

is varied from c = 11% to c = 89%. While for the other cases, concentrations ranging from

c = 16% to c = 84% are considered. The limits of 0% and 100% correspond to carbon and

hexagonal boron-nitride nanotubes, respectively.

All BNC heteronanotube geometries are optimized by using DFTB method [283, 284] until

the absolute value of the inter-atomic forces was below 10−6 atomic units, with a k-point mesh

of 1x1x8. Periodic boundary conditions were imposed along the Z-axis. The values of C-C

and B-N bond lengths are 1.43 Å and 1.48 Å, respectively. After geometry optimization, the

helical BNC heteronanotubes display a smooth wave-like profile along the axial direction (mainly

around the C stripes). This is related to the difference between bond lengths at the interfaces:

C-B∼1.49 Å and C-N∼1.36 Å see e.g. Refs. [133, 285]. The horizontally doped nanotubes have
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Figure 3.19: Variation of RDOS for (a) carbon and (b) boron-nitride domains as a function of the
vibrational frequency for helical BNC heteronanotubes. Results for three different
concentrations are shown.
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Figure 3.20: Variation of RDOS for (a) carbon and (b) boron-nitride domains as a function of
the vibrational frequency for helical, horizontal, and random BNC heteronanotubes.
These results are for a fixed BN concentration equal to 50%.

weakly elongated cross sections with a BN concentration dependent eccentricity (see Fig. 3.17),

confirming the results reported by Guedes et al. [286]. Moreover, to account for the variations in

the possible doping patterns, the transmission functions for random and horizontal distributions

are configurationally averaged over five and three different atomic configurations, respectively.

For the horizontal stripes, these configurations are shown in Fig. 3.17 for c = 50%.

For the phonon transport calculations, a common partitioning scheme has been also used, i.e.,

the whole system is divided into three regions, namely left lead, right lead, and a central region,

as it is displayed in Fig. 3.17. For all doping distributions the leads are composed by twice the

optimized supercell and the central (or device) region includes only one supercell. Thus, there

are no effects related to interface scattering between the leads and the central region. For the

helical distribution, an extra case has been studied by considering leads purely made of (6,6)-

CNTs and the central scattering region including a finite helical BNC heteronanotube. To have
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a better understanding of the doping influence on the transport properties, the RDOS parameter

is defined as

RDOS =
ηX(ω)

ηTotal(ω)
(3.55)

where ηTotal(ω) is the total phonon DOS as computed by using Eq. 3.23, and ηX(ω) can be

either the local phonon DOS of C or BN domains.

In Fig. 3.18(a), the influence of helical BN stripes on the phonon transmission function of a

(6,6)-CNT is shown. The width of the B-N stripes is given by WBN ; the corresponding widths for

a concentration of c = 11% and c = 89% are WBN = 2.46 Å and WBN = 27.06 Å, respectively.

The effect of increasing concentration for a given BN helical distribution is mostly seen in a

dramatic suppression of high frequency vibrational modes (ω > 1400 cm−1), which correspond

to relatively local vibrations involving carbon atoms. This is clearly seen from the behavior

of RDOS after increasing the doping concentration (see Fig. 3.19). The transmission of low-

frequency (long wavelength) vibrations below 200 cm−1 is, on the contrary, barely changed when

varying the disorder concentration (width of the helical stripes). Then, the phonon transmission

functions of BNC heteronanotubes with fixed concentration c = 50% and different BN spatial

arrangements is plotted in Fig. 3.18(b). Overall, the phonon transmission is strongly suppressed

for all BN spatial distributions when compared with the pristine CNT reference system, with

the exception of the long wavelength modes. As expected, a purely random distribution of B

and N atoms largely blocks the transmission over almost the whole frequency spectrum; only

the low-frequency modes experience less scattering at the localized impurities and therefore their

transmission is much less affected. Regarding the more structurally ordered helical and horizontal

arrangements, one can see that the former leads to a stronger reduction of the transmission in

the high-frequency domain (ω > 1400 cm−1) of the spectrum due to the absence of B-N-C local

vibrations. Most of high-frequency vibrations in helical BNC heteronanotubes only correspond

to carbon atoms, as it can be seen in Fig. 3.20.

The corresponding phonon thermal conductances, κph, as a function of the BN concentration

for each doping distribution pattern at T = 300 K are displayed in Fig. 3.18(c). Here, the

thermal conductance of semi-infinite helical BNC heteronanotubes remains nearly constant (∼
2.5 nW/K) for concentrations between 30% and 80%, and then increases until it reaches the

value corresponding to a pristine BNNT, κph ∼ 3.0 nW/K. Moreover, as it is expected from the

behavior of the phonon transmission function, horizontal BNC heteronanotubes show the highest

thermal conductance while the lowest κph values were obtained for (6,6)-CNT with BN domains

randomly distributed. Connecting the helical BNC heteronanotube to purely CNT leads to a

continuous suppression of the thermal conductance with increasing concentration. Notice that for

the temperature used in this calculation (T = 300 K), the dominant contribution to the thermal

conductance mostly originates from long wavelength modes with frequencies ≤ 200cm−1.
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3.3 SUMMARY

In the present chapter, quantum phonon transport has been studied in novel two-dimensional

materials and BNC heteronanotubes. To do this, a new atomistic approach was implemented,

which combines nonequilibrium Green’s function formalism with density functional tight-binding

method. This implementation is a new tool in the DFTB+ software (in-house version). Hence,

the influence of several intrinsic and external factors on the quantum thermal transport properties

of novel nanomaterials can be explored.

First of all, the structural anisotropy in two-dimensional puckered materials produced two

different behaviors for their thermal transport. Thus, in the three different materials studied here

(phosphorene, arsenene, and SnS monolayer), thermal conductance across the zigzag direction is

larger than this corresponding to armchair direction. This is due to the higher phonon group ve-

locities along the zigzag direction. Another characteristic factor that always alters the transport

properties of nanomaterials are 1D topological defects or grain boundaries. In fact, transmission

probability of high frequency vibrational modes in graphene is strongly reduced by the effect

of any grain boundary. Consequently, the thermal conductance values are also dependent on

the type of grain boundary. Moreover, their thermal transport properties can be controlled by

distorting or heating up the grain boundaries, having a stronger negative effect when boundaries

are structurally damaged. It was also found that the thermal conductance of graphene grain

boundaries is reduced after functionalization with small molecules or ad-atoms. However, the

magnitude of the effect depends on the symmetry of the boundary.

Strain engineering was used to tune the thermal transport properties of hexagonal boron-

nitride, phosphorene, and MoS2 monolayer. Here, the strain dependence of the thermal conduc-

tance at 300 K is different for each material when the whole system is homogeneously stretched.

However, the thermal conductance only reduces after increasing the strain level in the central

region (device). This is because of the extra contact-device interface, which blocks many trans-

port channels. Moreover, as a consequence of strain dependence of several bond lengths, in-plane

modes are strongly affected comparing to out-of-plane ones. However, for strain levels < 10%,

they are predominant in the heat transport of these two-dimensional materials.

Finally, the influence of BN doping concentration on the thermal transport properties of a

(6,6)-CNT was also treated. Thus, the phonon transmission is mainly reduced at high frequencies

after increasing the BN concentration, which correspond to local vibrations involving C atoms.

Although, this effect is different for each doping distribution pattern. Indeed, among all them,

horizontal and random BNC heteronanotubes present the highest and lowest thermal conduc-

tance values at 300 K, respectively. For helical BNC heteronanotubes, the thermal conductance

is between these two extreme cases and it remains constant for the concentration range [30, 80]%.
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4 TIME-DEPENDENT QUANTUM

PHONON TRANSPORT

In this chapter, a novel atomistic method capable of studying the transient and steady-state

phonon transport properties of nanoscale systems by combining time-dependent NEGF approach

and DFT-based modelling is developed. This numerical method is based on the solution of the

equation of motion of the phonon density matrix σ(t) by developing an auxiliary-mode approach.

This very efficient approach has already been successfully used for various investigations of time-

resolved electron transport [55–57]. Unlike recent related approaches whose application is limited

to simple model systems [61–63], the main goal for developing our method is to combine a

time-dependent approach with an atomistic material description, which is still an open and

very challenging issue. As a proof-of-principle, it is first applied to study the non-equilibrium

dynamics of quantum heat transport in an 1D atomic chain and, in a second step, in molecular

junctions made of poly-acetylene and poly-ethylene dimers. In the latter case the vibrational

structure of the junction is described at the density-functional theory level. Some basic concepts

of the NEGF approach have been already explained in Sec. 3.1.1, therefore, the next section will

only focus on the detailed derivation of the equation of motion for σ(t), which can be expressed

in terms of real-time Green’s functions.

4.1 NONEQUILIBRIUM GREEN’S FUNCTIONS

4.1.1 Theoretical model

The basic setup of this approach is shown in Fig. 4.1. Two thermal baths consisting of

non-interacting harmonic oscillators which are in thermal equilibrium are connected to a generic

scattering region, whose vibrational properties are assumed to be well represented by a purely
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Figure 4.1: Schematic representation of the target molecular junctions in the present study. A
molecular system is connected to two harmonic thermal baths, which are the source
for the heat flow in the molecule.

harmonic Hamilton operator. The total system is then described by the following Hamiltonian

H = HC +
∑

αk

(

1

2
p2αk +

1

2
ω2
αku

2
αk

)

+
∑

α,k

1

2

(

uT ·Vαkuαk + uαkV
T
αk · u

)

. (4.1)

The first term HC = (1/2)pT · p + (1/2)uT · Keff · u is the Hamiltonian of the central region,

u is a column vector consisting of all the atomic displacement variables in the region, and p

contains the corresponding momenta. Both vectors have length N , where N is the number of

vibrational degrees of freedom in the central region. We have chosen renormalized displacements

ui =
√
mixi, where mi is the mass associated with the ith vibrational degree of freedom and xi

is the actual displacement having the dimension of length. The effective force-constant matrix

Keff = K+Kct has dimension N×N and includes the force constant matrix of the central region,

K, as well as a counter-term Kct, whose meaning is explained below. The index α ∈ {L,R}
labels the left (L) and right (R) heat baths, while k denotes their corresponding vibrational mode

with frequency ωαk. The second term of Eq. (4.1) is the Hamiltonian of the heat bath. The

last term represents the interaction between the central region and the baths, which is given

by coupling vectors Vαk that are assumed to vanish before time t0 → −∞. Written in this

form, the coupling leads to a renormalization of the bare force-constant matrix, which can be

canceled by the previously mentioned counter term Kct =
∑

α,k(Vαk ·VT
αk)/ω

2
αk. Consequently,

the coupling to the thermal baths will solely introduce dissipation rather than a shift in the

vibrational spectrum of the system [287]. Then, the equations of motion for central region (u

and p) and normal modes of (one) lead (uk) are given by

u̇ = p ,

ṗ = ü = −Keff · u−
∑

k

Vkuk ,

ük = − ω2
kuk −VT

k · u .

These equations can be also expressed as

∂

∂t

(

u

p

)

=

(

0 I

−Keff 0

)

·
(

u

p

)

−
∑

k

uk

(

0

Vk

)

. (4.2)
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Here, 2N × 2N dimensional auxiliary matrices are defined as

I ≡
(

I 0

0 I

)

, Q ≡
(

0 I

−I 0

)

, Keff ≡
(

0 I

−Keff 0

)

≡
(

0 I

−K 0

)

+

(

0 0

−Kct 0

)

.

Caligraphic symbols are used to denote matrices with dimension 2N × 2N throughout this

chapter. Hence, the mechanical energy of the central region can be expressed in terms of the

phonon density matrix σ(t) = iG<(t, t), where G<(t, t) is the lesser Green’s function (GF), as

EC(t) =
}

2
Tr
{

KT
eff · Q · σ(t)

}

. (4.3)

Thus, the total energy of a system connected to heat baths is,

ETot(t) = EC(t) + Ebath(t) .

If no external force (driver) is acting on the system, the total energy must be conserved, i.e.,

∂

∂t
ETot(t) =

∂

∂t
EC(t) +

∂

∂t
Ebath(t) = 0 .

Then, the heat current coming from the heat baths can be defined as J(t) = − ∂

∂t
EC(t). There-

fore, the time evolution of the heat flux is related to the lesser GF, which can be written as a

2N × 2N block matrix [62, 63],

G<(t, t′) = −i

( 〈

u(t′)uT (t)
〉 〈

u(t′)pT (t)
〉

〈

p(t′)uT (t)
〉 〈

p(t′)pT (t)
〉

)

. (4.4)

Notice that the GF includes displacement u and momentum p vectors on the same footing.

4.1.2 Equation of motion for the Green’s functions

To obtain the time dependence of the lesser GF, firstly, the Dyson’s equation for this physical

problem must be derived. To do this, by considering } = 1, the contour ordered Green’s function

of the central region is defined as

G(τ, τ ′) = −iTC
( 〈

u(τ)uT (τ ′)
〉 〈

u(τ)pT (τ ′)
〉

〈

p(τ)uT (τ ′)
〉 〈

p(τ)pT (τ ′)
〉

)

. (4.5)

Then, the partial derivative respect to the argument τ is taken in order to get the equation of

motion (EOM) of the contour GF,

∂

∂τ
G(τ, τ ′) = δ(τ − τ ′)Q+Keff · G −

∑

k

(−i)TC
(

0 0
〈

uk(τ)Vku
T (τ ′)

〉 〈

uk(τ)Vkp
T (τ ′)

〉

)

.

(4.6)
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Next, a new GF is defined as

Gk(τ, τ
′) = −iTC

(

0 0
〈

uk(τ)u
T (τ ′)

〉 〈

uk(τ)p
T (τ ′)

〉

)

,

which obeys

[

∂2τ + ω2
k

]

Gk(τ, τ
′) = − iTC

(

0 0

−VT
k

〈

u(τ)uT (τ ′)
〉

−VT
k

〈

u(τ)pT (τ ′)
〉

)

= VT
k

(

0 0

−I 0

)

· G(τ, τ ′) .

The solution of this equation reads

Gk(τ, τ
′) = −

∫

dτ ′′G0
k(τ, τ

′′)VT
k

(

0 0

−I 0

)

· G(τ ′′, τ ′) (4.7)

with
[

∂2τ + ω2
k

]

G0
k(τ, τ

′) = −δ(τ − τ ′). By inserting Eq. (4.7) into Eq. (4.6), the equation of

motion of the contour ordered GF becomes

∂

∂τ
G(τ, τ ′) = δ(τ, τ ′)Q+Keff · G +

∫

dτ ′′Q ·
∑

k

(

VkG0
k(τ, τ

′′)VT
k 0

0 0

)

· G(τ ′′, τ ′) .

Here, Σ(τ, τ ′) =
∑

k

VkG0
k(τ, τ

′′)VT
k is the self-energy of the system. To continue the 2N × 2N

notation, the general self-energy is expressed as

S(τ, τ ′) ≡
(

Σ(τ, τ ′) 0

0 0

)

.

Moreover, the decoupled Green’s function G0 is the solution to the following equation of motion,

∂

∂τ
G0(τ, τ ′) · QT = δ(τ, τ ′)I +K · G0 · QT .

Hence, the Dyson’s equation for the central region Green’s function is given by

G(τ, τ ′) = G0(τ, τ ′) +

∫

dτ2

∫

dτ3 G0(τ, τ2) · S(τ2, τ3) · G(τ3, τ ′) . (4.8)

Thus, by using the Langreth’s rules, the equations for the real-time retarded (R) and lesser (<)

Green’s functions are written as

GR(t, t′) = G0,R(t, t′) +

∫

dτ2

∫

dτ3 G0,R(t, τ2) · SR(τ2, τ3) · GR(τ3, t
′) , (4.9)

G<(t, t′) =

∫

dτ2

∫

dτ3 GR(t, τ2) · S<(τ2, τ3) · GA(τ3, t
′) . (4.10)
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The expression for the advanced GF, GA(t, t′), is also derived in a similar manner. This is ob-

tained by taking the derivative of the Eq. (4.5) respect to the second argument τ ′ (see derivation

in Appendix C) and, hence,

GA(t, t′) = G0,A(t, t′) +

∫

dτ2

∫

dτ3 GA(t, τ2) · SA(τ2, τ3) · G0,A(τ3, t
′) . (4.11)

The EOM for the retarded and advanced GFs can be obtained by taking the time derivative of

Eqs. (4.9) and (C.3), respectively. Thus,

∂

∂t
GR(t, t′) = δ(t, t′)Q+Keff · GR(t, t′) +Q ·

∫

dt2 SR(t, t2) · GR(t2, t
′) . (4.12)

∂

∂t′
GA(t, t′) = δ(t, t′)QT + GA(t, t′) · KT

eff +

∫

dt2 GA(t, t2) · SA(t2, t
′) · QT . (4.13)

Now, the equation of motion for the lesser GF (see Eq. (4.10)) is given in terms of the EOM of

GR(t, t′) and GR(t, t′) as

∂

∂t
G<(t, t) =

∫

dτ2

∫

dτ3

[

∂

∂t
GR(t, τ2) · S<(τ2, τ3) · GA(τ3, t)

+GR(t, τ2) · S<(τ2, τ3) ·
∂

∂t
GA(τ3, t)

]

. (4.14)

Replacing Eqs. (4.12) and (4.13) into Eq. (4.14),

∂

∂t
G<(t, t) = Keff · G<(t, t) + G<(t, t) · KT

eff

+Q ·
[∫

dτ2 S<(t, τ2)GA(τ2, t) +

∫

dτ4 SR(t, τ4)G<(τ4, t)

]

(4.15)

+

[∫

dτ2 GR(t, τ2)S<(τ2, t) +

∫

dτ4 G<(t, τ4)SA(τ4, t)

]

· QT

Notice that the relations among Green’s functions described in the previous chapter are also

valid for those one with dimension 2N × 2N , i.e.,

GR − GA = G> − G< , SR − SA = S> − S< ,

GR(t, t′) = Θ(t− t′)
[

G> − G<
]

, GA(t, t′) = Θ(t′ − t)
[

G< − G>
]

,

SR(t, t′) = Θ(t− t′)
[

S> − S<
]

, SA(t, t′) = Θ(t′ − t)
[

S< − S>
]

,

Therefore, the EOM for lesser GF becomes

∂

∂t
G<(t, t) = Keff · G<(t, t) + G<(t, t) · KT

eff

+Q ·
[∫ t

τ2

dτ2
(

S>(t, τ2)G<(τ2, t)− S<(t, τ2)G>(τ2, t)
)

]

(4.16)

+

[∫ t

τ2

dτ2
(

G>(t, τ2)S<(τ2, t)− G<(t, τ2)S>(τ2, t)
)

]

· QT
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Here, the phonon current matrices, Πα(t), are defined in terms of G and S,

Πα(t) =

∫ t

τ2

dτ2
(

G>(t, τ2)S<
α (τ2, t)− G<(t, τ2)S>

α (τ2, t)
)

(4.17)

where the lesser and greater self-energies of the heat bath α are expressed as (see derivation in

Appendix C),

S<
α (t, t′) = − i

∫ ∞

0

dω

π

[

coth
ω

2kBT
cosω(t− t′) + i sinω(t− t′)

]

Lα(ω) (4.18)

S>
α (t, t′) = − i

∫ ∞

0

dω

π

[

coth
ω

2kBT
cosω(t− t′)− i sinω(t− t′)

]

Lα(ω) (4.19)

with Lα ≡
(

Λα(ω) 0

0 0

)

as the bath spectral density, which characterizes the action of the

enviroment on the open system [287]. Finally, the EOM for the phonon density matrix is given

by

∂

∂t
σ(t) = Keff · σ(t) + σ(t) · KT

eff + i
∑

α∈{L,R}

(

Πα(t) · QT − h.c.
)

. (4.20)

4.1.3 Auxiliary-mode approach

Now, the next step is to get an expression for calculating the time evolution of the phonon

current matrices per each heat bath Πα(t). To do this, an auxiliary-mode approach is used to

expand the self-energies S<,>
α (t, t) in terms of exponential functions, which has been previously

developed for electrons [55–57] and for vibrations [288, 289]. Since the cos and sin functions in

Eqs. (4.18) and (4.19) are easily to express in exponential form, the only term to be worried is the

hyperbolic cotangent. Several schemes have been proposed to obtain a suitable pole decomposi-

tion of this term [288]. The most common one is the so-called Matsubara decomposition which

is straightforward to apply but, converges very slowly towards the exact result. To overcome this

problem more advanced pole decomposition has been suggested. For example, Croy and Saal-

mann [55] suggested a partial fraction decomposition method which converges faster than the

Matsubara decomposition. However, to apply this method, one needs a high-precision arithmetic

to calculate the poles of the approximation correctly, otherwise, it can lead to severe deviation

for the approximation of the self-energies. To handle all these problems, it is therefore beneficial

to have a pole decomposition of the coth function with only purely imaginary poles (except from

the pole at zero). Thus, recently, the Pade decomposition method has been proposed by Hu et

al. [290] which shows very rapid convergence. By using this method, the hyperbolic cotangent

is expressed into simple poles as [288]

coth(x) ≈ 1

x
+

NP
∑

p=1

ηp

(

1

x− ξp
+

1

x− ξ∗p

)

, (4.21)
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where ηp are the residues and ξp (with Im ξp > 0) are the poles. Both quantities can be calculated

by diagonalizing a matrix. Here, NP denotes the number of expansion terms (or number of poles).

Hence, the only missing and very relevant term in the self-energies is the spectral density. In the

present work, two cases of this quantity have been considered: I) the wide-band limit and II) the

Drude regularization.

Case I: Wide-band limit (WBL)

In the wide-band limit case, the spectral density linearly depends on the frequency. Thus,

Lα(ω) = ωL(0)
α , (4.22)

with L(0)
α ≡

(

Λ
(0)
α 0

0 0

)

≡ diag(Λ
(0)
α ,0) as the measure of the coupling strength of the central

region to the baths. Then, the spectral density is inserted into the expression for the lesser

self-energy (see Eq. (4.18)),

S<
α (t, t′) = − i

∫ ∞

0

dω

π
L(0)
α

[

ω coth
ω

2kBTα
cosω(t− t′) + iω sinω(t− t′)

]

= − i

∫ ∞

0

dω

π
L(0)
α

[

ω coth
ω

2kBT
cosω(t− t′)

]

− 1

}
L(0)
α ∂tδ(t− t′) . (4.23)

In the following, the imaginary part will be denoted by

Cα(t− t′) = − i

∫ ∞

0

dω

π
ω coth

ω

2kBTα
cosω(t− t′)

= − i

∫ ∞

−∞

dω

2π
ω coth

ω

2kBTα
eiω(t−t′) . (4.24)

Thus, the self-energies can be written as

S<
α (t, t′) = L(0)

α

[

Cα(t− t′)− ∂tδ(t− t′)
]

,

S>
α (t, t′) = L(0)

α

[

Cα(t− t′) + ∂tδ(t− t′)
]

.

Using the relation between lesser/greater and retarded/advanced functions, one finds for the

latter:

SR
α (t, t

′) = Θ(t− t′)L(0)
α 2

[

∂tδ(t− t′)
]

,

SA
α (t, t

′) = Θ(t′ − t)L(0)
α 2

[

−∂tδ(t− t′)
]

.
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Now, by using the Pade decomposition for the hyperbolic cotangent (see Eq. (4.21)), Eq. (4.24)

becomes

Cα(τ) = − i

∫ ∞

−∞

dω

2π
ω coth

ω

2kBTα
eiωτ

= − i

∫ ∞

−∞

dω

2π
ω
2kBTα
ω

eiωτ − i

NP
∑

p=1

ηp

∫ ∞

−∞

dω

2π
ω

(

1

ω/2kBTα − ξp
+

1

ω/2kBTα − ξ∗p

)

eiωτ

= − i2kBTαδ(t) +

NP
∑

p=1

Cα,p(τ) . (4.25)

where Cα,p(τ) = Rα,p exp(iχα,pτ) with χα,p = 2kBTαξp and Rα,p = ηpξp(2kBTα)
2. The first

term is essentially the high-temperature limit case. Whereas, the second term holds for τ > 0

otherwise the poles in the lower half-plane have to be taken.

Consequently, the convolution of a lesser/greater Green’s function and an advanced/retarded

self-energy (see Eq. (4.15)) can now be evaluated. The derivations of the four terms of this

convolution are reported in Appendix C. Hence, from Eq. (C.12) and, considering QT = −Q
and L(0) =

∑

α

L(0)
α , the EOM for G<(t, t) can be expressed as

∂

∂t
G<(t, t) = K′ · G<(t, t) + G<(t, t) · K′T

+Q ·
[

∑

α

∫ t

t0

dτ Cα(t− τ)L(0)
α · GA(τ, t)

]

− 1

4
Q · L(0) · K · QT

+

[

∑

α

∫ t

t0

dτ GR(t, τ) · L(0)
α Cα(τ − t)

]

· QT +
1

4
Q · KT · L(0) · QT ,

where K′ =
[

1 +Q · L(0)
]

· K. Finally, the phonon current matrices for the wide-band limit

approach, ΠWBL
α (t), are defined as

ΠWBL
α (t) = Φα(t) +

1

4
Q · KT · L(0)

α , (4.26)

with Φα(t) =

∫ t

t0

dτ GR(t, τ) · L(0)
α Cα(τ − t). Here, ΠWBL(t) =

∑

α

ΠWBL
α (t). Thus, the new
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EOM for the phonon density matrix σ(t) is,1

∂

∂t
σ(t) = K′ · σ(t) + σ(t) · K′T + i

∑

α

[

ΠWBL
α (t) · QT − h.c.

]

(4.27)

Here, the auxiliary-mode approach (see Eq. (4.25)) is used to calculated Φα(t) =
∑NP

p=0Φ
p
α(t).

The high temperature contribution is related to the pole p = 0 and is thus given by

Φ0
α(t) = −i2kBTαGR(t, t) · L(0)

α = −ikBTαQ · L(0)
α . (4.28)

Further, the following expression is valid only for p > 0

Φp
α(t) =

∫ t

t0

dτ GR(t, τ) · L(0)
α Cα,p(τ − t) (4.29)

Then, to complete the set of ODEs in order to get the time dependence of the heat flux, the

equation of motion for Φp
α(t) is derived,

∂

∂t
Φp
α(t) = GR(t, t) · L(0)

α Cα,p(0)

+

∫ t

t0

dτ

[

δ(t, τ)Q+Keff · GR(t, τ) +Q ·
∫

dτ2SR(t, τ2) · GR(τ2, τ)

]

· L(0)
α Cα,p(τ − t)

− iχα,p

∫ t

t0

dτ GR(t, τ) · L(0)
α Rα,pe

iχα,p(τ−t)

= Q · L(0)
α Cα,p(0) +K · Φp

α(t)− iχα,pΦ
p
α(t)− 2δ(0)Q · L(0) · Φp

α(t)

+Q · L(0) ·
∫ t

t0

dτ∂τ2GR(τ2, τ)|τ2=t · L(0)
α Cα,p(τ − t) (4.30)

Hence, by replacing the equation of motion for GR, finally2,

∂

∂t
Φp
α(t) = Q · L(0)

α Cα,p(0) +
{[

I +Q · L(0)
]

· K − iχα,pI
}

· Φp
α(t) . (4.31)

This equation of motion together with the corresponding to the phonon density matrix σ(t) (see

Eq. (4.27)) are enough to compute the time dependence of the heat flux into the heat baths.

1Defining, BR =

∫ t

t0

dτ G
R(t, τ) · L(0)

α Cα(τ − t) and B
A =

∫ t

t0

dτ Cα(t− τ)L(0)
α · G

A(τ, t). Then:

(BR)† =

[
∫ t

t0

dτ Cα(τ − t)L(0)
α · (GR(t, τ))T

]∗

=

∫ t

t0

dτ C
∗
α(τ − t)L(0)

α ·

[

(GR(t, τ))T
]∗

= −

∫ t

t0

dτ Cα(τ − t)L(0)
α · G

A(t, τ)

= − B
A

Therefore,
[

B
R
· Q

T
]†

= −Q · B
A.

2 Notice that the term ∝ δ(0) will be canceled by the counter term.
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Thus, the total heat flux can be expressed as

J(t) = − 1

2
Tr
{

KT
eff · Q · [∂tσ(t)]

}

= − 1

2
Tr
{

KT
eff · Q ·

[

K′ · σ(t) + σ(t) · K′T + i
[

ΠWBL(t) · QT − h.c.
]

]}

.

Then, by using the properties of the trace3, it becomes

J(t) = Tr
{

KT
eff · L(0) · K · σ(t)

}

− Tr







∑

α



kBTαL(0)
α +

i

2

∑

p>1

KT
eff · Q ·

[

Φp
α · QT − h.c.

]











. (4.32)

Case II: Drude regularization (DR)

The linear frequency dependence of the spectral density in the wide-band limit case is, of

course, an idealize situation. In reality, any particular real spectral density L(ω) falls off in the

limit ω → ∞. Otherwise, certain physical quantities, e.g., momentum dispersion, would diverge

[287]. Hence, in the simplest form, the spectral density is regularized by a frequency cut-off ωc,

L(ω) = ω2
cω

ω2 + ω2
c

L(0) , (4.33)

which is known as the Drude regularization. Then, this is inserted into the expression for the

self-energies (4.18):

S<
α (t, t′) = − i

∫ ∞

0

dω

π

(

ω2
cω

ω2 + ω2
c

)

L(0)
α

[

coth
ω

2kBTα
cosω(t− t′) + i sinω(t− t′)

]

.

By using the definition of Fourier transform and τ = t− t′, this equation turns into

• For τ > 0,

S<
α (t, t′) = − i

∫ ∞

0

dω

π

(

ω2
cω

ω2 + ω2
c

)

L(0)
α

[

coth
ω

2kBTα
cosωτ

]

+
ω2
c

2
L(0)
α e−ωcτ .

• For τ < 0,

S<
α (t, t′) = − i

∫ ∞

0

dω

π

(

ω2
cω

ω2 + ω2
c

)

L(0)
α

[

coth
ω

2kBTα
cosωτ

]

− ω2
c

2
L(0)
α eωcτ .

3 Considering that Tr
{

K
T
eff · Q ·

[

K+K
T
]

· σ
}

= 0, we only have the terms of K
′ related to Q · L

(0)
· K.

Moreover, the trace of the second term of ΠWBL(t) and its h.c. are also zero.
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Thus, the imaginary part will be denoted by

Cα(τ) = − i

∫ ∞

0

dω

π

(

ω2
cω

ω2 + ω2
c

)

coth
ω

2kBTα
cosωτ

= −i

∫ ∞

−∞

dω

2π

(

ω2
cω

ω2 + ω2
c

)

coth
ω

2kBTα
eiωτ . (4.34)

Consequently, the lesser and greater self-energies for τ > 0 become

S<
α (t, t′) = L(0)

α

[

Cα(τ) +
ω2
c

2
e−ωc|τ |

]

, (4.35)

S>
α (t, t′) = L(0)

α

[

Cα(τ)−
ω2
c

2
e−ωc|τ |

]

. (4.36)

For τ < 0, the corresponding self-energies also display similar expressions (take in account the

difference of signs shown above). As it was mentioned before, the goal of the auxiliary-mode

approach is to expand the self-energies and, hence, Cα(τ) in terms of exponentials. To this end,

the Pade decomposition of the hyperbolic cotangent into simple poles is used one more time (see

Eq. (4.21)). This expansion can now be used in Eq. (4.34) as follows

Cα(τ) = − i

∫ ∞

−∞

dω

2π

(

ω2
cω

ω2 + ω2
c

)

coth
ω

2kBTα
eiωτ

= − i

∫ ∞

−∞

dω

2π

(

ω2
cω

ω2 + ω2
c

)

2kBTα
ω

eiωτ

− i
L
∑

p=1

ηp

∫ ∞

−∞

dω

2π

(

ω2
cω

ω2 + ω2
c

)(

1

ω/2kBTα − ξp
+

1

ω/2kBTα − ξ∗p

)

eiωτ .

Here, by performing Fourier transforms of the individual terms, the following expression is ob-

tained for τ > 0,

Cα(τ) = −ikBTαωce
−ωcτ − i

NP
∑

p=1

Rα,p

(

ωce
−ωcτ − χα,pe

−χα,pτ
)

,

with Rα,p =
2kBTαω

2
c

ω2
c − χ2

α,p

ηp and χα,p = −i2kBTαξp. In the next step, S<,>(t, t′) = ∂
∂tN<,>(t, t′)

has been set, where N<,>(t, t′) matrices are defined as

N<,>
α (t, t′) =

NP
∑

p=0

a<,>
α,p e

−bα,p(t−t′)L(0)
α =

NP
∑

p=0

Nα,p(t, t
′) , (4.37)

with

a<,>
α,0 = ∓ωc

2
+ i



kBTα +

NP
∑

p=1

Rα,p



 , bα,0 = ωc,

a<,>
α,p≥1 = −iRα,p, bα,p≥1 = χα,p .
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For τ = t− t′ < 0, the coefficients are expressed as a∗,<,>
α,p and b∗α,p≥1 (see Appendix C). There-

fore, unlike the wide-band limit case, the convolution of a lesser/greater Green’s function and a

lesser/greater self-energy (see Eq. (4.16)) can be evaluated with these findings. Thus, the first

term of the convolution to analyze is

∫ t

t0

dt′
(

G>(t, t′) S<(t′, t)− G<(t, t′)S>(t′, t)
)

=

[

G>(t, t′) · N<(t′, t)
]t′=t

t′=t0
−
[

G<(t, t′) · N>(t′, t)
]t′=t

t′=t0

+

∫ t

t0

dt′
(

G<(t, t′) · KT
eff · N>(t′, t)− G>(t, t′) · KT

eff · N<(t′, t)
)

. (4.38)

By considering G>(t, t)− G<(t, t) = Q and defining the phonon current matrices ΠDR
α (t) as

ΠDR
α (t) =

NP
∑

p=0

[

Φp
α(t) + a∗,<α,pQ · L(0)

α

]

, (4.39)

with

Φp
α(t) =

∫ t

t0

dt′
(

G<(t, t′) · KT
eff · N>

α,p(t
′, t)− G>(t, t′) · KT

eff · N<
α,p(t

′, t)
)

,

the two boundary terms in Eq. (4.38) are canceled with the counter-term Kct from Eq. (4.20).

Here, ΠDR(t) =
∑

α

ΠDR
α (t). Then, the equation of motion for Φp

α(t) is

∂

∂t
Φp
α(t) = Ap

α · Φp
α(t, t)− Bp

α · KT
eff · L(0)

α +Q · Ωp
α(t) , (4.40)

with Ap
α = K − b∗α,pI, Bp

α = iωcδp,0σ(t) + a∗,<α,pQ. The functions Ωp
α(t) =

∑

α′

∑NP
p′=0Ω

p′p
α′α(t)

correlate the main features of both heat baths and their values are obtained by performing the

time derivative of Ωp′p
α′α(t),

Ωp′p
α′α(t) = +

∫ t

t0

dt′
∫ t′

t0

dt′′ N>
α′,p′(t, t

′′) · Keff ·
[

G<(t′′, t′)− G>(t′′, t′)
]

· KT
eff · N<

α,p(t
′, t)

+

∫ t

t0

dt′
∫ t

t0

dt′′
[

N>
α′,p′(t, t

′′)−N<
α′,p′(t, t

′′)
]

· Keff · G>(t′′, t′) · KT
eff · N<

α,p(t
′, t)

−
∫ t

t0

dt′
∫ t′

t0

dt′′ N<
α′,p′(t, t

′′) · Keff ·
[

G<(t′′, t′)− G>(t′′, t′)
]

· KT
eff · N>

α,p(t
′, t)

−
∫ t

t0

dt′
∫ t

t0

dt′′
[

N>
α′,p′(t, t

′′)−N<
α′,p′(t, t

′′)
]

· Keff · G<(t′′, t′) · KT
eff · N>

α,p(t
′, t)

−
∫ t

t0

dt′ N>
α′,p′(t, t

′) · Q · KT
eff · N<

α,p(t
′, t) +

∫ t

t0

dt′ N<
α′,p′(t, t

′) · Q · KT
eff · N>

α,p(t
′, t) .
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Then, calculating the time derivative of Ωp′p
α′α(t),

∂

∂t
Ωp′p
α′α(t) = Cp′p

α′αL
(0)
α′ · Q · KT

eff · L(0)
α −Dp′p

α′αΩ
p′p
α′α(t)

− ωc

(

δp′,0L(0)
α′ · Keff · Φp

α(t)− δp,0Φ
p′,†
α′ (t) · KT

eff · L(0)
α

)

, (4.41)

where Cp′p
α′α = a<α′,p′a

∗,>
α,p − a>α′,p′a

∗,<
α,p and Dp′p

α′α = bα′,p′ + b∗α,p are real numbers. In short, the

original integro-differential equation for the reduced density matrix is mapped onto a closed set

of ordinary differential equations (Eqs. (4.20), (4.40), and (4.41)), which are solved in this study

by a fourth-order Runge-Kutta method with a timestep of 0.1 fs.

Finally, the thermal current into the heat baths is given by

J(t) = − 1

2
Tr
{

KT
eff · Q · [∂tσ(t)]

}

= − 1

2
Tr
{

KT
eff · Q ·

[

K · σ(t) + σ(t) · KT + i
[

ΠDR(t) · QT − h.c.
]]}

.

Then,4

J(t) = − i

2
Tr

{

KT
eff · Q ·

∑

α

[

ΠDR
α (t) · QT − h.c.

]

}

. (4.42)

4.2 TIME-DEPENDENT THERMAL CURRENT IN NANOJUNCTIONS

4.2.1 One-dimensional atomic chain

To illustrate the novel method presented in this chapter, an one-dimensional (1D) linear chain

consisting of N atoms coupled by force constants with magnitude λ = 1.0 eV/µÅ is considered

(see Fig. 4.2(a) for the case of N = 4 atoms). The mass of the atoms is set to be 1.0 µ and only

interactions among first neighbors are considered. Hence, the force constant and the coupling

matrices will be given by

K ≡













2λ −λ · · · 0

−λ 2λ · · · ...
...

...
. . . −λ

0 · · · −λ 2λ













, ΛL
(0) ≡













0 0 · · · 0

0 0 · · · ...
...

...
. . . 0

0 · · · 0 η













, ΛR
(0) ≡













η 0 · · · 0

0 0 · · · ...
...

...
. . . 0

0 · · · 0 0













,

Before starting the analysis of the thermal transport properties at the transient state, a bench-

mark of the influence of the spectral density parameters on the steady states properties is per-

formed.
4 Considering that Tr

{

K
T
eff · Q ·

[

K+K
T
]

· σ(t)
}

= 0, the only remaining terms are these one related to the

phonon current matrices ΠDR
α (t).
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Figure 4.2: (a) Scheme of the one-dimensional atomic chain with N = 4 atoms. The filled atoms
represent the beginning of the heat baths. λ and η are the spring force constant
between the atoms and the coupling of the central region to the baths. Variation
of the total energy of a dimer at T0 = 100 K with the number of poles NP in the
auxiliary-mode approach by using the spectral density in the (b) wide-band limit and
(c) Drude regularization case. Insets: Time dependence of the heat flux.

Benchmarking of spectral density parameters

In the first place, the results obtained by using the spectral density L(0) for the wide-band

limit and Drude regularization cases are discussed. Following the nonequilibrium molecular

dynamics (NEMD) method described in Fig. 2.1, thermal equilibration of the 1D atomic chain

is first carried out. Figs. 4.2(b,c) show the system energy values at the steady state of a

diatomic chain (N = 2) at T0 = 100 K as a function of the number of poles NP employed in the

auxiliary-mode expansion. One can clearly see that, despite the total heat flux goes to zero after

equilibration (see inset of Fig. 4.2(b)), the system energy has a problem of convergence after

increasing NP for the wide-band limit case. This is due to that more frequencies are considered

in the integral of the self-energies by considering a larger NP and, hence, S(ω) will continuously

increase without any limit. Similar effect has been also reported in other related works [61, 63].

In this sense, it is very relevant the inclusion of a high-frequency cut-off ωc like given by the

Drude regularization. ωc is determined by the features of the system and by considering that

S(ω) will drop to zero after this value. As a result, the heat flux and the system energy of the

dimer converge for a finite number of poles, as it is shown in Fig. 4.2(c). Therefore, from now

on, all the results will be calculated by only using the Drude spectral density.

In Figs. 4.3(b,c), it is displayed the dependence of the system energy at 300 K on the

number of atoms in the chain. This is done for different cut-off frequency ωc and η parameter.

These energy values are compared to those obtained for an ideal harmonic oscillator in thermal

equilibrium, EC =
∑N

i=1 }ωi (n(ωi) + 1/2), where n(ω) is the Bose-Einstein distribution function

and ωi are the frequencies of the isolated central system. Thus, it was found, for η = λ fixed,

that by increasing ωc the system energy also increase due to that the spectral density consider

more vibrational states in the calculations. On the contrary, the energy values get closer to those

corresponding to the ideal harmonic oscillator after reducing the coupling strength measured by

η parameter for a given ωc = 400 THz. This is quite expected because of in the weak coupling
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Figure 4.3: Variation of the total energy of a dimer at T0 = 300 K as a function of the number of
atoms in the 1D atomic chain for different cut-off frequency (left panel) and η param-
eter (right panel). For comparison, the corresponding values to the ideal harmonic
oscillator case are also shown (dashed lines).

limit, η → 0, the atomic chain can be considered as an isolated harmonic system with not thermal

bath injecting heat, hence, E1Dchain = EC .

This effect of the spectral density parameters on the system energy is also observed in the

phonon transmission function τph(ω). This is calculated by using the method explained in Chap-

ter 3. Here, the matrix notation has to return to the N × N dimension because only the GF

terms related to the atomic displacements are considered (momentum operator terms are not

involved). Thus, the spectral density Λ(ω) = (ω2
cω)/(ω

2 + ω2
c )Λ

(0) is inserted into the expression

for the self-energies producing

Σ≶
α(t, t

′) = − i

∫ ∞

0

dω

π

(

ω2
cω

ω2 + ω2
c

)

Λ(0)
α

[

coth
ω

2kBTα
cosω(t− t′)± i sinω(t− t′)

]

= − i

∫ ∞

−∞

dω

2π

(

ω2
cω

ω2 + ω2
c

)

Λ(0)
α

[

coth
ω

2kBTα
± 1

]

eiω(t−t′) . (4.43)

Consequently, the retarded self-energy in time domain can be expressed as

Σr
α(t, t

′) = Θ(t− t′)2iΛ(0)
α

∫ ∞

−∞

dω

2π

(

ω2
cω

ω2 + ω2
c

)

eiω(t−t′) . (4.44)

Next, by using the definition of the Fourier transform, the retarded and advanced self-energies

become

Σr
α(ω) =

[

− ω3
c

ω2 + ω2
c

+ i
ω2
cω

ω2 + ω2
c

]

Λ(0)
α ,

Σa
α(ω) =

[

− ω3
c

ω2 + ω2
c

− i
ω2
cω

ω2 + ω2
c

]

Λ(0)
α .
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Figure 4.4: (a) Phonon transmission function τph for an 1D atomic chain with different number
of atoms. (b,c) Influence of the Drude spectral density parameters on the phonon
transmission function of a dimer.

The real part for both expressions will be canceled by the counter-term and, hence,

Σr
α(ω) =

[

i
ω2
cω

ω2 + ω2
c

]

Λ(0)
α = [Σa

α(ω)]
† . (4.45)

Finally, the retarded Green-function reads

Gr(ω) =
[

ω2I−K− Σr
L(ω)− Σr

R(ω)
]−1

(4.46)

with K as the force constant matrix of the 1D atomic chain. Then, the transmission function

τph(ω) is calculated employing Eq. (3.33). Moreover, the heat flux value at the steady state is

computed through the Landauer approach (see Eq. (3.32)).

Fig. 4.4(a) shows the phonon transmission function for different number of atoms in the

1D atomic chain at a cut-off frequency of 400 THz. Here, one can see the presence of new

transmission peaks after increasing N , which is due to the rise of new vibrational modes. Also,

the maximum frequency ωmax of the transmission function depends on N . Thus, for N > 8,

ωmax is invariant and equal to ∼195 THz. In the limit N → ∞, τph is a continuous constant

function and drops to zero after ωmax, i.e., all vibrational modes present the same transmission

probability, τph = 1.0, which is in agreement to this reported by Zhang et al. [33]. In Fig.

4.4(b), the influence of the coupling strength η for a dimer is shown, ωc = 400 THz is fixed. This

parameter has been related to the magnitude of the force constant between two atoms λ. In fact,

the magnitude of η has a strong influence on the phonon transmission function, affecting the

resolution of the transmission probability per each vibrational modes. Thus, for η ≥ λ, τph looks

like a Gaussian-type function and loses the description of the main system features. Whereas,

for η ≤ 0.8λ, the two main transmission peaks corresponding to the two vibrational modes of the

dimer can finally be distinguished. For weaker couplings, τph will result in two well-defined delta

functions located at these frequencies, correctly describing the vibrations of the dimer. In short,

this effect verifies the previous analysis done respect to the system energy (see Fig. 4.3). The
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Figure 4.5: Variation of the heat flux in the steady state as a function of the number of atoms
in the 1D atomic chain for different η values. For comparison, the values obtained by
using Landauer approach are also shown. To perform these calculations, 8 poles in
the self-energy expansion and a cut-off frequency of 400 THz have been considered.

influence of the cut-off frequency on τph is weak comparing to this one of η parameter. Thus, by

increasing ten times ωc the phonon transmission is slightly reduced at high frequencies and the

frequency spectrum gets wider (see fig. 4.4(c)).

Now, the steady-state heat flux values are calculated by using both the TD-NEGF method

developed in the present work and the Landauer approach. Based on the latter, the temperature

of the heat baths is only considered on their corresponding Bose-Einstein distribution function

(see Eq. (3.32)). On the other side, in the case of the TD-NEGF, both temperatures are inserted

in the expansion of the self-energies and, hence, in the ordinary differential equations. Thus, once

the system has reached the thermal equilibrium, a symmetric temperature bias ∆T = TL−TR =

2ξT0 (ξ > 0) is applied, with T0 corresponding to the mean temperature at which the system

was previously equilibrated. The temperatures for the left and right baths can be written as

TL = (1+ ξ)T0 and TR = (1− ξ)T0, respectively. Consequently, the thermal transport properties

of the system evolves on time until this reaches the steady state for a nonequilibrium situation.

Fig. 4.5 shows the heat flux values at the steady state as a function of the number of atoms

for different η parameter (ωc = 400 THz is fixed). These values are calculated by considering a

mean temperature of T0 = 300 K and ξ = 0.1. Here, it can be seen that the values corresponding

to both methods get closer after reducing the coupling strength, which is in agreement with the

effects found for the system energy and τph (see Figs. 4.3 and 4.4(b), respectively). Moreover,

the heat flux converges at a given N for all η values. It is worth mentioning that the convergence

time of the heat flux and total energy increases with the reduction of the coupling strength.

Additionally, the influence of the cut-off frequency ωc on the steady state heat flux values

of the dimer is examined for a given η = λ parameter. In Fig. 4.6, one can see that heat

flux increases and decrease after increasing ωc for the TD-NEFG method and the Landauer

approach, respectively. Also, the intensity of this effect can be controlled by the magnitude of

the temperature bias ∆T . However, independently of ∆T , the heat flux values for both methods
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are also shown. To perform these calculations, 8 poles in the self-energy expansion
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Figure 4.7: Thermal conductance as a function of the mean temperature for an 1D atomic chain
with 8 atoms. The results obtained by using the time-dependent NEGF method
(developed in the present work) and the Landauer approach are compared. To perform
these calculations, ξ = 0.1, η = 0.5 ∗ λ, and ωc = 1000 THz have been considered.
The number of poles vary depending on the mean temperature value.

get closer after increasing ωc. Hence, after analyzing the effects caused by the parameters of the

Drude spectral density, η = 0.5λ and ωc = 1000 THz are selected for both heat baths to perform

a deeper study of the time dependence of the phonon transport properties. To verify the accuracy

of these values to describe the transport properties, the thermal conductance κph = J/∆T at

the steady state of an atomic chain with N = 8 is computed by using both methods. This is

computed by remaining close to the linear response regime, i.e., small ∆T (ξ = 0.1) [291]. Fig.

4.7 shows the good agreement of the results calculated by employing the Landauer approach and

the TD-NEGF method developed in the present thesis. Notice that the number of poles NP used

in the auxiliary-mode expansion depends on the mean temperature value.
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Analysis of the thermal transport properties

Proceeding with the study, the time evolution of the thermal transport properties are analyzed

in this section. Fig. 4.8 shows the total energy after thermal equilibration as a function of the

number of poles used in the auxiliary mode expansion for the case of a dimer (N = 2). Although

the heat flux tends to zero for each NP (see the inset in Fig. 4.8), the energy in the steady state

still grows as NP increases. It converges for a given NP value depending on the temperature,

e.g., 16 and 8 poles are needed to reach convergence at 50 K and 300 K, respectively. This is

related to the fact that only few poles are enough to describe high temperature effects in the

auxiliary-mode approach [288]. The final energy values are close to those obtained for an ideal

harmonic oscillator in thermal equilibrium, EC =
∑N

i=1 }ωi (n(ωi) + 1/2) (see previous section).

Thus, we expect to find EC = 8.83 × 10−2 eV and EC = 9.56 × 10−2 eV at 50 K and 300 K,

respectively. The discrepancies observed in Fig. 4.8 relate to the coupling to the baths, i.e., they

vanish in the weak coupling limit η → 0, as previously discussed.

To gain further insight, an eigenvalue decomposition of the quantity Z(t) = (}/2)KT
eff
·Q·σ(t)

is performed. This matrix is related to the total energy of the central region after tracing out the

bath degrees of freedom. To this end, the eigenvalue problem for the N×N matrix resulting from

adding the diagonal blocks of Z(t) is solved. In Fig. 4.9(a), one can see the time evolution of the

two eigenvalues for the diatomic chain at T0 = 300 K. Both eigenvalues increase as a function

of time and reach their time-independent limit once the system reaches equilibrium. Moreover,

by analyzing the corresponding eigenvectors, one finds that the lower mode (E1) corresponds to

the case when the atoms vibrate with the same amplitude and in-phase (acoustic-like mode).

This mode corresponds to the zero frequency translational mode of the isolated dimer; since

translational symmetry is now broken due to the coupling to the baths, the mode acquires a
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Figure 4.9: (a) Time evolution of the eigenvalues Ei for a diatomic chain at T0 = 300 K. In-
set: Their corresponding transient states after applying symmetric temperature bias
around T0 (TL = (1 + ξ)T0 and TR = (1 − ξ)T0), ξ = 0.1 (∆T = 60 K, solid lines)
and ξ = 0.3 (180 K, dashed lines). (b) Dynamics of the heat flux from the left and
right leads for atomic chains with 2 and 8 atoms with β = 0.1. (c) Variation of the
steady heat flux after increasing the number of atoms in the atomic chain for different
ξ. The mean temperature is 300 K. The dashed lines represent the values obtained
by using Landauer approach.

finite frequency. The other mode (E2) corresponds to the stretching mode of the dimer, where

the atoms vibrate out of phase.

Consequently, in the insets of Fig. 4.9(a), the time evolution of the eigenvalues associated to

the acoustic and optical modes of the diatomic chain are shown for two different values of the

temperature bias, ∆T = 60 K and 180 K. As ∆T increases, the fluctuations during the transient

get larger because the central region exchanges a larger amount of energy with the heat baths

in order to stabilize the entire system. As a function of time, the energy E1 first decreases and

then increases until reaching convergence, while the optical mode E2 is stronger affected during

the transient, and it displays larger fluctuations than E1. The time evolution of the heat current

in both leads for linear chains containing two and eight sites is presented in Fig. 4.9(b). In both

cases, the transients show similar features: the heat flux grows, oscillates and then saturates.

One can also see that the time for reaching the steady state is longer for larger systems. The

heat flux in the steady state for several chain sizes at 300 K and for different values of the

temperature bias is shown in Fig. 4.9(c). Independently of the temperature bias, the heat flux

increases with the number of sites, but it converges for N > 8. The flux values in the steady

state are in agreement to those calculated by using the standard Landauer approach (see dashed

lines in Fig. 4.9(c)).

4.2.2 Carbon-based molecular junctions

In the next step, it will be demonstrated that the TD-NEGF method developed in the

present thesis can be efficiently combined with atomistic methods to address phonon dynamics

in realistic nanoscale systems. Unlike the 1D atomic chain model, real nanomaterials display

three different degree of freedom (x, y, and z direction) which means that the dimension of the
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matrices will increase by a factor of three and, hence, the computational cost. As paradigmatic

examples, this part of the study is focused on poly-acetylene (PA, 4 atoms) and poly-ethylene

(PE, 6 atoms) dimers connected to two harmonic baths, as shown in Fig. 4.10(a,b). The main

difference between them is the presence of double carbon bonds in the PA junction, while the

PE junction only contains single carbon bonds. Structural optimizations are performed by using

density functional theory as implemented in the Gaussian09 code [292]. For this purpose, B3LYP

functionals are used together with the 6-31G basis set. Then, a finite difference method has been

used to get the corresponding force constant matrices, which are the main input in TD-NEGF
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method. To avoid spurious effects coming from the free ends, long enough molecular chains for

structural optimization and force constant calculations have been considered. However, only

the force constant matrix corresponding to a dimer located in the central part was taken to

compute the phonon transport properties. Thus, Λ(0)
α takes force constant values corresponding

to realistic bonds connecting the end of the central region to the reservoirs. Thus, Λ(0)
α will have

the following structure,

Λ(0)
α ≡





























0 · · · · · · · · · 0
. . .

...
... Ki

xx Ki
xy Ki

xz

...
0 · · · Ki

yx Ki
yy Ki

yz · · · 0
... Ki

zx Ki
zy Ki

zz

...
...

. . .
0 · · · · · · · · · 0





























. (4.47)

with {Ki} as the force constant matrix associated to the atom i, which is making the coupling

with the heat baths. For both molecular junctions, a Drude cut-off frequency of ωc = 100 THz

is used. This value is around twice the maximum frequency corresponding to their vibrational

spectrum. The number of poles in the auxiliary-mode expansion at 100 K, 300 K, and 500 K are

10, 8, and 4, correspondingly.

The variation of the energy density D(E, t) during the thermal equilibration at T0 = 300 K

for PA and PE dimers is shown in Figs. 4.10(a,b), respectively. This density has been calculated

as

D(E, t) =
N
∑

i=1

(1/γ
√
2π) exp[−

(

(E − Ei)/γ
√
2
)2

] (4.48)

with γ = 0.001 eV as the width of the Gaussian distribution and {Ei} as the set of eigenvalues

of Z(t). For both systems, all eigenmodes of the Z(t) matrix display very low energy at the

beginning of the transient. Then, the lowest lying modes gain energy and achieve a maximum

once the system reaches equilibrium. However, the eigenvalues in PE need a longer time to

converge comparing to PA. This difference arises from the different coupling strengths to the

leads (related to Λ(0)). The coupling of the PA dimer takes place through double bonds which

are stiffer than the coupling produced by single bonds (PE dimer). As a consequence, the

magnitude of the oscillations in the heat flux during the transient after applying a temperature

bias is different (larger for PA as shown in Fig. 4.10(c)). This difference in covalently bonded

configurations also results in a larger heat flux for the PA dimer. This is better seen by comparing

the heat flux as a function of ξ for both molecular junctions at T0 = 300 K, see Fig. 4.10(d).

Here, it was also found that the heat flux values for PE are very close to those found for the

1D atomic chain model, which is expected because of the similarity in configuration. Hydrogen

atoms do not play an important role in the thermal transport of these molecular junctions. The

heat flux displays a nearly linear dependence with respect to ξ for different mean temperatures

T0 as one can see in Fig. 4.10(d).
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4.3 SUMMARY

In the present chapter, transient and steady-state phonon transport properties of nanoscale

systems coupled to harmonic heat baths have been studied from a quantum point of view. This

was done by developing a novel atomistic method which combines a time-dependent NEGF

approach with DFT-based modeling. The time dependence of the transport properties were

obtained by solving the equation of motion of the phonon density matrix σ(t) with the help of

an auxiliary-mode approach. As a result, the self-energies of the baths were expressed in terms

of exponential functions and, hence, a set of ordinary differential equations was obtained. Two

different spectral densities (wide-band limit and Drude regularization cases) were considered

to represent the vibrational properties of the heat baths, however, convergence of transport

properties with the number of poles in the auxiliary-mode expansion was only possible by using

the Drude spectral density which considers a high-frequency cut-off.

As a first application, the thermal transport properties in the transient regime of an 1D

atomic chain were studied. It was found a temperature dependence of the number of poles

needed to reach convergence of the total energy and heat flux with the mean temperature of

the system. In fact, few poles are sufficient to describe high temperature studies. By having

a moderate coupling with the heat baths and a cut-off frequency which allow to conserve the

main features of the system, the results for the steady-state heat flux are in agreement with

those obtained by using the Landauer approach. In the weak coupling limit, the system nearly

behaves like an isolated harmonic oscillator, showing their characteristics vibrational modes and

energies.

Finally, by computing the force constant and coupling matrices using density-functional the-

ory, the phonon dynamics of molecular junctions consisting of poly-acetylene and poly-ethylene

dimers was described. Because of double carbon bond coupling between the PA dimer and the

heat baths, the convergence of the eigenvalues is faster compared to the PE dimer case (single

carbon bonds). This difference in coupling strength gives PA dimer a higher heat flux. Both

dimers show a linear dependence of the heat flux with respect to the temperature bias. Although

these examples were based on the Drude regularization of the spectral density, more realistic

scenarios can be easily investigated.
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5 CONCLUSIONS AND OUTLOOK

In the present thesis, classical and quantum computational methods have been used to investigate

thermal transport in novel nanoscale systems such as 2D materials, nanotubes, and molecular

junctions. Based on what was shown, we have here the possibility to perform a systematic study

at the atomistic level addressing material-specific issues for the design of potential phononic

devices. The methodologies employed in this work have been selected depending on the physical

phenomena under interest and the desired accuracy of the results. Hence, the thesis was separated

into three parts.

In the first part, thermal rectification effects were studied in nanoscale devices made of 2D

materials. This research was carried out, from a classical point view, by using nonequilibrium

molecular dynamics. The material targets were structurally asymmetric MoS2 nanoribbons and

coplanar hBN/graphene heterojunctions. As a result of this study, T-shaped nanoribbons dis-

played the largest rectification ratio (up to 30 %), when compared with trapezoidal and triangular

structures, thus illustrating the strong sensitivity of thermal transport to the specific design of

the lateral confinement. Our results clearly indicate that the thermal rectification effect is re-

lated to i) shape asymmetries, ii) interface material (planar stacking order), and ii) changes in

the degree of spatial localization of high-frequency modes (under non-equilibrium heat trans-

port conditions). The influence of substrate deposition on the thermal transport properties of

coplanar hBN/graphene thermal rectifiers was also investigated by means of NEMD. Here, it

was found that, independently of the substrate, the interface thermal resistance is reduced upon

substrate deposition. This is mainly due to the suppression of out-of-plane modes at low fre-

quencies that produces an increment of the spectral overlap between the power spectrum of the

heat baths before and after reversing the temperature bias. Moreover, we have obtained that the

thermal rectification effect is reduced for small degrees of structural asymmetry when hBN-G

nanoribbons are deposited on a given substrate, but increases with increasing asymmetry, reach-

ing values as large as ∼24% for the highest asymmetric nanoribbon. We have also shown that

the substrate temperature plays an important role in determining the magnitude of the thermal

response in these nanomaterials, making possible to reach thermal rectification values of > 50%
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without altering their geometry. Therefore, these results thus provide a deeper insight into the

role of structural asymmetry and substrate deposition in influencing the thermal response of

2D thermal rectifiers and thus open the possibility of atomic-scale and substrate engineering for

controlling thermal transport in novel two-dimensional devices such as thermal memories and

thermal cloaks.

In the second part of the thesis, we systematically studied quantum phonon transport at

the nanoscale. We combined nonequilibrium Green’s function formalism with density functional

tight-binding theory to investigate quantum ballistic transport in 2D materials and nanotubes.

This method is able to deal atomistically with large systems up to ∼ 2000 atoms and it has been

numerically implemented as a tool in the DFTB+ software (in-house version). Subsequently,

we have rationalized the influence of intrinsic (structural anisotropy and grain boundaries) and

external (molecular functionalization, strain engineering, and doping) factors altering the heat

transport in these nanomaterials. Though these systems may be also accessible to simulations

using classical force fields, they may require extensive parametrizations to study novel 2D mate-

rials. Hence, it is more suitable to address this issue within the NEGF-DFTB approach, where

the chemistry of the problem is naturally included in the first-principle based computation of the

force constants. Thus, it was found that 2D puckered materials (e.g., phosphorene, arsenene, and

SnS monolayer) display a strong thermal anisotropy because of their peculiar atomic structure,

being preferable heat transport along the zigzag direction. Among them, SnS monolayer showed

the highest anisotropy in the thermal conductance which comes from the large difference between

its phonon group velocity for zigzag and armchair transport directions. Grain boundaries have

also been found to reduce the transmission probability of heat transport in graphene at certain

vibrational frequencies. In fact, curved GBs showed lower thermal conductance than linear GBs,

especially when out-of-plane distortions are added on the boundary which lead to a reduction

of the in-plane contribution to the total phonon transmission. Moreover, additional structural

distortions in the boundary strongly affects in-plane and out-of-plane mode contributions to the

phonon transmission of graphene GBs. On the contrary, dynamical disorder only weakly affects

in-plane modes. Hence, the thermal conductance of linear and curved GBs is reduced by effect

of both types of disorder, the effect being stronger for linear GBs due to their higher degree

of structural order. In short, dynamical effects on the phonon transport properties of graphene

GBs have less impact comparing to structural disorder.

Tuning external parameters have offered the possibility to tailor the thermal transport prop-

erties of nanomaterials for the development of potential thermoelectric devices. Accordingly,

by functionalizating graphene GBs with ad-atoms and small molecules, we obtained that their

thermal conductance is reduced, although the intensity of the effect can be controlled in depen-

dence of the structural symmetries of the grain boundary. Strain engineering of the transport

setup (contact-device(scattering)-contact regions) has also been studied for hBN, phosphorene,

and MoS2 systems. We clearly demonstrated that the transport setup plays an important role

for the control of the thermal conductance of the systems. Moreover, its influence becomes

more dominant when materials with larger number of atomic layers are considered (hbn-1 layer,
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Phosphorene-2 layers, MoS2 monolayer-3 layers). Hereby, the thermal conductance of the three

studied systems only decreases when the strain level in the device region increases. Whereas,

for homogeneously strained systems, with the exception of MoS2 monolayer, the results are only

quantitatively different from those corresponding to the standard model of unixial strain. Then,

the influence of BN concentration and the doping distribution pattern on the thermal transport

properties of BNC heteronanotubes has been explored. Independently of the spatial atomic BN

distribution, the phonon transmission function of the (6,6)-CNT is reduced at high frequencies

after increasing the BN concentration. This effect is stronger for randomly doped BNC hetero-

nanotubes. It was also found an anomalous concentration dependence of the phonon thermal

conductance at 300 K, i.e., first decreases for BN concentrations < 30%, remains constant up to

a concentration of ∼ 80%, and then increases. These studies have shown how different factors

may have a positive or negative influence on the thermal transport properties and they suggest

several ways to realize a nanosystem with a controlled thermal conductance, which is needed for

technological applications in the energy-harvesting industry.

However, despite the interesting effects found by using the NEGF-DFTB method imple-

mented in this work, we are still not able to explore novel out-of-equilibrium physical effects

such as thermal rectification from a quantum point of view. As it was discussed before, one

of the mechanisms to induce thermal rectification in a material is the structural asymmetry.

Nonetheless, nonlinear interactions (e.g., phonon-phonon) are also necessary for displaying this

effect because it provides a mechanism for phonons of different frequencies to interact between

each other. On the other hand, some nanosystems also required the inclusion of nonlinear terms

to have an appropriated description of their thermal transport properties, specially when the

study is carried out at high temperatures where phonon-phonon interactions are more signifi-

cant. Unlike the implementation for ballistic transport, in this approach, besides computing the

dynamical matrix as the basic input for computing the heat flow, third and fourth order anhar-

monic coefficients are also needed. They appear as additional self-energies in the corresponding

Green’s function of the scattering region and involve convolutions in the frequency space of two-

and three vibrational Green’s functions. The type of processes that need to be included in the

self-energies can be elucidated by using Feynmann diagrams. As a result, the problem needs to

be solved self-consistently.

Finally, in the third part, we have developed a novel atomistic method which combines a

time-dependent NEGF formalism with first-principle based modeling to study phonon dynamics

in nanoscale junctions. The main idea of the method is to solve the equation of motion of

the phonon density matrix with the help of an efficient auxiliary-mode approach. We have

first applied the method to study thermal transport properties in the transient regime of an one-

dimensional atomic chain. The results for the steady states are in agreement with those obtained

by using the Landauer approach. By computing the force constant matrix and coupling matrices

using density-functional theory, we have been able to describe the phonon dynamics of molecular

junctions consisting of poly-acetylene and poly-ethylene dimers. Although our examples were

121



based on the Drude regularization of the spectral density, more realistic scenarios can be easily

investigated. Our computational scheme is among the first attempts, up to now, to tackle time-

dependent quantum phonon transport and allows it to study a variety of topical questions related

to nanophononics, such as heat pumping, on an atomistic basis. Briefly, heat pumping can be

implemented when a discrete vibrational system is coupled to hot and cold reservoirs and a

time-dependent driving is applied to modulate the energetic position of the vibrational energy

levels. This fine tuning modifies the strength of the coupling to the hot and cold reservoirs,

effectively coupling and decoupling the system from each thermal bath over time scales related

to the frequency of the external field.

In conclusion, we have here presented several mechanisms to deal and control heat transport

in nanoscale systems. Besides suggesting possible experimental works and potential phononic

devices, we think that the outcomes produced by this work can be used for the implementation

of a machine learning-based code to predict and understand thermal transport properties of

novel low-dimensional materials. Hence, addressing this possibility in connection with nanoscale

thermal management will be the scope of future work.
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A NEMD SIMULATIONS

A.1 BENCHMARKING OF THE HEAT BATH PARAMETERS

A first step before addressing the issue of thermal transport, was to implement a reliable

force field for MoS2 in LAMMPS code. Then, it was found the accurate simulation parameters

to carry out the nonequilibrium molecular dynamics simulations presented in Chapter 2. To do

this task, a systematic study of the parameters related to the heat baths was performed. The

Nosé-Hoover thermostat was selected for the heat baths in order to have a good performance

reproducing the canonical ensemble and avoid artifacts which have been reported by using, e.g.,

Berendsen thermostat [293].

After selecting the thermostat, the first fixed parameter was the length of the heat bath,

LHB. In our calculations,the mean temperature is 300 K and the temperature bias ∆T = 60

K, i.e., TL = 330 K and TR = 270 K for the forward direction and TL = 270 K and TR = 330

K for the backward direction of the heat flux. Fig. A.1 shows the effect of the number of heat

bath layers on the temperature profile of a symmetric MoS2 nanoribbon (WLR = 1.0). The bath

relaxation time τ = 0.1 was used for this study. A linear temperature gradient is observed in

the inner part of the device region. The main difference in temperature profile between different

heat bath conditions is the temperature jump between the heat bath and interior layers. With

the number of heat bath layers increasing, the temperature jump is reduced as shown in Fig.

A.1, this effect leading to an increase in the heat flux (see Table A.1). Further increase in

the number of heat bath layers cannot eventually remove the temperature jump. The small

remaining temperature jump is due to the thermal boundary resistance (TBR) between heat

bath and the device region, which is the result of the mismatch in their corresponding phonon

density of states [187]. A similar effect has been reported for carbon nanotubes [187], and silicon

nanowires [293]. In addition, the sensitivity of the thermal rectification as a function of the heat

bath length has been calculated. It turned out that for small lengths the thermal rectification

for symmetric MoS2 nanoribbons was different from zero but, after increasing LHB, this value
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Figure A.1: a) Schematic of MoS2 nanoribbons with different heat bath lengths. b) Variation of
the temperature profile with the heat bath length for symmetric MoS2 nanoribbons
in the forward direction of the heat flux.

Table A.1: Values of the heat flux and thermal rectification for different length of the heat bath

Length of the heat bath, LHB

2-layer 4-layer 8-layer
(∼1.15 nm) (∼2.3 nm) (∼4.6 nm)

Heat flux [x10−7 W]
forward 0.6856 0.8866 1.0367

backward 0.6976 0.8937 1.0397
Thermal rectification, η 1.72 ± 0.1 0.79 ± 0.2 0.29 ± 0.1

converged to zero as expected for symmetric geometries. The threshold value for this behavior

was LHB ∼ 2.3 nm. All the following calculations were thus carried out with this bath length.

Regarding the relaxation time, τ , it is well-known that the temperature profile has a strong

dependence on the magnitude of this parameter. For instance, τ should not be too small com-

pared to the time step because it can cause large oscillations in temperature. Such oscillations

can lead to the accumulation of numerical errors, causing the system to deviate from the canon-

ical distribution. Such numerical error accumulation can also happen if the relaxation time is

very large because the total simulation time becomes very long. Here, LHB is set to 2.3 nm (4

atomic layers) in order to perform this study. As it is shown in Fig. A.2, it was found that the

temperature profile for MoS2 nanoribbon with WLR = 1.0 is strongly depended on this parame-

ter. In fact, despite the heat bath reaching the target temperature and the temperature profile

being well defined for τ = 0.001, the heat flux for the hot and cold heat bath are rather different

at steady state, which is not the correct thermodynamic behavior. In the case of large relaxation

time, the MoS2 nanoribbons display a wrong temperature profile for both directions of the heat

flux. The heat baths do not reach the target temperature. Similar behaviors have been reported

for other nanomaterials [187, 293]. Thus, these results indicate that the steady state tempera-

ture or heat current distribution do not depend on any particular value of the relaxation time

in the range from 0.01 ps to 1 ps. Hence, in the present work, we chose τ = 0.1 ps for the MD

simulations, which is large enough to avoid high frequency temperature oscillations, and leads

to a stabilization time (the time needed to reach the steady state in the simulation) of about 1.0

ns, which is short enough to avoid large numerical error accumulation. It is worth mentioning
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Figure A.2: Relaxation time dependence of the temperature profile for symmetric MoS2 nanorib-
bons in the a) forward and b) backward direction of the heat flux.

Table A.2: Values of the heat flux and thermal rectification for different relaxation time of the
heat bath

Relaxation time of the heat bath, τ
0.1 4.0 10.0

Heat flux [x10−7 W]
forward 0.8866 0.5132 0.3041

backward 0.8937 0.5159 0.3063
Thermal rectification 0.79 ± 0.2 0.52 ± 0.1 0.72 ± 0.1

that despite the relaxation time dependence of the temperature profile in MoS2 nanoribbons, the

magnitude of the thermal rectification is only slightly affected because of the symmetry of the

temperature profile when the temperature bias is reversed (see Table A.2).

A.2 REAL-SPACE VIBRATIONAL MODE ANALYSIS

Fig. A.3 complements the results presented in a similar figure in the Chapter 2 (see Fig. 2.6).

Here, the spatial distribution of the vibrational modes, as given by the function φiα,Λ, is shown

for the other two intervals of the participation ratio previously defined (see also the middle panel

of Fig. A.3): I) P > 0.4 and II) 0.1 < P < 0.4, for the forward and backward directions of the

heat flux. For case I (Fig. A.3a,c), which corresponds to a subset of rather delocalized modes,

it turns out that a major contribution to these modes is coming from atoms along the edges of

the nanoribbon (both Mo and S atoms), while the bulk contributions are much weaker (values of

φiα,Λ ≤ 2). In case II (see Fig. A.3b,d) the behavior is more complex: sulfur atoms in the center

and edges of the ribbon give the strongest contribution, while molybdenum atoms are basically

"silent", a fact related to the previously found result that in the spectral range 230-370 cm−1 the

Mo atoms do not appreciably contribute to the vibrational density of states. By comparing Fig.

A.3a,b with Fig. A.3c,d, the spatial distribution of the vibrational modes in backward direction

is similar to the obtained in the forward direction.

A rather similar behavior was found for trapezoidal MoS2 nanoribbons of length L = 5.9 nm

and WLR = 3.0 as shown in Fig. A.4. Notice that the largest changes in the spatial distribution
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Figure A.3: Spatial distributions, φ, of vibrational modes for T-shaped MoS2 nanoribbons of
L = 5.9 nm and WLR = 3.0 (XY plane). Two restrictions based on the magnitude of
the participation ratio, P , have been considered: I) P > 0.4 and II) 0.1 < P < 0.4 for
the system obtained after NEMD simulation in the forward (a) and b)) and backward
(c) and d)) direction. We have considered α = 0.1 for this calculation. The color
scale has the same meaning for all the cases, i.e., cyan balls mean highest contribution
while pink balls lowest contribution for the vibrational modes. These pictures only
show the contributions arising from the top S-layer as well as the Mo-layer.

of modes upon inversion of the heat flow direction takes place for the spectral range III with

the smallest participation ratio. This behavior shows the same qualitative tendency as for the

previously discussed T-shape nanoribbon. Hence, these results suggest that for the considered

asymmetric nanoribbons, modes located within the spectral range from 350 cm−1 to 600 cm−1

are providing the main contribution to the thermal rectification, since they are the most affected

by the inversion of the heat flow. On the other hand, the precise asymmetric shape of the ribbon

seems to mainly determine the size of the thermal rectification.
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mean highest contribution while pink balls lowest contribution for the vibrational
modes. These pictures only show the contributions arising from the top S-layer as
well as the Mo-layer.
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B NEGF-DFTB IMPLEMENTATION

B.1 BASIC CONCEPTS OF DFTB

In DFTB, the KS orbitals are represented with a linear combination of atomic orbitals

(LCAO) centered on the nuclei. Denoting the basis function by φµ and the expansion coeffi-

cients by cµi, one can write the KS orbitals in the form

ψi(r) =
∑

a

∑

µ∈a

cµiφµ(r−Ra), (B.1)

where Ra is the coordinate of the nucleus of atom a. Then, the first line of Eq. (3.51) can be

written as

EH0
=
∑

i

ni
∑

ab

∑

µ∈a

∑

ν∈b

cµicνiH
0
µν , (B.2)

with Hamilton matrix elements H0
µν =

∫

φ∗µĤ
0φνdr being only dependent on the reference den-

sity. a and b are indices for atoms, µ and ν for atomic orbitals. The term in the second line of

Eq. (3.51) consist of the DFT double-counting contributions, the nucleus-nucleus repulsion and

exchange-correlation contributions. In tight-binding theory, they are usually approximated as a

sum of one-center terms and short ranged two-center potentials V rep
ab [244]

− 1

2

∫ ∫ ′ ρ0′ρ0

|r− r′| −
∫

V xc[ρ0]ρ0 +Exc[ρ0] +Enn ≈
∑

a

V rep
a [ρ0a] +

1

2

∑

ab

V rep
ab [ρ0a, ρ

0
b , rab]. (B.3)

With ρ0a and ρ0b as the atomic reference densities for atom a and b, respectively; and rab =

|Rb − Ra| is the interatomic distance. The atomic contributions sum up to a constant energy

shift which cancels out when considering energy differences. For DFTB, the atomic contributions

are neglected and a repulsive energy Erep is defined as

Erep =
1

2

∑

ab

V rep
ab [ρ0a, ρ

0
b , rab]. (B.4)
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The pair-potential V rep
ab are fitted atom type and distance dependent to several systems (for

details look Ref. [261]). Finally, the total non-scc DFTB energy can be written as

Enscc−DFTB =
∑

iab

∑

µ∈a

∑

ν∈b

nicµicνiH
0
µν + Erep. (B.5)

To determine the molecular orbitals coefficients cµi (see Eq. (B.1)), Kohn-Sham equations are

derived by taking the derivative of the total energy with respect to the normalization constraints

∫

ψ∗
i (r)ψi(r)dr = 1 ∀i (B.6)

to get (δ is an index for an orbital, d for an atom):

∂

∂cδi



Enscc−DFTB −
∑

j

njεj

(

∑

ab

∑

µ∈a

∑

ν∈b

cµjcνjSµν − 1

)



 = 0 ∀d, δ ∈ d. (B.7)

The Kohn-Sham equations are approximate in the sense that an approximated energy Enscc−DFTB

which depends on a reference density is considered. Inserting Eq. (B.5) yields a set of algebraic

equations
∑

b

∑

ν∈b

cνi
(

H0
µν − εiSµν

)

= 0 ∀a, µ ∈ a, i. (B.8)

where Sµν =

∫

φ∗µ(r)φν(r)dr is the overlap matrix. Hence, the total energy in Eq. (B.5) can

also be expressed in terms of εi as

Enscc−DFTB =
∑

i

niεi + Erep. (B.9)

Nevertheless, it is still missing how to calculated the pseudoatomic basis functions φµ. These are

obtained by solving the Kohn-Sham equation for a spherical symmetric spin unpolarized neutral

atom self-consistently

[

−1

2
∇2 + V psat(r)

]

φµ(r) = εpsatµ φµ(r) ∀µ, (B.10)

where the pseudoatomic potential V psat(r) is given by

V psat(r) = V ne(r) + V J [ρ(r)] + V xc[ρ(r)] +
( r

rc

)p
(B.11)

Here, the local density approximation (LDA) as parametrized by Perdew and Zunger or the

PBE functional is often used as exchange-correlation potential. A contraction potential (r/rc)p

has been added as introduced by Eschrig [294] to form a more efficient basis set for molecular

and solid-state systems. The parameter rc is chosen to be about 1.85 times the atomic covalent

130 Appendix B NEGF-DFTB implementation



radius [283]. However, this parameter can also be determined using a variational principle for

the total energy. The parameter p was found to have a rather small influence on the results and

is usually chosen as p = 2. Then, the atomic orbital can be represented by linear combinations

of Slater-type orbitals (STO)

φµ(r) =
∑

n,α,lµ,mµ

anαr
lµ+n exp(−αr)Ylµmµ(

r

r
), (B.12)

where r = |r|, l andm are the angular momentum and the magnetic quantum numbers associated

with the orbital µ, respectively. Extensive tests have shown that five different values of α and

n = 0, 1, 2, 3 form a sufficiently accurate basis set [294]. From this procedure, an optimized

atomic basis set φµ and its respective atomic potentials have been obtained per each atom-type

.

Consequently, the Hamiltonian matrix elements can be now computed by using two well

established ways. The first and older way is the determination using an overlap of potentials in

the form (in Dirac notation)

H0
µν =











εfree atom if µ = ν
〈

φµ|T̂ + V [ρ0a] + V [ρ0b ]|φν
〉

if a 6= b

0 if a = b, µ 6= ν.

. (B.13)

where T̂ = −∇2/2 is the kinetic energy operator and εfree atom is the eigenvalue of Eq. (B.10)

when using the potential V (r) of Eq. (B.11) without the additional term (r/rc)p [262]. For the

off-diagonal terms a two-center approximation is applied, crystal field and three-center terms

are neglected. V [ρ0a] is an atomic Kohn-Sham potential as given in Eq. (B.11) including the

compressed density

ρ0a =
∑

µ∈a

φµ(r)φµ(r) (B.14)

but without the additional term (r/rc)p. The second way to approximate the Hamiltonian matrix

elements is similar to the first one but using density overlap of the term

H0
µν =











εfree atom if µ = ν
〈

φµ|T̂ + V [ρ0a + ρ0b ]|φν
〉

if a 6= b

0 if a = b, µ 6= ν.

. (B.15)

The potential V [ρ0a + ρ0b ] is identical to Eq. (B.11) but again without the additional term

(r/rc)p. However, it has been shown for the self-consistent DFTB (described below) on small

molecules, that for accurate and transferable two-center integrals (a 6= b) one parameter for

the compression of φµ and ρ0a is not sufficient [245, 261]. Thus, the overlap matrix elements Sµν

mentioned earlier and the Hamilton matrix elements H0
µν can be precomputed and tabulated (the

two-center approximation simplifies this tabulation) for every atom type pair and a dense mesh
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of interactomic distances. All this information can be found in the Slater-Koster files supplied

by the DFTB+ community [283]. Therefore, it is not necessary to compute the matrix elements

during the runtime of the calculation, but it is essential to account for the orientation of the

orbitals within a molecule which is done using the Slater-Koster sin/cos-rules [245]. Hence, a

lot of effort has been recently done to develope the Slater-Koster files for the most of chemical

elements in the Periodic Table [295, 296].

To improve on the requirement of local charge neutrality, Elstner et al. [245] suggested to go

beyond the first-order expansion of the Kohn-Sham energy functional and to include the second

order corrections to the exchange-correlation energy. This new method is called self-consistent

charge DFTB (scc-DFTB). For systems with sizable charge reorganization, the second order

terms in the density fluctuations (see Eq. (3.51)) become important [245, 260]

E2nd =
1

2

∫ ′ ∫ ( 1

|r− r′| +
∂2Exc

δρδρ′
|ρ0,ρ0′

)

∆ρ∆ρ′. (B.16)

To preserve computational efficiency, this term is approximated in a way that avoids explicit

integration during the calculation. First, the density fluctuation is written as a superposition of

atomic contributions

∆ρ =
∑

a

∆ρa. (B.17)

The main approximation for this term consists of neglecting higher order multiple interactions,

i.e., approximating the atomic density fluctuations ∆ρa by charge monopoles, truncating the

expansion in spherical harmonics after the monopole term [245]

∆ρa ≈ ∆qaF
00
a Y 00. (B.18)

In analogy to ∆ρa = ρa− ρ0a, the charge fluctuation is the Mulliken charge ∆qa = qa− q0a, where

q0a is the charge of the valence electrons of a neutral atom a, and qa is the charge of that atom

within the molecule which is calculated as

qa =
∑

i

ni
∑

µ∈a

∑

b

∑

ν∈b

cµicνiSµν . (B.19)

Therefore, the change of density in Eq. (B.18) is restricted to charge transfer between the atoms

as estimated by the net charge ∆qa on atom a, and the deformation of the charge density is

neglected in this approximation (Y 00 =
1

2

√

1

π
). Inserting Eq. (B.18) and Eq. (B.17) into Eq.

(B.16) and assuming exponentially decaying spherical charge densities with coefficients τa,

F 00
a

2
√
π
=
τ3a
8π

exp(−τa|r−Ra|) (B.20)
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an analytic function γ can be derived [245], which represents the interaction between the charge

density fluctuations and further approximates the second order terms (see Eq. (B.16)). Then,

the second order term becomes

E2nd ≈ Eγ =
1

2

∑

ab

∆qa∆qbγab. (B.21)

Two main properties of γab are highlighted which are described in detail in Ref. [245]. For

large interatomic distances rab, γab basically reduces to 1/rab; i.e., it describes a pure Coulomb

interaction of the partial charges ∆qa and ∆qb. For a = b, γab describes the on-site self-repulsion,

γab = Ua (B.22)

introducing the Hubbard parameter Ua which is the second derivative of the total energy of

a neutral atom with respect to the occupation number of the highest occupied atomic orbital.

In DFTB, it is estimated by using Janak’s theorem [245]. The Hubbard parameter can also

be related to the chemical hardness which is half of the difference of ionization potential and

electron affinity. The exponential coefficient τa is determined by

τa =
16

5
Ua, (B.23)

which imposes an inverse relationship between the Hubbard parameter and the covalent radius

Ua ∝ 1

Rcov
a

. (B.24)

Therefore, the Hubbard parameter affects two physical properties, the electron-electron interac-

tion within one atom, i.e., the diagonal elements γaa, and the size of the atoms for estimating

the two-center terms γab. This estimated atomic size determines the deviation of γab from 1/rab.

Furthermore, the coefficients cµi can be obtained by solving the Kohn-Sham equations in

similar way as in Eqs. (B.7) and (B.8),

∑

b

∑

ν∈b

cνi (Hµν − εiSµν) = 0, ∀a, µ ∈ a, i. (B.25)

where the Hamilton matrix elements are

Hµν = H0
µν +

1

2
Sµν

∑

c

∆qc(γac + γbc). (B.26)

Combining results, the scc-DFTB total energy finally reads [261]

Escc−DFTB =
∑

iab

∑

µ∈a

∑

ν∈b

nicµicνiH
0
µν +

1

2

∑

ab

∆qa∆qbγab +
1

2

∑

ab

V rep
ab

=
∑

i

niεi −
1

2

∑

ab

∆qb
(

qaγba + q0aγab
)

+ Erep, (B.27)
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B.2 PHONON TOOL

As it was mentioned in Chapter 3, a new tool to study quantum thermal transport has been

implemented in DFTB+ software (in-house version). The quantities that can be computed are

phonon transmission function and, hence, the thermal conductance. Also, phonon dispersion of

materials can be investigated by using this tool. For both type of study, the input file is called

’phonons_in.hsd’.

Phonon transport calculation

The steps to carry out this calculation are:

1. Build the structure file (GEN file) introducing first the coordinates of the central region,

then the right heat bath and, finally, the corresponding to the left heat bath (see Fig. 3.2).

2. Compute the Hessian matrix for the entire system. The output file is "hessian.out".

3. Run the phonon calculation. To do this, the hessian and structure files must be in the

same directory as the phonon-input file (phonons_in.hsd).

The phonon-input file presents the next structure,

geometry = genformat {

<<< "system.gen"

}

transport {

device {

AtomRange = 1 50

}

contact {

Id = "Drain"

ShiftAccuracy = 1e-4

atomrange = 51 100

temperature [K] = 300.0

}

contact {

Id = "Source"

ShiftAccuracy = 1e-4

atomrange = 101 150

temperature [K] = 300.0
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}

}

Masses = { } # to study the influence of isotopes

Hessian {

Cutoff = 100.0

Type = total # or in-plane, out-of-plane

Matrix = dftb{

<<<hessian.out

}

}

Analysis {

TunnelingAndDOS{

Verbosity = 91

FreqRange = 1e-6 1e-2

FreqStep = 4e-5

Delta = 6e-4

Region = {

Atoms = 1:50 # projected phonon DOS

}

}

Conductance{

TempRange [K] = 1.0 802.0

TempStep [K] = 1.0

}

}

parseroptions = {

WriteHSDInput = No

WriteXMLInput = No

Phonon dispersion calculation

The steps to carry out this calculation are:
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1. Build the structure file (GEN file) of a supercell. The supercell is composed by several

replicas of the unit cell of the system under interest. The number of replicas may have an

influence in the resolution of the phonon branches.

2. Compute the Hessian matrix for the supercell. The output file is "hessian.out".

3. Generate the k-point path for the phonon dispersion and save it in a file. The first line in

that file must indicate the total number of k-points.

4. Run the phonon calculation. To do this, the hessian, k-points, and structure files must be

in the same directory as the phonon-input file (phonons_in.hsd).

The phonon-input file presents the next structure,

geometry = genformat {

<<< scell.gen

}

PhononDispersion{

nAtomUnitCell = 4

KPoints {

<<< kpath.dat

}

}

Masses = {

# <<< mass.dat # to study the influence of isotopes

}

Hessian {

Cutoff = 60.0

Type = total

Matrix = dftb {

<<<hessian.out

}

}

parseroptions = {

WriteHSDInput = No

WriteXMLInput = No

parserversion = 4

}
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C TIME-DEPENDENT NEGF

Real-time advanced GF

The expression for the advanced GF, GA(t, t′), is also derived in a similar manner to this

done for the retarded GF (see Chapter 4). In this case, the time derivative of the Eq. (4.5) is

taken respect to the second argument τ ′, i.e.,

∂

∂τ ′
G(τ, τ ′) = δ(τ, τ ′)QT + G · KT −

∑

k

(−i)TC
(

0
〈

u(τ)VT
k u

T
k (τ

′)
〉

0
〈

p(τ)VT
k u

T
k (τ

′)
〉

)

. (C.1)

Then, a mixed Green’s function is defined as

G′
k(τ, τ

′) = −iTC
(

0
〈

u(τ)uTk (τ
′)
〉

0
〈

p(τ)uTk (τ
′)
〉

)

,

The equation of motion for G(τ, τ ′) thus turns to be

∂

∂τ ′
G(τ, τ ′) = δ(τ, τ ′)QT + G · KT +

∫

dτ ′′
∑

k

G(τ, τ ′′) ·
(

VkG′0
k (τ

′′, τ ′)VT
k 0

0 0

)

· QT ,

where Σ(τ, τ ′) =
∑

k

VkG′0
k (τ

′′, τ ′)VT
k is the self-energy and G′0 represents the solution of the

equation

Q · ∂τ ′G0(τ, τ ′) = δ(τ, τ ′)I +Q · G0 · KT .

Consequently, the new Dyson’s equation for the central region Green’s function is given by,

G(τ, τ ′) = G0(τ, τ ′) +

∫

dτ2

∫

dτ3 G(τ, τ2) ·
(

Σ(τ2, τ3) 0

0 0

)

· G0(τ3, τ
′) . (C.2)

Moreover, by using the Langreth’s rules in Eq. (C.2), the real-time advanced Green’s function

is expressed as

GA(t, t′) = G0,A(t, t′) +

∫

dτ2

∫

dτ3 GA(t, τ2) · SA(τ2, τ3) · G0,A(τ3, t
′) . (C.3)
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Derivation of lesser self-energy

By using the normal mode representation of the real-space displacement uαS(t), i.e.,

uαS(t) =
1√
N

∑

k

uαk(t)e
ikxS ,

the lesser self-energy can be expressed as,

Σ<
αnn′(t, t

′) = − i

}

∑

kk′

Vn,−kVn′,−k′〈uαk′(t′)uαk(t)〉 .

Here, due to the harmonic behavior of the heat baths, the normal mode amplitude is defined as:

uαk(t) =
√

}/2mωk

(

bαk(t) + b†α,−k(t)
)

with bαk(t) = bαk(0)e
−iωkt. Thus,

〈uαk′(t′)uαk(t)〉 =
}

2m
√
ωkωk′

〈b†α,−k′bα,ke
−iωkt+iωk′ t

′

+ bα,k′b
†
α,−ke

−iωk′ t
′+iω−kt〉

=
}

2ωk
δk′,k

[

coth
ωk

2kBT
cosωk(t− t′) + i sinωk(t− t′)

]

Finally, the lesser self-energy reads

Σ<
αnn′(t, t

′) = −i

∫ ∞

0

dω

π
Λαnn′(ω)

[

coth
ω

2kBT
cosω(t− t′) + i sinω(t− t′)

]

with the Spectral Density Λαnn′(ω) given by

Λαnn′(ω) = π
∑

k

V ∗
nkVn′k

2mωk
δ(ω − ωαk)

Auxiliary-mode approach

Wide-band limit case

Here, the evaluation of the convolution of a lesser/greater Green’s function and an ad-

vanced/retarded self-energy (see Eq. (4.15)) is shown in more details. Indeed, each term of

the convolution will be independently treated. The first term is expressed as
∫

dτ G<(t, τ)SA(τ, t) =
∑

α

∫ t

t0

dτ G<(t, τ) · L(0)
α [−2∂τδ(τ − t)]

=
∑

α

[

−2δ(τ − t)G<(t, τ) · L(0)
α

]τ=t

τ=t0
+
∑

α

∂τG<(t, τ)|τ=t · L(0)
α

≡
∑

α

∂τG<(t, τ)|τ=t · L(0)
α
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The boundary term at τ = t, −2δ(0)G<(t, t) · L(0)
α , cancels with the counter-term Kct initially

defined. To explain this, let’s start with the definition of the delta function which is,

δ(t− t′) =

∫ ∞

0

dω

π
cosω(t− t′) . (C.4)

Next, the component of the boundary term is built,

−2L(0)
α δ(0) = − 2

∫ ∞

0

dω

π
L(0)
α cosω(0)

= − 2

∫ ∞

0

dω

π
Lα(ω)

cosω(0)

ω
. (C.5)

By replacing the initial form of the spectral density in the latter equation, it results

−2L(0)
α δ(0) = − 2

∑

k

∫ ∞

0
dω

VT
k ·Vk

2ωωk
δ(ω − ωαk)I ′

= −
∑

k

VT
k ·Vk

ω2
k

I ′ (C.6)

with I ′ ≡ diag(I,0). Therefore, one can see that this component is the same as the counter-

term (previuosly defined). As consequence of this, the boundary term will be canceled with the

renormalized term associated to G<(t, t) · Keff. This is in agreement with the explanation given

by Tuovinen et al. [63], whom state that the boundary terms can be neglected for long times.

However, this approximation fails for short times while our approach is valid for all time scale.

The boundary term at τ = t0 is neglected because when initial time goes to −∞, this term is

equal to zero. Then, to evaluate the derivative of G<, the equation of motion given above can

be used. In the end, one finds

∫

dτ G<(t, τ)SA(τ, t) =
∑

α

G<(t, t) · KT (t) · L(0)
α . (C.7)

The second term of the convolution reads
∫

dτ GR(t, τ) · S<(τ, t) =
∑

α

∫ t

t0

dτ GR(t, τ) · L(0)
α [Cα(τ − t)− ∂τδ(τ − t)]

=
∑

α

∫ t

t0

dτ GR(t, τ) · L(0)
α Cα(τ − t)

−
[

∑

α

δ(τ − t)GR(t, τ) · L(0)
α

]τ=t

τ=t0

+
∑

α

1

2
∂τGR(t, τ)|τ=t · L(0)

α

These boundary terms will be canceled with similar terms rising from the evaluation of the

convolution of its complex conjugate. Therefore, these can be removed from the final expression.
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Accordingly, by using the equation of motion for the retarded Green’s function, the third term

of the previous equation turns into

∂τGR(t, τ)|τ=t · L(0)
α = δ(t, τ)|τ=tQT · L(0)

α + GR(t, t) · KT
eff · L(0)

α

+

∫

dt2 GR(t, t2) · SA(t2, t) · QT · L(0)
α (C.8)

Here, the last term vanishes1 and the same-time retarded Green’s function can be obtained from

its definition

GR(τ, τ ′) = −iΘ(τ − τ ′)





〈

[

u(τ),uT (τ ′)
]

−

〉 〈

[

u(τ),pT (τ ′)
]

−

〉

〈

[

p(τ),uT (τ ′)
]

−

〉 〈

[

p(τ),pT (τ ′)
]

−

〉



 .

Namely,

GR(τ, τ) = − i

2





〈

[

u(τ),uT (τ)
]

−

〉 〈

[

u(τ),pT (τ)
]

−

〉

〈

[

p(τ),uT (τ)
]

−

〉 〈

[

p(τ),pT (τ)
]

−

〉



 = − i

2

(

0 iI
−iI 0

)

=
1

2
Q .

Thus, the second term of the convolution is finally given by
∫

dτ GR(t, τ) · S<(τ, t) =
∑

α

∫ t

t0

dτ GR(t, τ) · L(0)
α Cα(τ − t)

+
∑

α

1

2

[

δ(t, τ)|τ=tQT · L(0)
α +

1

2
Q · KT · L(0)

α

]

. (C.9)

Similar to the first term, the third term of the convolution becomes,
∫

dτ SR(t, τ) · G<(τ, t) =
∑

α

∫ t

t0

dτ [−2∂τδ(t− τ)]L(0)
α · G<(τ, t)

=
∑

α

[

−2δ(t− τ)L(0)
α · G<(τ, t)

]τ=t

τ=t0
+
∑

α

L(0)
α · ∂τG<(τ, t)|τ=t

=
∑

α

L(0)
α · K · G<(t, t) (C.10)

To get the fourth term, the same procedure as performed for the second term must be done, i.e.,
∫

dτ S<(t, τ) · GA(τ, t) =
∑

α

∫ t

t0

dτ L(0)
α · GA(τ, t)Cα(t− τ)

+

[

∑

α

δ(t− τ)L(0)
α · GA(t, τ)

]τ=t

τ=t0

−
∑

α

1

2
L(0)
α · ∂τGA(τ, t)|τ=t

1These relations are used in all the derivations

L
(0)
α · Q

T
· L

(0)
α = L

(0)
α · Q · L

(0)
α =

(

0 0

0 0

)

, K
T
eff · L

(0)
α = K

T
· L

(0)
α =

(

0 0

Λ
(0)
α 0

)

.
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As it was mentioned above, these boundaries terms will be canceled. Hence, the equation of

motion for GA reads

∂

∂t
L(0)
α · GA(t, t′)|t′=t = δ(t− t′)|t′=tL(0)

α · Q+ L(0)
α · Keff(t) · GA(t, t)

+ L(0)
α · Q ·

∫

dt2 SR(t, t2) · GA(t2, t)

Therefore,

∫

dτ S<(t, τ) · GA(τ, t) =
∑

α

∫ t

t0

dτ Cα(t− τ)L(0)
α · GA(τ, t)

−
∑

α

1

2

[

δ(t, τ)|τ=tL(0)
α · Q+

1

2
L(0)
α · K · QT

]

(C.11)

Replacing the four terms into the equation of motion for G<(t, t) (see Eq. (4.15)), and taking in

account that the boundary terms have been already canceled with the counter-terms associated

to Keff · G<(t, t) and G<(t, t) · KT
eff

, this equation is written as

∂

∂t
G<(t, t) = K · G<(t, t) + G<(t, t) · KT

+Q ·
[

L(0) · K · G<(t, t) +
∑

α

∫ t

t0

dτ Cα(t− τ)L(0)
α · GA(τ, t)− 1

4

(

L(0) · K · QT
)

]

+

[

G<(t, t) · KT · L(0) +
∑

α

∫ t

t0

dτ GR(t, τ) · L(0)
α Cα(τ − t) +

1

4

(

Q · KT · L(0)
)

]

· QT .

(C.12)

Drude regularizarion case

The imaginary component Cα(τ) for the self-energies cS<,>
α can be also obtained when τ =

t− t′ < 0. This reads as

Cα(τ) = −ikBTαωce
ωcτ − i

NP
∑

p=1

Rα,p (ωce
ωcτ − χα,pe

χα,pτ )

where Rα,p =
2kBTαω

2
c

ω2
c − χ2

α,p

ηp and χα,p = −i2kBTαξp. In the same way to τ = t−t′ > 0, S<,>(t, t′) =

∂
∂tN<,>(t, t′) has also been set, where N<,>(t, t′) matrices are defined as

N<,>
α (t, t′) ==

NP
∑

p=0

a∗,<,>
α,p eb

∗
α,p(t−t′)L(0)

α =

NP
∑

p=0

Nα,p(t, t
′) (C.13)
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with

a∗,<,>
α,0 = ∓ωc

2
− i



kBTα +

NP
∑

p=1

Rα,p



 , b∗α,0 = ωc,

a∗,<,>
α,p≥1 = iRα,p, b∗α,p≥1 = χα,p .
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