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Abstract 

The relationship between microstructure and mechanical properties of semicrystalline 

polymer materials has been a hot topic since many years in materials science and engineering. 

Isotactic polypropylene (iPP) is frequently used as a model material, due to its good 

mechanical properties and wide applications. In the past few years, numerous studies have 

been performed in the field of structural evolution during deformation. Previous results 

revealed that phase transition from crystal to mesophase happens in the crystal scale, lamellae 

orientation and fragmentation occurs in the lamellae scale, and even cavitation behavior exists 

in the larger scale. Although abundant work has been done, some problems remain under 

debate, for instance the relationship between lamellae deformation and cavitation behavior, 

the role of phase transition on the void formation, et al. In this study, well defined 

microstructure of iPP is obtained by annealing or adding nucleating agent. Afterward, the 

structural evolution under three types of mechanical load modes (including uniaxial stretching, 

creep, and stress relaxation) is in-situ monitored by synchrotron X-ray scattering.  

During uniaxial stretching, we revealed, for the first time, how lamellae deformation occurs in 

the time scales of elastic deformation, intra-lamellar slip, and melting-recrystallization, 

separated by three critical strains which were only rarely found to be influenced by annealing. 

Strain I (a Hencky strain value of 0.1) marks the end of elastic deformation and the onset of 

intra-lamellar slip. Strain II (a Hencky strain value of 0.45) signifies the start of the 

recrystallization process, from where the long period in the stretching direction begins to 

decrease from its maximum and the polymer chains in the crystal start to orient along the 

stretching direction. The energy required by melting arises from the friction between the 

fragmented lamellae. Strain III (a Hencky strain value of 0.95) denotes the end of the 

recrystallization process. Beyond the strain of 0.95, the long period and the crystal size remain 

nearly unchanged. During further stretching, the extension of the polymer chains anchored by 

lamellae triggers the strain hardening behavior. On the other hand, annealing significantly 

decreases the critical strain for voids formation and increases the voids number, but restricts 

the void size. For those samples annealed at a temperature lower than 90 
o
C, voids are formed 

between strain II and strain III. The voids are oriented in the stretching direction once they are 

formed. For those samples annealed at a temperature higher than 105 
o
C, voids are formed 

between strain I and strain II. The voids are initially oriented with their longitudinal axis 

perpendicular to the stretching direction and then transferred along stretching direction via 

voids coalescence. Additionally, the formation of voids influences neither the critical strains 
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for lamellae deformation, nor the final long period, the orientation of polymer chains or the 

crystal size.  

β-iPP is a kind of metastable phase which can be induced only under special condition. By 

adjusting the morphology of N,N'-dicyclohexyl-2,6-naphthalene dicarboxamide (NJS) 

through self-assembly, the relative content of β-iPP (Kβ) is successfully controlled, under the 

condition that the weight content of NJS in the composite keeps at 0.3 wt. %. The 

microstructural evolution of the iPP/NJS composites with different Kβ during uniaxial 

stretching is studied. The results show that a higher Kβ could increase the number of the voids. 

However, the size of the voids is similar regardless of the NJS morphology. The β-α phase 

transition takes place after voids formation. During intralamellar and inter-lamellar slip, no 

obvious polymer chains orientation can be found for α-iPP. In the strain range of 0.1~0.6, the 

c-axis of the β-iPP crystal tends to orient perpendicular to the stretching direction due to 

lamellae twisting, which is a unique deformation mode of β-iPP lamellae. And the lamellae 

twisting are proposed to be responsible for the intense voids formation of the composite with 

higher Kβ.  

During creep, the evolution of the long period can be divided into four stages (primary creep, 

transition stage, secondary creep, and tertiary creep). This fits quite well with the macroscopic 

displacement and strain evolution. In primary creep, the long period along loading direction 

(𝐿𝑝
∥ ) increases with time due to the stretching of amorphous phase, whereas the long period 

perpendicular to loading direction (𝐿𝑝
⊥) decreases slightly. In secondary creep, strain increases 

linearly with time. Both 𝐿𝑝
∥  and 𝐿𝑝

⊥ exhibit the same tendency with strain. The increase of the 

long period is caused by lamellae thickening, which is a kind of cooperative motion of 

molecular chains with their neighbors onto the lamellae surface. The increasing rate of 𝐿𝑝
∥  is 

larger than that of 𝐿𝑝
⊥ , indicating that the orientation of molecular chains along loading 

direction decreases the energy barrier for the cooperative motion. In tertiary creep, strain 

grows dramatically within a limited time. The lamellae are tilted and rotated, and then 

disaggregated. In addition, fibrillary structure is formed during lamellae breaking. The length 

of the fibrillary structure increases from 364 nm to 497 nm but its width stays at 102 nm as 

creep time increases. 

During stress relaxation, the local deformation behavior of the long period is affine with the 

macroscopic stress relaxation. However, the evolution of the crystal orientation and the void 

size lag behind the macroscopic stress relaxation. The decrease of the long period is mainly 
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caused by the relaxation of the strained polymer chains in the amorphous phase. The 

retardation of the evolution of the crystal orientation is probably caused by the phase 

transition from stable α-iPP to metastable mesomorphic-iPP. By phase transition, the highly 

oriented α-iPP is transferred to weakly oriented mesomorphic-iPP. Due to the fact that the 

void is confined by the network of the strained polymer chains where lamellae blocks serve as 

the physical anchoring points, the phase transition contributes greatly to the viscoplastic 

deformation of the network. Consequently, the evolution of the voids size shows a similar 

trend with that of the phase transition. 

With this thesis, we gained a deeper insight into the relationship between structure and 

properties of semicrystalline polymers. The current study will not only benefit the 

understanding of polymer materials science but also serve as guidance for the processing of 

semicrystalline polymers for engineering applications.  



IV 

 

Abstrakt 

Die Korrelation von Mikrostruktur und mechanischen Eigenschaften teilkristalliner 

Polymermaterialien ist seit vielen Jahren ein wichtiges Thema von Materialforschung und 

Anwendungstechnik. Isotaktisches Polypropylen (iPP) wird wegen seiner guten mechanischen 

Eigenschaften und der breiten Verwendung häufig als Modellmaterial verwendet. In den 

letzten Jahren wurden zahlreiche Studien auf dem Gebiet der Strukturentwicklung während 

der Deformation durchgeführt. Frühere Resultate zeigten, dass der Phasenübergang vom 

Kristall zur Mesophase in der Dimension der Kristallite erfolgt und die Orientierung sowie die 

Fragmentierung der Lamellen in lamellaren Dimensionen auftritt; während Kavitationseffekte 

in größeren Dimensionen stattfinden. Obwohl umfangreiche Arbeiten durchgeführt wurden, 

sind einige Probleme weiterhin in der Diskussion wie zum Beispiel der Zusammenhang von 

Lamellendeformation und Kavitationsverhalten, die Rolle des Phasenüberganges bei der 

Entstehung von Voids und andere Fragestellungen. In dieser Arbeit wurden definierte 

Mikrostrukturen durch Temperung und Verwendung von Nukleierungsmitteln hergestellt. 

Anschließend wurde die Strukturentwicklung bei drei unterschiedlichen mechanischen 

Belastungen (uniaxiale Dehnung, Kriechen, Spannungsrelaxation) mittels in-situ 

Röntgenstreuung am Synchrotron beobachtet.  

Es konnte erstmalig gezeigt werden, wie die Lamellendeformation in der uniaxialen  Dehnung 

in den Zeitskalen des intralamellaren Gleitens und der Rekristallisation stattfindet; 

gekennzeichnet durch drei kritische Deformationen, bei denen nur selten ein Einfluss des 

Temperns beobachtet wurde.  Deformation I (eine Hencky-Deformation von 0,1) 

kennzeichnet das Ende der elastischen Deformation und das Einsetzen des intralamellaren 

Gleitens. Deformation II (eine Hencky-Deformation von 0,45) markiert den Beginn des 

Rekristallisationsprozesses, bei dem die Langperiode in Dehnungsrichtung beginnend vom 

Maximum abnimmt und die Polymerketten in den Kristalliten beginnen sich in 

Dehnungsrichtung zu orientieren. Die zum Schmelzen benötigte Energie resultiert aus der 

Reibung zwischen den Lamellenfragmenten. Deformation III (eine Hencky-Deformation von 

0,95) definiert das Ende des Rekristallisationsprozesses. Bei der Deformation oberhalb von 

0,95 bleiben die Langperiode und die Kristallitgröße nahezu unverändert. Bei weiter 

zunehmender Dehnung bewirken die durch die Lamellen verankerten Ketten die 

Dehnverfestigung. Andererseits senkt das Tempern signifikant die kritische Deformation für 

die Bildung von Voids und erhöht die Anzahl der Voids, wobei aber die Größe der Voids 

begrenzt wird. Bei den Proben die bei Temperaturen unter 90 °C getempert wurden, werden 
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die Voids zwischen kritischer Deformation II und III gebildet. Diese Voids werden während 

ihrer Entstehung in Dehnungsrichtung orientiert. Die Proben, welche bei Temperaturen größer 

als 105 °C getempert wurden, zeigen die Entstehung der Voids zwischen kritischer 

Deformation I und II. Diese Voids sind anfänglich mit ihrer Längsachse senkrecht zur 

Dehnungsrichtung orientiert und werden dann durch Koaleszenz der Voids in 

Dehnungsrichtung orientiert. Außerdem beeinflusst die Bildung der Voids nicht die kritischen 

Deformationen für die Lamellendeformation, die endgültige Langperiode, die Orientierung 

der Polymerketten oder die Kristallitgröße. 

β-iPP ist eine spezielle metastabile Phase, die unter definierten Bedingungen erzeugt werden 

kann. Bei der Einstellung der Morphologie von N,N'-Dicyclohexyl-2,6-

Naphthalendicarboxamid (NJS) durch Selbstorganisation kann der relative Anteil von β-iPP 

(Kβ) erfolgreich gesteuert werden, unter der Bedingung dass der Gewichtsanteil von 0,3 % 

NJS eingehalten wird. Die Entwicklung der Mikrostruktur der iPP/NJS Proben mit 

unterschiedlichem Kβ wurde während der uniaxialen Dehnung untersucht. Die Ergebnisse 

zeigen, dass ein höherer Kβ –Anteil die Anzahl der Voids erhöhen kann. Hingegen ist die 

Größe der Voids unabhängig von der Morphologie des NJS. Der β-α Phasenübergang findet 

nach der Entstehung der Voids statt. Während der intralamellaren und interlamellaren 

Gleitvorgänge kann keine bemerkenswerte Orientierung der Polymerketten beim α-iPP 

nachgewiesen werden. Im Dehnungsbereich von 0,1 ~ 0,6 tendiert die c-Achse der β-iPP 

Kristallite zu einer Orienterung senkrecht zur Dehnungsrichtung. Dies wird durch eine 

Verdrehung der Lamellen verursacht, welche ein typischer Deformatiosmodus von β-iPP 

Lamellen ist. Es wird angenommen, dass die Verdrehung der Lamellen verantwortlich für die 

intensive Bildung von Voids bei Proben mit höherem Kβ ist. 

Beim Kriechen kann die Veränderung der Langperiode in vier Stufen unterteilt werden 

(primäres Kriechen, Übergangsstufe, sekundäres Kriechen und tertiäres Kriechen). Diese 

Stufen stimmen sehr gut mit den makroskopischen Verschiebungen und der Veränderung der 

Dehnung überein. Beim primären Kriechen vergrößert sich die Langperiode entlang der 

Belastungsrichtung (𝐿𝑝
∥ ) mit der Zeit infolge der Dehnung der amorphen Phase, wobei die 

Langperiode senkrecht zur Belastungsrichtung ( 𝐿𝑝
⊥ ) schwach abnimmt. Während des 

sekundären Kriechens steigt die Deformation linear mit der Zeit. 𝐿𝑝
∥  und 𝐿𝑝

⊥ weisen die gleiche 

Tendenz in Abhängigkeit von der Deformation auf. Die Zunahme der Langperiode wird durch 

eine Verdickung der Lamellen hervorgerufen, welches eine Form der kooperativen Bewegung 

der Molekülketten mit ihren Nachbarn auf der Lamellenoberfläche ist. Da die Wachstumsrate 
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von 𝐿𝑝
∥  ist größer als die von 𝐿𝑝

⊥ ist, ist dies ein Hinweis darauf, dass die Orientierung der 

Molekülketten in Beanspruchungsrichtung die Energiebarriere für die kooperative Bewegung 

erniedrigt. Beim tertiären Kriechen steigt die Deformation sehr stark für eine begrenzte Zeit. 

Die Lamellen werden gebogen und gedreht und letztendlich zerbrochen. Zusätzlich entsteht 

eine fibrilläre Struktur während des Zerbrechens der Lamellen. Die Länge der fibrillären 

Struktur erhöht sich von 364 nm auf 497 nm wobei die Dicke von 102 nm während der 

Kriechzeit konstant bleibt. 

Während der Spannungsrelaxation verhält sich die lokale Deformation der Langperiode affin 

zur makroskopischen Spannungsrelaxation. Hingegen bleibt die Veränderung der kristallinen 

Orientierung und der Größe der Voids hinter der makroskopischen Spannungsrelaxation 

zurück. Die Abnahme der Langperiode wird hauptsächlich durch die Relaxation der 

gedehnten Polymerketten in der amorphen Phase verursacht. Die verzögerte Veränderung der 

kristallinen Orientierung  ist wahrscheinlich durch den Phasenübergang vom stabilen α-iPP 

zum metastabilen mesomorphen iPP bedingt. Während des Phasenüberganges wird das hoch 

orientierte α-iPP zum gering orientierten mesomorphen iPP umgewandelt. Infolge der 

Tatsache, dass die Voids durch das Netzwerk der gedehnten Polymerketten begrenzt werden, 

wobei die lamellaren Blöcke als Verankerungspunkte dienen, trägt der Phasenübergang 

erheblich zur viskoplastischen Deformation des Netzwerkes bei. Infolgedessen zeigt die 

Veränderung der Größe der Voids den gleichen Trend wie der Phasenübergang. 

Mit dieser Arbeit wurde eine vertiefende Einsicht in die Struktur-Eigenschafts-Beziehungen 

von teilkristallinen Polymeren erreicht. Diese Arbeit will nicht nur das 

materialwissenschaftliche Verständnis von Polymeren bereichern, sondern auch als Anleitung 

für Verarbeitung von teilkristallinen Polymeren für technische Anwendungen dienen. 
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1 Introduction 

1.1 Isotactic polypropylene (iPP) 

Polypropylene (PP) is a thermoplastic polymer (see Figure 1-1). Due to its outstanding 

properties, such as low dielectric loss, good heat resistance, non-toxicity and good mechanical 

properties, PP has been used in a wide variety of applications including cables, packaging, 

and automotive components.[1-3] PP was polymerized by G. Natta in 1954.[4] And according 

to a survey by PlasticsEurope, the total European plastic demand for PP was about 9.5 million 

tons in 2016.[5]  

 

Figure 1-1 European plastics demand by polymer type 2016.[5] 

1.1.1 Chain structure of PP 

The structural unit of PP is shown in Figure 1-2. Depending on the position of the methyl 

group with respect to the chain backbone, PP can be divided into three types including 

syndiotactic-PP (sPP), atactic-PP (aPP), and isotactic-PP (iPP). sPP: the position of methyl 

groups is alternated regularly; aPP: the position of methyl groups is randomly distributed; iPP: 

all methyl groups are located on the same side. Due to its high regularity, iPP crystallizes 

easily under common processing condition compared with the other two types.  
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Figure 1-2 The structural unit of PP, and schematic illustration of three type configurations of 

PP: syndiotactic-PP (sPP), atactic-PP (aPP), and isotactic-PP (iPP). 

1.1.2 Crystal forms of iPP 

As a kind of polymorphic semicrystalline polymer, iPP has several crystal forms: monoclinic 

α-iPP, trigonal β-iPP, orthorhombic γ-iPP, and mesomorphic-iPP [6, 7]. The chain 

conformation for each crystal form is the 31 helix [8]. The difference lies in how the chains 

are packed in the unit cell. The methyl groups are positioned “up” and “down” if the chain is 

packed as a “left” or “right” handed helix conformation. As an example, Figure 1-3 presents a 

helix with “down” position of the methyl group.  

 

Figure 1-3 Left shows the helical structure of iPP chain with ‘down’ positions of the methyl 

group (black spheres). Right is the same helix in a triangular bar. See Ref. [9]. 
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α-iPP is thermodynamically stable and is the most encountered form during polymer 

processing. β-iPP is metastable and can be induced only under special conditions: crystallize 

under pressure [10], the temperature gradient [11], the flow field [12, 13], or by adding a 

nucleating agent during crystallization [14]. The -iPP is relatively rare, however, it is favored 

when iPP crystallizes under elevated pressure or the isotactic sequence length is 

interrupted.[15] The mesophase can be formed by quenching from the melt fast enough. For 

instance, such a condition can be reached by quenching the melt below 0 
o
C with a cooling 

rate larger than 80 K/s.[16]  

The crystalline structures of α-iPP, β-iPP, and γ-iPP are illustrated in Figure 1-4. The 

monoclinic α-iPP has a unit cell with a=0.665 nm, b=2.096 nm, c=0.65 nm and β=99.2
o
. Each 

unit cell contains 4 polymer chains with chain axes aligned parallel to the c-axis. The α-iPP 

can be described by an alternation of layers parallel to the ac-plane and composed of only left 

handed (L) or right handed (R) helix. The methyl group in both helices can be positioned up 

(up) or down (dw).[17] The trigonal β-iPP owns a unit cell with a=b=1.103 nm, c=0.65 nm, 

and =120
o
.[8, 18] Three isochiral helices coexist in the unit cell. The orthorhombic γ-iPP 

exhibits a unit cell with a=0.854 nm, b=0.993 nm, and c=4.241 nm.[19] γ-iPP is the first 

identified crystal form where chains in the unit cell are non-parallel packed.  

 

Figure 1-4 Illustration of different unit cells of iPP. L is short for left handed and R is short 

for right handed helix. Up or dw means that the methyl group in the helix is positioned up or 

down. See Ref. [20] 

The mesophase of iPP contains parallel helices with the same 2*31 helix in the crystalline 

phase.[7] Two characteristic halos existed on the WAXS pattern of the mesophase: one 

locates at a spacing of about 0.59 nm, corresponding to the distance between parallel aligned 

chains, and the other one is at a distance of 0.41 nm, originated from the repeating period 

within the helices.[21] The interpretation about the WAXS pattern of the mesophase is still 
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under debate. One assumes the presence of small crystallites of hexagonal structure[22, 23], 

but the other one prefers that the lateral local correlation of chain segments in the mesophase 

is closer to monoclinic.[24] 

1.1.3 Lamellae of iPP 

The most common morphology of iPP under melt processing condition is the lamellar like 

crystallite. The chains are arranged in the lamella and the unit cell as described above. In α-

iPP and β-iPP, polymer chains (c-axis direction) are aligned perpendicular to the ab-plane of 

the crystal. In γ-iPP, polymer chains are inclined with an angle of ±40𝑜 with respect to the 

normal direction of the lamellae.[19]  

The crystalline morphology of iPP is schemed in Figure 1-5. The lamella is surrounded by 

two adjacent amorphous phases. The amorphous phase and the lamella are connected by chain 

loops, tie chains as well as chain cilia.[25] Polymer chains between the lamella and 

amorphous phase are highly coupled with the crystals in the lamella, giving rise to the 

existence of an intermediate phase. To be clarification, the intermediate phase and amorphous 

phase is also named as rigid amorphous fraction (RAF) and mobile amorphous fraction 

(MAF).[26] RAF and MAF were first termed by Wunderlich while investigating the glass 

transition of poly(oxymethylene).[27] Polymer chains in MAF mobilize at the glass transition 

temperature (Tg), while polymer chains in RAF mobilize at temperature higher than Tg. 

 

Figure 1-5 Schematic drawing of the morphology of lamellae, amorphous phase and the 

interface between them. 

1.1.4 The morphology of the supra-structure of iPP  

Depending on the flow conditions (quiescent or flow induced crystallization), the presence of 

the filler (nucleating agent, inorganic additives, fibers etc.), iPP may exhibit spherulite,[28, 29] 
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cylindrites,[30] transcrystalline structure,[31] shish-kebab,[32] and extended-chain 

structure.[33]  

1.2 Structural evolution during deformation 

1.2.1 Deformation process of semicrystalline polymers 

Under mechanical load, the morphology of semicrystalline polymers is transformed from 

either homogeneous (the core region of injection molded sample, the compression molded 

sample) or heterogeneous (the skin region of injection molded sample, melt blowing films, 

fibers) to highly oriented structure at large strains, if the stretching temperature is above the 

glass transition temperature.[34, 35] In the early stage of deformation, the stress increases 

almost linearly with the strain, see Figure 1-6. The macroscopic deformation consists both 

amorphous phase and lamellae microscopic deformation.[36] The deformation in the 

amorphous phase is easily activated but it is rapidly exhausted due to the different alignment 

of crystalline lamellae with respect to the deformation direction. The deformation in this stage 

is mainly interlamellae separation and slip. At the end of the linear regime, the sample is 

subjected to a non-linear deformation which is caused mainly by interlamellar slip.[37, 38] 

Upon further stretching, the stress reaches a maximum value which is normally labeled as the 

yielding point. The yielding point marks the beginning of plastic (irreversible) deformation. 

After yielding, the stress suffers a slight decrease, generally due to the localization of strain 

and necking. The plastic deformation will be the dominant process until breaking.  
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Figure 1-6 Engineering stress-strain curve of iPP stretched at 135 
o
C. The crosshead speed is 

50 mm min
-1
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Up to now, two distinctly different mechanisms have been suggested for the yielding of 

semicrystalline polymers.  

The first concept was initially proposed by Peterson:[39] the emission of dislocations from the 

edges of the lamellae across the narrow faces and their travel across crystals via 

crystallographic slips. This idea was further explored by Guiu [40] and Young.[41] The 

crystallographic slips mechanism was evidenced by different researchers in the past.[42-50] 

The basic mechanism of crystallographic slips essentially involves the glide of dislocations, 

which are already present in the lamellar crystals or are nucleated at the boundary of a crystal 

upon application of a stress level above a threshold value reached at the yielding point. For 

polymers, the intrinsic nature of chain-molecules necessarily entails slip systems with slip 

planes parallel to the chain axes and slip directions either parallel (chain slips) or 

perpendicular (transverse slips) to chain axes.[51] In addition, because of the presence of 

chain folds, slip planes parallel to the basal planes of the lamellar crystals containing the chain 

folds are generally preferred, because a slip in these planes does not disrupt the folding 

scheme at the crystal surfaces. Dislocation theory predicts the correct order of magnitude of 

the yield stress that agrees best for the Burgers vector of dislocations equal to the 

crystallographic unit cell dimension along macromolecular chains.[50] However, there are 

experimental evidences that the yield stress of semicrystalline polymers depends not only on 

crystal thickness but also on the degree of crystallinity.[50, 52, 53] The increase of the yield 

stress has been observed together with the increase in thickness of the crystals in the sample. 

However, there are difficulties to maintain the same degree of crystallinity in samples 

together with varying crystal thickness. In the case of polyethylene such relationship is 

observed for a certain range of the crystals' thickness, up to 40 nm, while above this level, the 

increase of crystal thickness is not accompanied by a further increase in yield stress.[54, 55] 

The authors of the above-mentioned articles explained the observed relationship by the 

presence of a new, effective source of dislocation, active in thick crystals and at low 

temperature but inactive in thinner crystals.  

The second mechanism for yielding connected with non-crystallographic changes, related to 

destroying crystals and resulting in a new crystalline ordering of the material, irrespective of 

the original structure but characteristic for the temperature of deformation was proposed 

later.[56-60] It was suggested that during deformation an adiabatic heating occurs when 

accompanied by the applied stress, partial melting and recrystallization takes place.[61] It was 

also suggested that raising the temperature is not a necessary condition for partial melting and 
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recrystallization.[62-64] Those experiments and considerations did not, however, established 

at which elongation a partial melting and recrystallization are initiated nor did not predict the 

correct order of magnitude of the yield stress. Despite numerous studies being carried out, the 

mechanisms of plastic deformation of semicrystalline polymers due to complex, hierarchical 

architecture of such materials still require more detailed research. The deformation of a 

semicrystalline polymer is a process which we should take into account the presence of 

crystalline lamellae as well as amorphous layers lacking order. At temperatures at which 

amorphous phase exhibits rubber-like properties (above the glass transition temperature), it is 

in the interlamellar regions that the initial stage of deformation takes place. 

1.2.2 Cavitation behavior of semicrystalline polymers 

Cavitation behavior is found in many semicrystalline polymers, including iPP,[65, 66] PE,[67, 

68] poly(1-butene) (P1B)[69], etc., when these polymers are stretched above their glass 

transition temperature. Stress whitening can be regarded as the scattering of visible light by 

voids detected by naked eye. As the size of the voids exceeds 0.5 µm, most of the visible light 

shed on the sample will be scattered, transforming the sample from transparent one to opaque 

one. In the pioneering work by Peterlin,[70] randomly distributed cracks were found in the 

neck region of PP specimen. In addition, the formation of small cracks was reported to arise 

earlier than macroscopic stress whitening.[71] Recent works about the cavitation behavior of 

semicrystalline have been reviewed excellently by Pawlak, Galeski, and Rozanski.[72] 

Generally, cavitation behavior of semicrystalline polymers can be influenced by many factors 

which can be divided into two groups. One of them is attributed to experimental factors such 

as stretching temperature and stretching speed. Generally, a lower stretching temperature or a 

larger stretching speed favors voids formation. Another group is attributed to the 

microstructure of polymers, for instance the crystal form, the thickness of lamellae, as well as 

the state of the amorphous phase.  

1.2.2.1 Role of crystal form 

Aboulfafaj et. al.[73] found that under tensile deformation α-iPP spherulites exhibited a brittle 

failure. The cavitation appeared at boundaries of spherulites or at the region perpendicular to 

the tensile direction. However, no cavitation could be observed in the sample comprising β-

iPP spherulites. The β-iPP spherulites were deformed plastically up to large deformation. Chu 

[74] prepared iPP films containing more than 90 % β-iPP. These samples crystallized under 

either isothermal or non-isothermal conditions. The porosity of the stretched films, which is 
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caused by the existence of voids, was determined. The results showed that the porosity of a 

film increased with the drawing ratio. The voids observed by scanning electron microscopy 

(SEM) were elongated along stretching direction and confined by the fibrillary structures. The 

formation of numerous voids was proposed to be caused by the volume contraction of the film. 

β-iPP belongs to a metastable phase, so a β-α phase transformation was induced during 

deformation. The density of α-iPP is higher than that of β-iPP. Therefore, a volume 

contraction occurred and led to the formation of voids in the sample. The more pronounced 

stress whitening behavior in β-iPP rich iPP samples was also confirmed by Pawlak.[66]  

1.2.2.2 Role of lamellae arrangement 

In α-iPP, the lamellae are arranged in a unique “cross-hatched” structure, where daughter 

lamellae grow 80
o
 inclined to the mother lamellae.[8] Nitta et. al observed that cavitation 

appears earlier if there were more tangential lamellae in a single spherulite. Otherwise, 

Pawlak found that the reduction of tangential daughter lamellae would advance the formation 

of voids.[72]  

1.2.2.3 Role of crystallinity 

By annealing, Na et. al prepared PP samples with crystallinity ranging from 48 to 56 %. The 

cavitation behavior of the sample was investigated by measuring the volume increase. The 

results showed that in annealed samples the cavitation behavior was significantly intensified 

due to the increased stress concentration sites.[75] Boger examined the cavitation behavior of 

metallocene PP with crystallinity ranging from 0 to 62 %. For the sample with crystallinity 

higher than 36 %, the signal originated from a fibrillary structure showed up on the 

synchrotron SAXS as the elongation ration is larger than 3. In case of β-iPP, annealing could 

advance the appearance of cavitation.[76]  

1.2.2.4 Role of the thickness of lamellae 

Generally thinner lamellae would prevent the formation of voids. The reason responsible for 

that was proposed by Seguela: a thinner lamella bears a larger tie chain density, which 

transfers the load to lamellae in a better way and leads to the plastic deformation of lamellae 

instead of the cavitation in the amorphous phase.[77]  
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1.2.2.5 Role of lamellae orientation 

The cavitation behavior of oriented β-iPP was investigated by Bao et al.[78] The samples 

were cut from extruded sheets and the deformation direction is parallel to the orientation of β-

iPP lamellae. Their results proved that at temperatures lower than 110 
o
C, the orientation of β-

iPP is almost unchanged during deformation, and void forms before fragmentation and 

reorientation of β-iPP. As the deformation temperature risen to 130 and 140 °C, β-iPP reorient 

gradually upon stretching, and the size of voids decreases because that less β crystal 

fragmentation takes place at high stretching temperature. 

1.2.2.6 Role of the state of amorphous phase 

Pawlak and Galeski compared the cavitation behavior of PP characterized with similar 

crystallinity and crystal thickness but different molecular masses of 400 and 250 kg/mol. It 

was found that the sample having lower molecular weight showed more intensive cavitation, 

as a result of reduced number of entanglements in the amorphous phase.[79] Rozanski and 

Galeski extracted the additives in the amorphous phase by critical CO2 and also by a mixture 

of nonsolvent. Their results showed that purified PP exhibited more intense cavitation than 

pristine PP.[80] The intensified cavitation process in the purified samples was caused by the 

changes in free volume by eliminating low fractions and soluble additives in the amorphous 

phase, indicating that the nucleation of voids existed in the material itself in contrast to 

heterogeneous nucleation on foreign substances. In their later work, it was proved that only 

partial filling of the free volume pores of the amorphous phase with low molecular weight 

modifier leads to a decrease of intensity or complete elimination of the cavitation 

phenomenon.[81]  

1.3 Synchrotron X-ray scattering 

1.3.1 X-ray and its sources 

X-rays, a kind of electromagnetic radiation (see Figure 1-7), is also named as Röntgen 

radiation after Wilhelm Röntgen who discovered X-rays in 1895.[82] Since that time, X-rays 

has been employed in the field of materials science as a non-destructive analytical technique. 

Traditionally, X-rays are produced by X-ray tubes where the electrons, emitted from cathode 

wire, are accelerated by an electric voltage before hitting the target. The wavelength of X-rays 

produced by X-ray tubes depends on the target material. For instance, the characteristic 

wavelength of the X-ray produced is 1.54 Å by Cu target, and 1.79 Å by Co target.  
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Figure 1-7 Categories of electromagnetic radiation. 

The main disadvantages of X-ray tubes are their low intensity, low brilliance, and broad focus 

(around 2×12 mm).[83] In the mid of 1970s, the limitation of X-ray tube was overcome due 

to the availability of the synchrotron radiation from ring accelerators, where electrons orbiting 

in a magnetic field lose energy continually in the form of electromagnetic radiation. The first 

synchrotron light source was the Standford Synchrotron Radiation Laboratory (SSRL) build 

in 1977.[84] Nowadays, a few synchrotron radiations have been set up all over the world and 

the synchrotron radiation has been developed into the 3rd generation, to name a few, 

European Synchrotron Radiation Facility (ESRF) in France,[67] Deutsches Elektronen-

Synchrotron (DESY) in Germany (see Figure 1-8), [85] and Shanghai Synchrotron Radiation 

Facility (SSRF) [86] in China etc. At PETRA III of DESY the size of the X-ray beam can 

reach a few micrometers and the exposure time is in the range of milliseconds. The high 

spatial and time resolution of synchrotron X-ray source enables the scientists to perform in-

situ X-ray scattering measurements combining complicate thermal/mechanical environment.  

 

Figure 1-8 PETRA III, the 3
rd

 generation of synchrotron light source at DESY Germany.  
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1.3.2 The interaction between X-rays and objects 

As X-rays interact with an object, they can be absorbed or scattered. For the scattering of X-

rays by a single free electron, assuming elastic scattering the wavelength of the scattered wave 

is the same with that of the incident one. The relation between the scattered wave E2 and 

incident wave E1 follows,  

 𝑬𝟐 = 𝑬𝟏
𝑒0

2

𝑚0𝑐2𝑟
exp⁡(−𝑖𝒒𝑟) Equation (1-1) 

where 
𝑒0

2

𝑚0𝑐2
= 𝑟0, 𝑟0 is the electron radius, which equals 3.54×10

-4
 Å.[87] r is the position of 

the electron and q is the scattering vector. The magnitude of the scattering vector is  

 𝑞 =
4𝜋

𝜆
𝑠𝑖𝑛𝜃 Equation (1-2) 

𝜃 is the scattering angle. In addition to q, another scattering vector s is also widely used in the 

field of scattering,  

 𝒒 = 2𝜋𝒔 Equation (1-3) 

The efficiency of the scattering process could be described by the differential scattering cross-

section (𝑑𝜎/𝑑𝛺),[87] which is given by  

 (
𝑑𝜎

𝑑𝛺
) =

𝐼𝑚

Φ0ΔΩ
=

|𝑬𝟐|
2

|𝑬𝟏|2
𝑅2 Equation (1-4) 

𝜎 is total scattering intensity, Ω is the solid angle,⁡𝐼𝑚 is measured scattering intensity, i.e. the 

number of scattered photons recorded per second by the detector, Φ0 defines the number of 

photons passing through unit area per second, and R is the distance between the object and the 

detector.  

Depending on the distance between the object and the detector, the scattering experiments can 

be divided into four subareas, which are wide-angle X-ray scattering (WAXS) containing the 

classical X-ray diffraction, middle angle X-ray scattering (MAXS) covering the characteristic 

scattering of liquid-crystalline structure and rigid-rod polymers, small angle X-ray scattering 

(SAXS) comprising the typical nanostructure in semicrystalline polymers and thermoplastic 

elastomers, and ultra-small angle X-ray scattering (USAXS) extending the detection range to 

micrometer scale.[83] Considering the scope of this chapter, SAXS will be emphasized 

especially. SAXS comprises the scattering angle range 2𝜃 < 2𝑜. In this range, structures with 

the size of 1~500 nm can be detected, covering the size of lamellae and small voids.  
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1.3.3 Wide angle X-ray scattering 

A crystalline material is built by regularly repeating the unit cell. The points at which the 

origins of the unit cell are located form a lattice which exists in three dimensions. Figure 1-9 

presents a 2D rectangular lattice (for simplification), which can be described by a set of 

vectors Rn with  

 𝑹𝒏 = 𝑛1𝒂𝟏 + 𝑛2𝒂𝟐 Equation (1-5) 

where 𝒂𝟏 and 𝒂𝟐 are the lattice vectors, and 𝑛1 and 𝑛2 are integers.  

Miller indices are usually used to specify families of planes in a crystal. For a given family of 

planes, the Miller indices (hkl) refers to the plane which is closest to the origin and has 

intercepts (𝑎1/ℎ, 𝑎2/𝑘, 𝑎3/𝑙) on the axes (𝒂𝟏, 𝒂𝟐, 𝒂𝟑). As an example, (1,2) planes on the 2D 

lattice is pointed in Figure 1-9. Since that the crystal planes are equally spaced, so the lattice 

spacing 𝑑ℎ𝑘𝑙 can be calculated. For instance, the d spacing of a cubic lattice is given by  

 𝑑ℎ𝑘𝑙 =
𝑎

√ℎ2+𝑘2+𝑙2
 Equation (1-6) 

where a is the lattice parameter.  

When X-rays interact with lattice planes with a spacing of d, the requirement that the path 

length of the interfered scattered waves is an integer multiple of the wavelength leads to the 

well-known statement of Bragg’s law:  

 𝜆 = 2𝑑𝑠𝑖𝑛𝜃 Equation (1-7) 

 

Figure 1-9 2D-crystal lattice in real space as well as the scheme of Bragg’s law. E1 refers to 

the incident X-ray and E2 refers to the scattered X-ray. 
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Following Bragg’s equation, the diffraction peaks caused by the interference should come out 

as infinitely sharp point-like peaks. However, in reality the peaks are observed to have a 

certain width. Besides instrumental broadening, the reasons for this can be imperfections in 

the crystalline stacking (e.g. due to strains) or a finite size of the crystallites.[88] The Scherrer 

equation relates the width of the crystalline peak ∆𝜃 to the size of the crystallite 𝜏ℎ𝑘𝑙 normal 

to the scattering plane (hkl): 

 𝜏ℎ𝑘𝑙 =
𝐾𝜆

cos⁡(𝜃/2)
 Equation (1-8) 

K is a constant of the order of 0.89.  

1.3.4 Small angle X-ray scattering 

In SAXS measurement, X-rays detect the electron density difference ∆𝜌, and the measured 

scattering intensity (𝐼𝑚) is 

 𝐼𝑚(𝒔) = ∆𝜌2𝑉𝑝
2|ℱ(𝒔)|2 Equation (1-9) 

ℱ(𝒔) is the form factor and 𝑉𝑝 is the volume fraction of the region with different electron 

density (for instance the lamella in semicrystalline polymers, the voids during deformation, 

and “shish” structure during shear induced crystallization). 𝑅𝑔 is the radius of gyration of the 

polymer chain. In the extremely small scattering angle range, 𝑠𝑅𝑔 → 0,  

 ℱ(𝑠) ≈ 1 −
𝑠2𝑅𝑔

2

10
 Equation (1-10) 

and the initial intensity decay is approximated by Guinier’s approximation 

 𝐼𝑚(𝑠) ≈ ⁡∆𝜌
2𝑉𝑝

2 [1 −
𝑠2𝑅𝑔

2

10
]
2

≈ ∆𝜌2𝑉𝑝
2 [1 −

𝑠2𝑅𝑔
2

5
] 

           ≈ 𝐼𝑚(0)exp⁡(−4𝜋
2𝑅𝑔

2𝑠2) Equation (1-11) 

The scattering invariant Q which is independent of the shape of the scatters,  

 𝑄 =∭ 𝐼(𝒔)𝑑𝒔 ∝ ∆𝜌2𝑉𝑝(1 − 𝑉𝑝)
𝒔→∞

𝒔→0
 Equation (1-12) 

The pattern of SAXS measurement depends on the structural units of the material. For the 

material with the periodically stacked structure (lamellae in semicrystalline polymers) inside, 

the pattern exhibits a homogeneous ring or “two-spots” depending on the orientation of 

lamellae. For the material with the oriented elongated structure for instance extended chain 

structure (shish induced by flow) as well as voids, a streak scattering will show up in the 

pattern.  
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1.3.4.1 Ruland streak method 

Considering a perfect orientation of the cylindrical structures, Ruland [89] proposed the 

integral breadth 𝐵𝑜𝑏𝑠(𝑠12) of the elongated structure measured as a function of 𝑠12 follows  

 𝐵𝑜𝑏𝑠(𝑠12) = ∫ 𝐼(𝑠12, 𝑠3)𝑑𝑠3/𝐼(𝑠12, 0)
∞

−∞
 Equation (1-13) 

𝑠12 is the scattering vector perpendicular to the reference direction (stretching or shearing 

direction), 𝑠3 is the scattering vector along the reference direction.The average length 〈𝐿〉 of 

the elongated structure is  

 〈𝐿〉 =
1

𝐵𝑜𝑏𝑠(𝑠12)
 Equation (1-14) 

If misorientation has to be taken into account, the orientation distribution of the streak must 

be considered, then the apparent azimuthal integral breadth  

 𝐵𝑜𝑏𝑠(s) =
1

𝐼(𝑠,𝜋/2)
∫ 𝐼(𝑠, 𝜑)𝑑𝜑
𝜋/2

−𝜋/2
 Equation (1-15) 

depends on the width of the peak on the azimuthal intensity distribution curve. The evolution 

of 𝐵𝑜𝑏𝑠(s) as a function of s follows  

 𝐵𝑜𝑏𝑠
2 (𝑠) =

𝐵𝑝
2

𝑠2
+

1

𝑠2〈𝐿〉2
+ 𝐵𝑔

2 Equation (1-16) 

if a Gaussian can describe the orientation distribution. 𝐵𝑝  describes the inevitable 

instrumental broadening and 𝐵𝑔 is the true integral breadth of the orientation distribution. Or  

 𝐵𝑜𝑏𝑠 =
𝐵𝑝

𝑠
+

1

〈𝐿〉
+ 𝑠𝐵𝑔 Equation (1-17) 

if a Lorentzian fits the orientation distribution. 

  



15 

 

2 Motivation and objectives 

Semicrystalline polymers comprise a large part of polymer materials, including mainly 

polyethylene (PE), polypropylene (PP), polyamide (PA), polyimide (PI), et al. They are used 

in the field of packaging, textiles, automotive components, engineering plastic parts, and 

medical devices. The mechanical properties of semicrystalline polymers are a particularly 

interesting topic, which is of great scientific and industrial importance. And the relationship 

between structure-properties of semicrystalline polymers is a key issue in polymer physics 

and polymer engineering. Since 1960s, numerous studies have been performed attempting to 

shed light on the relationship between structure-property of semicrystalline polymers, but the 

mechanism behind that remains an open topic due to the following three aspects: 1). The 

multiscale structure and morphology of semicrystalline polymers themselves (chain structure, 

crystal structure, lamellae morphology, etc.); 2). The multiscale structural evolution happened 

during deformation (for instance the lamellae fragmentation, melting-recrystallization, 

orientation, cavitation); 3. Distinct different mechanical load modes (uniaxial stretching, creep 

test, stress relaxation test, etc.) used in the test. The main obstacle for the study is the lacking 

of in-situ characterization technique which can capture the structural evolution under 

mechanical load in different scale simultaneously with sufficiently temporal resolution.  

Synchrotron radiation sources are employed in polymer science increasingly in the past 20 

years. Due to the high brilliance, high flux, high stability, polarization and coherence behavior, 

synchrotron X-ray scattering can capture the structural change in a temporal resolution of 

millisecond. In addition, by employing micro-focus synchrotron X-ray scattering, a spatial 

resolution of micrometer can be realized. What’s more, by adjusting the distance between the 

sample and the detector, the structural evolution ranging from a few angstroms to a few 

micrometers can be detected.  

Isotactic-PP (iPP), one of the frequently used polymers in industrial processing and scientific 

research, is used as a model material in this work. The iPP samples with well-defined 

microstructure are obtained by annealing or adding nucleating agent. The structural evolution 

under uniaxial stretching, creep, and stress relaxation tests are monitored by in-situ 

synchrotron X-ray scattering measurements. The interests in this work are focused on the 

following topics:  
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 The microstructure arrangement (lamellae branching and polymer chains orientation) 

in a single iPP spherulite. 

 The crystalline structure of iPP after annealing, including the lamellae thickness, the 

long period, the crystallinity, as well as the mechanical relaxation behavior of polymer 

chains in the amorphous phase. 

 The lamellae deformation and cavitation behavior of the annealed iPP during uniaxial 

stretching. The critical strains for lamellae fragmentation, melting-recrystallization, 

polymer chains orientation, and the critical strain for void formation. And lastly, the 

relationship between lamellae deformation and cavitation behavior. 

 The self-assembly behavior of the nucleating agent (N,N'-dicyclohexyl-2,6-

naphthalene dicarboxamide), and its influence on the rheology and crystallization 

behavior of iPP. 

 The cavitation behavior, lamellae deformation, as well as the β-α phase transition 

during uniaxial stretching of iPP containing different content of β-iPP.  

 The microstructural evolution including lamellar thickening and shish formation 

during creep. 

 The phase transition, evolution of long period, and cavitation behavior during stress 

relaxation.  

At all, the focus of this work is to gain new insight into the structure-property relationship of 

semicrystalline polymer and provide guidance for the processing of semicrystalline polymers. 
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3 Samples preparation and basic characterization  

3.1 Materials and samples preparation 

iPP (Mw=365 kg/mol, Mn=67.6 kg/mol) used in this study is a polypropylene homopolymer 

(commercial product name: HD120MO) obtained from Borealis GmbH, Linz, Austria. The 

melt flow index is 8 g/10 min (230 
o
C, 2.16 kg).  

Carbon fiber (CF) with a trademark of T300-3K was purchased from Toray Inc., Japan.  

N,N'-dicyclohexyl-2,6-naphthalene dicarboxamide (NJS), kindly provided by Rika 

International Limited (Oldham, U.K.), was used as the nucleating agent (NA) in this study. 

The weight content of NJS in iPP/NJS composites is 0.3 %, and the composite was mixed by 

a single screw extruder. 

3.1.1 Preparation of iPP films with single layer of spherulites and transcrystalline 

regions 

A piece of iPP film and two perpendicular CFs were placed between two coverslips in a 

“sandwich-like” arrangement followed by heating up to 210 
o
C with a heating rate of 10 K 

min
-1

. As the film was melt totally, it was squeezed slowly to 40 μm at 210 
o
C and kept for 5 

min to fully erase any thermal history. Subsequently, the film was cooled to 138 
o
C with a 

cooling rate of 10 K min
-1

. Upon reaching 138 
o
C, both CFs were pulled a few millimeters 

manually to induce transcrystalline around the CFs. After that, the film was crystallized at 138 

o
C for 20 min, and then at 130 

o
C for 30 min. 

3.1.2 Preparation of iPP plates crystallized with different thermal histories 

iPP plates with a thickness of 1 mm were prepared by compression molding in the following 

procedure: firstly, the plates from injection molding were kept at 210 
o
C for 10 min to fully 

erase any thermo-mechanical history. Afterward, the plates were cooled by water (10 
o
C) and 

kept at room temperature for 48 h. Then the water-cooled plates were annealed in a vacuum 

oven (Thermo Scientific, USA) under 75 
o
C, 90 

o
C, 105 

o
C, 120 

o
C, and 135 

o
C for 6h. For 

clarification, the plate without annealing was named PPna and the plates with annealing were 

named PPTa-t with Ta refers to the annealing temperature and t refers to the annealing time. 

For instance, PP75-6 means that the plate was annealed at 75 
o
C for 6 h. The plates with an 

annealing time of 6 h were also named as PPTa for short, for instance PP75. For comparison, 
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iPP plates crystallized directly from the melt were also prepared. The samples prepared by 

melt crystallization were named as PPMTc.  

3.1.3 Preparation of iPP/NJS plates with different morphologies of NJS 

Two compression molding machines were employed at the same time to realize the heating 

protocol as follows: firstly, the extruded iPP/NJS composite granules were heated from room 

temperature to a final heating temperature (Tf) with the heating rate of 30 K/min, then kept at 

Tf for 15 min. Tf used in this study was 260 
o
C, 270 

o
C, 280 

o
C, 290 

o
C, 300

 o
C, and 310

 o
C. 

Secondly, the iPP/NJS composite was transferred to another compression molding machine 

which was pre-set at 160 
o
C, then kept for 60 minutes. For clarification, the iPP/NJS 

composite with different Tf was named iPP/NJS03-Tf. For example, iPP/NJS03-260 means 

that the sample was treated with Tf of 260 
o
C. The thickness of the plate was 1 mm. 

3.1.4 Preparation of microinjection molded iPP/NJS sample  

To get the microinjection molded specimens, the composites were microinjection molded 

with the following parameters: the barrel temperature is 280 °C, the mold temperature is 

25 °C, and the injection molding speed is 25 cm
3
/s. The thickness of the sample is 0.3 mm.  

3.2 Characterization  

3.2.1 Differential scanning calorimetry (DSC)  

The melting behavior of the sample was characterized by DSC measurements on Q2000 (TA 

Instruments, USA). The instrument was temperature and melting enthalpy calibrated by using 

indium as a standard before the test. Dry nitrogen was used as a purge gas at a rate of 50 mL 

min
-1

 during the test. A 5 mg sample sealed in an aluminum pan was heated from -80 
o
C to 

200 
o
C with a heating rate of 10 K min

−1
. The crystallinity (Xc-DSC) could be calculated by  

 𝑋𝑐−DSC =
∆𝐻𝑚

∆𝐻𝑚
∗ × 100⁡% Equation (3-1) 

where ∆𝐻𝑚 and ∆𝐻𝑚
∗  are the fusion enthalpy and the equilibrium melting enthalpy of samples, 

for iPP ∆𝐻𝑚
∗  is 207 J g

-1
.[90] 

To get the recrystallization behavior of the sample, the temperature-modulated DSC (TMDSC) 

measurements were performed on the same instrument. The parameters for TMDSC 

measurements were as follows: the temperature amplitude is 0.318 K, the oscillation period is 

40 s, and the heating rate is 2 K min
−1

. 
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Figure 3-1 (a) Q2000 (TA Instrument) to detect the melting or recrystallization behavior of 

the sample; (b) ARES G2 (TA Instrument) for dynamic mechanical analysis and rheology test. 

3.2.2 Dynamic mechanical analysis (DMA) 

The mechanical relaxation behavior of the sample was tested with an ARES G2 rheometer 

(TA Instruments, USA). The sample with a width of 11 mm and a free length of 10 mm was 

cut from the 1 mm thick plate. Nitrogen was used as the heating gas during the measurement. 

Each test was started 4 min after the sample was inserted into the rheometer to ensure the 

attainment of thermal equilibrium. During the temperature sweep tests, the angular frequency 

used was 1 rad s
-1

, the strain amplitude was 0.05 %, the temperature range was from -70 
o
C to 

160 
o
C, and the heating rate was 5 K min

−1
. During the temperature-frequency sweep tests, the 

specimens were scanned from 0.05 rad s
-1

 to 100 rad s
-1

 at different temperatures (-70 
o
C to 

160 
o
C in steps of 5 

o
C).  

3.2.3 Scanning electron microscopy (SEM) 

The SEM measurement was done on Zeiss Ultra Plus (Germany) with an accelerating voltage 

of 3 kV. Before the SEM observation, a permanent etching method [91] was used to get the 

lamellae morphology of the sample. The etching was performed in a mixture of KMnO4-

H2SO4-HNO3 for 2-3 h, afterward the etched sample was spur coated with 6 nm layer of 

platinum. 
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Figure 3-2 (a) The field emission scanning electron microscope (Ultra plus, Carl Zeiss, 

Germany); (b) The polarized optical microscope (Axio Imager, Carl Zeiss, Germany). 

3.2.4 Polarized optical microscopy (POM) 

A polarized optical microscope (Axio Imager, Carl Zeiss, Germany) equipped with a hot stage 

(Linkam TS1500, United Kingdom) was used to observe the morphological changes of iPP 

spherulite or NA self-assembly. 

3.2.5 Rheology test 

Rheological measurements were performed on a rheometer (ARES2, TA Instruments, USA) 

equipped with ∅25 mm parallel plate geometry. The sample chamber was purged by a 

continuous flow of nitrogen gas in order to avoid degradation of the composites. The linear 

viscoelastic region of the sample was determined by a strain sweep from strain amplitude (γ) 

of 0.05 to 1000 % at an angular frequency (ω) of 1 rad s
-1

. Then small amplitude oscillatory 

shear (SAOS) tests were conducted from 0.05 to 100 rad s
-1

 with γ of 0.5 %. Additionally, the 

steady-state shear flow properties were also determined. For each sample, a continuous shear 

flow with a constant shear rate (𝛾̇) was applied until reaching a steady state.  

The investigation about the kinetic of shear-induced crystallization was also performed on the 

rheometer according to the following procedure. The time-sweeping test with ω of 10 rad s
-1

 

and γ of 0.25 % was performed to trace the evolution of the storage modulus (G') until the end 

of the crystallization process. The gap between the parallel plates was set at 0.5 mm initially 

and adjusted automatically throughout the crystallization process to ensure the normal stress 

change within ±0.05 N for the accuracy of the test. 
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3.2.6 Gel Permeation Chromatography (GPC) 

The molecular weight of un-stretched iPP and stretched iPP was determined by DAWN 

Heleos-II (Wyatt technology). The solvent used was 1,2,4-trichlorobenzene (stabilized with 

0.1% BHT) and the flow rate was 1.0 ml min
-1

.  

3.2.7 In situ synchrotron X-ray scattering measurements 

In situ synchrotron X-ray scattering measurements were performed at the MiNaXS Beamline 

at Deutsches Elektronen Synchrotron (DESY), in Hamburg, Germany. The wavelength of the 

X-ray was 0.106917 nm. An exposure time of 0.1 s and a time interval of 0.15 s were used to 

realize a high time resolution without burning the sample by X-ray during stretching. For 

SAXS measurements, the patterns were recorded by a Pilatus 1M detector (981×1043 pixels, 

pixel size 172×172 μm
2
) and the distance between the sample and the detector was 4961 mm. 

For WAXS measurements, the patterns were recorded using a Pilatus 300K detector 

(487×619 pixels, pixel size 172×172 μm
2
) and the distance between the sample and the 

detector was around 200 mm. Pattern preprocessing including masking and reconstruction of 

blind areas was performed by a self-written subroutine on PV-Wave from Visual Numerics.  

3.2.7.1 Uniaxial stretching 

The uniaxial stretching was performed on a custom-made miniature tensile machine designed 

by Leibniz Institute of Polymer Research Dresden (IPF) for online studies at the synchrotron. 

Waist-shape specimens were produced by CNC milling from the plates. During the 

measurement, both grips moved simultaneously in opposite directions to keep the X-ray beam 

at a fixed position on the sample. The temperature was controlled by a heating gun. In every 

test, the specimen was stretched with a cross-head speed of 0.02 mm s
-1

. The local strain at 

the X-ray beam position during the stretching was determined optically by monitoring a grid 

pattern (0.35 mm × 0.35 mm) painted on the surface of the sample. The optical images were 

taken every 1s during stretching.  
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Figure 3-3 A schematic and a photograph of the experiment. The schematic can be also found 

in Ref.[92]. 

The Hencky strain 𝜀𝐻 is used as a basic quantity of the local strain, which is defined as 

 𝜀𝐻 = 𝑙𝑛
∆𝐿+𝐿0

𝐿0
 Equation (3-2) 

where 𝐿0 and ∆𝐿 are the initial length and displacement of the painted grid pattern during 

stretching, respectively. The stress 𝜎 is given as  

 𝜎 =
𝐹

𝐴0
(1 +

∆𝐿

𝐿0
)  Equation (3-3) 

where 𝐹  and 𝐴0  are the instantaneous force and the initial cross section area. Figure 3-3 

presents a schematic and a photograph of the in-situ synchrotron SAXS and WAXS 

experiment. The schematic can be also found in Ref.[92]. 

Additionally, the stress-strain curve was also determined by a digital image correlation (DIC) 

system (ARAMIS; GOM GmbH, Germany), especially in the small strain region. To allow 

for sufficient optical signal detection and to avoid heating the specimen during testing, the 

light directed onto the specimen was provided by a cold light system Dedocool (Dedo 
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Weigert Film GmbH, Munich, Germany). One example of the stress-strain curve and the DIC 

system is provided in Figure 3-4. 
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Figure 3-4 (a) Force-displacement curve and (b) stress-strain curve of PPna during uniaxial 

stretching. The stretching temperature is 75 
o
C. The optical image was taken every 1 second 

to record the local strain at the beam position (indicated by the yellow cross). The beam 

position was corrected by a laser before the measurement. (c) Photograph of the specimen 

monitored by the digital image correlation (DIC) system. A sketch of the optical strain in the 

region of interest is provided. (d) The contour of the optical strain in the center region of the 

specimen. 

3.2.7.2 Creep test  

Creep tests were performed in force-controlled mode on the same custom-made miniature 

tensile machine used in section 3.2.7.1. The creep temperature is 120 
o
C. During creep, both 

grips move simultaneously in opposite directions to keep the beam position on the sample at a 

fixed point. In any test, the specimen was loaded with a cross-head speed of 0.1 mm s
-1

 up to 

the chosen stress, which was then preserved constantly during the test. An exposure time of 

0.5 s and a time interval of 7.5 s were chosen.  
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3.2.7.3 Stress relaxation test  

Stress relaxation tests were performed at 60 
o
C and 90 

o
C. The specimens were pre-stretched 

to induce highly oriented microstructure inside. During the stress relaxation, the strain was 

kept unchanged. The stress-time curve was recorded and the WAXS/SAXS measurements 

were performed with an exposure time of 0.15 s during the relaxation process.  

3.2.8 X-ray scattering pattern processing and calculation 

Figure 3-5 presents a raw 2-dimensional (2D) WAXS pattern. Due to the existence of non-

physical pixel values (e.g. caused by the beamstop and beamstop holder, blind areas of the 

diode array, the cosmic scattering), the pattern needs to be masked. The masked pattern can 

be reconstructed based on the fiber symmetry. Afterwards, the reconstructed pattern should be 

background corrected to remove the scattering from the air.  

 

Figure 3-5 A schematic drawing of the pattern masking, reconstruction, and background 

correction process.  

The background correction is performed in the following way. Firstly, the sample 

transmission coefficient (𝜏𝑠) is given as  

 𝜏𝑠 =
𝐼𝑠,𝑜𝑢𝑡

𝐼𝑠,𝑖𝑛

𝐼𝑏𝑔,𝑖𝑛

𝐼𝑏𝑔,𝑜𝑢𝑡
 Equation 3-4 

I is the intensity, the subscript “s” means the sample and “bg” means the background, the 

subscript “in” means the incident X-ray beam and “out” means the scattered X-ray beam. 

Then the background corrected intensity 𝐼𝑐 is 
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 𝐼𝑐 = 𝐼𝑠,𝑜𝑢𝑡 − 𝜏𝑠 × 𝐼𝑏𝑔,𝑜𝑢𝑡 Equation 3-5 

If we take the thickness of the sample in consideration, the normalized intensity 𝐼𝑛 is  

 𝐼𝑛 = 𝐼𝑐
−1

𝜏𝑠ln⁡(𝜏𝑠)
 Equation 3-6 

The raw 2D-SAXS patterns were masked, reconstructed, and background corrected in the 

similar way.  

3.2.8.1 Evaluation of the WAXS pattern 

By circular integration of the 2D-WAXS pattern, the 2D-WAXS pattern can be transferred to 

1-dimensional (1D) WAXS curve. On the 1D-WAXS curve, the scattering intensity is plotted 

as a function of the scattering vector.  
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Figure 3-6 A standard peak fitting procedure to get the area of crystalline peak and 

amorphous peak. 

The crystallinity (𝑋𝑐) can be obtained by 

 𝑋𝑐 =
∑𝐴𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒

∑𝐴𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒+∑𝐴𝑎𝑚𝑜𝑟𝑝ℎ𝑜𝑢𝑠
× 100%  Equation (3-7) 

where 𝐴𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒 and 𝐴𝑎𝑚𝑜𝑟𝑝ℎ𝑜𝑢𝑠 are the areas of the crystalline and the amorphous part in 

the azimuthally integrated 1D-WAXS intensity profile.  

The relative content of β-iPP (𝐾𝛽) can be calculated using the methodology developed by 

Obadal,[93] when the system consists of α-, β-, and γ-iPP:  



26 

 

 𝐾𝛽 =
𝐴𝛽(300)

𝐴𝛼(110)+𝐴𝛼(040)+𝐴𝛼(130)+𝐴𝛽(300)+𝐴𝛾(117)
  Equation (3-8) 

where Aβ(300) is the area of the (300)β peak on the 1D-WAXS curve; Aγ(117) is the area of the 

(117) peak; and Aα(110), Aα(040), and Aα(130) are the areas of the (110)α, (040)α, and (130)α 

peaks. In case that no -iPP exists in the sample, 𝐴𝛾(117) equals 0.  

The orientation of the crystal with respect to the reference direction (normally the deformation 

direction) can be estimated according to Herman’s orientation method,[83] 

 𝑓𝐻 =
3〈𝑐𝑜𝑠2𝜑〉−1

2
 Equation (3-9) 

here 𝑓𝐻  is Herman’s orientation factor. The value of 𝑓𝐻  varies between -0.5 and 1 for 

perpendicular and parallel crystal orientation with respect to the reference direction.  

 〈𝑐𝑜𝑠2𝜑〉 =
∫ 𝐼(,𝜓)𝑐𝑜𝑠2(𝜓,)𝑠𝑖𝑛⁡(𝜓,)𝑑𝜓
𝜋 2⁄

0

∫ 𝐼(,𝜓)𝑠𝑖𝑛⁡(𝜓,)
𝜋 2⁄

0 𝑑𝜓
 Equation (3-10) 

 is the angle between the crystal and stretching direction, 𝜓 is the azimuthal angle, 𝐼(, 𝜓) is 

the azimuthal intensity distribution at a constant value of . For α-iPP which belongs to the 

monoclinic system, then  

 〈cos2𝜑𝑎〉 + 〈cos2𝜑𝑏〉 + 〈cos2𝜑𝑐〉 = 1 Equation (3-11) 

 〈cos2𝜑𝑏〉 = 〈cos2𝜑040〉 Equation (3-12) 

 〈cos2𝜑𝑐〉 = 1 − 0.90054〈cos2𝜑040〉 − 1.09945〈cos2𝜑110〉 Equation (3-13) 

according to Wilchinsky.[94] Combining Equation (3-9) and Equation (3-13), the 

orientation of c-axis (namely the direction of polymer chains) in the crystal can be estimated.  

3.2.8.2 Evaluation of the SAXS pattern 

By circular integration (the homogenous pattern) or cutting a slice of the 2D-SAXS pattern, 

the 1D-SAXS curve can be obtained. The long period (Lp) can be estimated by  

 𝐿𝑝 =
2𝜋

𝑞𝑚𝑎𝑥
 Equation (3-14) 

𝑞𝑚𝑎𝑥 is the peak position on the 1D-SAXS curve (see Figure 3-7a).  

The domain thickness, including the thickness of crystalline phase (Lc), the intermediate phase 

(Lim), and amorphous phase (La) could be readily described by a 1D correlation function (K(z)) 

without resorting to any models.[83, 95-101] The prerequisite for K(z) is that the density of 

each phase is different. In iPP, the density of the intermediate phase has been proved to be 10-
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15% lower than that of the crystalline phase, but higher than that of the amorphous phase.[102] 

Therefore, K(z) can be employed and it is given as:  

 𝐾(𝑧) =
∫ 𝑞2𝐼(𝑞)cos(𝑞𝑧)𝑑𝑞
∞
0

∫ 𝑞2𝐼(𝑞)𝑑𝑞
∞
0

 Equation (3-15) 

where z represents the length in real space with a unit of nm. Figure 3-7b gives a 

representative K(z) curve of iPP. Lim and La can be determined by the upper and lower limits 

of the straight line section. Then, Lc can be acquired by subtracting 2Lim and La from Lp.  
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Figure 3-7 A representative 1D correlation function K(z) of iPP as a function of z. 

During deformation, the voids can be induced in the sample. The existence of the voids gives 

rise to a streak on the 2D-SAXS pattern. Based on the Ruland streak method introduced in 

Section 1.3.4, the size of the voids could be estimated. Due to beam stop, the scattering in the 

center region of the pattern is covered. To calculate the size of the voids, the scattering in the 

blanked region in Figure 3-8 is extrapolated and fitted by a sum of two 2D-Gaussian 

functions 

 𝐼(𝑠) = 𝑝𝑣0 exp(−𝑝𝑣1𝑠
2 − 𝑝𝑣2 cos(2𝜙) 𝑠

2) 

            +𝑝𝑚0 exp(−𝑝𝑚1𝑠
2 − 𝑝𝑚2 cos(2𝜙) 𝑠

2) Equation (3-16) 

 𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑖

𝑗
 Equation (3-17) 

𝑖 and 𝑗 define the pixel position in 2D-SAXS patterns with respect to the beam center. The 

first Gaussian curve describes the void with three parameters. 𝑝𝑣0 is the scattering intensity at 

the beam position, and 𝑝𝑣1 + 𝑝𝑣2  and 𝑝𝑣1 − 𝑝𝑣2  are the axes of the elliptical structure 

respectively. The second Gaussian curve describes the scattering of the matrix with slight 

anisotropy in a similar way. The extrapolation and fitting process are realized by a self-written 

subroutine on PV wave.[103] The fitting procedure is illustrated in Figure 3-8.  
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Figure 3-8 Center fitting and modeling of a scattering pattern by the sum of the voids signal 

and the matrix signal according to Guinier’s approximation. s12 is the loading direction. 

Assuming that the shape of the voids is cylindrical,[104] combining Equation (3-16), 

Equation (2-14) and Equation (2-15), the void size along the stretching direction (S∥) and 

the void size perpendicular to the stretching direction (S⊥) should be 

 S∥ = √
𝑝𝑣1+𝑝𝑣2

𝜋
  Equation (3-18) 

 S⊥ = √
pv1−pv2

π
 Equation (3-19) 

The integrated scattering intensity, as a measure of the scattering invariant (Q) of the system, 

is related to the volume fraction of the dispersed phase (namely the void in this work) and the 

electron density contrast between the heterogeneities and the surrounding matrix. In this work, 

the void can be regarded as the dispersed phase. Q is given as  

 𝑄 =
1

2
∫ ∫ 𝐼(𝑠12, 𝑠3)𝑠3𝑑𝑠12𝑑𝑠3

∞

0

∞

−∞
= 2𝜋2𝑉𝑚𝑉𝑣(𝜌𝑚 − 𝜌𝑣)

2 Equation (3-20) 

where 𝑉𝑚 and 𝑉𝑣 are the volume ratio of the matrix and the void, 𝜌𝑚 and 𝜌𝑣 are the electron 

density of the matrix and the void. Since 𝜌𝑣 = 0, Equation (3-21) is rewritten into  

 𝑄 = 2𝜋2(1 − 𝑉𝑣)𝑉𝑣𝜌𝑚
2  Equation (3-21) 
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4 Microstructure characterization in a single iPP spherulite by 

synchrotron microfocus wide angle X-ray scattering
1
 

Position-resolved microstructures in a single spherulite of iPP are quantitatively studied by 

synchrotron microfocus WAXS. The precise location of the X-ray beam on the sample is 

realized with the help of a carbon fiber (CF). The results in this chapter show that the normal 

of mother lamellae in a spherulite is aligned mainly perpendicular to the radius, and the 

subsidiary daughter lamellae are inclined 80.75
o
 with respect to that of the dominant mother 

lamellae. The crystallinity in the spherulite is in the range of 46 % to 56 %, which is rarely 

influenced by the crystallization temperature. The ratio between the daughter lamellae and the 

mother lamellae is 0.18 when iPP crystallizes at 138 
o
C and it decreases to 0.11 as the 

crystallization temperature is decreased to 130 
o
C. The b-axis and c-axis in the mother 

lamellae tend to orient perpendicular to the radius direction, and the a-axis prefers to align in 

the radius direction. 

  

                                                 
1
 The main part in this chapter has been published as “B. Chang, K. Schneider, N. Patil, S. Roth, G. Heinrich. 

Microstructure characterization in a single isotactic polypropylene spherulite by synchrotron microfocus wide 

angle X-ray scattering, Polymer 142 (2018) 387-393.” 
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4.1 Introduction 

Polymer crystallization is a key process associated with the arrangement of molecular chains. 

Typically, semicrystalline polymers crystallize into spherulites during cooling from viscous 

melts or solutions under static conditions. The growth mechanism of spherulite has been 

investigated extensively over the past few years.[105-108] Binsbergen and Lange [109] 

assumed that spherulite growth occurs through a sequential development of dominant and 

subsidiary lamellae. During the early stages of crystallization, bundles of dominant lamellae 

are formed. Gradually, spherulites grow in their radial direction generating space for the 

formation of subsidiary lamellae in the later stages. The formation and growth of subsidiary 

lamellae are attributed to the noncrystallographic branching,[110] secondary nucleation on 

existing fibrils,[111] and growth around a giant screw dislocation.[112, 113]  

In iPP, the subsidiary lamellae are induced by the loose folds and/or cilia having orientation 

order on the basal surface of dominant lamellae. The formation of the subsidiary lamellae 

leads to the unique “cross-hatched” structure.[28, 91, 109] In the work by White and Bassett, 

[114] the cross-hatching frequency in iPP spherulites was studied quantitatively with the help 

of electron microscope. The results revealed that the cross-hatches per µm decreases from 57 

to 40 as the crystallization increases from 115 to 140 
o
C, regardless of the nucleation type. 

The ratio between the subsidiary and dominant lamellae influences the thermal stability, the 

optical properties, and also the mechanical properties of iPP.[107, 115] Therefore, 

understanding of the ratio between the subsidiary and dominant lamellae will be of great 

importance. However, quantitative information relevant to lamellae branching in a single iPP 

spherulite is rare reported, let alone the position-resolved lamellae branching as a function of 

the radius of the spherulite. The main obstacle lies in the precise location of the detecting 

probe in the single spherulite. For instance, a conventional X-ray beam size for scattering 

experiments is around several hundred micrometers, which is nearly the same as the size of a 

spherulite. The size of the traditional X-ray beam is too large to obtain the micrometer-scale 

inhomogeneity in a single spherulite. 

Synchrotron microfocus X-ray scattering is a powerful tool to obtain the structural 

information on local spatial inhomogeneity of nanostructure in a micrometer scale with 

sufficient spatial resolution.[85, 116-118] Recently, synchrotron microfocus X-ray scattering 

has been fruitfully utilized to study the secondary crystallization kinetic [117] and the crystal 

fractions in iPP spherulites.[119] In this chapter, synchrotron microfocus X-ray scattering is 

used for the investigation of lamellae branching in a single spherulite. The spherulite was 
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prepared on a hot stage equipped with an optical microscope. In particular, the precise 

position of the synchrotron X-ray beam on the spherulite is realized using carbon fibers (CF). 

4.2 The nucleation efficiency of the carbon fiber on iPP 

Figure 4-1 shows the nucleation effect of the pulled and un-pulled CF on iPP. For 

comparison, two CFs were embedded in the iPP matrix. The horizontal CF was pulled, 

whereas the vertical CF was not pulled. It can be found that after pulling, a layer of nuclei was 

formed on the surface of the pulled CF. After crystallization for 5 min, β-iPP can be found 

around the horizontal CF. However, on the surface of the un-pulled CF, only a few nucleation 

points can be found, suggesting the weak nucleation effect of CF on iPP. After crystallization 

for 5 min, it is obvious that α-iPP is induced on the surface of un-pulled CF, proving the α-

nucleation effect of CF on iPP. Since that under static condition, the CFs used in this study 

has an only α-nucleation effect on iPP, the formation of β-iPP transcrystals is attributed to 

shear-induced crystallization.[120-122] As discovered by Varga,[122] during fiber pulling 

row-nuclei were formed on the surface of the CF due to the melt-shearing. These row-nuclei 

belong to α-iPP. Therefore, they were named as α-row-nuclei. In the following crystallization 

process, α-row nuclei allow the formation of β-iPP transcrystals in the temperature range of 

100 
o
C~140 

o
C. 

 

Figure 4-1 The optical microscopy images of the crystallization process of iPP around the 

CFs. The horizontal CF was pulled, but the vertical CF was not pulled for comparison.  
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4.3 Morphology of iPP spherulites and transcrystalline region 

The morphology of the film with single layer of spherulites and transcrystalline region is 

shown in Figure 4-2. Dark lines along the vertical and horizontal directions in Figure 4-2a 

display the CFs. Transcrystalline regions in the immediate vicinity of CFs comprises mainly 

β-iPP crystals. The edge-on and flat-on lamellae morphology of β-iPP crystals in the 

transcrystalline region, and the spherulite structure with the dominant “mother” lamellae and 

subsidiary “daughter” lamellae, are presented in Figure 4-2b and Figure 4-2c. Since the 

direction of the CF is horizontal in Figure 4-2b, it can be concluded that in the β-iPP crystal 

lamellae grow perpendicular to the CF and twist during the growth process. 

 

Figure 4-2 (a) Polarized optical micrograph collected at the end of crystallization. Prior to 

that, iPP was crystallized at 138 
o
C for 20 min and then at 130 

o
C for 30 min. The dark lines 

along the vertical and horizontal directions are carbon fibers (CFs). The thickness of the 

sample is 39 μm; (b) The SEM image of the edge-on and flat-on lamellae in the 

transcrystalline region; and (c) The SEM image of the spherulite depicting the mother and the 

daughter lamellae.  

The region adjacent to the transcrystalline region shows the developed α-iPP spherulites with 

a dark Maltese cross. The Maltese cross will not be changed by rotating the spherulite in the 

viewing direction.[28] The mother lamellae are found to grow mainly along the radius 
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direction and the daughter lamellae grow inclined to the radius direction. (cf. Figure 4-2c) 

The averaged angle of 80.75° between “mother” and “daughter” lamellae according to 

epitaxial growth is in agreement with the studies by Khoury.[123] The birefringence 

appearance of the spherulite and the surrounding ring is closely related to the “cross-hatched” 

structure.[8, 28, 115, 123] In an earlier work by Norton and Keller, α-iPP was classified into 

three distinct types based on the feature of birefringence.[115] Spherulites grown below 134 

o
C have a slight positive birefringence (type I), spherulites grown above 138 

o
C have a 

negative birefringence (Type II), and spherulites grown between 134 
o
C and 138 

o
C often 

display a mixed birefringence (“mixed” type). The presence or absence of the daughter 

lamellae directly specifies the differences existing between the three types of the 

spherulites.[115] Therefore, the less bright ring (indicated by the arrow in Figure 4-2a) 

surrounding the spherulite indicates entering the zone in which the spherulite continued to 

grow at a crystallization temperature decreased from 138 C to 130 C, which inhibits the 

formation of daughter lamellae.  

4.4 Defining of the position of the carbon fiber  

The horizontal and the vertical scans are performed to precisely locate the X-ray beam with 

respect to spherulites. The 1D-WAXS intensity profiles for the horizontal and the vertical 

scan are presented in Figure 4-3a and Figure 4-3b. Several peaks at different scattering 

vectors s, corresponding to the (110), (300), (040), (130), (111)/(-131) lattice planes, are 

noticed. Detailed assignments of the peak to the iPP crystal form are summarized in Table 

4-1. Among the peaks, (300) lattice plane is the characteristic lattice plane of β-iPP. In both 

horizontal and vertical scans, the intensity of the peaks and the presence/absence of β-iPP 

vary with the change of the position. Accordingly, the position of the CF is determined by the 

following rules: 1) the diameter of the CF used in this study is 19 µm and the sample 

thickness is 39 µm. Hence, if the X-ray beam is on the CF, the intensity of the peak should 

decrease drastically; 2) β-iPP transcrystallization is induced by the α-row nuclei formed 

during CF pulling.[120, 121] Therefore, the presence of both α-iPP and β-iPP crystals are 

anticipated when the X-ray beam is on the CF. Considering the two rules listed above, the 

intersection of the CFs in Figure 4-2a can be identified as 𝑥 = 59.908𝑚𝑚, 𝑦 = −3.1458𝑚𝑚. 



34 

 

1.5 1.8 2.1 2.4

1k

2k

59.80

59.85

59.90

59.95

(300)

 

s (nm-1
)

In
te

n
s
it

y
 (

a
.u

.)

x 
(m

m
)

Horizontal scan with

y=-3.25 mm

(a)

 

1.2 1.6 2.0 2.4

0

1k

2k

3k

-3.20

-3.15

-3.10

(300)

Vertical scan with

x=59.95 mm

s (nm-1
)

In
te

n
s
it

y
 (

a
.u

.)

y 
(m

m
)

(b)

 

Figure 4-3 1D-WAXS intensity profiles as a function of scattering vector (s) for (a) the 

horizontal and (b) the vertical scan, obtained by azimuthal integration of 2D-WAXS patterns. 

Horizontal scan (𝑦 = −3.25⁡𝑚𝑚) is performed with a step of 12.5 μm and vertical scan 

(𝑥 = 59.95⁡𝑚𝑚) was performed with a step of 10 μm.  

Table 4-1 A summary of peak position and its corresponding lattice plane. 

 Scattering vector (nm
-1

) 

 1.60 1.81 1.92 2.10 2.37 2.37 2.46 

Lattice plane (110) (300) (040) (130) (311) (-131) (041) 

Crystal form α β α α β α α 

4.5 Microstructure studies of the spherulite 

Once the position of the CF is defined, the microstructure in spherulites can be studied in 

detail. The optical micrograph of α-iPP spherulite with a Cartesian coordinate system and 

some representative 2D-WAXS patterns is provided in Figure 4-4a. Vertical scans are 

performed on the spherulite with a step width of 10 μm. On the 2D-WAXS patterns, a few 

arcs can be found from the inner to the outer region. The azimuthal angle of the arc varies as 

the scanning position is changed. In addition, the (110) lattice plane is split into four arcs on 

the 2D-WAXS patterns, implying the existence of “mother” and “daughter” lamellae.[123] 
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Figure 4-4 The optical micrograph of α-iPP spherulite with a Cartesian coordinate system and 

some representative 2D-WAXS patterns acquired at different positions as indicated in the 

micrograph. The WAXS patterns are completed using rotational symmetry by 180°, the white 

regions stem from blind regions of the PILATUS-detector. 

4.5.1 Crystallinity in the spherulite 

To investigate the microstructure as a function of radius quantitatively, the Cartesian 

coordinate system is transferred to the Angular coordinate system in the following way  

 𝑟2 = √(𝑥 − 𝑂𝑥)2 + (𝑦 − 𝑂𝑦)2 Equation (4-1) 

(𝑂𝑥, 𝑂𝑦) is the center of the spherulite, which is (60.263 mm, -2.769 mm), 𝑥 and 𝑦 refer to the 

positon of the beam on the spherulite. Figure 4-5 shows that Xc in the spherulite is in the 

range of 46 % to 56 %. It is higher than the value reported by Cong et al,[124] which is about 

18 % in the spherulite center, and decreased gradually towards the edge of the spherulite and 

finally reached 10 %. The substantially larger difference is probably caused by the different 

crystallization conditions. In the work by Cong et al, the crystallization temperature was 145 

o
C, and the 2D-WAXS measurements were performed during the crystallization process 

where the sample was not fully crystallized. As demonstrated by Riekel et al.,[125] the 

crystallization process of the spherulite consists of primary and secondary crystallization. At 
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the end of the secondary crystallization, Xc could reach a value of 61 % which coincides well 

with the result in this study.  
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Figure 4-5 Xc in the spherulite as a function of the radius of three vertical scans x = 60.20 mm 

(square), x = 60.25 mm (circle), and x = 60.30 mm (triangle). 

4.5.2 The ratio between “daughter” lamellae and “mother” lamellae in the spherulite 

The azimuthal intensity distribution of (110) lattice plane is plotted in Figure 4-6a-c. One can 

see that on the azimuthal intensity distribution curve the peak area varies as the scan position 

is changed, indicating the change of the lamellae branching. The ratio of peak areas between 

“daughter” lamellae and “mother” lamellae (𝑅𝐷 𝑀⁄ ) could be obtained by [126]  

 𝑅𝐷/𝑀 =
𝐴𝑑

𝐴𝑚
 Equation (4-2) 

𝐴𝑑 and 𝐴𝑚 are the peak area of “daughter lamellae” and “mother lamellae” on the azimuthal 

intensity distribution curve. The results are presented in Figure 4-6d. It can be found that as 

the radius is smaller than 90 μm, 𝑅𝐷 𝑀⁄  keeps at around 0.18. A decrease of 𝑅𝐷 𝑀⁄  shows up as 

the radius exceeds 90 μm, where the crystallization temperature was decreased from 138 °C to 

130 °C. At 140 μm 𝑅𝐷 𝑀⁄  is 0.11. The change of 𝑅𝐷 𝑀⁄  with the radius coincides well with the 

results in Section 4.3: decreasing the crystallization temperature will inhibit the formation of 

subsidiary daughter lamellae.  
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Figure 4-6 Azimuthal intensity distribution of (110) reflection at the scan of x=60.20 mm, 

60.25 mm, and 60.30 mm; (d) The ratio between the “daughter” lamellae and the “mother” 

lamellae (𝑅𝐷/𝑀) as a function of the radius of three vertical scans x = 60.20 mm (square), x = 

60.25 mm (circle), and x = 60.30 mm (triangle). 

4.5.3 The orientation of the crystal axis in the spherulite 

The azimuthal intensity distribution of the (040) lattice plane is given in Figure 4-7.  
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Figure 4-7 The azimuthal intensity distribution of (040) reflection at different positions of the 

spherulite of three vertical scans x = 60.20 mm (square), x = 60.25 mm (circle), and x = 60.30 

mm (triangle). 

Different to the results given in Figure 4-6a-c, only two peaks could be found on the curves 

in Figure 4-7. This is because the “mother” and “daughter” lamellae share the same a-c layers 

as proposed by Lotz.[8] In Figure 4-6 and Figure 4-7, one can also notice that the peak 

position shifts as the scanning position is changed, which is a result of the changed crystal 

orientation. The Herman’s orientation factor of a-axis(fHa), b-axis(fHb), and c-axis(fHc) in the 

spherulite are shown in Figure 4-8. It can be found that with the increase of the radius, fHa 

increases gradually from 0.25 to 0.62. As the radius is larger than 90 μm, fHa remains constant 

at the value ~ 0.62, which means that the a-axis in the crystal prefers to orient along the radius 

direction. As the radius is smaller than 90 μm, fHb decreases slightly from -0.27 to -0.35 with 

increasing radius. When the radius exceeds 90 μm, it keeps at -0.35, suggesting that the b-axis 

is perpendicular to the radius direction. In addition, fHc decreases from 0 to -0.3 with the 

increase of the radius. And as the radius is larger than 90 μm fHc is around -0.3, indicating c-

axis tends to be perpendicular to the radius direction. We note that as the radius is smaller 

than 90 μm, the gradual increase of fHa or decrease of fHc does not imply that the orientation of 

the polymer chains in the crystal is enhanced. The reason responsible for that finding is given 

as follows: the size of the beam used in this study is 23 μm×13 μm, which is much larger than 

the thickness of the lamellae (ranging within a few dozen nanometers, see Figure 4-2c). All 

crystals in the region where the X-ray passes contribute to the azimuthal intensity distribution 

curve. In the region close to the center of the spherulite, the angle deviation of the lamellae is 

quite large, which results in a lower polymer chains orientation degree. In the region far away 

from the center of the spherulite, the angle deviation of the lamellae decreases significantly, 

so a relative higher polymer chains orientation degree could be detected. Although Herman’s 
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orientation factor is greatly influenced by the size of the X-ray beam, the plateau value at a 

radius larger than 90 μm suggests that the influence of the beam size is negligible therein. So, 

the results in Figure 4-8 suggest that b-axis and c-axis in the crystal are aligned mainly 

perpendicular to the radius, and a-axis is along the radius. 

   

 

Figure 4-8 The Herman’s orientation factor of a-axis(fHa), b-axis(fHb), and c-axis(fHc) in the 

crystal of “mother” lamellae as a function of the radius of three vertical scans x = 60.20 mm 

(square), x = 60.25 mm (circle), and x = 60.30 mm (triangle). 

4.6 Conclusion 

With the help of carbon fibers, the precise location of the X-ray beam in the spherulite is 

realized in this chapter. The results show that the mother lamellae in the spherulite are aligned 

mainly along the radius, and the daughter lamellae are inclined 80.75
o
 with respect to the 

radius. The lamellae and polymer chains arrangement in a single spherulite are quantitatively 

investigated by synchrotron microfocus wide angle X-ray scattering. The crystallinity in the 

spherulite is in the range of 46 % to 56 %, which is rarely influenced by the crystallization. 

The ratio between the subsidiary daughter lamellae and the dominant mother lamellae is 0.18 

when iPP crystallizes at 138 
o
C and it decreases to 0.11 as the crystallization temperature is 
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decreased to 130 
o
C. The b-axis and c-axis in the crystal are oriented perpendicular to the 

radius direction, and the a-axis is aligned in the radius direction. In addition, the results in this 

study prove the possibility of detecting the microstructure in a single isotactic polypropylene 

spherilute by synchrotron microfocus X-ray scattering. This methodology can be used also on 

other semicrystalline polymers, including polyethylene, polylactide, polyamide, et al. 
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5 Influence of annealing on the mechanical αc-relaxation of iPP: a study 

from the intermediate phase perspective
2
 

The mechanical αc-relaxation of iPP samples crystallized with different thermal histories is 

investigated in this chapter. In the sample without annealing, polymer chains in the 

intermediate phase are constrained by crystallites with a broad size distribution, leading to one 

αc-relaxation peak with an activation energy (Ea) of 53.39 kJ/mol. With an annealing 

temperature between 60 
o
C-105 

o
C imperfect lamellae melting releases a part of the 

constraining force. Consequently, two αc-relaxation peaks could be observed (αc1- and αc2-

relaxation in the order of increasing temperature). Both relaxation peaks shift to higher 

temperatures as annealing temperature increases. Ea of αc1-relaxation decreases from 38.43 

kJ/mol to 35.55 kJ/mol as the intermediate phase thickness increases from 2.1 nm to 2.15 nm. 

With an annealing temperature higher than 105 
o
C, a new crystalline phase is formed, which 

enhances the constraining force on the polymer chains. So the αc1-relaxation peak is 

broadened and its position shifts to a higher temperature. Moreover, the polymer chains 

between the initial and the newly formed crystalline phase are strongly confined. Therefore, 

the αc2-relaxation is undetectable. Ea of αc1-relaxation decreases from 23.58 kJ/mol to 13.68 

kJ/mol as the intermediate phase thickness increases from 2.26 nm to 2.99 nm. 

  

                                                 
2
 The main part in this chapter has been published as “B. Chang, K. Schneider, R. Vogel, G. Heinrich. Influence 

of annealing on mechanical αc-relaxation of iotactic polypropylene: a study from the intermediate phase 

perspective, Macromol. Mater. Eng. 302 (2017) 1700291(1-12).” 
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5.1 Introduction 

The relationship between mechanical properties and microstructure of iPP has been a hot 

topic since it was polymerized by G. Natta in 1954.[4] In the past few years, the mechanical 

relaxation behavior of iPP has been investigated by plentiful studies. Generally, iPP has four 

relaxation peaks in the plot of loss angle (tanδ) as a function of temperature. The peaks are 

designated as δ, γ, β, and αc-relaxation, in the order of increasing temperature.[127-137] The 

δ-relaxation, located mainly below 100 K, is related to the hindered rotation of CH3 

groups.[138] The γ-relaxation appeared between 150 K and 230 K, is attributed to local 

motions of chain ends or branches in the amorphous phase.[134] The β-relaxation (the glass-

rubber transition) between 250 K and 300 K is attributed to cooperative motions of chain 

segments in the amorphous phase.[133, 139-142] Finally, the αc-relaxation is localized below 

the melting temperature.  

 

Figure 5-1 (a) Dependence of tanδ on temperature at 1 Hz of iPP; [138] (b) Deconvolution of 

the dynamic mechanical relaxation curve (tanδ) at 3 Hz of iPP. [134] 

Although abundant studies have been performed, the genesis of αc-relaxation is still uncertain 

and sometimes even controversial in the literature[128, 129, 131, 133, 137, 143] In some 

cases, the multiple nature of αc-relaxation even complicates the situation.[131, 143] Normally, 

the αc-relaxation exists only in the presence of the crystalline phase. Hence, the simplest 

hypothesis is to assign it to some phenomenon occurring in the crystalline phase. 

McCrum[137] pointed out that its origin is most likely an additional relaxation of the 

amorphous fraction triggered by the onset of molecular rotation within the crystal. 

Jourdan[133] suggested that αc-relaxation originating within the crystalline phase could be 

attributed to the long-distance stress-assisted diffusion of defects inside the crystalline phase. 

But the amorphous phase also plays an important role, because defects have to adapt 

themselves to the deformation compatibility of crystalline and amorphous phases by 

cooperative movements. Pluta[131] proposed that in the case of samples containing large 
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spherulites, αc-relaxation could be attributed to the friction phenomena between boundaries of 

the crystalline lamellae and to a certain extent arise from the intralamellar regions 

accompanied by a restricted reorientation of crystalline elements within oriented lamellae. For 

nonspherulitic samples, two components of αc-relaxation process were found. The low-

temperature component was attributed to the stress relaxation of the fraction of the 

noncrystalline phase containing strained molecules and segments of molecules belonging to 

the specific (irregular) arrangement of the surface layer of the crystallites. The high-

temperature component was connected with the viscous slip process of the crystalline 

elements within the noncrystalline phase. Moreover, the high-temperature component of αc-

relaxation process could be strongly affected by orientation[143] or the length of chain 

folding at the interphase between a crystalline phase and an amorphous phase.[137] In the 

reviews by Boyd,[128, 129] a viewpoint was proposed that the two-phase model of well-

developed crystals plus the amorphous phase may be inadequate to illustrate the origin of αc-

relaxation, and, as consequence, an additional intermediate phase should be taken into 

consideration. This proposal was further demonstrated in the work by Hu with the help of 

nuclear magnetic resonance spectroscopy: the chain diffusion occurring at the intermediate 

phase is responsible for αc-relaxation.[144, 145]  

The position and intensity of αc-relaxation vary with many factors (thermal history, crystalline 

structure, density, etc.). To name a few, Tiemblo[132] studied the relationship between αc-

relaxation and thermo-oxidation kinetics of PP. The results revealed that samples bearing αc-

relaxation show a strong decrease in the parameter p0 at temperatures below 115 
o
C, where p0 

is related to the initial concentration of oxidizable sites. However, the decrease in p0 is not 

observed in samples where the αc-relaxation is not resolved. In their late work,[135, 146] the 

relative influence of microstructure, molar mass and morphology of PP on αc-relaxation was 

assessed. Among the factors considered, microstructure and isotactic average length (n1) have 

been found to drive mainly the quality of αc-relaxation. The intensity of αc-relaxation depends 

on the final crystalline distribution, provided the requirements that some microstructural 

features related to n1 are fulfilled. On the other hand, a critical average isotactic length around 

30 propylene units has been found, below which the β-relaxation is promoted with respect to 

αc-relaxation. The fraction of the low melting point crystals, which determines the degree of 

constraint within the interlamellar region, drives the relative intensities of αc- and β-relaxation 

processes. In a recent work, Suljovrujic[136] proved that the position, intensity and activation 

energy of αc-relaxation were strongly affected by gamma radiation exposure. The intensity of 
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αc-relaxation increases nonlinearly with absorbed dose and the shift in the position of αc-

relaxation is most intensive for iPP exposed to lower doses (≤100 kGy). In addition, the 

evolution of the activation energy with absorbed dose is relatively similar to that observed for 

the position of αc-relaxation.  

The scope of this chapter focuses on the relationship between mechanical αc-relaxation and 

the intermediate phase of iPP. As in the case of most of the semi-crystalline polymers,[102, 

147-149] the formation of the intermediate phase in iPP could be greatly influenced by 

annealing.[150-155] Therefore, samples with different thermal histories were prepared. With 

the analysis of the results of this study, we attempt to gain a further insight into the 

mechanical αc-relaxation in semi-crystalline polymers. 

5.2 Crystal form of water cooled and annealed iPP 

It is well known that iPP has three kinds of polymorphism for crystalline structure (α-, β-, and 

γ-iPP) [156] and one “mesophase” which is an intermediate state between amorphous and 

crystal.[157, 158] In the study by Androsch,[157] it is proved that α-iPP will be the dominant 

phase when the cooling rate is smaller than 20 K s
-1

. The “mesophase” starts to show up when 

the cooling rate is higher than 20 K s
-1

 and totally replaces α-iPP when the cooling rate is 

higher than 80 K s
-1

. The “mesophase” is stable at room temperature but it will transform into 

α-iPP when the temperature is higher than 40 
o
C.[159] As the dynamic mechanical analysis 

was performed with a temperature range from -70 
o
C to 160 

o
C, the existence of a “mesophase” 

will lead to a misinterpretation of mechanical relaxation behavior. Therefore, it is of primary 

importance to check the crystal form of the sample (especially the water cooled one) used in 

this study. In order to clarify the crystal form of the sample used in this study, 1D-WAXS 

curves are provided in Figure 5-2a. In Figure 5-2a one can see the certain peaks for water 

cooled and annealed samples: (110), (040), (130), (111), and (-131) in the order of increasing 

scattering vector (𝑞). All peaks mentioned above are characteristic reflexes of α-iPP[18] and 

no “mesophase” halo could be found, indicating that the samples are composed mainly by α-

iPP. 𝑋𝑐 of the sample with different annealing temperature is summarized in Figure 5-2b. 𝑋𝑐 

of PPna is 0.48. It stays the same when the annealing temperature is lower than 90 
o
C and 

increases from 0.53 to 0.59 when the annealing temperature is increasing from 105 
o
C to 150 

o
C.  
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Figure 5-2 (a) 1D-WAXS curves of water cooled and annealed iPP, for clarification the 

curves are shifted vertically; (b) 𝑋𝑐 of iPP as a function of annealing temperature. 

5.3 Microstructure of iPP with different thermal history 

Figure 5-3 shows the 1D-SAXS curve for iPP with various thermal histories. Lorentz 

correction (𝐼(𝑞) → 𝑞2𝐼(𝑞)) is employed because there no lamellae orientation exists in the 

compression molded samples.[83] The long period (Lp), containing one crystalline phase, one 

amorphous phase, and one intermediate phase, could be estimated from the peak position 

(qmax) in 1D-SAXS curve. In addition, the width of the scattering peak (full width at half 

maximum, FWHM) providing the information about the statistic of Lp could be obtained by 

peak fitting. In Figure 5-3a', one can see that with the increase of crystallization temperature, 

Lp of the melt crystallized iPP increases linearly from 15.2 nm to 20.0 nm and FWHM 

decreases slightly from 0.19 nm
-1

 to 0.15 nm
-1

. For PPna, Lp is 11.0 nm and FWHM is 0.30 

nm
-1

. Annealing at 45 
o
C for 6 h has a negligible effect on both Lp and FWHM. As the 

annealing temperature increases, Lp increases continually from 11.6 nm to 18.25 nm and 

FWHM decreases from 0.28 nm
-1

 to 0.13 nm
-1

. Figure 5-3c provides the 1D-SAXS curve for 

the samples annealed at 75 
o
C for different times. A slight increase of Lp and decrease of 

FWHM could be found after annealling for 1 h, and then both of them stay nearly constant 

until 6 h. For the samples annealed at 135 
o
C (Figure 5-3d'), the scenario is quite different. 

An obvious increase of Lp from 11.0 nm to 16.4 nm and decrease of FWHM from 0.30 nm
-1

 to 

0.15 nm
-1

 could be found in 2 h. After that, Lp and FWHM remain nearly unchanged. 
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Figure 5-3 Lorentz-corrected 1D-SAXS curves on the left side, Lp and full width at half 

maximum of the scattering peak (FWHM) on the right side. Samples prepared by melt 

crystallization (a) and (a'); by annealing at different temperatures for 6 h (b) and (b'); by 

annealing at 75 
o
C for different times (c) and (c'); and by annealing at 135 

o
C for different 

times (d) and (d'). 
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In Figure 5-3b a shoulder peak at a higher q value shows up for the sample annealed at a 

temperature higher than 105 
o
C. Generally, there are two possible origins for the appearance 

of the shoulder peak: secondary crystallization during annealing, resulting in the formation of 

new lamellae with larger Lp; or the perfection of original lamellae, leading to a higher order 

scattering peak. In our case, the former one is preferred, which will also be verified in the 

following part by DSC and TMDSC. The shoulder peak in Figure 5-3d can be ascribed to the 

same origin above mentioned. 

The domain thickness, including the thickness of crystalline phase (Lc), the intermediate phase 

(Lim), and amorphous phase (La) of iPP with various thermal histories are summarized in 

Figure 5-4a. It shows that for the melt crystallized iPP, only a slight increase of La and Lim 

could be found as the crystallization temperature increases. However, an evident increase can 

be found for Lc. This confirms Strobl’ theory[160] that the reciprocal of Lc should be linear 

related to the crystallization temperature. In the meantime, the ratio of Lim/Lc decreases as 

crystallization temperature increases, coinciding with the results from other literature.[152, 

161] During melt crystallization, the mobility of the polymer chains is quite high. The 

formation of crystalline phase with perfect regular fold-surfaces is preferred and the coupling 

between the crystalline phase and the amorphous phase is weak.[161, 162] Consequently, the 

formation of the intermediate phase is restricted.  

For PPna, the values of Lc, La, and Lim are 3.83 nm, 3.75 nm, and 2.02 nm. The influence of 

annealing temperature on the domain thickness evolution after annealing could be divided 

into three regions (see Figure 5-4b). Region I: with an annealing temperature lower than 45 

o
C, in this range only a weak influence can be found on the domain thickness; Region II: from 

60
 o
C to 90 

o
C, in this range Lim and Lc keeps nearly constant, but La increases slightly; Region 

III: from 105 
o
C to 150 

o
C, all the domain thickness Lc, La, and Lim increase obviously with 

the increase of annealing temperature. Lc increases from 4.15 to 6.08 nm, La from 3.93 to 5.33 

nm and Lim from 2.4 to 3.2 nm. The influence of the annealing time on the domain thickness 

evolution is given in Figure 5-4c and Figure 5-4d. It is obvious that Lc, La, and Lim of iPP 

annealed at 75 
o
C for different times hardly change. Whereas, a drastic increase of Lc and La 

can be found for iPP annealed at 135 
o
C for 2 h. Lc increases from 4.12 to 4.86 nm and La 

increases from 3.89 to 5.24 nm. After that, a slight increase can be found for Lc and La until 6 

h. As to Lim, the evident increase from 2.02 to 2.33 nm could be found in 0.5 h, and then it 

grows gradually until 6 h.  
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Figure 5-4 The crystalline phase thickness (Lc), the intermediate phase thickness (Lim) and the 

amorphous phase thickness (La) of iPP prepared by melt crystallization (a), annealing at 

different temperatures for 6 h (b), annealing at 75 
o
C for different times (c), and annealing at 

135 
o
C for different times (d). 

The evolution of the domain thickness during isothermal annealing is an irreversible process. 

Sanchez[163] found that the rate of lamellae thickening is proportional to the derivative of the 

surface free energy with respect to lamellae thickness, which could be described by the 

following equation:[163] 

 𝑥2
𝑑𝑙

𝑑𝑡
= −𝑘0𝑒𝑥𝑝[−𝑣∆𝐻(𝑇𝑚

0 − 𝑇𝑎)/𝑅𝑇𝑎𝑇𝑚
0 ]

𝑑𝐺𝑠

𝑑𝑙
  Equation (5-1) 

where x and l are the lateral dimension and thickness of crystalline phase, 𝐺𝑠 is the surface 

free energy, t is the annealing time, 𝛥𝐻 is the heat of fusion per mole of molecular chains, 𝑇𝑚
0  

is the equilibrium melting point, 𝑇𝑎 is the annealing temperature, 𝑣 is the number of molecular 

chains which diffuse simultaneously from amorphous phase to crystalline phase and 𝑘0 is a 

proportionality constant. The surface free energy 𝐺𝑠 of a lamellar crystal with square cross 

section is given by  

 𝐺𝑠 = 4𝑥𝑙𝜎 + 2𝑥2𝜎𝑒 = 4(𝑙𝑉)1/2𝜎𝑙 + 2𝑉𝜎𝑏/𝑙 Equation (5-2) 



49 

 

where σb is the surface free energy of the basal plane, 𝜎𝑙 is the surface free energy of the 

lateral surface, and V=x
2
l is the volume of the crystalline phase. At a certain thickness l*, 

dGs/dl=0 and the crystal will reach its equilibrium dimensions of l* and a corresponding x*. It 

is obvious that, if the volume V of crystal remains constant, then  

 𝑙∗ = (𝜎𝑏
2𝑉/𝜎𝑙

2)1/3 Equation (5-3) 

 𝑥∗ = (𝜎𝑙𝑉/𝜎𝑏)
1/3 Equation (5-4) 

 𝑙∗/𝑥∗ = 𝜎𝑏/𝜎𝑙  Equation (5-5) 

Therefore, for a single lamella, if l/x is smaller than l*/ x*, the lamella can reduce its surface 

free energy by an increase in l and a decrease in x. But if the initial ratio of l/x exceeds l*/ x*, 

the direction would be the melting of the lamella. Therefore, depending on the size of the 

initial crystalline phase two competitive processes could happen: one is the melting process if 

l/x exceeds l*/ x*, the other one is the lamellae thickening process if l/x is smaller than l*/ x*.  

In region I, no structural change could be detected by SAXS. In region II, Lim and Lc keep 

constant, FWHM decreases drastically and La increases slightly. The results suggest that the 

melting of imperfect lamellae is the dominant process in this region. Lamellae thickening 

hardly happen because the mobility of polymer chains is too weak. In region II, the decrease 

of FWHM continues and an evident increase of the Lc, La and Lim shows that in this region 

lamellae thickening and imperfect lamellae melting coexist. At higher annealing temperatures, 

more lamellae melt providing more space and polymer chains for the lamellae thickening 

process. In addition, the mobility of polymer chains enhances with the increase of annealing 

temperature. Annealing at 135 
o
C for different time provides more details about the process. 

The increase of the intermediate phase thickening stops after 0.5 h, but the thickening of the 

crystalline phase and the melting of the imperfect lamellae continues until 2 h. Generally, the 

lamellae thickening proceeds by transforming the intermediate phase into the lamellae which 

was verified by Lei and his coworkers.[99] In their work, in-situ SAXS is employed to detect 

the domain thickness evolution during annealing, and a slight decrease of the intermediate 

phase thickness at the beginning of annealing and the afterward increase has been observed. 

The reason responsible for that can be given as follows: in semi-crystalline polymers, the 

polymer chains directly neighboring the crystalline phase have a higher conformational 

ordering compared to those away from the surface of the crystalline phase. Thus, a lower 

energy barrier is needed for the transformation from the intermediate phase to the crystalline 

phase.[155, 164]  
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5.4 Melting behavior of iPP with different thermal history 

The melting behavior of iPP with different thermal history is shown in Figure 5-5. Two 

melting peaks could be found for PPM90 in Figure 5-5a. With the increase of crystallization 

temperature, the peak on left side shifts to a higher temperature gradually, suggesting the 

thickness of crystalline phase increases with the melt crystallization temperature. The peak on 

the right side is due to the melting and recrystallization of the previous crystal. For PPna, only 

one melting peak at 166 
o
C corresponding to the melting of α-iPP can be found in Figure 

5-5b. As annealing temperature increases, the peak position keeps constantly. For the samples 

annealed at a temperature higher than 105 
o
C, a shoulder peak (indicated by the arrows in 

Figure 5-5b can be found at the low-temperature side of the main peak. The shoulder peak 

becomes better distinguished and its position shifts gradually from 113 
o
C to 151 

o
C with 

increasing annealing temperature. The appearance of the shoulder peak is assigned to the 

melting of newly formed crystallites formed by annealing,[98, 165] which confirms the result 

in 1D-SAXS that at high annealing temperature a new crystalline phase is formed. Figure 

5-5c suggests that annealing at 75 
o
C has a negligible effect on the crystalline phase, as has 

been found in Figure 5-4c. In Figure 5-5d, the shoulder peak appears after annealing for 0.5 

h at 135 
o
C, which is consistent with the observation from 1D-SAXS. This shoulder peak 

shifts to the higher temperature side but main melting peak hardly moves as annealing time 

increases.  
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Figure 5-5 Melting behavior of iPP prepared by melt crystallization (a), annealing at different 

temperatures for 6 h (b), annealing at 75 
o
C for different times (c), and annealing at 135 

o
C for 

different times (d). For clarification, the curves were vertically shifted.  

In TMDSC measurements, with a small sinusoidal modulation superimposed on the 

conventional linear heating program, the obtained total heat flow could be divided into a (heat 

capacity-related) reversible heat flow and a (kinetic-related) nonreversible heat flow. 

Generally, melting appears in not only reversible heat flow but also nonreversible heat flow, 

but crystallization or enthalpy relaxation can be found only in nonreversible heat flow.[166-

168] Figure 5-6 provides the TMDSC results of iPP. In the reversible heat flow (Figure 5-6a 

and Figure 5-6b), for both melt crystallized iPP and annealed iPP only endotherm peak could 

be found for all samples, which originates from the melting of the crystalline phase. For the 

nonreversible heat flow (Figure 5-6c and d), the situation is quite different. For PPna, an 

exothermal peak can be observed which results from the recrystallization process during the 

heating.[99, 102, 169] It is well established that the recrystallization process occurs at the 

surface of the crystalline phase, where the conformational ordering of the polymer chains is 

higher than those in the amorphous phase. The area for the exothermal peak decreases 

drastically, accompanied by the appearance of an endothermic peak when the annealing 

temperature was higher than 105 
o
C, Thus, it is reasonable to infer that the melting of the 

newly formed crystalline phase greatly reduces the conformational order in the intermediate 

phase, which restricts the recrystallization process. This suggests that the newly formed 

crystalline phase should be located nearby the initial crystalline phase. Otherwise, the melting 

of the newly formed lamellae should have no influence on the recrystallization process during 

heating. No exothermal peak could be found for the melt crystallized iPP, due to the melting 

of the original crystal which covers the signal of recrystallization. 
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Figure 5-6 Reversible heat flow of melt crystallized iPP (a) and annealed iPP (b), and 

nonreversible heat flow of melt crystallized iPP (c) and annealed iPP (d). 

5.5 Mechanical relaxation behavior of iPP with different thermal history 

The mechanical relaxation of iPP subjected to different thermal histories is shown in Figure 

5-7. As can be seen, all the curves are characterized by multiple peaks. The peak located at 

about. 0 
o
C is labeled as β-relaxation and the others are labeled as αc-relaxation. It is obvious 

that the β-relaxation is very sharp while the αc-relaxation is broad. For the melt crystallized 

samples (Figure 5-7a), the peak temperature of αc-relaxation (Tαc) keeps at about. 84 
o
C when 

crystallization is lower than 110 
o
C and it increases gradually from 85 

o
C to 93 

o
C as 

crystallization temperatures further increase. For the annealed iPP (Figure 5-7b), the case of 

αc-relaxation is especially remarkable. One broad αc-relaxation peak could be found at 83 
o
C 

for NA. Annealing at 45 
o
C shifts the αc-relaxation peak slightly to 84 

o
C. With an annealing 

temperature between 60 
o
C-90 

o
C, two well-separated αc-relaxation peaks can be found. The 

left one is labeled as αc1-relaxation and the right one is labeled as αc2-relaxation. As annealing 

temperature increases, Tαc2 and Tαc1 move from 87 
o
C and 56 

o
C to 124 

o
C and 66 

o
C, 

respectively. When the annealing temperature is higher than 105 
o
C, Tαc1 moves from 72 

o
C to 
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123 
o
C and the width of αc1-relaxation is broadened obviously. In the meantime, Tαc2 could 

not be detected. The mechanical relaxation behavior of iPP annealed at 75 
o
C and 135 

o
C for 

different times is provided in Figure 5-6c and d. It is worth noting that for the samples 

annealed at 75 
o
C, double relaxation peaks show up after 0.25 h. With the increase of 

annealing time, Tαc1 decreases from 69 
o
C to 65 

o
C and then keeps constantly. Tαc2 moves 

from 95 
o
C to 103 

o
C after annealing for 1 h and then increases slightly to 112 

o
C. For the 

samples annealed at 135 
o
C, only the αc1-relaxation peak can be found, which shifts from 89 

o
C to 94 

o
C. 
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Figure 5-7 Temperature dependence of loss factor (tanδ) tested with a testing frequency of 1 

rad s
-1

 for samples after isothermal crystallization at different temperatures (a); samples after 

quenching and subsequent annealing at different temperatures for 6 h (b); and by quenched 

and annealing at 75 
o
C (c) and 135 

o
C (d) for different time. For clarification, the curves are 

vertically shifted. (a'), (b'), (c')and (d') show the peak position of mechanical αc-relaxation 

for the iPP with different thermal history.  

The observation of the two well-separated αc-relaxation peaks is also reported in other 

studies.[131, 132, 137, 143, 170] Traditionally, αc-relaxation has an origin in inter- or 

intracrystalline motion.[143] Pulta [131] ascribed αc1-relaxation to the stress relaxation of the 

fraction of the noncrystalline phase containing strained molecules, and connected αc2-

relaxation with the viscous slip process of the crystalline elements within the noncrystalline 

phase. The explanation works but it is not satisfying. In our case, it has been proved by SAXS 

and DSC that annealing at 75 
o
C has a tiny influence on the crystalline phase. What really 

happens is the melting of imperfect lamellae, as has been evidenced by the decrease of 

FWHM. The melting of imperfect lamellae will release the constraint force not only on the 

polymer chains in the amorphous phase but also on the polymer chains in the intermediate 

phase neighboring the amorphous phase. The release of the constraint force results in a non-

homogenous intermediate phase. Recently, a concept of “continuum of mobility” was 

proposed by Esposito and his coworkers.[171] The concept can be extended to a wide range 

of semi-crystalline polymers when the crystalline phase and the amorphous phase are strongly 

coupled. “Continuum of mobility” means that polymer chains in that phase have a broad 

distribution of relaxation times. And those polymer chains close to the crystalline phase are 

strongly tied and the relaxation will happen at a higher temperature. The larger the distance of 

the polymer chains from the crystalline phase surfaces, the less they are influenced by the 

interfacial geometrical constraints and relax at a lower temperature. Therefore, the concept of 
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“continuum of mobility” is borrowed here to describe the relaxation behavior of the polymer 

chains in the intermediate phase. αc1-relaxation at lower temperature side could be ascribed to 

the relaxation of polymer chains neighboring the amorphous phase, and αc2-relaxation at 

higher temperature side originates from the relaxation of the polymer chains close to the 

crystalline phase. The shift of αc2-relaxation towards higher temperature for those samples 

annealed at 75 
o
C indicates that the conformational ordering of the polymer chain close to the 

crystalline phase is enhanced, which facilitates the formation of the new crystalline phase.  

Combining the results from the SAXS, DSC and TMDSC measurements, the structural 

dependence of mechanical αc-relaxation of annealed iPP could be explained as follows, a 

schematic drawing of the relationship between the intermediate phase and mechanical αc-

relaxation is given in Figure 5-8.  

 

Figure 5-8 A schematic drawing of the relationship between the intermediate phase and 

mechanical αc-relaxation. 

In the water-cooled iPP lots of imperfect crystallites exist which could be inferred from the 

large FWHM. The polymer chains are constrained by those small crystallites. Annealing at 45 

o
C has negligible influence on the domain thickness. Therefore the relaxation behavior is 

nearly the same compared with NA. With an annealing temperature between 60 
o
C to 90 

o
C, 

the melting of imperfect lamellae releases a part of the constraint force on the polymer chains 

in the intermediate phase. As a consequence, heterogeneous polymer chains mobility should 

be expected in the intermediate phase, which gives rise to two αc-relaxation peaks. When the 

annealing temperature is higher than 105 
o
C, initial lamellae are thickened and a new 

crystalline phase is formed in the intermediate phase. As a result, αc1-relaxation peak is 
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broadened obviously. The peak temperature for αc1-relaxation is further increased because of 

the enhanced conformational order of polymer chains. Moreover, the confinement in the 

region between the initial crystalline phase and the new crystalline phase is strongly enhanced. 

Therefore, αc2-relaxation could not be detected unless the newly formed crystalline phase 

melts.  

The activation energy of the mechanical αc-relaxation could be obtained from the relaxation 

map in Figure 5-9. For the melt crystallized iPP (Figure 5-9a), the plot of lnf as a function of 

1000/T could be well fitted by the Arrhenius equation: 

 𝑙𝑛𝑓𝑚𝑎𝑥 = 𝐴 −
𝐸𝛼

𝑘𝐵
×

1

𝑇
 Equation (5-6) 

where A is a pre-factor, 𝐸𝛼 is the activation energy and 𝑘𝐵 is the Boltzmann’s constant. 

Whereas, for the annealed samples (Figure 5-9b), a distinct transition of the slope could be 

found. The departure of the slope is caused by the melting of the imperfect lamellae or the 

newly formed lamellae during the test. So only the lower part of the plot is employed to 

calculate the activation energy of annealed iPP.  
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Figure 5-9 Mechanical relaxation map of melt crystallized iPP (a) and annealed iPP (b). 

Figure 5-10 demonstrates the dependence of the activation energy of αc-relaxation on the 

intermediate phase thickness. For the melt crystallized iPP, the activation energy decreases 

linearly with the increase of the intermediate phase thickness, which is a result of decreased 

confinement force on the polymer chains. For water-cooled iPP, the activation energy is 53.39 

kJ/mol. With an annealing temperature lower 90 
o
C, the activation energy decreases to 35.55 

kJ mol
-1

 while the thickness of the intermediate phase increases from 2.02 nm to 2.15 nm. 

Obviously, the drastic decrease of the activation energy with a small increase of the 

intermediate phase is caused by imperfect lamellae melting. With an annealing temperature 



57 

 

higher than 105 
o
C, the activation energy decreases from 23.59 kJ mol

-1
 to 13.68 kJ mol

-1
 

while the thickness of the intermediate phase increases from 2.26 nm to 2.99 nm.  
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Figure 5-10 Activation energy of αc-relaxation as a function of the intermediate phase 

thickness. 

5.6 Conclusion 

The influence of annealing on the mechanical αc-relaxation behavior of iPP is investigated in 

this chapter. The results reveal that the mechanical αc-relaxation behavior depends strongly on 

the confinement force on the polymer chains in the intermediate phase. For the water-cooled 

sample, abundant crystallites with a broad size distribution are formed. The polymer chains in 

the intermediate phase are constrained by the crystallites, giving rise to one broad αc-

relaxation peak with an activation energy of 53.39 kJ mol
-1

. With an annealing temperature 

between 60 
o
C-105 

o
C, imperfect lamellae melting releases a part of the constraining forces, 

which reduces the conformational ordering of the polymer chains neighboring the amorphous 

phase. Consequently, two separate αc-relaxation peaks could be observed which are labeled as 

αc1-relaxation and αc2-relaxation. αc1-relaxation and αc2-relaxation describe the relaxation 

behavior of polymer chains in the region close to the amorphous phase and the crystalline 

phase, respectively. Both relaxation peaks shift to higher temperatures as annealing 

temperature increases. In this range, the activation energy of αc1-relaxation decreases 

drastically to 35.55 kJ mol
-1

 as the thickness of the intermediate phase increases from 2.02 nm 

to 2.15 nm. With an annealing temperature higher than 105 
o
C, a new crystalline phase is 



58 

 

formed in the intermediate phase, which enhances the constraining force on the polymer 

chains. Therefore, the αc1-relaxation peak is broadened and its position shifts to a higher 

temperature as the annealing temperature increases. Moreover, the αc2-relaxation is 

undetectable because the polymer chains in the region between the initial crystalline phase 

and the newly formed crystalline phase are strongly confined. The activation energy of αc1-

relaxation decreases to 13.68 kJ mol
-1

 as the thickness of the intermediate phase increases to 

2.99 nm. 
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6 Critical strains for lamellae deformation and cavitation during 

uniaxial stretching of annealed iPP
3
 

In the former chapter, iPP samples with different thermal history (annealing and melt 

crystallization) were well controlled and characterized. In this chapter, the lamellae 

deformation and cavitation behavior of annealed iPP during uniaxial stretching were 

comprehensively investigated by in situ synchrotron SAXS and WAXS measurements. We 

reveal how lamellae deformation occurs in the time scales of elastic deformation, intra-

lamellar slip, and melting-recrystallization, separated by three critical strains which are only 

rarely influenced by annealing. Strain I (0.1) marks the end of elastic deformation and the 

onset of intra-lamellar slip, beyond which the crystallinity decreases gradually. Strain II (0.45) 

signifies the start of the recrystallization process, from where the long period in the stretching 

direction begins to decrease from its maximum and the polymer chains in the crystal start to 

orient along the stretching direction. The energy required for melting arises from the friction 

between the fragmented lamellae produced by intra-lamellar slip. Strain III (0.95) denotes the 

end of the recrystallization process. Beyond the strain of 0.95, the long period and the crystal 

size remain nearly unchanged. During further stretching, the newly formed lamellae serve as 

the anchoring points for polymer chains in the amorphous phase. The extension of the 

polymer chains in between lamellae triggers the strain hardening behavior. On the other hand, 

annealing significantly decreases the critical strain for voids formation and increases the voids 

number, but restricts the void size. For those samples annealed at a temperature lower than 

90 °C, voids are formed between strain II and strain III. And voids are oriented in the 

stretching direction once they are formed. However, for those samples annealed at a 

temperature higher than 105 °C, voids are formed between strain I and strain II. In this case, 

voids are initially oriented with their longitudinal axis perpendicular to the stretching 

direction and then transferred along stretching direction via void coalescence. Additionally, 

the formation of voids influences neither the critical strains for lamellae deformation nor the 

final long period, the orientation of polymer chains or the crystal size. The final long period, 

the orientation of polymer chains in the crystal, and the crystal size are determined only by the 

stretching temperature through melting-recrystallization.  

                                                 
3
 The main part in this chapter has been published as “B. Chang, K. Schneider, F. Xiang, S. Roth, G. Heinrich. 

Critical strains for lamellae deformation and cavitation during uniaxial stretching of annealed isotactic-

polypropylene”, Macromolecules, 51 (2018) 6276-6290 
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6.1 Introduction 

Uniaxial stretching is one of the most frequently encountered loading modes which arises in 

the tensile test, or fiber spinning.[172] During uniaxial stretching, a macroscopic necking 

phenomenon of the specimen combined with a yield point on the engineering stress-strain 

curve is readily observed.[34, 173, 174] After necking, the original lamellae will be 

transformed into highly oriented structure along the loading direction.[175] In the past 

decades, abundant works have been carried out via experimental method [36] and simulation 

procedure [176] on the plastic deformation of lamellae in various semicrystalline polymers, 

for instance polyamide 6 (PA6),[36, 177] poly(ε-caprolactone) (PCL),[178] PE,[179, 180] 

PB-1,[181] and iPP.[182-185] Based on the results, two distinct mechanisms have been 

proposed to account for the plastic deformation of lamellae.[38] The first one was proposed 

by Peterson[39] and further explored by Shadrake and Guiu,[40] and Yong,[51] which 

supposed that crystallographic slips are triggered by the emission of screw dislocation from 

the edges of lamellae. The advantage of the crystallographic slip theory is that it could 

describe quite well the yield stress dependency of the lamellae thickness.[45] The second one 

is the partial melting-recrystallization theory[56, 178] which was supported by the evidence 

that the newly formed crystalline lamellae after the yield point depended only on the 

stretching temperature irrespective of the original structure.[186, 187] 

Except for the lamellae plastic deformation, a stress whitening phenomenon could be 

observed during uniaxial stretching in most cases, indicating the formation of numerous voids 

inside the bulk material.[66, 72, 75, 177, 188-190] Recent investigations about voids 

formation in semicrystalline polymers were elaborately reviewed by Pawlak, Galeski and 

Rozanski.[191] Generally, the voids can be induced before the yield,[192] during the yield or 

after the yield,[74, 193] depending on the crystal form,[194] crystallinity,[195, 196] lamellae 

branching,[197] lamellae thickness,[72] and the state of the amorphous phase.[65]  

The relationship between lamellae deformation and cavitation behavior has caught a lot of 

attentions in the past few years. In the work of Pawlak and Galeski,[188] a set of 

semicrystalline polymers with different lamellae thicknesses and crystallinity were used. An 

assumption was proposed that the cavitation or crystal plastic deformation could be activated 

only when the local stress σ is higher than that required for cavitation (σcav) or crystallographic 

slip (σsh). For a thick lamella with high plastic resistance σcav is lower than σsh, as a 

consequence the initiation of cavitation occurs first and cavitation can be readily observed. 

Whereas for a thinner lamella σsh is lower than σcav, then the crystal slip occurs first. The 
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assumption was further checked by Humbert,[198] in his work quite simple equations were 

proposed to describe the relationship between the lamellae thickness and σcav or σsh. The 

important point about the equations is that σcav decreases with the thickness of lamellae, while 

σsh increases. In addition to the study above mentioned, Hughes related the onset of both 

intense micro-voiding and stress-induced martensitic phase transitions of PE to the yield 

point.[199] However, Schneider found that martensitic transformation arose earlier than 

cavitation.[67] Auriemma found that in iPP initially crystallized α and/or γ-iPP will be 

transformed into the mesomorphic-iPP with a small fraction of nanovoids formed by the 

effect of stretching.[200] Despite the fact that numerous studies have been performed on the 

relationship between lamellae deformation and the void formation, it is still an ongoing topic. 

The main objective of this chapter is to comprehensively investigate the lamellae plastic 

deformation and the cavitation behavior in the semicrystalline polymer during uniaxial 

stretching, especially the critical strains for each structural evolution process. For this purpose, 

iPP was used as a model polymer because of its wide applications in both industrial fields and 

scientific studies. The microstructure including the thickness of lamellae, the crystallinity, and 

the mobility of the polymer chains in the amorphous phase was controlled by an annealing 

process. In particular, in-situ SAXS and WAXS measurements were performed with the 

synchrotron X-ray beam to monitor the complex hierarchical structural evolution including 

void formation, lamellae fragmentation, melting-recrystallization, polymer chains orientation, 

and more.  

6.2 The true stress-strain curves of iPP uniaxial stretched at 75 
o
C 

The true stress-strain curves of iPP stretched at 75 
o
C are recorded in Figure 6-1a. Figure 

6-1b is the enlargement of the square region in Figure 6-1a. The increase of the true stress 

with strain shows a similar trend for all curves. A linear increase of the true stress can be 

found in small strain region. Then the slope of the curve decreases gradually and afterwards 

reaches a constant value which continues in a quite large strain region. The onset of this 

region represents the maximum force on the force-displacement curve,[201] which can be 

labeled as the yield strain (𝜀𝑦). Finally, a sharp increase of the true stress appears implying the 

appearance of the strain hardening. 𝜀𝑦 and the onset strain of the strain hardening (𝜀ℎ) are 

summarized in Figure 6-1c. It can be found that regardless of the annealing temperature (Ta), 

𝜀𝑦 and 𝜀ℎ are around 0.1 and 0.95, respectively. 
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Figure 6-1 (a) The stress-strain curves of iPP with and without annealing uniaxial stretched at 

75 
o
C; (b) The enlargement part of the square region in (a) obtained by DIC system; (c) The 

plots of the critical strain at the end of elastic deformation (𝜀𝑦 ) and the onset of strain 

hardening (𝜀ℎ), and the yield stress (𝜎𝑦) as a function of annealing temperatures. 

Figure 6-1c also shows that the yield stress (𝜎𝑦) increases with Ta, which could be understood 

by employing the screw dislocation theory[202] 

 𝜎𝑦 =
𝐾(𝑇,𝜀̇)

2𝜋
𝑒𝑥𝑝 [−(

2𝜋∆𝐺𝑎(𝑇)

𝐿𝑐𝐾(𝑇,𝜀)̇𝑏𝑣
2 + 1)] Equation (6-1) 

where 𝐾(𝑇, 𝜀̇) is the crystalline shear modulus of the slip planes (which depends on the 

stretching temperature and strain rate), ∆𝐺𝑎 is the Gibbs free energy for dislocation nucleation 

(assumed to be proportional to the absolute temperature), 𝑏𝑣 is the magnitude of the Burgers 

vector, and 𝐿𝑐  can be regarded as the lamellae thickness. For the sample stretched at a 

constant temperature (namely 75 
o
C in this case), 𝜎𝑦 is controlled only by 𝐿𝑐. As has been 

demonstrated in the former chapter, annealing will perfect the lamella and increase the 

thickness of lamellae, which results in a larger 𝐿𝑐 in Equation (6-1), consequently leads to a 

larger 𝜎𝑦. 
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6.3 In Situ SAXS and WAXS Results 

In Figure 6-2, some representative 2D-SAXS patterns during stretching are provided. The 

specified strain for each pattern is provided. The stretching temperature is 75 
o
C and the 

stretching direction is horizontal.  

 

Figure 6-2 Representative 2D-SAXS patterns of iPP with different annealing histories during 

uniaxial stretching at 75 
o
C. The color scale is linear and identical for all patterns. The size of 

the pattern is 600×600 pixels. The loading direction is horizontal. 



64 

 

Without stretching, all patterns exhibit a homogenous ring, suggesting a random lamellae 

distribution with respect to the stretching direction. With the increase of Ta, the radius of the 

ring decreases and the intensity of the ring is enhanced, which results from a larger Lp and a 

narrow distribution of Lp. Upon stretching, the evolution of the pattern is quite different with 

varying annealing temperatures. For PPna, at the εH of 0.05 the homogenous ring changes into 

“two arcs” shape concentrated on the equator, indicating the slight lamellae orientation along 

the loading direction.[203] As εH increases to 0.53, the “two arcs” pattern is replaced by a 

“four arcs” elliptical pattern with the intensity focused at oblique angles. The “four arcs” 

elliptical pattern originates from the tilting of lamellae.[203] With a strain of 0.76 the lamellar 

scattering becomes very blurry, indicating the melting of the lamellae. And the diffusing 

scattering focuses mostly on the equator. As εH increases further to 1.22, the “two lobes” 

shape scattering can be found at the equator, suggesting the formation of new lamellae with 

their normal direction aligned along the loading direction. And in the center region of the 

pattern, a diamond shape scattering could be found in the vertical direction. Generally, the 

appearance of the diamond shape signal means the formation of elongated structure, such as 

fibrillary structure or voids. Since no obvious stress whitening is observed at this strain value, 

thus no certain cause can be ascribed to the streak signal immediately. In order to figure out 

the origin of the weak diamond scattering, the morphology of PPna after stretching is 

investigated by SEM measurement. The result is provided in Figure 6-3. 

 

Figure 6-3 The morphology of PPna after stretching at 75 °C. The yellow arrows are referred 

to the voids. The Figure inserted in the left image provides geometry of the whole sample (the 

red arrow indicates the stretching direction). The Figure on the right side is the enlargement of 

the square region in the left image.   

On the SEM image, the lamellae are roughly oriented with their normal along the stretching 

direction. And a few voids, rather than fibrillary structure, indicated by the arrow can be 
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found, verifying that the diamond scattering in the center region of the 2D-SAXS pattern 

originates from voids. For PP105, the “two arcs” pattern shows up at the strain of 0.05. And 

the “four arcs” elliptical pattern can be found at the strain of 0.40, which is similar to that of 

PPna. Furthermore, the scattering in the center region starts to grow along the horizontal 

direction, which is greatly different from that of PPna. The scattering on the equator provides 

evidence for the formation of the elongated structure, and the elongated structure is arranged 

with its longitude axis perpendicular to the stretching direction. With the increase of εH, the 

“four arcs” scattering diminishes gradually, suggesting the disappearance of the lamellae. 

Additionally, the scattering in the center region grows in the vertical direction, implying the 

direction transition of the elongated structure. At the εH of 1.22, the lamellae scattering shows 

up again in the form of “two lobes” at the equator and the diamond scattering is fully oriented 

in the meridian. For PP135, the typical “two-arc” pattern existed in PPna and PP105 can be 

found again at the εH of 0.05. With the increase of εH, the intensity in the center region of the 

pattern starts to grow noticeably at the equator without the formation of the “four arcs” pattern. 

The disappearance of the “four arcs” pattern indicates that no lamellar tilting occurs here. The 

evolution of the scattering at the equator changes in a similar way as that of PP105. When εH 

is further increased, the direction of the scattering transforms from the equator to the meridian 

and the scattering undergoes a significant thinning process. In addition, lamellae scattering 

can also be found at the equator.  

The 2D-WAXS patterns during stretching are presented in Figure 6-4. With the increasing of 

εH, the scattering of crystal planes changes in a similar trend for all samples regardless of the 

annealing histories. As the strain is increased, the scattering of crystal planes containing the 

axis of polymer chains ((110), (040), and (130) crystal planes) tend to focus their intensity on 

the meridian. Meanwhile, the scattering of the external two crystal planes with the index of 

(hk1) transforms into a four-point pattern, indicating the presence of two populations of 

lamellae in the material.[184] As εH is further increased, the scattering width of the crystal 

planes is broadened noticeably due to the formation of defective crystals. [184, 204]  
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Figure 6-4 Selected 2D-WAXS patterns of iPP with different annealing histories during 

uniaxial stretching at 75 
o
C. The color scale is linear and identical for all patterns. The size of 

the pattern is 600×600 pixels. The stretching direction is horizontal. 

6.3.1 Synchronize mechanical test and in-situ SAXS/WAXS measurement 

To get the critical strain for lamellae deformation and void evolution during stretching, the in-

situ SAXS/WAXS measurements and the uniaxial stretching test should be synchronized. As 
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has been proved by Millot,[36] in the elastic strain range the scattering intensity from the 

lamellae and crystal over the whole azimuthal distribution always exhibited a heterogeneous 

feature once the load is applied. The heterogeneous feature at a small strain (0.05) can be also 

found in Figure 6-2, which is caused by the positive tensile stress in stretching direction and 

the internal compressive stress perpendicular to stretching because of the Poisson effect. The 

heterogeneous intensity distribution could be well described by Herman’s orientation factor 

(fH). Figure 6-5 gives an example of the synchronization process. Before deformation, fH is -

0.016 and -0.006 for lamellae and (040) crystal plane. The small negative deviation is due to 

the slight compression force caused by the thermal expansion of the sample under 75 
o
C. 

Upon stretching, both fH values increase linearly in the elastic deformation region. Via this 

process, the onset of the mechanical test and the onset of SAXS/WAXS measurements could 

be well synchronized. In Figure 6-5, one can also see that at the same displacement, the 

growth of fH from the lamellae side is 4 times larger than that from the (040) reflections. This 

is because the constraint force from the lattice is much higher compared to the rigidity of the 

amorphous phase, which benefits a larger rotation angle of the lamella. 

  

Figure 6-5 (a) Engineering force-displacement curve (square) and the Hermann’s orientation 

factor of lamellae (circle) of PPna uniaxial stretched at 75 
o
C; (b) Engineering force-

displacement curve (square) and the Hermann’s orientation factor of (040) crystal plane 

(circle) of PPna uniaxial stretched at 75 
o
C.  

6.4 Lamellae deformation 

6.4.1 The evolution of the long period  

In this section, the evolution of Lp along the stretching direction is studied, reflecting the 

deformation of the lamellae aligned with their normal direction along the stretching direction 

and therefore suffer a tensile stress during stretching. It should be pointed out that some 2D-
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SAXS patterns exhibit elliptical “four arcs” scattering due to lamellae tilting.[103] The 

scattering maximum is located off to the equator. By plotting the 1D-SAXS curve at different 

azimuthal angle, it is found that the intensity difference between the scattering on the equator 

and on the arc is only 2 a.u., suggesting that a large group of lamellae are still oriented with 

their normal direction along the stretching direction. So the definition of Lp along the 

stretching direction is valid during the whole stretching process. The evolution of Lp as a 

function of εH is summarized in Figure 6-6a. Without stretching, Lp increases with the 

increase of Ta as a result of imperfect lamellae melting and lamellar thickening.[205] Upon 

stretching, the evolution of Lp shows a similar trend for all samples. Firstly, Lp increases 

gradually due to the separation of lamellae since that amorphous phase in between has a lower 

modulus.[36] Then Lp reaches a maximum at the εH of 0.45. As expected, the maximum Lp 

increases with Ta. With the further increase of εH, Lp starts to decrease which was also found 

by other researchers in the system of iPP,[183, 206, 207] PCL,[178] and PE.[208, 209] At an 

even larger εH, Lp reaches a plateau value and all samples show a same Lp as εH is larger than 

0.95. The decrease of Lp at moderate εH is caused by the melting-recrystallization process, 

which inserts newly formed lamellae into the old one. The DSC results in Figure 6-6b verify 

that Lc of the stretched samples is also the same, which confirms the occurrence of the 

melting-recrystallization process during stretching. After yielding, the massive fragmentation 

of lamellae via inter-lamellar slip happens and continues during the following stretching. The 

friction between the fragmented lamellae leads to an increase of the temperature of the 

sample,[206] providing the energy for the melting.  
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Figure 6-6 (a) Evolution of Lp along the stretching direction as a function of εH; (b) The 

melting behavior of the uniaxial stretched sample. 
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In Figure 6-7 the dependence of the reciprocal of the lamellae thickness (1/Lc) on the 

stretching temperature is plotted. The lamellae thickness increases as the stretching 

temperature is increased. Recently, the stretching induced crystallization was investigated by 

Men.[210] In his work, the stretching induced crystallization was proposed to be mediated by 

a mesomorphic phase, which was based on the crystallization proposed by Strobl.[211] For 

the crystallization via a mesomorphic phase, the crystallization line could be defined as[211]  

 𝑇𝑚𝑐
∞ − 𝑇 ≈

2(𝜎𝑎𝑐𝑛−𝜎𝑎𝑚)

∆𝐻𝑐𝑚

∆𝑧

𝐿𝑐
  Equation (6-2) 

where 𝑇𝑚𝑐
∞  is the transition temperature between the mesomorphic phase and crystalline phase, 

Δ𝐻𝑐𝑚 is the heat of transition from mesomorphic phase to crystalline phase, Δ𝑧 is the stem 

length increment per structural unit, and 𝜎𝑎𝑐𝑛 and 𝜎𝑐𝑚 denote the surface free energy of the 

native crystal layer and the mesomorphic layer, respectively. The slope in this study is larger 

than the one obtained by Men.[210] The difference of the slope may be caused by the higher 

molecular weight iPP used in this study, which increases the surface-free energy of the native 

crystal formed from the mesomorphic phase.[186] 

 

Figure 6-7 Dependence of the reciprocal of the lamellae thickness (1/Lc) on the stretching 

temperatures. 

6.4.2 The evolution of the crystal size 

In addition to Lp, the evolution of the crystal size from (110) and (040) crystal reflections are 

calculated based on the Scherrer equation[185]. The change of the crystal size as a function of 

strain is given in Figure 6-8. Interestingly, annealing has only a small influence on the crystal 

size. The initial 𝜏(110)  is around 19.5 nm for all samples. Obviously, the evolution of the 

𝜏(110) with εH can be divided into three regions. Region I covers a strain range from 0~0.1. In 

this region the 𝜏(110) decreases drastically from 19.5 nm to 16.2 nm; region II starts at a strain 
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of 0.1 and ends at 0.95, and the 𝜏(110) decreases further to 9.0 nm; region III covers the last 

part of the plot, and the 𝜏(110) levels off to a plateau with only small variation. The 𝜏(040) is 

larger than the 𝜏(110). But its evolution trend takes place in a similar way as the latter one. 

Two distinct transition strains (0.1 and 0.95) can be also found. Before stretching, the 𝜏(040) is 

40 nm and it decreases to 32 nm at a strain of 0.1. Further increase of the strain results in a 

further decrease of the 𝜏(040) to 21 nm. In the last region, the 𝜏(040) is changed only slightly. It 

should be pointed out that the critical strains existing in Figure 6-8a coincide with the εy and 

εh in Figure 6-1. The crystal size is determined by the peak position and the peak width of the 

reflection. To get deep insight into the structural cause of the decrease of the crystal size, the 

peak position and peak width of (040) crystal plane are provided in Figure 6-8b and c. In the 

strain range of 0~0.1, an instance increase in the instance of peak position and peak width 

could be found. Since the peak position and peak width are obtained by the vertical cut from 

the 2D-WAXS patterns, the increase of the peak position of (040) crystal plane indicates that 

the lamellae with their c-axis aligned along the loading direction are subjected to a 

compression force in the b-axis direction. In the same range, the peak position changes less 

than 1 % (see Figure 6-8b), suggesting a very small deformation of the crystallites. 

Consequently, the crystallite size is mainly reflected by the width of the peaks. In the strain 

range of 0.1~0.95, the peak width increases continually with strain (see Figure 6-8c), which 

is the result of lamellae tilting and intra-lamellae slip. By lamellae tilting and intra-lamellae 

slip, the initial lamellae are fragmented into lamellae blocks.  
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Figure 6-8 (a) The plots of the crystal size calculated from (110) and (040) crystal planes as a 

function of strain; (b) The plots of the peak position of (040) crystal plane as a function of 

strain; (c) The plots of (040) reflection peak width as a function of strain. 

6.4.3 The orientation of the c-axis of the crystal 

The orientation of the c-axis of the crystal is given in Figure 6-9. In the meantime, b-axis 

orientation obtained from 〈cos2𝜑040〉 is also provided. As it appears, annealing has a very 

weak influence on the orientation of the b-axis and the c-axis. Before stretching, the 

orientation factor is nearly 0, which suggests the random orientation of the crystal. As the 

strain is increased, a transition strain of 0.45 can be found for both b-axis and c-axis 

orientation. Beyond the strain of 0.45, the orientation of the b-axis starts to decrease and the 

orientation of c-axis increases gradually, meaning that the c-axis of the iPP crystal starts to 

orient along stretching direction while the b-axis orients perpendicular to the stretching 

direction. The critical strain for b-axis and c-axis orientation here coincides with the one 

observed in Figure 6-6a, where the long period starts to decrease from its maximum. The 

results here further prove the recrystallization process proposed in section 6.4.1. Otherwise 

the c-axis orientation will start to increase at a strain of 0.1 if the lamellae deformation 

proceeds only by intralamellar slip. 
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Figure 6-9 The Herman’s orientation factor (fH) of b-axis and c-axis of the crystal during 

uniaxial stretching. 

It should be noted that the polymer chains orientation discussed above is valid only for the 

crystalline phase because (110) and (040) reflections are related to the crystal. The polymer 

chains orientation in the amorphous phase is not investigated in this work. Recently, by using 

Raman measurement and small-angle neutron scattering (SANS) the molecular conformation 

and single chain orientation in the amorphous phase of PE during cold drawing were studied 

by López-Barrón,[179] which would be helpful to have an overview about the polymer chains 

orientation in the crystalline and the amorphous phase. López-Barrón’s results showed that 

the molecular alignment in the amorphous phase grew steadily throughout the initial elastic 

deformation and the subsequent plastic deformation, and reached a plateau at the onset of 

mechanical strain hardening because further stretching would need more energy to pull the 

chains out from the lamellae or rupture the tie chains.  

6.4.4 The evolution of the crystallinity  

The crystallinity of iPP during stretching is provided in Figure 6-10. It is obvious that after 

annealing, a higher crystallinity can be found. The evolution trend is similar for all samples 

with different annealing histories. Before the strain of 0.1, the crystallinity stays nearly the 

same, suggesting that mainly elastic deformation happens. Beyond the yield strain, a 

continuous decrease of the crystallinity sustains until the end of stretching. The crystallinity is 

higher for the sample with a higher annealing temperature at any strain during stretching. The 

slope of the decreasing trend of the crystallinity for the samples does not change much during 

the whole stretching process, which is similar with the result by Lin[212] when a stretching 

temperature between 40~90 °C is chosen. The critical strains for the melting-recrystallization 

and the strain hardening do not show up on the plot, due to that the crystallinity of semi-

crystalline polymers is influenced by many factors including intra-lamellae slip, melting-

recrystallization, phase transition, and pulling out of polymer chains from crystals.[183, 185, 

212, 213] 



73 

 

 

Figure 6-10 The evolution of the crystallinity as a function of Hencky strain. 

Combining the results from macroscopic true stress strain curve with microscopic long period, 

crystal size, polymer chains orientation, and crystallinity development during stretching, a 

few critical strains rarely influenced by annealing are found. According to the critical strains, 

the lamellae deformation during stretching could be divided into four regions. Region I covers 

a strain range from 0 to 0.1. In this region, elastic deformation is the dominant process 

resulting in a steep increase of true stress. In the meantime, the long period along the 

stretching direction is slightly increased, which is mainly caused by the elastic elongation of 

the amorphous phase.[36] In addition, the crystal size suffers a steep decrease, but the 

crystallinity stays with negligible variation. Region II starts at 0.1 and ends at 0.45. In this 

region, the deformation of lamellae occurs mainly by intra-lamellar slip. The lamellae are 

fragmented into blocks without orientation. The friction between the fragmented lamellae 

during intra-lamellar slip provides the energy of lamellae melting. Region III has a strain 

range from 0.45 to 0.95. In this region, recrystallization happens and the distinct polymer 

chains orientation appears because the newly formed lamellae are aligned with their c-axis 

along the stretching direction. The recrystallization process is mediated by the formation of a 

mesomorphic phase.[186] The long period of newly formed lamellae depends only on the 

stretching temperature. Region IV covers all the strain above 0.95. The long period and the 

crystal size stay nearly unchanged, suggesting that the recrystallization process is terminated. 

The newly formed lamellae serve as the anchoring point for the polymer chains in the 

amorphous phase. The tightening of the polymer chains in the amorphous phase in between 

the lamellae blocks gives rise to the strain hardening behavior.  
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6.5 Cavitation behavior 

6.5.1 The onset strain of the voids formation and the voids direction transition 

The evidence of the void formation, as shown in Figure 6-2 is the appearance of a streak or 

elongated elliptical signal depending on the annealing temperature. In both cases, the 

scattering of voids is quite weak at the very beginning. In fact, the scattering in the center 

region of the 2D-SAXS patterns is made up by two parts: the heterogonous elongated one 

from the voids and the homogenous one from the matrix. Therefore, to extract the void 

scattering out from the pattern, the intensity correction of 𝐼ℎ𝑣(𝑠) = 𝐼ℎ(𝑠) − 𝐼𝑣(𝑠) or 𝐼𝑣ℎ(𝑠) =

𝐼𝑣(𝑠) − 𝐼ℎ(𝑠) is employed, depending on the direction of the void. 𝐼ℎ(𝑠) and 𝐼𝑣(𝑠) represent 

the plot of the scattering intensity as a function of the scattering vector in horizontal and 

vertical cut, respectively. Meanwhile, at the small angle region of the 2D-SAXS pattern, the 

scattering intensity as a function of scattering vector should obey Guinier’s law, which is 

given by 

 𝐼(𝑠) = 𝐼0𝜌
2𝑉2exp⁡(−4𝜋2𝑠2𝑅2/3) Equation (6-3) 

where 𝐼(𝑠) is the corrected intensity of scattering, 𝐼0 is the scattering intensity at the scattering 

vector of 0, 𝜌 is the electron density difference, 𝑉 is the volume of scattering, and𝑅 is the 

gyration radius.[214] Figure 6-11a and b show the evolution of the corrected intensity of 

PP120 as a function of εH. Once the void is formed, 𝑅 should be larger than 0 if the intensity 

correction is performed in the streak direction, and 𝑅 will be increased during the growth of 

voids, see Figure 6-11c. Therefore, the εH where 𝑅 > 0 is used as the critical strain for void 

formation. As the direction of voids is changed, 𝑅 should be larger than 0 in the direction 

transversal to the initial direction, see the plot of the red circles in Figure 6-11c. The critical 

strain for voids formation and voids direction transition are summarized in Figure 6-11d. In 

Figure 6-11d, two types of void formation can be confirmed.  
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Figure 6-11 The logarithm of the corrected scattering intensity as a function of s
2
 at different 

strains of PP120: (a) covers Hencky strains from 0.16 to 0.62 (formation of Type II voids) 

and (b) covers Hencky strains from 0.62 to 1.16 (direction transition for Type II voids). For 

clarification, the plots are vertically shifted; (c) The radius of gyration (R) as a function of the 

Hencky strain via the slope of Figure (a) and (b); (d) The critical Hencky strain for the void 

formation and void direction transition of iPP with different annealing history during uniaxial 

stretching at 75 °C. 

Type I exists in the sample with Ta lower than 90 
o
C, of which the critical strain for void 

formation is 0.73, 0.75, and 0.68 for PPna, PP75, and PP90. The longitudinal size of the voids 

is along the stretching direction once the voids is formed. Type II can be found in the sample 

with Ta higher than 105 
o
C, of which the longitudinal direction of the voids is perpendicular to 

the stretching direction once voids are formed, and transfers toward the stretching direction at 

a larger strain. The critical strain of type II void formation decreases slightly from 0.31 to 0.23 

as Ta is increased from 105 
o
C to 135 

o
C. Meanwhile, the critical strain of the voids direction 

transition is around 0.66. 

6.5.2 The evolution of the voids size 

The evolution of the void size is shown in Figure 6-12. For PPna, 𝑆∥ increases from 190 nm 

to 339 nm as the strain increases from 0.8 to 1.6. PP75 and PP 90 show a similar trend, but the 

slope decreases from 187 nm/1 (PPna) to 121 nm/1 (PP90). For PP105, PP120, and PP135, 𝑆∥ 

increases from 35 nm to 82 nm and 𝑆⊥ is around 198 nm in the small strain range. During the 

void direction transition, the extrapolation and fitting process does not work because no 

obvious streak signal could be recognized in the 2D-SAXS pattern. So no information about 

the void size is provided in the strain region of 0.4~0.8. As the void direction is totally 

transferred, 𝑆∥ grows from 116 nm to 216 nm for PP105, from 111 nm to 195 nm for PP120, 
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and from 99 nm to 157 nm for PP135. The slope of the plot decreases from 111 nm/1 to 105 

nm/1 and then further to 98. In addition, in the large strain range, 𝑆⊥ is nearly the same for all 

samples and it decreases slightly from 68 nm to 55 nm. From Figure 6-12 it can be found that 

𝑆∥ decreases with the increasing of annealing temperature, which is also found by Men.[215] 

In addition, the slope of 𝑆∥ as a function of the strain decreases continually from 187 to 98, 

suggesting that a larger energy barrier needs to be overcome as the annealing temperature is 

increased. The possible reason for this lies in the difference of the number of voids per 

volume, which will be explored in the following part. 

  

Figure 6-12 Evolution of (a) the void size along the stretching direction (S∥) and (b) the void 

size perpendicular to the stretching direction (S⊥) of iPP with different annealing histories 

uniaxial stretched at 75 
o
C. 

6.5.3 The scattering invariant (Q) of the voids 

Figure 6-13 plots the change of Q as a function of εH. Apparently, with the increase of Ta Q is 

enhanced greatly especially for PP105, PP120, and PP135, which meaning that the volume 

fraction of voids is greatly increasing. Due to that the size of the voids is decreased as shown 

in Figure 6-12, it can be inferred that the number of voids per volume is increased with 

annealing. As εH is larger than 1.35, a slight decrease shows up for PP105 which is caused by 

the thinning of voids. For PP135, the decrease of Q as εH exceeds 1.25 is probably caused 

partly by the void coalescence[216] and partly by the fact that the size of the void exceeds the 

detection resolution of SAXS. 

0.0 0.4 0.8 1.2 1.6
0

100

200

300

400
 PPna

 PP75

 PP90

 PP105

 PP120

 PP135

S
//
 (

n
m

)



(a)

0.0 0.4 0.8 1.2 1.6
0

100

200

300

400
 PPna

 PP75

 PP90

 PP105

 PP120

 PP135

S

(

n
m

)

H

(b)



77 

 

 

Figure 6-13 Evolution of scattering invariant (Q) of iPP with different annealing histories 

uniaxial stretched at 75 
o
C. 

6.5.4 The morphology of voids 

The morphology of PPna with εH of 1.5, and PP135 with εH of 0.25 and 1.5 are provided in 

Figure 6-14. Two types of void can be clearly seen. For PPna with εH of 1.5, a few voids with 

their longitude direction along the stretching direction can be found. For PP135 with εH of 

0.25, the number of voids is much larger than that in PPna with εH of 1.5. In addition, the 

longitude direction of the void is mainly perpendicular to the stretching direction. The average 

size in the long axis and short axis direction are 280 nm and 80 nm, which fits the result in 

Figure 6-12. For PP135 with εH of 1.5, abundant crazes consisting of voids and fibrillary 

links separating voids can be found. The direction of the longitude of the voids is transferred 

to the stretching direction. The SEM images in Figure 6-14 coincide well with the results 

obtained from SAXS measurement where a smaller voids size and larger voids number exist 

in PP135 compared with PPna. 
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Figure 6-14 The morphology of PPna with εH of 1.5, and PP135 with εH of 0.25 and 1.5. The 

yellow arrows are referred to the void. Figures inserted in the left corner showing the sample 

geometry could provide the information about the stretching direction (indicated by the red 

arrow). The images on the second row are the enlargement of the square region in the images 

on the first row. 

In the past few years the molecular origin of void formation was studied by different groups. 

Since the voids are formed mainly in the amorphous phase, the molecular origin of void 

formation was related to the molecular motion in the amorphous phase. In the work by 

Lu,[182] the void formation at large strain deformation was proposed to be a consequence of 

the disentanglement of the highly oriented amorphous network initiated by the breaking of 

interfibrillar tie chains. Whereas, Ge[217] proposed that disentanglement is not geometrically 

necessary to accommodate void propagation because the chains in deformed glassy polymers 

are constrained by their rheological tubes rather than by entanglements that act like discrete 

cross-links. And Ge proposed that clustering of the polymer chains into fibrils may be the 

mechanism of void formation without entanglement loss.[217] The molecular weight of 

PP135 with and without abundant cavitation is given in Figure 6-15. It is obvious that the 

molecular weight of the two samples overlaps quite well, suggesting that the breaking of 

polymer chains is not the compulsive condition for void formation. However, the conclusion 

by Ge was deduced from crazing behavior of the glassy polymer. In this study, the sample 

was stretched at 75 
o
C which is much higher than the glass transition (around 0 

o
C for 

crystallized iPP). At this temperature, the chains in the amorphous phase of the polymer will 

have a higher mobility. Therefore, no stringent conclusion concerning whether the polymer 
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chains are disentangled or not can be inferred from Figure 6-15. More work dealing with the 

molecular origin of void formation in semicrystalline polymers should be performed in the 

future. 

 

Figure 6-15 The molecular weight of iPP from the un-deformed region and stress-whitening 

region. 

The existence of two types of voids might be related to very different local stresses in the 

amorphous phase. For the sample with an annealing temperature lower than 90 
o
C, Type I 

voids in the stretching direction are formed. The voids are induced in an oriented network in 

which the crystals serve as the skeleton and the polymer chains connect the crystals together. 

The amorphous phase is subjected to a strong constraint force in the direction perpendicular to 

the stretching direction, that’s why the voids are oriented along the stretching direction. For 

the samples with an annealing temperature higher than 105 
o
C, the connection between the 

amorphous phase and the lamellae is stronger. The extension force is transmitted to the 

amorphous phase in a better way. Meanwhile, the lamellae are thicker and stiffer. Due to the 

restriction of the lamellae, type II voids are formed initially transversal to the stretching 

direction. As the strain increases, the voids come in contact with other ones nearby during the 

growth process and then coalesce with each other into larger voids, which were verified by 

Selles with the help of the magnified holotomography technique.[177] With the further 

increase of the strain, the lamellae are fragmented into blocks and oriented fibrillar structures 

are formed, hence the constraint force in the direction perpendicular to the stretching direction 

is enlarged. Therefore, the void direction transfers finally to the stretching direction.  

6.6 Final discussion 

On the basis of SAXS and WAXS results, the critical strains for lamellae deformation as well 

as void formation and growth of iPP with various annealing histories are summarized in 
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Figure 6-16. And the relationship between lamellae deformation and voids formation is also 

discussed here.  

 

Figure 6-16 Critical strains for lamellae deformation as well as voids formation and growth 

for iPP with various annealing histories during uniaxial stretching at 75 °C. 

Firstly, the lamellae deformation is revealed to proceed in the time scales of inter- and intra-

lamellar slip, fragmentation, and melting-recrystallization separated by three critical strains 

which were rarely influenced by annealing. Strain I (0.1) marks the end of elastic deformation 

and the onset of intra-lamellar slip. Strain II (0.45) signifies the start of the recrystallization 

process, where the long period in the stretching direction begins to decrease from its 

maximum and the polymer chains in the crystal start to orient along stretching direction. The 

energy for the melting arises from the friction between the fragmented lamellae produced by 

inter-lamellar slip. Strain III (0.95) denotes the end of the recrystallization process. Beyond 

the strain of 0.95, the long period of the lamellae and the crystal size remain nearly unchanged. 

The newly formed lamellae serve as anchoring points for polymer chains in the amorphous 

phase during further stretching. The extension of the polymer chains between the lamellae 

triggers the strain hardening behavior. 

Secondly, annealing significantly intensifies the formation of cavities by advancing the 

critical strain of voids formation and increasing the number of voids. For those samples 

annealed at a temperature lower than 90 
o
C, voids are formed between strain II and strain III. 

The voids are oriented in the stretching direction once they are formed. For samples annealed 
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at a temperature higher than 105 
o
C, voids are formed between strain I and strain II. In this 

case the voids are initially oriented with their longitude axis perpendicular to stretching 

direction and then transferred along the stretching direction via small void coalescence.  

The existence of two types of voids might be related to very different local stresses in the 

amorphous phase. For the sample with an annealing temperature lower than 90 
o
C, voids are 

formed between strain II and strain III. During void formation the dominant lamellae 

deformation process is lamellae melting-recrystallization. Therefore the critical strain for void 

formation shows no obvious dependence on lamellae thickness, because most of the lamellae 

have been fragmented via intra-lamellar slip. In addition, as evidenced in Figure 6-9Figure 

6-9 The Herman’s orientation factor (fH) of b-axis and c-axis of the crystal during uniaxial 

stretching. the polymer chains in the crystal are oriented along the stretching direction. So the 

voids are induced in an oriented network in which the crystals serve as the skeleton and the 

polymer chains in amorphous phase connect the crystals together. The amorphous phase is 

subjected to a strong constraint force in the direction perpendicular to the stretching direction, 

that’s why the voids are oriented along the stretching direction once the voids are formed. For 

the samples with an annealing temperature higher than 105 
o
C, the critical strain for type II 

void formation is located between 0.1 and 0.45. By annealing the lamellae are thicker and 

have a higher inter-lamellar slip resistance. Therefore, the connection between the amorphous 

phase and the lamellae is stronger. The extension stress is better transmitted to the amorphous 

phase. Due to the restriction of the lamellae, type II voids are formed initially transversal to 

the stretching direction. As the strain increases, the voids come in contact with other ones 

nearby during the growth and then coalesce with each other into larger voids, which were 

verified by Selles with the help of the magnified holotomography technique.[177] With the 

further increase of the strain, the lamellae are fragmented into blocks and oriented fibrillary 

structures are formed, hence the constraint force in the direction perpendicular to the 

stretching direction is enlarged. Therefore, the voids direction transfers finally to the 

stretching direction. During the further stretching process, the voids grow in the stretching 

direction and become thinner in the transverse direction. 

Thirdly, the advancing of the voids formation by annealing influences neither the critical 

strains for lamellae deformation nor the final long period, the orientation of polymer chains or 

the crystal size. This is different from the results of the group of Rozanski.[65, 184, 218, 219] 

By controlling the state of the amorphous phase, a cavitation/non-cavitation iPP model system 

with an identical lamellae structure was obtained by Rozanski. They demonstrated that the 
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reduction of the crystallites of cavitating iPP was approximately 5 %-10% greater than in the 

case of the non-cavitating system, suggesting that the presence of cavities clearly facilitates 

generating instability and increases the intensity of the lamellae fragmentation process. The 

orientation degree of polymer chains (at the identical value of the local strain) is significantly 

higher in the case of cavitating iPP, because smaller crystallites present in the cavitating 

material will easily undergo tensile-induced rotation around the deformation direction, in 

contrast to the case of a non-cavitating material. Therefore, the key point is the question about 

factors contributing to the increase of the orientation of polymer chains in the crystal: rotation 

of fragmented crystallites or newly formed crystals by recrystallization with the polymer 

chains aligned along stretching direction. In our case, the recrystallization process is verified 

to take place in the strain range of 0.45~0.95. Consequently, the final long period, the 

orientation of polymer chains in the crystal, and the crystal size were controlled by the 

recrystallization process, which is scarcely influenced by void formation. 

6.7 Conclusion 

The lamellae deformation and cavitation behavior of annealed isotactic-polypropylene during 

uniaxial stretching were comprehensively investigated by in situ synchrotron small-angle X-

ray and wide-angle X-ray scattering. On one hand, lamellae deformation was revealed to 

occur in the time scale of elastic deformation, intra-lamellar slip, and melting-recrystallization 

separated by three critical strains which were rarely influenced by annealing. On the other 

hand, annealing significantly intensified the cavitation behavior by decreasing the critical 

strain for the void formation and increasing the number of voids. Additionally, voids 

formation influences neither the critical strain values for lamellae deformation nor the final 

long period, polymer chains orientation or the crystal size. The final long period, polymer 

chains orientation in the crystal and the crystal size were determined only by the stretching 

temperature through the melting-recrystallization process. Since the recrystallization process 

is controlled mainly by stretching temperature, further work on the influence of stretching 

temperature on lamellae deformation and cavitation behavior is in progress. The work will be 

helpful to understand the relationship between the microstructure evolution and the 

mechanical properties of semicrystalline polymers during stretching.  
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7 Accelerating shear-induced crystallization and enhancing crystal 

orientation of iPP by controlling the morphology of N,N'-dicyclohexyl-2,6-

naphthalene dicarboxamide
4
  

Accelerating shear-induced crystallization and enhancing crystal orientation of isotactic-

polypropylene (iPP) via controlling the morphology of N,N'-dicyclohexyl-2,6-naphthalene 

dicarboxamide (NJS) is reported in this chapter. By adjusting the final heating temperature, 

dotlike, needlelike, and treelike NJS are formed in the composite. Polymer chains with higher 

molecular weight are anchored on the surface of NJS due to selective absorption. During 

shear-induced crystallization, the anchoring points will inhibits the relaxation of oriented 

polymer chains once shear ceases. The reserved oriented polymer chains forms into shish to 

induce the formation of highly oriented “shish-kebab” structure. Since that the composite with 

treelike NJS provides the largest number of anchoring points, so it has the shortest 

crystallization induction time. In addition, the NJS branches detached from the tree orient 

themselves in the shear direction, facilitating greatly the crystal orientation in the composite. 

The results provide a possibility to use the nucleating agent more efficiently during shear-

induced crystallization, which sheds light in the field of scientific research and industrial 

processing. 

  

                                                 
4
 The main part in this chapter has been submitted as “B. Chang, K. Schneider, B. Lu, R. Vogel, G. Heinrich. 

Accelerating shear-induced crystallization and enhancing crystal orientation of isotactic polypropylene by 

controlling the morphology of N,N'-dicyclohexyl-2,6-naphthalene dicarboxamide”, to Polymer, under revision 



84 

 

7.1 Introduction 

Shear flow, which exists broadly in injection molding, extrusion, and fiber spinning, 

influences greatly the crystallization kinetic [220-222] and the crystalline morphologies [223-

225] of semicrystalline polymers. The first evidence of shear-induced crystallization (SIC) was 

obtained by Pennings.[226] By means of stirring, Pennings proved that a highly oriented crystal 

morphology different from spherulites was formed, consisting of a long extended-chain crystal 

(shish) surrounded by chain-folded lamellae (kebab).[226] Normally, the shish serves as the nuclei 

and the kebab grows epitaxial on shish. So, the formation of shish is the key for the existence of 

shish-kebab structure. The thermodynamic mechanism responsible for the formation of shish is 

that via applying the flow field the entropy of polymer chains is reduced,[227, 228] which 

facilitates the nucleation process. From the molecular aspect, a few models have been proposed. 

The first model is that polymer chains with a molecular weight higher than the critical 

molecular weight (M*) will undergo a coil-to-stretch transition.[229] The fully stretched 

chains are assigned to form shish. However, with the help of deuterium labeling and small-

angle neutron-scattering, Kimata et al.[221] found that long chains are not overrepresented in 

the shish relative to their concentration in the material as a whole. In the meantime, Li et 

al.[230] found that the critical strain for shish formation in the polyethylene (PE) melt is 1.57. 

The value is much smaller than the critical strain needed to fully stretch the polymer chains, 

but enough to ensure full extension of chain segments locked between two adjacent 

entanglement points. Therefore, it is proposed that the formation of shish stems from stretched 

polymer chains network rather than coil-stretch transition.[231, 232] 

The shish formation is sensitive to the addition of fillers, due to the interaction between 

polymer chains and fillers.[233-236] And the interaction is influenced greatly by the 

morphology of fillers.[237-242] To name a few, Byelov et al.[243] observed that compared to 

isotopic cis-endo-bicyclo[2.2.1]heptane 2,3-carboxylate disodium salt, platelet-like talcum 

powder or elongated 2,20-methylene bis(4,6-di-tert-butylphenol) phosphate sodium salt lead 

to greater numbers of shear-induced nuclei. Xu et al.[240] found that both one-dimensional 

carbon nanotubes (CNTs) and two-dimensional graphene nanosheets (GNSs) could serve as 

nucleating agents in accelerating the crystallization kinetics of poly(l-lactide) (PLLA); but the 

ability of CNTs to induce crystallization was stronger than that of GNSs. 

Although fruitful results have been obtained in this field, some of the results are controversial 

with each other. For example, Feng et al.[244] demonstrated that sorbitol-based nucleating 

agents could stabilize the shear-induced shish nuclei. Patil et al.[242] observed that single 
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wall carbon nanotubes (SWCNT) led to increased shish formation, while zirconia 

nanoparticles destabilized shish formation. Phillips et al.[235] found that the shish relaxes 

faster in the presence of fillers because that the fillers induce lower molecular weight chains 

to participate in shish formation. The apparent controversial results may be caused by the fact 

that not only the morphology of the filler is changed, but also the substance of the fillers is 

different in previous reports.  

Recently, the self-assembly process of N,N'-dicyclohexyl-2,6-naphthalene dicarboxamide 

(NJS) has caught a lot of attentions.[245-248] The self-assembly of NJS is proposed to 

proceed by dissociation/association of hydrogen bonds connecting the small molecules in 

solid NJS.[247, 248] During heating, the dissociation of hydrogen bonds results in the 

diffusion of small NJS molecules into iPP matrix. By controlling the final heating temperature 

(Tf), different amount of NJS is reserved in iPP melt. Upon cooling, the diffused small 

molecules tend to grow on the residuary NJS particles by hydrogen bonds association.[248-

250] Via self-assembly, NJS can form into dotlike, needlelike, and treelike morphologies. The 

various morphologies exhibited by NJS endow a possibility to investigate the role of filler 

morphology in shear-induced crystallization of semi-crystalline polymer.  

In this chapter, the interaction between polymer chains and NJS is studied based on its 

rheological behavior. Then the shear-induced crystallization behavior of iPP/NJS composite 

with dotlike, needlelike, and treelike NJS is investigated. The microstructure and morphology 

of the composite after crystallization are also checked. The results prove that by controlling 

the morphology of NJS, distinctly different crystallization kinetics and lamellae orientation 

degree are obtained, which is of great scientific and industrial importance. In addition, the 

possible mechanism responsible for the crystallization is given. 

7.2 The self-assembly process of N,N'-dicyclohexyl-2,6-naphthalene dicarboxamide 

Figure 7-1a shows the morphology of NJS during the heating process. At 260 
o
C, NJS forms 

dotlike particles. The particles are randomly distributed in the iPP matrix. As the final heating 

temperature (Tf) increases, the density of the particles decreases gradually. At 280 
o
C, the 

majority of NJS disappears. And when Tf is higher than 290 
o
C, NJS vanishes totally in the 

iPP matrix. As the matrix is cooled from different Tf, three distinct types of NJS morphology 

can be found (see Figure 7-1b), which are dotlike (260 
o
C and 270 

o
C), needlelike (280 

o
C), 

and treelike (290 
o
C, 300 

o
C, and 310 

o
C). It is obvious that the morphology of NJS after 

cooling heavily depends on the residual part before the cooling process. In the work by Feng 



86 

 

[248], the self-assembly process of N,N′-dicyclohexylterephthalamide (DCTH) in iPP matrix 

was investigated by Fourier transform infrared spectroscopy (FTIR). It was revealed that the 

self-assembly of DCTH was related to the dissociation/association of hydrogen bonds and the 

conformational change of DCTH molecules.  

 

 

Figure 7-1 (a) Optical micrographs of the NJS morphology at different temperatures during 

the heating process; (b) the morphology of NJS at 160 
o
C cooled from different final heating 

temperatures (Tf); (c) the molecular formula of NJS and DCTH; (d) the heat release of NJS 

during the cooling process of iPP/NJS composites after annealing at different Tf. For 

clarification, the curves are vertically shifted.  

The molecular formulas of NJS and DCTH are quite similar (see Figure 7-1c). Both of them 

comprise amido bond and the molecules are connected by hydrogen-bonds. Therefore, it is 

reasonable to infer that the dissolution of NJS in Figure 7-1a could be regarded as the 

dissociation of hydrogen-bonds upon heating. The dissociation releases the small NJS 
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molecules into the matrix. The higher the temperature, the more NJS dissolves. Because of the 

hydrogen-bonds, the small dissolved NJS molecules tend to crystalize on the remaining NJS 

particles during the cooling process. As a consequence, the length of NJS particles grows 

gradually while the number of NJS particles remains nearly unchanged, resulting in the 

formation of needlelike NJS. The crystallization process of NJS during cooling is also 

confirmed by DSC, see Figure 7-1d. When Tf is lower than 280 
o
C, a broad diffuse 

crystallization peak shows up on the curve, indicating the gradual growth of NJS. However, 

when Tf is higher than 290 
o
C the crystallization peak is quite sharp, suggesting the 

crystallization process. The crystallization peak shifts towards lower temperatures with 

increasing Tf, which is probably caused by the more intense dissolution of mobile NJS small 

molecules in the iPP.  

The length of NJS particles as a function of temperature during cooling is provided in Figure 

7-2. When Tf is lower than 270 
o
C, a slight increase of the NJS length can be found. This 

means that the morphology of NJS remains dotlike during cooling. When Tf reaches 280 
o
C, 

the length of NJS increases noticeably from 4 μm to 11 μm. In addition, it can be found that 

the growth of NJS completes before the temperature reaches 205 
o
C during cooling. As Tf is 

higher than 290 
o
C, no residual NJS exists in iPP matrix. Once the nucleating point in the 

matrix is formed, the small NJS molecules crystalize on the nucleating point rapidly, leading 

to the formation of treelike NJS. Therefore, the length of the treelike NJS is not displayed in 

Figure 7-2. The growth of the treelike NJS during cooling is presented in a more vivid way in 

Video S1 of the Supporting Information of Ref. [245].  
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Figure 7-2 The length of the dotlike and needlelike NJS as a function of temperature during 

the cooling process. 
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7.3 Rheological behavior 

7.3.1 Frequency sweep test 

Figure 7-3 provides the plot of G′ as a function of ω. At small frequency (ω  0.3 rad/s), 

composites with dotlike or needlelike NJS have a smaller G' than pure iPP. The slope in the 

low frequency regime is larger than that of pure iPP. As the morphology of NJS changes from 

dotlike to needlelike, the slope decreases from 1.67 to 1.56. The composites containing 

treelike NJS have a larger G' and smaller slope (about 0.8) in the low frequency regime than 

that of pure iPP, indicating the enhancing effect of treelike NJS on G'. The enhancement is 

typical for polymer based composites comprising a filler network.[251]   

 

Figure 7-3 G’ as a function of ω of pure iPP and iPP/NJS composites cooled from different Tf. 

7.3.2 Strain sweep test 

Figure 7-4 presents the plot of G′ as a function of γ during strain sweep. Due to the strain 

induced disentanglement of polymer chains, a drastic drop of G′ shows up as strain amplitude 

exceeds a critical strain (γc). The γc is about 166 % for pure iPP. For the composites with 

dotlike or needlelike NJS, the γc is nearly the same with that of pure iPP, indicating that the 

addition of dotlike or needlelike NJS has a negligible influence on the disentanglement of 

polymer chains, although the accelerated disentanglement of polymer chains by slip at the 

polymer/filler interfaces[252] or strain amplification effect[253] was previously reported. The 

composites with treelike NJS exhibit two γc. The first γc is at only 6 %, and the second γc is 

277 %. The appearance of the first γc can be ascribed to the breakdown of NJS network, 

which is frequently observed in the composite with a high volume ratio of fillers.[254] The 

breakdown of NJS network is caused by the de-bonding of NJS branches from the tree upon 

dynamic shear flow. The second γc should be ascribed to the disentanglement of polymer 
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chains in the matrix. In addition, it is interesting to note that all iPP/NJS composites have 

lower G′ than pure iPP. For instance, at the γ of 0.1 %, the G′ of pure iPP and iPP/NJS 

composites are 671 Pa and 434, 419, 378, 614, 495, 425 Pa as Tf increases from 260 
o
C to 310 

o
C. This weakening effect is controversial with the common case where the adding of fillers 

leads to a higher G′ than pure polymer.[255] The abnormal decrease of G′ should be caused 

by the special interaction between polymer chains and NJS. The reason responsible for that 

will be further discussed below.  

  

Figure 7-4 G′ as a function of strain amplitude (γ) of pure iPP and iPP/NJS composites cooled 

from Tf. 

7.3.3 Steady-state shear test 

In Figure 7-5 a comparative study of the steady-state shear viscosity (𝜂(𝛾̇)) and dynamic 

complex viscosity 𝜂∗(𝜔)  is provided. The Cox-Merz rule holds for pure iPP and the 

composite with dotlike NJS. For the composite with needlelike NJS, a decrease of 𝜂 shows up 

as 𝛾̇ overpasses 10
-2

 as a result of the preferential orientation of NJS in the shear direction. 

For the composite with treelike NJS, 𝜂 is decreased drastically during the steady-state shear 

test. And obviously, Cox-Merz rule fails for the iPP/NJS composites with treelike NJS. As 

shown in Figure 7-4, the treelike NJS is stable unless γ is smaller than 6 %. So, herein it is 

reasonable to relate the failure of the Cox-Merz rule with the disruption of the network of 

treelike NJS.[256] During disruption the NJS branches are detached from the tree, leading to 

the formation of tremendous needlelike NJS in the melt. And the orientation of needlelike 

NJS gives rise to the obvious decrease of 𝜂 with a function of 𝛾̇. 
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Figure 7-5 Steady-shear viscosity (η) and complex viscosity (η*) of pure iPP and iPP/NJS 

composites cooled from different Tf. 

In Figure 7-5, it can be also found that compared with pure iPP, the viscosity of the 

composite is decreased, which coincides with the decrease of G' in Figure 7-4. The reduction 

of viscosity may facilitate polymer processing procedures. But it is quite abnormal since that 

according to Einstein,[257] the addition of rigid particles to a liquid will lead to an increase in 

viscosity. The decreased viscosity in iPP/NJS composites can be understood by the selective 

adsorption mechanism proposed by Jain.[258] Based on the selective adsorption mechanism, 

the anchoring of polymer chains on the surface of fillers happens in the following way: at the 

beginning, a layer of polymer chains is formed surrounding fillers rapidly. The molecular 

weight distribution in the layer is the same as the matrix. However, polymer chains in the 

layer are in a non-equilibrium state and they are attached to the surface of fillers by anchoring 

point. A higher molecular weight gives rise to more anchoring points; subsequently, polymer 

chains with low molar mass move away from the layer into the matrix because they have less 

anchoring points on the surface of fillers. In the meantime, the higher molar mass chains are 

attached to the surfaces due to the increased anchoring points; finally, the matrix of the 

composite is composed of polymer chains with lower molecular weight. According to the 

power law, the zero-shear viscosity decreases with molecular weight with a power of 3.4. 

Consequently, the viscosity of the composite is lower than that of pure iPP. 

As the morphology of NJS changes from dotlike to needlelike, the viscosity of the composite 

is further decreased as shown in Figure 7-5. This is because that a larger length will provide 

more anchoring points for polymer chains. In the composite with treelike NJS, the network of 

treelike NJS is disrupted upon the shear flow. The broken of NJS network leads to the 

detachment of branches from the tree. Therefore, abundant needlelike NJS are formed in the 

sheared melt. The drastic increase of the number of needlelike NJS further enlarges the 

10-3 10-2 10-1 100 101 102

103

104

 260 °C

 270 °C

 280 °C

 (1/s)

 

 

 Pure iPP


 (
P

a
*s

)

 (rad/s)

Tf

(a)


* 

(P
a
*s

)

10-3 10-2 10-1 100 101 102

103

104

 (1/s)

 

 

 290 °C

 300 °C

 310 °C
 (

P
a
*s

)

 (rad/s)

Tf

(b)


* 

(P
a
*s

)



91 

 

anchoring possibility of polymer chains on the surface of NJS. Consequently, the composite 

with treelike NJS owns the lowest viscosity. 

7.4 Shear-induced crystallization  

7.4.1 Crystallization kinetics studied by rheological method 

Figure 7-6 shows the changes of G′ with the crystallization time at 142 
o
C. The increase of G′ 

can be correlated to the growth of crystals.[255, 259] Generally, the curves show an evolution 

from the initial low plateau value at the beginning of crystallization to a rapid increase, and 

then approaching a plateau value at the ending of the crystallization range, which is similar 

with the evolution trend reported by other researchers.[237, 260] The onset time for the rapid 

increase is defined as the nucleation induction time (t0).[261] For pure iPP, no crystallization 

happens during the test. The composite with dotlike or needlelike NJS owns a t0 of 620 s, 

suggesting the accelerating effect of NJS on the shear-induced crystallization behavior of iPP. 

As the morphology of NJS changes into treelike, t0 is decreased drastically to 250 s, indicating 

a stronger accelerating effect of treelike NJS on the shear-induced crystallization kinetics of 

iPP. 

   

Figure 7-6 (a) G’ as a function of crystallization time (t) during isothermal crystallization 

after shear of pure iPP and iPP/NJS composites with different Tf; (b) Avrami plots during 

isothermal crystallization after shear of pure iPP and iPP/NJS composites with different Tf. 

The shear rate is 1 s
-1

, the shear duration is 10 s and the crystallization temperature is 142 
o
C. 

The crystallization kinetics of the composite can be quantitatively described by the Avrami 

equation,[262]  

 ln(− ln(1 − 𝑥(𝑡))) = 𝑛𝑙𝑛𝑡 + 𝑙𝑛𝐾 Equation (7-1) 
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where K is the growth function, n is the Avrami exponent, and x(t) is the relative crystallinity. 

x(t) is normally estimated by logarithmically normalizing G′:[263, 264] 

 𝑥(𝑡) =
𝑙𝑜𝑔𝐺′(𝑡)−𝑙𝑜𝑔𝐺′𝑚𝑖𝑛

𝑙𝑜𝑔𝐺′𝑚𝑎𝑥−𝑙𝑜𝑔𝐺′𝑚𝑖𝑛
  Equation (7-2) 

where G′min and G′max are the initial and ending plateau of the storage modulus, G'(t) is the 

instant storage modulus. The Avrami plots of the composite are given in Figure 7-6b. It is 

obvious that the whole crystallization process could be divided into three steps: step 1 can be 

regarded as the primary crystallization stage, i.e., the formation of nuclei and their subsequent 

growth induced by the systematic effect of shear flow and NJS; step 2 can be ascribed as the 

crystallization process of the iPP matrix located between NJS, and step 3 is the occurrence of 

secondary crystallization (i.e., impingement of the spherulites and/or insertion of new crystals 

in between the already existing ones) is characterized by a deviation from linearity in the 

Avrami plots. 

Table 7-1 The Avrami exponent n obtained from the Avrami plot of the composite with 

various Tf during the isothermal crystallization after shear. 

 Tf (
o
C) 

 260 270 280 290 300 310 

n (step 1) 1.54 1.52 1.67 2.51 2.19 2.39 

n (step 2) 9.06 7.69 5.36 5.06 5.10 5.16 

The Avrami exponents (n) during step 1 and step 2 are summarized in Table 7-1. In step 1, n 

is between 1 and 2 as the morphology of NJS changes from dotlike to needlelike. The 

composites with treelike NJS own an n value between 2 and 3. In step 2, n decreases from 9 to 

5.4 as NJS changes from dotlike to needlelike. And n is ca. 5.1 if NJS is in the form of 

treelike. Generally, Avrami exponent was extensively adopted to describe the dimensionality 

of crystal growth under static condition. And the value of n implies the growth geometry of 

the crystal. For instance, n=2 means a two-dimensional lamellar growth and n=3 means a 

three-dimensional in case that there are heterogeneous nucleation points under static condition. 

However, this classic explanation may not fit in our case since that n in step 2 is far beyond 4. 

An n value larger than 4 has been also reported elsewhere.[265] Therefore, the physical 

background of n during shear-induced crystallization of polymer composites remains an open 
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topic. Instead of the crystal growth geometry, another possible physical meaning of n 

proposed recently is the number of growth points in the crystals.[265-268] The larger the n 

values, the bigger the numbers of growth points. In fact, the second explanation is not 

contrary to the classic one. For instance, n=3 means that the crystal grows in the spherulite 

geometry; and it can be also understood in the following way: there are more branches of 

lamellae in the spherulite, which gives rise to a larger number of growth points. Therefore the 

n value of the spherulite should be larger.[267] Based on the second explanation, it can be 

inferred from Table 7-1 that in the primary crystallization stage the number of growth points 

is the largest in the composite with treelike NJS, and smallest in the composite with dotlike 

NJS. In step 2, the n value is much larger than that in the primary crystallization, due to the 

growth of spherulite induced by thermal nucleation. During the growth of the spherulite, the 

existed lamellae can serve as the nucleation points to trigger the formation of new lamella. 

Therefore, the number of nucleating points is increased greatly and the Avrami exponents are 

higher. In addition, compared with the composite with treelike NJS, less iPP matrix is 

consumed in the primary crystallization of the composite with dotlike NJS, so more 

nucleation points are formed due to the growth of spherulites. Therefore, the n value for the 

composite with dotlike NJS is even higher. 

7.4.2 In-situ SAXS measurement 

The microstructure evolution during crystallization was monitored by in-situ 2D-SAXS 

measurements. For clarification, the schematic drawing of the sample arrangement is provided 

in Figure 7-7a. Figure 7-7b presents some selected 2D-SAXS patterns of pure iPP, and the 

composites with Tf of 260 
o
C as well as 300 

o
C during crystallization. The 2D-SAXS pattern 

at 0 s corresponds to an amorphous melt. The opaque scattering ring comes from the Kapton 

window. No lamellae scattering can be found through the whole process of pure iPP, 

indicating that no crystallization happens. For the composite with Tf of 260 
o
C, the lamellae 

scattering shows up at 880 s after shear ceases. The scattering is mainly focused on the 

meridian, indicating that the normal of lamellae is aligned in the shear direction. With 

increasing crystallization time, the elliptic 2D-SAXS pattern transforms gradually into a 

spindle shape. in addition, the scattering intensity is enhanced. For the composite with Tf of 

300 
o
C, the lamellae scattering shows up in a shorter time (440 s). The scattering intensity is 

focused on the meridian. And the 2D-SAXS pattern develops finally into “two-lobes” shape, 

indicating that the lamellae have a wide distribution of periodicity and lateral size.[269] In all 
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SAXS patterns, no equatorial streak can be found, suggesting that no row-nuclei (shish) can 

be detected. The absence of shish is probably because that the size of the shish is too small 

and beyond the detection limit of 2D-SAXS.[270] 

 

Figure 7-7 (a) The schematic drawing of the sample arrangement during in-situ 2D-SAXS 

measurements; (b) representive 2D-SAXS patterns during isothermal crystallization of pure 

iPP, iPP/NJS composites with Tf of 260 
o
C and 300 

o
C. The scale is linear 150, the size of the 

pattern is 0.32⁡𝑛𝑚−1 × 0.32⁡𝑛𝑚−1, and the shear direction is vertical. 

The evolution of the scattering invariant (Q) with crystallization time is given in Figure 7-8a. 

As expected, the Q of pure iPP stays constant in the whole process indicating that no 

crystallization happens, which coincides well with the rheological results in. The 

crystallization induction time in Figure 7-8a is 930 s for the composite with dotlike NJS, and 

430 s for the composite with treelike NJS. The results here verify that the composite with 

treelike NJS owns the shortest crystallization time. However, the crystallization induction 
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times here are larger than those obtained in the rheological test, which are 620 s and 250 s, 

respectively. The discrepancy lies in the different settings and sensitivity of the experimental 

devices during rheological test and in-situ SAXS measurements. To be more specified, during 

rheological test the sample is placed between two parallel plates, the shear rate in the plate 

increases gradually in the radius direction. So the crystallization process is faster in the region 

where the shear rate is larger. In addition, the 𝐺′ detected is an averaged value of the whole 

plate. However, during in-situ SAXS measurements, the X-ray beam is located in the region 

where the shear rate is 7.5 s
-1

. And the size of the X-ray beam is only 2313 μm2. So, the 

crystallization kinetics obtained by in-situ SAXS measurement only represents the 

crystallization behavior in a limited defined region, but not the whole sample. 

1x107

2x107

3x107

4x107

0 500 1000 1500 2000 2500 3000
24

26

28

30

32

260 oC

300 oC

260 oC300 oC

Q

Pure iPP

L
p
 (

n
m

)

t (s)
 

Figure 7-8 (a) The evolution of scattering invariant (Q) and (b) the long period (Lp) of 

iPP/NJS composite with Tf of 260 
o
C and 300 

o
C during isothermal crystallization after shear. 

The evolution of the long period (Lp), comprising one crystalline phase and one amorphous 

phase, during crystallization are provided in Figure 7-8b. The multi-step crystallization 

process showed in Figure 7-6 is also found in Figure 7-8b. In the primary crystallization 

stage, Q is increased gradually, but Lp is decreased drastically to a plateau. This suggests that 

in the primary crystallization stage nucleation is the dominant process. The decrease of Lp is 

caused by the inserting of newly formed lamellae into the existed lamellae. In step 2, Lp is 

changed slightly, but Q is increased continually, suggesting that in this crystallization stage 

the increase of Q is mainly caused by lamellae thickening. 
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7.4.3 Microstructure of iPP after shear-induced crystallization 

The crystal form, crystal orientation, and lamellae arrangement of pure iPP and the 

composites with dotlike or treelike NJS after shear-induced crystallization are studied in this 

section. On the 2D-WAXS pattern of iPP/NJS with treelike NJS, a few crystal planes can be 

found, which are (110)α, (300)β, (040)α, (130)α, (117), (111)α/(311) β and (1̅31)α from inner to 

outer region of the pattern (see Figure 7-9). Among the crystal planes, (300)β and (041)β 

belong to β-iPP, (117) belongs to γ-iPP, the others are ascribed to α-iPP. The scattering of the 

crystal planes is focused at specified angles due to the crystal orientation. For instance, the 

scattering of (300)β crystal plane is focused on the equator. But the scattering of (110)α crystal 

plane can be found not only in the equator direction but also in the direction 12.5
o
 off to the 

meridian, because of the unique “cross-hatched” structure of α-iPP. In the “cross-hatched” 

structure, the “daughter” lamellae grow epitaxial on the “mother” lamellae. The angle 

between the normal of “daughter” and “mother” lamellae is about 80
o
.[8] On the 2D-WAXS 

pattern of the composite with dotlike NJS, the orientation of the crystal is greatly weakened. 

On the 2D-WAXS pattern of pure iPP, no crystal orientation could be found. In addition, 

(300)β reflex is absent in pure iPP, implying that no β-iPP are formed.  

 

Figure 7-9 Selected 2D-WAXS and 2D-SAXS patterns of pure iPP, iPP/NJS composites with 

Tf of 260 
o
C and 300 

o
C after shear-induced crystallization. 

On the 2D-SAXS patterns, the information about the lamellar arrangement can be obtained. 

Starting from the iPP/NJS composite with treelike NJS, it can be found that the scattering is 

focused on the meridian. In addition, a second order scattering appears in the meridian, 
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implying that lamellae are arranged in a highly ordered way. What’s more interesting, the 

scattering from the “daughter” lamellae can be found in the direction 17.5
o
 off to the equator, 

which is different with 12.5
o
 in the 2D-WAXS pattern. The deviation is probably caused by 

the different resolution and detecting scales of 2D-WAXS and 2D-SAXS.[270] It is well 

known that WAXS provides the information of the crystal, which is normally in the scale of 

an angstrom. But 2D-SAXS shows the information of the lamellae in the scale of a nanometer. 

As the morphology of NJS in the composite changes from treelike to dotlike, the second order 

scattering and the scattering from the “daughter” lamellae disappear, indicating a less ordered 

arrangement of lamellae. In pure iPP, the scattering is a homogeneous ring, which means that 

the lamellae inside are randomly distributed.  

The relative content of β-iPP (𝐾𝛽) distribution on the sheared sample is provided in Figure 

7-10a. In pure iPP, no β-iPP can be found. In the composite with dotlike NJS, 𝐾𝛽 is 0.45 as 

shear rate is lower than 0.5 s
-1

. With the increasing of shear rate, 𝐾𝛽 decreases obviously and 

reaches 0.03 as shear rate is 5.5 s
-1

. Finally 𝐾𝛽 keeps constant as shear rate exceeds 5.5 s
-1

. In 

the composite with treelike NJS, only trace amount of β-iPP could be found. The drastic 

decrease of 𝐾𝛽 with increasing shear rate in the composite with dotlike NJS and suppressing 

of β-iPP formation in the composite with treelike NJS can be understood by the following 

explanation: during shear-induced crystallization, shear-induced nuclei are formed in the 

melt.[271, 272] The shear-induced nuclei will trigger the formation of α-iPP, therefore the 

growth of β-iPP will be depressed. With the increase of shear rate, the number of shear 

induced nuclei will be increased, leading to the decreasing of 𝐾𝛽.  

  

Figure 7-10 (a) The relative content of β-iPP (Kβ) and (b) the long period (Lp) of pure iPP, 

iPP/NJS composites with Tf of 260 
o
C and 300 

o
C after shear induced crystallization. 
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In Figure 7-10b, 𝐿𝑝 as a function of shear rate is provided. In pure iPP, 𝐿𝑝 is 14.8 nm in the 

whole range. The composites own a much larger 𝐿𝑝 compared to pure iPP. In the composite 

with dotlike NJS, 𝐿𝑝 is 21.1 nm as the shear rate is 0. 𝐿𝑝 increases gradually and reaches a 

plateau of 23.6 nm at the shear rate of 6 s
-1

. In the composite with treelike NJS, 𝐿𝑝 increases 

from 22.9 nm to 24.2 nm and stays unchanged as shear rate is higher than 2 s
-1

. 

The Hermanns’ orientation factor of the crystal is given in Figure 7-11. It shows that in pure 

iPP, the orientation of polymer chains in the crystal is very weak. In the composite with 

dotlike NJS, 𝑓𝐻𝑐 increases slightly from 0.23 to 0.39 as the radius is increased from 0 to 6 mm. 

In the composite with treelike NJS, 𝑓𝐻𝑐 increases drastically from 0.24 to 0.66 as the radius is 

increased from 0 to 3 mm. The results in Figure 10 prove that during shear induced 

crystallization, the addition of NJS can enhance the crystal orientation. And the composite 

with treelike NJS shows the highest crystal orientation.  

 

Figure 7-11 Hermans orientation factor of the crystal and the lamellae in pure iPP and 

iPP/NJS composites with Tf of 260 
o
C and 300 

o
C. 

7.4.4 The morphology of the sample 

The morphology of the composite with dotlike and treelike NJS is shown in Figure 7-12. In 

“TD-SD” plane, lamellae are distributed randomly in the composite with dotlike NJS. And 

dotlike NJS can be found without preferential orientation. Whereas, in the composite with 

treelike NJS, highly oriented needlelike NJS (indicated by the yellow arrow) oriented along 

the shear direction can be found, verifying that NJS branches are detached from the tree upon 

shear flow evidenced in the steady-state shear test. In addition, the density of the lamellae is 

higher than that in the composite with dotlike NJS, indicating that more nucleating points are 

formed.  
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Figure 7-12 The morphology of iPP/NJS composites with Tf of 260 
o
C and 300 

o
C after 

shear-induced crystallization. The shear rate is 1 s
-1

. TD is short for “thickness direction”, RD 

is short for “radius direction”, and SD is short for “shear direction”.  

7.4.5 The crystallization mechanism 

The results prove that the addition of NJS could accelerate the shear-induced crystallization of 

iPP and enhance the crystal orientation. What’s more, the crystallization kinetics and the 

crystal orientation are greatly influenced by the morphology of NJS: the composite with 

treelike NJS has the shortest crystallization induction time and largest crystal orientation. The 

mechanism responsible for that is given below, and a schematic illustration of the mechanism 

is shown in Figure 7-13.  

 

Figure 7-13 Schematic illustration of the crystallization process of the iPP/NJS composite 

upon after shear. 
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Through dissociation/association of hydrogen bonds connecting small NJS molecules, NJS 

forms into dotlike, needlelike, and treelike morphologies in the composite. However, the 

network of treelike NJS is unstable. Under shear flow, the NJS branches are detached from 

the treelike, leading to the formation of tremendous needlelike NJS in the melt. Due to 

selective absorption mechanism, a large fraction of long polymer chains is anchored on the 

surface of NJS, leading to the decrease of viscosity of the matrix. The composite with treelike 

NJS owns the lower viscosity suggesting that more polymer chains are anchored on the 

surface of NJS. In addition, because of the applied shear flow, polymer chains tend to orient 

along the flow direction. Once the shear ceases, the oriented polymer chains will relax. But 

the relaxation process can be inhibited by the anchoring effect. Therefore, a larger degree of 

polymer chains orientation will be reserved in the composite containing more anchoring 

points. The reserved oriented polymer chains play a catalytic role recruiting other chains 

adjacent to them into the formation of shish. During the following crystallization process, in 

addition to the self-nucleation points in the melt, the shish formed on the surface of NJS 

induces the growth of “mother” lamellae and “daughter” lamellae grow epitaxial on “mother” 

lamellae. Since that the composite with treelike NJS provide the largest number of anchoring 

points, therefore the composite with treelike NJS owns the shortest crystallization induction 

time. The highest crystal orientation in the composite with treelike NJS benefits from the 

orientation of the detached NJS branches from the tree themselves. 

7.5 Conclusion 

The influence of NJS morphology on shear-induced crystallization of iPP is investigated in 

this chapter. The results prove that by adding NJS, the crystallization kinetics can be 

accelerated and the orientation of crystals can be enhanced. Furthermore, the accelerating 

effect is greatly influenced by the morphology of NJS. The composite with treelike NJS owns 

the shortest crystallization induction time and highest crystal orientation since that treelike 

NJS provides the largest number of anchoring point for polymer chains. In addition, the NJS 

branches detached from the tree orient themselves in the shear direction, which facilitates the 

crystal orientation in the composite. It is interesting to point out that the morphology of NJS is 

adjusted in the case that the concentration of NJS is the same (0.3 wt. %). The results in this 

work provide a possibility to use the nucleating agent more efficiently during shear-induced 

crystallization, which is of great importance in both scientific research and industrial 

processing.   
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8 Influence of nucleating agent self-assembly on structural evolution of 

iPP during uniaxial stretching
5
 

The iPP/NJS composites with different Kβ are prepared by controlling the self-assembly of 

NJS. And then the deformation behavior of the composites was characterized by in-situ 

synchrotron WAXS and SAXS. The results show that during uniaxial stretching, a higher Kβ 

could increase the number of voids. However, the size of voids is similar regardless of the 

NJS morphology. The β-α phase transition takes place after void formation. During 

intralamellar and interlamellar slip, no obvious polymer chains orientation can be found for α-

iPP. In the strain range of 0.1~0.6, the c-axis of the β-iPP crystal tends to orient perpendicular 

to the stretching direction. This is caused by lamellae twisting, a unique deformation mode of 

β-iPP lamellae. The lamellae twisting are proposed to be responsible for the intense voids 

formation of the composite with higher Kβ. At a strain larger than 0.6, the drastic increase of 

orientation is mainly caused by the rotation of the residual fragmented lamellae and the 

orientation of the newly formed crystals. 

  

                                                 
5
 The main part in this chapter has been published as “B. Chang, K. Schneider, R. Vogel, G. Heinrich. Influence 

of nucleating agent self-assembly on structural evolution of isotactic polypropylene during uniaxial stretching, 

Polymer 138 (2018) 329-342.” 
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8.1 Introduction 

Under mechanical load, the hierarchical structural evolution covering the scale from angstrom 

to micrometer has been found, which depends strongly on the morphology and microstructure 

of iPP before deformation. Understanding the structural evolution of iPP is of great 

importance to optimize its mechanical properties. In the past, many studies have been 

performed with attention focused on the cavitation [66, 74], lamellae deformation [69, 175, 

201], and β-α phase transition [60, 273, 274] of iPP during stretching or compressing. For 

instance, by X-ray microdiffraction with synchrotron radiation, Riekel et al. [273] 

investigated the strain-induced β-α phase transition in the plastic zone of β-iPP. Their results 

showed that the bulk β-iPP was gradually transformed into highly oriented, conformationally 

disordered α-iPP as the strain increased. Zhang found that cavitation took place at a stretching 

temperature lower than 120 
o
C. β-α phase transition happens when the drawing temperature is 

higher than 30 
o
C, below which the β-iPP will be transformed into mesophase [275]. Bao 

found that β-iPP lamellae were locally destroyed and fragmented into smaller crystals or 

crystal blocks, and cracks formed running approximately perpendicular to the stretching 

direction due to the disintegration of the oriented β-iPP lamellae [276]. Despite the fact that 

numerous studies have been performed, the mechanism responsible for the structural 

evolution and the relationship between the hierarchical deformations themselves remains 

under debate. The general structural evolution process of semicrystalline polymer was 

proposed by Men et al.[277] to be from intralamellar slipping of crystalline blocks occurs at 

small deformation to a stress-induced crystalline block disaggregation-recrystallization 

process occurs at a strain larger than the yield strain. In their later work, the second process 

was further proved to be a stress-induced melting-recrystallization.[181] As to β-α phase 

transition during uniaxial of iPP, two distinctly different mechanisms have been put forward. 

Lezak proposed that the (110)[001] β-iPP chain slip and (110)[11̅0] β-iPP transverse slip were 

responsible for the β-α solid state phase transition [278]. However, the solid-state phase 

transformation seemed to be problematic because it required reversal of helical handedness. 

Considering that, the melting-recrystallization appeared to be an easier path for β-α phase 

transition [60, 279], which coincides with the stress-induced melting-recrystallization 

mechanism proposed by Men.[181] By transmission electron microscopy (TEM), the melting 

spot was found by Li among the lamella parallel with the loading direction [60], which 

provided strong evidence for melting-recrystallization. In addition to the continuing 

discussions about the mechanism for the β-α phase transition, the β-α transformation was 
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claimed to be associated with void formation [78, 280], which further complicated the 

understanding of structural evolution during deformation.  

Taking the above ongoing arguments into account, a systematic study concerning the 

structural evolution of iPP during deformation is of great importance. NJS was chosen as the 

nucleating agent in this work. The self-assembly process of NJS was used to control the 

microstructure of iPP, which was characterized elaborately. Lastly, the cavitation behavior, β-

α-iPP phase transition, and polymer chains orientation of iPP during uniaxial stretching were 

investigated by in-situ synchrotron SAXS and WAXS measurements. Through this study, we 

received a deeper insight into the relationship between the NJS self-assembly and the 

structural evolution of iPP during deformation. 

8.2 The morphology of the NJS in the compression molded iPP 

The results in the former chapter prove that by controlling Tf, different NJS morphologies can 

be obtained. However, whether the morphology of NJS can be successfully controlled under 

compression molding conditions remains unclear, because the thermal-mechanical conditions 

are more complicated in comparison to the well-controlled hot stage. Therefore, the 

morphology of NJS in the compression molded plate was checked by SEM. As shown in 

Figure 8-1a and b, the dotlike NJS can be readily seen for iPP/NJS-260, and treelike NJS can 

be found for iPP/NJS-290. The morphology of the interface between NJS and iPP matrix is 

provided in Figure 8-1c. Two representative NJS particles are shown by the arrows, one is 

aligned in the observed plane and the other one is perpendicular to the observed plane. In both 

cases iPP lamellae grow perpendicular to the surface of NJS. The morphology of the interface 

is in accordance with the previous reports, suggesting the nucleating effect of the NJS on iPP 

[281, 282].  

 

Figure 8-1 The morphology of NJS in iPP/NJS composite with different Tf, (a): iPP/NJS-260, 

(b): iPP/NJS-290; (c) the morphology of the interface between NJS and iPP matrix. 
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8.3 Microstructure of iPP with different NJS morphologies 

The long period of the compression molded iPP/NJS composites, which comprises one layer 

of the crystalline phase and one layer of the amorphous phase in the “two-phases” model of 

semicrystalline polymers, is given in Figure 8-2a. It can be seen that the dependence of long 

period follows two regimes on Tf. As the morphology of NJS transforms from the dotlike to 

the needlelike form, the long period decreases from 13.9 nm to 13.0 nm and finally to 12.4 nm. 

For the treelike NJS, the long period increases considerably to 14.8 nm. With the further 

increase of Tf, the long period decreases gradually to 14.1 nm and then to 13.7 nm. Xc and Kβ 

of the compression molded sample are given in Figure 8-2b. Xc keeps at around 48 % when 

Tf is lower than 280 
o
C. And it increases to 53 % when Tf becomes 290 

o
C. The further 

increase of Tf reduces Xc gradually to 48 %. The results in Figure 8-2b show that the 

morphology of NJS has a weak influence on Xc. However, it is interesting that Kβ varies 

greatly as the morphology of NJS is changed. The evolution trend of Kβ is similar to that of 

the long period: Kβ decreases from 18 % to 15 % and then to 5 % as NJS changes from dotlike 

to needlelike. The formation of treelike NJS enlarges Kβ greatly to 47 %. The further increase 

of Tf leads to a slight decrease of Kβ, which finally reaches 43 %. The melting behavior of the 

composite provided in Figure 8-2c further confirms the change of Kβ in iPP/NJS composites. 

On the melting curves, except for the main peak at 165 
o
C, one or two shoulder peaks at lower 

temperature side of this peak could be found. The main peak originates from the melting of α-

iPP and the shoulder peak can be ascribed to the melting of β-iPP [282-284]. As Tf is 

increased, the area of the β-iPP melting peak decreases gradually, suggesting a decrease of Kβ. 

The β-iPP peak disappears nearly totally for the sample with Tf of 280 
o
C. When treelike NJS 

is formed, the area of the β-iPP melting peak is greatly enlarged.  
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Figure 8-2 (a) The long period, (b) the total crystallinity (Xc) and the β-iPP relative 

crystallinity (Kβ), (c) the melting behavior of iPP/NJS composites with different Tf. 

The influence of NJS morphology on the microstructure of iPP can be summarized shortly as 

such: as the morphology of NJS transforms from dotlike to needlelike, the long period of the 

sample decreases from 13.9 nm to 12.4 nm and Kβ decreases from 18 % to 5 %. The 

formation of treelike NJS enlarges the long period to 14.8 nm and Kβ to 47 %. The further 

increase of Tf leads to a slight decrease of the long period and Kβ. The reason for this is that 

during the cooling process, there is a competition between thermal nucleation and the 

nucleation by NJS. The former one gives rise to α-iPP and the latter one leads to β-iPP. 

Therefore, the β-iPP nucleation efficiency of NJS is determined by two factors: one is the 

contacting surface area between NJS and the iPP matrix, and the other one is the spatial 

distribution of NJS. The dotlike NJS and the treelike NJS have much better spatial distribution 

than the needlelike NJS, and the treelike NJS has a larger lateral surface than the dotlike NJS. 

Consequently, treelike NJS shows the highest β-iPP nucleation effect and the needlelike NJS 

exhibits the lowest β-iPP nucleation effect. 

8.4 In-situ SAXS results 

The cavitation and lamellae deformation behavior during deformation could be well captured 

by 2D-SAXS measurements. Depending on the shape of the scattering entity, a qualitative 

evaluation of the structural evolution can be obtained. Figure 8-3 shows some representative 

2D-SAXS patterns of iPP/NJS composites during uniaxial stretching.  
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Figure 8-3 Representative 2D-SAXS patterns of iPP/NJS composites with different Tf during 

uniaxial stretching. The number located at the bottom of the pattern is the Hencky strain. The 

color scale is linear and identical for all patterns. The stretching direction is horizontal.  
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Before deformation, the 2D-SAXS patterns show a broad isotropic ring, indicating a random 

orientation of lamellae. For iPP/NJS03-260, at a strain of 0.1 the scattering starts to focus in 

the equator leading to the appearance of the “two-arcs” pattern. The “two-arcs” pattern is the 

sign for lamellae orientation. Due to the fact that the strain is quite small, the deformation is 

still in the elastic range, the orientation of lamellae should be realized by the rotation of 

lamellae towards the loading direction. At a strain of 0.32, the scattering of the lamellae 

grows into an ellipse. The ellipse scattering suggests that the lamellae are tilted [103, 203], 

which means that the molecular axis in the lamellae is not perpendicular to the lamellar 

surface. The tilting of lamellae is caused by intra- and inter-lamellae slip [78, 278]. In 

addition, the scattering in the center region of the pattern turns into a diamond shape, 

indicating the formation of a void. The direction of the diamond shape scattering is vertical. 

Therefore the void inside the sample is aligned with its longitude along the stretching 

direction [78]. As the strain is further increased to 0.52, the scattering intensity of the lamellae 

is reduced noticeably, suggesting the disappearance of the initial lamellae. At an even larger 

strain (0.81), the scattering of the lamellae arises again in the form of “two-drops” in the 

equatorial direction, implying the formation of new lamellae. The newly formed lamellae are 

aligned with their normal direction along the stretching direction. Meanwhile, the diamond 

shape scattering in the center becomes thinner as a result of void growth and orientation. The 

described evolution trend of the scattering patterns in iPP/NJS03-260 is generally the same for 

all samples. The difference lies mainly in the scattering of the voids. For example, as Tf 

increases from 260 
o
C to 270 

o
C, the void scattering at the end of stretching is decreased. For 

iPP/NJS03-280, the void scattering becomes even weaker. However, as Tf is further increased, 

it is obvious that void scattering is significantly enhanced. The void scattering decreases again 

gradually as Tf is increased from 290 
o
C to 310 

o
C. The variation of the void scattering 

indicates that the self-assembly of NJS has a great influence on the cavitation behavior of iPP 

during stretching. 

8.4.1 Cavitation behavior 

Due to the fact that the longitude of the void is along the stretching direction, so 𝑆∥ and 𝑆⊥ can 

be referred to as the length and width of the void. The evolution of the void size is presented 

in Figure 8-4. It can be found that the length of the voids increases gradually as the strain is 

increased, while the width of the voids stays nearly the same. Surprisingly, at the same strain, 

the void length of the iPP/NJS composite is nearly the same, independent of the thermal 
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history. This suggests that the self-assembly of NJS has quite a weak influence on void size 

during deformation.  
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Figure 8-4 Evolution of the void length and the void width of iPP/NJS composites with 

different Tf during stretching. 

The evolution of Q as a function of strain is provided in Figure 8-5. If 𝑉𝑣 is in the range of 

0~0.5, 𝑄 depends positively on 𝑉𝑣 . For the sample with Tf lower than 280 
o
C, 𝑄 increases 

slightly as the strain is increased. For the sample with Tf equal to or higher than 290 
o
C, a 

drastic increase of 𝑄 could be found as the strain is larger than 0.1. The drastic increase of Q 

indicates the formation of abundant voids. It demonstrates that the void formation of the 

sample with Tf equal to or higher than 290 
o
C happens before the yield point. Then 𝑄 reaches 

a maximum at a strain of 0.3 (the yield strain). Beyond that, a decrease of 𝑄 can be found as a 

result of void coalescence. As the strain is further increased, 𝑄 increases only slightly. 
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Figure 8-5 Evolution of the scattering invariant (Q) of iPP/NJS composites with different Tf 

during uniaxial stretching. 
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Combining the result in Figure 8-4, it can be found that at the same strain, the length of the 

void is quite the same for all samples. However, Q is greatly enhanced as Kβ is increased, 

suggesting that the number of voids is greatly increased for the iPP/NJS03 composite with 

higher Kβ. In addition, as the strain is increased, the length of voids is increased gradually, but 

Q is constant (iPP/NJS03-300 and iPP/NJS03-310) or even decreases gradually (iPP/NJS03-

290). Therefore it can be inferred that the growth of voids in iPP/NJS03-290, iPP/NJS03-300, 

and iPP/NJS03-310 occurs mainly by the coalescence of voids [177].  

In fact, the cavitation behavior of iPP was investigated extensively in the past few years. 

Galeski [66, 188, 191] proposed that during deformation there is a competition between two 

processes: cavitation of the amorphous phase and plastic deformation of the lamellae. If 

lamellae are compliant or defected, then their plastic deformation is easy while the strength of 

the amorphous phase prevents the formation of voids. If lamellae are thick and have a reduced 

number of dislocations, the breaking of the amorphous phase is easier, which promotes the 

formation of voids. The proposal by Galeski was further developed by Humbert [198] and 

also widely accepted by other researchers [185, 189, 190]. Different from the proposal by 

Galeski that cavitation happens in the amorphous phase, another view, that cavitation starts 

from the crystalline phase, is proposed by Men at al.[69, 190, 285] Men et al. considered that 

the cavitation was initiated by opening of the block boundaries within crystalline lamellae, 

which resulted in the plate-like cavities passing through several connected lamellae and 

interlamellar amorphous phase. As to α-iPP and β-iPP, it is well known that the lamellae 

strength of α-iPP is stronger than that of β-iPP [286]. Therefore, the cavitation behavior 

should be less intense with the increase of Kβ considering the proposal by Galeski, which is 

totally contradictory to the results in this study. As a matter of fact, the easier cavitation 

behavior of β-iPP is in line with previous reports. Pawlak found that stress whitening was 

more pronounced in the sample with higher β-iPP content [66]. Henning found that 

microvoids were visible only in the polar region of α-iPP spherulites, but in the whole area of 

β-iPP spherulites [287]. Therefore, additional explanations need to be put forward, except for 

the competition between the cavitation of the amorphous phase and plastic deformation of the 

lamellae. Chu et. al. proposed that β-α phase transition during deformation will result in 

volume contraction of the matrix, which would greatly enhance the void formation [74, 288]. 

Bao suggested that void formation was related to the fragmentation of β-iPP lamellae [78]. 

Considering this, no certain conclusion related to the intense void formation in the sample 

with higher Kβ can be made here. The possible reason for the increasing number of voids in 
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the β-iPP rich sample will be discussed in the following section in relation to the β-α phase 

transition and the polymer chains orientation. 

8.4.2 Evolution of the long period 

In addition to the void formation, the initial lamellae are deformed by intralamellar and 

interlamellar slip, lamellar tilting and recrystallization, as shown in Figure 8-3. In order to 

describe quantitatively the deformation of lamellae, the evolution of the long period in the 

stretching direction is presented in Figure 8-6. It should be noted that the long period in the 

stretching direction represents those lamellae whose normal directions are aligned along the 

stretching direction. During the stretching process, they will suffer a tensile stress. It can be 

found in Figure 8-6 that for all samples the long period first increases with increasing strain 

and then drops after reaching a peak value. The transition strain corresponds to the yield strain. 

The maximum long period depends on the initial long period before deformation. The larger 

the initial long period, the larger the maximum long period. In addition, it is interesting that 

the long period at the plateau is nearly the same (about 13.3 nm) regardless of the initial long 

period. The increase of the long period is mainly caused by the stretching of the interlamellar 

amorphous phase [209]. The decrease of the long period is caused by the fragmentation of 

lamellae which leads to the relaxation of the strained amorphous phase [79], and also the 

recrystallization process which inserts a newly formed lamella into the old one [25, 210]. The 

same long period at the plateau suggests that the long period after deformation is determined 

only by the stretching temperature.  
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Figure 8-6 Evolution of the long period in the stretching direction for iPP/NJS composites 

with different Tf during uniaxial stretching. 
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8.5 In-situ WAXS results 

Figure 8-7 shows some representative 2D-WAXS patterns during stretching. The diffraction 

rings in the patterns originate from the lattice planes of iPP crystal.  

 

Figure 8-7 Representative 2D-WAXS patterns of iPP/NJS composites with different Tf during 

uniaxial stretching. The color scale is linear and identical for all patterns. The stretching 

direction is horizontal.  
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The radius of the rings is determined by Bragg's law. From inner to outer, the rings can be 

assigned to (110), (300), (040), (130), (111)/(1̅31)/(311) lattice planes. Among them (300) 

and (311) belong to β-iPP and the others are from α-iPP. Before deformation, the rings are 

homogeneous in all directions, suggesting a random orientation of the crystals. With the 

increase of strain, the intensity of (hk0) lattice plane starts to focus on the meridian and the 

intensity of (hk1) lattice plane concentrates off-axis of the meridian [289], implying the 

orientation of the crystal. As the strain is further increased, the orientation is enhanced.   

8.5.1 The β-α phase transition behavior  

As mentioned in above, Xc and Kβ could be obtained from the 1D-WAXS curves by a 

standard peak fitting procedure. It should be pointed out that two methods have been 

employed to get 1D-WAXS curves from 2D-WAXS patterns during stretching. One is 

circular integration from the inner to the outer region of the 2D-WAXS pattern [78]. The 

intensity at a specified scattering vector is averaged azimuthally. The other one is the vertical 

or horizontal cutting of the 2D-WAXS patterns [290]. The methods are outlined in Figure 

8-8a. Figure 8-8b and Figure 8-8c show the differences between the two methods. Before 

deformation (see Figure 8-8b), 1D-WAXS curves are quite the same. But for the sample with 

a strain of 1.4 (see Figure 8-8c), the intensity at the same scattering vector varies greatly due 

to the crystal orientation. Furthermore, the (300) reflection (indicated by the arrow in Figure 

8-8c) is invisible in the vertical cut 1D-WAXS curve, because vertical or horizontal cutting 

captures only the scattering from those lamellae with preferential orientation. Therefore, the 

circular integration is employed in this study.  
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Figure 8-8 (a) The schematic diagram of getting 1D-WAXS curves from the 2D-WAXS 

pattern; 1D-WAXS curves before deformation (b) and with a strain of 1.4 (c).  

Generally, the evolution trend of the peak intensity on the 1D-WAXS curve during stretching 

is analogous for all samples. The 1D-WAXS curve of iPP/NJS03-290 during stretching is 

shown in Figure 8-9a as an example. As the strain is smaller than 0.1, the intensity of all 

peaks keeps invariant, suggesting that no crystal is broken during elastic deformation. A slight 

decrease of (300) peak intensity could be found in the strain range of 0.1~0.3. When the strain 

is beyond 0.3, a decrease of (110), (300), (040), and (111)/(-131)/(311) peak intensity shows 

up, indicating the deformation of both α-iPP and β-iPP. In the strain range of 0.6-1.2, the 

intensity of all peaks decreases drastically. As the strain is further increased, the intensity of 

all peaks stays nearly unchanged. The evolution of Xc is given in Figure 8-9b. It is obvious 

that Xc shows a steady decrease, as the strain is larger than 0.1. The slope of the curve is 

nearly constant in the whole deformation process. The decrease of Xc is caused by the 

breaking of both α-iPP and β-iPP crystals. The evolution of Kβ is provided in Figure 8-9c. 

When the strain is smaller than 0.3, Kβ keeps invariant for all samples implying that no β-α 

phase transition occurs before the yield point. As the strain is increased to 0.9, a moderate 

decrease of Kβ can be found for iPP/NJS03-290, iPP/NJS03-300, and iPP/NJS03-310. In the 

strain range of 0.9~1.2, Kβ decreases drastically for all samples. After that, Kβ changes only 

slightly. At the end of stretching, Kβ of iPP/NJS03-290, iPP/NJS03-300, and iPP/NJS03-310 

is slightly higher than that of iPP/NJS03-260 and iPP/NJS03-270, and Kβ of iPP/NJS03-280 is 

0.  
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Figure 8-9 (a) 1D-WAXS curves of iPP/NJS03-290 obtained by circularly integration of the 

2D-WAXS pattern; the evolution of Xc (b) and Kβ (c) as a function of the strain of iPP/NJS 

composites with different Tf.  

The decrease of Kβ implies the deformation of β-iPP. In the literature, different values are 

reported for the onset strain where Kβ starts to decrease. Li [274] found that Kβ decreased 

gradually even at a low strain (50 %). Cai [290] revealed that in the temperature range from 

60~80 
o
C, the critical strain is around 15~20 %. Bao [78] found that Kβ decreased drastically 

when the strain is smaller than 100 %. Although different values have been reported, one 

consensus has been made, namely that Kβ starts to decrease after the yielding point. As 

mentioned above, the transformation from unstable β-iPP to stable α-iPP can be achieved 

through two different processes. One is solid to solid martensitic-like transformation [276] 

and the other one is the local melting-recrystallization process [60]. In this study, the latter 

one is preferred since the drastic decrease of Kβ is found at a strain larger than 0.6, which is 

far beyond the strain of 0.3 where the lamella melting happens (as has been proved in Figure 

8-9).  
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Additionally, the intense void formation in the sample with higher Kβ is recalled here. As 

proposed by Chu et. al. [74, 288], because that the density of β-iPP is lower than that of α-iPP, 

the β-α phase transition during deformation will lead to a volume contraction of the matrix. 

The volume contraction benefits the void formation greatly. However, it can be found in 

Figure 8-9 that the β-α phase transition happens much later than the void formation. 

Consequently, the β-α phase transition cannot be the main reason for the intense cavitation in 

the composite with β-iPP high Kβ.  

8.5.2 The orientation of the crystal 

In Figure 8-7, one can see that with the increase of strain, the scattering of the lattice plane 

changes from a homogeneous ring to arcs and finally to spots, indicating the orientation of the 

crystals. Consequently, the orientation of c-axis in the crystal of α-iPP (𝑓𝐻𝑐
𝛼 ) could be 

evaluated. 𝑓𝐻𝑐
𝛼  as a function of strain is given in Figure 8-10a.  
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Figure 8-10 (a) The orientation of polymer chains in α-iPP (𝑓𝐻𝑐
𝛼 ); (b) the orientation of a-axis 

in β-iPP (𝑓𝐻𝑎
𝛽

) evaluated by Herman’s orientation factor of the iPP/NJS composite with 

different final heating temperatures (Tf) during stretching.  

Before stretching, 𝑓𝐻𝑐
𝛼  is nearly 0 which suggests the random orientation of the crystal. Only a 

slight increase of 𝑓𝐻𝑐
𝛼  can be found when the strain is smaller than 0.45. This implies that 

although the initial lamellae are fragmented by intralamellar and interlamellar slip, no distinct 

orientation of the lamellae blocks could be found. In the strain range of 0.45~1.2, an obvious 

increase of 𝑓𝐻𝑐
𝛼  arises. The obvious increase of 𝑓𝐻𝑐

𝛼  is a result of melting-recrystallization. Via 

intralamellar and interlamellar slip, the initial lamellae are fragmented into blocks. The 

friction between the fragmented lamellae provides the energy for lamellae melting. The 

polymer chains in the crystal are pulled out after fragmentation and oriented mainly along the 
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stretching direction. In addition, the polymer chains in the amorphous phase are also stretched 

along the loading direction. Through the recrystallization process, the oriented polymer chains 

crystallize into crystals with their c-axis oriented along the stretching direction. When the 

strain is larger than 1.2, 𝑓𝐻𝑐
𝛼  continues to increase but the slope of the curve is decreased. In 

this range, the recrystallization process is nearly complete. The further orientation of the 

polymer chains in the crystal is realized by the rotation of the residual lamellae blocks and 

newly formed lamellae.  

Because β-iPP belongs to a trigonal crystal system, Wilchinsky’s method cannot be applied. 

So, the azimuthal intensity distribution of (300) lattice plane is employed to calculate the 

orientation of a-axis in the β-iPP crystal (𝑓𝐻𝑎
𝛽

). Since the Kβ of iPP/NJS-260, iPP/NJS-270, 

and iPP/NJS-280 is quite small at large strain. Therefore, the 𝑓𝐻𝑎
𝛽

 of those samples is not given. 

The result in Figure 8-10b shows that at a strain smaller than 0.1, 𝑓𝐻𝑎
𝛽

 is nearly 0, indicating 

that no a-axis orientation could be found during elastic deformation. As the strain is enlarged, 

𝑓𝐻𝑎
𝛽

 upturns a little bit, suggesting that the a-axis in β-iPP crystals tends to orient along the 

stretching direction. Generally, the tensile deformation will produce an oriented structure with 

the c-axis aligned preferentially along the stretching direction. So the a-axis orientation along 

the stretching direction in the strain of 0.1~0.6 is quite abnormal. The abnormal orientation of 

β-iPP crystal is related to its special lamellae deformation mode. With the help of rheo-optical, 

Fourier transformed infrared spectroscopy, Huy et. al found that in addition to intralamellar 

and interlamellar slip, lamellar twisting was also found in β-iPP during deformation [291]. 

The twisting of β-iPP lamellae at a small strain was verified by Lezak [278] with SEM. The 

twisting and related rotation of lamellae offers an additional route of crystal orientation. At a 

strain larger than 0.6, 𝑓𝐻𝑎
𝛽

 starts to decrease, indicating that the c-axis in β-iPP crystals begins 

to orient along the loading direction. The critical strain where 𝑓𝐻𝑎
𝛽

 starts to decrease is similar 

to the one where the drastic decrease of Kβ can be found in Figure 8-9, suggesting that the 

orientation of the c-axis in β-iPP is related to the partial melting of β-iPP lamellae. The partial 

melting releases the constraint force for the rotation of the residual β-iPP lamellae, leading to 

the c-axis orientation along the stretching direction in β-iPP.  

The twisting of β-iPP lamellae could accelerate the fragmentation of β-iPP lamellae. In the 

work by Lezak, it was observed that lamellae twisting is limited to the lamellae oriented along 

the loading direction initially, and becomes more widespread in the fragmented lamellae. 

Normally, the length of the voids is much larger than the long period of the lamellae. So voids 
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running through the fragmented lamellae were observed [78]. Through lamellae twisting the 

initial lamellae are fragmented into small blocks, which supports the void formation and 

growth. In addition, the twisting of lamellae happens at a strain of 0.1, which is the same 

strain at which the void is induced (see Figure 8-6). Consequently, it is proposed here that the 

twisting of β-iPP lamellae is probably responsible for the intense void formation in iPP/NJS 

composite with higher Kβ.  

8.6 Conclusion 

Dotlike, needlelike, or treelike NJS are induced through self-assembly of NJS. The iPP/NJS 

composite with treelike NJS has the highest β-iPP relative crystallinity and longest long 

period. During uniaxial stretching, a higher β-iPP relative crystallinity could increase the 

number of voids. However, the length and width of the voids are similar regardless of the 

morphology of NJS. β-α phase transition proceeding by melting-recrystallization takes place 

later than void formation. No obvious orientation of polymer chains in the crystal can be 

found during intralamellar and interlamellar slip for both α-iPP and β-iPP. In addition, in the 

strain range of 0.1~0.6, the twisting of lamellae contributes to the abnormal orientation of 

polymer chains in the β-iPP crystal, where the c-axis in the crystal tends to orient 

perpendicular to the stretching direction. The twisting of β-iPP lamellae could accelerate the 

fragmentation of β-iPP lamellae. Since the growth of a void generally passes several adjacent 

lamellae, the twisting of β-iPP lamellae will support the void growth. Consequently, the 

twisting of lamellae is also proposed to be responsible for the intense void formation of the 

iPP/NJS composite with higher β-iPP relative crystallinity. At a strain larger than 0.6, the 

drastic orientation increase of polymer chains in the crystal is mainly caused by the rotation of 

the residual fragmented lamellae and the orientation of newly formed crystals.  
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9 Microstructural evolution of iPP during creep: an in-situ study by 

synchrotron SAXS
6
 

The structure evolution of iPP during creep is investigated by in-situ synchrotron small angle 

X-ray scattering. During primary creep, strain grows nonlinearly to a value less than 15 %. 

The long period along loading direction (𝐿𝑝
∥ ) increases with time, whereas the long period 

perpendicular to loading direction (𝐿𝑝
⊥) decreases slightly. In secondary creep, strain increases 

linearly with time. Both 𝐿𝑝
∥  and 𝐿𝑝

⊥ exhibit the same tendency with strain. The increase of the 

long period is caused by lamellae thickening, which is a kind of cooperation motion of 

molecular chains with their neighbors onto the lamellae surface. Moreover, the increase rate 

of 𝐿𝑝
∥  is larger than that of 𝐿𝑝

⊥ , indicating that the orientation of molecular chains along 

loading direction decreases the energy barrier for the cooperation motion. In tertiary creep, 

strain grows dramatically within a limited time. The lamellae are tilted and rotated, and then 

disaggregated. In addition, fibrillary structure is formed during lamellae breaking. The length 

of the fibrillary structure increases from 364 nm to 497 nm and its width stays at 102 nm as 

creep time increases. 

  

                                                 
6
 The main part in this chapter has been published as “B. Chang, K. Schneider, G. Heinrich. Microstructural 

evolution of isotactic-polypropylene during creep: an in situ study by synchrotron small-angle X-ray scattering, 

Macromol. Mater. Eng. 302 (2017) 1700152(1-9).” 



120 

 

9.1 Introduction  

Unlike uniaxial drawing, compression and impact test, creep test serves as an effective 

method for the long-term life time assessment of polymer materials. Creep is generally 

defined as a time-dependent deformation of a material under constant loading for a prolonged 

period at a constant temperature. Mechanical background for the creep behavior of PP has 

been widely discussed in previous years. Generally, creep behavior could be well elaborated 

within the framework of linear viscoelasticity.[292] Under this circumstance, the master curve 

of creep compliance could be constructed by using time-temperature superposition concept 

based on the William-Landel-Ferry equation.[293, 294] One example is that by employing 

time-temperature superposition, Satapathy and his colleagues studied the short-term tensile 

creep behavior of PP/multi-walled carbon nanotubes composites. The results indicated that 

nanocomposites showed an increase in creep compliance with increasing temperature as a 

consequence of the temperature-activated motion of the polymer chains.[293] The 

prerequisite for linear viscoelasticity is that the creep compliance is assumed to be a function 

of time and temperature, which could not be fulfilled all the time, unfortunately. When the 

strain is beyond a certain limit, the creep compliance becomes a function of time, temperature 

and stress.[295] In that case, tensile creep at a constant stress and temperature should be 

viewed as a non-iso free-volume process. In the work by Kolařík,[295-298] a procedure was 

successfully proposed to transform the as-received creep data to a pseudo-iso free-volume 

state, which made it possible to construct a generalized creep compliance curve under any 

selected stress in the range of reversible deformations. The procedure was utilized to explain 

the influence of crystallinity or rubber content on the creep compliance of PPs, iPP, iPP blend 

consisting of 88 % of iPP and 12% of ethylene/propylene rubber (EPR), rubber-toughened 

iPP, etc.  

As one kind of semi-crystalline polymer, many studies have demonstrated that the crystalline 

structure and morphology of iPP has a significant effect on its creep behavior. Sliding of tie 

chains and their detachment from lamellar blocks play a key role in the time-dependent 

response of iPP.[299, 300] The chain-segment mobility in amorphous phase influences the 

creep deformation of β-iPP.[301] The increased degree of crystallinity, the presence of 

subsidiary lamellae in the amorphous region, the integration of preexisting lamellar structure 

would enhance the creep resistance of iPP.[302, 303] Additionally, the creep resistance is 

sensitive not only to the crystallinity but also to the crystalline morphology of iPP, which has 

been demonstrated by Liao and her coworkers.[304] Well-developed spherulites, which have 
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integrated crystalline structure, showed poor creep resistance; bundle-like morphology, whose 

crystalline phase was imperfect, resulting in better creep resistance; needle-like morphology, 

in which the crystalline phase was disordered and displayed largest long spacing, resulting in 

best creep resistance.  

Despite the fact that considerable attention have been devoted mentioned above, the 

microstructure evolution of iPP during creep is not yet well understood. In this study, the 

microstructural evolution of iPP during creep is characterized by in-situ synchrotron SAXS 

measurement. SAXS is employed because of its nondestructive feature and powerful 

detection ability for the microstructure with a size ranging from several nanometers to several 

hundred nanometers. In addition, modern synchrotron radiation sources enable us to get low-

noise SAXS patterns with high time and spatial resolution, which benefits in situ investigation 

greatly. The results reveal that the microstructural development in different creep stage differs 

with each other distinctly. The evolution of long period and lamellae thickness in secondary 

creep, as well as the lamellae disaggregation, and fibrillary structure formation in tertiary 

creep are studied in detail. 

9.2 The creep curve 

The creep test was performed on the custom-made miniature tensile machine as shown in 

Figure 3-3. The creep temperature was set at 120 
o
C. A typical creep curve is given in Figure 

9-1a. It is obvious that the displacement (Δ𝑑, black triangle) and true strain (ε, blue square) 

increase with time. According to the change of Δ𝑑 and 𝜀, creep curve could be split into four 

intervals:[305]  

(I) Primary creep, in this stage, ε grows sharply to 15 % within sufficiently small time (no 

more than 80 s). The deformation obtained in the primary creep is fully recoverable 

after releasing the force. It can be attributed to the elastic deformation of the molecular 

chains in an amorphous phase inside the hard crystalline skeleton.[306]  

(II) Transition region, from 80 s to 280 s. In this stage, the dependence of Δ𝑑 on time is 

convex, and strain rate (𝜀̇) decreases with the increase of time. 

(III) Secondary creep, from 280 s to 1152 s. The creep process in this stage is a steady state. 

Δ𝑑 increases linearly with time, and 𝜀̇ approaches to a constant value. The duration of 

the secondary creep is the longest period of the whole creep process. It is remarkably 
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longer than the primary creep and the tertiary creep. The evolution of strain during 

creep could be well described by the empirical function  

 𝜀(𝑡, 𝜎, 𝑇) = 𝜀𝑒(𝜎, 𝑇) + 𝜀𝑣(𝑡, 𝜎, 𝑇) + 𝜀𝑝(𝑡, 𝜎, 𝑇) Equation (9-1) 

where 𝜀(𝑡, 𝜎, 𝑇) is the strain during tensile creep, 𝑡 is creep time, 𝜎 is creep stress, and 

𝑇 is the temperature, 𝜀𝑒(𝜎, 𝑇) is the elastic component which is the reversible part, 

𝜀𝑣(𝑡, 𝜎, 𝑇)  is the time-dependent viscoelastic part which is also reversible and 

𝜀𝑝(𝑡, 𝜎, 𝑇) is the irreversible plastic part.[296] Before plastic deformation produced by 

the creep, the strain can be described as 

 𝜀(𝑡, 𝜎, 𝑇) = 𝜀𝑒(𝜎, 𝑇) + 𝜀𝑣(𝑡, 𝜎, 𝑇) Equation (9-2) 

The secondary creep is a steady stage, where the strain rate is nearly constant,[304, 

305] which should contribute to 𝜀𝑣(𝑡, 𝜎, 𝑇) . Therefore, the investigation of the 

structural evolution during secondary creep will help to get a better understanding of 

the mechanism of creep, which enables making better predictions of the lifetime of the 

polymer materials in use. 

(IV) Tertiary creep, necking happens in this stage. 𝜀 grows rapidly within a short time, and 

the dependence of Δ𝑑 on time first exhibits concave and then convex.  

Loading stress (𝜎) has a great impact on the speed of creep deformation.[307] This can be 

understood by examining the data in Figure 9-1b. With a slight increase of 𝜎, 𝜀̇ in secondary 

creep increases greatly and the creep failure lifetime decreases remarkably.[308, 309] The 

higher the 𝜎  applied, the faster the creep deformation proceeds. From the conventional 

view,[310] the dependence of 𝜀̇ on 𝜎 during secondary creep is approximated by the Eyring 

equation  

 𝜀̇ = 𝜀0̇𝑒𝑥𝑝[(𝜎𝑉/𝑘𝑇)] Equation (9-3) 

where 𝜀0̇ is a pre-factor, 𝑘 the Boltzmann constant, 𝑇 the temperature, and 𝑉 the activation 

volume. The linearity of ln𝜀̇  vs. 𝜎  is checked by linear regression, and the correlation 

coefficient is 0.99. The activation volume calculated from the slope of the fitted line in Figure 

9-1c is 2.12 nm
3
, which agrees well with the values given by other researchers (in the range 

between 2-4 nm
3
).[307, 310, 311] The critical strain (𝜀𝑐) occurs at the very end of the straight 

line portion of secondary creep decreases with the increase of 𝜎. The decrease of 𝜀𝑐 indicates 

that the creep here should be treated as a non-linear viscoelasticity behavior. Otherwise 𝜀𝑐  
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should keep constant regardless of 𝜎.[312-316] Generally, the non-linearity of tensile creep is 

mainly brought about by the strain-induced increment of the free volume.[295, 317] 
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Figure 9-1 (a) Creep curve of iPP under constant stress (8 MPa) at 120 °C. The black triangle 

is displacement (Δ𝑑) and the blue square is true strain (𝜀); (b) Creep curves of iPP under 

various stresses (𝜎) at 120 
o
C; (c) plot of ln𝜀̇ and 𝜀𝑐 as a function of 𝜎, the straight lines are 

obtained by linear regression. 

9.3 In-situ SAXS results 

In order to detect the microstructure evolution during creep, in-situ SAXS measurement was 

carried out on the specimen creep under 8 MPa at 120 
o
C. Figure 9-2 shows a few 

characteristic SAXS patterns during creep in different abovementioned stages. The shape of 

scattering signal in 2D-SAXS patterns is associated with spatial ordering of the crystalline 

lamellae, which has been studied extensively.[318-321] As can be seen, the initial isotropic 

SAXS pattern results from randomly oriented lamellae before creep. During primary creep, 

the scattering intensity in the meridional direction enhances whereas the scattering intensity in 

the equatorial direction weakens slightly, indicating the slight orientation of lamellae. In 
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addition, dark arcs in the equatorial direction could be observed which are caused by the shift 

of the scattering in the meridional direction towards the center of the pattern, resulting from 

the change of lamellae stacking in the meridional and the equatorial direction. The change of 

lamellae stacking will be quantitatively discussed in the following part. In secondary creep, 

the SAXS pattern grows further to an anisotropic ellipse. The long axis of the ellipse is 

perpendicular to the loading direction. During tertiary creep, SAXS pattern changes from 

slight ellipse to distinct ellipse. This transition indicates that lamellae are tilted and 

rotated.[203] After that, the SAXS pattern transforms from a distinct ellipse into a “two-spot” 

pattern, meaning that lamellae are preferentially aligned along loading direction. What’s more, 

a streak appears in the equator direction, which provides a hint that highly oriented fibrillary 

structure is formed in this region. 

 

Figure 9-2 Representative 2D-SAXS patterns in different states of creep, the size of the 

pattern is ±0.0525⁡nm−1 × ±0.0525⁡nm−1 . The scale refers to the number of counted 
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photons during the exposure time of 0.5 s. According to the much higher intensity in the 

center of the pattern each color change stands here for a repeated application of the scale.  

9.3.1 Evolution of long period and domain thickness 

It is widely accepted that in the spherulite of iPP lamellae grow radially along the radius, 

which can be illustrated in Figure 9-3. When the sample is subjected to a uniaxial force, the 

deformation behavior of the lamellae in region P and region A is different. In region A the 

normal direction of the lamellae is the same as with the loading direction. In region P the 

normal direction of the lamellae is perpendicular to the loading direction.  

 

Figure 9-3 (a) Schematic diagram of iPP spherulite and (b) the scattering pattern for the 

spherulite, the size of the pattern is ±0.0525⁡nm−1 ×±0.0525⁡nm−1 . 𝐿𝑝
∥

 can be obtained 

from the slice (the yellow strip) along 𝑠𝑧, and 𝐿𝑝
⊥ can be obtained from the slice along 𝑠𝑦. y 

and z stand for the equator and meridian directions in the scattering pattern, respectively. 

In order to get a comprehensive evolution of crystalline structure during creep, the long period 

(𝐿𝑝) in both regions are depicted in Figure 9-4. The one along the loading direction is labeled 

as 𝐿𝑝
∥  and the other one is labeled as 𝐿𝑝

⊥. It can be found that for both 𝐿𝑝
∥  and 𝐿𝑝

⊥ the whole 

curve could be divided into 4 stages, which coincides very well with the evolution of 

macroscopic ∆𝑑 in Figure 9-1a.  
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Figure 9-4 Evolution of long period along (𝐿𝑝
∥ ) and perpendicular (𝐿𝑝

⊥) to loading direction 

during creep. 

In region I (primary creep), 𝐿𝑝
∥  increases linearly with creep time, whereas 𝐿𝑝

⊥  decrease 

slightly. As mentioned above, the deformation in region I is caused by the elastic deformation 

of the amorphous region which has a lower modulus compared to that of the crystalline region. 

The increase of 𝐿𝑝
∥  suggests that the molecular chains along loading direction are 

stretched.[321] As to the decrease of 𝐿𝑝
⊥, it means that the molecular chains perpendicular to 

loading direction are compressed. The compressing force comes from the squeeze of 

expanded lamellae along loading direction.[322] Region II is the transition stage. In region III 

(secondary creep), the evolution of 𝐿𝑝
∥  and 𝐿𝑝

⊥  show a similar trend. Both of them increase 

with creep time. The increase rate of 𝐿𝑝
∥  and 𝐿𝑝

⊥ can be obtained by linear fitting. The increase 

rate for 𝐿𝑝
∥  and 𝐿𝑝

⊥ are 6.34×10
-4

 nm∙s-1
 and 4.81×10

-4
 nm∙s-1

, respectively. In the work by 

Li,[312] the elongation of micron-scale spherulites along the loading direction, accompanying 

with the increase of nano-scale lamellar long period were also observed when εt is smaller 

than 17 %. The long period along loading direction in the work of Li [312] increases from 

about 17.7 nm before drawing to 20.5 nm at the end of secondary creep, which is different 

from the results in this work where it changed from 11.8 nm before loading to 13.74 nm at the 

end of secondary creep. The difference may be caused mainly by differences in the sample 

preparation process. Nevertheless, the relative increase in long period is nearly the same: 15.8 % 

in the work of Li and 16.4 % in this work. In the following part, a more detailed study about 

the evolution of 𝐿𝑝
∥  and 𝐿𝑝

⊥ is given, especially for the increasing rate of 𝐿𝑝
∥  and 𝐿𝑝

⊥. In region 

IV (tertiary creep), 𝐿𝑝
∥

  increases strongly while 𝐿𝑝
⊥  remains constant within the range of 
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uncertainty. After 1232 s, no 𝐿𝑝
⊥ can be detected, because the lamellae are strongly aligned in 

tensile direction and the lamellae perpendicular to loading direction are fragmented. 

In order to have a better understanding of the structural evolution in secondary creep, one-

dimensional correlation function (𝐾(𝑧)) is employed to gain the domain thickness of iPP, 

including crystalline region thickness (𝐿𝑐 ) and amorphous region thickness (𝐿𝑎 ). 𝐾(𝑧) is 

given in Equation (3-13). It can be found in Figure 9-5 that domain thickness of iPP 

increases with creep time, the increase rate for 𝐿𝑝
∥  and 𝐿𝑝

⊥ are 10.3×10
-4

 nm∙s-1
 and 7.52×10

-4
 

nm∙s-1
, for ⁡𝐿𝑐

∥  and 𝐿c
⊥ are 8.04×10

-4
 nm∙s-1

 and 6.28×10
-4

 nm∙s-1
. The increase rate for 𝐿a

∥  and 

𝐿a
⊥ are very small, only 2.29×10

-4
 nm∙s-1

 and 0.96×10
-4

 nm∙s-1
, respectively. So, the increase 

of 𝐿 in secondary creep could be attributed to the thickening of lamellae.  
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Figure 9-5 Evolution of long period along and perpendicular to loading direction during creep 

(𝐿𝑝
∥  and 𝐿𝑝

⊥) (a) and evolution of thickness of crystalline and amorphous regions (⁡𝐿𝑐
∥ , 𝐿c

⊥, 𝐿a
∥ , 

and 𝐿a
⊥) (b). 

For thin polymer crystals, the thermodynamic force capable of driving the thickening 

phenomena arises from the unequal free energies of the fold and lateral surfaces, the crystal 

moving in the direction of lowest free energy. By analogy with other irreversible processes, 

an appropriate phenomenological law for the rate of polymer crystal thickening can be 

expressed as [163] 

 
𝑑𝑦

𝑑𝑡
=

2

𝜏
(
1−𝑦3/2

𝑦
)  Equation (9-4) 

 y = 𝑙/𝑙∗  Equation (9-5) 

 
1

𝜏
=

𝑘𝜎𝑒

𝑙∗2
 Equation (9-6) 
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where 𝑙  is the thickness of lamellae, 𝑙∗  is the equilibrium thickness, 𝑡  is time, 𝜏  is the 

relaxation time of chain segment, and 𝑘  is the proportionality constant. Then the force 

dependence of the thickening rate should enter the theory through 𝑘, by invoking a molecular 

mechanism that involves the cooperative motion of a certain minimum number of molecular 

chains which have attained “liquid-like” mobility. For one molecular chain in the crystal, the 

free energy fluctuation needed to attain liquid-like mobility equal to the Gibbs free energy of 

melting, which in the simplest approximation is given by  

 ∆𝐺 = ∆𝐻(𝑇𝑚
0 − 𝑇)/𝑇𝑚

0 = ∆𝐻∆𝑇/𝑇𝑚
0  Equation (9-7) 

where ∆𝐻 is the heat of fusion per molecular chain and 𝑇𝑚
0  is the equilibrium melting point of 

the crystal. If ν is the minimum number of molecular chains required for this cooperative 

motion, then the probability that v molecular chains will simultaneously suffer a free energy 

fluctuation of ∆𝐺 is proportional to the product of the individual probabilities, or exp⁡(−νΔG/

RT), where 𝑅 is the gas constant. Thus, 𝑘 for this mechanism is given by [323] 

 𝑘 ∝ 𝑘0𝑒𝑥𝑝[−𝑣𝛥𝐻𝛥𝑇/𝑅𝑇𝑇𝑚
0 ] Equation (9-8) 

Generally, the structure of iPP could be well described by a skeleton of a crystalline phase 

with an amorphous phase between the crystallites.[36, 201, 306] In a recent work by Sotta[36] 

it is proved that the local tensile strain of lamellae is lower than the macroscopic one. The 

reduced local tensile strain must be compensated mainly by shear deformation in the 

amorphous phase causing an enhanced orientation of the chains within the amorphous regions. 

This enhances the probability for such cooperation and decreases the energy barrier, thus the 

rate for the increase of 𝐿𝑝
∥  is larger than that for 𝐿𝑝

⊥. This behavior is confirmed by the higher 

thickening rate along loading direction, shown in Figure 5. 

9.3.2 Lamellae tilting and rotation 

During tertiary creep, 2D-SAXS pattern changes from a slight ellipse into a distinct ellipse. 

For comparison, an isotropic 2D-SAXS pattern at the beginning of creep is also provided, see 

Figure 9-6a and Figure 9-6b. Figure 9-6c presents the long period as a function of azimuthal 

angle (φ) with respect to the loading direction. It can be found that before loading, the long 

period in all directions stays constant at 14 nm. For the elliptical pattern at 1208 s, the long 

period is greatest along loading direction and decreases gradually towards the direction 

perpendicular to the loading direction. During uniaxial drawing, the appearance of distinct 
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elliptical SAXS pattern is ascribed to intra-lamellae slip of those lamellae inclined to the 

loading direction. [209] 
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Figure 9-6 (a) Isotropic 2D-SAXS pattern at 0 s and (b) elliptical 2D-SAXS pattern at 1208 s 

in tertiary creep, the size of the pattern is ±0.0525⁡nm−1 × ±0.0525⁡nm−1, color scale like 

in Figure 9-2; (c) long period as a function of azimuthal angle (φ) with respect to the loading 

direction. 

Generally, the appearance of the elliptical pattern is related to lamellae tilting and rotation. 

The interpretation of the elliptical reflection is still an on-going topic up to now. In the very 

recent work by Murthy and his coworkers,[203, 320] models using an equilibrium distribution 

of molecular orientations and lamellar tilts are proposed which can predict elliptical 

reflections. Whereas, the models require some assumptions, these make the physical 

background of the fitting parameters unclear. So, a directly assignable structural basis for the 

parameters in their model is not possible yet. Therefore, the calculation of the lamellae tilting 

angle and rotating angle with respect to the loading direction remains unsolved in this work. 

9.3.3 Lamellae orientation and fibrillary structure formation 

As time further increases, the SAXS pattern transforms from ellipse to a “two-spot” pattern 

(see Figure 9-7), indicating that after lamella rotation and tilting, stress-induced crystalline 

block disaggregation happened, forcing the lamellae to orientate along loading direction. In 

addition, the “spot” exhibits a pronounced broadening in the equatorial direction. Such a 

broadening might be either due to misalignment of the lamellar structures with respect to the 

stretching direction or due to the limited lateral dimension of the lamellae making up the 

stacks.[324] 
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Figure 9-7 (a) “Two-spot” SAXS pattern with a streak signal (shown by the arrow) at 1248 s, 

the size of the pattern is ±0.0525⁡nm−1 × ±0.0525⁡nm−1 ; (b) is the enlargement of the 

center region of (a) with a size of ±0.0262⁡nm−1 × ±0.0262⁡nm−1, color scale like in Figure 

2. 

Herman’s orientation function [94] could be used to calculate the degree of the lamellae 

orientation along loading direction. The lamellae orientation degree is 0.45 after yielding and 

it increases to 0.5 with time (see Figure 9-8). 
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Figure 9-8 Herman’s orientation degree of lamellae after yielding, corresponding to a creep 

time from 1248 s to 1280 s.  

In addition to “two-spot” scattering signal, a streak (shown by the arrow) in equator direction 

could be found in Figure 9-7. The appearance of the streak indicates the formation of the 

fibrillary structure after yielding. Consuming that the fibrillary structure is oriented along the 

loading direction perfectly, the length of the fibrillary structure along (𝐿𝑓
∥ ) and perpendicular 

to (𝐿𝑓
⊥ ) loading direction can be evaluated by Equation (2-14). The results are given in 

Figure 9-9.  
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Figure 9-9 The length of the fibrillary structure along (𝐿𝑓
∥ ) and perpendicular (𝐿𝑓

⊥) to the 

loading direction under the assumption that the fibrillary structure is perfectly oriented, and 

the length (𝐿𝑓
′ ) of the fibrillary structure after taking the misorientation into account as a 

function of creep time. The solid lines are the second order polynomial fitting for the 

experimental data for 𝐿𝑓
∥  and 𝐿𝑓

′  as well as a linear fit for 𝐿𝑓
⊥. 

It can be found that 𝐿𝑓
∥  increases from 365 nm to 497 nm and 𝐿𝑓⊥  keeps at 102 nm. If 

misorientation of the fibrillary structure is taken into account, then the decrease of 𝐵𝑜𝑏𝑠⁡(𝑠) 

with increasing 𝑠 is a function of the analytical shape of the orientation distribution. The 

relation follows Equation (2-15). 𝐿𝑓
′

 as a function of creep time is also presented in Figure 

9-9. One can see that 𝐿𝑓
′  shows a similar trend as 𝐿𝑓

∥  but it is slightly smaller than 𝐿𝑓
∥ . 𝐿𝑓

′  is 283 

nm once it is formed, and then it increases to 372 nm finally. It should be mentioned that there 

could be artificial errors due to the polydispersity of the fibrillary structure, which is not 

considered in the Ruland’s method.[89] 𝐿𝑓
∥ , 𝐿𝑓

⊥, and 𝐿𝑓
′  given in Figure 10 are average value 

each of two measurements. In order to estimate the statistical certainty, 𝐿𝑓
∥ , and 𝐿𝑓

′  are fitted 

by a second order polynomial 

 𝑦 = 𝑎1𝑥
2 + 𝑎2𝑥 + 𝑎3 Equation (9-9) 

The fitted lines for these approximations are added in Figure 9-9, the coefficients of 

determination for both curves are R
2
 = 0.987. 𝐿𝑓

⊥  is approximated by a straight line, the 

standard deviation is 4.1. Generally, the formation of the fibrillary structure could be triggered 

by lamellae breaking and reorganization during yielding.[312, 325] By comparing the length 

of the fibrillary structure (either 𝐿𝑓
∥  or 𝐿𝑓

′ ) with the long period of original lamellae (16 nm), it 

could be inferred that the formation of fibrillary structure needs the disaggregation of a group 

of lamellae connected by tie molecular chains. 
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9.4 Conclusions  

The microstructure evolution during creep is investigated by in situ synchrotron SAXS. 

Results reveal that the microstructural evolution in a different creep stage differs from each 

other distinctly, especially in secondary and tertiary creep. During primary creep, strain grows 

nonlinearly to a value less than 15 % in a short time. In this stage, the long period along 

loading direction (𝐿𝑝
∥ ) increases with time, whereas the long period perpendicular to loading 

direction (𝐿𝑝
⊥) decreases slightly. The change of long period is caused by elastic deformation 

of molecular chains in the amorphous phase. In secondary creep, strain increases linearly with 

time. Both 𝐿𝑝
∥  and 𝐿𝑝

⊥ exhibit the same tendency with strain. The increase rate of 𝐿𝑝
∥ 𝐿∥ is larger 

than that of 𝐿𝑝
⊥ , which benefits from a higher polymer chains orientation along loading 

direction. In tertiary creep, strain grows dramatically within a limited time, and the yielding of 

iPP happens in this stage. The reflections in 2D-SAXS pattern changes from light ellipse to a 

distinct ellipse firstly, and then grows into “two-spot” pattern. This significant transition 

indicates that the lamellae are tilted and rotated during the yielding process. After that, the 

lamellae are disaggregated and aligned mainly along the loading direction, leading to the 

yielding of the specimen. The lamellar orientation degree is about 0.45 after yielding, and it 

increases to 0.5 with creep time. In addition, fibrillary structure could be induced after 

yielding by lamellae breaking and subsequent reorganization. By Guinier’ approximation the 

blank region in the small scattering angle region is extrapolated. Afterward, it is calculated 

that the length of the fibrillary structure increases from 364 nm to 497 nm as creep time 

increases; and its width keeps at 102 nm. 
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10 Microstructural evolution of iPP during stress relaxation
7
 

The structural evolution of iPP during stress relaxation is investigated. The results show that 

the local deformation behavior of the long period is affine with the macroscopic stress 

relaxation. However, the evolution of the crystal orientation and the void size lag behind the 

macroscopic stress relaxation. The decrease of the long period is mainly caused by the 

relaxation of the strained polymer chains in the amorphous phase. The retardation of the 

evolution of the crystal orientation is probably caused by the phase transition from stable α-

iPP to metastable mesomorphic-iPP. By phase transition, the highly oriented α-iPP is 

transferred to weakly oriented mesomorphic-iPP. Due to the fact that the void is confined by 

the network of the strained polymer chains where lamellae blocks serve as the physical 

anchoring points, the phase transition contributes greatly to the viscoplastic deformation of 

the network. Consequently, the evolution of the voids size shows a similar trend with that of 

the phase transition. 

  

                                                 
7
 The main part in this chapter will be submitted as “B. Chang, K. Schneider,  G. Heinrich. Structural evolution 

of oriented isotactic-polypropylene during stress relaxation” 
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10.1 Introduction  

In order to predict the mechanical response of semicrystalline polymers, numerous 

constitutive equations/models are derived in the past. For instance, the William-Landel-Ferry 

equation[293] is employed to rebuild the master curve of creep compliance. Popelar proposed 

a nonlinear viscoelastic model based on the viscoelasticity theory to develop the master 

curves for the relaxation modulus, maximum stress and the time-to-failure.[326] Khan and 

Zhang suggested a phenomenological viscoelasto-plastic constitutive model, presented by a 

series connection of a viscoelastic deformation module (represented by three elements 

standard solid spring dashpot model) and a viscoplastic deformation module represented by 

KHL (Khan, Huang and Liang) model, to describe the time dependent mechanical behavior of 

polytetrafluoroethylene qualitatively and quantitatively under uniaxial static and dynamic 

compression, creep and relaxation.[327] More recently, a viscoplasticity Theory Based on 

Overstress for Polymers (VBOP) was modified by Krempl et. al. to model the nonlinear 

behavior of PA66 and high density polyethylene (HDPE).[328] 

One of the key topics during the establishment of the model is to correlate the microstructural 

evolution with the viscoelastic/viscoplastic response of semicrystalline polymers under 

mechanical load reasonably. Generally, the semicrystalline polymers are regarded as a two-

phase continuum formed by a crystalline skeleton surrounded by the amorphous phase.[329] 

When the deformation temperature is higher than the glass transition temperature (Tg), the 

amorphous phase is in the rubbery state. The viscoplastic response of the crystalline phase 

includes fine and coarse slips of lamellae blocks. The viscoelastic response of the amorphous 

phase is associated with thermally activated rearrangement of strained polymer chains 

confined by lamellae blocks. The viscoplastic response of the amorphous phase is determined 

by the disentanglement of chains in the amorphous phase or detachment of chain folds and 

loops from surfaces of lamellae blocks. 

In this chapter, the microstructural evolution during stress relaxation is monitored by in-situ 

synchrotron WAXS and SAXS. Before the stress relaxation, the homogeneous as compression 

molded specimens were stretched to produce oriented samples where the normal of the 

interior lamellae blocks are oriented along the stretching direction during stress relaxation. 

The evolution of the crystal orientation, the long period and also the size of the voids during 

stress relaxation are characterized. The aim of this work is to gain a deeper insight into the 

relationship between the microstructural evolution and viscoelastic-viscoplastic properties of 

semicrystalline polymers under mechanical load.   
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10.1.1 The structural evolution during stress relaxation at 60 
o
C 

10.1.1.1 Phase transition and crystal orientation  

The stress relaxation tests were performed on the custom-made tensile machine shown in 

Figure 3-3. The temperature was controlled by the heat gun. The stress during relaxation was 

recorded by the load cell. The stress-time curve during stress relaxation at 60 
o
C is shown in 

Figure 10-1a. With the increase of the relaxation time, the stress exhibits a nearly exponential 

decay, which can be described by 

 𝜎 = 𝜎𝑒 + 𝜎0 [exp⁡(−
𝑡

𝜂𝜎
)] Equation 10-1 

The former part (𝜎𝑒) is the elastic contribution part, and the rest part is the time-dependent 

stress part with  𝜂𝜎 is the characteristic relaxation time. 

Synchrotron 2D-WAXS measurements were in-situ performed during the stress relaxation. 

Representative 2D-WAXS patterns during stress relaxation are provided in Figure 10-1b. On 

the initial 2D-WAXS pattern before relaxation, a few crystal planes can be found, which are 

(110), (040), (130), and (111)/(-131) from inner to the outer.[330] All crystal planes belong to 

α-iPP. The 2D-WAXS pattern shows a highly oriented fiber-symmetry due to the pre-

stretching. In particular, the scattering of (110), (040), and (130) crystal planes is focused on 

the meridian. The scattering of (111)/(-131) crystal plane is focused at an angle off to the 

meridian. On the 2D-WAXS pattern after relaxation, the scattering intensity of the crystal 

planes is decreased obviously. In addition, a halo at scattering vector (s), 𝑠 = 2𝑠𝑖𝑛𝜃/𝜆, 𝜃 is 

the scattering angle and 𝜆 is the wavelength, of 1.6 nm
-1

 shows up indicating the formation of 

mesomorphic-iPP.[331, 332] The vertical cut (V-cut) and horizontal cut (H-cut) extracted 

from the 2D-WAXS patterns are reported in Figure 10-1c and d. On V-cut, the scattering 

intensity of the crystal plane decreases drastically as the relaxation time exceeds 40 s. With 

the further increases of relaxation time, the scattering intensity of the crystal planes continues 

to decrease. On H-cut, the intensity of the halo increases obviously as the relaxation time is 

larger than 40 s. What’s more, the position of the halo shifts towards higher scattering vector 

(s) side. The results in Figure 10-1c and d indicate the transformation from α-iPP to the 

mesomorphic-iPP during relaxation.[183, 331] The formation of mesomorphic-iPP indicates 

that polymer chains are sliding out from the crystals.[204] 
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Figure 10-1 (a): Stress-relaxation curve at 60 
o
C; (b): representative 2D-WAXS pattern 

before relaxation and after relaxation, the stretching direction is horizontal; (c) and (d): the 

vertical cut (V-cut) and horizontal cut (H-cut) extracted from the 2D-WAXS patterns 

collected during relaxation. s is scattering vector with 𝑠 = 2𝑠𝑖𝑛𝜃/𝜆, 𝜃 is the diffraction angle 

and 𝜆 is the wavelength of the X-ray.  

The orientation of the crystal can be evaluated from the distribution of intensity of the crystal 

planes along the azimuthal angle. This is particularly evident for the changes in the azimuthal 

intensity distribution of (110) and (040) crystal planes, as shown in Figure 10-2a and b. In 

Figure 10-2a, the intensity around the meridian (azimuthal angle equals 90 
o
) reduces 

obviously from 1350 a.u. before relaxation to 450 a.u. at the end of relaxation. In the 

meantime, the intensity around the equator (azimuthal angle equals 180 
o
) increases from 85 

a.u. (before relaxation) to 143 a.u. (after relaxation). The evolution of the distribution of 

intensity of (040) crystal plane (shown in Figure 10-2b) owns a similar trend with that of 

(110) crystal plane.  
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Figure 10-2 (a) and (b) Distribution of intensity along the azimuthal angle of (110) crystal 

plane and (040) crystal plane extracted from the WAXS patterns during relaxation at 60 
o
C; 

(c): Herman’s orientation factor (fH) of the c-axis of the crystal as a function of the relaxation 

time.  

The polarization intensity in the meridian of (110) and (040) crystal plane originates from the 

orientation of parallel chain axis along the loading direction. The Herman’s orientation factor 

(fH) is employed to describe the crystal orientation quantitatively.[333] For α-iPP, which 

belongs to monoclinic crystal system, the orientation of the polymer chains in the crystal can 

be estimated by combining the Wilchinsky method.[94] The evolution of fH as a function of 

relaxation time is presented in Figure 10-2c. Different to the exponential decay of the 

macroscopic stress, fH follows reverse S-shaped decrease. As the relaxation time is smaller 

than 40 s, fH decreases slightly. However, in this region, the macroscopic stress suffers a steep 

decrease. As the relaxation time exceeds 40 s, a distinct reduction of fH from 0.52 to 0.26 

occurs but the macroscopic stress decreases only moderately. When the relaxation time is 

larger than 125 s, fH and the macroscopic stress decrease slightly with relaxation time. The 

distinctly different relaxation modes of fH and the macroscopic stress reveal the discrepancy 

between microscopic and macroscopic mechanical relaxation.  



138 

 

10.1.1.2 The cavitation behavior  

The stress relaxation at 60 
o
C during 2D-SAXS measurement is shown in Figure 10-3a. 

Representative 2D-SAXS patterns during stress relaxation are provided in Figure 10-3b. On 

the 2D-SAXS pattern before relaxation, a streak can be found on the meridian. Normally, the 

appearance of a streak signal on the 2D-SAXS pattern indicates the formation of highly voids. 

In this case, the appearance of the streak signifies the formation of the voids. The streak is 

aligned vertically, considering that the stretching direction is horizontal, it can be inferred that 

the longitude of the voids is along the stretching direction. On the 2D-SAXS pattern after 

relaxation, the intensity of streak signal is reduced obviously, suggesting the change of the 

voids size. Additionally, no lamellae scattering during the whole relaxation process can be 

found. Two possible reasons are proposed to responsible for that: the first one is that the 

scattering from the voids is too strong, covering the scattering of the lamellae; the second one 

is that the density contrast between the amorphous phase and the crystal phase is too small, 

compared with that between the amorphous phase and the voids.  

 

Figure 10-3 The stress-time curve during stress relaxation at 60 
o
C, and selective 2D-SAXS 

patterns during the relaxation process. The stretching direction is horizontal. The streak in the 

pattern indicates the existence of voids in the sample.  

The size of the voids can be evaluated by the Ruland’s streak method,[89] which has been 

introduced in the previous chapter.[245] The evolution of the voids size as a function of the 

relaxation time is presented in Figure 10-4a. As the relaxation time is smaller than 30 s, the 

voids length decreases slightly and the voids width remains nearly constant. When the 

relaxation time is larger than 30 s, a steep decrease of the voids length and a sharp increase of 

the voids width appear. In detail, the voids length is decreased from 215 nm to 182 nm as 

relaxation time is increased from 30 s to 80 s. As the relaxation time is further increased, the 
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voids length decreases continually to 158 nm and the voids width is increased slightly from 25 

nm 37 nm. The results show that upon stress relaxation, voids are closed in the longitude 

direction and widened in the transverse direction. Assuming that the shape of the voids is a 

cylinder,[89] the volume of the voids is estimated and the result is given in Figure 10-4b. It is 

interesting to point out that the volume of the voids shows a similar evolution trend with the 

voids width. In the first 30 s, the volume of the voids stays nearly unchanged. As the 

relaxation time is larger than 30 s, an obvious increase of the volume of the voids can be seen. 

And the volume of the voids reaches a plateau when the relaxation time is larger than 80 s. 

The evolution of the scattering invariant is given in Figure 10-4c, which can be divided into 

two regions. Before 50 s, the scattering invariant is increased gradually to a maximum of 

2.9×10 
7
, which can be ascribed to the widening of the voids. After that, the scattering 

invariant follows an exponential decrease. Considering that the voids volume is hardly 

changed as shown in Figure 10-4b, the reduction of the scattering invariant can be ascribed to 

the collapse of the voids.  
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Figure 10-4 The evolution of the voids length and the voids width (a), the voids volume (b), 

and the scattering invariant (c) during the stress relaxation at 60 
o
C. 
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10.1.2 The structural evolution during stress relaxation at 90 
o
C 

10.1.2.1 Phase transition and crystal orientation  

The stress relaxation behavior at 90 
o
C is similar to that at 60 

o
C. As expected, with the 

increase of relaxation time, the stress exhibits exponential decay. Representative 2D-WAXS 

patterns are shown in Figure 10-5. Generally, with increasing relaxation time the scattering 

intensity of the crystal planes is decreased and the scattering intensity of the halo is enhanced, 

suggesting that the α-iPP transforms into mesomorphic-iPP gradually.  
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Figure 10-5 (a): Stress-time curve during relaxation at 90 
o
C; (b): representative 2D-WAXS 

pattern before relaxation and after relaxation, the stretching direction is horizontal; (c) and (d): 

the V-cut and H-cut extracted from the 2D-WAXS patterns collected during relaxation.  

Moreover, the azimuthal intensity distribution of (110) and (040) crystal planes are shown in 

Figure 10-6a and b. The decrease at the azimuthal angle of 90 
o
 and increase at the azimuthal 

angle of 180 
o
 verify the transformation of α-iPP to mesomorphic-iPP. Additionally, the 

evolution of the polymer chains in the crystal owns the reverse S-shape which is similar to 

that at 60 
o
C.  
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Figure 10-6 (a) and (b) Distribution of intensity along the azimuthal angle of (110) crystal 

plane and (040) crystal plane extracted from the 2D-WAXS patterns during relaxation at 90 
o
C; (c): Herman’s orientation factor (fH) of the c-axis of the crystal as a function of the 

relaxation time.  

10.1.2.2 The evolution of the long period  

The stress relaxation at 90 
o
C during SAXS measurement is shown in Figure 10-7a. 

Representative 2D-SAXS patterns during stress relaxation are provided in Figure 10-7b. On 

the SAXS pattern before relaxation, a weak streak can be found on the meridian which is 

similar to that at 60 
o
C. Additionally, two scattering spot originated from the lamellae 

scattering can be found on the equator. On the pattern after relaxation, the intensity of streak 

signal is decreased. In the meantime, the intensity of the lamellae is also reduced.  
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Figure 10-7 The stress-time curve during stress relaxation at 90 
o
C, and selective 2D-SAXS 

patterns during the relaxation process. The stretching direction is horizontal.  

The appearance of equatorial “two spots” pattern on the SAXS patterns indicates the 

formation of the well-oriented fiber morphology, which is in agreement with the WAXS 

results of Figure 10-5. In the oriented morphology, the α-iPP lamellae are periodically 

stacked along the stretching direction, separated by amorphous regions. The long period 

(consisting of one amorphous phase and one crystalline phase) calculated from the position of 

the intensity maxima qmax on the equator is shown in Figure 10-8. The long period exhibits a 

regular exponential decay with relaxation time, indicating that the local relaxation of the 

lamellar stacks is affine with the macroscopic relaxation. Since the lamellar stacks 

contributing to the intensity on the equator are those characterized by layers oriented 

perpendicular to the stretching direction, the decrease of the long period indicates lamellar 

shrinkage, facilitated by the high mobility of the polymer chains in the amorphous phase. 
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Figure 10-8 The evolution of the long period as a function of relaxation time during stress 

relaxation at 90 
o
C, the dashed red line is the fitted result of the raw data.  
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10.1.2.3 The cavitation behavior  

The evolution of the voids size is presented in Figure 10-9. It can be found that in the first 80 

s, both voids length and voids width stay nearly unchanged. As the relaxation time is 

increased from 80 s to 120 s, the voids length is decreased from 270.5 nm to 216.0 nm and the 

voids width is enlarged from 44.7 nm to 50.4 nm. The volume of the voids is nearly constant. 

The scattering invariant provided in Figure 10-9c shows that before 100 s, the scattering 

invariant is reduced only slightly. But as the relaxation time exceeds 100s, a steep decrease 

can be found on the curve, which should be caused by the collapse of the voids. 
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Figure 10-9 The evolution of the voids length and the voids width (a), the voids volume (b), 

and the scattering invariant (c) during the stress relaxation at 60 
o
C. 

The results above reveal that the local relaxation behavior of the long period is affine with 

macroscopic stress relaxation. However, the evolution of the crystal orientation and the voids 

size lag behind the macroscopic stress relaxation. During stress relaxation, the semicrystalline 

polymer can be regarded as a two-phase continuum consisting of a crystalline skeleton and an 

amorphous phase treated as a transient network of chains.[334] Numerous attentions have 

been devoted to developing the constitutive models for semicrystalline polymers.[326, 328, 
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335] The relationship between microstructural evolution and the viscoelastic-viscoplastic 

property of the polymer was investigated. On the micro-level, the viscoplastic response of the 

crystalline phase was proposed to originate from the fine (homogeneous shear of crystal 

blocks) and coarse (heterogeneous inter-lamellar sliding) slip of lamellar blocks, the rotation 

and twist of individual lamellae and lamellar stacks, and micro-necking of lamellae.[329] The 

results in this study show that the phase transition from α-iPP to mesomorphic-iPP should 

also be taken into account for the viscoplastic deformation of the crystalline phase. The 

schematic drawing of the structural evolution during stress relaxation is provided in Figure 

10-10. 

 

Figure 10-10 The schematic drawing of the structural evolution during stress relaxation. 

The viscoelastic response of the amorphous phase is associated with thermally activated 

rearrangement of strained chains in the network, for instance the separation of active 

strands.[336] The affine deformation of the long period with macroscopic stress relaxation 

indicates that the decrease of the long period is mainly controlled by the relaxation of the 

strained polymer chains in the amorphous phase. The viscoplastic response of the amorphous 

phase is associated with disentanglement of polymer chains in the amorphous phase, chain 

slip through the crystals, or sliding of tie chains on the surfaces of lamellae. During stress 

relaxation, the disentanglement of polymer chains could be excluded since that the stress on 

the polymer chains is decreased with relaxation time. As has been proved in Figure 10-2 and 

Figure 10-6, the stable α-iPP is transferred to metastable mesomorphic-iPP. The arrangement 

of polymer chains in mesomorphic-iPP is of a lower order than that in α-iPP,[24] which 

benefits the sliding of tie chains during relaxation. The size of the voids is much larger than 

the long period, it is reasonable to assume that the geometry of the voids is confined by the 

network of the strained polymer chains with lamellae blocks serving as the physical anchoring 

point. The viscoplastic response of the network correlates intimately with the phase transition 
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from α-iPP to mesomorphic-iPP. Therefore, the evolution of the voids size as a function of 

relaxation time exhibits a distinctive trend with the macroscopic stress relaxation.  

10.2 Conclusion 

The structural evolution of iPP during stress relaxation is investigated. The results show that 

the local deformation behavior of the long period is affine with macroscopic stress relaxation. 

However, the evolution of the crystal orientation and the voids size shows a distinctive trend 

with the macroscopic stress relaxation. The decrease of the long period is proposed to be 

mainly caused by the relaxation of the strained polymer chains in the amorphous phase. The 

distinct different evolution trend of the crystal orientation is caused by the phase transition 

from stable α-iPP to metastable mesomorphic-iPP. Since that the geometry of the voids is 

confined by the network of the strained polymer chains with lamellae blocks serving as the 

physical anchoring point. The viscoplastic response of the network correlates intimately with 

the phase transition from α-iPP to mesomorphic-iPP. Therefore, the evolution of the voids 

size as a function of relaxation time exhibits a distinctive trend with the macroscopic stress 

relaxation. 
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11 Conclusion and outlook  

In this study, the structural evolution of iPP with well-defined microstructure under 

mechanical load is in-situ monitored by synchrotron X-ray scattering. The microstructure 

inside the sample is controlled either by annealing or adding nucleating agent. And three types 

of mechanical loads (uniaxial stretching, creep, and stress relaxation) are employed.  

 During uniaxial stretching, we revealed how lamellae deformation occurs in the time 

scales of elastic deformation, intra-lamellar slip, and melting-recrystallization, 

separated by three critical strains which were only rarely found to be influenced by 

annealing. On the other hand, annealing significantly decreases the critical strain for 

voids formation and increases the voids number, but restricts the void size. In addition, 

depending on the annealing temperature, two types of voids are confirmed according 

to their direction with respect to the stretching direction. And lastly, the formation of 

voids influences neither the critical strains for lamellae deformation nor the final long 

period, the orientation of polymer chains or the crystal size.  

 It is also revealed that during uniaxial stretching, a higher relative content of β-iPP (Kβ) 

in the sample could increase the number of the voids. And the takes place after voids 

formation. According to the critical strains determining the appearance of the β-α 

phase transition and lamellae twisting of β-iPP, the lamellae twisting is proposed to be 

responsible for the intense voids formation of the composite with higher Kβ. 

 During creep, the evolution of the long period can be divided into four stages (primary 

creep, transition stage, secondary creep, and tertiary creep). This fits quite well with 

the macroscopic displacement and strain evolution. The increase of the long period 

during secondary creep is proposed to be caused by lamellae thickening, which is a 

kind of cooperative motion of molecular chains with their neighbors onto the lamellae 

surface. The increasing rate of 𝐿𝑝
∥  is larger than that of 𝐿𝑝

⊥ , indicating that the 

orientation of molecular chains along loading direction decreases the energy barrier 

for the cooperative motion. 

 During stress relaxation, the evolution of the long period is affine with the 

macroscopic stress relaxation. However, the change of the crystal orientation and the 

void size lag behind the macroscopic stress relaxation. The retardation of the change 

of the crystal orientation is probably caused by the phase transition from stable α-iPP 

to metastable mesomorphic-iPP. By phase transition, the highly oriented α-iPP is 

transferred to weakly oriented mesomorphic-iPP. Due to the fact that the void is 

confined by the network of the strained polymer chains where lamellae blocks serve as 

the physical anchoring points, the phase transition contributes greatly to the 

viscoplastic deformation of the network. Therefore, the evolution of the voids size 

shows a similar trend with that of the phase transition. 
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Via the results in this study, the critical strains for lamellae deformation and voids formation 

during uniaxial stretching are revealed; the relationship between lamellae deformation or β-α 

phase transition with voids formation is discussed; the lamellae thickening during secondary 

creep is discovered; and lastly, the α-mesophase transition and changing of voids size during 

stress relaxation are investigated. 

The aim of this work is to get a further insight into the relationship between structure-

mechanical properties of semicrystalline polymers. But, it is obviously far from enough 

considering the still on-going discussions about the existed topics and ever increasing new 

problems. In case that more works should be done in this field, a few interesting topics are 

listed below:  

 The deformation of the crystal and amorphous phase of semicrystalline polymers in 

the elastic range (before the yield point).  

 The dependence of phase transition on temperature during stress relaxation. 

 The application of the self-assembly process of the nucleating agent in polymer 

processing (fiber spinning, injection molding etc.).  
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13 Appendix 

13.1 List of symbols and abbreviations 

PP polypropylene 

iPP isotactic-polypropylene 

aPP atactic-polypropylene 

sPP syndiotactic-polypropylene 

cPP propylene/ethylene copolymer  

PE polyethylene 

HDPE high density polyethylene 

PA polyamide 

PA6 polyamide 6 

PCL poly(ε-caprolactone) 

PI polyimide 

P1B poly(1-butene) 

E2 scattered wave  

E1 incident wave  

𝑟0 electron radius 

r position of the electron 

q scattering vector 

s scattering vector 

𝜃 scattering angle 

𝜆 wavelength 

𝑑𝜎/𝑑𝛺 differential scattering cross-section 

Φ0 strength of the incident beam 

𝐼𝑚 measured scattering intensity 

ΔΩ solid angle 

R distance between the object and the detector 

WAXS wide-angle X-ray scattering 

MAXS middle angle X-ray scattering 

SAXS small angle X-ray scattering 

2D 2-dimensional 

1D 1-dimensional 
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Rn vector sets in the lattice 

𝑑ℎ𝑘𝑙 lattice spacing 

𝜏ℎ𝑘𝑙 crystal size 

∆𝜌 electron density difference 

ℱ(𝒔) form factor 

𝑉𝑝 volume fraction of particles 

𝑅𝑔 radius of gyration 

Q scattering invariant 

𝐵𝑜𝑏𝑠 integral breadth 

〈𝐿〉 average length of the elongated structure 

𝐵𝑝 instrumental broadening 

𝐵𝑔 true integral breadth of the orientation distribution 

Mw weight-average molecular weight 

Mn number-average molecular weight 

NJS N,N'-dicyclohexyl-2,6-naphthalene dicarboxamide 

NA nucleating agent 

CF carbon fiber 

Ta annealing temperature 

Tf final heating temperature 

DSC differential scanning calorimetry 

TMDSC temperature-modulated differential scanning calorimetry 

DMA dynamic mechanical analysis 

SEM scanning electron microscopy 

POM polarized optical microscopy 

Xc-DSC crystallinity calculated from DSC 

∆𝐻𝑚 fusion enthalpy 

∆𝐻𝑚
∗  equilibrium melting enthalpy 

SAOS small amplitude oscillatory shear 

γ strain amplitude 

ω angular frequency 

𝛾̇ shear rate 

G' storage modulus 

GPC Gel Permeation Chromatography 
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DESY Deutsches Elektronen Synchrotron 

SSRL Standford Synchrotron Radiation Laboratory 

ESRF European Synchrotron Radiation Facility 

SSRF Shanghai Synchrotron Radiation Facility 

𝜀𝐻 Hencky strain 

𝐿0 initial length 

∆𝐿 displacement of the painted grid pattern 

𝜎 stress 

𝐹 force 

𝐴0 initial cross section area 

DIC digital image correlation 

𝑋𝑐 crystallinity calculated by WAXS measurement 

𝐾𝛽 relative content of β-iPP 

𝑓𝐻 Herman’s orientation factor 

fHa Herman’s orientation factor of a-axis 

fHb Herman’s orientation factor of b-axis 

fHc Herman’s orientation factor of c-axis 

 azimuthal angle 

Lp long period 

𝐿𝑝
∥  long period along the loading direction 

𝐿𝑝
⊥ long period perpendicular to the loading direction 

Lc thickness of the crystalline phase 

𝐿𝑐
∥  thickness of the crystalline phase along the loading direction 

𝐿c
⊥ thickness of the crystalline phase perpendicular to the loading direction 

La thickness of the amorphous phase 

𝐿a
∥  thickness of the amorphous phase along the loading direction 

𝐿a
⊥ thickness of the amorphous phase perpendicular to the loading direction 

Lim thickness of the intermediate phase 

K(z) 1D correlation function 

S∥ void size along the stretching direction 

S⊥ void size perpendicular to the stretching direction 

𝑉𝑚 volume ratio of the matrix 
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𝑉𝑣 volume ratio of the void 

𝜌𝑚 electron density of the matrix 

𝜌𝑣 electron density of the void 

𝑅𝐷 𝑀⁄  ratio between “daughter” lamellae and “mother” lamellae 

Eα activation energy 

FWHM full width at half maximum 

𝐺𝑠 surface free energy 

𝛥𝐻 heat of fusion per mole of molecular chains 

𝑇𝑚
0  equilibrium melting point 

𝑣 the number of molecular chains 

σb surface free energy of the basal plane 

𝜎𝑙 surface free energy of the lateral surface 

Tαc peak temperature of αc-relaxation 

𝑘𝐵 Boltzmann’s constant 

𝜀𝑦 yield strain 

𝜀ℎ onset strain of the strain hardening 

∆𝐺𝑎 Gibbs free energy for dislocation nucleation 

𝑏𝑣 magnitude of the Burgers vector 

𝜎 stress 

𝜎𝑦 yield stress 

𝜎𝑐𝑎𝑣 critical stress for cavitation 

𝜎𝑠ℎ critical stress for crystallographic slip 

Δ𝐻𝑐𝑚 heat of transition from mesomorphic phase to crystalline phase 

Δ𝑧 stem length increment per structural unit 

𝜎𝑎𝑐𝑛 surface free energy of the native crystal layer 

𝜎𝑐𝑚 the surface free energy of the mesomorphic layer 

𝑇𝑚𝑐
∞  transition temperature between the mesomorphic phase and crystalline phase 

SIC shear induced crystallization 

DBS dibenzylidene sorbitol  

SB sodium benzoate 

HPN isotropic bicycle [2.2.1] heptane-2,3-dicarboxylic acid 

WBG-II rare earth β-iPP nucleating agent 
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DCTH N,N′-dicyclohexylterephthalamide 

FTIR Fourier transform infrared spectroscopy 

𝜂 steady-state shear viscosity 

𝜂∗ dynamic complex viscosity 

Δ𝑑 displacement 

ε true strain 

𝜀̇ strain rate 

𝐿𝑓
∥  length of the fibrillary structure along the loading direction 

𝐿𝑓
⊥ length of the fibrillary structure perpdendicular to the loading direction 

𝑅 gas constant 

VBOP Viscoplasticity Theory Based on Overstress for Polymers 

Tg glass transition temperature 

𝜎𝑒 elastic dtress during stress relaxation 

𝜂𝜎 characteristic relaxation lifetime 
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