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A B S T R A C T

Cancer as a disease causes about 8.8 million deaths worldwide per year, a num-
ber that will largely increase in the next decades. Although the cellular processes
involved in tumor emergence are more and more understood, the implications
of specific changes at the cellular scale on tumor emergence at the tissue scale
remain elusive. Main reasons for this lack of understanding are that the cellular
processes are often hardly observable especially in the early phase of tumor de-
velopment and that the interplay between cellular and tissue scale is difficult to
deduce. Cell-based mathematical models provide a valuable tool to investigate
in which way observable phenomena on the tissue scale develop by cellular pro-
cesses. The implications of these models can elucidate underlying mechanisms
and generate quantitative predictions that can be experimentally validated. In
this thesis, we infer the role of genetic and phenotypic cell changes on tumor
development with the help of cell-based Markov chain models which are cali-
brated by tissue-scale data.

In the first part, we utilize data on the diagnosed fractions of benign and ma-
lignant tumor subtypes to unravel the consequences of genetic cell changes on
tumor development. We introduce extensions of Moran models to investigate
two specific biological questions. First, we evaluate the tumor regression behav-
ior of pilocytic astrocytoma which represents the most common brain tumor in
children and young adults. We formulate a Moran model with two absorbing
states representing different subtypes of this tumor, derive the absorption prob-
abilities in these states and calculate the tumor regression probability within
the model. This analysis allows to predict the chance for tumor regression in de-
pendency of the remaining tumor size and implies a different clinical resection
strategy for pilocytic astrocytoma compared to other brain tumors.

Second, we shed light on the hardly observable early cellular dynamics of
tumor development and its consequences on the emergence of different tumor
subtypes on the tissue scale. For this purpose, we utilize spatial and non-spatial
Moran models with two absorbing states which describe both benign and ma-
lignant tumor subtypes and estimate lower and upper bounds for the range
of cellular competition in different tissues. Our results suggest the existence of
small and tissue-specific tumor-originating niches in which the fate of tumor
development is decided long before a tumor manifests. These findings might
help to identify the tumor-originating cell types for different cancer types.

From a theoretical point of view, the novel analytical results regarding the
absorption behavior of our extended Moran models contribute to a better un-
derstanding of this model class and have several applications also beyond the
scope of this thesis.
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The second part is devoted to the investigation of the role of phenotypic plas-
ticity of cancer cells in tumor development. In order to understand how pheno-
typic heterogeneity in tumors arises we describe cell state changes by a Markov

chain model. This model allows to quantify the cell state transitions leading to
the observed heterogeneity from experimental tissue-scale data on the evolution
of cell state proportions. In order to bridge the gap between mathematical mod-
eling and the analysis of such data, we developed an R package called Cell-
Trans which is freely available. This package automatizes the whole process
of mathematical modeling and can be utilized to (i) infer the transition proba-
bilities between different cell states, (ii) predict cell line compositions at a cer-
tain time, (iii) predict equilibrium cell state compositions and (iv) estimate the
time needed to reach this equilibrium. We utilize publicly available data on the
evolution of cell compositions to demonstrate the applicability of CellTrans.
Moreover, we apply CellTrans to investigate the observed cellular phenotypic
heterogeneity in glioblastoma. For this purpose, we use data on the evolution of
glioblastoma cell line compositions to infer to which extent the heterogeneity in
these tumors can be explained by hierarchical phenotypic transitions. We also
demonstrate in which way our newly developed R package can be utilized to
analyze the influence of different micro-environmental conditions on cell state
proportions.

Summarized, this thesis contributes to gain a better understanding of the con-
sequences of both genetic and phenotypic cell changes on tumor development
with the help of Markov chain models which are motivated by the specific
underlying biological questions. Moreover, the analysis of the novel Moran

models provides new theoretical results, in particular regarding the absorption
behavior of the underlying stochastic processes.
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1
I N T R O D U C T I O N

Cancer is, in essence, a genetic disease. — Bert Vogelstein [140]

Contents

1.1 Background on cancer biology . . . . . . . . . . . . . . . . . . . 1

1.1.1 The role of genetic cell changes in tumor development 2

1.1.2 The role of phenotypic cell changes in tumor develop-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Scope & outline of this thesis . . . . . . . . . . . . . . . . . . . . 4

1.1 background on cancer biology

Cancer as a disease causes about 8.8 million deaths worldwide per year which
represents 15.7% of all causes for human deaths [141]. Moreover, about 14.1 mil-
lion new cases are diagnosed worldwide per year and this number is expected
to increase to 24 million by 2035 [92]. This indicates that cancer is a major chal-
lenge and will be even more relevant in the future. From a historical perspec-
tive, many hypotheses have been formulated about the underlying mechanisms
of cancer development including infectious diseases, dysregulated differentia-
tion or a defective immune system. However, it took until the discovery of the
exact structure of the DNA in 1953 until scientists understood that all these
mechanisms are responsible for genetic alterations within the DNA leading to
uncontrolled proliferation of cells. Nowadays, it is known that also environmen-
tal and other non-genetic factors, such as phenotypic properties of cells, play a
crucial role in cancer development.

Cancer cells can be regarded as abnormal and exhibit typical hallmarks such
as resisting cell death, enabling replicative immortality or inducing angiogen-
esis [48]. In the context of this thesis, the role of genetic and phenotypic cell
alterations in the acquirement of these hallmarks are of particular interest.
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2 introduction

1.1.1 The role of genetic cell changes in tumor development

cellular multistep process . It is widely accepted that most cancers
develop by a multistep process of genetic changes on the cellular scale. In this
process, tumor progression describes irreversible changes in the characteristics of
cells which are obtained in a sequential manner and lead to a genetically altered
subpopulation of cells with these new characteristics [103]. Usually, the starting
point of this process is the acquirement of a single cancer-relevant genetic alter-
ation within a single cell. Subsequently, this cell can undergo clonal expansion, i.e.
it gives rise to descendants by cell divisions. This increase of cancer cell numbers
leads to tumor growth. Further genetic alterations within this growing cancer cell
population can accumulate such that the proliferation of these cells gets more
and more uncontrolled. However, the possible death of the organisms is in most
cases not caused by this local tumor growth, but a consequence of metastasis

which describes a process in which cancer cells acquire the ability to spread to
and start growing in a different organ [127].

Importantly, the characteristic numbers of genetic changes in the multistep
process of tumor progression differ between cancer types. For example, the de-
velopment of malignant colon cancer requires about seven of these steps [139]
whereas the development of retinoblastoma, a cancer within the eye, requires
two mutations in a certain gene [37]. In contrast, pilocytic astrocytoma, a low-
grade brain tumor which is most often diagnosed in young adults and children,
can be induced by a single specific mutation and is therefore often designated
as single-step disease [63]. These examples indicate that there are fundamental
differences in the genetic characteristics between different cancer types and that
cancer cannot be regarded as one disease.

cell competition & tumor regression. Genetically altered cells that
arise in the cellular multistep process of cancer progression do not necessarily
induce tumor formation but are exposed to competition with its corresponding
wild-type cells. This competition can be roughly divided into a neutral and a
selection phase depending on the stage of progression. The genetic alterations
do not confer a proliferative advantage to the tumor cells in the neutral phase
but do so in the selection phase [144, 146]. Within the neutral phase, the cell
competition can be regarded to take place within normal tissue homeostasis.
Hence, the range of this competition is determined by the underlying tissue
structure suggesting that the spatial cell arrangement has a large influence on
clonal expansion of cells. In particular, the spatial arrangement of cells influ-
ences where other cells can place its offspring and thereby determines to which
extent cells can clonally expand within a tissue. Moreover, genetically altered
cells must not go extinct in order to induce tumor formation. This establish-
ment can be achieved by clonal expansion to a sufficiently large cell population
[75]. Importantly, a tumor cell population can also fail to establish and there are
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tumor types for which spontaneous regression of clinically detectable sizes is a
common phenomenon, e.g. pilocytic astrocytoma. However, which mechanisms
determine whether these tumors regress or not is an open question. We provide
a model-based approach to evaluate tumor regression of pilocytic astrocytoma
in Chapter 3.

emergence of benign and malignant tumor subtypes . Tumors can
be classified with respect to the grade of tumor progression into benign and ma-

lignant stages. Malignant tumors are able to invade nearby tissue or to metasta-
size whereas benign tumors lack these abilities. Moreover, malignant tumor cells
usually proliferate faster than benign tumor cells so that, in general, malignant
tumors grow faster than benign tumors. A well-studied example of tumor pro-
gression from a benign stage to a malignant stage is the development of colon
cancer. Here, a stepping stone is the formation of benign adenomas which re-
quires two genetic alterations in both alleles of the APC tumor suppressor gene
[111]. Subsequently, adenomas can progress to malignant colon cancer due to
further malignant alterations. From a clinical point of view, benign tumor stages
offer an opportunity for detection before malignant progression. One observes
different progression types, namely with and without detectable benign precur-
sor stages. Tissue-scale data on the ratios of the two progression types exhibit
large differences between cancers. In which way these progression patterns on
the tissue-scale emerge from the processes on the cellular scale is difficult to
infer since the early phase of this multistep process is hardly observable. In
Chapter 4, we shed light on this early phase of the multistep process of cancer
development on the cellular scale with a Markov chain model that is calibrated
with epidemiological data on benign and malignant tumors on the tissue scale.

1.1.2 The role of phenotypic cell changes in tumor development

phenotypic equilibrium of cancer cell populations . During tu-
mor growth and progression, the normal composition of a tissue is destroyed
and tumor cells emerge which exist in different phenotypic states with differ-
ent functional properties. The ability of cancer cells to change this phenotype is
referred to as phenotypic plasticity and induces a highly dynamic overall tumor
composition which exhibits a broad range of heterogeneity between different
patients [18].

Similarly to normal tissue homeostasis, the dynamic process of phenotypic
plasticity leads in many tumors to a equilibrium with respect to the proportion
of cancer cell phenotypes [87]. Cancer cell populations have the ability to main-
tain this phenotypic equilibrium which has been observed in vivo and in vitro. In
these experiments, subpopulations of cells purified for a given cell phenotype
return to the composition of cell state proportions of the original tumor over
time. Understanding the phenotypic state transitions would allow to predict the
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evolution of cell state proportions. In Chapter 5, we develop a modeling ap-
proach and an R software package to estimate phenotypic state transitions from
cell line experiments.

stochastic and cancer stem cell model . The phenotypic hetero-
geneity of tumors can be obtained from tissue-scale data by measuring the
proportions of phenotypes. In order to understand the emergence of this hetero-
geneity one has to understand in which way it evolves from the underlying pro-
cesses on the cellular scale. The cancer stem cell model suggests that tumors are
hierarchically organized and follow a unidirectional differentiation process with
cancer stem cells (CSCs) at the top of the hierarchy. Only the CSC sub-population
has the potential to induce tumor formation due to the ability to self-renew and
differentiate [18]. In contrast, the stochastic model postulates that potentially
every cell can induce and maintain tumors. In detail, it is proposed that the
exposure to certain combinations of intrinsic and extrinsic factors is responsible
that any cell can acquire tumorigenic properties [142]. Major challenges in the
experimental investigation of these two models are the reliable identification of
cancer stem cells, the possibility that both models are not mutually exclusive
and that tumors might potentially contain more than one CSC clone [76]. In this
thesis, we contribute to a better understanding of the emergence of phenotypic
heterogeneity in glioblastoma. We quantify the underlying phenotypic cell state
changes of gliobastoma cells from experimental tissue-scale data in Chapter 6.

1.2 scope & outline of this thesis

scope . Although the above described cellular processes that are involved in
tumor emergence are more and more understood, their specific role in tumor
emergence on the tissue scale remains elusive. Main reasons for this lack of un-
derstanding include the fact that the cellular processes are often hardly observ-
able, especially in the early phase of tumor development, and that the precise
interplay between cellular and tissue scale is difficult to infer. Here, mathemati-
cal modeling is a valuable tool to evaluate assumptions and to make predictions
which can be experimentally tested. A remarkable advantage of this approach is
the ability to derive unexpected or even counter-intuitive principles which have
not been discovered from a biological perspective.

The design of mathematical models depends on the specific biological ques-
tion of interest. Complex intra-cellular processes determine the fate of a single
cell and the interactions between cells have an impact on phenomena on the
tissue scale. In this thesis, we concentrate on the role of cellular mechanisms on
tumor-related observables on the tissue scale. Single cell processes like division,
death and the acquirement of genetic alterations are highly complex and depen-
dent on many intra-cellular processes. It is therefore not possible to precisely
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predict the occurrence of these processes which suggests to utilize stochastic
approaches.

In this thesis, we infer the role of genetic and phenotypic cell changes on
tumor development with the help of Markov chain models which describe cel-
lular processes and are calibrated by tissue-scale data. In particular, we tackle
the following specific biological questions within the tumor context:

• In which way do cellular processes like competition, genetic alterations and
proliferation and death determine whether tumors on the tissue scale grow,
progress or even spontaneously regress?

• At which point of the cellular multistep process of cancer and the clonal
expansion of genetically altered cells is the fate of tumor development de-
cided?

• What is the role of phenotypic cell state changes of cancer cells in the estab-
lishment of a tissue-scale equilibrium with respect to different cell pheno-
types in tumors?

• To which extent is the observed phenotypic heterogeneity on the tissue

scale caused by hierarchical phenotypic cell changes and what is the role
of different environmental conditions in determining this heterogeneity?

In the first part of this thesis, we utilize data on the diagnosed fractions of be-
nign and malignant tumor subtypes in order to shed light on the consequences
of genetic cell changes on tumor development. The second part of this thesis is
devoted to investigate the role of phenotypic plasticity of cancer cells. In partic-
ular, we present an approach to estimate the frequencies of phenotypic cell state
changes of cancer cells from tissue-scale data on the evolution of phenotypic
cell population compositions.

overview. In Chapter 2, we introduce the mathematical basics for the mod-
els in this thesis. We shortly present the most important definitions and results
for Markov chains in discrete and continuous time. Moreover, we present the
Moran model and provide a summary of established theoretical results for this
model class. We also present a first novel result by introducing a Moran model
on a crypt-like structure and derive the absorption probabilities and absorp-
tion times of this model. This finding extends existing mathematical results on
Moran models.

In Chapter 3, we evaluate spontaneous tumor regression in pilocytic astrocy-
toma (PA) which is the most common brain tumor in children and young adults.
This tumor is usually benign and often follows an indolent course. The treat-
ment of choice is resection and the prognosis is very favorable if total excision
can be achieved. However, due to the location of the tumor, in many cases only
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partial resection is possible. Partially resected PA can spontaneously regress, re-
grow or even progress to a more aggressive type. We develop a mathematical
model which describes the growth, progression and regression of PA. Our analy-
sis of the model allows to quantitatively predict the chance for tumor regression
in dependency of the remaining tumor size. This prediction has the potential to
provide decision support to clinicians after partial resection of benign PA. Fur-
thermore, our results imply that there is no resection threshold for PA below
which no survival advantage is provided. This finding stands in contrast to ma-
lignant brain tumors where such a threshold has been experimentally shown.

In Chapter 4, we investigate the hardly observable early phase of tumor de-
velopment on the cellular scale. Cancers exhibit different types of malignant
progression, namely with and without clinically detectable benign precursor
stages. Clinical data shows that progression patterns, i.e. the frequencies of the
two progression types, are tissue-specific but the role of the cellular multistep
process of cancer development therein remains unclear. We introduce a model
which is based on competition between wild-type and tumor cells and assume
that a certain amount of tumor cells is needed for tumor emergence. We esti-
mate this number by fitting the model to data on the diagnosed ratios of benign
and malignant tumor subtypes. Our model predicts that this number is consid-
erably small compared to the overall tumor mass and largely depends on the
tissue type. Our results can be interpreted as existence of a tissue-specific tumor-
originating niche in which the fate of tumor development is decided long before
a tumor becomes detectable.

The second part of this thesis is devoted to the investigation of the influence of
phenotypic plasticity of tumor cells in tumor development. In Chapter 5, we de-
velop CellTrans, an R package to quantify stochastic cell state transitions from
cell state proportion data from fluorescence-activated cell sorting (FACS) and
flow cytometry experiments. The package is based on a mathematical model in
which cell state alterations occur due to stochastic transitions between distinct
cell states whose rates only depend on the current state of a cell. CellTrans

is an automated tool for estimating the underlying transition probabilities from
appropriately prepared data. We point out potential analytical challenges in
the quantification of these cell transitions and explain how CellTrans handles
them. The applicability of CellTrans is demonstrated on publicly available
data on the evolution of cell state compositions in cancer cell lines.

In Chapter 6, we investigate the observed phenotypic heterogeneity in a cer-
tain brain tumor called glioblastoma (GBM) with particular emphasis on the
question whether this heterogeneity is maintained by a reversible or an irre-
versible process on the cellular scale. For this purpose, we utilize data on the
temporal evolution of GBM cell line compositions from FACS experiments under
both normoxic and hypoxic conditions. We utilize CellTrans in order to quan-
tify the state transitions in time between 16 different cancer cell phenotypes
in GBM which are defined on the basis of potential stemness markers. More-



1.2 scope & outline of this thesis 7

chapter # cell types competition genetic changes space phenotypic changes

2 2 yes no yes no

3 3 yes yes no no

4 3 yes yes yes no

5 n ∈ N no no no yes

6 16 no no no yes

Table 1: Overview of the components in the cell-based Markov chain models in this
thesis.

over, we investigate the influence of different environmental conditions on the
estimates and enquire whether the cell state transitions are dependent on the
current marker expression. Table 1 provides an overview of the components in
the cell-based Markov chain models in this thesis.

Finally, Chapter 7 provides a summary of the main results in this thesis. Fur-
thermore, we discuss possible extensions of the modeling approaches that have
been developed in this thesis and give an outlook for further research.
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2.1 markov chains

In this section, we will introduce the basic theory of Markov chains on finite or
countable state spaces based on the books [13] and [5].

2.1.1 Markov chains in discrete time

2.1 Definition (Time-homogeneous Markov chain in discrete time) Let (Xn)n∈N0

be a discrete time stochastic process with countable state space S. Then, (Xn)n∈N0

is called a Markov chain if for all n ∈ N0 and states i0, . . . , in−1, i, j ∈ S it holds
that

P(Xn+1 = j | Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j | Xn = i) (2.1)

whenever both sides are well-defined. A Markov chain is called time-homogenous
if for all n ∈ N and i, j ∈ S

P(Xn+1 = j | Xn = i) = P(Xn = j | Xn−1 = i),

9
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i.e. the probability of a transition from state i to j is independent of the time step
n ∈ N. Moreover,

p(i, j) := P(Xn+1 = j | Xn = i)

defines the transition probability from state i to j with i, j ∈ S, n ∈ N0.
The random variable X0 is called initial state and its distribution w,

w(i) = P(X0 = i), i ∈ S,

is called initial distribution.

The property (2.1) is called Markov property. When the state space is finite
we speak of the transition matrix P = (p(i, j))i,j∈S. As we will consider only
time-homogeneous Markov chains in this thesis, we do not use the phrase time-
homogeneous and refer to the processes simply as Markov chains. Note that
the distribution of a discrete time Markov chain is determined by its initial
distribution and its transition probabilities.

classification of states . For a discrete time Markov chain, we say that
there is a possible path from state i to state j if there is a sequence of states
i = i0 → i1 → · · · → in = j such that for all transitions along the path one has
p(il−1, il) > 0, l = 1, . . . , n. We will also use the phrase that state j is accessible
from state i. We say that two states i, j ∈ S communicate if there is a possible
path from i to j and from j to i. A communicating class is a maximal set of
states C such that every pair of states in C communicates with each other. A
set of states C is called closed if ∑j∈C p(i, j) = 1 for all i ∈ C. A state i ∈ S is
absorbing if p(i, i) = 1, i.e. the single-element set {i} is a closed communicating
class. Moreover, a Markov chain is said to be irreducible if there is only one
communication class, i.e. if it is possible to get from any state to any other state.

The return time for a state i ∈ S is defined by

Ti = inf{n > 0 | Xn = i}

with Ti = ∞ if Xn ̸= i for all n ≥ 1 and allows to introduce the concepts of
recurrent and transient states.

2.2 Definition (Recurrence and transience) For a discrete time Markov chain on
S a state i ∈ S is called recurrent if

P (Ti < ∞ | X0 = i) = 1,

and is called transient otherwise. A recurrent state i ∈ S is called positive recur-
rent if

E(Ti | X0 = i) < ∞,

and otherwise it is called null recurrent.



2.1 markov chains 11

Hence, a state is recurrent if and only if the probability of ever returning to
it is one given that the Markov chain starts in that state. It can be shown that
the states within a communication class are either all positive recurrent, null
recurrent or transient [13, Chapter 2]. All states of an irreducible Markov chain
are therefore either positive recurrent, null recurrent or transient and we call it
a positive recurrent, null recurrent or transient chain, respectively.

limiting behavior . The period of a state is an important property to in-
vestigate the long-term behavior of a Markov chain.

2.3 Definition (Period) For a discrete time Markov chain (Xn)n∈N on state
space S a possible loop of length n is a sequence of states i0, i1, . . . , in ∈ S with
i0 = in and

p (i0, i1) · p (i1, i2) · . . . · p (in−1, in) > 0.

With

Di = {n ∈ N | there exists a possible loop of length n with i0 = in = i}

the period of state i is defined as the largest number dividing all numbers in Di

with the convention that Di = ∞ if Di is empty. A state with period 1 is called
aperiodic.

Importantly, all states within a communication class have the same period [13,
Chapter 2]. Hence, an irreducible, aperiodic Markov chain consists of a single
communication class of period 1.

For aperiodic, recurrent Markov chains the long-term behavior does not de-
pend on the initial distribution.

2.4 Theorem For an irreducible, recurrent and aperiodic discrete time Markov

chain (Xn)n∈N on S, any state i ∈ S and any initial distribution it holds that

lim
n→∞

P (Xn = j) =
1

E
(
Tj | X0 = j

) .

The right-hand side is thereby defined as 0 if E
(
Tj | X0 = j

)
= ∞.

Proof. The proof can be found in [5, Chapter 1.2].

2.5 Definition (Invariant measure) A nontrivial vector π = (π(j))j∈S is called an
invariant measure for the transition probabilities P = (p(i, j))i,j∈S of a Markov

chain on S if
π(j) = ∑

l∈S

π(l)p(l, j).
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If π is a probability vector (i.e. all entries non-negative which sum to one) we
call it invariant distribution for P.

The following result states that for irreducible and recurrent Markov chains
there is a unique invariant measure.

2.6 Theorem (Existence and uniqueness of invariant measures) For an irreducible,
recurrent Markov chain (Xn)n∈N on S there is an (up to multiplication) unique
invariant measure which can be normalized to a unique invariant distribution
if and only if E(Ti | X0 = i) < ∞ for all i ∈ S, i.e. if the Markov chain is positive
recurrent.

Proof. The proof can be found in [13, Chapter 3].

Note that irreducible Markov chains with a finite state space are positive
recurrent [13] and thereby exhibit unique invariant distributions.

The following statements complete the characterization of the limiting behav-
ior of discrete time Markov chains needed for the scope of this thesis.

2.7 Theorem (a) For an irreducible, aperiodic and positive recurrent Markov

chain (Xn)n∈N on S it holds for j ∈ S that

lim
n→∞

P (Xn = j) = π(j) =
1

E
(
Tj | X0 = j

) ,

where π = (π(j))j∈S denotes the unique invariant distribution.

(b) For a null recurrent state j of a Markov chain with any initial distribution
it holds that

lim
n→∞

P (Xn = j) = 0.

(c) For a transient state j of a Markov chain with any initial distribution it
holds that

lim
n→∞

P (Xn = j) = 0.

Proof. For the proof of part (a), see [13, Chapter 3] and for the proofs of parts
(b) and (c), see [5, Chapter 1].

For the characterization of the limiting behavior of irreducible and periodic
Markov chains, see for example [13, Chapter 4].



2.1 markov chains 13

absorption probabilities and times . Consider a Markov chain on
state space S with transition probabilities P = (p(i, j))i,j∈S. We define the hit-
ting time of a set of states A ⊆ S by

HA := inf{n ≥ 0 : Xn ∈ A}.

The hitting probability of ever reaching a state in A starting from state i ∈ S is
defined as

αA(i) := P

(
HA

< ∞ | X0 = i
)

and is also called absorption probability if A is closed. A general result regard-
ing the calculation of the hitting probabilities of Markov chains and a corre-
sponding proof presented in [99] follows.

2.8 Theorem The vector of hitting probabilities α
A =

(
αA(i)

)
i∈S

of a Markov

chain on state space S reaching a set of states A satisfies

αA(i) = 1, i ∈ A,

αA(i) = ∑
j∈S

p(i, j)αA(j), i /∈ A.

If β(i) is another solution of these equations, then β(i) ≥ αA(i).

Proof. Clearly, if i ∈ A, then HA = 0 and therefore αA(i) = 1. If i /∈ A, then
HA ≥ 1 and HA = 1 + ĤA where ĤA denotes the remaining time until A is
reached. By conditioning on the first step of the chain

P

(
HA

< ∞ | X0 = i
)
= ∑

j∈S

P

(
ĤA

< ∞| X1 = j
)

p(i, j).

Moreover, it holds that

P

(
ĤA

< ∞ | X1 = j, X0 = i
)
= P

(
ĤA

< ∞ | X1 = j
)

since ĤA only depends on Xk, k ≥ 1, and also

P

(
ĤA

< ∞ | X1 = j
)
= P

(
HA

< ∞ | X0 = j
)
= αA(j)

because the chain is homogeneous.
Using the above, one obtains

P

(
HA

< ∞ | X0 = i
)
= αA(i) = ∑

j∈S

p(i, j)αA(j).

Let now β(i) be another solution. Then

β(i) = ∑
j∈A

p(i, j) + ∑
j/∈A

p(i, j)β(j).
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Hence,

β(i) = ∑
j∈A

p(i, j) + ∑
j/∈A

p(i, j)

(

∑
k∈A

p(j, k) + ∑
k/∈A

p(j, k)β(k)

)

= ∑
j∈A

p(i, j) + ∑
j/∈A

p(i, j) ∑
k∈A

p(j, k) + ∑
j/∈A

p(i, j) ∑
k/∈A

p(j, k)β(k)

= P

(
HA = 1 | X0 = i

)
+ P

(
HA = 2 | X0 = i

)
+ ∑

j/∈A

p(i, j) ∑
k/∈A

p(j, k)β(k)

Therefore,

β(i) ≥ P

(
HA = 1 | X0 = i

)
+ P

(
HA = 2 | X0 = i

)

= P

(
HA ≤ 2 | X0 = i

)
.

Repeating the substitution leads to β(i) ≥ P
(

HA ≤ n | X0 = i
)

for all n ≥ 0. By
letting n → ∞, one obtains

β(i) ≥ P

(
HA ≤ ∞ | X0 = i

)
= αA(i).

The mean number of steps until a set of states A is reached can be described
by the mean hitting time

τA(i) := E

(
HA | X0 = i

)
,

which is also referred to as absorption time if A is closed. It can be derived in
the following way.

2.9 Theorem The vector of mean hitting times τ
A =

(
τA(i)

)
i∈S

of a Markov

chain on state space S reaching a set of states A satisfies

τA(i) = 0, i ∈ A,

τA(i) = 1 + ∑
j/∈A

p(i, j)τA(j), i /∈ A.

If β(i) is another solution of these equations, then β(i) ≥ τA(i).

Proof. If the starting state i ∈ A, then HA = 0 and τA(i) = 0. If i /∈ A, then
HA = 1 + ĤA as in the proof of Theorem 2.8. By conditioning on the first step
of the chain

E

(
HA | X0 = i

)
= 1 + E

(
ĤA | X0 = i

)
= 1 + ∑

j∈S

E

(
HA | X0 = j

)
p(i, j)

= 1 + ∑
j/∈A

p(i, j)τA(j).

The second part of the proof is provided in [99, Chapter 1.3].
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In the first part of the proofs of Theorems 2.8 and 2.9 conditioning on the
first step of the Markov chain leads to necessary conditions for the hitting
probabilities and times given by a system of linear equations. This technique
is called first step analysis and regularly used in the analysis of discrete time
Markov chains. The resulting systems of linear equations in Theorems 2.8 and
2.9 are also sufficient conditions for the hitting probabilities if the state space S

is finite. Then, the systems of linear equations exhibit a unique solution which
is not the general case with an infinite state space [13].

2.1.2 Markov chains in continuous time

In this subsection, we define and summarize the most important properties of
Markov chains in continuous time on a countable state space S without proofs.
For a comprehensive introduction and the corresponding proofs, see e.g. [13,
Chapter 8].

2.10 Definition (Time-homogeneous Markov chain in continuous time) Let (Xt)t≥0

be a stochastic process in continuous time with countable state space S. Then,
(Xt)t≥0 is called continuous time Markov chain if for every k ∈ N, all states
i, j, i1, . . . , ik ∈ S, all times t, s ≥ 0 and s1, . . . , sk ≥ 0 with sl ≤ s for all
l ∈ {1, . . . , k} it holds that

P (Xt+s = j | Xs = i, Xs1 = i1, . . . , Xsk
= ik) = P (Xt+s = j | Xs = i) (2.2)

whenever both sides are well-defined. The continuous time Markov chain is
called time-homogenous if the right-hand side of (2.2) is independent of s.

Moreover, the family {P(t)}t≥0 given by

P(t) = {p(i, j, t)}i,j∈S

with
p(i, j, t) = P(Xt+s = j | Xs = i)

is called transition semigroup of the time-homogenous Markov chain in contin-
uous time.

Since we only regard time-homogenous Markov chains, we will omit the
phrase time-homogenous in the following.

The distribution µ(t) = (µi(t))i∈S with µi(t) = P(Xt = i) at time t can be
obtained from the initial distribution µ(0) by

µ(t)ᵀ = µ(0)ᵀP(t).

A continuous time Markov chain is determined by its initial distribution and
the transition semigroup. We only consider continuous time Markov chains
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with corresponding transition semigroups that are right continuous in the ori-
gin, i.e. limh→0+ p(i, j, h) = p(i, j, 0) for all i, j ∈ S or limh→0+ P(h) = I, where I

denotes the identity matrix. Note that the continuity at the origin implies conti-
nuity at any t ≥ 0.

For any state i ∈ S there exists

qi := lim
h→0+

1 − p(i, i, h)

h
∈ [0, ∞]

and for all i, j ∈ S with i ̸= j

q(i, j) := lim
h→0+

p(i, j, h)

h
∈ [0, ∞).

With q(i, i) := −qi for every i ∈ S,

Q = (q(i, j))i,j∈S

is called the generator of the continuous time Markov chain. The generator can
be regarded as the derivative at 0 of the matrix function t ↦→ P(t), i.e.

Q = lim
h→0+

P(h)− P(0)
h

.

A state is called absorbing if q(i, i) = 0 which is equivalent to p(i, i, t) = 1 for
all t ≥ 0. The generator is called stable if −q(i, i) < ∞ for all i ∈ S and is called
conservative if

−q(i, i) = ∑
i∈S
i ̸=j

q(i, j)

for all i ∈ S.
The jump times (τn)n∈N0 of a continuous time Markov chain are defined by

τ0 = 0, τn+1 = inf{t ≥ τn : Xt ̸= Xτn}, n ∈ N.

We only regard non-explosive processes, i.e. for which

τ∞ := sup
n

τn = ∞ a.s.

meaning that there are not infinitely many jumps in finite time. This holds in
particular for a continuous time Markov chain on a finite state space.

We conclude this chapter by introducing the embedded chain for Markov

processes with stable and conservative generators.

2.11 Theorem (Embedded Markov chain) For a continuous time Markov chain
on S with a stable and conservative generator Q = (q(i, j))i,j∈S the sequence
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(Yn)n∈N0 of visited states is a discrete time Markov chain on S called embedded
chain with transition probabilities

p(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− q(i,j)
q(i,i) , i ∈ S\A, j ̸= i

0, i ∈ S\A, j = i

0, i ∈ A, j ̸= i

1, i ∈ A, j = i

where A = {i ∈ S|q(i, i) = 0} contains the absorbing states.

2.2 the moran model

In the first part of this thesis, we will utilize extensions of the so-called Moran

model in order to describe the cellular processes involved in tumor development.
Moran models are Markov chains that can be formulated in both discrete and
continuous time. In this section, we introduce the classical Moran model and
corresponding extensions. Moreover, we provide an overview of applications of
this model class within the tumor context.

the classical moran model . The Moran model was introduced by P.
A. P. Moran in 1958 [98] and describes the evolution of two competing finite
populations. The population size is constant of size N and each individual is
either of type A or type B. In the context of cancer modeling, the different
types can represent healthy and cancer cell populations. At each time step, an
individual is uniformly chosen at random to reproduce and gives birth to a
single offspring. Whenever such a birth occurs, another individual, including
the one giving birth, is uniformly chosen to be replaced by the new offspring.
The process is visualized in Figure 1.

Figure 1: The classical Moran model. At each time step, an individual is uniformly
chosen at random to reproduce (blue circle). The offspring of this individual
then replaces a uniformly chosen other individual (red circle).
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Several versions of this model have been proposed including continuous time
versions in which individuals reproduce with constant rates or in which indi-
viduals cannot both give birth and die in a single step.

Mathematically, the classical Moran model is defined as follows.

2.12 Definition The classical Moran model is a discrete time Markov chain
(Xn)n∈N0 with state space S = {0, 1, . . . , N} in which Xn describes the number
of individuals of type B at time n. The transition matrix is thereby given by
P = (p(k, l))k,l∈S with

p(k, l) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N−k
N

k
N , 1 ≤ k ≤ N − 1, l = k − 1,

k2

N2 +
(N−k)2

N2 , 0 ≤ k ≤ N, l = k,
k
N

N−k
N , 1 ≤ k ≤ N − 1, l = k + 1,

0, else.

(2.3)

The probability of a one-step transition from state k to k + 1, 1 ≤ k ≤ N − 1,
in the classical Moran model is composed as follows. The probability that an
individual of type B is chosen to reproduce is k

N since there are k individuals
of type B and one is uniformly chosen. The offspring of this individual replaces
an individual of type A with probability N−k

N because there are N − k type A

individuals present. The product of these probabilities yields the corresponding
entry in equation (2.3).

This process describes a neutrally evolving population since the probabilities
for an increase and a decrease of the state are equal. The states 0 and N are
absorbing states of the process while the states 1, . . . , N − 1 are transient. Since
the state of the process changes by at most one in a time step, the Moran model
can be regarded as generalized birth-death process. Usually, the length of one
time step is set to 1

N such that during a unit time interval N individuals are
chosen for reproduction and N are chosen to be replaced. This choice allows to
interpret the number of time steps as generations of the population.

An important characteristics in the dynamics of the Moran model is the ab-
sorption probability in states 0 and N describing the fixation of one of the in-
dividuals within the population. Moreover, the absorption time in an absorbing
state allows to deduce the time-scale of fixation. Formally, these quantities can
be described as follows. Let

τ = min{n : Xn ∈ {0, N}}

be the time of fixation of one of the individuals. Then, the absorption probability
in state N when starting the process in state i ∈ S can be described by

αN(i) = P(Xτ = N|X0 = i).
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The following result states that the fixation probability in state N is equal to the
initial frequency of type B individuals, see also [100].

2.13 Theorem In the classical Moran model, the fixation probability of the type
B population equals the initial frequency of type B, i.e.

αN(i) =
i

N
. (2.4)

Proof. The proof utilizes first step analysis which is a standard technique to ana-
lyze the absorption behavior of Markov chains, see [112]. Note that we already
introduced this technique in the proofs of Theorems 2.8 and 2.9. Applying first
step analysis here yields for j = 1, . . . , N − 1

αN(j) =
1
2

αN(j + 1) +
1
2

αN(j − 1)

which is equivalent to

αN(j + 1)− αN(j) = αN(j)− αN(j − 1).

Since αN(0) = 0
αN(j + 1)− αN(j) = αN(1).

Summation for j = 0, . . . , i − 1 yields

αN(i) =
i−1

∑
j=0

αN(1) = iαN(1).

Finally, for i = N and since αN(N) = 1 it follows

αN(N) = NαN(1) = 1, hence αN(1) =
1
N

and αN(i) =
i

N
.

This result reflects that the stochastic process (Xn)n∈N0 describing the classical
Moran model is a symmetric random walk.

Regarding the absorption times, the following results hold.

2.14 Theorem The expected absorption time measured in units of generations
in either absorbing state in the classical Moran model when starting with i type
B individuals is approximately

E(τ|X0 = i) ≈ −N

(
i

N
ln
(

i

N

)
+

(
1 − i

N

)
ln
(

1 − i

N

))
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Moreover, the expected absorption time conditioned on absorption in state N

can be approximated by

E(τ|X0 = i, Xτ = N) ≈ −
N
(

1 − i
N

)

i
N

ln
(

1 − i

N

)
.

The derivation of these results is provided in [24, chapter 1.5.1].

selection and mutations . The classical Moran model describes the evo-
lution of neutrally evolving populations, i.e. none of the individuals exhibits a
reproductive advantage. Considering a cancer context, malignant cells usually
have an advantage at some stage of tumor progression. Moreover, the important
process of genetic alterations which leads to the progression of individual cells
is not taken into account within the classical model. Therefore, it is reasonable
to extend the classical Moran model with natural selection and mutations.

From a modeling perspective, natural selection can be described in different
ways. Here, we will introduce the approach from [145, chapter 9]. The individ-
uals of type A have fitness 1 and the individuals of type B fitness r > 0. As in
the classical Moran model, one individual is uniformly chosen to be replaced
in each time step. The relative chance for being chosen for reproduction is 1 for
type A individuals and r for type B individuals. Note that the choice of the fit-
ness parameter r allows to incorporate advantageous (r > 1), disadvantageous
(r < 1) and neutral (r = 1) type B individuals.

Mutations can be described within the framework of the Moran model as
follows. Whenever an individual is chosen for reproduction, there is some con-
stant probability that the offspring is different from the original individual. In
the simplest case, only mutations from type A to type B individuals are possible.
In each reproduction event of a type A individual, the offspring mutates to a
type B individual with probability u.

2.15 Definition The Moran model with selection parameter r > 0 and mutation
parameter u, 0 < u < 1, is a discrete time Markov chain (Xn)n∈N0 with state
space S = {0, 1, . . . , N} and transition matrix P = (p(k, l))k,l∈S given by

p(k, l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−u)(N−k)
N−k+rk

k
N , 1 ≤ k ≤ N − 1, l = k − 1,

1 − p(k, k − 1)− p(k, k + 1), 1 ≤ k ≤ N − 1, l = k,
u(N−k)+rk

N−k+rk
N−k

N , 0 ≤ k ≤ N − 1, l = k + 1,

1 − u, k = l = 0,

1, k = l = N,

0, else.

(2.5)
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The probability p(k, k + 1) for an increase of the state in the Moran model
with selection and mutations is thereby composed as follows. There are two
possibilities for such an increase. First, the offspring of a type B individual can
replace an individual of type A. Since there are N − k individuals of type A

within the population, the probability that one of them is chosen for replacement
is N−k

N . The probability that an individual of type B reproduces is proportional
to its frequency within the population and its relative fitness, i.e.

rk

N − k + rk
.

Hence, the probability of this first case is

rk

N − k + rk

N − k

N
.

Second, the state can also increase by a reproduction of a type A individual with
subsequent mutation of the offspring to a type B individual which replaces an
individual of type A. The probability for this event is given by

(N − k)u

N − k + rk

N − k

N
.

The sum of the probabilities for both possibilities yields the entry within the
transition matrix (2.5). The probability p(k, k − 1) is obtained similarly. In con-
trast to the classical Moran model, the Moran model with selection and mu-
tations has only one absorbing state N, i.e. fixation of type B individuals will
eventually occur.

From an application point of view, the processes mutations and selection can
often be assumed to take place on different time-scales. In general, the mutation
probabilities are very small. Once a single type B individual appears due to a
mutation, it typically dies out or reaches fixation before a new mutation occurs.
Therefore, it is often justified to treat both processes separately, i.e. for Xn >

0 one can argue that it is reasonable to assume u = 0. In this special case,
one obtains the Moran model with selection (and without mutations) and the
probability of fixation in state N becomes a quantity of particular interest.

2.16 Theorem In the Moran model with selection (and without mutations), the
fixation probability of the type B population with fitness parameter r > 0, r ̸= 1,
and starting the process with i type B individuals is given by

αN(i) =
1 −

(
1
r

)i

1 −
(

1
r

)N
. (2.6)

Proof. The proof is analogous to the proof of Theorem 2.4 and also utilizes first
step analysis. However, since we will need to apply this technique later in this
thesis again, we demonstrate it once more.
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First step analysis allows to derive the system of equations

αN(j) =
p(j, j + 1)

p(j, j − 1) + p(j, j + 1)
αN(j + 1) +

p(j, j − 1)
p(j, j − 1) + p(j, j + 1)

αN(j − 1)

with 1 ≤ j ≤ N − 1 and u = 0 in the transition matrix (2.5).

Multiplying by p(j, j − 1) + p(j, j + 1) and rearranging yields

αN(j + 1)− αN(j) =
p(j, j − 1)
p(j, j + 1)

(
αN(j)− αN(j − 1)

)
=

1
r

(
αN(j)− αN(j − 1)

)

Using αN(0) = 0 and iterating implies

αN(j + 1)− αN(j) = αN(1)
(

1
r

)j

.

Summation for j = 0, . . . , i − 1 yields

αN(i) =
i−1

∑
j=0

αN(1)
(

1
r

)j

= αN(1)

(
1
r

)i
− 1

1
r − 1

.

Since αN(N) = 1 it follows

αN(1) =
1 − 1

r

1 −
(

1
r

)N
, hence αN(i) =

1 −
(

1
r

)i

1 −
(

1
r

)N
.

Note that one obtains the fixation probability of the classical Moran model
by letting r → 1 with L’Hospital’s rule .

multi-type moran model . So far, we have only introduced Moran mod-
els with two individuals. Next, we will consider a population of individuals that
can be of three different types. For the purpose of this thesis, these individuals
represent three different cell types within the cancer context, namely

• wild-type cells, which represent healthy cells and have fitness 1,

• type-1 cells, which are cancer cells with fitness r having a specific genetic
alteration that is acquired from wild-type cells at division with mutation
probability u,

• type-2 cells, which are cancer cells with fitness R emerging by progression
from type-1 cells at division with mutation probability v.
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In applications it is sensible to assume that the mutations are unidirectional, i.e.
there are no back-mutations. Within this setting, type-1 cells can represent be-
nign tumor cells which occur by mutations from wild-type cells and that might
have no selective advantage (r = 1) or might have a selective advantage (r > 1)
compared to wild-type cells. Wild-type and type-1 cells evolve by the transition
rates given by equation (2.5). Progression of type-1 cells can lead to malignant
type-2 cells. Within the multi-type Moran model, cancer development can be
described as occurrence of a type-2 cell which inevitably leads to cancer due to
a very large fitness advantage R.

One question in this multi-type model is the distribution of the random vari-
able τ2 which describes the time when the first type-2 individual occurs. A
comprehensive derivation of this distribution is provided in [100, Chapter 12].
For the purpose of this thesis, it is sufficient to describe the different scenarios
that can lead to the occurrence of the first type-2 individual. These scenarios
will play an important role in this thesis to describe the occurrence of benign
and malignant tumor subtypes in Chapter 3 and to represent different paths of
tumor progression in Chapter 4.

If we assume that type-1 individuals are neutral, i.e. r = 1, the following sce-
narios in dependency of the three parameters population size N and mutation
probabilities u and v can be distinguished.

• Sequential fixation:

N ≪
√

v

In this case, type-1 individuals are typically able to fixate within the sys-
tem before a type-2 individual occurs. In other words, the fixation of the
mutant occurs sequentially: first, the type-1 individuals fixate, and subse-
quently type-2 individuals occur and fixate. Note that, in general, several
type-1 individuals will die out but eventually one successful type-1 mutant
will emerge which reaches fixation.

• Stochastic tunneling:
1√
v
≪ N ≪ 1

u

In this case, a type-2 individual will occur due to a mutation of a type-1
individual before the family of type-1 individuals reaches fixation. Hence,
the type-2 individuals reach fixation without prior fixation of the type-1
individuals. The term tunneling in this context was first introduced in [95].

• Quasi-deterministic scenario:

N ≫ 1√
u

In this scenario, type-1 cells arise immediately and the number of type-1
cells grows linearly with time.
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Here, a(N) ≪ b(N) means that limN→∞
a(N)
b(N)

→ 0, i.e. the above parameter
regimes provide an asymptotic classification of the model behavior. For rigorous
proofs of these results see [100, Chapter 12].

spatial moran models . The models introduced so far can be regarded as
space-free models in which no neighborhood relations between the individuals
are considered. Hence, the dynamics allows that each individual can be replaced
by the offspring of any other individual which might be valid if one considers
a homogeneously mixing population.

In the cancer context, this assumption might be valid in liquid tumors, e.g. in
the modeling of leukemia. However, solid tissues exhibit characteristic neighbor-
hood relations between cells. Formally, these neighborhood relations can be de-
scribed by a graph in which the vertices describe individual cells and the edges
indicate an adjacency relation between the corresponding cells. Here, one can
choose regular lattice structures in 1D or 2D but also non-regular structures can
be utilized. For example, cancer development in tube-like tissues like the mam-
mary ducts of the breast, or renal tubules could be viewed as approximately
one-dimensional structure due to the aspect ratio of tube radius vs. length. On
the other hand, the squamous epithelium of the cervix, the bladder or the oral
cavity can be viewed as two-dimensional lattice [36]. Note that the neighbor-
hood relations between the individuals in the classical Moran model can be
formally described by a complete graph.

The first theoretical results of a spatial Moran model with selection have
been introduced in [70]. In this work, a one-dimensional neighborhood relation
between the cells is considered and results concerning the fixation probability
of a single cell with fitness r compared to fitness 1 of wild-type cells are pre-
sented. The main result in this work is that advantageous and disadvantageous
mutants, i.e. mutants with a fitness r ̸= 1, have a smaller fixation probability
compared to the space-free Moran model. This first approach to take spatial
cell neighborhood relations into account illustrates the important role of spatial
aspects.

Subsequent works consider three-type Moran models with mutations on
d−dimensional lattices. In [26], there are three types of cells (0, 1, and 2) all
with fitness 1 which compete with each other by Moran dynamics, and type i

cells mutate to type i + 1 cells at rate ui, i = 1, 2, 3. Under these assumptions, the
waiting time to create a cell of type 2 is characterized. Interestingly, it turns out
that only in the one-dimensional case space has a substantial influence on the
waiting time [26]. Moreover, analogous results for three-type Moran models on
d−dimensional lattices have been derived in the case in which mutants have a
selective advantage [25].

applications of moran models in the cancer context. Although
the vast majority of the literature investigates theoretical aspects of the Moran
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model and its extensions, there are also specific applications to questions within
the cancer context. For example, in [58, 102] the population genetics of tumor
suppressor genes is investigated with a three-type Moran model. In detail, the
probability that a single cell with two inactivated alleles of a tumor suppressor
gene has arisen by time t in a population of N cells is derived in these works. In
[131], two spatial extensions of the Moran model are introduced to study the
effects of motility on the ability of a new mutant cell to invade a pre-existing
tumor. Summarized, the results in [131] indicate that a mobility phenotype can
be dominant and able to invade a background of cells with higher reproduction
rates suggesting that migration is a key modulator of fitness.

Tomasetti et al. [132] used a diffusion approximation of the Moran process
to calculate the expected number of passenger mutations that accumulate in
the precancer phase. They found that at least half of the somatic mutations in
tumors of self-renewing tissues occur before the onset of neoplasia by using
DNA sequencing data.

In [36], the authors investigate how various properties of a potential prema-
lignant field, or cancer field, depend on microscopic cellular properties of the
tissue. For this purpose, a spatial Moran model is considered in which cells can
acquire successive random mutations which confer selective advantages, repro-
duction occurs at rates proportional to cellular fitness, and reproduction results
in neighbor replacement at random. With this model, cancer field dynamics in
tobacco-related head and neck cancer is quantified in a subsequent work [117].

Recently, Temko et. al [130] utilized a Moran model to explain the known
protective effect of full-term pregnancy in early adulthood for estrogen recep-
tor–positive breast cancer later in life.

In part I of this thesis, we will introduce further specific biological applica-
tions of extended Moran models within the cancer context. In these applica-
tions, the absorption probabilities and times of the underlying stochastic pro-
cesses will be of great importance. In order to emphasize the role of the spatial
cell arrangement in Moran models on these quantities, we will derive the ab-
sorption behavior of a novel spatial Moran model in the next section.

2.3 a moran model on a crypt-like structure

2.3.1 A crypt-like structure and state space of the model

motivation. The neighborhood relations between the individuals in most
spatial Moran models are represented by regular lattices in one dimension
[71] or two and three dimensions [29, 35]. As many authors have theoretically
shown, the specific choice of these relations has a large influence on the model
dynamics, in particular on the absorption behavior of the underlying stochastic
process. For example, it has been shown that non-regular structures often imply
a higher absorption time compared to regular structures [33, 90]. Moreover, the
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absorption probability in state N of three-type Moran models with mutations
on regular structures is the highest if all cells can potentially compete with each
other and the lowest for a one-dimensional cell arrangement [26]. While these
results are in accordance with the intuition regarding the behavior of the models,
there are also counter-intuitive results. For example, in [51] it is analytically
shown that the absorption time can decrease when the underlying structure
gets less regular. Hence, the absorption behavior of a spatial Moran model
constitutes a theoretically relevant question.

In order to extend the theoretical results of the absorption behavior of Moran

models and to motivate the modeling approach for the applications in part I of
this thesis, we introduce a spatial Moran model on a non-lattice structure. In
detail, we introduce a crypt-like structure which is motivated by the human
colon [55]. The epithelial layer of the human colon consists of a single sheet of
columnar epithelial cells which are characterized by finger-like invaginations
into the underlying connective tissue to form the basic functional unit of the in-
testine, the so-called crypt. A stem cell population is located at the base of each
crypt which is capable of regenerating all intestinal cell types [55]. The human
colon consists of several millions of these crypts which represent separated sub-
structures. Hence, the neighborhood relations of the stem cells can be described
in a twofold manner by considering both the neighborhood relations between
the stem cells within a crypt and the spatial arrangement of the crypts in which
the stem cells reside. This serves as motivation for the formulation of a novel
spatial Moran model. We introduce a crypt-like structure which represents cell
neighborhood relations that can be regarded as intermediate cell arrangement
between a space-free and one-dimensional choice. We derive exact results for
the absorption probabilities and absorption times of a two-type Moran model
without mutations and without selection of this model and compare these re-
sults to corresponding quantities on regular structures.

model of a crypt-like structure . The crypt-like structure is described
by a graph G = (S, E). The set of nodes S can be interpreted as locations of
cells and the set of edges E as adjacency relation between these locations, i.e.
two positions x, y ∈ S are neighbors if {x, y} ∈ E. The definition of the K-crypt
structure is as follows.

2.17 Definition (K-crypt structure) Let N, K ∈ N such that

κ :=
N

K
∈ N.

For i = 1, ..., K, define

Si = {(i − 1)κ + 1, (i − 1)κ + 2, ..., iκ}
and

Ei = {{x, y}|x, y ∈ Si, x ̸= y} .
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The complete graph Gi = (Si, Ei) is called i-th crypt with κ nodes.
Furthermore, let

SCr(K) = {S1, S2, ..., SK} and ECr(K) = {{Si, Si+1}| i = 1, 2, ..., K − 1}.

We call
GCr(K) =

(
SCr(K), ECr(K)

)

K-crypt structure, see Figure 2 for a visualization.

Hence, each crypt consists of κ nodes which are all connected with each other.
Moreover, the crypts themselves form a one-dimensional lattice of length K.

state space . Each node within the crypts of the K-crypt structure is either
in state 0 or in state 1. These states can be interpreted as two distinct individuals.
The intra-crypt state space of crypt i is described as

Xi = {0, 1}Si , i = 1, 2, ..., K.

Taking all K crypts into account, the overall state space can be described by

Xintra = {0, 1}S where S =
K⋃

i=1

Si.

The inter-crypt state space is given by

XCr(K) = {0, 1, 2, ..., κ}K.

Hence, inter-crypt states are given by a vector with length K and components
ranging from 0 to κ. The inter-crypt state of the model depends on the intra-
crypt state by the following mapping C : Xintra → XCr(K) given by

C(ξ) = (ωi(ξ))i=1,...,K

where
ωi : Xi → {0, 1, 2, ..., κ} : ωi(ξ) = ∑

x∈Si

ξ(x).

Here, C(ξ) provides the number of nodes in state 1 in each of the crypts. In
the following, we will use the formulation crypt i is in state j for the situation
where crypt i contains j nodes in state 1. Figure 2 provides a visualization of the
state space of the model and the interplay between the intra-crypt state and the
inter-crypt state.
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we utilize a continuous time version of the classical Moran model and assume
that an individual cannot both give birth and die at the same time.

The number of nodes in state 1 in the corresponding crypt is increased or
decreased until the corresponding crypt is either solely occupied by nodes in
state 0 or 1. Inter-crypt short-range interactions apply if two neighboring crypts
are in states 0 and κ, respectively. Then, an induction of state 1 in the neigh-
boring crypt in state 0 occurs with rate α. Note that the process (Bt)t≥0 has
two absorbing states 0 and N. We are interested in the absorption of (Bt)t≥0 in
state N. In the following, we refer to (Bt)t≥0 as corresponding b-d process of the
Moran model on a crypt-like structure and derive the absorption probabilities
and times of the underlying stochastic process.

2.3.3 Derivation of the absorption probabilities and absorption times

The absorption probability in state N of the corresponding b-d process (Bt)t≥0

starting in state i is defined as

αN(i) := P(Bt = N for some t ≥ 0|B0 = i)

and can be derived by using a specific formula for birth-and-death processes
[133]

αN(i) =
1 + ∑

i−1
k=1 ∏

k
j=1

c−(j)
c+(j)

1 + ∑
N−1
k=1 ∏

k
j=1

c−(j)
c+(j)

. (2.7)

The absorption time of (Bt)t≥0 conditioned on being absorbed in state N and
starting in state 1 is denoted by τN(1) and can be derived by

τN(1) =
N−1

∑
k=1

k

∑
l=1

αN(l)

c+(l)

k

∏
m=l+1

c−(m)

c+(m)
, (2.8)

see [133].

2.18 Definition For n ∈ N, the n-th harmonic number is defined by

Hn :=
n

∑
k=1

1
k

.

We apply formulas (2.7) and (2.8) to derive the absorption probability and
time of the Moran model on a crypt-like structure. The following considera-
tions are helpful for this derivation.

2.19 Lemma The following equalities hold for (Bt)t≥0, the corresponding b-d
process of the Moran model on a crypt-like structure.
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1.
k

∏
m=l+1

c−(m)
c+(m)

=

⎧
⎨
⎩

0, ∃n ∈ {l + 1, ..., k} : n mod κ = 0,

1, else,
, k = 1, . . . , N.

2.
jκ

∏
m=l+1

c−(m)
c+(m)

=

⎧
⎨
⎩

1, l ≥ jκ,

0, else,
, j = 1, . . . , K.

3.
(j+1)κ−1

∑
k=jκ+1

k

∑
l=1

αN(l)
c+(l)

k

∏
m=l+1

c−(m)
c+(m)

=
(j+1)κ−1

∑
k=jκ+1

k

∑
l=jκ

αN(l)
c+(l)

, j = 1, ..., K − 1.

Proof. 1. This equality follows from the fact that c−(m) = 0 for m mod κ =
0.

2. This product is a special case of the first equality and is only 1 if the
product is empty.

3. This statement is a direct consequence of the first two equalities.

2.20 Theorem The absorption probability of the corresponding b-d process (Bt)t≥0

is

αN(i) =

⎧
⎨
⎩

i
κ , i < κ,

1, i ≥ κ,
(2.9)

and the conditional absorption time conditioned on absorption in state N is
given by

τK(1) = (κ − 1)
(
(K − 1)Hκ + 1 − K

κ

)
+

(K − 1)
α

κ (2.10)

or, in dependency of N,

τN(1) =
N − K

K

(
(K − 1)H N

K
+

N − K2

N

)
+

(K − 1)N

Kα
.

Proof. Lemma 2.19 implies that

1 +
N−1

∑
k=1

k

∏
j=1

c−(j)

c+(j)
= 1 +

κ−1

∑
k=1

k

∏
j=1

c−(j)

c+(j)
= κ.

since c−(j) = c+(j) for j < κ.
Furthermore,

1 +
i−1

∑
k=1

k

∏
j=1

c−(j)

c+(j)
=

⎧
⎪⎨
⎪⎩

1 + (i − 1) = i, i < κ,

1 +
κ−1
∑

k=1

k

∏
j=1

c−(j)
c+(j)

= κ, i ≥ κ.
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Hence, equation (2.7) implies that

αN(i) =

⎧
⎨
⎩

i
κ , i < κ,

1, i ≥ κ.
(2.11)

The absorption time can be calculated with equation (2.8) as follows. First, the
sum is split such that Lemma 2.19 can be utilized.

τN(1) =
N−1

∑
k=1

k

∑
l=1

αN(l)

c+(l)

k

∏
m=l+1

c−(m)

c+(m)

=
κ−1

∑
k=1

k

∑
l=1

αN(l)

c+(l)

k

∏
m=l+1

c−(m)

c+(m)
+

K−1

∑
j=1

(j+1)κ−1

∑
k=jκ

k

∑
l=1

αN(l)

c+(l)

k

∏
m=l+1

c−(m)

c+(m)

=
κ−1

∑
k=1

k

∑
l=1

αN(l)

c+(l)

k

∏
m=l+1

c−(m)

c+(m)
+

K−1

∑
j=1

(
(j+1)κ−1

∑
k=jκ+1

k

∑
l=1

αN(l)

c+(l)

k

∏
m=l+1

c−(m)

c+(m)
+

jκ

∑
l=1

αN(l)

c+(l)

jκ

∏
m=l+1

c−(m)

c+(m)

)
.

By Lemma 2.19 and by splitting the sum in the brackets we obtain from the
last equality above that

τN(1) =
κ−1

∑
k=1

k

∑
l=1

αN(l)

c+(l)
· 1 +

K−1

∑
j=1

(
(j+1)κ−1

∑
k=jκ+1

k

∑
l=jκ

αN(l)

c+(l)
+

αN(jκ)

c+(jκ)

)

=
κ−1

∑
k=1

k

∑
l=1

αN(l)

c+(l)
+

K−1

∑
j=1

(
(j+1)κ−1

∑
k=jκ+1

k

∑
l=jκ+1

αN(l)

c+(l)
+

(j+1)κ−1

∑
k=jκ+1

αN(jκ)

c+(jκ)
+

αN(jκ)

c+(jκ)

)
.

Summarizing the last terms in brackets and rearranging the sums leads to

τN(1) =
κ−1

∑
k=1

k

∑
l=1

αN(l)

c+(l)
+

K−1

∑
j=1

(j+1)κ−1

∑
k=jκ+1

k

∑
l=jκ+1

αN(l)

c+(l)
+ κ

K−1

∑
j=1

αN(jκ)

c+(jκ)
.

In the next step, the indices of the second term are adjusted, i.e. k → k − jκ

and l → l − jκ, which yields

τN(1) =
κ−1

∑
k=1

k

∑
l=1

αN(l)

c+(l)
+

K−1

∑
j=1

κ−1

∑
k=1

k

∑
l=1

αN(l + jκ)

c+(l + jκ)
+ κ

K−1

∑
j=1

αN(jκ)

c+(jκ)
.
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From this, we obtain by plugging in the absorption probability and birth and
death rates that

τN(1) =
κ−1

∑
k=1

k

∑
l=1

l (κ − 1)
κl (κ − l)

+
K−1

∑
j=1

κ−1

∑
k=1

k

∑
l=1

κ − 1
l (κ − l)

+
κ(K − 1)

α

=
κ − 1

κ

κ−1

∑
k=1

k

∑
l=1

1
κ − l

+ (κ − 1)
K−1

∑
j=1

κ−1

∑
k=1

k

∑
l=1

1
l(κ − l)

+
κ(K − 1)

α

We evaluate the sums and utilize that Hκ−1 = Hκ − 1
κ and summarize to obtain

τN(1) =
κ − 1

κ
(κ − 1) + (κ − 1)(K − 1)Hκ−1 +

κ(K − 1)
α

= (κ − 1)
(

κ − 1
κ

+ (K − 1)Hκ−1

)
+

κ(K − 1)
α

= (κ − 1)
(
(K − 1)Hκ + 1 − K

κ

)
+

κ(K − 1)
α

.

Substituting κ = N
K yields the absorption time in dependency of N

τN(1) =
N − K

K

(
(K − 1)H N

K
+

N − K2

N

)
+

(K − 1)N

Kα
. (2.12)

2.21 Proposition For the conditional absorption time in state N of the Moran

model on a crypt-like structure it holds that

τN(1) ∈ O(N log N).

Proof. The absorption time (2.12) is equivalent to

τN(1) =
(N − K)(K − 1)H N

K

K
+

(N − K2)(N − K)

NK
+

(K − 1)N

Kα
.

Since HN ∈ O(log N) it holds that τN(1) ∈ O(N log N).

2.3.4 Comparison with Moran models on lattice structures

We compare the absorption probabilities and absorption times of the Moran

model on a crypt-like structure with the known absorption times of the neutral
two-type Moran model without mutations on the complete graph and the line
graph with N nodes each. The results of this comparison are summarized in
Table 2 and the following Corollary.
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crypts structure τN(1) αN(1)

- line graph (Moran only) N2−1
6 [4] 1

N [82]

K = 1 complete graph (N−1)2

N [126] 1
N [82]

1 < K < N K-crypt graph N−K
K

(
(K − 1)H N

K
+ N−K2

N

)
+ (K−1)N

Kα
K
N = 1

κ

K = N line graph (short-range only) N−1
α 1

Table 2: The absorption probabilities and times of Moran models on different struc-
tures. The table contains the absorption probabilities and times of the Moran

model on regular structures and of the Moran model on a crypt-like structure.
Note that the Moran model on a crypt-like structure reflects Moran dynamics
on the complete graph for the special case K = 1 but not on the line graph for
the special case K = N. In the latter case there are no Moran dynamics since
each crypt consists only of one cell.

2.22 Corollary Let αN
G (1) and τN

G (1) denote the absorption probability and con-
ditional absorption time in state N of the Moran model on structure G where Gl

denotes the line graph, GC the complete graph and GCr(K) the K-crypt structure
with N nodes each. For K = 1, 2, ..., N − 1 it holds for the absorption probabili-
ties that

αN
GC
(1) = αN

Gl
(1) ≤ αN

GCr(K)
(1).

For the conditional absorption times it holds for N sufficiently large, α > 0 and
1 < K < N that

τN
GC
(1) < τN

GCr(K)
(1) < τN

Gl
(1).

Proof. The observation for the probabilities holds due to the summarized results
in Table 2. These results also imply that τN

GC
(1) ∈ O(N) and τN

Gl
(1) ∈ O

(
N2
)

which yields together with Proposition 2.21 the given order of the absorption
times.

It turns out that the absorption probability is higher for the Moran model
on a crypt-like structure compared to the complete and the line graph. This
observation can be explained by the twofold structure of the K-crypt graph. If
every node in a crypt is in state 1, the state of this crypt will not change anymore
and state 1 will be induced to the neighboring crypt by short-range dynamics.
The higher absorption probability on the K-crypt structure is in accordance with
results showing that individuals have a reasonable chance to overtake small
compartments even without fitness advantage only by genetic drift [94].

The asymptotic absorption time of the Moran model on a crypt-like struc-
ture is different from those of the Moran dynamics on the complete and the
line graph. The crypt structure delays the absorption time compared to the com-
plete graph but decreases the absorption time compared to the line graph. This



2.3 a moran model on a crypt-like structure 35

can be explained by the fact that the K-crypt graph can be seen as an interme-
diate structure between the complete graph and the line graph. However, this
finding is not trivial since also counter-intuitive results of absorption quantities
on different structures can be constructed [51]. Moreover, our theoretical deriva-
tions provide the exact absorption time of the Moran model on a crypt-like
structure and allow a quantitative comparison to the absorption behavior on
other structures.

Note that the introduced model reduces to the non-spatial Moran model on
the complete graph if K = 1. For this special case, the well-known absorption
time of the Moran model is recovered by our results [126]. This holds also
for the other special case K = N for which no Moran dynamics is possible
since each crypt consists only of one individual and therefore only short-range
dynamics determine the evolution of the process.

Overall, the presented results provide an extension of previous works inves-
tigating Moran dynamics on non-regular structures [3, 51, 126] by deriving
exact solutions for the absorption probabilities and times for the Moran model
on a crypt-like structure. Importantly, the insights of this section will justify the
choice of the underlying spatial structure in the applications of Moran models
in the following part of this thesis.





Part I

M O R A N M O D E L S F O R T H E I N F E R E N C E O F
G E N E T I C C E L L C H A N G E S O N T U M O R

D E V E L O P M E N T

In this part we introduce and analyze extended Moran models to
investigate the following two questions:

• In which way do cellular processes like competition, genetic al-
terations and proliferation and death determine whether tumors
on the tissue scale grow, progress or even spontaneously regress?

• At which point of the cellular multistep process of cancer and the
clonal expansion of genetically altered cells is the fate of tumor
development decided?

From a mathematical point of view, the main results include the
derivation of the absorption probabilities of the extended non-spatial
and spatial three-type Moran models with mutations which are de-
rived in Theorems 3.4 and 4.3.
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3.1 clinical characteristics of pilocytic astrocytoma

Pilocytic astrocytoma (PA) is the most common pediatric brain tumor and the
second most frequent tumor in childhood [43]. Three of four cases are diag-
nosed up to an age of 20 years with the highest age incidence between 5 and
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15 years. PA is usually benign, often follows an indolent course and is mostly
slow-growing [88]. In children, PA most frequently occurs in the cerebellum but
can develop in the entire neuroaxis. Surgery is the treatment of choice [20]. If
total excision is achieved, the prognosis is favorable with more than 90% of pa-
tients being cured [85]. However, in many cases tumor location in critical or
deep areas (such as brain stem, optic pathway, or hypothalamus) restricts resec-
tion options and alternative management options are required [60, 115]. Patients
with only partial resection have a worse and highly unpredictable prognosis [60,
85]. Tumors can regrow or even progress to a more aggressive tumor [20, 105,
114, 116, 120, 123] but spontaneous tumor regression of PA has also been ob-
served [44, 85, 107, 125, 128] and is a common phenomenon. A review in [107]
estimates a fraction of 14% of all residual cerebellar astrocytoma that regress
spontaneously. Other studies claim an even higher portion [23]. While regres-
sion of PA after partial resection is reported in many case series [23, 44, 107,
125, 128], the influence of the residual tumor size has not been evaluated yet.
Moreover, the management for patients in whom complete resection cannot be
achieved is still unclear. Due to the chance of regression and the indolent nature
of PA some authors propose a wait and see strategy in order to avoid potential
risks induced by further therapies [85, 107, 123]. Other authors favor an aggres-
sive surgical resection in combination with additional treatment strategies like
radiation and chemotherapy to control tumor growth [52, 124, 125].

On the molecular level it has been shown that activation of the mitogen-
activated protein kinase (MAPK) pathway is sufficient to induce the develop-
ment of PA. This leads to the hypothesis that PA is a single-pathway disease
[62, 63]. Furthermore, PA usually harbor only one alteration within the MAPK
pathway. The majority of mutations are activating changes in the BRAF gene,
the most common is the KIAA1549-BRAF fusion, but also other activating mu-
tations have been described.

A more aggressive behavior of PA is observed if additional genetic alterations
occur, e.g. loss of tumor suppressor gene CDKN2A [53, 114]. Furthermore, al-
terations in the PI3K/AKT pathway [66] have been associated with aggressive
forms of PA [116]. One proposed mechanism for the often observed slow growth
of the tumors is oncogene-induced senescence which is a mechanism limiting
neoplastic growth by inducing cellular senescence. The MAPK activation might
initially promote growth as well as induce senescence. Oncogene-induced senes-
cence has also been observed in melanocytic nevi and melanoma [114]. Several
mechanisms for tumor regression have been suggested, e.g. immunologic mech-
anisms, hormonal factors, induction of differentiation or apoptosis [128]. How-
ever, the reason why regression in PA occurs is not understood yet [85].

We formulate a mathematical model for growth, progression and regression
of PA based on the above described clinical and molecular biological observa-
tions. We study the effects of competition between tumor and wild-type cells
on the chance for regression. We distinguish two types of PA. Benign cases are



3.2 a moran model for pilocytic astrocytoma growth and progression 41

classified as PA-I tumors and assumed to be caused by alteration of a single path-
way. Tumors in which an additional alteration occurs are categorized as PA-II

tumors representing the more aggressive subset of PA. We introduce a stochas-
tic tumor growth and progression model which is a Moran model [98] with
mutations. We choose this model class since astrocyte proliferation and diversi-
fication mainly happen during late embryogenesis and the first three weeks after
birth. These processes are largely complete by early postnatal stages while early
and late postnatal development is mainly characterized by maturation processes
(like continuing elaboration of astrocyte processes and building of synaptic/-
vascular connections) [38, 97]. Since PA are usually diagnosed between 5 and 15

years the normal astrocyte population is not proliferating at this time anymore.
Therefore, it is reasonable to assume an approximately homeostatic tissue. In
such a tissue Moran dynamics provide a natural and established framework
for modeling competition between tumor and wild-type cells. In contrast to the
introduced Moran models in Section 2.2, we utilize a continuous time version
and assume that cells cannot both give birth and die at the same time.

In our model, we derive the PA-regression-function describing the probability
for regression in dependency of the residual tumor size after partial resection
of benign PA. The accumulation of mutations in a tissue has been modeled and
investigated by several authors by using a Moran model. Work by Iwasa, Mi-
chor, Komarova and Nowak [59, 100] has been extended by Schweinsberg

[121] and durrett, Schmidt and Schweinsberg [29] to the case of m mutations.
These models analyze tumor growth and progression [10, 58, 71, 96, 133] with a
focus on theoretical results regarding the waiting time until a cell has accumu-
lated a certain number of mutations. Our approach is motivated by a concrete
clinical question which is the regression probability of a benign PA tumor in
dependency of the residual tumor size. We modify the model introduced in
[29]. In particular, we consider Moran dynamics with two mutations but two
absorbing states and investigate the precise relation of the two absorption prob-
abilities which allows the incorporation of epidemiological data to calibrate the
model. From the mathematical point of view, the relation of the two absorption
probabilities can be connected to the portion of stochastic tunneling events in
the model presented in [29].

3.2 a moran model for pilocytic astrocytoma growth and pro-
gression

3.2.1 Definition of a PA growth and progression model

state space and representation of pa subtypes . We use a Moran

model with mutations to model tumor growth, regression and progression of
PA. The model incorporates three cell types, wild-type cells, type-I cells and type-II

cells. Wild-type cells have no genetic alteration. Type-I cells are characterized
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by a MAPK pathway alteration. We assume that type-I cells proliferate without
fitness advantage. This is motivated by the observation that benign PA grow
very slowly, can be stable in size over a long time period or even regress. Type-
II cells have acquired a second genetic alteration disabling oncogene-induced
senescence, for example by loss of CDKN2A. Due to their aggressive behavior,
we assume a very large fitness advantage of type-II cells. The parameter N in our
model represents a critical tumor size in the sense that a PA which reaches size
N cannot spontaneously regress. Our assumption that such a critical size exists
is founded on clinical data and observations which are explained later. Here,
we focus on the chance of tumor regression of a partially resected benign PA in
dependency of the residual tumor size. Therefore, we do not consider growth
of tumors beyond the critical size N since spontaneous regression would not
be possible anymore in such a case. Spatial aspects are neglected so that the
number of cells of each cell type is sufficient to describe the states of our model.
Therefore, the state space can be described by S = {0, 1, 2, ...., N, E}. Here, states
0 to N represent the occurrence of the respective number of type-I cells and no
type-II cell. The additional state E indicates the presence of a type-II cell. States
N and E are absorbing states of the model and represent the occurrence of a
benign PA which we call PA-I tumor and an aggressive form of PA named PA-

II tumor, respectively. Hence, the occurrence of a PA-I tumor is represented by
the accumulation of N type-I cells. As soon as a single type-II cell appears, we
identify this state as occurrence of a PA-II tumor which is modeled as absorption
in state E. Please note that no transition from state N to state E is possible in
the model. Figure 4 illustrates the three cell types and the representation of both
types of PA tumors in the model which we call tumor growth and progression (TGP)
process.

dynamics in the model . The dynamics of our model incorporates cell
death, proliferation and genetic alterations. Cell death and proliferation are
modeled according to the Moran dynamics [98] as follows. Two cells are cho-
sen randomly. One of these cells undergoes cell death and the other cell prolifer-
ates. The offspring of the proliferating cell substitutes the cell chosen for death.
Since we neglect spatial aspects, the offspring of a cell can replace any other
cell. During proliferation, a mutation of the new-born cell can occur. Wild-type
cells mutate to type-I cells with probability u and these mutate to type-II cells
with probability v. Moran dynamics is defined with respect to a relevant cell

number which describes the number of cells that potentially compete with each
other. This relevant cell number can be assumed to be approximately equal to
the critical tumor size N by the following arguments. Since PA tumors grow as
a solid, well-circumscribed mass within the normal brain, new tumor cells are
placed in the vicinity of already mutated cells. Similarly, only wild-type cells in
the vicinity of mutated cells can potentially compete with tumor cells. Thus, the
actual relevant cell number for the Moran dynamics is somewhere between the
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critical tumor size N and the total number of astrocytes in the brain but clearly
much closer to N. Since there is no detailed experimental estimate of this num-
ber so far, we assume in our model that the relevant cell number for Moran

dynamics is equal to N. Although we do not explicitly incorporate spatial as-
pects, this assumption implicitly incorporates spatial aspects by implying that
tumor cells cannot place its offspring too far away. We assume that initially all
cells are wild-type cells. Hence, the process starts in state 0. The number of type-
I cells changes according to the above described dynamics which are formally
defined in the following way.

3.1 Definition (TGP process) The tumor growth and progression (TGP) process is
a continuous time Markov chain (Xt)t≥0 on the state space S = {0, 1, 2, ..., N, E}
with rate matrix Q = (q(k, l))k,l∈S which is given by

q(k, l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nu, k = 0, l = 1,
(N−k)k

N (1 − v) + (N−k)(N−k−1)u
N , 1 ≤ k ≤ N − 1, l = k + 1,

(N−k)k(1−u)
N , 1 ≤ k ≤ N − 1, l = k − 1,

kv, 1 ≤ k ≤ N − 1, l = E,

− ∑
m∈S
m ̸=k

q(k, m), l = k,

0, else.

(3.1)

The dynamics are illustrated in Figure 4. The TGP process is a Markov process
with two absorbing states N and E representing a PA-I tumor and a PA-II tu-
mor, respectively. Hence, the absorption probabilities of the TGP process in both
states correspond to the clinically observed fraction of PA-I and PA-II tumors.
Therefore, we will derive these absorption probabilities and analyze in which
way they depend on the model parameters N, u and v. Furthermore, we assume
that tumor regression is characterized by the vanishing of all tumor cells. Hence,
tumor regression corresponds to reaching state 0 in the TGP process which will
be described by a tumor regression function in the following.

3.2.2 Analysis of the TGP process

The behavior of the TGP process depends on its three parameters, the critical
tumor size N, the mutation probability from wild-type cells to type-I cells u

and the mutation probability from type-I cells to type-II cells v. For the analysis,
we assume the following parameter regime.
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3.2 Assumption The parameter regime for the analysis of the TGP process is
chosen such that

u ≪ 1
N

(3.2)

and

N
√

v > 0. (3.3)

In the following we explain this choice. It turns out that the parameters N

and v play an important role in the analysis via equation (3.3) which motivates
the following definition.

3.3 Definition The risk coefficient γ of the TGP process is defined as

γ := N
√

v.

decomposition of the tgp process into two sub-processes . As-
sumption (3.2) implies that type-I mutations are rare. Typically, an emerging
type-I lineage either goes extinct or leads to absorption of the TGP process be-
fore another type-I mutation occurs. Hence, each newly arising type-I mutant
can be investigated independently. This idea has been introduced in [29]. There-
fore, we set u = 0 as soon as type-I cells are present, i.e. if the TGP process is in
state k, 1 ≤ k ≤ N. Since absorption is inevitable in the TGP process, a success-

ful type-I mutant that leads to absorption in state N or state E must eventually
occur. Before the occurrence of this specific type-I mutant, unsuccessful mutants
arise and go extinct driving the process back to state 0. Hence, assumption (3.2)
implies that a PA tumor develops from a single mutated cell. See also Figure 5

for an illustration of this decomposition of the TGP process.

derivation of the absorption probability of the tgp process . We
are interested in the absorption probability of the TGP process in state N when
the process is started with a single type-I cell. This quantity is denoted by
αN(1, v) and is derived in the following.

3.4 Theorem (Absorption probabilities of the TGP process) Consider the TGP

process with rate matrix (3.1) under assumptions (3.2) and (3.3). Then, the ab-
sorption probability in state N, N ∈ N, starting the process in state 1 is given
by

αN(1, v) =
1

PN−1

(
v+1
1−v

) , (3.4)
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By defining q̃(k) := −q̃(k, k), we get

q̃(1) = q̃(1, E) + q̃(1, 2) =
N + v − 1

N
,

q̃(N) = q̃(E) = 0,

q̃(k) = q̃(k, k + 1) + q̃(k, k − 1) + q̃(k, E) =
2(N − k)k + k2v

N
, 2 ≤ k ≤ N − 1.

We further regard the embedded Markov chain with transition probabilities

p(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̃(i,j)
q̃(i)

, i ̸= j,

1, i = j = E,

1, i = j = N,

0, else,

in which the entries unequal to 0 look as follows

p(1, E) =
Nv

N + v − 1
,

p(1, 2) =
(N − 1)(1 − v)

N + v − 1
,

p(k, E) =
Nv

2(N − k) + kv
, 2 ≤ k ≤ N − 1,

p(k, k + 1) =
(N − k)(1 − v)

2(N − k) + kv
, 2 ≤ k ≤ N − 1,

p(k, k − 1) =
(N − k)

2(N − k) + kv
, 2 ≤ k ≤ N − 1,

p(N, N) = p(E, E) = 1.

The absorption probabilities for the underlying stochastic process with transi-
tion matrix P =

(
pi,j
)

i,j∈S̃
is obtained as follows. Denote by αN =

(
αN(i, v)

)
i∈S̃

the absorption probabilities where αN(i, v) describes the absorption probability
in state N starting from state i. First step analysis yields

αN(i, v) = ∑
j∈S̃

p(i, j)αN(j, v), i ∈ S̃.
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It holds that αN(E, v) = 0, αN(N, v) = 1 and therefore

αN(i, v) =
N

∑
j=1

p(i, j)αN(j, v) =
N−1

∑
j=1

p(i, j)αN(j, v) + p(i, N)

= p(i, i − 1)αN(i − 1, v) + p(i, i + 1)αN(i + 1, v) + p(i, N)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(N−1)(1−v)
N+v−1 αN(2, v), i = 1,
(N−i)

2(N−i)+iv
αN(i − 1, v) + (N−i)(1−v)

2(N−i)+iv
αN(i + 1, v), 2 ≤ i ≤ N − 2,

1
2+(N−1)v αN(N − 2, v) + 1−v

2+(N−1)v , i = N − 1.

Hence,

−αN(1, v) +
(N − 1)(1 − v)

N + v − 1
αN(2, v) = 0

(N − i)

2(N − i) + iv
αN(i − 1, v)− αN(i, v) +

(N − i)(1 − v)

2(N − i) + iv
αN(i + 1, v) = 0, 2 ≤ i ≤ N − 2,

−αN(N − 1, v) +
1

2 + (N − 1)v
αN(N − 2, v) = − 1 − v

2 + (N − 1)v
.

By multiplying each equation with the corresponding denominator, one gets
an equivalent system of equations P

′
α̃N = b with a (N − 1)× (N − 1) matrix P

′

and α̃N := (αN(i, v))i=1,...,N−1. This linear system of equations looks in tableau
form as follows.

αN(1,v) αN(2,v) ... αN(N−1,v) 1

1 −(N + v − 1) (N − 1)(1 − v) · · · 0 0

2 (N − 2) −2(N − 2)− 2v
. . . 0 0

3 0 (N − 3)
. . .

...
...

...
...

. . . . . . 0
...

...
...

. . . . . . 2(1 − v) 0

N−1 0 · · · 1 −2 − (N − 1)v −(1 − v)

We are interested in the absorption probability αN(1, v), i.e. the probability
of getting absorbed in state N when the process is started with a single type-I
cell. We use Cramer’s rule and calculate the absolute value of the determinants
to facilitate the calculations since the resulting probability is non-negative. In
detail, we derive

αN(1, v) =
|det P

′
1|

|det P
′ | ,

where P
′
1 is the matrix formed by replacing the first column of P

′
by the column

vector b.



3.2 a moran model for pilocytic astrocytoma growth and progression 49

We calculate |det P
′ | first. By induction over N the general structure can be

inferred. For N = 4 it holds that

|det P
′ | =

⏐⏐⏐⏐⏐⏐⏐⏐⏐
det

⎛
⎜⎜⎜⎝

−(3 + v) 3(1 − v) 0

2 −4 − 2v 2(1 − v)

0 1 −2 − 3v

⎞
⎟⎟⎟⎠

⏐⏐⏐⏐⏐⏐⏐⏐⏐

= 6(v3 + 9v2 + 9v + 1)

= 3!(v3 + 32v2 + 32v + 1),

and for N = 5

|det P
′ | =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

det

⎛
⎜⎜⎜⎜⎜⎜⎝

−(4 + v) 4(1 − v) 0 0

3 −6 − 2v 3(1 − v) 0

0 2 −4 − 3v 2(1 − v)

0 0 1 −2 − 4v

⎞
⎟⎟⎟⎟⎟⎟⎠

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

= 24(v4 + 16v3 + 36v2 + 16v + 1)

= 4!(v4 + 42v3 + 62v2 + 42v + 1).

Furthermore,

|det P
′ | = 120(v5 + 25v4 + 100v3 + 100v2 + 25v + 1)

= 5!(v5 + 52v4 + 102v3 + 102v2 + 52v + 1) for N = 6.

Therefore, we conclude that the general form of |det P
′ | is given by

|det P
′ |

= (N − 1)!

((
N − 1
N − 1

)2

vN−1 +

(
N − 1
N − 2

)2

vN−2 + ... +
(

N − 1
1

)2

v1 +

(
N − 1

0

)2

v0

)

= (N − 1)!
N−1

∑
i=0

(
N − 1

i

)2

vi

= (N − 1)!PN−1

(
v + 1
1 − v

)
(1 − v)N−1, N ∈ N. (3.7)

Here, PN denotes the Legendre polynomials [1] which are the particular so-
lutions to the Legendre differential equation

(
1 − x2

)
f ′′(x)− 2x f ′(x) + N(N + 1) f (x) = 0, N ∈ N0.
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The determinant of the other matrix P
′
1 given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 (N − 1)(1 − v) 0 · · · · · · 0

0 −2(N − 2)− 2v (N − 2)(1 − v) 0
. . . 0

0 (N − 3) −2(N − 3)− 3v (N − 3)(1 − v)
. . .

...
...

. . . . . . . . . . . .
...

0
. . . . . . . . . . . . 2(1 − v)

−(1 − v) 0 · · · · · · 1 −2 − (N − 1)v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

can be calculated by applying Laplace expansion along the first column and
evaluating the determinant of the remaining triangular matrix, i.e.

|det P
′
1| = (1 − v)(N − 1)(1 − v)(N − 2)(1 − v)(N − 3)(1 − v) . . . 2(1 − v)

= (N − 1)!(1 − v)N−1. (3.8)

Using the calculated determinants from equations (3.7) and (3.8) allows the cal-
culation of the absorption probability αN(1, v) with Cramer’s rule which yields

αN(1, v) =
|det P

′
1|

|det P
′ | =

1

PN−1

(
v+1
1−v

) . (3.9)

Next, we derive the absorption probability in dependency of the risk coeffi-
cient γ as the system size N tends to infinity. The definition of the risk coefficient

(3.3) implies v = γ2

N2 . Substitution in equation (3.9) yields

αN(γ) := αN(1, γ) =
1

PN−1

(
v+1
1−v

) =
1

PN−1

(
γ2

N2 +1

1− γ2

N2

) =
1

PN−1

(
N2+γ2

N2−γ2

) . (3.10)

One important property of the Legendre polynomials is the integral represen-
tation (see [1])

PN(x) =
1
π

∫ π

0

[
x +

√
x2 − 1 cos ϕ

]N
dϕ, x ∈ R\{−1, 1}.

This integral representation is used in order to calculate the limit for the denom-
inator in (3.10) as N goes to infinity.
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PN−1

(
N2 + γ2

N2 − γ2

)
=

1
π

∫
π

0

⎡
⎣N2 + γ2

N2 − γ2 +

√(
N2 + γ2

N2 − γ2

)2

− 1 cos ϕ

⎤
⎦

N−1

dϕ

=
1
π

∫
π

0

⎡
⎣N2 + γ2

N2 − γ2 +

√
(N2 + γ2)

2 − (N2 − γ2)
2 cos ϕ

N2 − γ2

⎤
⎦

N−1

dϕ

=
1
π

∫
π

0

[
N2 + γ2 + 2Nγ cos ϕ

N2 − γ2

]N−1

dϕ. (3.11)

Therefore,

lim
N→∞

PN−1

(
N2 + γ2

N2 − γ2

)
= lim

N→∞

1
π

∫
π

0

[
N2 + γ2 + 2Nγ cos ϕ

N2 − γ2

]N−1

dϕ

=
1
π

∫
π

0

lim
N→∞

[
N2 + γ2 + 2Nγ cos ϕ

N2 − γ2

]N−1

dϕ. (3.12)

The exchange of the limit and the integral is justified by using Lebesgue’s
dominated convergence theorem since there is an integrable majorant which
can be derived as follows.

⏐⏐⏐⏐
N2 + γ2 + 2Nγ cos ϕ

N2 − γ2

⏐⏐⏐⏐
N−1

≤
⏐⏐⏐⏐
N2 + γ2 + 2Nγ

N2 − γ2

⏐⏐⏐⏐
N−1

=

⏐⏐⏐⏐
(N + γ)2

(N − γ)(N + γ)

⏐⏐⏐⏐
N−1

=

⏐⏐⏐⏐
N + γ

N − γ

⏐⏐⏐⏐
N−1

Moreover, it holds that

⏐⏐⏐⏐
N + γ

N − γ

⏐⏐⏐⏐
N−1

=

⏐⏐⏐⏐
(

1 +
2γ

N − γ

)⏐⏐⏐⏐
N−1

=

⏐⏐⏐⏐⏐

(
1 +

2γ

N − γ

)N−γ (
1 +

2γ

N − γ

)γ−1
⏐⏐⏐⏐⏐

≤ exp (2γ) · 2
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for N sufficiently large and since the sequence
(

1 + 1
N

)N
is monotonously in-

creasing. The limit in (3.12) can be calculated as follows.

lim
N→∞

[
N2 + γ2 + 2Nγ cos ϕ

N2 − γ

]N−1

= lim
N→∞

exp
(
(N − 1) ln

(
N2 + γ2 + 2Nγ cos ϕ

N2 − γ2

))

= exp

⎛
⎝ lim

N→∞

ln
(

N2+γ2+2Nγ cos ϕ

N2−γ2

)

1
N−1

⎞
⎠

Here, we can apply L’Hospital’s rule for the calculation of the limit, i.e.

lim
N→∞

ln
(

N2+γ2+2Nγ cos ϕ

N2−γ2

)

1
N−1

= lim
N→∞

2N+2γ cos ϕ

N2+γ2+2γN cos ϕ
− 2N

N2−γ2

− 1
(N−1)2

= lim
N→∞

−(N − 1)2 (2N + 2γ cos ϕ)
(

N2 − γ2
)
− 2N

(
N2 + γ2 + 2γN cos ϕ

)

(N2 + γ2 + 2γN cos ϕ) (N2 − γ2)

= lim
N→∞

− (N − 1)2

N2 − γ2

−2γN2 cos ϕ − 4γ2N − 2γ3 cos ϕ

N2 + γ2 + 2γN cos ϕ

This representation allows to determine the limits of both factors.

lim
N→∞

− (N − 1)2

N2 − γ2

−2γN2 cos ϕ − 4γ2N − 2γ3 cos ϕ

N2 + γ2 + 2γN cos ϕ
= (−1)(−2γ cos ϕ)

= 2γ cos ϕ.

Hence, we obtain for (3.12)

1
π

∫
π

0

lim
N→∞

[
N2 + γ2 + 2Nγ cos ϕ

N2 − γ2

]N−1

dϕ =
1
π

∫
π

0

exp (2γ cos ϕ)dϕ

= I0(2γ),

where In denotes the modified Bessel function of the first kind. This function
can be expressed by the series

In(x) =
∞

∑
m=0

1
m!Γ(m + n + 1)

(x

2

)2m+n
(3.13)

where Γ(x) denotes the Gamma function, see [1] for details. Equation (3.11)
implies that

α(γ) = lim
N→∞

αN(1, γ) = lim
N→∞

1

PN−1

(
N2+γ2

N2−γ2

) =
1

I0(2γ)
. (3.14)
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N u v γ αN(1, v) α(γ) fraction of absorption

10 10−4 2500−1 0.2 0.9649 0.96117 0.9632

100 10−4 2500−1 2 0.09 0.0885 0.0921

10 10−4 10000−1 0.1 0.9911 0.9901 0.9912

100 10−4 10000−1 1 0.4417 0.4387 0.4419

10 10−4 1.52 × 10−3 0.39 0.8759 0.8636 0.882

100 10−4 1.52 × 10−5 0.39 0.8649 0.8636 0.8665

Table 3: Comparison of absorption probabilities (3.9) and the results of 10000 simula-
tions of trajectories of the TGP process.

A plot of the asymptotic absorption probability (3.5) is provided in Figure 6.
A comparison between simulation results produced by sampling trajectories of
the TGP process, absorption probabilities obtained by using the exact formula
(3.4) and the asymptotic equation (3.5) is provided in Table 3.

3.2.3 Derivation of tumor regression functions for the TGP process

description of tumor regression. We are interested in the regression
probability of a partially resected PA-I tumor in dependency of the remaining
tumor size and assume that regression of a residual tumor is achieved if no
tumor cells are present anymore. All suggested mechanisms of tumor regression
influence the ratio of tumor and wild-type cell birth and death rates. Therefore,
we assume that competition between tumor and wild-type cells leads to tumor
regression which is incorporated by Moran dynamics with relevant cell number
equal to N again, see also Figure 7. Furthermore, we assume that the partial
resection reduces the residual number of PA-I cells below the critical tumor size
N.

Figure 7 provides a graphical representation of tumor regression in the TGP

process. The tumor regression function describes the extinction probability of
tumor cells, i.e. the probability to reach state 0 when starting the TGP process
in some state k with 1 ≤ k ≤ N − 1. For v = 0, our TGP process simplifies
to a neutral two-type Moran process in which the extinction probability is an
established result and equals 1 − k

N [71]. Here, we derive this extinction proba-
bility for our TGP process with three cell types. For the mathematical analysis,
it is convenient to express this function in terms of ρ = k

N . The fraction ρ de-
scribes the ratio between the residual number of PA-I cells after partial resection
k, 1 ≤ k ≤ N − 1, and the critical tumor size N. Formally, the tumor regression
function of the TGP process is defined as follows.
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Figure 6: The absorption probabilities in the absorbing states N and E of the TGP process
in dependency of the risk coefficient γ.

3.5 Definition (Tumor regression function) The tumor regression function βN
γ

describing the probability of tumor regression in the TGP process in dependency
of the residual critical tumor fraction ρ is defined as

βN
γ (ρ) := P(Xt = 0 for some t ≥ 0|X0 = Nρ), ρ ∈ [0, 1]. (3.15)

approximating the tumor regression function. The tumor regres-
sion function βN

γ (ρ) can be estimated by a diffusion approximation of the TGP

process. In order to achieve this a derivation in [29] is used and extended. There,
it is shown that it suffices to investigate a modified process (Yt)t≥0. This process
is determined by the original rates given by equation (3.1) with the following
modification. The rate for a type-I mutation equals u = 0 in q(k, l) if k > 0. This
means that type-I mutations are not allowed if type-I cells are already present in
the system. The modification can be justified by the assumption u ≪ 1

N which
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allows to treat each mutant lineage independently. See also the details of the
decomposition of the TGP process into two sub-processes, Figure 5. Note that
this decomposition is also used in the calculation of the absorption probabili-
ties. There, the state space has been reduced by state 0 since the occurrence of
the successful mutant is assumed at the very beginning already. For the process
(Yt)t≥0, this reduction of the state space is not sensible since we want to inves-
tigate the regression probability, i.e. the probability of reaching state 0. Hence,
both modified processes only differ in the possibility of reaching state 0.
Under appropriate time and space scaling (Yt)t≥0 can be asymptotically approx-
imated for N → ∞ by the Wright-Fisher diffusion process Zt on [0, 1]. The
details of this construction can be found in [29]. The important connection be-
tween the processes (Yt)t≥0 and (Zt)t≥0 is that Zt = 0 implies Xt = 0.
Therefore, we approximate βN

γ (ρ) ≈ βγ(ρ) where βγ(ρ) is the probability that
Zt reaches 0 when starting in ρ,

βγ(ρ) := P(Zt = 0 for some t > 0|Z0 = ρ), 0 ≤ ρ ≤ 1.

It holds that

βγ(ρ) = c
∞

∑
k=1

γ2k

k!(k − 1)!
(1 − ρ)k, 0 ≤ ρ ≤ 1, (3.16)

where the constant c is determined by the condition βγ(0) = 1. See [29, Lemma
6.9] for details and a rigorous derivation of this approximation. Importantly,
note that in [29] the parameter γ is defined as the square of our definition and
we will therefore replace γ in [29] by γ2 in the following.

Next, we express the series in equation (3.16) in terms of Bessel functions
and derive the constant c as follows. In the first step, the indices of the sum are
adjusted. In the second step, we apply Γ(n) = (n − 1)! for n ∈ N.

∞

∑
k=1

γ2k

k!(k − 1)!
(1 − ρ)k =

∞

∑
k=0

1
(k + 1)!k!

(γ2(1 − ρ))k+1

=
∞

∑
k=0

1
k!Γ(k + 2)

(γ2(1 − ρ))k+1

=
∞

∑
k=0

1
k!Γ(k + 2)

(
γ
√

1 − ρ
)2k+2

Moreover, the definition of the modified Bessel function of the first kind (3.13)
with x = 2γ

√
1 − ρ and n = 1 leads to

∞

∑
k=0

1
k!Γ(k + 2)

(
γ
√

1 − ρ
)2k+2

= γ
√

1 − ρ
∞

∑
k=0

1
k!Γ(k + 2)

(
γ
√

1 − ρ
)2k+1

= γ
√

1 − ρI1

(
2γ
√

1 − ρ
)

.
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Hence, equation (3.16) yields

βγ(ρ) = cγ
√

1 − ρI1

(
2γ
√

1 − ρ
)

.

Since βγ(0) = 1, one can conclude that the constant c equals

c =
1

γI1(2γ)

and therefore

βγ(ρ) =

√
1 − ρI1

(
2γ
√

1 − ρ
)

I1(2γ)
(3.17)

for 0 ≤ ρ ≤ 1. The graph of βγ is plotted in Figure 8C for different values of the
risk coefficient γ.

taylor expansion of the tumor regression function. In order to
estimate the deviation of the specific tumor regression function for PA from a
linear function, we derive the first order Taylor polynomial T1(ρ) at ρ = 0.5 of
the regression function (3.17) and an estimation of the remainder term R1(ρ).

The first two derivatives are given by

β′
γ(ρ) = − I1

(
2γ
√

1 − ρ
)
+ γ

√
1 − ρ

(
I0
(
2γ
√

1 − ρ
)
+ I2

(
2γ
√

1 − ρ
))

2
√

1 − ρI1(2γ)
,

β′′
γ(ρ) = γ2 I1

(
2γ
√

1 − ρ
)

I1(2γ)
√

1 − ρ
.

Here, we utilized that

d

dx
I0(x) = I1(x) and

d

dx
Im(x) =

Im−1(x) + Im+1(x)

2
= Im−1(x)− mIm(x)

x
, m ∈ N,

see [1]. Therefore, for ρ0 = 0.5, it holds that

T1(ρ) =
I1

(√
2γ
)

√
2I1 (2γ)

−
√

2I1

(√
2γ
)
+ γ

(
I0

(√
2γ
)
+ I2

(√
2γ
))

2I1 (2γ)
(ρ − 0.5).

(3.18)

For the remainder term it holds for some ξ between 0.5 and ρ that

|R1(ρ)| =
⏐⏐⏐⏐⏐
β′′

γ(ξ)

2
(ρ − 0.5)2

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐
γ2 I1

(
2γ

√
1 − ξ

)

I1(2γ)
√

1 − ξ

(ρ − 0.5)2

2

⏐⏐⏐⏐⏐

≤ γ2 (0 − 0.5)2

2

=
γ2

8
. (3.19)

for all 0 ≤ ρ ≤ 1 since β′′
γ(ξ) is monotonously decreasing.
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3.3 results & clinical implications

3.3.1 Derivation of the PA-regression-function

The regression function (3.17) depends on the parameters of the TGP process via
the risk coefficient γ, see equation (3.3). This parameter is estimated such that
the clinically observed fraction of PA-I tumors, denoted by p̂, equals the theo-
retically obtained fraction α(γ) of absorption in state N in the TGP process. Sub-
sequently, the derived risk coefficient is substituted into the regression function
given by equation (3.17) in order to obtain the specific PA-regression-function.
Figure 8 summarizes the overall strategy of this approach.

We estimate the clinically observed fraction of PA-I tumors on the basis of
data reported in [114]. The authors analyzed 66 PAs with respect to their ge-
netic profile and classified 57 cases as benign PA-I tumors and 9 cases as more
aggressive PA-II tumors. This leads to

p̂ =
57
66

= 0.8636.

In the TGP process, this clinically observed fraction corresponds to the absorp-
tion probability in state N, given by equation (3.14). Therefore, we set

α (γ̂) = p̂ = 0.8636.

This equation allows to calculate the risk coefficient γ̂ which yields

γ̂ = 0.39.

Substituting γ̂ = 0.39 into the regression function given by equation (3.17) al-
lows to derive the PA-regression-function given by

β0.39(ρ) = 2.3795
√

1 − ρI1

(
0.78

√
1 − ρ

)
, 0 ≤ ρ ≤ 1. (3.20)

A plot of this function is provided in Figure 8C. This figure shows that the re-
gression function is very robust to small alterations with respect to p̂. Note that
the actual risk coefficient may be smaller than the estimated value γ̂ = 0.39
due to the following considerations. The parameter N in our model represents
a critical tumor size above which tumor regression cannot be expected anymore.
However, the number of mutated cells in a diagnosed PA-I tumor may be larger
than N because tumors could grow beyond this critical size without symptoms
or due to a diagnostic gap between first symptoms and diagnosis. Therefore,
a PA-I tumor can consist of more than N type-I cells and should have been
more susceptible for progression to PA-II than accounted for in our TGP pro-
cess. Hence, the risk of progression in our TGP process and therefore γ̂ might
be overestimated. However, this would not change the linear dependency be-
tween residual tumor size and regression probability which is discussed in the
following.
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3.3.2 Linear dependency between residual tumor fraction and regression probability of

PA

We can show that the PA-regression-function (3.20) is approximately linear by
utilizing a Taylor expansion using equation (3.18). Substituting the estimated
risk coefficient of the PA-regression-function γ̂ = 0.39 into equation (3.18) leads
to

T1(ρ) = 0.9817 − ρ, ρ ∈ [0, 1]. (3.21)

This is a very good approximation since the remainder term can be estimated
by

|R1(ρ)| ≤
γ2

8
=

0.152
8

= 0.0185 (3.22)

for ρ ∈ [0, 1]. Hence, the deviation of the PA-regression-function from the linear
function T1(ρ) is very small. Moreover, if the risk coefficient was overestimated,
an even smaller deviation would be observed as equation (3.22) implies.

3.3.3 Quantitative prediction of the regression probability for benign PA

In order to provide a quantitative prediction of the regression probability given
the absolute residual tumor size, we estimate the critical tumor size N in our
model. Since the total cell number corresponds to the the tumor volume, we
can interpret N also as minimum absolute tumor volume above which tumor
regression cannot be expected anymore. The existence of this critical tumor size
and its estimate of a cell number corresponding to a volume of 9 cm3 is justified
in the following way. First, an extensive literature research indicated that tumor
regression for residual cerebellar PA over 9 cm3 has not been reported yet, see
Table 15 in the Appendix. Second, the prediction for patients with 78 cerebellar
astrocytoma, including 62 PAs, has been investigated in [125]. Fig. 6 in [125]
implies that the theoretical proportion of progression-free patients based on a
Cox regression analysis with a residual tumor of 9 cm3 is estimated to be zero
in the long-term. Finally, in [124], the role of the extent of resection in the long-
term outcome of low-grade gliomas is investigated including 93 PAs. It is stated
that "the predicted outcome for patients is negatively influenced by even residual tumor

volumes on the order of 10 cm3" [124]. Incorporating the estimation for the critical
tumor size of 9 cm3 into the PA-regression-function (3.20) allows to quantify our
predictions, indicating that any volume reduction of one cm3 below the critical
size will add 10% to the chance for regression (see also Figure 9 and Table 4).

3.3.4 Non-existence of an extent of resection (EOR) threshold

In malignant brain tumors it has been shown that there is an extent of resec-
tion (EOR) threshold below which no survival advantage is provided, e.g. in
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residual tumor size (cm3 ) tumor regression probability (in %)

0.1 98.91

0.5 94.06

1 88.16

2 76.50

3 65.03

4 53.75

5 42.64

6 31.71

7 20.47

8 10.39

Table 4: Predicted regression probability for cerebellar PA based on the absolute residual
tumor size.

glioblastoma this threshold is 78% [119]. The existence of different tumor zones
which basically reflect tumor heterogeneity is one proposed reason for such a
threshold in malignant brain tumors [31]. In contrast, our results suggest the
non-existence of such a threshold in PA. This is an immediate consequence of
the linear dependency between residual tumor size and regression probability.
If the residual tumor is smaller than the critical tumor size N, which marks the
volume for which regression cannot be expected anymore, any reduction of the
tumor volume will contribute to the regression probability. Importantly, this be-
havior stands in contrast to a non-linear dependency which would have been
obtained in our model for a higher estimated risk coefficient γ, see Figure 9

3.4 discussion & outlook

In order to gain insights into the regression behavior after partial resection of
benign PA, we introduced a stochastic TGP process based on recent molecular
findings, functional and clinical data. We derived a regression function that
depends on the risk coefficient γ and quantifies the probability of regression
in dependency of the residual tumor size. By incorporating epidemiological
data on the clinically observed fractions of PA-I and PA-II cases we estimated
γ and derived the specific PA-regression-function given by equation (3.20). The
estimated PA-regression-function implies an approximately linear dependency
between the residual critical tumor fraction and the regression probability as
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illustrated in Figure 8C. This linear dependency is supported by a Taylor ap-
proximation and an estimation of the remainder term given by equations (3.21)
and (3.22), respectively. Furthermore, we quantitatively predicted the chance for
tumor regression for benign PA by estimating the critical tumor size N, see Table
4.

Our model incorporates assumptions based on clinical observations. It is ob-
served in the clinics that PA-I tumors grow slowly, arrest in growth or even
regress. Hence, type-I cells in our model proliferate without fitness advantage.
Furthermore, we assume that the first type-II cell that occurs leads to an aggres-
sive form of PA corresponding to malignant progression in PA. Alternatively, one
could assign a success probability s to an emerging type-II cell which represents
the probability that a single type-II cell leads to a PA-II tumor. However, it has
been shown in [27] that this is equivalent to considering an analog process with
type-II mutation probability sv instead of v. This alternative process would lead
to the same estimated risk coefficient γ̂. Therefore, the estimated PA-regression-
function would not change since this function is determined only by γ̂. Further,
we use asymptotic results for N → ∞ in order to calculate the theoretical por-
tion of PA-I and PA-II cases in the model. This is justified by the fact that a
tumor consists of billions of cells. Simulation results given in Table 3 support
these asymptotic results. They show that excellent accordance with formulas
for finite N is reached even for small values of N. Moreover, we could show
that the model is robust against small changes in the proportion of PA-I versus
PA-II tumors as shown in Figure 8C. This robustness is an important property
of the model since the proportion of PA-I can vary between different studies,
especially since the sample size is often very small [91, 122].

To our knowledge, the proposed model is the first theoretical attempt to pre-
dict the regression behavior of PA. In particular, we analyzed PA regression based
on the population dynamics of tumor and wild-type cells. The ratio of tumor
cell birth and death rates is influenced by immunologic mechanisms, hormonal
factors, induction of differentiation, or apoptosis, which all could contribute to
tumor regression [128]. Since PA-I tumors grow very slowly, we assumed iden-
tical birth and death rates of type-I cells in our model.

Our findings have clinically relevant implications. There is still controversy
about the best treatment strategy for PA. Since PA is a slowly growing tumor
and might even spontaneously regress, a wait and see strategy is an option be-
sides more aggressive treatment strategies like radiation and chemotherapy. The
decision for a more radical therapy would depend on the risk for recurrence (or
even progression) and the chance of regression. However, long-term follow-up
data about the probability of regression or progression after partial resection of
PA is restricted and only retrospective studies with small case numbers are avail-
able [32, 91, 122, 129]. The linear dependency between residual tumor size and
regression probability in our model implies that every resected percentage point
of a PA-I tumor contributes equally to the regression probability. Hence, there is
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no EOR threshold, but any small reduction in tumor mass provides an improve-
ment in prognosis by increasing the probability for tumor regression. This pre-
diction suggests a fundamentally different treatment strategy for PA compared
to glioblastoma for which such a threshold has been determined [119]. There-
fore, our results indicate that resection of a tumor should be aimed at even if a
complete resection may not be possible. This is supported by studies showing
that in patients with PA outcome depends on the extent of resection although
these studies only differentiate between biopsy, partial, subtotal and gross/total

resection and do not measure tumor volumes [20, 23, 125]. Moreover, if com-
plete resection cannot be achieved our results predict that the outcome linearly
depends on the residual tumor volume. If there is a reasonable chance for re-
gression of the residual tumor it might be less justified to accept side effects by
further therapies like radiation. This is an important result since the role of addi-
tional radiation therapy in treating children with tumors is highly controversial
[105].

Unfortunately, as far as we know, there are no clinical studies on treatment of
PA that take into account the influence of the residual tumor volume on patient
outcome. We suggest that the residual tumor volume is an important prognos-
tic marker and that a lack of sufficient volumetric data could be a reason for
different results in clinical studies on additional treatment in PA. The results of
this work should be further supported by future clinical studies that include
volumetric data which will improve the quantitative prediction of our model
and form a statistical basis for clinical decision rules.
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Figure 9: Non-existence of an extent of resection threshold in PA. The derived PA-
regression-function (purple line) allows to quantitatively predict the regres-
sion probability based on the critical tumor size estimated as 9 cm3, see also
Table 4. Roughly, one cm3 of resected tumor mass will elevate the chance
of regression by further 10%. The direct consequence is the non-existence of
an EOR threshold implying that any proportion of resected tumor mass will
improve prognosis. This stands in contrast to the behavior of the regression
function for a fictive high value of the risk coefficient of e.g. γ = 7 (black line).



4
PAT T E R N S O F T U M O R P R O G R E S S I O N P R E D I C T S M A L L
A N D T I S S U E - S P E C I F I C T U M O R - O R I G I N AT I N G N I C H E S *

4.1 tumor progression on the cellular and the tissue scale

Cancer development is a multistep process in which cells acquire a certain num-
ber of progressive epigenetic and genetic alterations [138]. This multistep pro-
cess can be divided into a neutral and a selection phase. In the neutral phase,
the epigenetic and genetic alterations do not confer a proliferative fitness ad-
vantage to the tumor precursor cells whereas cells gain such an advantage in
the selection phase [144, 146]. A single genetically altered cell does not neces-
sarily induce tumor formation but is rather exposed to competition with its
corresponding wild-type cells [2]. The realization of this competition depends
on the tissue and cell type. It can be direct due to replacement of a cell by the
offspring of another proliferating cell [2] but also indirect, for example by sym-
metric and asymmetric division of cells [7]. Importantly, tissues are composed of
different types of cells but only those which are capable to give rise to a progeny
able to accumulate alterations can be tumor-originating cell types [84]. Tumor-
originating cell refers to the wild-type cell of a certain type that acquires the
first alteration in the multistep process of cancer development. Within the neu-
tral phase, the progeny of the tumor-originating cell competes with wild-type
cells within normal tissue homeostasis. Because this competition is controlled
by the original tissue organization, the range of this competition is determined
by the tissue structure which provides natural spatial boundaries for the spread
of the progeny of the tumor-originating cell [76, 113].

In order to induce tumor formation, the progeny of the tumor-originating
cell must not go extinct but has to establish within the tissue. This establish-
ment is achieved by clonal expansion to a sufficiently large cell population
[75]. For some tissues, there is experimental evidence that this establishment
is characterized by an outcompetition of wild-type cells within the homeostatic

* This chapter is based on a manuscript submitted to Nature Communications: Thomas Buder,
Andreas Deutsch, Barbara Klink, and Anja Voss-Böhme. Author contribution: Thomas Buder
wrote the paper together with Andreas Deutsch, Barbara Klink and Anja Voss-Böhme. Andreas
Deutsch, Barbara Klink and Anja Voss-Böhme supervised the study and gave substantial input
to the manuscript. Thomas Buder conceived, designed and analyzed the model.

65



66 patterns of tumor progression predict tumor-originating niches

range of competition. For example, the tumor-originating cell within the hu-
man colon has been identified to be almost always a stem cell with a first hit
in the APC gene, and a second hit in this gene is sufficient to induce adenoma
formation, a benign precursor of malignant adenocarcinoma. These stem cells
reside at the bottom of so-called niches within colonic crypts and are capable
of self-renewal and multilineage differentiation [55]. It has been demonstrated
that tumor-originating cells neutrally compete with wild-type stem cells for a
position within the spatially restricted stem cell niche [7]. Either such an al-
tered stem cell goes extinct due to this competition or eventually replaces all
wild-type stem cells within the stem cell niche. This process has been termed
monoclonal conversion and represents almost always the first step of tumor for-
mation within the human colon [55]. Hence, the monoclonal conversion of the
stem cell niche by the progeny of the tumor-originating cell with loss of the
APC gene induces the establishment of an adenoma on the tissue scale. How-
ever, in other tissues the early phase of tumor development on the cellular scale
is less understood. The main reason is a lack of knowledge regarding the tumor-
originating cell type. Similar to the colon, it has been shown that stem cells
within the hematopoietic system represent the tumor-originating cell type [41,
136]. In contrast, there is also evidence that non-stem cells can be the tumor-
originating cell type, e.g. in oligodendroglioma [109]. Although the lineage in
which cancer originates has been revealed for skin, pancreatic, brain and breast
tumors, the tumor-originating cell type remains elusive in most cases [137]. Its
identification may allow earlier detection of malignancies and may lead to pre-
ventive therapies for individuals at high risk of developing cancer [137].

On the tissue scale, one observes different types of tumor progression. Tu-
mors can progress sequentially, i.e. with a clinically detectable benign precursor
stage. Alternatively, they can also progress by tunneling without such a prior
benign precursor stage. Epidemiological data allow to infer the progression pat-
terns with respect to the ratios of tunneling versus sequential progression of
different tumors. Interestingly, these progression patterns differ largely between
tissues. Some tumors exhibit predominantly sequential progression, e.g. benign
adenoma almost always develop prior to adenocarcinoma in the colon [55]. Simi-
larly, multiple myeloma are in almost all cases preceded by a premalignant state
called monoclonal gammopathy of undetermined significance (MGUS) [77]. In
contrast, glioblastoma develops in 90% of all cases without evidence of a less
malignant precursor lesion (primary glioblastoma) and progresses in 10% of
all cases from low-grade tumors (secondary glioblastoma) [106]. In which way
these progression patterns on the tissue scale emerge from the multistep pro-
cess of cancer development on the cellular scale is difficult to infer since the
early phase of this multistep process is hardly observable.

In this work, we use observables on the tissue scale to shed light on the early
cellular processes of tumor development. We utilize a Moran model with mu-
tations [14, 26, 98] to describe cellular competition between wild-type cells and
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tumor cells. Benign and malignant tumor subtypes on the tissue scale are repre-
sented by two absorbing states within the model. We incorporate epidemiologi-
cal data on the progression patterns of cancers to calibrate the model. By analyz-
ing the model dynamics with respect to different spatial cell arrangements, we
obtain a lower and upper bound for the critical number of tumor cells needed
for tumor development on the tissue scale. Interestingly, our estimates are con-
siderably small, tissue-specific and far away from the overall number of cells in
a clinically observable tumor. We therefore propose that the fate of tumor de-
velopment is decided in tissue-specific tumor-originating niches. This proposal
is supported by our estimate of the tumor-originating niche size for the human
colon which agrees well with the size of the stem cell niche in colonic crypts.
In particular, we propose that a tumor-originating niche size of 300 – 1900 cells
within the human brain can explain the ratio of primary and secondary glioblas-
toma. Interestingly, our estimates also agree well with the minimal number of
tumor cells needed for tumor formation in mice injection experiments and might
allow to infer the tumor-originating cell type.

4.2 mathematical model

state space and representation of benign and malignant tumor

subtypes . The multistep process in which cancer cells increase gradually
in malignancy differs with respect to the number of steps, e.g. two steps in
retinoblastoma [69] compared to seven steps in colon cancer [139]. In our cell-
based model, we only regard the last step within the neutral phase and the
first step within the selection phase such that we obtain a two-step process.
This coarse-grained approach is appropriate for our purpose since we are only
interested in modeling tumor progression patterns and not quantities which
are largely influenced by the precise number of steps, e.g the time-scale of tu-
mor development or intra-tumor heterogeneity. In the cellular two-step process,
genetic or epigenetic alterations can transform wild-type cells into benign tumor

cells which can further progress to malignant tumor cells. We assume that the be-
nign progeny of the tumor-originating cell competes with wild-type cells and
can clonally expand within normal tissue homeostasis. The parameter N in our
model describes the homeostatic range of this competition. We further assume
that a benign tumor on the tissue scale will develop if monoclonal conversion
of wild-type cells by benign tumor cells within the homeostatic range of compe-
tition N is achieved. This assumption is based on experimental observations for
example within the colon where mutant cells either go extinct or fixate in the
colonic stem cell niche [7]. Moreover, mice injection experiments indicate that a
critical number of tumor cells is needed for tumor formation [8, 16, 42, 46, 54,
81, 104, 149] which suggests a point of no return on the cellular scale for tumor
formation. If the first benign tumor cell progresses to a malignant tumor cell
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we assume that a malignant tumor will inevitably develop on the tissue scale
which reflects a high fitness advantage of malignant tumor cells.

The state space of the underlying stochastic process is S = {0, 1, 2, ...., N, E}
where states 0 to N represent the occurrence of the respective number of benign
cells without the occurrence of malignant cells. State E indicates the presence of
a malignant cell. Therefore, states N and E correspond to emergence of benign
and malignant tumor subtypes and therefore to sequential and tunneling tumor
progression on the tissue scale, see also Figure 10. Both states N and E are
absorbing states of the underlying process.

A B

Figure 10: Moran dynamics with different spatial cell arrangements. In the Moran

dynamics, a randomly chosen cell proliferates (blue circle) and replaces a
neighboring cell which undergoes cell death (red circle). In A, the space-free
dynamics is illustrated, i.e. each cell can be replaced by any other cell. In
B, only neighboring cells can be replaced reflecting a one-dimensional cell
arrangement.

dynamics in the model . In order to describe competition between cells
and tumor cell progression, we use a Moran model with mutations. This model
class has often been used to investigate tumor growth and progression, e.g. in
Chapter 3 of this thesis. Moran models are characterized by a fixed population
of size N which represents the homeostatic range of competition in our model.
The dynamics is as follows. One cell is randomly chosen for proliferation and its
offspring replaces a neighboring cell which undergoes cell death. During pro-
liferation, a genetic or epigenetic alteration can lead to tumor cell progression.
Wild-type cells can progress to benign cells with probability u and benign cells
progress to malignant cells with probability v. For a comprehensive introduc-
tion to Moran models, see Section 2.2. We assume that initially all cells are
wild-type cells. Hence, the process starts in state 0.

4.2.1 Model analysis

choice of spatial cell arrangement. As theoretical studies demon-
strate, the interplay between tissue structure, the population size N and muta-
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tion probabilities u and v in Moran models are crucial for the dynamics of the
model [25, 26, 30]. In particular, it has been shown that the absorption proba-
bility in state N on regular structures is the highest if all cells can potentially
compete with each other and the lowest for a one-dimensional cell arrangement
[26]. Since the tumor-originating cell type is unknown for most cancers also
the spatial cell arrangement and realization of competition is unknown [2, 61].
Therefore, we consider a space-free and a one-dimensional cell arrangement in
order account for this uncertainty by deriving a lower and an upper bound for
the absorption probabilities.

Figure 10 illustrates the Moran dynamics on these two different structures.
The space-free model has already been introduced and analyzed in Chapter
3. Here, we introduce the 1D model within a biologically plausible parameter
regime.

definition of the 1d model . The one-dimensional model is a spatial
three-type Moran model with mutation probabilities u and v in which each cell
can only be replaced by the offspring of the two neighboring cells, see Figure
10. For the analysis, we assume that

Nu ≪ 3
√

v. (4.1)

Analogously to the analysis of the space-free Moran model in Chapter 3, as-
sumption (4.1) guarantees that mutations to benign cells are rare such that each
arising benign cell mutant can be investigated independently, see [26]. Hence,
for the analysis we can neglect mutations to benign cells if the system is already
in a state k > 0. We only consider the last benign mutant which eventually leads
to absorption in states N or E. Therefore, we study a modified process with
u = 0 conditioned that this benign clone will not go extinct. Note that if there
are any benign cells in the system, then there is always exactly one connected
benign cell population, see Figure 10B. Formally, this modified one-dimensional
model can be defined as follows.

4.1 Definition The modified 1D Moran model under assumption (4.1) is a con-
tinuous time Markov chain (Xt)t≥0 with X0 = 1 on S = {1, 2, 3, ...., N, E}, where
states 1, . . . , N represent the number of benign cells in the population when no
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malignant cell is present and state E represents the existence of a malignant
tumor cell, and rate matrix Q = (q(k, l))k,l∈S which reads

q(k, l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − v, 1 ≤ k ≤ N − 1, l = k + 1,

1, 2 ≤ k ≤ N − 1, l = k − 1,

kv, 1 ≤ k ≤ N − 1, l = E,

− ∑
m∈S̃
m ̸=k

q(k, m), l = k,

0, else.

(4.2)

The rate q(k, k + 1) for an increase of the state is composed as follows. For an
increase of the state, the offspring of a benign cell must replace a wild-type cell.

• If k = 1, i.e. there is only one benign cell in the system, then exactly this
cell has to be selected to reproduce. The neighboring cell that is replaced
is always a wild-type cell. However, during reproduction, there must not
be a mutation which implies a rate of 1 − v.

• If k > 1, then only the two benign cells at the boundary of the connected
benign cell population have to be selected for reproduction since otherwise
the offspring would replace a benign cell. One of them is selected with rate
2. The chosen cell has two neighbors, a benign and a malignant cell. Thus,
the wild-type cell is chosen to be replaced with probability 1

2 . Finally, the
offspring of the benign cell must not undergo a mutation which holds
with a probability of 1 − v. Hence, the offspring of a benign cell replaces a
wild-type cell with rate 2 · 1

2 · (1 − v) = 1 − v.

The other rates in (4.2) are similarly obtained. The states N and E are absorbing
states of the process since q(N, l) = q(E, l) = 0 for l ∈ S. Note that a discrete
time version of this process has been first introduced in [70].

tumor progression regimes in the model . Three parameter regimes
within the model can be distinguished with respect to the tumor progression
patterns. Within the sequential fixation regime, the benign tumor cell population
is primarily able to reach size N before a benign tumor cell progresses to a malig-
nant tumor cell. This regime corresponds to primarily sequential progression on
the tissue scale. In the tunneling regime [95] a malignant clone will occur before
the benign population is able to reach size N which corresponds to primarily
tunneling progression in the model. In the borderline regime [30] both sequen-
tial fixation and tunneling are possible corresponding to both progression types
on the tissue scale. An asymptotic classification of the model behavior with re-
spect to these parameter regimes for large N has been theoretically derived in
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a space-free model [101] and in lattice-like cell arrangements [25]. In [25], it has
been shown that this classification for the 1D Moran model crucially depends
on the the parameters N and v via the product of N 3

√
v which motivates the

following definition.

4.2 Definition The 1D risk coefficient γ1D is defined as

γ1D := N 3
√

v.

derivation of the absorption probabilities . In Chapter 3 we al-
ready derived the absorption probability in state N of the space-free model
in dependency of the corresponding risk coefficient γ = N

√
v. Here, we derive

the absorption probability αN
1D in state N of the 1D model.

4.3 Theorem (Absorption probabilities of the 1D Moran model) The absorption
probability in state N of the 1D Moran model introduced in Definition 4.1
starting the process in state 1 can be approximated by

αN
1D(1, v) =

π−1v(1 − v)N−1
(

JN+ 2
v

( 2
v

) (
(2v + 1)Y1+ 2

v

( 2
v

)
− Y2+ 2

v

( 2
v

))
+ YN+ 2

v

( 2
v

) (
J2+ 2

v

( 2
v

)
− (2v + 1)J1+ 2

v

( 2
v

)))

(4.3)

where J denotes a Bessel function of the first kind and Y denotes a Bessel

function of the second kind.

Proof. The first part of the proof is similar to the proof of Theorem 3.4.
For the rates (4.2) we set q(k) := −q(k, k) and get

q(1) = q(1, E) + q(1, 2) = 1,

q(N) = q(E) = 0,

q(k) = q(k, k + 1) + q(k, k − 1) + q(k, E) = 2 + v(k − 1), 2 ≤ k ≤ N − 1.

We further regard the embedded Markov chain with transition probabilities

p(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(i,j)
q(i)

, i ̸= j,

1, i = j = E,

1, i = j = N,

0, else,
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in which the entries unequal to 0 look as follows

p(1, E) = v,

p(1, 2) = 1 − v,

p(k, E) =
kv

2 + v(k − 1)
, 2 ≤ k ≤ N − 1,

p(k, k + 1) =
1 − v

2 + v(k − 1)
, 2 ≤ k ≤ N − 1,

p(k, k − 1) =
1

2 + v(k − 1)
, 2 ≤ k ≤ N − 1,

p(N, N) = p(E, E) = 1.

The absorption probabilities for the underlying stochastic process with transi-
tion matrix P =

(
pi,j
)

i,j∈S
is obtained as follows. Denote by αN

1D =
(
αN

1D(i, v)
)

i∈S

the absorption probabilities where αN
1D(i, v) describes the absorption probability

in state N starting from state i.
First step analysis yields

αN
1D(i, v) = ∑

j∈S

p(i, j)αN
1D(j, v), i ∈ S.

It holds that αN
1D(E, v) = 0, αN

1D(N, v) = 1 and therefore

αN
1D(i, v) =

N

∑
j=1

p(i, j)αN
1D(j, v)

=
N−1

∑
j=1

p(i, j)αN
1D(j, v) + p(i, N)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − v)αN
1D(2, v), i = 1

1
2+v(i−1)αN

1D(i − 1, v) + 1−v
2+v(i−1)αN

1D(i + 1, v), 2 ≤ i ≤ N − 2,

1
2+v(N−2)αN

1D(N − 2, v) + 1−v
2+v(N−2) , i = N − 1.

Hence,

−αN
1D(1, v) + (1 − v)αN

1D(2, v) = 0

1
2 + v(i − 1)

αN
1D(i − 1, v)− αN

1D(i, v) +
1 − v

2 + v(i − 1)
αN

1D(i + 1, v) = 0, 2 ≤ i ≤ N − 2,

1
2 + v(N − 2)

αN
1D(N − 2, v)− αN

1D(N − 1, v) = − 1 − v

2 + v(N − 2)
.
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By multiplying each equation with the corresponding denominator, one gets an
equivalent system P

′
N α̃N

1D = b for a (N − 1) × (N − 1) matrix P
′
N and α̃N

1D :=(
αN

1D(i, v)
)

i=1,...,N−1. This system reads in tableau form as follows.

αN
1D(1,v) αN

1D(2,v) αN
1D(3,v) ... ... αN

1D(N−1,v) 1

1 −1 1 − v 0 0 · · · 0 0

2 1 −2 − v 1 − v 0
. . .

...
...

3 0 1 −2 − 2v 1 − v
. . .

...
...

...
...

. . . . . . . . . . . . 0
...

...
...

. . . . . . . . . . . . 1 − v 0

N−1 0 · · · · · · 0 1 −2 − (N − 2)v −(1 − v)

(4.4)

Cramer’s rule can be applied to derive the absorption probability in state N

starting with a single type-1 cell, i.e.

αN
1D(1, v) =

det P̃
′
N

det P
′
N

,

where P̃
′
N is the matrix formed by replacing the first column of P

′
N by the column

vector b.
By applying Laplace expansion along the last column of P

′
N we obtain

det P
′
N = (−1)2N−2(−2 − (N − 2)v)det P

′
N−1

+ (−1)2N−3(1 − v)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

−1 1 − v 0 0 · · · 0

1 −2 − v 1 − v 0
. . .

...

0 1 −2 − 2v 1 − v
. . .

...
...

. . . . . . . . . . . . 0
...

. . . 0 1 −2 − (N − 4)v 1 − v

0 · · · · · · · · · 0 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

= (−2 − (N − 2)v)det P
′
N−1 − (1 − v) · (−1)2N−4 · 1 · det P

′
N−2

= (−2 − (N − 2)v)det P
′
N−1 − (1 − v)det P

′
N−2,

where the determinant in the first equality was evaluated by applying Laplace

expansion along the last row. The result of these calculations is a second order
difference equation with non-constant coefficients which reads as follows.
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det P
′
N = (−2 − (N − 2)v)det P

′
N−1 − (1 − v)det P

′
N−2, N ≥ 4,

det P
′
3 = 2v + 1,

det P
′
2 = −1. (4.5)

Since the mutation rate v can be considered close to zero we can assume that
(1 − v) is close to one and obtain the modified equation

DN = (−2 − (N − 2)v)DN−1 − DN−2, D3 = 2v + 1, D2 = −1, N ≥ 4. (4.6)

This modified difference equation can be solved and the solution can be simpli-
fied with Mathematica [56] which yields

DN =
(−1)N+1π

v

(
JN+ 2

v

(
2
v

)(
(2v + 1)Y1+ 2

v

(
2
v

)
− Y2+ 2

v

(
2
v

))

+YN+ 2
v

(
2
v

)(
J2+ 2

v

(
2
v

)
− (2v + 1)J1+ 2

v

(
2
v

)))
. (4.7)

Here, J denotes a Bessel function of the first kind and Y denotes a Bessel

function of the second kind, see [1]. We will use the solution DN of the modified
difference equation as approximation for det P

′
N.

The determinant of P̃
′
N is calculated as follows. The matrix P̃

′
N is given by

P̃
′
N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 − v 0 · · · · · · 0

0 −2 − 2v 1 − v 0
. . . 0

0 1 −2 − 2v 1 − v
. . .

...
...

. . . . . . . . . . . .
...

0
. . . . . . . . . . . . 1 − v

−(1 − v) 0 · · · · · · 1 −2 − (N − 2)v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the determinant can be calculated by applying Laplace expansion
along the first column and evaluating the determinant of the remaining triangu-
lar matrix, i.e.

det P̃
′
N = (−1)N · (−(1 − v))

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1 − v 0 · · · · · · · · · 0

−2 − 2v 1 − v 0
. . . . . . 0

1 2 − 2v 1 − v
. . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0 · · · . . . . . . . . . 1 − v

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

= (−1)N+1 · (1 − v)N−1. (4.8)
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Using this result and the approximation derived in equation (4.7) allows the
approximation of the absorption probability αN

1D(1, v) with Cramer’s rule

αN
1D(1, v) ≈ det P̃

′
N

DN
=

π−1v(1 − v)N−1
(

JN+ 2
v

( 2
v

) (
(2v + 1)Y1+ 2

v

( 2
v

)
− Y2+ 2

v

( 2
v

))
+ YN+ 2

v

( 2
v

) (
J2+ 2

v

( 2
v

)
− (2v + 1)J1+ 2

v

( 2
v

))) .

A comparison of this analytical approximation and simulation results from
10000 trajectories of the underlying stochastic process of the 1D Moran model
for the probability of absorption in state N is provided in Table 5.

4.3 results

the absorption probability is a function of the risk coefficient

γ1D . Numerical analysis suggests that the absorption probability αN
1D of the

1D Moran model solely depends on the risk coefficient γ1D even for small val-
ues of N. We numerically evaluated the absorption probability for fixed values
of the risk coefficient for different combinations of N and v. The results are vi-
sualized in Figure 12 and indicate that αN

1D can be considered as function of γ1D

for approximately N ≥ 40.

the range of competition determines tumor progression patterns .
Our analysis allows to determine the progression patterns in both the space-
free and the one-dimensional model in dependency of the competition range N.
Interestingly, we find that a considerably small value of N corresponds to pri-
marily tunneling progression in both the space-free and one-dimensional model.
Moreover, the estimates of the parameter N largely depend on the considered
underlying spatial cell arrangement. In particular, the smaller the number of
neighboring cells, the smaller is the estimated competition range. The estimated
values for a mutation probability v = 10−6 per cell division [21] are summarized
in Table 6 and visualized in Figure 13.

fate of tumor development is decided in small and tissue-spe-
cific tumor-originating niches . Our model allows to estimate the range
of cellular competition N in different human tissues. For these estimations, we
calibrate the space-free and 1D model with epidemiological data on the diag-
nosed fraction of benign and malignant tumor subtypes. We performed an ex-
tensive literature research to obtain these data which allow to estimate the risk
coefficients γ = N

√
v and γ1D = N 3

√
v in the following way. We equal the clini-

cally diagnosed fraction of benign tumors p with the absorption probabilities in
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N v simulated absorption prob. αN
1D(1, v) in (4.3) deviation

10 0.0015 0.7931 0.8226 0.0295

10 0.001 0.8541 0.8761 0.0220

10 0.000001 0.9998 0.9999 0.0001

10 0.0000001 1 1 0

50 0.0015 0.0004 0.0004 0

50 0.001 0.0019 0.0022 0.0003

50 0.00001 0.8216 0.8299 0.0083

50 0.000001 0.9795 0.9806 0.0011

100 0.0015 0 0 0

100 0.001 0 0 0

100 0.00000005 0.9917 0.9920 0.0003

100 0.00000001 0.9983 0.9984 0.0001

500 0.001 0 0 0

500 0.000001 0.0019 0.0019 0

500 0.0000001 0.2429 0.2444 0.0015

500 0.00000005 0.4389 0.4407 0.0018

750 0.00001 0 0 0

750 0.0000001 0.0385 0.0388 0.0003

750 0.00000005 0.1276 0.1283 0.0007

750 0.00000001 0.5531 0.5542 0.0011

1000 0.00001 0 0 0

1000 0.000001 0 0 0

1000 0.0000001 0.0040 0.0041 0.0001

1000 0.00000001 0.3025 0.3034 0.0009

Table 5: Comparison of the analytical approximation given by equation (4.3) and simu-
lation results from 10000 trajectories of the underlying stochastic process of the
one-dimensional model for the probability of absorption in state N. The results
are also visualized in Figure 12.
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l l l l l lγ1D = 0.5 γ1D = 1 γ1D = 1.5 γ1D = 2 γ1D = 2.5 γ1D = 3 simulations

v

Figure 12: The absorption probability αN
1D of the 1D Moran model as function of the

risk coefficient. We numerically approximated the absorption probability in
state N for different values of N and v such that the risk coefficient γ1D is con-
stant. This analysis suggests that the absorption probability solely depends
on the risk coefficient γ1D for approximately N ≥ 40. The squares indicate
the results of simulation studies of the absorption probability in state N and
therefore the benign tumor fraction in the model, see also Table 5.

progression patterns 1D model space-free model

primarily sequential N ≤ 17 N ≤ 29

both sequential and tunneling 17 < N ≤ 528 29 < N ≤ 4530

tunneling only N > 528 N > 4530

Table 6: Tumor progression patterns in dependency of the spatial cell arrangement in
the model. For these estimates, we have chosen v = 10−6. Primarily sequential
and primarily tunneling progression patterns refer to a fraction of 99.9% of
sequential and tunneling progression, respectively.

state N. Subsequently, we numerically calculate the risk coefficients by evaluat-
ing the inverse of the absorption probability function at the diagnosed fraction
of benign tumors p, i.e. γ = α−1(p). The resulting estimates of the competition
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ranges in various tissues are provided in Table 7 and visualized in Figure 13.
Our model predicts that the range of competition is considerably small com-
pared to the overall number of cells in a tumor. Note that we do not assume
any upper bound for the parameter N in our model. Moreover, although the
estimates are considerably small, the range of competition largely depends on
the tissue. For example, the estimated competition range within the liver is 383

– 2837 cells whereas the estimates for the bone marrow are 18 – 31 cells. Im-
portantly, the estimate of the tumor-originating niche size for the human colon
assorts well with the stem cell niche size in colonic crypts of about 40 cells [64]
but surely less than 100 cells [148]. Overall, these results can be interpreted as
existence of a tissue-specific tumor-originating niche in which the fate of tu-
mor development is decided long before a tumor becomes detectable. Based on
our results, we propose that a tumor-originating niche size of 291 – 1928 cells
within the human brain might be responsible for the clinically observed fraction
of primary and secondary glioblastoma, see Table 7b.

predicted tumor-originating niche sizes agree well with mice

data . Interestingly, the estimated tumor-originating niche sizes in Table 7

correspond very well to the necessary cell numbers for tumor induction in mice
experiments [8, 16, 42, 46, 54, 81, 104, 149], see also Figure 13. This observation
supports two of our model assumptions. First, the possibility of tumor cell ex-
tinction for too small populations in these experiments shows that tumor and
wild-type cells compete with each other. Second, the experimental data justify
our model assumption that a sufficient number of tumor cells is needed to in-
duce tumor formation on the tissue scale.

4.4 discussion

On the tissue scale, one observes tumor progression types with and without de-
tectable benign precursor stages. Data on the progression patterns with respect
to the ratios of these progression types exhibit large differences between tissues.
The underlying cellular processes causing these progression patterns are hardly
observable and remain unclear. In this work, we shed light on the early phase
of tumor development on the cellular scale with the help of a stochastic model.
Our model is based on competition between wild-type and tumor cells and as-
sumes that a sufficient amount of tumor cells is needed for tumor formation.
We estimate this number by fitting the model to data on the diagnosed ratios
of benign and malignant tumor subtypes. Our model predicts that this num-
ber is considerably small compared to the overall number of cells in a clinically
detectable tumor and largely depends on the tissue which can be interpreted
as existence of a tissue-specific tumor-originating niche. Hence, our results sug-
gest that the fate of tumor development is decided long before a tumor becomes
detectable.
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tissue benign precur-
sor

malignant tu-
mor

benign
fraction

Nspace-free N1D mice data

a) liver hepatocellular
adenoma

hepatocellular
carcinoma

2% [135] 2837 383 1000 [149]

b) brain low-grade as-
trocytoma

glioblastoma 10% [106] 1928 291 500 [8]

c) breast ductal car-
cinoma in
situ

invasive ductal
carcinoma

20% [67] 1514 246 200[46]–
500[42]

d) skin nevus melanoma 25%[17] 1375 230 1000 [16]

e) stomach gastric adeno-
mas

gastric cancer 81% [110] 471 111 200 [81]

f) meninges benign menin-
gioma

aggressive
meningioma

95% [78] 227 67 NA

g) colon colonic ade-
noma

adenocarcinoma 99% [22] 100 39 25[54]–
100[104]

h) bone
marrow

MGUS myeloma 99.9∗%
[68]

31 18 NA

Table 7: Estimation of the homeostatic competition range N in different tissues. This ta-
ble summarizes epidemiological data on benign and malignant tumor subtypes.
We calibrate the model such that the absorption probabilities in state N given
by equations (3.5) and (4.3) are equal to the diagnosed benign tumor fraction p.
We assume a mutation probability of v = 10−6 throughout these calculations.
The last column contains the necessary number of injected cells to obtain a tu-
mor in mice transplantation experiments. The estimates and mice data are also
illustrated in Figure 13. ∗ = estimated. MGUS = monoclonal gammopathy of
undetermined significance.

Interestingly, our estimates of the tumor-originating niche size of about 39

cells for colon cancer agrees well with the number of stem cells found in one
colonic crypt [64]. Indeed, it is the current understanding that colon adenomas
and carcinomas develop within one colonic crypt with intestine stem cells likely
to be the cell type of origin [150]. This demonstrates that our model might be
utilized to predict tumor-originating niche sizes, thereby allowing to infer the
potential cell type of tumor-origin for cancers from other tissues in which the
origin is still elusive, e.g. for glioblastoma [83]. Glioblastoma can be divided
into two classes dependent on the progression dynamics. In about 90% of cases,
glioblastoma occur de novo, i.e. without evidence of a less malignant precur-
sor lesion (primary glioblastoma) whereas 10% develop slowly by progression
from low-grade gliomas (secondary glioblastoma). Using this data, our model
predicts that the size of the tumor-originating niche from which glioblastoma
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develop is about 291 – 1928 cells. Neural stem cells (NSCs) of the subependy-
mal zone (SEZ) have been suggested as a potential cell of origin for glioblastoma.
Moreover, recent experimental evidence regarding NSCs in the SEZ of the adult
brain suggests that the total number and fate of NSCs is regulated by a density-
dependent mechanism [9]. Importantly, the finding in [9] that the fate of a NSC,
e.g. activation or quiescence, is coupled to its neighbors perfectly fits to our hy-
pothesis of cells competing within a certain range. Interestingly, the authors also
suggest that the fate of active NSCs is coupled to the total number of neighbor-
ing NSCs in a shared locally restricted area which suggests that this area is a
potential candidate for the tumor-initiating niche in the adult brain. It would be
interesting to investigate if the range of coupled NSCs fits to our predicted size
of the tumor-originating niche for glioblastoma.

From a modeling perspective, our analysis allows to distinguish different
model regimes in Moran models not only asymptotically as in [26], but also
for finite values of the system size N. We find that the risk coefficient in both
the space-free and the 1D model does not only distinguish the different model
regimes, but quantifies the proportion of tunneling and sequential progression,
see Table 6. Moreover, we show that the corresponding asymptotic results in
dependency of the risk coefficient provide very good approximations even for
small population sizes N. This finding obviates the need of ad-hoc rules like
a ≪ b if a/b ≤ 1/10 to choose the appropriate parameter regime [28].

The potential existence of tumor-originating niches in which tumor fate is
decided at an early stage of the cellular multistep process supports the view
that cancer development is an ecological process [65, 93]. Ecology studies the
dynamics of communities of species and their interactions and describe the ori-
gin of new species. From this point of view, the size of the tumor-originating
niche might represent a critical effective population size that has to be reached
by the progeny of the tumor-originating cell type in order to establish a tumor
on the tissue scale. A deeper understanding of the processes and the origin of
the tumor-originating niche contributes to the understanding of the early phase
of tumor development. Further modeling and experimental effort is needed to
understand this early phase of tumor development on the cellular scale in a bet-
ter way. In this work, we demonstrated how observable quantities on the tissue
scale might be utilized to achieve this goal.



Part II

T H E R O L E O F P H E N O T Y P I C C E L L C H A N G E S I N
T U M O R D E V E L O P M E N T

This part is devoted to the following two questions:

• What is the role of phenotypic cell state changes of cancer cells
in the establishment of a tissue-scale equilibrium with respect to
different cell phenotypes in tumors?

• To which extent is the observed phenotypic heterogeneity on
the tissue scale caused by hierarchical phenotypic cell changes
and what is the role of different environmental conditions in
determining this heterogeneity?
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5.1 characteristic cell state compositions in cancer

Homeostasis with respect to the proportions of cells in different states is cru-
cial for the functioning of multi-cellular organisms and its regulation enables
organisms to stay in a healthy state. Different types of tissues and organs need
to maintain a stable composition of different cell types regardless of external
conditions, injuries and changing environmental conditions in order to function
normally [12]. Hence, finding mechanisms of homeostasis regulation is a key
aspect in understanding the emergence of diseases, such as cancer, that lead to
disturbance and loss of cell state homeostasis [47].

Remarkably, diseases like cancer disturb healthy homeostatic states but can
lead themselves to a characteristic composition with respect to the proportions
of distinctive neoplastic cell states [86]. The establishment and maintenance of
such a characteristic composition has been experimentally shown by utilizing
fluorescence activated cell sorting (FACS) and flow cytometry experiments for
many types of cancer, e.g. breast cancer [45] and colon cancer [40, 143, 147]. In
these experiments, it has been observed that sub-populations of cells purified
for a given cell state return to the composition of cell state proportions of the
original tumor over time.

The mechanisms for the maintenance of these characteristic compositions are
only poorly understood. Cell state proportions could be maintained by regu-
lated cell-state-specific proliferation rates, e.g. due to inter-cellular signaling
[45]. However, in many cases, this possibility can be experimentally excluded
by showing that the proliferation rates of all involved cell types are equal and
constant over time. There is evidence that cell types stochastically transition be-
tween different states and that the transition rates do not depend on the current
tissue composition or on inter-cellular signaling [45], i.e. the chances to transi-
tion into other cell states only depend on the current state of the cell. Quantify-
ing the probabilities for transitions from one cell state to another would allow
to predict the evolution of cell state proportions. Such a quantification can po-
tentially help to understand the differences in homeostasis regulation between
healthy and diseased tissues.

One approach to model cell state transitions utilizes ordinary differential
equations (ODEs). Typically, the dynamics between different cell states are de-
scribed by formulating ODEs incorporating parameters which describe detailed
cell properties like symmetrical / asymmetrical division rates and transition
rates between cell states [40, 143].

Another possibility to model the evolution of cell state proportions are dis-
crete time Markov models. Discrete time Markov models are particular stochas-
tic processes which can be understood as sequences of random variables in-
dexed by discrete time points, where the next state only depends on the current
state of the process but is independent of earlier states [13]. For instance, in [45],
a Markov model describing the evolution of cell state proportions has been in-
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troduced and applied to breast cancer cell lines. However, a detailed discussion
of how the transition probabilities are derived from the experimental data and
of potential analytical challenges is missing. The quantification of cell state tran-
sitions by estimating transition probabilities would allow to better understand
characteristics of cell state proportions in both healthy and disease-related tis-
sues. To our knowledge, there is no tool available that allows to automatically
estimate cell state transition rates from FACS and flow cytometry experiments.

We develop such a general tool to estimate the transition probabilities be-
tween different cell states from appropriately prepared data. The underlying
model is based on a discrete time Markov model and allows to quantify cell
state transitions from data on the temporal evolution of cell state proportions.
We utilize a discrete time Markov model since it serves as a minimal model for
the evolution of cell state proportions. In contrast, ODE models often require ad-
ditional parameters which must be measured experimentally [143] or obtained
by fitting [40]. Moreover, Markov models have already been successfully uti-
lized to analyze dynamic cell compositions [14, 34, 45, 72]. Here, we generalize
this approach and develop an automated tool for the analysis of cell state tran-
sitions. We demonstrate which analytical problems can occur in the estimation
and in which way these problems are automatically solved by our tool. Fur-
thermore, we provide a publicly available R package called CellTrans which
can be directly utilized by experimentalists to analyze cell state proportion data
from FACS and flow cytometry cell line experiments.

We illustrate potential applications of CellTrans by analyzing publicly avail-
able data on the evolution of cell state compositions in different cell lines. We
show that the quantification of cell state transitions allows to predict the cell
state composition at any time point of interest. In particular, our model is able
to predict the long-term equilibrium composition of cell types. Furthermore, our
model can reveal frequent and rare cell state transitions. Moreover, CellTrans

can be utilized to estimate the time needed until perturbations of the charac-
teristic cell state compositions level out. Such predictions have the potential to
support experimentalists in planning the duration of FACS and flow cytometry
cell line experiments.

5.2 introducing celltrans

5.2.1 Reference experiment

CellTrans is able to analyze data recording changes of cell state proportions
over time. The identification of individual cell states from mixed cell popula-
tions is mainly based on cell-type specific gene markers which allow to exper-
imentally separate the different cell types, for instance by FACS techniques [49].
We assume that cell state proportions change in time due to stochastic transi-
tions dependent only on the current state of the cell. A further prerequisite for
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the application of our model is the equality of proliferation and death rates of
all cell types.

According to the number of different cell types distinguished in the experi-
ments, an arbitrarily large, but finite integer m is fixed, defining the number of
distinct cell states in the model. Typically, all distinct cell states are purified and
a large number of cells are separately cultured for each cell type. This experimen-
tal setup leads to m experiments whose evolution of cell state proportions are
simultaneously monitored at t different time points n1, n2, ..., nt. The time points
are multiples of a unit time step of length τ depending on the time-scale of the
experiment, e.g τ is 1 hour, 1 day or 1 week. The time points of measurement
are not necessarily integer multiples of τ. The data on cell state proportions at
each time point nj, j = 1, ..., t, are the basis of the analysis with CellTrans as
described in the next section.

Note that CellTrans also allows to analyze experiments with non-pure initial
cell state proportions. Importantly, the number of experiments has to be the
same as the number of defined cell states m. Furthermore, the vectors describing
the initial cell state proportions have to be linearly independent, i.e. they cannot
be represented as linear combinations of each other, see also the next subsection.

5.2.2 Detailed description and analysis of CellTrans

We denote the cell states distinguished in the experiments by 1, ..., m. The exper-
imental data on cell state proportions obtained for each time point nj, j = 1, ..., t,
need to be arranged in matrices

W(nj) =

(
w
(nj)

kl

)

k,l=1,..,m
.

Here, w
(nj)

kl describes the proportion of cell state k in the l−th experiment at
time nj. These matrices can be stored into text files and read into the CellTrans

R package. Figure 14 illustrates the experimental setup and the construction of
the data matrices.

We assume that each cell transitions from state i to state j during a time step
of length τ with probability pij, i, j = 1, 2, ..., m. Note that the choice of the time
step length has no substantial influence on the predictions which we discuss
later. Furthermore, it is assumed that the transition probabilities are constant
over time and do only depend on the state of the cell [45]. These considerations
lead to a discrete time Markov process with transition matrix P = (pij)i,j=1,...,m

for the random evolution of the state of individual cells. Our goal is to estimate
P, i.e. all transition probabilities between the cell states, from the experimental
data stored in the matrices W(n0), ..., W(nt). The interaction graph of the under-
lying Markov model together with the transition probabilities are illustrated in
Figure 18A.
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Construction of data matrices

Let w
(0)
k =

(
w
(0)
k1 , ..., w

(0)
km

)
denote the initial cell state proportions in the k−th ex-

periment which is a row vector of length m with non-negative entries summing

to one. As explained before, m of those initial cell state proportions w
(0)
1 , w

(0)
2 , ..., w

(0)
m

are needed. The initial experimental matrix W(0) is row-wise constructed from
these cell state proportions, i.e.

W(0) :=

⎛
⎜⎜⎜⎝

− w
(0)
1 −

− ... −
− w

(0)
m −

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

w
(0)
11 . . . w

(0)
1m

...
. . .

...

w
(0)
m1 . . . w

(0)
mm

⎞
⎟⎟⎟⎠ .

An analytical requirement for the applicability of CellTrans is the existence of
the inverse of W(0). This can be assured by appropriate initial cell state propor-
tions, e.g. by choosing purified initial cell cultures. Since this experimental setup
is very common in FACS and flow cytometry experiments, it is implemented as
default option in CellTrans. However, also an individually designed initial
experimental matrix can be used.

In the experiments, the cell state proportions at each time point n1, n2, ..., nt

have to be assessed. Let w
(nj)

k denote the cell state proportions of experiment
k = 1, 2, ..., m, after time nj with j = 1, 2, ..., t. For each of these time points, a cell
state proportion matrix after time nj is obtained by constructing the matrix

W(nj) =

⎛
⎜⎜⎜⎜⎜⎜⎝

− w
(nj)

1 −
− w

(nj)

2 −
− ... −
− w

(nj)
m −

⎞
⎟⎟⎟⎟⎟⎟⎠

as described above for W(0). Since each row describes the cell state proportions
in the corresponding experiment, all rows sum up to one with non-negative
entries. In total, t of such matrices need to be constructed from the experiments,
one for each time point of measurement.

Derivation of transition matrices Pnj

For each time point nj with j = 1, 2, ..., t, CellTrans derives a transition matrix
Pnj

as follows. This derivation is based on the theory of Markov models [13].
We utilize that the distribution of a Markov chain after nj time steps can be
obtained by multiplying the initial distribution with the transition matrix raised
to the power of nj, hence

W(0)Pnj = W(nj).
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Here, W(0) denotes the initial experimental matrix and W(nj) the cell state pro-
portion matrix after time nj. Since we are interested in the underlying transition
matrix P, we solve this equation for P by multiplying with the inverse of W(0)

and computing the nj-th matrix root, i.e.

Pnj =
(

W(0)
)−1

· W(nj) and

Pnj
:=
((

W(0)
)−1

· W(nj)

) 1
nj

(5.1)

for j = 1, 2, ..., t. Here, we compute the so-called principal matrix root since
matrix roots are not necessarily unique. For an overview of the existence and

computation of matrix roots, see [50]. Note that the existence of
(

W(0)
)−1

is

assured by the appropriate choice of the initial cell state proportions described
earlier. The matrix Pnj

is the estimated transition matrix derived from time point
nj. Although this derivation looks straightforward, there are potential analytical
problems which are described in the following.

Regularizing matrix roots to stochastic matrix roots

Importantly, equation (5.1) should yield a transition matrix of a Markov chain,
i.e. a stochastic matrix with non-negative entries and row sums equal to one.
However, the root of a stochastic matrix is not necessarily stochastic again [50].
CellTrans verifies whether the matrix roots are stochastic or not. If not, the
matrix roots are regularized to be stochastic with the QOM-Algorithm (Quasi-
optimization of the root matrix) which is sketched in the following and de-
scribed in detail in [74].

The QOM-Algorithm performs a row-wise Euclidean distance minimization
by transforming each row of the matrix into a valid row of a transition matrix,
i.e. a vector containing non-negative entries which sum to one. The result is a
uniquely determined stochastic matrix which closely approximates the original
matrix. In [74], the effect of QOM regularization on non-stochastic matrix roots
is numerically investigated. The authors calculated the infinity matrix norm
and also the mean absolute deviation of the difference between the QOM result
and the original transition matrix for 32 examples of matrix regulation. This
numerical comparison demonstrates a low approximation error of the QOM
regularization.
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Computation of the transition matrix P

CellTrans estimates the transition matrix P by averaging the transition matri-
ces Pnj

for each time point j = 1, 2, ...t , i.e.

P :=
1
t

t

∑
j=1

Pnj
. (5.2)

This transition matrix is the final estimation of CellTrans quantifying the tran-
sition probabilities between all cell states. The overall workflow of CellTrans

is summarized in Figure 14.
Note that the dynamics of the Markov chain model can also be described

by a master equation, i.e. a set of first-order differential equations. The master
equation reads

d

dt
ai(t) = ∑

j ̸=i

(
pjiaj(t)− pijai(t)

)
, i = 1, ..., m (5.3)

with initial conditions ai(0) = ci [39]. Here, ai(t) describes the proportion of
cells in state i at time t and P = (pij)i,j=1,...,m represents the estimated transition
matrix from CellTrans. Hence, these differential equations describe the tempo-
ral evolution of the cell state proportions. We will utilize this master equation
later to compare the results of CellTrans to those of ODE models.

5.2.3 Implemented functions in CellTrans

Here, we introduce the most important functions which are implemented in
CellTrans. In the following section, we will demonstrate the usage of these
functions in several case studies.

readExperimentalData()

This function reads all necessary data. First, it opens a dialog box which asks
for the number of cell types, the names of the cell types, the time step length τ

and the time points of measurement. Then, the files containing the cell state pro-
portion matrices are read. First, the initial experimental setup matrix W(0) can ei-
ther be chosen as identity matrix (for pure initial cell populations) or an individ-
ual initial matrix can be used. Then, the experimental cell proportion matrices
are read for each time point of measurement. It is recommendable to save the in-
put into a variable for further analysis, e.g. input <- readExperimentalData().

celltransitions(input)

This functions derives and prints the estimated transition probabilities and
the predicted equilibrium distribution. The variable input contains the read
data from the function readExperimentalData().



5.2 introducing celltrans 93

celltransplot(input), celltransplotPDF(input)

These functions allow to create plots of the predictions of CellTrans and the
experimental data. The variable input contains the read data from
readExperimentalData().

timeToEquilibrium(input,initialDistribution,tol)

This function estimates the time from any initial cell state proportions until
the equilibrium proportions are reached. The variable input contains the read
data from the function readExperimentalData().

The variable initialDistribution is a vector of length m which describes
the initial cell state proportions, for example c(0.25,0.25,0.25,0.25) for equal
proportions of m = 4 cell types. The third parameter tol gives a tolerance devia-
tion between the cell state proportions of the equilibrium distribution and those
of the predicted cell state proportions, since the exact equilibrium distribution is
not reached, in general. For the parameter tol, we recommend values between
0.01 and 0.02.

For a comprehensive introduction demonstrating the application of these
functions, see the detailed vignette provided in the Appendix, Section A.2.

5.2.4 Applications of CellTrans

CellTrans can be applied to analyze cell state proportion data from FACS and
flow cytometry experiments with respect to several questions. The applications
are based on the estimation of the transition probabilities of the underlying
model as described above.

1. The estimated probabilities quantify the frequencies of state transitions
and can be used to detect frequent, rare or almost never occurring tran-
sitions. Such a prediction allows to hypothesize about biological mecha-
nisms which are responsible for the observed transition structure, e.g. an
underlying transition hierarchy.

2. Another application is the prediction of cell line compositions at any time
point. Such an estimate can be utilized to predict cell line compositions
even beyond the time periods of experiments which we will demonstrate
in the Results section.

3. CellTrans can be used to estimate the equilibrium cell state proportions.
This information can support experimentalists to decide whether experi-
mentally observed cell line compositions already reached equilibrium.

4. CellTrans allows the prediction of the time needed to reach equilibrium
proportions from any initial cell state composition. The choice of the time
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period of FACS experiments and the time points at which cell state com-
positions are measured is often difficult. Here, the estimate of the time
needed to reach equilibrium can be useful.

Table 8 summarizes the main applications and the corresponding functions in
CellTrans.

estimation of application / interpretation implemented func-
tion(s)

quantification of cell state transi-
tions

transition probabilities detect transition hierarchies celltransitions()

detect rare and frequent tran-
sitions & conclude responsible
mechanisms

cell state compositions predictions beyond time period
of experiments

celltransplot()

validate experimental results celltransplotPDF()

equilibrium composi-
tions

predict equilibrium compositions

validate experimental results celltransitions()

time to equilibrium plan time periods of experiments timeToEquilibrium()

choice of time points of measure-
ment

Table 8: Main applications of CellTrans and corresponding implemented functions.

5.3 case studies demonstrating the applicability of celltrans

In this section, we apply CellTrans to publicly available data on the evolution
of cell state proportions obtained from FACS and flow cytometry experiments.
We point out possible conclusions that can be drawn from the application of
CellTrans.

5.3.1 Dynamics between cancer cell sub-populations in colon cancer

background There is evidence that CD133+ cells represent a cancer stem
cell (CSC) sub-population within SW620 human colon cells [147]. In [147], the
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dynamics between CSCs and non-stem cancer cells (NSCC) has been experimen-
tally investigated. In detail, purified NSCCs and CSCs sorted from the SW620

cell line by FACS were cultured for 26 days, and the composition of these cultures
was measured every second day in both experiments. Here, we analyze the data
from these experiments with CellTrans and compare the resulting predictions
to those obtained from an ordinary differential equations (ODE) model which
has been analyzed in [143].

application of celltrans . The experimental setup in [147] can be for-
mulated within the framework of CellTrans as follows. There are m = 2 sub-
populations considered in SW620 human colon cancer cells which are called
CSC and NSCC. Note that the assumption that both of these cell types do not
differ in their proliferation and death rates is justified [143]. The initial experi-
mental matrix representing purified initial cell cultures is

W(0) =

⎛
⎝1 0

0 1

⎞
⎠ ,

where the first row corresponds to the experiment with sorted CSC and the sec-
ond row with sorted NSCC. Hence, we choose the identity matrix in CellTrans

as initial experimental matrix.
There are in total 12 time points of cell state proportion measurements which

are given by 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24 days. Thus, it is sensible
to choose a time step length τ of 1 day. The cell state proportion matrices for
each of these time points can be derived from the experimental data provided
in Table S2 and Table S3 in [143] which leads to 12 corresponding cell state
proportion matrices. For example, the cell state proportion matrix after 8 days
is

W(8) =

⎛
⎝0.7150 0.2850

0.5523 0.4477

⎞
⎠ ,

i.e. the experiment starting with 100 % CSC evolved to 71.5% CSC and 28.5%
NSCC and the experiment starting with pure NSCC evolved to 55.23% CSC and
44.77% after 8 days, respectively.

The function celltransitions(input) allows to derive the transition proba-
bilities between the cell states and the predicted equilibrium distribution. Cell-
Trans derives a transition matrix for each of the 12 cell state proportion matrices.
Note that none of these matrices require regularization by the QOM algorithm,
since the matrix roots are already stochastic matrices. For example, the transi-
tion matrix derived from the experimental data after 8 days W(8) is

P8 =

⎛
⎝0.9309 0.0691

0.1339 0.8661

⎞
⎠ .
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Finally, the transition matrix P is obtained by computing the average of the
12 transition matrices from each time point, i.e.

P =
1
12

12

∑
j=1

Pnj
=

⎛
⎝0.9455 0.0545

0.1030 0.8970

⎞
⎠ ,

which is an estimate of the transition probabilities between NSCC and CSC per
day. For example, a CSC converts with probability 0.0545 to a NSCC or a NSCC
converts with probability 0.1030 to a CSC within a day. The predicted long-term
cell state proportions can be obtained by CellTrans from the steady state of the
transition matrix P and are also provided by the function celltransitions(input)

which yields

w∗ =

⎛
⎝0.654

0.346

⎞
⎠ ,

i.e. CellTrans predicts a proportion of 65.4 % CSC and of 34.6 % NSCC after
sufficient time. The time from 100% CSC to the equilibrium composition can be
estimated with the command timetoEquilibrium(input,c(1,0),0.01) which
yields 21 days. The time from 100% NSCC to the equilibrium composition can
be estimated in an analogous way which yields 25 days. Therefore, the time of
the experiment was sufficient to reach the equilibrium in this case.

model comparison. In [143], the dynamics between CSC and NSCC has
been modeled by an ODE model with 8 parameters. Some of these parameters
have been collected from in situ experiments (see Table 1 in [143]). The predic-
tions from our model show a much better accordance to the predictions of the
ODE model (Root mean square deviation (RMSD) CellTrans vs. ODE: 0.03737

vs. 0.09874 for the experiment starting with pure CSC cultures, RMSD Cell-
Trans vs. ODE: 0.05326 vs. 0.10484 for the experiment starting with pure NSCC
cultures). A comparison between the original data from [143] and the predic-
tions of the derived Markov chain is shown in Figure 15A illustrating that the
estimated Markov model well describes the experimental data.

We can utilize the master equation (5.3) to equivalently describe the cell state
dynamics with an ODE system

d

dt
CSC(t) = −0.0545CSC(t) + 0.103NSCC(t)

d

dt
NSCC(t) = 0.0545CSC(t)− 0.1030NSCC(t)
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with appropriate initial conditions, e.g. CSC(0) = 1, NSCC(0) = 0 for the exper-
iment with pure CSC cells in the beginning. The solution

CSC(t) = 0.346e−0.1575t + 0.654

NSCC(t) = −0.346e−0.1575t + 0.346

allows to obtain the steady state by letting t → ∞.

summary. This case study demonstrates that the Markov model underlying
CellTrans is potentially able to make better predictions than more complex
ODE models with parameter calibration. The experimental data on the evolution
of cell state proportions are sufficient to interpolate the data. Moreover, the
equilibrium proportion is reliably predicted.

5.3.2 Dynamic switch between adhesive and suspended cell types in colon cancer

background. In [40], the dynamic switch between two different adhesion
phenotypes in colorectal cancer cells has been analyzed. The involved cell states
in this study are adherent and suspended cells. Both of these cell types have been
separated and re-plated. Subsequently, both initially pure cell cultures have been
monitored over 8 hours, and the cell state proportions have been measured after
0.5 and 1 hours and subsequently in 2 hour intervals.

application of celltrans . The study can be integrated in the Cell-
Trans framework in the following way. There are m = 2 cell states, adherent
and suspended. Although there is no explicit statement regarding the prolifera-
tion rates in [40], we assume equal rates since the authors model the evolution
of the cell state proportions without considering effects of proliferation. The
initial experimental matrix is given by the identity matrix, since the experimen-
tal initial cell state proportions are pure cell cultures of both phenotypes. Here,
the first row corresponds to the experiment with 100% adherent cells and the
second row with 100% suspended cells.

Subsequently, the cell state proportion matrices for t = 6 time points (at 0.5h,
1h, 2h, 4h, 6h and 8h) can be deduced from the experiments. Here, the time
step length τ is chosen to be 1 hour. Subsequently, CellTrans derives transi-
tion matrices for each of these cell state proportion matrices. This leads to 6

transition matrices P0.5, P1, P2, P4, P6 and P8. All of these matrices do not require
regularization in this case, since all of them are already stochastic matrices.

Finally, the transition matrix P is obtained as average

P =
P0.5 + P1 + P2 + P4 + P6 + P8

6
=

⎛
⎝0.8612 0.1388

0.2908 0.7092

⎞
⎠ .
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The predicted cell state proportions based on the estimated transition matrix
and the experimental data is plotted in Figure 15B.

The steady state of the derived transition matrix P is given by

w∗ =

⎛
⎝0.6768

0.3232

⎞
⎠ ,

i.e. the long-term cell state proportions of adherent and suspended cells is pre-
dicted as 67.68% and 32.32%, respectively. This prediction is in good accor-
dance to the corresponding experimentally observed equilibrium proportions
described in [40].

model comparison. The authors in [40] formulated a mathematical ODE
model to describe the dynamics for the adherent and the suspended cells to
reestablish the equilibrium ratio. Note that this approach requires to fit the ana-
lytical solution of the model to the experimental data. The fit in [40] yields the
solution adh(t) = 0.3e−0.5t + 0.7.

In contrast, we can derive an alternative ODE system with the same structure
by utilizing the master equation (5.3) based on the predictions of CellTrans,
i.e.

d

dt
adh(t) = −0.1388adh(t) + 0.2908susp(t)

d

dt
susp(t) = 0.1388adh(t)− 0.2908susp(t)

with initial conditions adh(0) = 1, susp(0) = 0. The solution

adh(t) = 0.323e−0.4296t + 0.677

susp(t) = −0.323e−0.4296t + 0.323

is close to the solution in [40] and allows to predict the equilibrium distribution
by letting t → ∞. This equilibrium solution well corresponds to the experimen-
tal findings.

The predictions of CellTrans and the ad hoc ODE in [40] are in good ac-
cordance with the original data (RMSD CellTrans vs. ODE: 0.0219 vs. 0.0278

for the experiment starting with pure adherent cultures, RMSD CellTrans vs.
ODE: 0.02709 vs. 0.02407 for the experiment starting with pure suspended cul-
tures), see also Figure 15B.

summary. It remains unclear in which way the best-fit solution in the intro-
duced ODE approach in [40] has been obtained. Instead of fitting parameters,
our approach offers a transparent estimation of the underlying transition ma-
trix yielding good predictions. Moreover, especially from the point of view of
an experimentalist, the automated estimation by CellTrans does not require a
deeper engagement with mathematical modeling.
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Figure 15: CellTrans model predictions for colon cancer cell lines. A. We utilized Cell-
Trans to analyze data about the evolution of cancer cell line compositions
from [147]. The involved cell states are cancer stem cells (CSC) and non-stem
cancer cells (NSCC) and the original data are plotted as colored dots includ-
ing the experimental standard deviation. The red curve is the prediction of
the cell state compositions of the experiment starting with pure CSC and the
blue curve represents the prediction starting with pure NSCC. The gray line
corresponds to the predictions of ODE models which have been proposed in
the original study [147]. B. Analysis of colon cancer cell line data from [40]
with the cell states adherent and suspended. The red curve is the prediction
of CellTrans for the experiment starting with adherent cells only and the
blue curve is the corresponding prediction starting with suspended cells. The
gray line is the prediction of the ODE model introduced in [40].
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5.3.3 Proportions of stem-like, basal and luminal phenotypes in breast cancer

background. The dynamics of phenotypic proportions in human breast
cancer cell lines is studied in [45]. In detail, the authors used FACS analysis to
isolate three mammary epithelial cell states (stem-like, basal and luminal) from
the SUM159 and SUM149 breast cancer cell lines. Pure sub-populations of the
three cell states have been cultured for six days and cell state proportions have
been measured at the end of the experiment.

application of celltrans . We apply CellTrans to cell lines SUM149

and SUM159. The proliferation rates of the involved cell types are equal [45].
The initial experimental cell proportions in both cases can be described by

W(0) =

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠ ,

where the first line corresponds to the experiment with sorted stem-like cells,
the second row to sorted basal cells and the third row to sorted luminal cells.

The proportions of cell states have been obtained at a single time point af-
ter six days. The time step length τ is one day in this case. For SUM149, the
following cell state proportion matrix can be obtained from [45]

W(6) =

⎛
⎜⎜⎜⎝

0.053 0.168 0.78

0.026 0.504 0.47

0.013 0.007 0.98

⎞
⎟⎟⎟⎠ ,

where the first row contains the cell state proportions of the experiment with
sorted stem-like cells, the second row with sorted basal cells and the third row
with sorted luminal cells in the beginning, respectively.

By utilizing the function celltransitions(input), CellTrans derives the
following transition matrix from this time point

P6 =

⎛
⎜⎜⎜⎝

0.5814 0.1102 0.3084

0.0145 0.8887 0.0968

0.0058 0.0006 0.9936

⎞
⎟⎟⎟⎠ ,

which yields the final transition probabilities, since there is only one time point
of measurement in this case. For example, the second row indicates that basal
cells transition to stem-like cells within a day with a probability of 1.45%, do
not change their state with a probability of 88.87% and convert to the luminal



5.3 case studies demonstrating the applicability of celltrans 101

state with a probability of 9.68%. A similar derivation leads to the transition
probabilities for SUM159 which exhibits different transition dynamics.

The predicted equilibrium distribution of our model for SUM149 is

w∗ =
(

0.014 0.019 0.967
)

and for the SUM159 cell line

w∗ =
(

0.0235 0.9734 0.0031
)

(first entry stem-like, second basal, third luminal), see Figures 16A-F. These plots
can be created in CellTrans with the command celltransplot(input). The
predictions are in good accordance with the original tumor compositions. In
detail, the SUM149 tumor sample is composed of 3.9 % stem, 3.3% basal and
92.8 % luminal cells. The proportions within the SUM159 cell line is 1.9% stem,
97.3% basal and 0.62% luminal cells [45].

The time from 100% stem-like cells to the predicted equilibrium composition
can be estimated by CellTrans with the command
timetoEquilibrium(input,c(1,0,0),0.01) which yields 31 days. In contrast,
the command timeToEquilibrium(input,c(0,0,1),0.01) gives an estimation
of 8 days to reach the equilibrium from 100% luminal cells. These predictions
reflect that purified luminal cells are much closer to the equilibrium composition
than purified stem-like cells.

comparison to previously used markov model . The authors of [45]
introduced a Markov model of cell state transitions to explain the observed
equilibrium. The predictions are based on a single time point, and no regular-
ization of the matrix root is required. CellTrans is able to recover the transition
matrices for both cell lines SUM149 and SUM159 presented in [45], Table 1. Fig-
ures 16A-F illustrate the predicted evolution of cell fractions for both cell lines.

The master equation (5.3) can also be applied to derive an equivalent ODE
system

d

dt
stem(t) = −0.4186stem(t) + 0.0145bas(t) + 0.0058lum(t)

d

dt
bas(t) = 0.1102stem(t)− 0.1113bas(t) + 0.0006lum(t)

d

dt
lum(t) = 0.3084stem(t) + 0.0968bas(t)− 0.0064lum(t)

The solution for the initial conditions stem(0) = 1, bas(0) = 0, lum(0) = 0 reads

stem(t) = 0.0141 + 0.9771e−0.4274t + 0.0088e−0.1089t

bas(t) = 0.0191 − 0.3394e−0.4274t + 0.3203e−0.1089t

lum(t) = 0.9668 − 0.6377e−0.4274t − 0.3291e−0.1089t.
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summary. Several applications of our model are demonstrated here. First,
CellTrans is able to analyze arbitrarily many cell states, not only two. Sec-
ond, the original tumor composition, which is not included in the analysis, is
precisely predicted. Third, the estimation of the time to the equilibrium compo-
sition potentially helps experimentalists in planning the time periods of cell line
experiments.

5.3.4 Epithelial-mesenchymal transition in breast cancer

background. In order to investigate the epithelial-mesenchymal transition
(EMT) and its implication on the development and progression of breast cancer,
the authors of [89] induced an EMT in non-tumorigenic, immortalized human
mammary epithelial cells (HMLEs). Subsequently, they used flow cytometry
analysis to sort the cells based on the expression of CD44 and CD24, two cell-
surface markers whose expression in the CD44+/CD24− configuration is associ-
ated with both human breast cancer stem cells and normal mammary epithelial
stem cells. One of their aims was to determine whether the CD44+/CD24− cells
isolated from monolayer cultures of HMLE cells could generate CD44−/CD24+

cells in vitro.
To examine this question, the authors cultured purified cell phenotypes into

monolayer cultures and assayed for the appearance of other cell phenotypes
during time. The results of these experiments are summarized in Table S1 in
[89].

application of celltrans . This experimental setup can be formulated
within the CellTrans framework as follows. There are m = 2 cell states which
are named CD44+/CD24− and CD44−/CD24+. The initial experimental matrix
is given by the identity matrix. This matrix is constructed such that the first
row represents the pure CD44+/CD24− initial cell culture, and the second row
corresponds to pure CD44−/CD24+ cell culture.

The cell state proportions have been experimentally determined for t = 4 time
points (at 2, 4, 6 and 8 days). Here, the time step length τ is 1 day. The cell state
proportions matrices W(2), W(4), W(6) and W(8) can be constructed from the data
in [89], e.g.

W(4) =

⎛
⎝0.70 0.30

0.01 0.99

⎞
⎠ ,

where the first row represents the experiments starting with pure cultures of cell
phenotype CD44+/CD24− and the second row with cell phenotype CD44−/CD24+,
respectively.

CellTrans estimates transition matrices for each of the cell state proportion
matrices. This approach leads to 4 matrices P2, P4, P6 and P8. In this case, all of
the derived matrices do not require regularization, since all matrices are already
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stochastic matrices. The transition matrix P is obtained by averaging over the
derived transition matrices which yields

P =
P2 + P4 + P6 + P8

4
=

⎛
⎝0.8868 0.1132

0.0007 0.9993

⎞
⎠ .

The predicted cell state proportions of this transition matrix with the initial
states from the experiments and the experimental data is plotted in Figure 16G.

The solution of the master equation (5.3) with pure CD44+/CD24− cells in
the beginning is

CD44+/CD24−(t) = 0.0006e−0.1133t + 0.9994

CD44−/CD24+(t) = −0.0006e−0.1133t + 0.0006.

summary. This case study demonstrates two potential applications of Cell-
Trans. First, CellTrans can reveal rare cell transitions which is indicated by
the estimated probability to convert from CD44−/CD24+ to CD44+/CD24− of
0.0007 per day. Hence, transitions from CD44−/CD24+ to CD44+/CD24− cells
almost never occur suggesting a potential cell transition hierarchy.

Second, the experiments only cover the first 8 days after culturing, but the
time period until the equilibrium proportions are reached is not clear from the
beginning. Here, the predicted equilibrium distribution is given by

w∗ =

⎛
⎝0.0063

0.9937

⎞
⎠ ,

which corresponds to an equilibrium proportion of 0.63% of CD44+/CD24−

and 99.37 % of CD44−/CD24+. CellTrans can estimate the expected time until
this equilibrium is reached.

Applying timetoEquilibrium(input,c(1,0),0.01) estimates the expected time
to the equilibrium starting with a pure CD44+/CD24− cell line composition
with a tolerance deviation of 1%. With these parameters, CellTrans predicts a
time of 39 days until the equilibrium proportions are reached.

5.3.5 Influence of the choice of the time step length τ

In order to demonstrate that the predictions and results of CellTrans are inde-
pendent of the choice of the time step length τ, we varied τ in the case studies
with data from [143] and [40]. We predicted the equilibrium distribution, the
expected time to equilibrium and the predicted cell state composition after a
certain time for different time step lengths. The results are summarized in Ta-
bles 9 and 10 and indicate that the predictions are not influenced by the choice
of τ.
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steps
per
day

predicted equilibrium
(CSC / NSCC)

estimated time to
equilibrium (days)

predicted distribution af-
ter 5 days starting with
100% CSC (CSC / NSCC)

50 0.6538 / 0.3462 20.46 0.799 / 0.201

24 0.6539 / 0.3461 20.5 0.799 / 0.201

10 0.6539 / 0.3461 20.5 0.8 / 0.2

5 0.6539 / 0.3461 20.6 0.8 / 0.2

2 0.6539 / 0.3461 21 0.8 / 0.2

1 0.654 / 0.346 21 0.801 / 0.199

0.5 0.6542 / 0.3458 22 0.83 / 0.17

Table 9: Predictions of CellTrans for different choices of the time step length τ for data
from the case study in [147]. The original time-step for the analysis was 1 day.
CSC = cancer stem cell, NSCC = non-stem cancer cell.

steps
per
hour

predicted equilibrium
(adh / susp)

estimated time to
equilibrium (hours)

predicted distribution af-
ter 2 hours starting with
100% adh (adh / susp)

60 0.6804 / 0.3196 4.97 0.712 / 0.288

30 0.6804 / 0.3196 5 0.712 / 0.288

10 0.6803 / 0.3197 5.1 0.713 / 0.287

5 0.6801 / 0.3199 5.1 0.713 / 0.287

1 0.679 / 0.321 6 0.726 / 0.274

0.5 0.678 / 0.322 8 0.741 / 0.259

Table 10: Predictions of CellTrans for different choices of the time step length τ for
data from the case study in [40]. The original time-step for the analysis was 1

hour. adh= adherent cell type, susp = suspended cell type.
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5.3.6 Validation of the predicted equilibrium of CellTrans

One important application of CellTrans is the prediction of the equilibrium of
cell state proportions and the time needed to reach this equilibrium. In some
experiments, the equilibrium proportions are not reached at the end of the ex-
periment, e.g. in the investigation of the epithelial-mesenchymal transition in
breast cancer introduced above [89]. Here, we show that CellTrans is able to
make predictions beyond the duration of the experiments. In detail, CellTrans

is able to reliably predict both the equilibrium cell state proportions and the
time needed to reach this proportion. To demonstrate this, we performed a val-
idation analysis based on the two case studies dealing with colon cancer cells
[40, 147]. We used only a subset of the available data points to create predic-
tions of the cell state proportions over time with CellTrans. We excluded late
data points to mimic an experimental situation in which the equilibrium is not
reached yet. The results of this validation study are illustrated in Figures 16H-
I. It turns out that only a few data points are sufficient to reliably predict the
equilibrium cell state proportions. Moreover, the predicted time to reach equi-
librium proportions is very robust with respect to the choice of available data
points. This investigation indicates that CellTrans is able to make predictions
even beyond the time period of experiments and might therefore also support
the planning of experimental time periods.

5.3.7 Influence of non-pure initial cell state compositions

As our case studies demonstrate, most FACS and flow cytometry experiments
are based on pure initial cell state compositions. However, CellTrans can also
be utilized to analyze experimental data with non-pure initial compositions.
Here, we demonstrate this possibility and investigate whether the predictions
and results are influenced by such an initial composition. For this, we reused
data from [147] and [40] but excluded several of the first data points such that
the initial cell state compositions are non-pure. We then utilized CellTrans to
estimate a transition matrix based on these remaining data and compare the cor-
responding predictions to the original estimates derived from all available data.
It turns out that both the evolution of cell line compositions and the equilibria
are reliably predicted with non-pure initial cell state compositions. The results
of this analysis are illustrated in Figure 17.

5.3.8 A simulation study demonstrating matrix regularization

The presented case studies so far do not require matrix regularization, i.e. the
matrix roots that CellTrans calculates are already stochastic matrices. In order
to demonstrate that such a regularization might be necessary, we introduce a
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Figure 16: CellTrans model predictions and validations. A-G. We utilized CellTrans

to analyze data of the evolution of cell state proportions of publicly available
data. The data are plotted by colored dots. A-F. The data originates from [45]
with three different cell states (stem, basal and luminal) from SUM149 and
SUM159 breast cancer cell lines. The predictions of our analysis is plotted
by colored curves. The color indicates the state of the cells at the beginning
of the corresponding experiment. G. Analysis of composition data (dots) of
HMLE cell lines [89] with cell states CD44−/CD24+ and CD44+/CD24−. The
corresponding predictions are plotted as colored curves. H-I. We excluded
several of the late data points from the data of the proportions of cancer
stem cells (CSC) and non-stem cancer cells (NSCC) from [147] and the data
with adherent and suspended cells from [40]. The predictions based on the
remaining data is plotted, compare also with Figure 15. This investigation
indicates that CellTrans is able to predict cell state proportions even beyond
the duration of experiments and that only few data points are needed to
reliably predict the equilibrium.
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Figure 17: Influence of non-pure initial cell state compositions on the predictions of
CellTrans. In order to obtain non-pure initial cell state proportions, we ex-
cluded several of the early data points, as indicated in the legends, from the
case studies with data from [147] and [40]. The plotted predictions in both fig-
ures are based on the analysis of the remaining data points with CellTrans.
The starting point of each curve indicates the initial cell state composition. A.

Data from [147]. B. Data from [40].
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simulation study and explain how the QOM-algorithm performs the necessary
regularization.

In the simulation study we assume the existence of m = 3 cell states. We
simulate three experiments starting with pure cultures of each cell state. Hence,
the experimental initial matrix is

W(0) =

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠ .

As time points we choose t = 2τ, 4τ, 6τ. Here, τ is an arbitrary time step
length.

We created an arbitrary transition matrix to describe the transition probabili-
ties between the three cell states,

Psim =

⎛
⎜⎜⎜⎝

0.7739 0.1762 0.0499

0.0006 0.8210 0.1784

0.0937 0.0712 0.8351

⎞
⎟⎟⎟⎠ .

The Markov chain associated with this transition matrix has the steady state
distribution

w∗
sim =

(
0.1872 0.3632 0.4496

)
.

Then, we generated experimental data after times 2τ, 4τ and 6τ from the matrix
powers P2, P4 and P6. We also added a normally distributed noise with mean
zero and a standard deviation of 0.01 to reflect unprecise measurements. This
led to the cell state proportion matrices

W(2) =

⎛
⎜⎜⎜⎝

0.6028 0.2769 0.1203

0.0087 0.7003 0.2910

0.1526 0.1224 0.7250

⎞
⎟⎟⎟⎠ , W(4) =

⎛
⎜⎜⎜⎝

0.3934 0.3819 0.2247

0.0492 0.5175 0.4333

0.1989 0.2465 0.5546

⎞
⎟⎟⎟⎠ ,

W(6) =

⎛
⎜⎜⎜⎝

0.2824 0.4050 0.3126

0.1044 0.4489 0.4467

0.2191 0.2862 0.4947

⎞
⎟⎟⎟⎠ .

Applying formula (5.1) to derive the matrix roots does not yield a stochastic
matrix for all of these three matrices. The 4−th matrix root of W(4) is

⎛
⎜⎜⎜⎝

0.7822 0.1737 0.0441

−0.0102 0.8205 0.1896

0.0943 0.0792 0.8265

⎞
⎟⎟⎟⎠ ,
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which is not a stochastic matrix due to the negative entry in the second row. The
QOM-algorithm transforms this matrix root into the stochastic matrix

P4 =

⎛
⎜⎜⎜⎝

0.7822 0.1737 0.0441

0.0000 0.8154 0.1846

0.0943 0.0792 0.8265

⎞
⎟⎟⎟⎠ .

The further derivation is continued with this regularized matrix root.
Finally, CellTrans derives the transition matrix

P =

⎛
⎜⎜⎜⎝

0.7786 0.1708 0.0506

0.0000 0.8258 0.1742

0.0951 0.0694 0.8355

⎞
⎟⎟⎟⎠ ,

which is close to the originally generated Psim. Furthermore, the steady state of
the process associated with P is

w∗ =
(

0.191 0.3644 0.4446
)

.

The effect of the QOM regularization on the prediction of CellTrans in this
case is visualized in Figures 18B-D.

5.4 discussion

Characteristic equilibrium proportions of distinct cell states are commonly ob-
served in vivo and in vitro. Normal and cancerous cell lines exhibit and are able
to maintain such an equilibrium [40, 45, 89, 143]. Understanding the mecha-
nisms which are responsible for this observation is important to develop ap-
propriate therapies against cancer. There is evidence that stochastic transitions
between different cell states can lead to such an equilibrium. To infer the un-
derlying transition dynamics and to quantify these transitions is a key to under-
stand and control the origin of such an equilibrium.

We introduce CellTrans, an automated framework to deduce the transition
probabilities between different cell states from FACS and flow cytometry experi-
ments in which no differences in the proliferative properties between cell states
are observed. The key assumption of the underlying mathematical model is that
cells stochastically transition between different states and that the rates for these
transitions only depend on the current state of the cell.

We point out that the transition probabilities can be derived on the basis of
Markov chain theory by determining matrix roots from appropriately arranged
data matrices and regularizing them to stochastic matrices if necessary. We dis-
cuss which mathematical challenges can occur and demonstrate how these chal-
lenges are handled by CellTrans. We utilize the QOM algorithm [74] to achieve
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Figure 18: Cell state transitions and regularization of the matrix root. A. CellTrans es-
timates the transition matrix of the underlying discrete time Markov model.
This matrix contains the transition probabilities between all cell states. Here,
these transitions are illustrated for three fictive cell states. B-D. We simulated
cell state proportion data for an experiment with three fictive cell states in
which regularization of the matrix roots is necessary to obtain a stochastic
matrix. The dots represent simulated data points, the solid curves the predic-
tion of CellTrans. For details on the required matrix root regularization, see
the main text.
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matrix regularization and provide a simulation study which demonstrates that
regularization might be necessary and how it can be achieved by the QOM al-
gorithm.

In order to ensure a reliable estimation of cell state transitions, the cell state
proportion data should be obtained on basis of a large number of cells. This
ensures the validity of the estimation based on the law of large numbers [39].
We suggest to use at least 100 cells in each cell culture experiment to obtain the
data for CellTrans.

Our stochastic approach on the basis of a Markov model can be translated
into a system of first-order ODEs with the help of the master equation (5.3). The
predictions of these ODEs are equivalent to those of the underlying Markov

model of CellTrans. We demonstrate that CellTrans is able to predict the
evolution of cell state proportions even more precisely compared to more com-
plicated ODE models which utilize in situ parameter estimation, as for example
in [143].

The analyzed case studies in this work demonstrate that CellTrans can be
utilized to compare different cell types with respect to their ability to convert
to other cell types, their frequency within equilibrium proportions and their
position within an existing cell transition hierarchy. We showed that the main
application of CellTrans is the quantitative inference of transitions between dis-
tinctive cell types. The resulting transition probabilities allow to estimate which
transitions occur frequently, rarely or even almost never. Therefore, CellTrans

might be able to reveal a hierarchy with respect to the importance of specific
transitions for maintaining the observed equilibrium distributions.

The steady state derived by CellTrans can be interpreted as prediction of the
equilibrium cell state proportions. Moreover, CellTrans is able to predict the
duration from any initial experimental setup to such an equilibrium, see Figures
16H-I.

As demonstrated in Figures 16A-F, even patients classified to have the same
type of tumor exhibit different equilibrium distributions. Hence, the dynamics
of the cell state transitions are patient-specific. CellTrans is able to predict
these patient-specific transitions and can therefore be utilized to reveal differ-
ences within the same tissue in different patients. These predictions might be a
step towards individual therapies.

Although the presented case studies in this work deal with disease-related
cell line experiments, CellTrans can also be utilized to analyze non-diseased
cell lines, such as immunostained progenitor cells, as long as the underlying
model prerequisites are fulfilled. Hence, CellTrans can be used to analyze all
cell line experiments in which cell state transitions only depend on the current
state of the cell and cell proliferation and death rates are equal.

We focus here on the case in which cell states exhibit similar proliferation
and death rates. In principle, it would be possible to apply a similar approach
also if this prerequisite is not fulfilled. This would first require to formulate
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an extended and more complicated mathematical model which is a challenging
task for future work.

Our case studies demonstrate that CellTrans is a valuable tool to model
and quantify cell state transitions. Experimentalists only have to validate the
model assumptions. Then, the whole process of mathematical modeling and
estimation is automatized. CellTrans allows versatile experiments by being
able to analyze also cell state data originating from non-pure initial cell state
distributions. In summary, CellTrans is an automated tool that facilitates the
analysis and interpretation of cell state proportion data from these experiments
on basis of a Markov model for cell state transitions.
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6.1 glioblastoma multiforme and the cancer stem cell hypoth-
esis

Glioblastoma multiforme (GBM) is the most malignant brain tumor and exhibits
a large degree of heterogeneity at both the cellular and molecular level [57]. This
degree of heterogeneity is a major challenge for effective therapies but the under-
lying mechanisms leading to its emergence are not understood yet. Progression
of GBM is proposed to be caused by a sub-population of so-called cancer stem
cells (CSCs) [80]. According to the classical CSC model, CSCs exhibit stem cell
properties including self-renewal and multipotency which are demonstrated in
experimental models in vivo in mice [134]. The CSC model proposes that tumor
cells are hierarchically organized and follow a unidirectional differentiation pro-
cess with CSCs at the top of the hierarchy. Only the CSC sub-population has the
potential to induce tumor formation. Due to their unlimited self-renewal ca-
pacity and their ability to form all cells within a tumor, remaining CSCs after
therapies like radiotherapy and chemotherapy are believed to be responsible
for tumor recurrence [6]. Therefore, eradication of all CSCs within a tumor is
considered as one approach to reach long-term disease-free survival. However,

* This chapter includes text and figures from a manuscript entitled Stem cell-associated heterogeneity
in Glioblastoma is a result of intrinsic tumor plasticity shaped by the microenvironment submitted
to Cancer Cell. Authors: Anne Dirkse, Anna Golebiewska, Thomas Buder, Petr V. Nazarov et.
al. Author contribution: Thomas Buder conceived the model and performed the formal data
analysis.
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especially for GBM, it is unclear whether the classical CSC model is true. Recently,
several studies suggest that tumor cells in GBM follow more likely a plasticity
behavior in contrast to a strict hierarchical organization [118]. In this plasticity
model, phenotypic heterogeneity is not a result of a one-way hierarchical struc-
ture but tumor cells can reversibly convert in a bidirectional manner between
different phenotypic states. These studies suggest that CSCs do not constitute
a defined cellular entity present across distinct patient tumors but rather repre-
sent a cellular state in response to micro-environmental conditions. The question
whether the intratumoral heterogeneity in GBM is a result of a hierarchical dif-
ferentiation process as proposed by the classical CSC model or a consequence of
reversible phenotypic plasticity remains open.

One major challenge in investigating the CSC hypothesis in many tumors, also
in GBM, is the experimental identification of CSCs. Several cell surface markers
have been identified to characterize CSCs in GBM such as CD133, CD15/SSEA,
CD44, A2B5 or CD49f [79]. However, surface marker expression may not be
unique and there is currently no universal clear marker signature that reliably
identifies the functional criteria of CSCs in GBM [11]. Moreover, tumors might
contain more than one CSC clone which can be distinguished by different marker
expression profiles and inter-patient heterogeneity might imply that CSCs cannot
be defined universally in all GBMs.

In this chapter, we address the question if and to which extent tumor cells
with stem cell properties in GBM follow a hierarchical organization or whether
those states can be adopted by any cancer cell via reversible phenotypic state
transitions. Moreover, we investigate the influence of micro-environmental con-
ditions on this question. For this purpose, we utilize cell state proportion data
from fluorescence activated cell sorting (FACS) experiments on the the expression
of the potential stem cell markers CD133, CD44, CD15 and A2B5. These data
have been derived under normal and hypoxic conditions [19]. We utilize Cell-
Trans (see Chapter 5) to quantify the cell state transitions between GBM cells
under both environmental conditions. Furthermore, we interpret the estimated
transition matrices with respect to potential underlying hierarchical transition
structures.

It turns out that the estimated state transition probabilities and also the extent
of the underlying transition hierarchy strongly depend on the environmental
conditions. This finding is important for understanding GBM progression and
for the successful design of novel therapies [19]. Moreover, we introduce and
discuss additional features that could be implemented in CellTrans in the fu-
ture.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

CD133 X X X X X X X X × × × × × × × ×
CD44 × × × × X X X X × × × × X X X X

A2B5 X X × × X X × × X X × × X X × ×
CD15 × X × X × X × X × X × X × X × X

Table 11: Definition of 16 distinct GBM cell phenotypes depending on the marker ex-
pression of CD133, CD44, CD15 and A2B5. Checkmarks indicate positive, x’s
low/negative expression of the corresponding marker.

6.2 material & methods

Experimental setup and data

We utilize data on the evolution of cell state proportions of glioblastoma cell
line experiments with CellTrans [15] in order to investigate the state transition
behavior of these cells. For a description of CellTrans, see Chapter 5.

In [19], 16 distinct cell phenotypes named P1, . . . , P16 can be discriminated
depending on the expression of the four potential stem cell markers CD133,
CD44, CD15 and A2B5, see Table 11. Multicolor flow cytometry experiments
with cells from the in vitro glioblastoma cell culture NCH644 are performed un-
der normal and hypoxic cell culture conditions. In detail, pure sub-populations
of the 16 cell phenotypes have been cultured for 70 days and cell state propor-
tions with respect to the 16 phenotypes have been measured after 20, 30 and 70

days in normoxia. In hypoxia, the purified sub-populations have been cultured
for 60 days and the cell state proportions have been obtained at the end of the
experiment.

Application of CellTrans

We apply CellTrans to analyze the phenotypic state proportion data under
both normal and hypoxic conditions. The prerequisite for the application of
CellTrans that the proliferation rates of the involved cell types are equal is
fulfilled since differences in doubling times of the 16 cell phenotypes are not
statistically significant [19]. The initial experimental cell state proportions under
both environmental conditions can be described by the 16× 16 identity matrix in
which the i−th line corresponds to the experiment with pure cells of phenotype
i in the beginning. See also Chapter 5 for technical details about the construction
of data matrices.
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We choose a time step length of 3 days for the analysis of the data which
reflects the cell cycle time in normoxia [19] and round the time steps to the next
integer. Hence, we obtain three cell phenotype matrices from the obtained data
in normoxia: W(7) after 20 days, W(10) after 30 days and W(23) after 70 days. In
hypoxia we construct only one matrix, namely W(20) for the measurements after
60 days.

By utilizing CellTrans, we estimate the transition probabilities between the
16 cell phenotypes. The interaction graph of the estimated transition matrix is
visualized in Figure 19. These estimates allow to discriminate frequent and non-
frequent state transitions and between hierarchical and non-hierarchical transi-
tion behavior.
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Figure 19: Interaction graphs of the estimated transition matrices of GBM cell state transi-
tions. Arrows between sub-populations represent predicted direct state tran-
sitions between subpopulations, thickness of lines corresponds to transition
probability. See also Tables 16 and 17 for the transition matrices. A. Normoxia,
B. Hypoxia.

In detail, if the estimated Markov chain is irreducible, each state can transit
directly or via intermediate states into any other state. This behavior implies that
the state transitions are non-hierarchical and therefore reversible. In contrast, a
tree structure corresponds to a perfect hierarchy. Intermediate structures are
possible as well, which imply some degree of hierarchy between transient states
and recurrent states. Moreover, on the basis of the estimated transition matrix it
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is possible to predict the equilibrium cell composition and the time needed to
reach this equilibrium with help of CellTrans.

Marker dependency calculations

In order to investigate whether the cell state transitions in normoxia and hy-
poxia are dependent on the current marker expression, transition probabilities
considering only a single marker are calculated. From the measured composi-
tion data, the percentage of all 16 phenotypes which are positive or low/neg-
ative for a single marker expression are added. This is performed for each of
the four markers and results in four individual 2 × 2 experimental setup ma-
trices. Subsequently, CellTrans is applied to estimate four transition matrices
between the corresponding two cell phenotypes. These transition matrices can
be utilized to calculate a 16 × 16 transition matrix under the assumption of
transition independence by multiplying the corresponding transitions probabil-
ities for each of the four markers. The resulting transition matrices assuming
marker-independent transitions are provided in Tables 16 and 17. Subsequently,
the steady state of this transition matrix is calculated and the fractions of each
subpopulation with the same expression of a single marker are added to obtain
the steady state proportion for each individual marker assuming independent
transitions. The estimated four 2 × 2 transition matrices considering a single
marker and the steady state proportions for each individual marker assuming
independent transitions are provided in Tables 12 and 13.

6.3 results

Glioblastoma sub-populations do not undergo hierarchical state transitions

The estimation of the transition matrix between the 16 defined cell phenotypes
in normoxia suggests 175 of 240 possible direct state transitions leading to a
change of the phenotype, see Figure 19. Importantly, the estimated transition
matrix appeared irreducible with no obvious bottlenecks, i.e. each phenotype
can transition to all other phenotypic states directly or through several tran-
sitions. Moreover, the transition matrix suggests that there are no hierarchies
or sub-hierarchies between the phenotypes which is also reflected by a Krack-
hardt hierarchy score of 0 [73]. In particular, the quantification of the transition
probabilities, see Appendix Table 16, allows to identify rare and frequent transi-
tions.

The validity of the predictions is strongly supported by two observations.
First, the theoretical equilibrium composition, i.e. the steady state of the under-
lying Markov chain, assorts well with the original tumor composition which
is not utilized in the estimation of the transition matrix, see Figure 20. Second,
we have designed two heterogeneous compositions of the 16 phenotypes and
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Figure 20: Predicted GBM equilibrium composition and the original tumor composition.
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predicted equilibrium composition and the needed time to reach it as 39 days.
Indeed, the two combinations evolved after 39 days in culture to a composition
close to the predicted equilibrium, see Appendix Figure 23.

Glioblastoma cell state transitions in hypoxia

Our model analysis suggests that direct state transitions between the 16 GBM

cell phenotypes are more restricted under hypoxic conditions by predicting 103

of possible 240 possible direct transitions, see also Figure 19. Moreover, the es-
timated transition matrix is reducible with P10 (CD133-CD44-A2B5+CD15+) as
transient state, i.e. no phenotype can transit into this state and P10 is depleted
from the final hypoxic equilibrium. This prediction assorts well with the exper-
imental observation of a very low proportion of P10 upon long term hypoxia
and its low self-renewal potential at the initial FACS passage. These results sug-
gest that P10 could be considered as a CSC/progenitor-like state at the apex of
hierarchical organization in hypoxia [19].

Moreover, our analysis yields that 13 of 16 sub-populations are predicted to
require over 250 days to reach equilibrium. This implies that the experimental
phenotypic compositions after 60 days have not reached equilibrium yet. In-
deed, statistical differences between the 16 experimental cultures are observed
with respect to the cell state compositions after 60 days [19]. One possible expla-
nation for the slower evolution of the composition to an equilibrium might be a
strongly decreased proliferation of GBM cells in severe hypoxia with a cell cycle
time of about 7 days [19].

Evidence for marker-dependent transitions in hypoxia

We investigate whether the cell state transitions in normoxia and hypoxia are
dependent on the current marker expression. For this purpose, we compare
the predicted equilibrium proportions under marker-independent transitions
with the corresponding fractions obtained from the originally derived transition
matrix, see Tables 12 and 13.

It turns out that both estimates are in good accordance in normoxia for all
cell phenotypes. In contrast, under hypoxic conditions there is a large devia-
tion of the predicted equilibrium compositions for the expression of CD44. This
result suggests that the state transitions under hypoxia are dependent on the ex-
pression of CD44 which requires further experimental investigations regarding
potential underlying mechanisms.
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Transition probabilities Predicted equi-
librium assum-
ing marker-
independent
transitions

Originally pre-
dicted equilibrium

CD133+ CD133-

CD133+ 97.48 2.52 77.18 79

CD133- 8.52 91.48 22.82 21

CD44+ CD44-

CD44+ 95.96 4.04 46.17 41

CD44- 3.46 96.54 53.83 59

A2B5+ A2B5-

A2B5+ 79.69 20.31 42.91 41.6

A2B5- 15.27 84.73 57.09 58.4

CD15+ CD15-

CD15+ 93.11 6.89 36.43 39.5

CD15- 3.95 96.05 63.57 60.5

Table 12: Single marker estimates and equilibrium composition under the assumption
of marker-independent transitions of GBM phenotypes in normoxia. The first
two columns contain the estimated transition probabilities in % per 3 days
between single marker GBM cell phenotypes in normoxia. The third column
provides the equilibrium proportions from the transition matrix assuming in-
dependent marker changes, see Appendix Table 18. The last column contains
the equilibrium proportions derived from the originally estimated transition
matrix in Appendix Table 16.
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Transition probabilities Predicted equi-
librium assum-
ing marker-
independent
transitions

Originally pre-
dicted equilibrium

CD133+ CD133-

CD133+ 99.7 0.3 97.63 96.19

CD133- 12.4 87.6 2.37 3.81

CD44+ CD44-

CD44+ 98.87 1.13 73.21 55.79

CD44- 3.09 96.91 26.79 44.21

A2B5+ A2B5-

A2B5+ 94.05 5.95 40.68 33.92

A2B5- 4.08 95.92 59.32 66.08

CD15+ CD15-

CD15+ 92.45 7.55 16.27 18.29

CD15- 1.47 98.53 83.73 81.71

Table 13: Single marker estimates and equilibrium composition under the assumption
of marker-independent transitions of GBM phenotypes in hypoxia. The first
two columns contain the estimated transition probabilities in % per 3 days
between single marker GBM cell phenotypes in hypoxia. The third column
provides the equilibrium proportions from the transition matrix assuming in-
dependent marker changes, see Appendix Table 19. The last column contains
the equilibrium proportions derived from the originally estimated transition
matrix in Appendix Table 17.
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6.4 discussion

Heterogeneity within GBM tumors is a major reason for therapy failure and can-
cer progression and increased heterogeneity positively correlates with decreased
survival [108]. Although there is large evidence that cancer cells with stem cell
properties exist within GBM, the evidence for a hierarchical organization due to
distinct CSC types is highly controversial. Additionally, it is still not clear if the
phenotypic heterogeneity of GBM represents an intrinsic property or whether it
results from exposure to different micro-environmental cues [19].

In this chapter, we utilize data from FACS experiments under different envi-
ronmental conditions to quantify the phenotypic state transitions of GBM cells
in vitro. In particular, we investigate the transition hierarchy of GBM stem cell-
associated cell phenotypes and enquire the dependency of these transitions on
the current marker expression. Our estimates of the transition frequencies allow
to discriminate rare and frequent transitions, see Tables 16 and 17. These results
have the potential to detect important transitions which could be therapeutical
targets to disturb tumor equilibrium compositions [19].

Moreover, our analysis suggests that phenotypic heterogeneity within GBM

is achieved via stochastic state transitions between distinct phenotypes with-
out any hierarchy or sub-hierarchy under normoxic conditions. In contrast, the
estimated transition matrix under hypoxia exhibits some degree of hierarchy
showing that the micro-environment of the tumor cells has a crucial impact
on the transition behavior. This conclusion is further supported by evidence for
marker-dependent transitions in hypoxia which we cannot confirm in normoxia.
In summary, these results indicate an important role of the micro-environment
on the quantity and structure of GBM cell state transitions. Further biological
background and results of additional experiments investigating the heterogene-
ity within GBM tumors are provided in [19].

In this chapter, we also demonstrated further potential conclusions that can
be drawn from the application of CellTrans which go beyond the introduced
main applications summarized in Chapter 5. We show that the structure of the
underlying estimated transition matrix allows to infer the degree of transition hi-
erarchy between the involved cell types. Moreover, the analysis of the normoxia
and hypoxia data in this chapter illustrates how CellTrans can quantify the cell
state transitions of the same cell line under different environmental conditions.
The comparison of such data might allow to test the efficacy of certain drugs in
vitro or to infer patient-specific characteristics. Furthermore, the demonstrated
dependency analysis of the cell state transitions could allow to identify markers
which have a substantial influence on the overall phenotypic transition behavior
of the cells. For example, our analysis suggests a special role of CD44 of the
investigated GBM cell line under hypoxia which suggests further experiments to
unravel this role. Regarding the dependency analysis, a more rigorous underly-
ing theoretical framework would be one potential extension for the future, e.g.
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based on a statistical test. All of these discussed applications represent promis-
ing features that could be implemented in CellTrans in the future such that
the corresponding analyses are automatically performed.
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7.1 summary

In this thesis, we infer the role of genetic and phenotypic cell changes on tumor
development with the help of Markov chain models which are calibrated with
tissue-scale data. Although the biological knowledge about tumor development
is continually growing, a complete understanding is still a major challenge and
the numbers of diagnosed cancers will largely increase in the next years [92].
Mathematical models provide a helpful tool to shed light on the complex in-
teractions of tumor and wild-type cells and their consequences on tumor emer-
gence on the tissue scale. In this thesis, we formulate and analyze cell-based
models which are motivated by specific underlying biological questions within
the tumor context.

Highly complex processes on the intra-cellular, cellular and tissue scale deter-
mine the fate of tumor development and a unifying model of all these processes
remains elusive. We concentrate on cell-based models since observable phenom-
ena on the tissue scale like the tumor regression behavior of tumors, the emer-
gence of different tumor subtypes and the evolution of tumor heterogeneity
allow a direct quantification of underlying cellular mechanisms. Our modeling
approach is thereby characterized by the incorporation of sufficiently many de-
tails in order to obtain biological predictions while keeping the models simple
to enable a rigorous analytical investigation. Importantly, we make quantitative
predictions that can either be experimentally tested or result in novel biolog-
ical hypotheses. In particular, the models in this thesis allow to estimate the
tumor regression probability of pilocytic astrocytoma (Chapter 3), suggest and
estimate the size of tumor-originating niches in different tissues (Chapter 4) and

125



126 conclusions

predict the frequency of phenotypic cell changes (Chapter 5) which can be used
to infer underlying transition hierarchies of gliobastoma cells (Chapter 6).

In the first part, we utilize Moran models to describe cellular processes like
competition, genetic alterations, proliferation and death. The design of the mod-
els allows to describe the quantity of interest, i.e. the absorption probability of
the underlying process, solely in dependency of a single parameter, namely the
corresponding risk coefficients γ and γ1D. The derivation of these absorption
probabilities is already quite involved and would have been even more compli-
cated or even not possible in an analytical way if the models are formulated in
a more complex manner.

In the second part of this thesis, we describe cell state transitions as discrete
time Markov chain which serves as a minimal model for the evolution of cell
state proportions. The introduced case studies demonstrate the applicability of
the model although no experimentally measurable parameters of cell properties
are utilized. In contrast, the simplicity is an advantage by enabling the applica-
tion also without such experimental measurements and the predictions might
even be better compared to complicated models which incorporate such param-
eters as demonstrated in Chapter 5.

7.2 novelty and relevance of the results

In the first part of this thesis, we extended established Moran models and
derived novel analytical results which are not only relevant for the biological
questions investigated in this thesis but also for other applications. In order to
describe the emergence of different tumor subtypes we altered the established
Moran model with mutations to a stochastic process with two absorbing states
representing these subtypes. The analysis of the resulting process in Chapters 3

and 4 resulted in the absorption probabilities considering different spatial cell
arrangements. In particular, we find that, assuming a biologically motivated
parameter regime, the absorption probabilities depend solely on the risk coeffi-
cients γ and γ1D, respectively. Moreover, we show that these asymptotic results
provide reasonable approximations for relatively small finite values of the pop-
ulation size which has several applications also beyond the scope of this thesis.
For example, these novel insights allow to distinguish different regimes in the
Moran model not only asymptotically but also for small values of the popu-
lation size N. Our theoretical results in Chapter 4 obviate the need of ad-hoc
rules for the application of asymptotic results for finite values of N and might
for instance improve estimates about the waiting times until two mutations ac-
cumulated in some population, see for example [28].

In the second part, we demonstrated in which way our newly developed R
package CellTrans automatizes the whole process of mathematical modeling
and estimation of cell state transitions from experimental data. Experimentalists
can directly utilize the publicly available package to analyze cell state transition
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# cell types analytical results no space space

2 absorption proba-
bilities & times -

novel Moran

model on a crypt-
like structure
(Chapter 2)

3 absorption proba-
bilities

extended space-
free Moran

model (Chapter 3)

extended 1D
Moran model
(Chapter 4)

Table 14: Novel analytical results for the Moran models in this thesis.

data. Hence, we contribute to bridge the gap between the experimental analysis
of cell state data and mathematical modeling. Moreover, we utilized the QOM
algorithm [74] to achieve probability matrix regularization which is frequently
used in credit risk models. We demonstrated that this technique proves useful
whenever transition matrices are approximated and need to be regularized.

7.3 outlook

We demonstrate in this thesis in which way highly complex biological processes
on the cellular scale can be abstracted to mathematical models which are mo-
tivated by specific biological problems. The applications of extended Moran

models in the first part of this thesis illustrates the versatility of this model class
and exemplifies how new biological hypotheses can be generated with the help
of these models. The estimated tumor regression probabilities of PA in Chapter
3 motivate further clinical studies that include volumetric data and form a statis-
tical basis for clinical decision rules. Similarly, our proposal of the existence of a
tumor-originating niche in Chapter 4 has far reaching clinical consequences. The
existence of these niches and the estimated sizes should be further investigated
both from a modeling and an experimental perspective. From a mathematical
point of view, a rigorous derivation of the calculated determinant in the proof
of Theorem 3.4 remains a task for future work. Moreover, the absorption prob-
abilities of the one-dimensional Moran model which have been approximated
in Theorem 4.3 might be derived in an exact manner in the future.

Furthermore, we hope that our developed R package CellTrans proves use-
ful for experimentalists and contributes to a deeper understanding of the mech-
anisms which underlie phenotypic plasticity and their consequences. Promising
extensions of CellTrans include the automatization of the analysis of transi-
tion hierarchies and the possibility to apply this package if cells do not divide
equally often.
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I hope that this thesis contributes to bridging the gap between mathematical
modeling and the analysis of experimental data in the cancer context by demon-
strating possible ways to utilize observable quantities on the tissue scale to infer
mechanisms on the cellular scale.



A
A P P E N D I X

a.1 residual cerebellar postoperative pilocytic astrocytoma vol-
ume and outcome

residual tumor size (cm3) outcome reference

0.1 tumor regression [44]

0.1 tumor regression [125]

2 tumor regression [44]

2 tumor regression [44]

2 tumor regression [44]

2 tumor regression [44]

2.5 tumor regression [125]

6 tumor regression or stable [44]

8.8 tumor regression or stable [44]

10 tumor growth [44]

13.6 tumor growth [125]

16.8 tumor growth [44]

43.2 tumor growth [44]

Table 15: Residual cerebellar postoperative pilocytic astrocytoma volume and outcome.
This table contains the results of our literature research regarding volumet-
ric data of residual cerebellar pilocytic astrocytoma and the corresponding
patient outcome.
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a.2 celltrans vignette

Installing CellTrans

CellTrans is freely available via GitHub (http://github.com/tbuder/CellTrans).
In order to install it directly type within R

if (!require("devtools")) install.packages("devtools")
library("devtools")
install_github("tbuder/CellTrans", build_vignettes=TRUE)

Note that you need the devtools package in order to install packages from
GitHub and that it might be necessary to adjust your connection settings if you
use a proxy server.

Then, load the package with

library("CellTrans")

To demonstrate how CellTrans is used directly within R, we utilize FACS
data from experiments with two different cancer cell subpopulations in colon
cancer [147]. The data describe the evolution of the proportion of cancer stem
cells (CSC) and non-stem cancer cells (NSCC) during cell line experiments in
time. Two experiments have been performed with pure initial cell states in the
beginning and the evolution of the proportions has been measured each 2 days
for 24 days.

Data preparation

In order to analyze data from FACS and flow cytometry experiments in CellTrans,
they have to be appropriately formatted as text files. These text files contain
line-wise the cell state proportions after the corresponding time of the two cell
line experiments, see https://github.com/tbuder/CellTrans. For example, the
content of ‘W6.txt‘ is

0.7323 0.2677

0.4740 0.5260

meaning that the experiment with pure CSC cells in the beginning evolved to
73.23% CSC and 26.77% NSCC cells after 6 days and the experiment with pure
NSCC cells evolved to 47.4% CSC and 52.6% NSCC, respectively.

a.2.1 Reading the data and configuring CellTrans

All relevant information for the analysis and visualization of the data with Cell-
Trans can be read by utilizing the function readExperimentalData(). It is rec-
ommended to store these data in a variable, e.g.





132 appendix

Deriving cell state transition probabilitites

The function celltransitions() derives and prints an estimate of the transi-
tion probabilities between the cell states and an estimation of the equilibrium
composition. Applying this function to the read data, i.e.

celltransitions(my_CellTransdata)

my_CellTransdata<-readExperimentalData()

allows to select the data points considered for the estimation, see Figure 21F.
CellTrans prints the estimated transition probabilities between both cell

states and the predicted equilibrium distribution.

[1] "Results of CellTrans"
[1] "################################"
[1] "used timepoints : "
[1] "2" "4" "6" "8" "10" "12" "14" "16" "18" "20" "22" "24"
Markov Chain

A 2 - dimensional discrete Markov Chain defined by the following states:

Cancer Stem Cells, Non-Stem Cancer Cells

The transition matrix (by rows) is defined as follows:

Cancer Stem Cells Non-Stem Cancer Cells

Cancer Stem Cells 0.9455135 0.05448652

Non-Stem Cancer Cells 0.1029900 0.89701002

[1] "predicted equilibrium distribution "
Cancer Stem Cells Non-Stem Cancer Cells

[1,] 0.6540022 0.3459978

[1] "##########################################"

Estimating time to equilibrium

In order to estimate the time needed from a specific initial cell state composition
to the equilibrium composition, the function

timeToEquilibrium(input, initialDistribution, tol)

can be utilized. The first parameter represents the read data from the function
readExperimentalData() and the second parameter describes the initial cell
state proportion. This initial cell state composition has to be described as a
vector in R. The third parameter tol describes the maximum deviation of the
proportion of each cell state from the equilibrium distribution.

To illustrate this application, consider 50% of CSC and 50% of NSCC as initial
composition in above introduced example. This composition can be described in
R as vector c(0.5, 0.5). Setting a tolerance deviation of 0.01 yields an expected
time of 16 days to equilibrium:
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a.3 additional model predictions for gbm cell state transitions

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

P1 86.81 1.08 6.52 0.83 1.22 0.11 0.25 0.47 0.00 0.00 2.07 0.00 0.01 0.00 0.00 0.63

P2 0.66 78.75 7.24 3.52 0.00 0.55 1.34 3.52 0.00 0.10 0.96 0.00 0.00 0.05 0.48 2.80

P3 3.84 1.19 88.11 1.99 0.40 0.35 0.35 0.73 0.33 0.01 2.24 0.22 0.04 0.00 0.00 0.19

P4 0.00 9.90 5.27 71.42 0.65 2.91 1.02 1.92 0.00 2.03 0.03 2.63 0.53 1.36 0.00 0.34

P5 1.93 0.00 4.40 0.00 78.63 2.46 5.99 0.16 0.00 0.00 1.66 0.67 0.00 0.00 0.93 3.17

P6 0.69 1.76 1.70 1.95 1.12 83.68 1.68 5.36 0.18 0.00 0.22 0.11 0.27 1.23 0.05 0.00

P7 0.36 0.47 1.29 0.03 4.44 9.22 80.93 0.42 1.00 0.65 0.00 0.00 0.00 0.56 0.64 0.00

P8 0.00 0.00 3.21 0.49 1.05 8.23 4.13 79.34 0.00 0.00 0.35 0.00 0.00 0.00 0.42 2.77

P9 6.11 1.58 0.00 2.47 0.92 0.00 0.24 1.70 77.27 0.40 6.50 0.00 2.68 0.14 0.00 0.00

P10 0.24 5.56 3.15 14.38 2.96 3.23 0.00 2.35 0.00 56.37 1.61 4.67 0.00 0.00 1.08 4.41

P11 1.39 1.79 5.79 0.00 0.00 0.17 0.43 0.00 1.80 0.00 85.91 0.53 0.00 0.00 2.19 0.00

P12 4.20 12.45 0.57 0.56 0.22 5.54 0.00 0.67 0.24 2.81 0.53 71.95 0.19 0.00 0.00 0.06

P13 0.66 0.81 0.00 0.17 1.43 1.53 0.00 0.00 1.66 0.00 2.01 0.00 81.00 2.68 7.58 0.48

P14 0.71 2.63 0.00 0.08 0.20 2.52 0.00 6.56 0.00 0.91 0.76 0.63 0.00 78.26 1.35 5.40

P15 0.00 0.00 1.36 0.15 4.09 0.52 0.74 1.43 0.65 0.01 0.83 0.40 4.87 1.17 81.18 2.61

P16 0.82 0.40 1.71 4.20 0.09 13.53 0.00 2.99 0.37 0.29 0.00 0.60 0.00 0.79 5.58 68.63

Table 16: Estimated transition probabilities per normoxia cell cycle length of 3 days in
% between the 16 GBM cell phenotypes in normoxia.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

P1 90.01 0.57 5.77 1.14 2.12 0.26 0.01 0.00 0.00 0.00 0.09 0.00 0.00 0.04 0.00 0.00

P2 0.03 77.22 8.17 1.66 0.92 7.71 1.63 1.49 0.27 0.00 0.89 0.00 0.00 0.00 0.00 0.00

P3 2.68 0.17 95.88 0.78 0.09 0.00 0.33 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.00 0.00

P4 0.00 2.37 1.92 83.53 0.49 1.47 3.91 4.92 0.02 0.00 0.00 0.18 0.00 0.00 0.97 0.22

P5 0.40 0.00 0.74 0.35 91.56 0.00 4.55 0.34 0.00 0.00 0.00 0.00 0.00 0.00 1.44 0.62

P6 0.00 1.20 0.08 0.00 5.95 87.97 0.00 4.52 0.00 0.00 0.00 0.00 0.15 0.13 0.00 0.00

P7 0.00 0.00 1.66 0.00 2.60 1.40 92.67 1.54 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00

P8 0.00 0.00 0.00 0.73 0.00 2.82 9.97 86.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P9 10.86 0.00 0.00 0.00 4.38 0.00 0.00 1.09 79.49 0.00 0.92 0.00 3.25 0.00 0.00 0.00

P10 0.00 0.00 30.94 0.00 0.00 0.00 0.00 9.76 0.74 58.01 0.54 0.00 0.00 0.00 0.00 0.00

P11 5.78 0.15 11.98 0.00 0.00 0.00 1.53 0.00 1.12 0.00 78.32 0.03 0.37 0.00 0.00 0.72

P12 0.00 0.00 5.85 0.00 0.55 11.40 0.00 10.80 5.10 0.00 2.04 62.78 0.00 1.48 0.00 0.00

P13 0.00 0.00 0.00 0.00 7.72 6.25 0.00 0.00 0.48 0.00 0.00 0.00 85.55 0.00 0.00 0.00

P14 0.00 0.00 3.21 0.31 0.00 14.05 0.00 0.00 0.00 0.00 0.00 0.00 6.53 75.10 0.74 0.06

P15 0.00 0.00 0.00 0.00 0.30 1.23 4.03 1.58 0.74 0.00 1.63 0.00 4.93 0.31 85.27 0.00

P16 0.00 1.59 0.00 2.85 0.00 8.76 1.64 0.73 2.22 0.00 0.00 0.00 0.00 2.25 0.00 79.96

Table 17: Estimated transition probabilities per 3 days in % between the 16 GBM cell
phenotypes in hypoxia.
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Figure 23: Estimated and measured GBM phenotypic compositions from experiments
with two different initial compositions of GBM phenotypes in normoxia. We
utilized CellTrans to estimate the time needed to equilibrium for two given
different initial cell population compositions. The solid lines correspond to
the predicted evolution of the cell phenotype compositions and the dots in-
dicate the measured composition after the predicted time to the equilibrium
composition. A-B. Composition P1 - P16: 53, 38, 57, 19, 53, 0, 0, 0, 0, 0, 0, 0,
0, 21, 34, 25 cells, predicted time to equilibrium: 13 cell divisions. C-D. Com-
position P1 - P16: 75, 74, 36, 115, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 cells, predicted
time to equilibrium: 13 cell divisions.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

P1 72.03 2.96 18.36 0.75 2.58 0.11 0.66 0.03 1.86 0.08 0.47 0.02 0.07 0.00 0.02 0.00

P2 5.17 69.82 1.32 17.80 0.19 2.51 0.05 0.64 0.13 1.80 0.03 0.46 0.00 0.06 0.00 0.02

P3 13.80 0.57 76.59 3.15 0.50 0.02 2.75 0.11 0.36 0.01 1.98 0.08 0.01 0.00 0.07 0.00

P4 0.99 13.38 5.49 74.24 0.04 0.48 0.20 2.66 0.03 0.35 0.14 1.92 0.00 0.01 0.01 0.07

P5 3.01 0.12 0.77 0.03 71.60 2.94 18.25 0.75 0.08 0.00 0.02 0.00 1.85 0.08 0.47 0.02

P6 0.22 2.92 0.06 0.74 5.14 69.41 1.31 17.69 0.01 0.08 0.00 0.02 0.13 1.79 0.03 0.46

P7 0.58 0.02 3.20 0.13 13.72 0.56 76.13 3.13 0.01 0.00 0.08 0.00 0.35 0.01 1.97 0.08

P8 0.04 0.56 0.23 3.11 0.98 13.30 5.46 73.80 0.00 0.01 0.01 0.08 0.03 0.34 0.14 1.91

P9 6.30 0.26 1.60 0.07 0.23 0.01 0.06 0.00 67.59 2.78 17.23 0.71 2.43 0.10 0.62 0.03

P10 0.45 6.10 0.12 1.56 0.02 0.22 0.00 0.06 4.85 65.52 1.24 16.70 0.17 2.35 0.04 0.60

P11 1.21 0.05 6.69 0.28 0.04 0.00 0.24 0.01 12.95 0.53 71.87 2.95 0.46 0.02 2.58 0.11

P12 0.09 1.17 0.48 6.49 0.00 0.04 0.02 0.23 0.93 12.56 5.16 69.67 0.03 0.45 0.18 2.50

P13 0.26 0.01 0.07 0.00 6.26 0.26 1.60 0.07 2.83 0.12 0.72 0.03 67.19 2.76 17.13 0.70

P14 0.02 0.26 0.00 0.07 0.45 6.07 0.11 1.55 0.20 2.74 0.05 0.70 4.82 65.13 1.23 16.60

P15 0.05 0.00 0.28 0.01 1.20 0.05 6.65 0.27 0.54 0.02 3.01 0.12 12.87 0.53 71.44 2.94

P16 0.00 0.05 0.02 0.27 0.09 1.16 0.48 6.45 0.04 0.53 0.22 2.91 0.92 12.48 5.12 69.26

Table 18: Estimated transition probabilities in % between GBM cell phenotypes in nor-
moxia per 3 days assuming independent cell state transitions.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

P1 89.54 1.33 5.67 0.08 2.85 0.04 0.18 0.18 0.27 0.00 0.02 0.00 0.01 0.00 0.00 0.00

P2 6.86 84.01 0.43 5.32 0.22 0.22 0.01 0.00 0.02 0.25 0.00 0.02 0.00 0.01 0.00 0.00

P3 3.89 0.06 91.32 1.36 0.12 0.00 2.91 0.04 0.01 0.00 0.28 0.00 0.00 0.00 0.01 0.00

P4 0.30 3.65 0.30 85.68 0.01 0.12 0.22 2.73 0.00 0.01 0.02 0.26 0.00 0.00 0.00 0.01

P5 1.04 0.02 0.07 0.00 91.34 1.36 5.78 0.09 0.00 0.00 0.00 0.00 0.28 0.00 0.02 0.00

P6 0.08 0.98 0.01 0.06 7.00 85.70 0.44 5.43 0.00 0.00 0.00 0.00 0.02 0.26 0.00 0.02

P7 0.05 0.00 1.06 0.02 3.97 0.06 93.16 1.39 0.00 0.00 0.00 0.00 0.01 0.00 0.28 0.00

P8 0.00 0.04 0.08 1.00 0.30 3.72 7.14 87.41 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.26

P9 11.14 0.17 0.71 0.01 0.35 0.01 0.02 0.00 78.67 1.17 4.98 0.07 2.51 0.04 0.16 0.00

P10 0.85 10.45 0.05 0.66 0.03 0.33 0.00 0.02 6.03 73.81 0.38 4.67 0.19 2.35 0.01 0.15

P11 0.48 0.01 11.36 0.17 0.02 0.00 0.36 0.01 3.42 0.05 80.23 1.19 0.11 0.00 2.56 0.04

P12 0.04 0.45 0.87 10.66 0.00 0.01 0.03 0.34 0.26 3.20 6.15 75.28 0.01 0.10 0.20 2.40

P13 0.13 0.00 0.01 0.00 11.36 0.17 0.72 0.01 0.92 0.01 0.06 0.00 80.26 1.20 5.08 0.08

P14 0.01 0.12 0.00 0.01 0.87 10.66 0.06 0.67 0.07 0.86 0.00 0.05 6.15 75.30 0.39 4.77

P15 0.01 0.00 0.13 0.00 0.49 0.01 11.59 0.17 0.04 0.00 0.94 0.01 3.48 0.05 81.85 1.22

P16 0.00 0.01 0.01 0.12 0.04 0.46 0.89 10.87 0.00 0.04 0.07 0.88 0.27 3.27 6.27 76.80

Table 19: Estimated transition probabilities in % between GBM cell phenotypes in hy-
poxia per 3 days assuming independent cell state transitions.
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