
Aus dem National Center for Radiation Research in Oncology – OncoRay

Direktorin: Prof. Dr. Mechthild Krause

Dual-Energy Computed Tomography
for Accurate Stopping-Power Prediction

in Proton Treatment Planning

D i s s e r t a t i o n s s c h r i f t

zur Erlangung des akademischen Grades

Doktor der Medizintechnologie

Doctor rerum medicinalium (Dr. rer. medic.)

vorgelegt

der Medizinischen Fakultät Carl Gustav Carus

der Technischen Universität Dresden

von

M.Sc. Patrick Wohlfahrt
aus Ebersdorf / Thüringen

Dresden 2018



1. Gutachter: Prof. Dr. Wolfgang Enghardt

2. Gutachter: Prof. Dr. Antony J. Lomax

Tag der mündlichen Prüfung: 2. August 2018

Prof. Dr. Esther G. C. Troost

Vorsitzende der Promotionskommission



Abstract

Range uncertainty in proton therapy currently hampers the full exploitation of its physical
advantages. A substantial amount of this uncertainty arises from proton range prediction
based on X-ray computed tomography (CT). Dual-energy CT (DECT) has often been sug-
gested as a promising imaging modality to reduce this CT-related range uncertainty. Within
this thesis, the translation of DECT into application in proton therapy was evaluated. First,
a CT scan protocol was optimised for radiotherapy considering the image quality and CT
number stability for various body regions and sizes. The patient-specific DECT-based range
prediction was then calibrated and its accuracy validated in two ground-truth experiments
using an anthropomorphic phantom and homogeneous biological tissues. Subsequently,
the clinical relevance of DECT was demonstrated in a retrospective cohort analysis of
cerebral, pelvic and thoracic tumour patients. The systematic range deviations between the
DECT and state-of-the-art approach were then reduced by adapting the standard method
utilizing additional patient information obtained from DECT. Hence, DECT was clinically
applied for the first time to refine proton range calculation. As a further step, the use of
patient-specific DECT-based range prediction also considers intra- and inter-patient tissue
variabilities as quantified in brain-tumour patients. A future implementation will be an im-
portant cornerstone to improve proton range calculation and might open up the possibility
to reduce clinical safety margins accounting for the CT-related range uncertainty.

Kurzfassung

Derzeitige Reichweiteunsicherheiten in der Protonentherapie verhindern das vollständige
Ausschöpfen ihrer physikalischen Vorteile. Ein wesentlicher Anteil ist dabei auf die Vorher-
sage der Reichweite mittels Röntgen-Computertomographie (CT) zurückzuführen. Um die
CT-bezogene Unsicherheit zu verringern, wird die Zwei-Spektren-Computertomographie
(DECT) als vielversprechend angesehen. Innerhalb dieser Arbeit wurde die Anwendbarkeit
von DECT in der Protonentherapie untersucht. Zunächst wurde ein CT-Scanprotokoll für die
Strahlentherapie hinsichtlich Bildqualität und Konstanz der CT-Zahlen für verschiedene Kör-
perregionen und -größen optimiert. Anschließend wurde die patientenindividuelle DECT-
basierte Reichweitevorhersage kalibriert und ihre Genauigkeit in zwei Experimenten mit
bekannter Referenz unter Verwendung eines anthropomorphen Phantoms und von ho-
mogenen biologischen Geweben verifiziert. Die klinische Relevanz von DECT wurde in
einer retrospektiven Analyse von Krebspatienten mit Tumoren im Kopf, Becken oder Thorax
nachgewiesen. Die systematischen Reichweiteunterschiede zwischen DECT und dem klin-
ischen Standardverfahren konnten durch die Optimierung der Standardmethode basierend
auf zusätzlichen mit DECT erworbenen Patienteninformationen reduziert werden. Somit
wurde DECT erstmalig klinisch genutzt, um die Reichweiteberechnung zu verbessern. Die
patientenindividuelle DECT-basierte Reichweitevorhersage kann zusätzlich Gewebevari-
abilitäten innerhalb eines und zwischen Patienten berücksichtigen, wie für Kopftumorpa-
tienten gezeigt wurde. Dies legt den Grundstein für eine genauere Reichweiteberechnung
und eröffnet neue Möglichkeiten für die Reduktion klinischer Sicherheitssäume, in denen
die CT-bezogenen Unsicherheiten berücksichtigt sind.
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1 Introduction

An efficient diagnosis and treatment of cancer is a worldwide demanding task to overcome

the increasing number of cancer incidents and cancer-related mortality of millions of peo-

ple (Stewart and Wild, 2014). One important cornerstone is the individual prevention of

cancer disease by following evidence-based instructions and recommendations provided

by the World Health Organisation as a "world code against cancer" (Espina et al., 2018).

An additional pillar of cancer control is the development of techniques for both an early

tumour detection and high-precision treatment strategies. To account for the complexity of

the cancer genome and individual differences in carcinogenesis, the field of oncology aims

at targeted therapies to tailor the treatment to the individual requirements of each patient

(Moscow et al., 2017; Karczewski and Snyder, 2018). The individually targeted therapy of

more than 50% of all cancer patients would benefit from a contribution of radiotherapy as

determined by the European Society for Radiotherapy and Oncology (Lievens and Grau,

2012; Borras et al., 2015). Especially in this field, the synergy of technological improve-

ments in treatment conformity and accuracy as well as novel biological concepts tackling

differences in tumour radiation resistance and sensitivity allow for an increase of the thera-

peutic window (Baumann et al., 2016).

In radiation oncology, the clinical application of particle therapy using protons or heavier

ions such as carbons is promising to be the treatment of choice for most patients with

static and localised tumours due to the defined particle range in tissue (Bortfeld and Lo-

effler, 2017). To fully exploit the physical advantages of particle therapy, medical imaging

plays a vital role for the delineation of the targeted tumour region and especially for precise

and accurate dose calculation. However, uncertainties in treatment planning, specifically in

the predicted particle range, currently results in the irradiation of a margin encompassing

healthy tissue around the tumour. This margin corresponds approximately to 3.5% of the

target depth in beam direction, i.e. 7 mm for a tumour situated at 20 cm depth within the pa-

tient (Goitein, 1985; Paganetti, 2012b). A substantial amount of this uncertainty arises from

the dose calculation based on X-ray computed tomography (CT). Since the stopping power

1



1 Introduction

Figure 1.1: Schematic representation of proton range prediction using single-energy CT (SECT)
and dual-energy CT (DECT). A more accurate patient-specific range prediction using DECT might
allow for a reduction of clinical safety margins. This leads to a better sparing of healthy tissue as
illustrated in the dose difference between the DECT- and SECT-based treatment plan.

of protons, describing the mean energy loss of protons in tissue, cannot be fully derived

from X-ray attenuation, a heuristic conversion of CT numbers to proton stopping power is

clinically applied (Fig. 1.1). This method is not patient-specific and allows only for a limited

differentiation of the respective stopping power in soft tissues. For an improved material

differentiation and incorporation of patient-specific tissue variations, the acquisition of two

CT scans with different X-ray spectra, referred to as dual-energy computed tomography

(DECT), was suggested for proton therapy (Goitein, 1977). Based on the additional infor-

mation gathered by DECT, the proton stopping power can be obtained with only a small

empirical component, which might allow for an improved range prediction and thus smaller

clinical safety margins (Fig. 1.1). After DECT was proposed in the 1970s (Hounsfield, 1973),

its routine clinical application has been introduced to diagnostic radiology about 30 years

later (Flohr et al., 2006). In radiotherapy, however, no clinical application of DECT has been

reported until 2015 despite its potential advantages (van Elmpt et al., 2016).
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The aim of this thesis, carried out in the framework of a joint project between OncoRay

(Dresden, Germany) and the German Cancer Research Centre (Heidelberg, Germany)

within the National Centre for Radiation Research in Oncology in Germany, was the eval-

uation and quantification of the benefits of DECT for range prediction in proton therapy

and its translation into clinical application. For a detailed assessment of its clinical appli-

cability and potential for proton treatment planning, a comprehensive characterisation of

a DECT scanner was performed at first to optimise a CT scan protocol for radiotherapy

and calibrate the different CT-based stopping-power prediction methods (section 5). After-

wards, the clinical feasibility of DECT was investigated in a stepwise procedure starting

with a DECT-derived pseudo-monoenergetic CT (MonoCT) dataset ensuring the compat-

ibility with the treatment planning system and preserving the precision of proton range

prediction compared with single-energy computed tomography (SECT). Subsequently, the

accuracy of different approaches for CT-based stopping-power prediction were validated in

a ground-truth anthropomorphic head phantom, simulating the geometrical complexity of

patients, and homogeneous biological tissues, representing the tissue composition of hu-

mans (section 6). Finally, the clinical relevance of DECT-based stopping-power prediction

was evaluated in several cohorts including brain-tumour, prostate-cancer and lung-cancer

patients (section 7). Based on the experimental and clinical evidence, patient information

gathered by DECT were used for the first time to clinically adapt the range prediction in pa-

tients. Prior to these investigations, the physical principles of CT imaging (section 2), proton

therapy (section 3) and CT-based stopping-power prediction (section 4) are summarised.
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2 Physical Principles of Computed Tomography

Computed tomography is a medical imaging technique gathering three-dimensional (3D)

anatomical information using X-rays from various directions. This method was initially pro-

posed and technically implemented by Hounsfield (1973). For each projection angle φ, the

X-ray attenuation profile after traversing an object is determined by measuring the remain-

ing intensity Iφ (τ) of the polychromatic X-ray spectrum Ω (E) with an initial intensity I0

integrated over energy E.

Iφ (τ) = I0 ·
∫
E

Ω (E) · e−
∫

µ[E, rφ(τ)] dr dE (2.1)

Angle-specific projections contain the total attenuation along trajectories rφ (τ) with a per-

pendicular distance τ from the rotational axis at the isocentric plane. Based on this infor-

mation, dedicated image reconstruction algorithms provide the individual attenuation coef-

ficient µ of each volume element (voxel) within the field of view (FOV).

The attenuation coefficient µ varies with the mass density and stoichiometric composition

of the scanned material as well as the energy of the interacting photon. In general, µ can

be described as product of electron density ϱe and photon attenuation cross section per

electron σe.

µ (E,Z) = ϱe · σe (E,Z) = ϱe ·
[
σph

e (E,Z) + σcoh
e (E,Z) + σinc

e (E)
]

(2.2)

For the energy range typically used in diagnostic radiology (E < 200 keV), cross sections

of human tissues depend on three photon interaction processes (Rutherford et al., 1976;

Jackson and Hawkes, 1981):

• photoelectric effect with σph
e ∝ Z3.62/E3.3,

• coherent scattering with σcoh
e ∝ Z1.86/E2,

• incoherent scattering with σinc
e described by the Klein-Nishina formula (Heitler, 1954).

5



2 Physical Principles of Computed Tomography

Figure 2.1: Energy-dependent relative fraction of photoelectric effect, coherent and incoherent
scattering contributing to the attenuation coefficient of water, cortical bone (Woodard and White,
1986) and aluminium. Data is provided by Berger et al. (1990) in the XCom Photon Cross Sec-
tion Database of the National Institute of Standards and Technology, USA (NIST). Adapted from
Wohlfahrt (2014).

Further interactions with matter, such as pair productions and photonuclear reactions, only

arise for E > 1 MeV. Due to the different physical dependencies, the probability of each

interaction process varies with energy and atomic number Z (Fig. 2.1). For tissues, liquids

and other materials occurring in humans, the photoelectric effect dominates forE < 30 keV,

whereas incoherent scattering is the most frequent interaction for E > 30 keV.

Within the presented work, three different CT scanner models manufactured by Siemens

Healthineers (Forchheim, Germany) were used:

• two single-source CT scanners SOMATOM Definition AS,

Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus,

Dresden, Germany

• a dual-source CT scanner SOMATOM Definition Flash,

German Cancer Research Centre, Heidelberg, Germany

• a dual-source CT scanner SOMATOM Force.

Department of Diagnostic Radiology, University Hospital Carl Gustav Carus, Dresden,

Germany

In the following, technical features and the functionality of CT scanners will be described

exemplarily based on the models available in the participating institutions in Dresden and

Heidelberg, Germany.
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2.1 Image Acquisition

2.1 Image Acquisition

A single-source CT scanner consists of a rotating X-ray tube with an opposing detector sys-

tem. To improve the temporal resolution of cardiac CT imaging, a dual-source CT scanner

was developed, containing two X-ray tubes and detector systems with an angular offset of

approximately 95◦ (Flohr et al., 2006).

2.1.1 X-Ray Tube

X-ray spectra originate from a continuous energy spectrum induced by Bremsstrahlung and

a superimposed spectrum of characteristic X-ray emissions caused by photoelectric effect.

For the variety of clinical applications requiring an optimal tissue differentiation, X-ray tubes

should be highly efficient and allow for an individual adjustment of tube voltage and cur-

rent to define the maximal energy and number of emitted X-rays, respectively. To generate

X-ray spectra appropriate for diagnostic purposes, a rotating envelope tube was designed

(e.g. Straton R⃝ X-ray tube used in CT scanners Definition AS and Flash), which includes a

tungsten cathode for electron emission, electromagnetic coils for electron beam deflection

and focusing as well as an anode disk with a focal-spot track made of tungsten and rhe-

nium (Schardt et al., 2004). This concept allows for a sufficient cooling of X-ray tubes due

to the direct contact of the anode surface with the cooling fluid. Low-energy photons are

completely (E < 20 keV) or partly absorbed by the tube exit window consisting of beryllium

or titanium, a wedge and bowtie filter as well as additional pre-filtering materials (e.g. alu-

minium, tin, gold) leading to typical clinical X-ray spectra (Fig. 2.2).

Pre-patient collimators limit the longitudinal beam extension (Kachelrieß et al., 2006a). The

spatial resolution in each direction is improved by a periodic motion of the focal spot on the

anode in longitudinal direction (z-flying focal spot), which doubles the amount of projections

(Flohr et al., 2004; Flohr et al., 2005). Furthermore, aliasing artefacts in terms of hyper-

and hypodense "windmill" structures at high-density gradients (e.g. bone edges) in hetero-

geneous regions are suppressed by an increased sampling (Kachelrieß et al., 2006a).

With current state-of-the-art X-ray tubes (e.g. VectronTM used in the CT scanner Force), a

high tube power (120 kW) with currents up to 1300 mA and voltages from 70 kV to 150 kV

in 10 kV steps can be clinically applied while maintaining the size of the focal spot (Meinel

et al., 2014; Meyer et al., 2014).

7



2 Physical Principles of Computed Tomography

Figure 2.2: X-ray spectra of three commercial CT scanners normalised to the total number of pho-
tons. A tube voltage of 120 kV (green) is commonly used in single-energy mode and different com-
binations of low (light to dark blue) and high voltages (orange to red) can be applied in dual-energy
mode depending on the capability of the CT scanner. Tin (Sn) as additional pre-filtering material is
used to further harden the X-ray spectrum. Data provided by Siemens Healthineers.

2.1.2 Detector System

At the beginning of CT imaging, gas-filled (e.g. Xenon) multi-channel ionisation chambers

were used to convert X-ray spectra into electric charge. To improve the overall detector ef-

ficiency and spatial resolution, solid-state detectors consisting of ceramic scintillators (e.g.

gadolinium oxysulfide as basis for Ultra Fast Ceramics, UFCTM, used in the CT scanner Def-

inition AS) with a high X-ray absorption, short decay time and low afterglow were introduced

(Fuchs et al., 2000). The visible light generated by scintillators is converted into electric cur-

rent by a photodiode array and then digitised by analog-to-digital converters. The electronic

noise, resulting from this multi-step conversion on separate electronic boards, could be re-

duced by combining all components in one (e.g. Stellar detector in CT scanners Definition

Flash and Force). In combination with collimation grids aligned to the detector elements

(1.2 mm pixel size), which effectively suppress photon scattering, high-resolution CT scans

with a slice thickness of 0.5 mm can be generated (Ulzheimer and Freund, 2011).

The next detector generation will be composed of semiconductors such as cadmium tel-

luride, which directly convert X-rays into electric charge dependent on the respective energy

(Ulzheimer and Kappler, 2017). These photon-counting detectors allow for discriminating

X-ray spectra in several energy bins and thus provide energy-resolved attenuation informa-

tion for material characterisation. The image quality and quantitative accuracy is currently

assessed with a close-to-clinical prototype scanner (Yu et al., 2016; Leng et al., 2017).

8



2.2 Image Reconstruction

2.1.3 Acquisition Mode

CT acquisition for diagnostic purposes in radiotherapy can be performed by selecting one of

three different frequently used scan modes: sequential, spiral or time-resolved respiratory

four-dimensional (4D) acquisition.

Sequential Acquisition

A sequential CT scan is a collimation-wise acquisition mode without couch movement dur-

ing rotation of the imaging system. After X-ray acquisition, the couch is automatically moved

to the next slice position. This stepwise procedure is repeated until the whole scanning re-

gion is covered.

Spiral Acquisition

The spiral mode comprises a continuous X-ray acquisition with simultaneous couch move-

ment gathering volumetric attenuation information along a spiral-shaped track. The auto-

matic couch feed per full rotation and axial distance covered by the detector (pitch) can be

set individually, mostly between 0.5 and 1.0.

Time-Resolved Respiratory 4D Acquisition

In addition to a spiral CT scan with a small pitch of approximately 0.1, an external motion

surrogate signal is recorded. For examinations within the thoracic region, breathing patterns

of patients can be detected by spirometry, a pressure belt or infrared tracking systems (e.g.

positioned onto the patient’s abdomen). Such a surrogate signal representing the respira-

tion during CT acquisition allows for a retrospective time-resolved CT image reconstruction

including only X-ray projections of a specific respiratory phase obtained from a relative local

amplitude-based binning per motion cycle.

2.2 Image Reconstruction

Based on the X-ray attenuation measured for a variety of projection angles covering at least

180◦ in parallel-beam geometry, a spatially precise 3D image dataset of the scan object can

be reconstructed. The respective attenuation coefficient µ of each CT voxel represents its

9



2 Physical Principles of Computed Tomography

material composition and is expressed as CT number H in Hounsfield unit (HU) to assure

the comparability and reproducibility between CT scanners.

H = µ − µwater

µwater − µair
· 1000 ≈

(
µ

µwater
− 1

)
· 1000 with µair ≪ µwater (2.3)

A Hounsfield scale ranging from -1024 HU to 3071 HU (12 bit encoding) is commonly used

in clinical applications of radiology and radiotherapy. This is sufficient to differentiate human

tissue, but often not enough for materials with a high effective atomic number (e.g. metals

and tooth implants). In such cases, a 16 bit encoding can be applied to increase the maxi-

mal feasible CT number.

Algorithms for analytical image reconstruction, which have been applied since the advent

of clinical CT imaging, are based on filtered back projection (FBP) in parallel-beam ge-

ometry (Ramachandran and Lakshminarayanan, 1971). The continuous development of

CT systems to satisfy the clinical demands regarding temporal and spatial resolution led

to refinements in FBP algorithms, which are compelled to consider the gradual transition

from sequential fan-beam to spiral fan-beam to finally cone-beam CT acquisition in multi-

slice CT scanners (Kachelrieß et al., 2004). To further improve image quality with respect

to image artefacts and noise, iterative reconstruction algorithms were clinically introduced

(Hsieh et al., 2013).

2.2.1 Filtered Back Projection

Current CT scanners in radiology and radiotherapy are typically equipped with a detector

array covering a circular arc and thus gather projections in fan-beam geometry. Since par-

allel projections in the axial plane are convenient for CT image reconstruction, the projec-

tions measured in fan-beam geometry are transaxially rebinned and transferred to parallel

rays. This three-step conversion comprises an azimuthal, longitudinal and radial rebinning

(Kachelrieß et al., 2004). The resulting parallel X-ray projections ψ|| (φ̃, τ̃) correspond to the

Radon transform R (Radon, 1917) of µ (r̃):

ψ|| (φ̃, τ̃) = ln
I|| (φ̃, τ̃)

I0
= R

[
µ (r̃)

]
. (2.4)

To derive the distribution of attenuation coefficients µ (r̃), the projections are convolved

with a convolution or reconstruction kernel k (τ̃) followed by a weighted FBP, which is a

10



2.2 Image Reconstruction

close approximation of the inverse Radon transform R−1. The weighting function w (φ̃)

normalises the contributions to 180◦.

µ (r̃) =
π∫

0

[
ψ|| (φ̃, τ̃) ∗ k (τ̃)

]
w (φ̃) dφ̃ (2.5)

In theory, k is the inverse Fourier transform of the ramp filter F−1K (ν) = F−1|ν|, a high-

pass filter suppressing low frequencies to consider each frequency ν with respect to its

intrinsic relative fraction. However, the projections are only measured at discrete positions,

which requires a limitation of the frequency band by an additional filter, e.g. a Shepp-Logan

filter (Shepp and Logan, 1974). Furthermore, the spatial resolution and image noise can

be adjusted with such a filter.

FBP needs less computational effort compared to an iterative reconstruction, but has to

make a compromise between spatial resolution and image noise. It is also prone to image

artefacts (e.g. streak artefacts) induced by deviations from the cone-beam geometry or

the equal weighting of projections without considering the respective number of photons

detected for each projection.

2.2.2 Iterative Reconstruction

The limitations of FBP can be addressed by iterative reconstruction including a model of

all components integrated in a CT scanner (e.g. X-ray tube and detector system). An iter-

ative reconstruction starts typically with a CT dataset previously reconstructed using FBP

and continues with minimising a cost function until a high conformity between projections

derived from the reconstructed image and measured projections is reached. Within each

iteration, the intermediate CT images are forward projected to create projections simulating

X-ray attenuations based on the computational modelling of the CT system. Subsequently,

the difference between calculated and measured projections is computed, reconstructed

by FBP (correction image) and finally added to the current intermediate CT dataset. These

steps are repeated until the cost function converges, which results in a reduction of image

noise and geometrical artefacts induced by spiral acquisition (Hsieh et al., 2013).

A statistical iterative reconstruction method, referred to as Sinogram Affirmed Iterative Re-

construction (SAFIRE), was developed (applicable in CT scanners Definition AS and Flash)

containing a CT system modelling in forward projection, projection-based correction and

11
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Figure 2.3: DECT-derived 50 keV MonoCT dataset of a brain-tumour patient reconstructed using
FBP and SAFIRE with different strength settings. The reconstruction kernels of similar type D34 and
Q34 were applied for FBP and SAFIRE, respectively. The application syngo.CT DE Monoenergetic
Plus of the Siemens image post-processing software syngo.via was used for MonoCT generation.

statistical modelling in the image domain for noise reduction (Grant and Raupach, 2012).

Different SAFIRE strength settings from 1 to 5 can be applied to select the desired noise

level (Fig. 2.3). This method was extended by statistical weighting of projections with re-

spect to their statistical quality (Ramirez-Giraldo et al., 2016) and introduced as Advanced

Modelled Iterative Reconstruction (ADMIRE) for the CT scanner Force.

2.2.3 Image Correction Algorithms

The use of prior knowledge about several physical processes and the well-known perfor-

mance of the CT system, which is already incorporated in image correction algorithms,

clearly improves the geometrical accuracy and robustness of CT imaging (Hsieh, 2015).

Beam Hardening Correction

When traversing an object, the initial X-ray intensity reduces and low-energy photons of the

spectrum are preferably absorbed. This non-linear effect, referred to as beam hardening,

leads to an increased mean energy and eventually reduced attenuation coefficient with in-

creasing penetration depth. Accordingly, the CT number decreases within a homogeneous

object from edge to centre and so-called cupping artefacts occur in CT images. To con-

sider this effect, a water-based beam hardening correction (BHC), assuming a scan object

solely consisting of water, is commonly integrated in CT reconstruction kernels (Herman,
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2.2 Image Reconstruction

Figure 2.4: Image-based algorithm for beam hardening correction (BHC) concerning bone included
in the reconstruction kernels D34 and Q34. A segmentation of metal and a metal-based BHC is
applied in algorithms for metal artefact reduction.

1979; Kachelrieß et al., 2006b). Nevertheless, beam hardening depends on the X-ray spec-

trum and elemental composition of the materials traversed. Since photoelectric absorption

is strongly increased in materials with higher effective atomic number (EAN) than water,

the influence of beam hardening can be only partly corrected by standard BHC. To further

reduce beam hardening effects, specific reconstruction kernels (e.g. D34 and Q34) contain

an additional BHC concerning bones (Kyriakou et al., 2010).

The BHC algorithm integrated in D34/Q34 performs a stepwise correction. After water pre-

correction, bones are separated in the image domain with a predefined threshold value

depending on the X-ray spectrum. To quantify the contribution of bones to the X-ray attenu-

ation of each projection, the water-corrected non-segmented and bone-only CT images are

forward projected to derive artificial projections for the full and bone-induced attenuation,

respectively. Subsequently, a two-material decomposition (water and bone) is applied to

correct each projection with respect to the relative fraction of water and bone. Finally, the

water- and bone-corrected CT dataset is reconstructed (Fig. 2.4).

Metal Artefact Correction

Metal artefacts originate from a combination of effects like beam hardening, photon scat-

tering and starvation as well as data undersampling at sharp high-density gradients. First
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algorithms for metal artefact reduction were clinically applied in the early stages of CT (Hin-

derling et al., 1979; Kalender et al., 1987). Extensive research within the last decades led to

further developments of clinical applications, which pursue different strategies comprising

improved CT acquisition, physics-based correction, projection completion, iterative recon-

struction and incorporation of prior knowledge (Gjesteby et al., 2016).

In the following, the principal functionality of the Iterative Metal Artefact Reduction (iMAR)

algorithm is explained (Kachelrieß and Krauss, 2015), which is available on CT scanners

Definition AS, Flash and Force. First, the metal is detected by thresholding in the image

domain and then a BHC for metal is applied (Fig. 2.4). The iterative process starts with the

forward projection of a prior image, where all voxels of soft tissue and metal are overrid-

den with 0 HU. The measured projections are divided by the calculated projections derived

from the prior image for normalisation and linear interpolation of high-attenuation regions

to remove unreliable projections affected by metals. Subsequently, these linearly modified

projections are denormalised to substitute metal regions within the measured projections

after BHC. The mixed projections are reconstructed, low-pass filtered and combined with

the high-pass filtered original image to renew potentially missing textures. These steps are

repeated up to 6 times to obtain the finally corrected CT dataset (Fig. 2.5).

Figure 2.5: DECT-derived 170 keV MonoCT dataset of a patient with dental fillings or hip implants
reconstructed using SAFIRE (Q34/5) only (top) or in combination with iMAR (bottom). The applica-
tion syngo.CT DE Monoenergetic Plus of syngo.via was used for MonoCT generation.
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2.3 Dual-Energy Computed Tomography

Scatter Correction

Despite collimation grids attached to the detector array, coherently and incoherently scat-

tered photons can increase the intensity measured by a detector element. This effect in-

creases with object size and slice thickness leading to cupping artefacts in large homoge-

neous scan objects or low-attenuated regions close to high-attenuation materials. To con-

sider the influence of X-ray scattering on the detector signal, the scatter contribution has to

be determined and subtracted from the measured intensity. The scatter distribution for the

specific geometry of a CT scanner can be obtained from measurements or simulations of

pencil beams using tabulated cross sections of photon scattering (Ohnesorge et al., 1999).

2.3 Dual-Energy Computed Tomography

Conventional CT imaging with one X-ray spectrum (SECT) was optimised over the last

decades regarding dose deposition, geometrical accuracy, quantitative imaging, tissue con-

trast and image noise. However, the large variation in tissue composition within one patient

and between patients (Woodard and White, 1986) cannot be sufficiently resolved and quan-

tified. Due to the energy-dependent contribution of photon interactions, additional informa-

tion about human tissues can be gathered by two CT scans of different X-ray spectra,

allowing for a better material differentiation (Hounsfield, 1973). With the advent of clinical

DECT scanners (Flohr et al., 2006), this technique has been frequently used for various

applications in diagnostic radiology (Kaup et al., 2016; Lestra et al., 2016). While benefits

of DECT for treatment planning with photons, protons or heavier ions are also widely ex-

pected and DECT is part of intensive radiotherapy research, applications in clinical routine

are currently limited (van Elmpt et al., 2016).

Nowadays, several technical implementations for DECT imaging are provided by CT ven-

dors. Both CT scans can be acquired simultaneously with a dedicated dual-source DECT

scanner (Flohr et al., 2006). Since such DECT scanners with a gantry opening of approx-

imately 80 cm are limited in radial space for two rotating detector systems providing the

full FOV of 50 cm, the DECT information is only available within a FOV of 30-35 cm. For

applications in radiotherapy, a FOV of 50 cm is typically required to cover the patient with

immobilisation devices in anatomical regions such as thorax, abdomen or pelvis. Hence, a

single-source CT scanner can be used to acquire both CT scans
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• consecutively (dual-spiral), i.e. two separate CT scans directly one after the other

(Hounsfield, 1973; Wohlfahrt et al., 2017b),

• almost simultaneously by continuous fast voltage switching (Kalender et al., 1986),

• simultaneously by a dual-layer detector (Heismann et al., 2004), or

• simultaneously by a split-beam filter (Almeida et al., 2017).

Dual-spiral DECT acquisition is practically feasible with commonly applied CT scanners

in radiotherapy and profits from an independent tube current modulation and appropriate

selection of X-ray spectra to increase the energy separation between both single DECT

scans. However, this approach is prone to uncertainties induced by patient motion during

image acquisition (e.g. breathing, swallowing, heartbeat, gastro-intestinal peristalsis), be-

cause motion-related changes in patient anatomy hamper the image post-processing of

dual-spiral DECT scans.

2.3.1 Monoenergetic CT Imaging

To satisfy the demands for each individual clinical use case, pseudo-monoenergetic CT

(MonoCT) datasets of various energies Emono ranging from 40 keV to 190 keV can be de-

rived from DECT scans to select the desired tissue contrast (Fig. 2.6).

Figure 2.6: DECT-based MonoCT datasets of different X-ray energy calculated with the application
syngo.CT DE Monoenergetic Plus of syngo.via. Images were reconstructed using Q34 and SAFIRE
of maximal strength.
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2.3 Dual-Energy Computed Tomography

An energy-dependent weighted sum of the low- (Hlow) and high-energy (Hhigh) DECT scan

yields a MonoCT dataset (Kuchenbecker et al., 2015).

H (Emono) = α (Emono) Hlow +
[
1 − α (Emono)

]
Hhigh (2.6)

The weighting factor α (Emono) depends on the tube voltage combination, detector design

and beam hardening correction included in reconstruction kernels. A scanner-specific cali-

bration is thus inevitable. For MonoCT generation, the two applications syngo.CT Monoen-

ergetic imaging (syngo.Mono) and syngo.CT DE Monoenergetic Plus (syngo.MonoPlus)

are provided in the Siemens image post-processing software syngo.via. Syngo.MonoPlus

is a further development of syngo.Mono, including a noise-suppression algorithm based on

multi-band filtering (Grant et al., 2014; Schabel et al., 2014; Albrecht et al., 2015). To en-

sure voxelwise computations for dual-spiral DECT scans, a deformable image registration

(DIR) is integrated in both applications by default.

2.3.2 Determination of Electron Density and Effective Atomic Number

DECT can also be used to predict material parameters, such as electron density relative

to water (RED or ϱ̂e) and effective atomic number (EAN or Zeff), which mainly influence X-

ray attenuation. Many algorithms are proposed for DECT-based RED/EAN determination

(Brooks, 1977; Heismann et al., 2003; Saito, 2012; Landry et al., 2013; Hünemohr et al.,

2014; Saito and Sagara, 2017a). As recently demonstrated by Möhler et al. (2018b), all

stated approaches are mathematically equivalent and can be transferred to the equations

of Brooks (1977) by simple arithmetic conversions. The methods differ only in the num-

ber of calibration parameters, which do not seem to have a major effect on the prediction

accuracy. However, the practical calibration procedure (CT scan parameter, measurement

setup, materials used) can have a substantial impact on the performance and robustness

(Möhler et al., 2017).

The application syngo.CT DE Rho/Z (syngo.RhoZ) included in syngo.via (Hünemohr et al.,

2014) calculates RED based on a linear superposition of both DECT scans according to

eq. 2.6 with the appropriate weighting factor αϱ.

(ϱ̂e − 1) · 1000 HU = αϱHlow +
(
1 − αϱ

)
Hhigh (2.7)
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For arbitrary mixtures of human tissues (excluding high-Z elements, e.g. iodine in thyroid),

an accurate and robust RED determination is achievable with a maximum methodological

uncertainty below 0.2% (Möhler et al., 2017).

EAN follows from

Zn
eff = 1

ϱ̂e
·

⎡⎣αZ

(
Hlow

1000 HU
+ 1

)
+
(
Zn

eff, water − αZ

)( Hhigh

1000 HU
+ 1

)⎤⎦ (2.8)

with αZ as an additional calibration parameter and n = 3.1 as Mayneord’s exponent (May-

neord, 1937) derived from photon absorption simulations.
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Particle irradiation using protons or heavier ions benefits from the inverse depth-dose profile

compared to conventional radiotherapy with photons. It is characterised by a narrow dose

peak (Bragg peak) with a steep distal fall-off close to the finite penetration depth (Fig. 3.1 A).

As exemplarily illustrated in Fig. 3.1 C, the physical behaviour of protons or heavier ions

can contribute to high tumour coverage while sparing organs at risk more effectively than

photons (van de Water et al., 2011; Nichols et al., 2012; Jakobi et al., 2015).

Figure 3.1: (A) Depth-dose distribution of 15 MV photons (green), 135 MeV protons (dark blue) and
multi-energy protons (light blue) forming a SOBP to cover the tumour (red). (B) Tissue variations
in beam direction (yellow) decrease (higher density, e.g. bone) or increase (lower density, e.g. air)
the proton range, leading to reduced (raised) dose within the tumour (healthy tissue). (C) Dose
distribution of a photon (top) and proton (bottom) treatment plan.
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In the continuous slowing down approximation, the range R of protons is defined by its

initial energy E0 and the material-specific energy-dependent stopping power S.

R =
0∫

E0

1
S (E) dE =

E0∫
0

1
dE(x)/dx dE (3.1)

The stopping power in matter describes the mean energy loss of protons per unit path

length, S = −
(
dE/dx

)
. Since the energy loss of protons is a statistical process, a single

proton can deviate from the average range (energy straggling). To cover the entire tumour

region in depth, a spread-out Bragg peak (SOBP) is formed by a well-conceived combina-

tion of protons with various energies. For clinically relevant proton energies up to approx-

imately 300 MeV, the stopping power is dominated by inelastic collisions with electrons,

whose contribution is at least 3 orders of magnitude larger than the respective amount of

radiative stopping and nuclear interactions (Das and Paganetti, 2015). Hence, the stopping

power can be expressed by the approximated Bethe formula (Bethe, 1930; ICRU, 1993):

S = k0
z2

β2 ϱe L (β, I) ≈ k0
z2

β2 ϱe

⎡⎣ln
(

2mec
2 β2

1 − β2

)
− β2 − ln I

⎤⎦ (3.2)

with the constant k0 = 5.1 · 10−25 MeV cm2, the projectile charge z and relativistic velocity

β, the stopping number L, the rest energy of electronsmec
2 and the mean excitation energy

I, also referred to as I-value. Range prediction in a treatment planning system (TPS) relies

on voxelwise computation of stopping-power ratio (SPR, Ŝ), which only depends on relative

electron density ϱ̂e and stopping number (RSN, L̂).

Ŝ = S

Swater
= ϱ̂e L̂ (β, I) = ϱ̂e

ln
(
2mec

2 β2

1−β2

)
− β2 − ln I

ln
(
2mec2 β2

1−β2

)
− β2 − ln Iwater

(3.3)

An accurate SPR determination is essential, because the SPR of protons is sensitive to

tissue properties and anatomical variations in beam direction, which may lead to a reduced

tumour coverage and/or increased dose within the surrounding healthy tissue (Fig. 3.1 B).

Several treatment techniques and strategies to handle uncertainties in proton therapy are

described in the following. For information beyond the scope of this thesis, readers are re-

ferred to Paganetti (2012a), Das and Paganetti (2015), and Newhauser and Zhang (2015).
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3.1 Treatment Techniques

Clinical accelerators are required to provide protons of therapeutic energy reaching a pene-

tration depth in water of up to 30 cm (approximately 220 MeV). Current proton and ion ther-

apy facilities are equipped with a synchrotron, isochronous cyclotron or synchrocyclotron.

In synchrotrons, proton bunches are circularly accelerated to the desired energy by varying

the magnetic field of the deflection magnets and the radio frequency within the accelera-

tion cavity according to the increasing proton energy. Clinical isochronous cyclotrons are

configured to accelerate protons up to a fixed energy of approximately 230-250 MeV. To

account for relativistic effects during acceleration, the orbital frequency can be maintained

with a radially increasing magnetic field in spiral-shaped magnets for axial focusing. Alter-

natively, the radio frequency can be decreased with radius as realised in synchrocyclotrons,

which results in a pulsed proton beam. Since the energy of cyclotron-accelerated protons

is fixed, an energy selection system is necessary after beam extraction to decelerate pro-

tons to their desired energy. It consists of a wedge degrader composed of graphite or lucite

followed by a magnetic bending system with divergence slits for energy restriction.

Finally, the proton beam is transported to the treatment room using an evacuated pipe

with continuous focusing by magnets. Further beam preparation takes place within the

treatment room to shape the treatment field in lateral and longitudinal direction for optimal

tumour coverage. Two dose delivery techniques are currently applied in proton therapy –

passive scattering and pencil beam scanning (Das and Paganetti, 2015).

3.1.1 Passive Scattering

To treat the entire target volume at once, the lateral spread of the narrow proton beam with

a full width at half maximum (FWHM) of about 1 cm can be increased by additional scatter

materials in beam direction before entering the patient. Inserting a foil of a high-density

material, e.g. lead or tungsten, results in an almost Gaussian-shaped lateral proton distri-

bution with a FWHM of several cm. The centre of the distribution is cut by a brass collimator

with small aperture and used for small-field therapeutic irradiations (e.g. ocular melanoma).

The beam intensity of this so-called single scattering technique is thus reduced and only

a small fraction (few per cent) reach the patient. For larger tumour regions, the double

scattering technique can be applied. A second scatterer is inserted consisting of a roughly
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Gaussian-shaped high-density material (e.g. lead or tungsten) and a material of lower den-

sity (e.g. lucite) with an almost inverted shape, causing the same energy reduction as the

high-density material. This leads to a flat lateral intensity profile (10-30% of initial intensity).

The longitudinal target extension is considered by energy modulation using e.g. a rotating

wheel with steps of variable thickness. Since the width of the resulting SOBP corresponds

to the maximal target extension in beam direction, healthy tissue in front of a thinner target

area still receives high dose. A patient-specific collimator with an aperture composed of

brass conforms the proton beam to the individual tumour shape in lateral direction. The

distal field shaping is realised by a lucite compensator of varying thickness with respect to

the water-equivalent thickness (WET) in beam direction (Das and Paganetti, 2015).

Analytical dose calculation algorithms are applied in current TPS for passively scattered

proton beams. For an initial dose estimation, a fast broad beam algorithm is often used

by default. Based on ray tracing in beam direction (Siddon, 1985), the WET of beam paths

within the patient is determined. Depth-dose profiles measured in a water phantom with the

range corresponding to the obtained WET are selected and combined to a 3D dose distribu-

tion. Since such models cannot adequately consider the influence of multiple Coulomb scat-

tering in heterogeneous regions and field-shaping devices, pencil beam algorithms were

introduced for proton dose calculations. These methods distinguish between a central-axis

and off-axis contribution. The central-axis expression equals the broad beam algorithm with

a quadratic correction term including the distance from the patient surface. The off-axis con-

tribution is estimated by a Gaussian distribution with respect to multiple Coulomb scattering

originating from each field-shaping device and the patient (Hong et al., 1996). All passively

scattered proton dose distributions investigated in this thesis are calculated with this pencil

beam algorithm implemented in the TPS XiO (Elekta AB, Stockholm, Sweden).

3.1.2 Pencil Beam Scanning

For pencil beam scanning, the narrow proton beam is deflected by two magnets in a plane

perpendicular to the beam direction to scan the target region (Lomax, 1999). In contrast to

passive scattering, the initial beam intensity is almost completely used for dose delivery in

patients. Proton pencil beams of equal energy are collected in a single energy layer. Each

layer is then irradiated sequentially, starting with the highest energy until the target region

is completely covered in lateral and longitudinal direction. Since the beam transport of pro-
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tons with energies smaller than 70-100 MeV cannot be efficiently processed, an additional

range shifter (usually of lucite) is inserted in front of the patient to enable treatments of

superficial targets (e.g. localised in the head-and-neck region).

Dose distributions for pencil beam scanning are optimised by a cost function according to

predefined objectives for the target region and organs at risk (OARs). After the manual

definition of beam angles, an optimisation algorithm calculates the pencil-beam spot posi-

tions and its respective number of protons. Treatment fields can be optimised individually

(single-field optimisation), resulting in a homogeneous dose distribution for each field, or

collectively (multi-field optimisation), leading to inhomogeneous dose distributions for sin-

gle fields, which are homogeneous in combination (Lomax et al., 2001). Consequently, a

highly conformal tumour coverage can be achieved. However, these techniques are asso-

ciated with an increased sensitivity to uncertainties induced by intra- and inter-fractional

variations in patient anatomy and positioning as well as deviations in dose calculation and

delivery (Lomax et al., 2004; Unkelbach et al., 2007; Lomax, 2008a; Lomax, 2008b).

In current commercial TPS, analytical dose calculation algorithms are mostly applied for

pencil beam scanning, e.g. Soukup et al. (2005) in XiO. Since the accuracy of such algo-

rithms is limited in heterogeneous anatomical regions, the application of Monte Carlo al-

gorithms can contribute to reduce deviations caused by multiple Coulomb scattering (Urie

et al., 1986; Fippel and Soukup, 2004). Recently, a simplified and fast Monte Carlo dose

calculation engine was developed and introduced in the TPS RayStation 6.0 (RaySearch

Laboratories, Stockholm, Sweden) for clinical use (Saini et al., 2017).

3.2 Uncertainties in Proton Therapy

Due to the physical characteristics of charged particles, dose deposition in proton therapy is

highly sensitive to uncertainties. For each step in the radiotherapy chain, several strategies

have been developed to incorporate and reduce their influence on the treatment outcome.

3.2.1 Sources of Uncertainty

To assure reliable proton treatments of appropriate accuracy and precision, uncertainties

originating from numerous sources during treatment preparation or within the course of

treatment are thoroughly assessed (Urie et al., 1991; van Herk, 2004; Baumann et al.,
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2016). In addition to the uncertainty arising from assumptions in analytical dose calculation

(section 3.1), various sources of uncertainty are summarised in the following and their

impact on the intended proton dose distribution and treatment response is discussed.

Range Prediction

Treatment planning commonly relies on SECT scans owing to its high geometrical fidelity,

quantitative reliability and fast acquisition time. For dose calculation, the anatomical in-

formation of patients derived from CT require a conversion into proton stopping power to

consider the different interaction processes of X-rays and protons (Chen et al., 1979), as

described in section 4.1. The typically applied heuristic CT-number-to-SPR conversion, re-

ferred to as Hounsfield look-up table (HLUT), can be optimised to fit human tissue, but

non-tissue materials like polymers, contrast agents or metals often widely deviate from the

HLUT (Jäkel et al., 2001). Furthermore, human tissues reveal large variations in elemental

composition within one patient and between patients (Woodard and White, 1986; White

et al., 1991), which cannot adequately be covered by any generic HLUT. In current clinical

practice, the impact of CT-related uncertainties on proton range are assessed with 1-4%

(Schaffner and Pedroni, 1998; Moyers et al., 2001; Yang et al., 2010; Paganetti, 2012b).

Target Delineation

Different imaging modalities, comprising CT, positron emission tomography and magnetic

resonance imaging, are commonly used to identify, localise and delineate the gross tumour

volume (GTV) and its associated clinical target volume (CTV), including micro- and macro-

scopic tumour extensions, as well as surrounding OARs (Troost et al., 2015). An accurate

target definition provides the basis for treatment planning, but often lacks patient-specific

CTV margins (Apolle et al., 2017) and is prone to intra- and inter-observer variability (Sharp

et al., 2014). The delineation uncertainty directly transfers into an under- and over-dosage

of tumour and healthy tissue, respectively.

Intra- and Inter-Fractional Variation

Dose deposition in patients can be affected by daily variations in machine delivery and pa-

tient positioning (Lowe et al., 2016), anatomical changes within a single treatment fraction,

24



3.2 Uncertainties in Proton Therapy

e.g. induced by gastro-intestinal peristalsis, swallowing, oesophageal or respiratory motion

(Bert and Durante, 2011), or during the overall course of treatment, e.g. tumour shrinkage,

swelling of healthy tissue and patient weight loss (Stützer et al., 2017a). Consequently, the

proton dose distribution delivered for weeks in numerous single fractions very likely differ

from the desired one planned before start of treatment.

Biological Effect

The physical energy deposition of proton irradiation is associated with biological effects

on cellular level, causing damages to cellular structures such as double-strand breaks in

deoxyribonucleic acid. This radiation-induced biological effect depends on the spatial dis-

tribution of interactions leading to an energy deposition. Since protons have a larger linear

energy transfer (LET) than photons, i.e. protons transfer on average more energy per unit

path length to the traversed medium, the cellular damage caused by protons is more se-

vere (Goodhead et al., 1993; Holley and Chatterjee, 1996; Rydberg, 1996). To specify the

influence of different radiation types on biological damages, the relative biological effective-

ness (RBE) was introduced and thoroughly investigated (Paganetti et al., 2002; Lühr et al.,

2017b). In current proton treatment planning, a constant RBE of 1.1 is assumed. Hence,

the physical dose of protons is reduced by 10% to achieve the same biological effect as

photons. Based on such dose response relations, the tumour control probability and nor-

mal tissue complication probability can be assessed to estimate the potential benefit for

each patient using proton instead of photon therapy (Langendijk et al., 2013; Jakobi et al.,

2015; Lühr et al., 2017a). However, several studies have shown that the RBE of protons in-

creases with depth in a SOBP from approximately 1.1 in the entrance region up to 1.35 and

1.7 at the distal edge and fall-off, respectively (Paganetti, 2014). This may be considered in

future RBE-optimised proton treatment planning.

3.2.2 Management and Minimisation

Uncertainties in proton therapy are currently tackled by different approaches from treatment

planning to online dose tracking. In this context, imaging during the course of treatment

gains importance for patient positioning and early plan adaptation. Furthermore, range ver-

ification methods were developed to monitor the dose delivery of each fraction and to detect

potential proton range shifts caused by anatomical variations.
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3 Physical Principles of Proton Therapy

Patient Positioning

A reproducible and precise patient positioning in each fraction is inevitable for a reliable

delivery of the planned dose distribution. Depending on the treatment site, several immo-

bilisation devices attached to the patient surface, e.g. a patient-individually shaped vacuum

cushion and thermoplastic mask, as well as inserted in cavities, such as a water-filled rec-

tum balloon, are used to prevent misalignment and organ motion, respectively. Current

patient positioning in proton therapy is still mostly based on orthogonal X-ray imaging. If

clinically indicated, fiducial markers are implanted in the target region (e.g. prostate) for

its better visibility. However, to meet the requirements of a highly conformal proton therapy

with an efficient adaptive clinical workflow, further imaging techniques, such as cone-beam

CT and diagnostic in-room CT-on-rails, are available in new proton facilities, allowing for

continuous tracking of anatomical changes and regular adaptive replanning if required.

Treatment Margins and Robust Optimisation

Remaining uncertainties are considered as safety margins in proton treatment planning.

The generation of a planning target volume (PTV), assigning an isotropic margin to the

CTV, is often not appropriate, because the range uncertainty in beam direction induced by

CT-number-to-SPR conversion or anatomical changes outweighs the uncertainty for lateral

beam shaping. Therefore, beam-specific proximal and distal safety margins are commonly

applied in passive scattering (Moyers et al., 2001; Paganetti, 2012b; Schuemann et al.,

2014). However, the PTV concept has been used standardly for pencil beam scanning,

because an individual consideration of uncertainties for each spot could not be performed

within a TPS.

To replace clinically applied PTV margins in pencil beam scanning, robust optimisation

techniques were developed and validated (Fredriksson et al., 2011; Li et al., 2015; Van

Der Voort et al., 2016; Stützer et al., 2017b). These approaches incorporate the patient

setup uncertainty still remaining after image-based adjustment of the patient position as

well as the uncertainty of CT-based range prediction in proton treatment planning. Different

treatment scenarios are simulated by varying combinations of setup and range uncertainty

and used in an optimisation algorithm to calculate a treatment plan still fulfilling the clinical

treatment goals under these certain conditions.
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3.2 Uncertainties in Proton Therapy

Range Verification

Range verification with a clinically appropriate accuracy of 1-2 mm is highly challenging,

since protons stop within the patient and a direct measurement is currently not feasible

during treatment. Hence, several techniques have been developed and evaluated under

clinical conditions, measuring secondary particles emitted during proton irradiation. One

approach uses the spatial distribution of positron-emitting nuclei for in vivo range verifica-

tion (Enghardt et al., 1992; Enghardt et al., 1999; Nischwitz et al., 2015). Three further

techniques are based on detecting prompt-gamma rays emitted during proton treatment:

prompt-gamma imaging (Smeets et al., 2012; Richter et al., 2016), spectroscopy (Verburg

and Seco, 2014; Verburg et al., 2015) and timing (Golnik et al., 2014; Pausch et al., 2016).

At baseline, additional proton transmission measurements can be performed for position-

ing and validating CT-based range prediction (Schneider and Pedroni, 1995; Farace et al.,

2016; Müller et al., 2017). Biological changes induced by irradiation can be visualised by

magnetic resonance imaging (Gensheimer et al., 2010; Yuan et al., 2013). All approaches

can potentially contribute to increase the accuracy of patient treatments.
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4 Principles of Stopping-Power Prediction from

Computed Tomography

For proton range calculation, a 3D image dataset is required, which contains anatomical

information as tissue-specific proton stopping power in each voxel. The use of protons for

image acquisition, e.g. proton CT (Penfold et al., 2009; Poludniowski et al., 2015; Prall

et al., 2016), would allow for direct in vivo SPR determination. However, this technique is

still under development and thus no clinical system with appropriate properties is currently

available (Johnson et al., 2016). Moreover, current proton therapy facilities equipped with a

cyclotron mostly cannot deliver proton energies sufficient for traversing all body regions.

Instead, proton treatment planning is generally based on patient information derived from

X-ray CT scans, mostly acquired with 120 kVp. Even though X-rays and protons interact

differently with matter, both share a linear dependence on electron density and correlation

in elemental composition for human tissues. Hence, a scanner-specific heuristic transla-

tion from measured CT number to SPR is currently applied. As discussed in section 3.2,

this conversion is however associated with a large uncertainty leading to additional safety

margins. Minimising the CT-related range uncertainty might allow for a reduction of safety

margins and thereby better sparing of healthy tissue surrounding the tumour region.

In the following, different approaches for CT-number-to-SPR conversion based on single-

energy (SECT) and dual-energy CT (DECT) are explained.

4.1 Single-Energy Computed Tomography

Proton treatment planning is currently performed on SECT scans of patients. The informa-

tion on X-ray attenuation gathered by a single CT number in each voxel is translated into

SPR using a piece-wise linear function, referred to as Hounsfield look-up table (HLUT). A

distinction is made between empirical (Chen et al., 1979; Jäkel et al., 2001) and stoichio-

metric prediction (Schneider et al., 1996; Schneider et al., 2000) of material-specific CT
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4 Principles of Stopping-Power Prediction from Computed Tomography

numbers and SPRs. To determine a calibration curve for the respective CT scanner and

scan protocol, each CT scanner needs to be calibrated accordingly.

4.1.1 Empirical Prediction

CT number and SPR of several tissue surrogates – polymers simulating X-ray attenuation

and proton stopping power of human tissues – are obtained from CT acquisition with clinical

scan settings and proton transmission measurement or calculation using the Bethe formula

(eq. 3.3), respectively. Subsequently, the values determined for each material are described

by a step-wise linear function covering the entire Hounsfield scale from typically -1024 HU

to 3071 HU. This calibration curve can be established by connecting adjacent tissues or by

combining separate linear fit functions for specific tissue types, e.g. low-density, soft and

bone tissue (Chen et al., 1979).

4.1.2 Stoichiometric Prediction

X-ray attenuation can be calculated according to eq. 2.2 using the cross-section parametri-

sation proposed by Jackson and Hawkes (1981):

σe (E,Z) = A (E) +B (E)C (Z) with C (Z) = Zn, (4.1)

which separates the dependence on energy (coefficients A and B) and atomic number

(coefficient C) and results in (Rutherford et al., 1976; Schneider et al., 1996)

µ = ϱe ·
[
A (E) +Bph (E)Z3.62 +Bcoh (E)Z1.86

]
(4.2)

with A (E) = Aph (E) +Acoh (E) +Ainc (E). Based on the attenuation sum rule µ =
∑

i µi,

eq. 4.2 can be adapted to compounds and mixtures using an effective atomic number

Zeff =

⎛⎝∑
i

νiZ
n
i

⎞⎠1/n

(4.3)

derived from the electron density fraction νi and atomic number Zi of each constituent i:

µ = ϱe · σe (E,Zeff) = ϱe ·
[
A (E) +Bph (E)Z3.62

ph +Bcoh (E)Z1.86
coh

]
(4.4)
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with Z3.62
ph =

∑
i νiZ

3.62
i and Z1.86

coh =
∑

i νiZ
1.86
i . For the calculation of CT numbers, i.e. X-ray

attenuation relative to water (index w), the three coefficients are condensed to cph = Bph/A

and ccoh = Bcoh/A.

H

1000 HU
+ 1 = ϱ̂e

1 + cph (E)Z3.62
ph + ccoh (E)Z1.86

coh

1 + cph (E)Z3.62
ph,w + ccoh (E)Z1.86

coh,w
(4.5)

Based on CT scans of tissue surrogates with known elemental composition, the scanner-

specific coefficients cph and ccoh are obtained for each scan protocol and setup using a

multiple regression analysis to eq. 4.5. After calibration, CT numbers of tabulated human

tissues (Woodard and White, 1986; White et al., 1987) are calculated and in combination

with SPRs derived from eq. 3.3 an HLUT is defined analogously to the empirical prediction

(section 4.1.1).

4.2 Dual-Energy Computed Tomography

In recent years, numerous algorithms for direct stopping-power prediction from dual-energy

CT (DirectSPR) were proposed (Hünemohr et al., 2013; Bourque et al., 2014; Hünemohr

et al., 2014; Han et al., 2016; Möhler et al., 2016; Taasti et al., 2016b; Saito and Sagara,

2017b) and the respective accuracy was assessed using homogeneous tissue surrogates

(Hansen et al., 2015; Hudobivnik et al., 2016; Bär et al., 2017; Li et al., 2017) and polymers

(Taasti et al., 2016a; Zhu and Penfold, 2016). These studies indicate that DECT can poten-

tially lead to more precise proton range prediction.

Within this thesis, three different DECT-based SPR prediction approaches were thoroughly

investigated, which are described in the following. SPRs can be obtained from DECT-

derived MonoCT datasets still using an HLUT as CT-number-to-SPR conversion (sec-

tion 4.2.1) or directly from DECT-derived material parameters inserted into the Bethe for-

mula (sections 4.2.2 and 4.2.3).

4.2.1 Monoenergetic Approach

As described in section 2.3.1, MonoCT datasets of different energies can be calculated

from DECT scans by linear superposition (eq. 2.6). The optimal MonoCT energy for treat-

ment planning can be determined in phantoms composed of tissue surrogates with respect
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4 Principles of Stopping-Power Prediction from Computed Tomography

to image quality and CT number constancy. For the resulting MonoCT dataset, an HLUT is

defined empirically with homogeneous tissue surrogates or based on the elemental com-

position of tabulated human tissues and their respective monoenergetic photon attenuation

cross section.

4.2.2 RhoZ Approach

According to the Bethe formula (eq. 3.3), the stopping power of protons depends on two

material-specific parameters, namely electron density and I-value. The electron density

can be directly derived from DECT scans in an accurate and robust manner (section 2.3.2).

The I-value can be obtained from the DECT-derived effective atomic number (section 2.3.2)

using a linear parametrisation for the logarithmic I-value as proposed by Yang et al. (2010).

This I-value parametrisation is specified based on tabulated human soft and bone tissues,

but lacks continuity for effective atomic numbers between approximately 8 to 10 (Fig. 4.1).

Hence, the accuracy of I-value determination is reduced by mixtures of soft and bone tissue

falling into this undefined region. Such tissue mixtures occur at material transitions within

heterogeneous regions of patients and their influence on proton range prediction cannot be

neglected.

Figure 4.1: (A) Correlation of I-value and effective atomic number (EAN) for tabulated human soft
and bone tissues (Woodard and White, 1986; White et al., 1987). The EAN of each tissue was
obtained from syngo.RhoZ using an 80/140 kVp DECT scan of the CT scanner Definition AS (re-
constructed with D34). (B) Axial slices of a 79 keV MonoCT dataset derived from syngo.MonoPlus
for a brain- and prostate-cancer patient. Voxels with EAN between 8 and 10 are coloured.
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4.2 Dual-Energy Computed Tomography

4.2.3 RhoSigma Approach

Möhler et al. (2016) proposed to describe the SPR as a product of relative electron density

(RED) and relative stopping number (RSN) according to the Bethe formula (eq. 3.3). RED

is the dominating physical quantity and ranges approximately from 0 to 2 for human tissues.

RSN depends logarithmically on the I-value, whose variation is limited within human tissues

from adipose (I = 63 eV) to cortical bone (I = 112 eV), and are thus restricted to values of

approximately 0.95-1.02 for a proton energy of 200 MeV (Fig. 4.2).

RED can be directly derived from DECT (section 2.3.2) and thus only an empirical approxi-

mation for RSN is required. Hence, the impact of the empirical component on the accuracy

of SPR prediction is clearly mitigated compared to HLUT-based approaches using a SECT

scan (section 4.1) or MonoCT dataset (section 4.2.1). The RSN can be empirically obtained

from the relative photon attenuation cross section (RCS or σ̂e). Owing to the X-ray atten-

uation sum rule µ =
∑

i µi and Bragg’s additivity rule for proton stopping power S =
∑

i Si

(Bragg and Kleeman, 1905), both quantities share a convenient mixing behaviour:

(
σ̂e, L̂

)
=
∑

i

νi

(
σ̂e, L̂

)
i

(4.6)

with 0 < νi < 1 ∀i and
∑

i νi = 1. Within this variable space (Fig. 4.3), mixtures are a linear

combination of a set of base materials forming a convex hull (Möhler et al., 2016).

Figure 4.2: Relative stopping number (RSN) depending on material-specific I-value (A) and proton
energy or range (B). The grey-shaded region covers tabulated human tissues (Woodard and White,
1986; White et al., 1987). Adapted from Möhler et al. (2016).
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4 Principles of Stopping-Power Prediction from Computed Tomography

According to eq. 2.2, the energy-dependent RCS of a material results from its DECT-

derived RED and CT number determined for a specific X-ray spectrum or MonoCT energy.

σ̂e = 1
ϱ̂e

(
H

1000 HU
+ 1

)
(4.7)

As shown in eqs. 4.1 and 4.4, RCS comprises similar information as an effective atomic

number used for I-value parametrisation, but requires less assumptions (Möhler et al.,

2017) and allows for proper consideration of tissue mixtures and unambiguous quantifi-

cation of uncertainties (Möhler et al., 2016). For DECT-based SPR prediction, an empirical

conversion from RCS to RSN is established based on tabulated human tissues.

Figure 4.3: Correlation of relative photon attenuation cross section (RCS) and stopping number
(RSN) for elements up to Z = 20 (A) as well as tissue base components and body tissues (B). The
shaded areas illustrate the convex hull of each set of base materials. The linear mixing behaviour
(straight line for two base materials) is demonstrated for exemplary tissue surrogates. The RCS is
determined according to eq. 4.1 with A = 0.907 ± 0.012, B = (8.5 ± 3.5) · 10-5 and n = 3.47 ± 0.13
for an 80 kVp CT scan acquired at the CT scanner Definition Flash and reconstructed with D30. The
RSN is calculated for 200 MeV protons. Adapted from Möhler et al. (2016).
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5 Experimental Calibration of Stopping-Power

Prediction

Within this thesis, a comprehensive characterisation and experimental calibration of the

single-source dual-spiral DECT scanner Definition AS was performed to define optimal CT

scan settings for proton treatment planning. The calibration procedure performed exem-

plarily for this specific CT scanner can be transferred to other CT scanner models.

5.1 Scan Protocol Optimisation in Computed Tomography

Proton treatment planning requires high overall CT image quality with regard to an X-ray

dose fulfilling the "As-Low-As-Reasonably-Achievable" (ALARA) principle. Whereas CT ac-

quisition in diagnostic radiology mainly focuses on improving image contrast for a better

case-specific tissue differentiation, radiotherapy additionally aims at quantitative CT imag-

ing for accurate material assignment in each voxel. However, depending on scan location

(e.g. head vs. pelvis) as well as patient size and geometry, different CT numbers are ob-

tained for the same tissue. This uncertainty, arising from beam hardening of the X-ray

spectrum (section 2.2.3), needs to be considered thoroughly in image reconstruction. Con-

sequently, a CT scan protocol with sophisticated beam hardening correction would be ideal

to assign the same CT number to all voxels of the same material independently from size,

geometry and surrounding tissue. Furthermore, a universal CT scan protocol applicable to

all treatment regions would reduce the clinical effort in quality assurance and susceptibility

to errors.

To define an optimal CT scan protocol satisfying the requirements of proton treatment plan-

ning, the effect of adjustable CT scan parameters on CT number stability and image noise

was experimentally quantified. The following scan parameters were investigated in detail:

tube voltage and current, slice thickness and collimation, pitch and FOV, reconstruction

algorithm and kernel.

35



5 Experimental Calibration of Stopping-Power Prediction

5.1.1 Investigated Material Samples and Phantoms

Since different hard- and software components of a CT scanner and their manufacturer-

approved calibration can lead to variations in CT numbers, a user-originated characterisa-

tion of each individual CT scanner is recommended to guarantee the high demands on CT

number accuracy and constancy in radiotherapy. Accordingly, different material samples,

representing the X-ray attenuation of human tissues and covering the clinically required CT

number scale, as well as phantoms simulating various human body regions are used to

assess the influence of CT scan settings.

Tissue Surrogates and Non-Tissue Materials

In this thesis, 19 tissue surrogates – 10 produced by Gammex, Inc. (Middleton, WI, USA)

and 9 manufactured by CIRS, Inc. (Norfolk, VA, USA) – as well as 6 polymers and alu-

minium were investigated. To avoid edge artefacts within a CT scan, each material sample

has a cylindrical shape with three different diameters (10 mm, 25 mm, 50 mm) and a length

of 10 mm or 20 mm (according to material availability). For CT measurements, the materi-

als were aligned in series along the central scanner axis. The material-specific CT number

and its standard deviation were determined in a circular region of interest (ROI) inside each

material on axial CT slices unaffected by material transitions. Material edges in axial CT

images were excluded by selecting a ROI diameter equal to 70% of the material diameter.

Reference properties of all materials were provided by the manufacturers.

Tabulated Human Tissues

An encompassing compilation of overall 71 human tissues obtained from adults is cur-

rently often applied in radiotherapy, e.g. for stoichiometric conversion of CT number into

SPR (Schneider et al., 2000). The elemental composition of these tissues, which were

thoroughly compiled by Woodard and White (1986) and White et al. (1987), are also used

within this thesis.

Phantoms of Simplified Geometry

To simulate different beam hardening conditions occuring in clinical CT scans of the head,

thoracic or pelvic region, all material samples were measured in three CT scan setups
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Figure 5.1: Different CT scan setups to simulate various beam hardening conditions. (A) Cylin-
drical material stack composed of 16 different samples without surrounding phantom (air setup).
(B) Material stack within a water tank only (water setup) or with additional lateral bone surrogates
(pelvis setup). (C) Pluggable acrylic onion phantom with material samples positioned centrally for
systematic evaluation of beam hardening effects. Adapted from Wohlfahrt et al. (2017b).

(Fig. 5.1, A and B): without an additional phantom (referred to as air), in a water reservoir

with a dimension of (300 × 200 × 250) mm3 (water) and in the water reservoir with addi-

tional lateral cortical bone surrogates with a total thickness of 60 mm (pelvis). The water

setup was defined as clinical default setting.

Furthermore, the influence of beam hardening on CT number stability was systematically

assessed using a cylindrical phantom composed of pluggable acrylic hollow cylinders with

varying outer diameter from 25 mm up to 500 mm and a length of 100 mm (Fig. 5.1 C). This

so-called "onion phantom" allows for a diameter-dependent quantification of variations in

material-specific CT numbers, resulting in an estimation of the clinically relevant uncertainty

induced by beam hardening.

Anthropomorphic Phantoms

To evaluate the influence of CT scan parameters on image quality in a realistic close-to-

clinical patient scenario, two anthropomorphic head phantoms were investigated: the head

of the Whole Body Phantom PBU-60 (Kyoto Kagaku, Kyoto, Japan) and the Proton Ther-

apy Dosimetry Head 731-HN (CIRS, Inc., Norfolk, USA). The first head phantom is com-

posed of synthetic bones based on epoxy resin and different soft tissues based on urethane

resin. The latter (Fig. 5.2) consists of 9 tissue substitutes, which were optimized to mimic

tabulated human tissues in their X-ray attenuation and proton interaction properties. Addi-
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Figure 5.2: Illustration of the anthropomorphic Proton Therapy Dosimetry Head 731-HN. (A) The
head phantom is cut in half and one side is additionally divided in three parts with two plane-parallel
edges and a nominal thickness of 20 mm each. (B) Sagittal image of the reference 3D SPR map
illustrating three head areas (facial skull, skull base, calvaria) evaluated within this thesis. Adapted
from Wohlfahrt et al. (2018a).

tionally, the phantom contains a replaceable tungsten-filled and a tissue-equivalent molar

tooth as well as a non-removable titanium prosthesis fixated by two screws in the verte-

brae. These (partly removable) metal implants allow for validating metal artefact reduction

algorithms.

5.1.2 Quantitative Parameters for Image Quality Assessment

The influence of different CT scan and image reconstruction settings on image noise, beam

hardening and artefacts caused by metal implants was assessed by quantitative image

parameters.

Quantification of Image Noise

The standard deviation σ of CT numbers within an ROI covering a homogeneous material

sample i in a scan setup s serves as measure for image noise. Compared with a reference

CT scan setting (index r), changing a parameter of interest Υ can result in a change of

the noise level. The image-noise ratio (INR) quantifies the effect relative to the reference

setting.

INRr (Υ) =

√ 1
N

N∑
i=1

∑
s∈S

σ2
s,i (Υr)∑

s∈S
σ2

s,i (Υ)
(5.1)

38



5.1 Scan Protocol Optimisation in Computed Tomography

A set S of various CT scan setups and N different material samples can be considered for

INR assessment. An INR > 1 corresponds to noise reduction.

Quantification of Beam Hardening

The beam-hardening ratio (BHR) describes the difference between maximal and minimal

CT number of a material obtained in several CT scan setups relative to the reference set-

ting. A BHR > 1 means that the influence of beam hardening on CT number constancy is

reduced. A high BHR corresponds to a small influence of beam hardening.

BHRr (Υ) =

N∑
i=1

[
max
s∈S

{
Hs,i (Υr)

}
− min

s∈S

{
Hs,i (Υr)

}]
N∑

i=1

[
max
s∈S

{
Hs,i(Υ)

}
− min

s∈S

{
Hs,i(Υ)

}] (5.2)

Quantification of Metal Artefacts

According to Lin et al. (2011), the severity of metal artefacts can be assessed by the metal-

artefact index (MAI), measuring CT number variations in an ROI for two cases: with and

without presence of a metal implant. Identical noise levels lead to MAI = 0.

MAI =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√⏐⏐⏐σ2

metal − σ2
none

⏐⏐⏐ for σ2
metal ≥ σ2

none

−
√⏐⏐⏐σ2

metal − σ2
none

⏐⏐⏐ for σ2
metal < σ2

none

(5.3)

5.1.3 Influence of Scan Protocol Settings

For an appropriate selection of CT scan settings in radiotherapy, the influence of each indi-

vidual parameter on image noise and material-specific CT number needs to be assessed.

Based on CT scans of Gammex tissue surrogates acquired in three scan setups (air, water

and pelvis) representing different beam hardening conditions (Fig. 5.1), Wohlfahrt (2014)

demonstrated that the FOV, pitch and scan acquisition modus (sequential or spiral) do not

influence absolute CT numbers and image noise. A variation of tube current, reconstructed

slice thickness or sharpness function of reconstruction kernels (high spatial resolution or

reduced noise level) affect the overall image noise and can be adjusted accordingly. For

a constant computed tomography dose index (CTDIvol), the selection of tube voltage (dif-

ferent X-ray spectra), reconstruction kernel (especially the integrated BHC algorithm) and
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slice collimation (X-ray scattering and applied scatter correction) causes only slight vari-

ations in image noise, but large differences in absolute CT numbers. Consequently, scan

parameters only affecting the image quality in terms of image noise can be selected individ-

ually for each patient. However, the tube voltage, slice collimation and reconstruction kernel

should be predefined in a clinical CT scan protocol to guarantee a constant accuracy and

precision in proton treatment planning.

Image Reconstruction Algorithm

To assess the influence of the iterative reconstruction algorithm SAFIRE on CT numbers in

comparison with FBP, CT scans of 10 Gammex tissue surrogates positioned within three

different scan setups (Fig. 5.1, A and B) were acquired with a constant CTDIvol32 cm of

28.5 mGy. Considering four X-ray spectra ranging from 80 kVp to 140 kVp in steps of 20 kVp

and two BHC algorithms included in reconstruction kernels (D30/Q30 and D34/Q34), the

material-specific CT numbers show a negligible maximal difference of 3 HU and mean de-

viation of below 1 HU between FBP and SAFIRE. Consequently, both reconstruction algo-

rithms yield similar CT numbers and can be interchangeably used for treatment planning

without additional adjustments.

Figure 5.3: (A) Image noise of a 120 kVp CT scan (slice collimation of 1.2 mm) representative for
soft tissues depending on CTDIvol32 cm and object diameter. CT scans of the material sample soft
tissue grey (CIRS) with a diameter of 50 mm, centrally positioned within the onion phantom, were
acquired and reconstructed with FBP (D34) and SAFIRE of maximal strength (Q34/5). (B) Mean
image-noise ratio INRFBP with standard deviation for different SAFIRE strengths considering four
X-ray spectra, two slice collimations and five CT dose levels.
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The reduction of image noise achievable with iterative image reconstruction relative to FBP

was quantified for four cylindrical CIRS tissue surrogates (sinus cavity, soft tissue grey, tra-

becular bone and cortical bone) with a diameter of 50 mm, covering the typical CT number

scale of human tissues. All material samples were centrally positioned inside the onion

phantom with an outer diameter of 100 mm, 200 mm or 300 mm (Fig. 5.1 C). Depending on

the CTDIvol32 cm selected for CT acquisition (2 mGy, 5 mGy, 10 mGy, 15 mGy or 20 mGy),

the respective image noise within soft tissues is shown exemplarily for a 120 kVp CT scan in

Fig. 5.3 A. Compared with FBP, the application of SAFIRE clearly reduces image noise in-

dependent from object size and dose. Considering all CT scans of the four materials, which

differ in X-ray spectrum (80 kVp to 140 kVp in steps of 20 kVp), slice collimation (0.6 mm or

1.2 mm) and CTDIvol32 cm, a mean INRFBP ± standard deviation of up to 1.53 ± 0.05 can

be obtained by SAFIRE of maximal strength (Fig. 5.3 B). The strengths 1 and 3 result in a

smaller mean INRFBP of 1.03 ± 0.01 and 1.24 ± 0.03, respectively.

As an alternative, a lower dose can be applied for CT acquisition to obtain a noise level

similar to FBP. For SAFIRE of maximal strength, the CT dose can be reduced by at least

60% (Fig. 5.3 A) – e.g. from a CTDIvol32 cm of 20 mGy, currently used for treatment planning

of brain-tumour patients at OncoRay, to below 8 mGy.

Beam Hardening Correction

To quantify the variation of CT numbers under clinically realistic beam hardening condi-

tions, 11 material samples (10 Gammex tissue surrogates and styrodur) were measured

in three scan setups (Fig. 5.1, A and B) using different X-ray spectra. Two BHC algorithms

were applied during image reconstruction, which perform either a correction based on wa-

ter only (Q30) or water and bone consecutively (Q34). As shown in Fig. 5.4 A, both algo-

rithms reveal comparable results for low-density and soft tissues (H < 100 HU), but differ

considerably for bone surrogates. The additional correction concerning bone results in an

improved overall CT number stability. Consequently, CT scans reconstructed using a BHC

for bone (as included in Q34) are more robust against different beam hardening conditions.

Compared with image reconstruction using Q30, the kernel Q34 clearly reduces the effect

of beam hardening on CT numbers of bones for each X-ray spectrum. With an additional

bone BHC, CT number variations induced by beam hardening are at least 3 times smaller.

Furthermore, beam hardening effects decrease with increasing tube voltage (Fig. 5.4 B).
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Figure 5.4: (A) Maximal CT number difference between three scan setups (air, water, pelvis) as
exemplarily shown for an 80 kVp CT scan of 11 material samples with a diameter of 25 mm. Two
different BHC algorithms are applied during image reconstruction considering only water (Q30, blue)
or additionally bone (Q34, orange). The error bar illustrates the minimal and maximal CT number.
(B) Beam-hardening ratio (BHR) depending on X-ray spectrum and applied BHC algorithm including
all 11 material samples. The 80 kVp CT scan reconstructed with Q30 reveals the largest influence
of beam hardening and was set as BHR reference.

For a systematic assessment of the size-dependent influence of beam hardening on bones,

CT scans of a low-density (trabecular bone) and high-density (cortical bone) CIRS bone

surrogate positioned within the onion phantom were evaluated. These surrogates can be

assumed as lower and upper limit of X-ray attenuation for various bone tissues occurring

in humans and thus serve as reliable estimator of beam hardening effects in clinical CT

scans. With increasing phantom diameter, the CT numbers of both bone substitutes de-

crease continuously for CT images reconstructed using Q30 (Fig. 5.5). Between the largest

(400 mm) and smallest (50 mm) phantom diameter, the CT numbers of cortical bone and

trabecular bone vary by more than 300 HU and roughly 100 HU, respectively.

Size-dependent CT numbers derived from images reconstructed with Q34 show a com-

pletely different behaviour. CT numbers slightly increase for phantom diameters smaller

than 200 mm. This is caused by an overcompensation of beam hardening, because the in-

tegrated BHC is calibrated under certain conditions assuming a minimal WET of the object.

For diameters up to 300 mm, the maximal CT number difference is mostly within 40 HU.

Consequently, the bone BHC clearly reduces beam hardening effects, but still there is a

remaining variation, which would be removed by an optimal correction.

The severe decrease of CT numbers for a phantom diameter of 400 mm, especially in

80 kVp CT scans, is only partly induced by beam hardening. Photon scattering, which is
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Figure 5.5: CT number of a cylindrical high-density (A) and low-density bone substitute with a
diameter of 25 mm (B) for an 80 kVp and 140 kVp CT scan depending on the outer diameter of the
acrylic onion phantom, selected BHC algorithm included in the investigated reconstruction kernels
and slice collimation.

more pronounced in low-energy CT scans and increases with phantom size, can affect CT

numbers in a similar manner. If both effects are of comparable magnitude (e.g. in large scan

objects), the BHC algorithm cannot perform properly. This influence can be reduced using

a smaller slice collimation, e.g. 0.6 mm instead of 1.2 mm (Fig. 5.5), but it still hampers the

performance and finally the accuracy of the BHC algorithm.

Metal Artefact Reduction

Patients with severe artefacts caused by metal implants are currently not treated with pro-

tons, because an appropriate dose calculation cannot be ensured. The application of com-

mercial algorithms for metal artefact reduction can clearly increase the visibility of anatom-

ical structures (Fig. 2.5), leading to an overall better visual impression as confirmed by

experienced clinicians and medical physicists (Negwer, 2016). However, treatment plan-

ning also requires reliable quantitative CT numbers close to metallic implants, especially in
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Figure 5.6: Influence of metal artefacts on CT image quality. Quantitative evaluation of 120 kVp CT
datasets of an anthropomorphic head phantom reconstructed without (0) and with various iMAR
applications (1-8) as illustrated in alphabetical order. A CT scan with a tissue-equivalent molar tooth
instead of a tungsten-filled one was used as reference setting. The metal-artefact index (A) and CT
number difference (B) were quantified for two regions (C) of an axial CT slice consisting of soft tissue
grey. The reference CT number of 30 HU was determined in another axial CT slice not affected by
metal artefacts.

proton therapy. To assess the accuracy of CT numbers in a typical scenario, e.g. a head-

and-neck tumour patient with tooth implant, CT scans of an anthropomorphic head phantom

(Fig. 5.2) with a replaceable tungsten-filled or a tissue-equivalent tooth were analysed.

Depending on the evaluated region and applied iMAR algorithm, metal artefacts can be

reduced or even further increased (Fig. 5.6). The iMAR application optimised for dental fill-

ings improves the image quality in general, but also introduces new artefacts in region B.
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Other algorithms clearly overestimate CT numbers in the oral cavity or remove parts of

the tongue, even in the CT dataset without tooth implant. The application of iMAR does

also not implicitly result in more reliable CT numbers within both evaluated regions. Con-

sequently, case-specific improvements in visual impression and accuracy of CT numbers

can be achieved using iMAR, but additional artefacts or even distortions in anatomy are

introduced. A routine clinical application of iMAR might be beneficial for delineating the

tumour region and healthy tissues, because an additional dataset with better visual impres-

sion can be provided. However, its geometrical reliability should always be confirmed by

experienced clinicians or medical physicists. From the author’s perspective, the application

for proton treatment planning is currently not recommended.

5.1.4 Conclusion on Scan Protocol Optimisation for Radiotherapy

Based on various experimental studies performed within this thesis, clinical CT scan set-

tings appropriate for proton therapy and applicable to all treatment sites can be defined.

This requires an all-encompassing CT number stability, which can be achieved by predefin-

ing an X-ray spectrum, slice collimation and reconstruction kernel with integrated BHC for

water and bone (e.g. D34/Q34) in the CT scan protocol. If CT scanners do not support such

reconstruction kernels, the influence of beam hardening on CT numbers has to be consid-

ered by selecting several CT scan protocols for different body regions and adapting the

calibration of the respective CT-number-to-SPR conversion used (HLUT or DECT-based

DirectSPR approach). However, this manual selection will not reduce the uncertainty in

body regions with severe size variability (e.g. in head-and-neck tumour patients), because

beam hardening conditions can substantially differ within a single CT acquisition (e.g. the

small size of the patient head vs. the large extent of a shoulder).

Since the accuracy of dose calculation can be affected by image noise, an iterative re-

construction (e.g. SAFIRE) with maximal noise suppression is recommended for treatment

planning. Moreover, this allows for a reduction in CT dose (about 60%) without hampering

image quality compared with FBP.

Commercially available algorithms for metal artefact reduction (e.g. iMAR) can be used to

generate additional CT datasets with improved visual impression for delineation purposes.

However, these CT datasets are currently not sufficient for the high demands of proton

treatment planning.
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5.2 Characterisation of Pseudo-Monoenergetic CT Calculation

As an alternative to treatment planning on SECT scans, dose calculation can be performed

on DECT-derived MonoCT datasets. Its optimal energy Emono with regard to image quality

and beam hardening was assessed for two applications syngo.Mono and syngo.MonoPlus

(section 2.3.1) as described in the following and published by Wohlfahrt et al. (2017b).

5.2.1 Data Acquisition

CT scans of 17 cylindrical materials (10 Gammex tissue surrogates, 6 polymers and alu-

minium) with a diameter of 25 mm positioned in three scan setups (Fig. 5.1, A and B) were

acquired in single- and dual-energy mode with identical CT dose and scan settings opti-

mised for radiotherapy (Table 5.1). In addition to the experimentally determined CT number

Hi and corresponding standard deviation σi of each material sample i, CT numbers of 71

human tissues (section 5.1.1) were calculated with an in-house optimised scanner-specific

stoichiometric CT number prediction (Supplement B), which was calibrated using the ele-

mental composition and measured CT numbers of the tissue substitutes.

5.2.2 Evaluation of Image Quality

For all MonoCT energies, the DECT image post-processing software syngo.Mono shows

an INRSECT < 1 with a maximum at 70 keV (Fig. 5.7). Consequently, syngo.Mono leads to

an overall increased image noise independent from the respective energy in comparison

with 120 kVp SECT scans of identical CT dose. Owing to the additional multi-band filtering

Table 5.1: Single-energy and dual-energy CT scan protocol with clinical parameters optimised for
radiotherapeutic application.

CT scan
modus

CT scan parameter

Tube
voltage

Current-time
product CTDIvol32 cm

Slice
collimation

Reconstruction
kernel

kV mAs mGy mm

SECT 120 258 20.8
1.2 D34

DECT
80 400 9.6

140 95 11.1
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5.2 Characterisation of Pseudo-Monoenergetic CT Calculation

Figure 5.7: (A) Energy-dependent weighting factor α for MonoCT calculation using syngo.Mono,
syngo.MonoPlus and the XCom Database of NIST (Berger et al., 1990) referred to as MonoNIST.
The respective standard deviation is illustrated as error bar. (B) Image-noise ratio (INRSECT) and
beam-hardening ratio (BHRSECT) as well as (C) metal artefact reduction for a patient with hip im-
plants depending on MonoCT energy. DECT scans of 80/140 kVp were acquired at the CT scanner
Definition AS and reconstructed with D34. Adapted from Wohlfahrt et al. (2017b).

in syngo.MonoPlus, image noise can be clearly reduced in comparison with syngo.Mono

(Fig 5.7). Especially for low and high energies, syngo.MonoPlus leads to a raised INRSECT

in comparison with syngo.Mono by up to 25% and 60%, respectively. For energies above

70 keV, syngo.MonoPlus provides MonoCT datasets with an image noise comparable to

that of 120 kVp SECT scans. In the energy region from 75 keV to 80 keV, the INRSECT can

even be increased by 10%.

The use of an iterative reconstruction algorithm (e.g. SAFIRE) instead of a FBP also leads

to an energy-dependent noise reduction in MonoCT datasets (Fig. 5.8). The image noise

(except for 40 keV) decreases with increasing SAFIRE strength and reaches an INRFBP of

almost 2 at roughly 70 keV. Hence, image noise can be halved at best relative to FBP.
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Figure 5.8: Energy-dependent INRFBP for MonoCT datasets using SAFIRE of different strengths in-
stead of the FBP (as reference) for image reconstruction. MonoCT calculation was performed using
syngo.MonoPlus. The 80/140 kVp DECT scans of the water setup were acquired with a CTDIvol32 cm
of 28 mGy and reconstructed with D34 and Q34, respectively. Adapted from Negwer (2016).

Both image post-processing applications syngo.Mono and syngo.MonoPlus reveal a similar

energy-dependent BHRSECT (Fig. 5.7). For MonoCT energies between 75 keV and 95 keV,

an improved CT number stability concerning three different beam hardening conditions is

achieved in comparison with 120 kVp SECT. The maximal BHRSECT is reached at 79 keV.

Compared to SECT, this leads to a reduced influence of beam hardening on CT numbers

by 23% on average including all investigated tissue surrogates and up to 69% for bone sub-

stitutes only. Hence, an increased CT number stability corresponds to a reduction of proton

range variations. Considering CT numbers of all tabulated human tissues (excluding lung)

in the three scan setups and the respective HLUT (Fig. 5.4.1) to convert each CT number

in SPR, range deviations induced by beam hardening can be decreased on average from

1.0 mm to 0.8 mm and maximal from 2.7 mm to 2.2 mm for 150 mm tissue penetration.

5.2.3 Determination of the Weighting Factor

Pseudo-monoenergetic CT datasets can be obtained by a linear superposition of DECT

scans according to eq. 2.6. For this purpose, the XCom Photon Cross Section Database

of NIST (Berger et al., 1990) serves as reference for monoenergetic X-ray attenuation. To
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calibrate the CT scanner Definition AS for DECT-based calculation of MonoCT datasets,

the energy-dependent weighting factor α (Emono) was computed by minimising the mean

square error (MSE):

MSE =
∑
s∈S

88∑
i=1

{
Hr,s,i(Emono) −

[
α (Emono)H80,s,i +

[
1 − α (Emono)

]
H140,s,i

]}2
(5.4)

including all 17 scanned material samples and 71 tabulated human tissues. For each scan

setup, the monoenergetic CT number, Hr,s,i(Emono), as well as the corresponding 80 kVp,

H80,s,i, and 140 kVp CT numbers, H140,s,i, were determined for each material as illustrated

in Fig. C.1 of Supplement C.

The energy dependence of the weighting factor α (Emono) for syngo.Mono, syngo.MonoPlus

and CT numbers derived from the XCom Photon Cross Section Database of NIST (Berger

et al., 1990) can be described with a power-law function (Fig. 5.7, Table C.1 of Sup-

plement C). Both clinically available image post-processing applications syngo.Mono and

syngo.MonoPlus use the same energy-dependent weighting factor. Given that the weight-

ing factor is nearly 0 for MonoCT datasets of 79 keV, these datasets are comparable with

those of 140 kVp SECT in image noise and beam hardening. Hence, the maximal INRSECT

and BHRSECT reached for 79 keV MonoCT datasets can also be obtained by an increase

in tube voltage from 120 kVp to 140 kVp using SECT.

Pseudo-monoenergetic CT numbers calculated by syngo.Mono and syngo.MonoPlus differ

from monoenergetic CT numbers derived from NIST (MonoNIST), which may be caused by

the vendor-specific calibration of syngo.Mono and syngo.MonoPlus. For example, 120 keV

pseudo-monoenergetic CT numbers correspond to 140 keV monoenergetic CT numbers,

because α = -0.62 is used for MonoCT calculations in syngo.Mono and syngo.MonoPlus

instead of α = -0.52 for MonoNIST. A 79 keV MonoCT dataset derived from syngo.Mono

and syngo.MonoPlus is equivalent to monoenergetic X-rays of approximately 82 keV.

The evaluation of all investigated materials and scan setups reveals negligible error bars

of α (Emono) as shown in Fig. 5.7. This indicates a sufficiently precise calculation of mo-

noenergetic CT numbers. Even MonoCT datasets below the mean energy of the 80 kVp

CT scan (α > 1) and beyond the mean energy of the 140 kVp CT scan (α < 0) can be ac-

curately determined by compensating the different impact of X-ray interactions (incoherent

scattering vs. photoelectric effect) as also discussed by Möhler et al. (2018b).
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5.2.4 Conclusion on Monoenergetic Imaging

After optimising SECT and DECT for radiotherapy applications concerning image noise

and beam hardening it was demonstrated that DECT-based MonoCT datasets can con-

tribute to improve image quality (i.e. increased INR and BHR) in comparison with 120 kVp

SECT. A 79 keV MonoCT dataset is particularly suitable for treatment planning because

beam hardening is less pronounced (BHR maximum) and image noise is most reduced

for syngo.MonoPlus (INR maximum). Owing to an efficient noise reduction included within

the syngo.MonoPlus application, the image quality of MonoCT datasets is considerably en-

hanced compared with syngo.Mono. Consequently, clinical calculations of MonoCT datasets

should be performed with syngo.MonoPlus.

Various MonoCT datasets of different energy can be derived from a patient’s DECT scan,

offering clinicians more possibilities for delineating – e.g. a low-energy MonoCT dataset for

better contrast-to-noise ratio and a high-energy MonoCT dataset for metal artefact reduc-

tion (Mangold et al., 2014; Kuchenbecker et al., 2015), as exemplarily shown in Fig. 5.7 C.

Whether these additional options can lead to a reduction of delineation uncertainties still

has to be shown in clinical studies. So far, studies have mostly focused only on improving

image contrast and noise (Grant et al., 2014; Wichmann et al., 2014; Forghani et al., 2015;

Husarik et al., 2015; Kaup et al., 2016).

5.3 Determination of Proton Stopping Power

The stopping power of a material depends on its elemental composition and can be calcu-

lated or determined by relative range measurements. The different methods applied within

this thesis are described in the following.

5.3.1 Stopping-Power Calculation

The material-specific SPR can be calculated based on the elemental composition according

to the Bethe formula (eq. 3.3). The required electron density ϱe follows from

ϱe = ϱ
∑

i

ωi
Zi

Ai
(5.5)
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with the mass density of the compound ϱ as well as the element-specific mass fraction ωi,

atomic number Zi and mass number Ai. The mean excitation energy I of the respective

compound was calculated using element-specific mean excitation energies Ii (Seltzer and

Berger, 1982) and Bragg’s additivity rule (Bragg and Kleeman, 1905).

ln I =

∑
i
ωi

Zi
Ai

ln Ii∑
i
ωi

Zi
Ai

(5.6)

The calculated SPRs of all investigated tissue substitutes are summarised in Table A.1 of

Supplement A.

5.3.2 Relative Proton Range Measurements

Relative range measurements in water provide information about the material-specific stop-

ping power. Inserting a plane-parallel material slab of well-defined thickness within the pro-

ton beam shifts the depth-dose distribution to smaller penetration depths. This range shift

divided by the slab thickness results in the material-specific SPR (Jäkel et al., 2001). To

increase the SPR accuracy and ensure an independent verification, the SPR of each in-

vestigated material was measured by different methods, which are briefly described in the

following. All determined SPRs are collected in Table A.1 of Supplement A.

Water Phantom

The depth-dose distribution of proton pencil beams with an initial energy of 125 MeV and

160 MeV was detected by a movable Bragg-peak ionisation chamber (TM34070-2,5, PTW,

Freiburg, Germany) in a water-filled phantom (Blue Phantom, IBA Dosimetry, Schwarzen-

bruck, Germany). These range measurements were performed in the clinical treatment

room of OncoRay using the proton therapy system Proteus 235 (Ion Beam Applications,

Louvain-la-Neuve, Belgium) equipped with a cyclotron providing proton beams with an en-

ergy up to 226.7 MeV, a universal nozzle and a rotating gantry covering an angle of 360◦.

Water Absorber of Variable Thickness

A water absorber of variable thickness (PEAKFINDER Water Column, PTW) can also be

used to record depth-dose curves. It consists of a dual-channel electrometer (TANDEM,
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PTW) and two Bragg-peak ionisation chambers in a closed water column for beam monitor-

ing and field measurements, respectively. Relative range measurements with an accuracy

of < 0.1 mm were performed at the Heidelberg Ion-Beam Therapy Centre (HIT, Heidelberg,

Germany) using a horizontal proton pencil beam with an initial energy of 150 MeV.

Multi-Layer Ionisation Chamber

Proton depth-dose curves can also be acquired by a multi-layer ionisation chamber (MLIC)

consisting of a stack of ionisation chambers. Within this thesis, a Giraffe MLIC (IBA Dosime-

try) was used, which is composed of 180 Stingray ionisation chambers with a diameter of

120 mm and nominal distance of 2 mm.

Since the proton beam is not directly measured in water, the WET of the built-in ionisa-

tion chambers needs to be determined. The MLIC calibration was performed in the clinical

treatment room of OncoRay as described by Wohlfahrt et al. (2018a) using depth-dose dis-

tributions of isocentric proton pencil beams with nominal energies ranging from 100 MeV to

225 MeV in steps of 5 MeV, which were measured by the MLIC and a movable Bragg-peak

ionisation chamber in a water-filled phantom as reference. All depth-dose curves recorded

for MLIC calibration were fitted with the analytical Bortfeld equation (Bortfeld, 1997). For

each nominal energy and both measurement devices, the distal range of 80% of maximum

dose R80 was determined and linearly correlated.

R80, reference (E) = aMLIC · R80, MLIC (E) + bMLIC (E) (5.7)

The slope aMLIC corresponds to the WET of an ionisation chamber within the MLIC and the

intercept bMLIC describes an absolute range shift caused by interactions in air owing to an

off-centre positioning of the MLIC. For the WET calibration, the MLIC was aligned 20 cm

behind the isocentre, which leads to

aMLIC =
(
1.867 ± 1 · 10−5

)
mm / chamber and bMLIC = (−0.22 ± 0.11) mm. (5.8)

Considering all measurement uncertainties caused by MLIC calibration, positioning and

dose acquisition, an overall absolute range uncertainty of 0.25 mm can be achieved for

an MLIC measurement. However, the overall uncertainty for relative range measurements

(WET determination) is even smaller (< 0.1 mm).
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The material-specific SPRs were determined in the experimental room of OncoRay using

a horizontal proton pencil beam with an initial energy of 150 MeV and 200 MeV. The MLIC

was aligned 47 cm behind the beam exit window.

5.4 Calibration of Stopping-Power Prediction Methods

After defining clinical CT scan protocols in single-energy and dual-energy mode with re-

spect to image noise and beam hardening (Table 5.1), CT-based SPR prediction methods

are calibrated for these scan settings optimised for radiotherapy. The current-time product

and application of iterative reconstruction algorithms may differ for various body regions or

different purposes of CT scans (treatment planning vs. anatomical control during the course

of treatment), but these changes do not affect the calibration presented in the following.

5.4.1 Heuristic CT-Number-to-SPR Conversion

For HLUT specification as described by Wohlfahrt et al. (2017b), the Hounsfield scale was

divided into three parts representing different tissue types: low-density (H < -150 HU), soft

(-150 HU ≤ H ≤ 150 HU) and bone tissues (H > 150 HU). Each CT number segment was

described by a linear function using only Gammex tissue substitutes. To avoid steps be-

tween adjacent linear functions, the intersection was set as transition point.

The HLUTs defined for 120 kVp SECT (mean energy of 64 keV) and 79 keV MonoCT

datasets are shown in Fig. 5.9. Both HLUTs are quite similar for low-density materials and

soft tissues (H < 50 HU) owing to their major dependence on electron density. HLUT dif-

ferences in the bone region (H > 200 HU) are induced by the strong energy dependence

of X-ray attenuation for materials with a higher effective atomic number than water. This

implies a steeper slope with increasing X-ray energy, which is associated with a more sen-

sitive response on CT number changes. For 79 keV MonoCT datasets, SPR deviations of

tabulated human tissues from the HLUT are slightly reduced from a root mean square error

(RMSE) of 1.5% to 1.2% compared with 120 kVp SECT scans, suggesting slightly fewer dif-

ferences between tissue substitutes (used for calibration) and the tabulated human tissues.

Materials differing from tissue compositions, such as polymers or metals, can significantly

deviate from the calibration curve and are therefore in general not appropriately covered by

any heuristic CT-number-to-SPR conversion.
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Figure 5.9: Heuristic CT-number-to-SPR conversion (HLUT) for proton treatment planning based
on a 79 keV MonoCT dataset derived from syngo.MonoPlus using 80/140 kVp DECT scans (non-
transparent) and 120 kVp SECT scan with a mean energy of 64 keV (semi-transparent). CT scans
were acquired at the CT scanner Definition AS and reconstructed with the D34 kernel. CT numbers
were obtained for cylindrical material samples with a diameter of 10 mm positioned within the water
setup. The error bars illustrate the CT numbers derived from the air and pelvis setup. The material-
specific SPRs were determined for 125 MeV protons. Adapted from Wohlfahrt et al. (2017b).

5.4.2 Direct Stopping-Power Prediction

Within this thesis, two approaches for direct stopping-power prediction from dual-energy CT

(DirectSPR) were thoroughly investigated (sections 4.2.2 and 4.2.3). Both SPR prediction

methods rely on an image-based extraction of tissue-specific material parameters for each

CT voxel.

The electron density as dominating physical quantity is directly derived from DECT using a

linear superposition of both single DECT scans. The second material parameter for solving

the Bethe equation (eq. 3.3), e.g. the I-value or stopping number, is approximated based

on the effective atomic number or X-ray attenuation cross section. These DirectSPR meth-

ods still contain an empirical component, but the influence on CT-based SPR prediction is

clearly reduced compared with HLUT approaches (Wohlfahrt et al., 2017b; Möhler et al.,

2018a). The following sections describe the results of the calibrations performed for the

respective approach as published by Wohlfahrt et al. (2018a).
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Electron Density

For voxelwise RED computation using 80/140 kVp DECT with scan parameters optimised

for radiotherapy, an appropriate weighting factor αϱ as introduced in eq. 2.7 needs to be de-

termined. The calibration was performed as described in section 5.2.3. Reference electron

densities were calculated based on the elemental composition of the investigated materials

according to eq. 5.5.

This evaluation yields an optimal weighting factor αϱ of -0.819 ± 0.003, which equals the

weighting factor of 170 keV MonoCT datasets derived from syngo.MonoPlus (Fig. 5.7). To

benefit from the sophisticated noise suppression algorithm applied in syngo.MonoPlus, the

170 keV MonoCT dataset has been selected for DECT-based RED determination instead

of simply calculating the weighted sum of the two single DECT scans.

Effective Atomic Number for RhoZ Approach

The material-specific effective atomic number (EAN) in each CT voxel was obtained from

syngo.RhoZ using an 80/140 kVp DECT scan. To predict the I-value based on EAN, a

calibration curve was specified for soft tissues and bones, respectively (Fig. 5.10). For each

CT voxel with RED > 0.5 (minimal selectable value in syngo.RhoZ), the Bethe equation

(eq. 3.3) is solved for a specific proton energy by inserting the obtained RED and I-value.

To prevent instabilities in EAN determination for RED ≤ 0.5 (division by small RED), the

RED of the respective CT voxel is directly used as SPR. This assumption is justified in this

case, because lung tissue is almost water-equivalent and differs particularly in density.

X-Ray Cross Section for RhoSigma Approach

The material-specific relative photon attenuation cross section (RCS) was computed for

X-rays of 82 keV. Since the 79 keV MonoCT dataset derived from 80/140 kVp DECT using

syngo.MonoPlus corresponds to an X-ray energy of 82 keV, this dataset was divided by the

RED dataset to obtain the RCS dataset. Based on the RCS of each CT voxel, the relative

stopping number (RSN) is determined by a calibration curve consisting of multiple line

segments (Fig. 5.10). Finally, the RED and RSN datasets are multiplied for SPR prediction

according to eq. 3.3. To guarantee robustness and stability of the RhoSigma approach

(similar reason as for RhoZ), RSN is set to 1 for each CT voxel with RED < 0.3.
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Figure 5.10: (A) Conversion from effective atomic number to logarithmic I-value used in the RhoZ
approach. The calibration curve is composed of a linear (quadratic) fit to the human soft (bone) tis-
sues respectively, joined by a straight line between the intermediate effective atomic numbers 8 and
10. (B) Conversion from relative monoenergetic cross section for 82 keV X-rays to relative stopping
number for 200 MeV protons used in the RhoSigma approach. The cross sections were calculated
based on elemental composition and elemental cross sections from the NIST database. The cali-
bration curve is designed analogously to a HLUT consisting of multiple line segments representing
different tissue types such as adipose, soft and bone tissue (here: from left to right). Adapted from
Wohlfahrt et al. (2018a).
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6 Experimental Verification of Stopping-Power

Prediction

After a comprehensive evaluation of CT scan and reconstruction parameters resulting in

a CT scan protocol optimised for radiotherapy and the calibration of the respective SPR

prediction approach, the accuracy and precision of each method needs to be quantified.

Since range verification in patients with a clinically appropriate accuracy of 1 mm to 2 mm

is currently highly challenging, a direct verification of the accuracy of CT-based SPR pre-

diction in patients is not feasible. Hence, a stepwise indirect verification scheme (Fig. 6.1)

Figure 6.1: Experimental validation scheme to assess the accuracy of different CT-based SPR
prediction approaches by separating the two complexity levels arising in humans, i.e. tissue compo-
sition and geometrical inhomogeneities. The red box states the achieved measurement uncertainty.
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is proposed within this thesis separating the two complexity levels arising in humans: tis-

sue composition and geometrical inhomogeneities. The validation results obtained in a

ground-truth anthropomorphic head phantom (section 6.1) and homogeneous biological

tissue samples (Möhler et al., 2018a) can then be translated to patient CT scans. Although

a minor uncertainty still remains in this chain of evidence, an accuracy of 1 mm or even less

could be achieved for the respective validation method in each single study.

6.1 Anthropomorphic Head Phantom

To assess the accuracy of four different SPR prediction approaches (section 5.4) based on

SECT (clinical HLUT) and DECT (79 keV MonoCT dataset with clinical HLUT, RhoSigma

and RhoZ) in a realistic clinical scenario, an anthropomorphic head phantom with known

SPR in each voxel was investigated (Fig. 5.2). The results of this evaluation were published

in Wohlfahrt et al. (2018a) and are presented in the following.

6.1.1 Reference Stopping-Power Map

A geometrically appropriate reference SPR dataset of the head phantom is required for

evaluating the accuracy of CT-based SPR prediction approaches. The elemental compo-

sition of each built-in tissue surrogate is provided by the vendor. However, a 3D reference

SPR map still needs to be defined using measured material-specific SPRs and indepen-

dently validated to ensure a ground truth of high spatial and quantitative precision.

Generation of Reference Dataset

For each tissue surrogate within the head phantom, relative range measurements were

performed to determine the material-specific SPR using separate homogeneous slabs with

a nominal thickness of 20 mm (section 5.3.2). The maximal measurement uncertainty was

dominated by the uncertainty of the slab thickness and experimentally determined as 0.3%

related to the SPR of water, combining the results of two individual measurements using

different devices (Peakfinder Water Column, Giraffe MLIC).

To produce the 3D reference SPR map, a high-resolution sequential CT scan (0.5 mm

isotropic spacing, X-ray spectrum of 150 kVp with additional tin filter, reconstruction kernel

Hr69h using ADMIRE of maximal strength, CTDIvol16 cm of 37.8 mGy) of the head phantom
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6.1 Anthropomorphic Head Phantom

was acquired using a dual-source CT scanner Force. A median CT dataset of five subse-

quent CT scans was created to preserve material transitions and decrease image noise

resulting from less-smoothing but highly spatially resolved image reconstruction. Each ma-

terial was then manually delineated on axial CT slices with a remaining uncertainty of up

to 2 voxels using the TPS RayStation 5.0. Finally, the segmented volumes of the different

phantom materials were overridden with the experimentally determined SPRs (Fig. 5.2 B).

Validation Strategy of Reference Dataset

The geometrical accuracy of the reference SPR map is dominated by the delineation un-

certainty, whereas the SPR uncertainty of each correctly assigned CT voxel is affected

by the accuracy of the measured material-specific SPRs and their transferability to the

head phantom. For validation, the cumulative effect on traversing pencil beams was inde-

pendently evaluated by MLIC measurements for five distinct areas of the head phantom

(Fig. 6.2). Since one side of this phantom is divided into three parts with a nominal thick-

ness of 20 mm, range measurements could be performed in areas of different geometrical

complexity using plane-parallel head phantom slabs or the other half of the phantom, re-

ferred to as “half-head” (Fig. 5.2 A). Depth-dose curves were acquired with the MLIC for

245 spot positions within fields of (66 mm)2, covering a regular grid with 3 mm spacing in

the inner (30 mm)2 and 6 mm spacing outside.

The distal depth at 80% maximum dose was then compared with results of Monte Carlo

transport simulations based on the SPR reference map. To this end, the segmented CT

dataset for material assignment was used with the FLUKA multi-particle transport code,

version 2011.2c.5 (PRECISIon defaults). In the Monte Carlo simulation, material proper-

ties for water were left unchanged from standard settings (especially I = 75 eV), whereas

initial kinetic energy and momentum spread of the proton beam were adjusted to match

measured depth-dose profiles in water with nominal energy of 150 MeV at OncoRay. The

density and elemental composition of each phantom material was used in FLUKA as pro-

vided by the manufacturer (CIRS, Inc., Norfolk, USA). The corresponding I-values were

adapted to match the material-specific SPRs experimentally determined in the homoge-

neous slabs. This was done in dedicated runs with simple slab geometry prior to the actual

simulation of the MLIC experiments. Relative statistical fluctuation on range (distal depth at

80% maximum dose) was kept below one standard deviation of 0.1h in all cases, yielding
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6 Experimental Verification of Stopping-Power Prediction

a maximum standard error of 0.02 mm on range differences derived from Monte Carlo sim-

ulations, well below all experimental uncertainties. Details on the Monte Carlo simulation

are shown in Table D.1 of Supplement D.

Verification of Reference Dataset

For three fields (S1A, S1B, and S2A; Fig. 6.2) measured on plane-parallel head phantom

slices (slice 1 and 2 / II and III; Fig. 5.2 A) without sinus cavity, the range differences be-

tween MLIC depth-dose measurements and Monte Carlo simulated depth-dose curves of

all beam spots agree within a CT voxel size of ± 0.5 mm. This confirms the transferability of

material-specific SPR to the head phantom and the accuracy of the ground-truth SPR map

in general. For more-complex fields (S2B, containing sinus cavity and air; and HA, with

a considerably larger thickness and curved surface) the distribution of range differences

broadens. This is caused by the larger methodological uncertainty in the validation proce-

dure itself (e.g. influence of range mixing) and a potentially higher delineation uncertainty

Figure 6.2: Independent validation of the reference SPR map using distal range differences at
80% of maximal dose between depth-dose measurements with a MLIC and Monte Carlo simulated
depth-dose curves for five distinct areas illustrated in two-dimensional (2D) radiographs. Box plots
are defined as illustrated in Fig. 6.3. Adapted from Wohlfahrt et al. (2018a).
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6.1 Anthropomorphic Head Phantom

at transitions toward sinus cavity and air. Still, the median range difference is smaller than

± 0.3 mm, and in the most complex scenario (HA), the range difference of 91% of the spots

was within ± 1 mm, corresponding to the estimated maximum delineation uncertainty.

The reference map was thus validated for usage in the verification of SPR and proton range

predictions with a conservative upper limit of 0.3% and 1 mm uncertainty, respectively, even

in the most complex inhomogeneous case.

6.1.2 Assessment of Stopping-Power and Range Accuracy

For SPR prediction, 120 kVp SECT and 80/140 kVp DECT scans were acquired with clini-

cal settings (1 × 1 × 2 mm3 spacing, reconstruction kernel Q34 using SAFIRE of maximal

strength, CTDIvol32 cm of 20.8 mGy) at a single-source CT scanner Definition AS.

Evaluation Procedure

The clinical SPR maps were first compared with the reference SPR map on a voxel level,

evaluating each segmented material in the non-sliced side of the head phantom separately.

To consider the delineation uncertainty, a 2D γ analysis (Low et al., 1998) with passing

criteria of 1% or 2% SPR difference (∆Ŝcrit) and 1 mm distance to agreement (∆dcrit) in

each case were performed for all axial CT slices of the full head as well as for each phantom

material separately. Hence, the SPR at each voxel position within the reference dataset (rr)

is compared with the SPR at the same and adjacent positions (rcomp) in the SPR dataset

derived from CT scans. The γ value at a specific position follows from

γ (rr) = min
{

Γ
(
rr, rcomp

)}
∀
{

rcomp

}
(6.1)

with

Γ
(
rr, rcomp

)
=

√[rr − rcomp

]2
∆d2

crit
+

[
Ŝr (rr) − Ŝcomp

(
rcomp

)]2

∆Ŝ2
crit

. (6.2)

If γ ≤ 1, the CT voxel passes the criteria and otherwise it fails. The number of passed

CT voxels divided by the total number of voxel within the investigated region yields the γ

passing rate, which is a quantitative measure of accuracy.
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6 Experimental Verification of Stopping-Power Prediction

Figure 6.3: SPR distribution of each segmented material within the anthropomorphic head phantom
for all investigated CT-based SPR prediction approaches. Adapted from Wohlfahrt et al. (2018a).

The phantom was divided into three regions in caudo-cranial direction (facial skull, skull

base, and calvaria; Fig. 5.2) to evaluate heterogeneity-related effects on SPR accuracy.

The facial skull is the most heterogeneous and the skull base the most homogeneous area.
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6.1 Anthropomorphic Head Phantom

To exemplarily quantify the accuracy of SPR prediction approaches on the level of proton

range, a passively scattered proton treatment plan with two beams from 210◦ and 305◦ was

computed with the TPS XiO using a (1 × 1 × 1) mm3 dose grid. The treatment plan was

optimized on the reference SPR dataset and recalculated on each clinical SPR dataset.

More than 400 line-dose profiles in beam direction were extracted using RayStation 5.0

and the distal range at 80% of prescribed dose was analysed to calculate range shifts.

Accuracy of SPR Prediction

As shown in Fig. 6.3, all investigated CT-based methods predict the SPR of the two most

abundant materials, brain and soft tissue grey, with a median deviation to the reference be-

low 1% (except for brain in the 79 keV MonoCT dataset). The two DirectSPR approaches re-

veal smaller SPR deviations compared with both HLUT methods, and in general RhoSigma

performs best. However, the DirectSPR approaches are more affected by image noise

(≈ 4 HU standard deviation), which is reflected in larger interquartile ranges.

For the third most frequent material, trabecular bone, a similar SPR accuracy is obtained

for RhoSigma and RhoZ (median deviation < 1%), in contrast to the HLUT approaches

(median deviation > 5%). Since trabecular bone is almost entirely surrounded by a thin

layer of the high-density material cortical bone, all predicted SPR distributions are posi-

tively skewed owing to image smoothing at material transitions. This smoothing affects all

SPR methods in a similar manner and is particularly pronounced in small-volume materials

close to high-density gradients, resulting in either a systematic SPR underestimation for

high-density materials, such as cortical bone, or overestimation for low-density materials,

such as air and sinus cavity. The SPR distribution in these materials is not only skewed as

in trabecular bone, where smoothing affects only the outer part of the volume, but the entire

distribution is shifted.

In the tooth surrogates, the SPR underestimation due to the smoothing effect is partly com-

pensated by an SPR overestimation, which is an inherent property of the investigated SPR

prediction methods for materials containing an element with high atomic number (Möhler

et al., 2017). The SPR predictions for spinal cord and spinal disk show similar results as for

soft tissue grey and trabecular bone, respectively.

The DirectSPR approaches reveal considerably higher γ passing rates compared with the

HLUT methods (Fig. 6.4, Table 6.1). For example, both DirectSPR methods, unlike the
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6 Experimental Verification of Stopping-Power Prediction

HLUT approaches, can accurately predict SPR within 1% for most of trabecular bone

(γ passing rates of approximately 60% vs. <10%; Table 6.1). In all regions, RhoSigma

achieves the highest γ passing rates for the severest criterion γ(1 mm, 1%). Applying the

less-restrictive γ criterion of 2% SPR difference, RhoSigma and RhoZ show similar results,

and both perform still considerably better than the HLUT approaches. The small γ passing

rates of the 79 keV MonoCT approach for the γ(1 mm, 1%) criterion are mainly caused by

Table 6.1: Evaluation results of 2D γ analysis for each segmented material within the anthropo-
morphic head phantom and all investigated CT-based SPR prediction approaches. Adapted from
Wohlfahrt et al. (2018a).

Material
Proportion
full head

%

(γ passing rate ± standard deviation) / %

for γ(1 mm, 1%) and γ(1 mm, 2%)

120 kVp
SECT

79 keV
MonoCT RhoSigma RhoZ

Brain 43.44
73.4 ± 0.8 14.4 ± 0.2 93.4 ± 0.5 85.6 ± 0.6
93.3 ± 0.6 91.9 ± 0.6 95.3 ± 0.4 95.2 ± 0.4

Soft tissue grey 34.84
82.3 ± 0.7 69.3 ± 0.6 79.5 ± 0.8 78.2 ± 0.7
87.6 ± 0.7 86.1 ± 0.7 86.7 ± 0.7 86.8 ± 0.7

Trabecular bone 13.58
8.1 ± 0.3 8.2 ± 0.3 65.6 ± 0.9 59.2 ± 0.7
9.1 ± 0.3 9.4 ± 0.3 74.6 ± 1.0 72.1 ± 0.8

Cortical bone 6.00
0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.0 0.1 ± 0.0
0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.0 0.2 ± 0.0

Air 1.19
26.2 ± 1.6 20.5 ± 1.4 20.8 ± 1.3 20.8 ± 1.3
38.1 ± 1.5 31.8 ± 1.6 28.7 ± 1.5 28.7 ± 1.5

Sinus cavity 0.77
0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0

Tooth dentin 0.07
45.2 ± 1.8 43.8 ± 1.8 31.2 ± 2.2 27.6 ± 2.1
47.9 ± 1.8 46.5 ± 1.9 35.1 ± 2.4 31.7 ± 2.3

Spinal cord 0.05
84.7 ± 1.5 68.9 ± 1.0 79.8 ± 1.5 61.5 ± 2.8
99.0 ± 0.1 99.2 ± 0.1 88.0 ± 0.7 82.7 ± 1.0

Spinal disk 0.03
43.2 ± 4.2 32.3 ± 5.0 51.2 ± 3.5 51.9 ± 3.2
49.9 ± 4.5 44.4 ± 4.7 55.8 ± 4.0 57.0 ± 3.7

Tooth enamel 0.03
65.9 ± 2.3 64.5 ± 2.2 62.2 ± 2.7 55.2 ± 2.4
67.3 ± 2.2 65.9 ± 2.3 63.8 ± 2.7 56.9 ± 2.4

Global
62.4 ± 0.7 32.4 ± 0.9 77.7 ± 0.7 73.0 ± 0.6
73.1 ± 0.7 71.9 ± 0.7 82.4 ± 0.6 82.0 ± 0.6
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6.1 Anthropomorphic Head Phantom

Figure 6.4: Representative γ-value maps for three head regions and all investigated CT-based
SPR prediction methods. The mean γ passing rates and standard deviations for the respective
head regions are specified below the γ-value maps. Adapted from Wohlfahrt et al. (2018a).

the SPR prediction of brain, simply because most CT voxels are out of the range of 1%

SPR deviation (Fig. 6.3).

The highest γ passing rates were achieved in the head region 2, which is characterised by

large homogeneous areas of a single material and fewer material transitions. The increas-

ing heterogeneity (region 1) and relative amount of bone tissue surrogates (region 3) leads

to considerably smaller γ passing rates. This reflects the approach-independent influence

of smoothing on voxelwise SPR prediction.

Accuracy of Range Prediction

In the chosen exemplary treatment plan, the obtained mean range deviations to the refer-

ence plan are reasonably small for all methods, with a maximum of 1.4 mm for beam 2 in the

RhoZ method. However, the HLUT approaches reveal smaller range deviations compared

with the DirectSPR methods (Fig. 6.5). The HLUT systematically overestimates the SPRs

of the three most frequent materials, which is compensated in beam direction by the sys-
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6 Experimental Verification of Stopping-Power Prediction

tematic SPR underestimation of cortical bone owing to image smoothing. For beam 1, the

methodological overestimation (especially brain and trabecular bone) is fully compensated

by the smoothing-induced SPR underestimation of cortical bone. Since beam 2 traverses a

higher amount of brain and trabecular bone, the compensation due to cortical bone is not

sufficient. In contrast, the range error of RhoSigma is constant for both beam directions, be-

cause it is mainly caused by image smoothing. RhoZ reveals an increased range error for

beam 2 arising from a raised amount of brain in beam direction as compared with beam 1.

Figure 6.5: Dose difference and mean range deviation (dR ± standard deviation) for proton dose
calculation based on CT-derived SPR datasets and the SPR reference of the anthropomorphic head
phantom. Adapted from Wohlfahrt et al. (2018a).
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6.1.3 Discussion of SPR and Range Accuracy

For non-small volumes, the DirectSPR methods yield a consistently better SPR prediction

accuracy than the HLUT approaches. Comparing both DirectSPR approaches, RhoSigma

was slightly more accurate than RhoZ. In general, the findings in regions not dominated by

CT image smoothing are in agreement with earlier results in homogeneous tissue substi-

tutes (Hünemohr et al., 2014; Hansen et al., 2015; Hudobivnik et al., 2016).

Moreover, a general influence of image reconstruction was found, namely the sharpness of

reconstruction kernels and voxel discretisation, which leads to washout of material edges.

The effect dominates in small-volume materials in proximity to high-density gradients, re-

sulting in SPR under- or overestimation. This can be visualised by studying the SPR profile

crossing different materials (Fig. 6.6). All SPR prediction methods are similarly affected

by smoothing. In homogeneous slabs of the same small-volume phantom materials, the

SPR prediction performed very well (mean absolute error < 1%, excluding tooth enamel;

Table D.2 of Supplement D). Hence, the smoothing effects are an additional, independent

source of uncertainty. This is unexpected because CT vendors claim volumetric conser-

vation of CT number at material edges in CT reconstruction (personal communication,

Siemens Healthineers). In future studies, the deviations owing to non-sharp image recon-

structions could be dedicatedly analysed (e.g. if it can be reduced by an increase of sharp-

ness in image reconstruction – considering the trade-off between sharpness and noise).

Figure 6.6: SPR distribution and deviation of water-equivalent thickness (WET) between CT-derived
SPR datasets and the SPR reference for an exemplary beam direction within the anthropomorphic
head phantom. Adapted from Wohlfahrt et al. (2018a).
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6 Experimental Verification of Stopping-Power Prediction

Since not only voxelwise differences in SPR prediction but also the resulting dose distri-

bution were evaluated within this study, it could be demonstrated that SPR deviations in

different parts of the beam path can either add up or compensate each other (cf. cumula-

tive WET in dependency of penetration depth; Fig. 6.6). Whereas smoothing affects all SPR

algorithms similarly, especially in cortical bone, in other regions SPR deviations can have

a quite variable influence. For the exemplary case in Fig. 6.6, hardly any compensation

occurs for RhoSigma, because it accurately predicts the SPR of the three most frequent

tissues. However, for the HLUT approaches, underestimation due to smoothing is partly

compensated by an overestimation in trabecular bone and especially in brain. Although,

on the first view, this might appear as a benefit of the HLUT approaches, in fact it demon-

strates their non-robustness and case-dependency. Therefore, the two different causes of

deviations in range prediction, namely (1) methodological limitations of SPR prediction and

(2) effects from CT image smoothing, should be minimised independently. It is not an ad-

missible option to hope for a compensation of the different effects.

There are a few limitations to be mentioned. First, the investigation is limited to the head-

and-neck region, a treatment site of clinical importance for proton therapy. Owing to the

complex effects in inhomogeneous targets, the extension of the evaluation to other body

regions seems advisable.

Another limitation is the remaining delineation uncertainty of up to 1 mm. It was minimised

by using a high-resolution CT scan for material-specific delineation. For the first three cases

of the independent validation, the delineation uncertainty is mainly present in the definition

of the external owing to voxel discretisation. The overall uncertainty increases with multiple

transitions to low-density materials (air, sinus cavity), owing to material assignments de-

pending on the image contrast adjusted by CT windowing, as well as with rounded shape. At

the same time, this leads to considerably increased range mixing, deteriorating the depth-

dose curve and hence the distal range at 80% of maximum dose used in the validation.

This illustrates the difficulties and present limitations of independently verifying a ground

truth for anthropomorphic geometries that can discriminate range differences in the lower

and sub-millimeter scale. It should be stressed that these limitations are not CT-related but

will affect any imaging-based validation approach that measures SPRs by their impact on

range. However, in view of all difficulties in the validation procedure, the obtained results

– median range differences smaller than ± 0.3 mm and more than 97% of all beam spots

within ± 1 mm range difference – are rather convincing.
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Moreover, the results for each SPR prediction method depend on the calibration procedure,

that is the HLUT definition for 120 kVp SECT and 79 keV MonoCT datasets or the definition

of the calculation of stopping number from effective atomic number (RhoZ) or cross section

(RhoSigma). In fact, there is an advantage for DirectSPR methods as the empirical influ-

ence on calibration is much smaller than for HLUT approaches (Wohlfahrt et al., 2017a).

Currently, considerable variations in CT-number-to-SPR conversion between proton cen-

tres exist (e.g. due to different CT scan protocols and underlying HLUT definition). Besides,

only two selected DECT approaches have been investigated in this study, although many

more algorithms have been proposed. To facilitate investigations for others, the validated

reference SPR map and CT datasets will be provided upon request.

6.2 Homogeneous Biological Tissue Samples

The accuracy of two SPR prediction methods (120 kVp SECT with HLUT and 80/Sn140 kVp

DECT with RhoSigma) was experimentally assessed in homogeneous biological tissues.

This study was performed and published by Möhler et al. (2018a) and is briefly summarised

in the following.

To quantify the respective SPR accuracy and demonstrate potential differences between

both approaches, a robust experimental setup for CT acquisition and relative ion range

measurements with an overall SPR uncertainty below 0.1% was proposed. In total, 13 dif-

ferent porcine and bovine tissues (3 adipose tissues, 3 muscles, liver, kidney, brain, heart,

blood, lung and bone) were analysed considering their relative incidence, homogeneity and

availability. Finally, the deviation between measured reference SPR and CT-derived SPR

of each tissue sample was determined.

For SECT, SPRs of most tissues (except brain and bone) significantly differ from the ref-

erence, resulting in a mean absolute error ± standard deviation of (1.27 ± 0.12)% and a

mean signed error of (-0.84 ± 0.12)%. Especially the adipose tissues were underestimated

by up to -2.7%.

SPRs derived from DECT scans are consistent with the reference values of all tissues ex-

cept for bovine adipose showing a significant deviation of (0.19 ± 0.11)%. In total, a mean

absolute error of (0.10 ± 0.15)% and a mean signed error of (-0.02 ± 0.15)% could be

achieved.
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Compared with SECT, DECT performs better for all tissue samples and significantly better

for 10 out of 13 tissues (excluding brain, lung and bone). The intrinsic heterogeneity of lung

and bone samples is associated with range degradation resulting in a considerable spread

of the Bragg peak. Owing to the increased measurement uncertainty, it is not feasible to dis-

tinguish the performance of both methods for these two tissues. In summary, DECT allows

for a highly accurate prediction of tissue-specific SPRs.
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7 Clinical Translation and Validation of Dual-Energy

Computed Tomography

For CT scan protocols optimised for radiotherapy, the accuracy of stopping-power prediction

from clinical CT scans was assessed in an anthropomorphic head phantom and homoge-

neous biological tissues. In comparison with methods using an HLUT for CT-number-to-

SPR conversion, DECT-based DirectSPR approaches showed a more robust and reliable

overall performance resulting in an improved SPR accuracy. To conclude on the clinical

applicability, safety and potential relevance of dual-energy CT for proton treatment plan-

ning, DECT scans of patients need to be considered, which are acquired within the routine

clinical workflow. Since CT scans of patients are the basis of treatment planning, a change

of CT scan protocols or even the shift from single-energy to dual-energy CT acquisition

influence the entire radiotherapy chain from tumour delineation to treatment planning and

finally dose application in patients.

Within this thesis, a stepwise procedure for a reliable clinical implementation of DECT in

proton therapy was applied to continuously gather experience in daily clinical practice with-

out interfering the current patient treatment. As a first step, it was analysed whether a

DECT-derived MonoCT dataset, still using an HLUT for SPR prediction, yields a dose dis-

tribution comparable with the one derived from SECT (section 7.1), which is the current

state-of-the-art imaging technique in radiotherapy. In a second step, differences in SPR,

proton range and dose distribution between HLUT and DirectSPR approaches were quanti-

fied using patient DECT scans (sections 7.2-7.4). Based on the findings obtained in the sys-

tematic patient cohort analysis, the clinically applied HLUT could be refined to increase the

accuracy of SPR prediction considering additional patient information derived from DECT

(section 7.5). Finally, the clinical use of a patient-specific DirectSPR method might allow for

a reduction of clinical safety margins and thus better sparing of healthy tissue.

All patient CT datasets were acquired at a single-source CT scanner Definition AS. The ret-

rospective patient evaluations were approved by the local ethics committee (EK535122015).
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7.1 Feasibility of Dual-Spiral Dual-Energy CT

Within this section, the clinical feasibility and safety of proton treatment planning based

on DECT-derived MonoCT datasets is evaluated and discussed. The study results were

published in Wohlfahrt et al. (2017b).

7.1.1 Evaluation Strategy

Clinical SECT and DECT scans (Table 5.1) of the head of the Whole Body Phantom PBU-60

(section 5.1.1) were acquired. A 79 keV MonoCT dataset was generated from DECT using

the image post-processing application syngo.MonoPlus. The SECT and 79 keV MonoCT

datasets were then evaluated concerning their influence on proton range calculation to

verify consistent results and to ensure a safe application of treatment planning based on

MonoCT datasets in a routine clinical workflow.

Proton treatment planning in double-scattering mode was performed with the TPS XiO

using a (1 × 1 × 1) mm3 dose calculation grid. A proton beam was selected, which traverses

a considerable amount of tissue heterogeneities in the phantom until reaching the distal

edge of the target volume. The treatment plan was optimized on the 120 kVp SECT scan

and recalculated on the 79 keV MonoCT dataset.

Deviations in proton range prediction were analysed based on various line-dose profiles

in beam direction extracted with the TPS RayStation 5.0. Absolute range differences ∆R

were quantified using the distal range at 80% of the prescribed dose. Moreover, the overall

dose distributions were compared using a 2D γ analysis with a passing criteria of 1% dose

difference and 1 mm distance to agreement considering all axial CT slices receiving the

prescribed dose.

Furthermore, to exclude possible differences between proton range prediction based on

CT scans of a real human anatomy and a phantom consisting of tissue substitutes, the

same analysis was performed for a single patient with sacral chordoma. For this patient,

medically indicated SECT and DECT scans were acquired in direct succession. The two

CT scans in dual-energy mode were acquired consecutively with a delay of approximately

10 to 15 seconds, which can differ depending on the investigated body region. The clinically

applied passively scattered proton treatment plan with two beams from 150◦ and 210◦ was

then evaluated.
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7.1.2 Evaluation of Dose Calculation

To quantify differences in proton range prediction between a 120 kVp SECT and a DECT-

derived 79 keV MonoCT dataset, a treatment plan comparison was performed using the

head of the Whole Body Phantom. In beam direction, 146 line-dose profiles with 1 mm

spacing were analysed considering all axial CT slices receiving the prescribed dose. Com-

paring SECT- and MonoCT-based dose calculations, a mean absolute range difference

± standard deviation of (0.31 ± 0.13) mm was determined. The maximal absolute range dif-

ference was 0.59 mm. All proton range differences were thus smaller than the dose grid di-

Figure 7.1: Representative (A) line-dose profiles and (B) dose distributions for a proton treatment
plan of a head phantom with artificial tumour region and patient with sacral chordoma calculated
on 120 kVp SECT scan and DECT-derived 79 keV MonoCT dataset. Range deviations ∆R between
both approaches were quantified using the distal range at 80% of prescribed dose. (C) Dose-volume
histogram (DVH) of the patient treatment plan. Adapted from Wohlfahrt et al. (2017b).
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mensions used for dose calculation. Three representative line-dose profiles and their range

differences between 79 keV MonoCT and 120 kVp SECT datasets are illustrated in Fig. 7.1.

A 2D γ analysis (1%, 1 mm) of both dose distributions resulted in a mean and minimal γ

passing rate of 99.92% and 99.60%, respectively. In summary, an excellent agreement be-

tween both proton dose distributions has been demonstrated within the limits of the chosen

dose grid dimensions.

Furthermore, the agreement between SECT- and MonoCT-based dose calculations was

also confirmed for a clinical patient treatment plan. Range deviations between both ap-

proaches were comparable to those determined in the head phantom and thus within dose

grid dimensions (Fig. 7.1). Accordingly, the γ analysis revealed a mean and minimal γ pass-

ing rate greater than 99.99% and 99.98%, respectively. Consequently, no clinically relevant

changes in the patient’s dose-volume histogram (DVH) could be observed (Fig. 7.1 C).

7.1.3 Discussion of Clinical Feasibility

Since direct DECT-based SPR prediction algorithms (section 4.2) were still under devel-

opment and could not be applied clinically at the time of this investigation, this study fo-

cused on the use of pseudo-monoenergetic CT datasets derived from DECT, still relying

on a heuristic CT-number-to-SPR conversion. The clinical applicability and safety as well

as slight benefits of this DECT application could be demonstrated for proton therapy.

In addition to the enhanced image quality of MonoCT datasets in comparison with 120 kVp

SECT scans (section 5.2.2), the heuristic CT-number-to-SPR conversion is also slightly

more precise using a 79 keV MonoCT dataset (section 5.4.1). Further improvements re-

late to the CT number prediction of tabulated human tissues, which are commonly used

for HLUT definition. For SECT, the CT numbers of tabulated human tissues are deter-

mined by a scanner-specific stoichiometric CT number prediction (section 4.1.2). However

for MonoCT calculation, they can be obtained more simply using the respective tabulated

monoenergetic X-ray attenuation of NIST (Berger et al., 1990) multiplied with the scanner-

specific weighting-factor ratio α̂ = αsyngo.MonoPlus (Emono) /αMonoNIST (Emono).

As demonstrated in a head phantom and especially in a clinical patient case, SECT- and

MonoCT-based proton range predictions and dose distributions are consistent. It should

be also emphasised that only one patient case could be included because both a SECT

and DECT scan can only be justified in very rare cases according to the ALARA principle.
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Therefore, a detailed and reliable range evaluation had to be performed on a phantom and

then verified for an example patient case, which can be considered as sufficient to exclude

possible relative differences of proton range predictions.

7.1.4 Routine Clinical Application of Dual-Energy CT

In consideration of all results achieved within this evaluation, proton and photon treatment

planning based on DECT-derived 79 keV MonoCT datasets were clinically implemented

at OncoRay in 2015 and 2016, respectively, to reduce CT-related uncertainties caused by

beam hardening and to make use of additional DECT options for delineating. Since dual-

spiral DECT scans are acquired consecutively with the available single-source CT scan-

ner, the obtained images are prone to patient motion (e.g. breathing, swallowing, or organ

movements) occurring within the timespan of DECT acquisition. Consequently, treatment

planning based on 79 keV MonoCT datasets was initially implemented for tumour entities

and body regions where motion can be neglected between both CT scans (e.g. brain and

skull target sites – more than 50% of all patients at OncoRay).

On the basis of control CT scans, which are acquired in dual-energy mode for all tumour

entities during the course of proton therapy, the impact of motion on dual-spiral DECT scans

has been further analysed to widen the spectrum of tumour entities scanned in dual-energy

mode for treatment planning. Patients with prostate cancer or a tumour located within the

pelvic region revealed a clinically negligible influence of motion. Hence, the acquisition of

clinical DECT scans for treatment planning was expanded at OncoRay and covers currently

cerebral and pelvic tumour patients.

7.2 Range Prediction in Cerebral and Pelvic Tumour Patients

After the clinical implementation of DECT in radiotherapy, the resulting database of cur-

rently more than 1600 patients offers the opportunity to evaluate different CT-based range

prediction methods in patients. To quantify range deviations caused by two CT-number-to-

SPR conversions (clinical HLUT and RhoSigma as patient-specific DirectSPR approach)

and to observe whether these are of clinical relevance, 100 treatment fields of 50 proton-

therapy patients were analysed. The results were published in Wohlfahrt et al. (2017c) and

are presented in the following.
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7.2.1 Study Design

Differences between SPR prediction methods were assessed on various levels: voxelwise

SPR distribution, proton range in beam direction as well as beam-specific and overall dose

distribution.

DECT-Based SPR Prediction in Patients

For routine proton treatment planning of patients with several cancer types in the head and

pelvic region, a dual-spiral DECT scan (80/140 kVp) with a (1 × 1 × 2) mm3 voxel spacing is

acquired. Both CT datasets were reconstructed using an iterative reconstruction kernel with

beam hardening correction concerning bone (Q34/5, SAFIRE) to decrease image noise

(controlled by Siemens CARE Dose4D) and increase the patient-size dependent stability

of CT numbers.

In addition to MonoCT datasets, voxelwise material parameters, namely electron density

and photon attenuation cross section, were directly derived from DECT for the patient-

specific DirectSPR approach RhoSigma (sections 4.2.3 and 5.4.2).

Patient Cohort and Treatment Planning

To evaluate the impact of SPR differences between the HLUT and RhoSigma approach on

therapeutic dose distributions, 25 brain-tumour (ependymoma, germinoma, Ewing’s sar-

coma, astrocytoma and glioblastoma) and 25 prostate-cancer patients treated with protons

at OncoRay were selected. Both cohorts were assembled to representatively cover the re-

spective range of patient ages (brain: 2-73 years, prostate: 53-84 years). The brain-tumour

cohort includes five children, ten women and ten men.

The passively scattered proton treatment plan of each patient consists of two to five treat-

ment fields and was generated with the TPS XiO using a (1 × 1 × 1) mm3 dose calculation

grid. All prostate-cancer patients were treated with two opposing beams from 90◦ and 270◦.

Within the brain-tumour patient cohort, the number of treatment fields, including beam and

couch angle, varied depending on tumour position. The clinically applied proton treatment

plan was recalculated on the SPR dataset derived from the RhoSigma approach and rela-

tive dose difference maps, normalised to the prescribed dose, between both SPR prediction

methods were created.
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Assessment of Proton Range Shifts

For the two treatment fields of each patient with the highest beam weights, depth-dose

curves in beam direction were extracted in an orthogonal grid of 1 mm isotropic spac-

ing using an in-house ray-tracing algorithm (Tschiche, 2016), which was implemented

according to Siddon (1985). The origin of all depth-dose curves was defined by the ex-

ternal patient contour including immobilisation devices. Depth-dose curves inside each

treatment field with a dose maximum larger than 95% of reference dose per beam were

evaluated. The proton range in tissue (R80Tis) was defined as distal range at 80% of

reference dose. The range difference between line-dose profiles obtained with two dif-

ferent CT-number-to-SPR conversion methods corresponds to the range shift in tissue

(∆R80Tis = R80Tis, RhoSigma −R80Tis, HLUT). This shift ∆R80Tis can then be translated into

a water-equivalent proton range shift (∆R80WET) according to

∆R80WET =
N∑

n=1
ŜRhoSigma(n) · δz(n) (7.1)

with n as voxel number going from 1 to the total number of voxels N between R80Tis, HLUT

and R80Tis, RhoSigma and δz(n) as path length between two consecutive voxel boundaries.

The quantity ∆R80WET allows for a direct comparison with the range uncertainty applied for

treatment planning, where water-equivalent quantities are used by default. Relative proton

range shifts were derived by dividing ∆R80WET by R80WET, RhoSigma.

The intra-patient and inter-patient variability were defined as mean of the standard deviation

and as standard deviation of the mean of patient-specific range shifts, respectively.

To determine whether both methods predict significantly different water-equivalent proton

ranges, a one-sided t-test with a level of significance of 5% was applied.

Assessment of SPR Deviations

In addition to proton range shifts derived from dose distributions, the mean SPR deviation

between both CT-based stopping-power prediction approaches (∆Ŝ = ŜHLUT − ŜRhoSigma)

was calculated including all CT voxels within the 20% isodose of at least one of the two dose

distributions. Furthermore, the frequency distribution of voxelwise correlations of CT num-

ber and SPR derived from RhoSigma was determined, as exemplarily shown in Figs. 7.2 C

and 7.3 C for a brain-tumour and a prostate-cancer patient case, respectively.
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7.2.2 Results of Systematic Cohort Evaluation

First, an exemplary patient is presented for the brain-tumour and prostate-cancer cohorts

to explicitly describe the different effects causing range deviations determined in the sys-

tematic patient cohort evaluation.

Exemplary Brain Case

Compared with the application of an HLUT, patient-specific DECT-based SPR predictions

lead to clinical dose differences up to 26% relative to the prescribed dose at the distal fall-

off (Fig. 7.2 A). The illustrated proton depth-dose curve reveals an absolute and relative

proton range shift in tissue of 1.6 mm and 1.2%, respectively (Fig. 7.2 B). Since the proton

beam traverses a considerable amount of water-filled ventricles and the HLUT is optimised

to better fit soft tissues instead of water (H = 0 HU, Ŝ = 1), the HLUT overestimates the

SPR of water (zoomed inset of Fig. 7.2 C). To quantify its influence on proton range, ventri-

cles were delineated, their SPR assigned to the one of water (Ŝ = 1) and the proton dose

distribution was recalculated. As a result, SPR deviations in ventricles add up to a range

shift of 0.4 mm. The residual proton range shift of 1.2 mm is mainly induced by the system-

atic larger SPR for brain using the HLUT instead of RhoSigma (indicated by the red ellipse

in Fig. 7.2 C). The clinical dose differences were not only present in a single treatment field

but remained in the overall treatment (Fig. 7.2 D). Within both investigated treatment fields,

a mean relative range shift and intra-patient variation (± standard deviation) of (1.6 ± 0.7)%

was determined.

Exemplary Prostate Case

Proton dose distributions derived from both SPR prediction methods differ considerably as

exemplarily shown in Fig. 7.3 A. Here, dose differences of more than 50% relative to the

prescribed dose were determined at the distal fall-off. For a representative depth-dose pro-

file, this corresponds to a proton range shift of 5.1 mm in tissue (Fig. 7.3 B). Even in the

target volume dose reductions of up to 1.5% occur, which cannot be compensated in the

overall treatment by superimposing both fields (Fig. 7.3 D). The HLUT predicts systemati-

cally larger SPRs for muscle, bone marrow and trabecular bone (indicated by the red ellipse

in Fig. 7.3 C).
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Figure 7.2: Proton treatment plan of a two-year-old patient with an ependymoma (#1) calculated
using an HLUT (1) and a direct patient-specific SPR prediction approach (2) for CT-number-to-SPR
conversion. The red ellipse indicates brain tissue. Adapted from Wohlfahrt et al. (2017c).
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Figure 7.3: Proton treatment plan of a 73-year-old patient with prostate cancer (#3) calculated
using an HLUT (1) and a direct patient-specific SPR prediction method (2) for CT-number-to-SPR
conversion. The red ellipse indicates muscle and trabecular bone. Adapted from Wohlfahrt et al.
(2017c).
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Systematic Patient Cohort Evaluation

The results obtained from the presented individual patient cases are representative for the

systematic evaluation of on average 5001 (min: 2682, max: 9450) proton depth-dose curves

in beam direction for each treatment field. Regarding all evaluated depth-dose curves inde-

pendent from the individual patient (Fig. 7.4), an overall median water-equivalent range shift

± standard deviation of (1.2 ± 1.0)% or (1.1 ± 0.9 mm) for brain-tumour and (1.7 ± 0.9)%

or (4.1 ± 2.2 mm) for prostate-cancer patients were observed. The mean relative water-

equivalent range shift of each patient (Fig. 7.5) is significantly larger than 1% for both co-

horts (p < 0.001) and even significantly larger than 1.5% for patients with prostate cancer

(p < 0.001).

As summarised in Table 7.1, about 34% and 66% of all depth-dose curves for the brain-

tumour and prostate-cancer cohort, respectively, reveal water-equivalent range shifts larger

than 1.5%. Mean SPR deviations within the irradiated volume agree well with range differ-

ences obtained from dose distributions (Fig. 7.5). Furthermore, for brain-tumour (prostate-

cancer) patients, the intra-patient variation of relative water-equivalent range shifts with

0.91% (0.44%) is considerably larger than the inter-patient variability of 0.22% (0.24%).

This is caused by differences in tissue type and relative amount of tissues traversed, i.e.

soft tissues like fat, muscle or brain, low-density bone like trabecular bone and high-density

bone as cortical bone. To illustrate the intra-patient variability of range shifts within a field,

Figure 7.4: Distribution of relative and absolute water-equivalent range shifts for the investigated
brain-tumour and prostate-cancer patient cohort. Adapted from Wohlfahrt et al. (2017c).
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Figure 7.5: Distribution of intra-patient water-equivalent range shifts as well as inter-patient mean
water-equivalent range shifts and mean SPR deviations. Box plots are defined as illustrated in
Fig. 6.3. Adapted from Wohlfahrt et al. (2017c).

a range deviation map is shown in beam’s eye view (BEV) for one patient of each cohort

(Fig. 7.6).

In brain-tumour cases (Fig. 7.6 A), proton beams penetrate mainly soft tissue. Since the

HLUT predicts systematically larger SPR for brain compared to RhoSigma, a shorter range

is mostly calculated using the HLUT instead of RhoSigma. However, for parts of the beam

mainly passing through cortical bone, the HLUT predicts systematically lower SPR result-

ing in larger proton ranges as predicted by RhoSigma (negative dose difference and range

shifts). This is important for beams of short penetration depth, because directly after travers-
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Table 7.1: Criterion-based classification of absolute water-equivalent range shifts between the clin-
ical HLUT and the DirectSPR approach RhoSigma for CT-number-to-SPR conversion.

Patient
cohort

Relative amount of absolute range shifts dR with

dR< 1.0% dR> 1.0% dR> 1.5% dR> 2.0% dR> 2.5% dR> 3.0%

Brain 35.5% 64.5% 33.9% 14.5% 6.3% 3.0%
Prostate 8.8% 91.2% 66.0% 28.8% 5.2% 0.3%

dR< 1 mm dR> 1 mm dR> 2 mm dR> 3 mm dR> 4 mm dR> 5 mm

Brain 41.5% 58.5% 16.8% 2.0% 0.4% 0.1%
Prostate 0.4% 99.6% 95.0% 80.1% 53.1% 23.9%

ing the cranial bone, the WET difference caused by cortical bone cannot be fully compen-

sated by the systematically larger SPR of brain.

Within treatment fields of prostate-cancer patients (Fig. 7.6 B), especially muscle, bone

marrow and trabecular bone occur. Since the HLUT predicts larger SPRs for all these tis-

sues compared to RhoSigma, a systematic shorter proton range is calculated. Travers-

ing the femoral head causes the highest range shift (Figs. 7.6 B and 7.3 C), which is

mostly induced by the high amount of trabecular bone in beam direction. This effect is

only partly compensated by the small amount of cortical bone in the beam path, for which

ŜHLUT < ŜRhoSigma.

Discussion of Range Deviations

The feasibility of patient-specific SPR prediction based on DECT scans could be demon-

strated under clinical conditions using a commercial CT scanner, image post-processing

software and TPS. The proton range deviations obtained in 100 clinical treatment fields

of 50 proton-therapy patients with various brain-tumour entities and prostate cancer are in

good agreement with range shifts observed in five head-trauma patients with hypothetical

base of skull tumour (Hudobivnik et al., 2016). The magnitude of range deviation between

both CT-number-to-SPR conversion methods is representative for tumour entities in the

pelvic, abdominal as well as head-and-neck region and underlines the clinical relevance of

accurate range prediction in particle therapy. However, to assess which of the two evalu-

ated approaches is closer to reality, the respective SPR accuracy in patients needs to be

directly verified or indirectly validated in close-to-clinical scenarios.
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Figure 7.6: Assessment of water-equivalent thickness as well as absolute and relative range shifts
in beam direction covering the whole treatment field. Mean values (± standard deviation) for each
field are stated below the respective beam’s eye view (BEV). The red dashed line illustrates the
axial CT slice in BEV. Adapted from Wohlfahrt et al. (2017c).

Since both experimental studies performed within this thesis (chapter 6) demonstrated that

CT-based SPR prediction using RhoSigma is more robust, reliable and accurate than an

HLUT, it is justifiable to conclude that SPR prediction using RhoSigma is also more reliable

and accurate for patients (Fig. 6.1). Consequently, the range differences obtained in pa-

tients indicate that DECT-based SPR prediction can improve particle range calculation and

eventually lead to reduced range uncertainty margins. Further studies would be beneficial

to finally assess the remaining uncertainties caused by image smoothing at high-density

gradients (section 6.1.3) and to allow for an appropriate estimation of the CT-related range

uncertainty in clinical practice.
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Owing to the high SPR accuracy of RhoSigma, the mean SPR deviation within the irradiated

volume of patients is certainly dominated by a systematic SPR overestimation of the HLUT

for the major tissue types in beam direction (brain-tumour cohort: brain; prostate-cancer

cohort: muscle, bone marrow and trabecular bone) as illustrated in Figs. 7.2 C and 7.3 C.

These tissues mainly occur as large, almost homogeneous volumes without high-density

gradients and are thus not influenced by smoothing during CT image reconstruction, which

could hamper range prediction irrespective of the selected CT-number-to-SPR conversion

(section 6.1.3). This effect of image smoothing, arising in small-volume tissues (cortical

bone, air cavities), remains as uncertainty of absolute range prediction. However, since

both methods are affected equally, the range shifts obtained within the investigated patients

are virtually independent from this influence. Moreover, since the mean SPR deviations are

comparable to mean relative range shifts derived from depth-dose curves (Fig. 7.5), the

previously shown SPR accuracy of RhoSigma translates into mean range shifts.

Furthermore, the large intra-patient variation of range shifts illustrates the case dependency

of a generic HLUT. Changes in the amount of different tissues traversed in beam direction

can lead to large deviations in range prediction (Fig. 7.6). Therefore, a patient-specific

DECT-based SPR prediction with high accuracy in each individual tissue type would be ad-

visable. It is not admissible to hope for compensation of SPR over- and underestimation in

different tissue types as this highly depends on the respective relative tissue amount along

the beam path.

This study is subject to some restrictions. To assess range shifts directly related to the

planned treatment, the clinically applied HLUT was used, which was defined following the

clinical state-of-the-art procedure for CT calibration using tissue surrogates and tabulated

human tissues (section 5.4.1). One could argue this HLUT is not optimised for the investi-

gated patient cohorts and would thus contribute to an overestimation of range shifts. How-

ever, using only prior knowledge of currently available tabulated human tissues (Woodard

and White, 1986), a sophisticated HLUT refinement is rather challenging if not impossible

without including additional patient-specific information, e.g. derived from DECT. This illus-

trates a disadvantage of a generic HLUT, which cannot cover the overall tissue diversity

and patient variability per definition and potentially leads to a systematic bias (Yang et al.,

2010; Wohlfahrt et al., 2017a).

Furthermore, absolute proton ranges depend on the beam model and the dose calculation

algorithm in the TPS. This influence can be neglected here, because only range shifts were
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evaluated. The results are also transferable to pencil beam scanning, since the overall dose

distribution of each treatment field was analysed.

A further limitation is the resolution of the CT scan and dose calculation grid. The overall

influence on geometrical range calculation was reduced by linear interpolation of adjacent

voxels to achieve a sub-voxel precision as commonly done in TPS.

This study is an important step toward clinical application of patient-specific DECT-based

SPR prediction. However, a routine clinical use still requires an approved medical device

provided by CT vendors, which is fully integrated in clinical workflow. Its calculated SPR

dataset needs to be supported by all commercially available TPS.

7.3 Tissue Variability in Brain-Tumour Patients

Human tissues reveal large variations in elemental composition within one patient and be-

tween patients (Woodard and White, 1986). To quantify the respective tissue distribution

and variability, appropriate imaging techniques need to be provided and adequately opti-

mised to satisfy the requirements for each individual clinical purpose. The clinical applica-

tion of dual-energy CT for proton treatment planning can inherently incorporate the intra-

and inter-patient tissue variability in a patient-specific DirectSPR approach. This can con-

tribute to reduce the restrictions associated with the generic HLUT used for CT-number-

to-SPR conversion, which cannot adequately account for the tissue diversity in humans

(Woodard and White, 1986; Yang et al., 2010).

Within this study, clinical DECT scans of a brain-tumour patient cohort were evaluated ret-

rospectively to assess the influence of intra- and inter-patient tissue variability on CT-based

stopping-power prediction in proton therapy. The presented results are currently in prepa-

ration for submission by Wohlfahrt et al. (2018b).

7.3.1 Study Design

In total, 102 brain-tumour patients (40 women, 40 men and 22 children younger than 20

years) treated with proton therapy at OncoRay were selected for this evaluation. This patient

cohort was assembled to cover the wide range of brain-tumour entities (ependymoma, ger-

minoma, craniopharyngioma, adenoma, sarcoma, glioma, meningioma, astrocytoma and

glioblastoma) as well as patient ages (1-80 years).
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DECT Acquisition of Brain-Tumour Patients

For each investigated brain-tumour patient, a dual-spiral 80/140 kVp DECT scan with a

voxel spacing of (1 × 1 × 2) mm3 and a CTDIvol32 cm of 20.8 mGy was acquired for proton

treatment planning. The DECT image reconstruction was performed using the reconstruc-

tion kernel Q34/5 with SAFIRE of maximal strength to decrease the overall image noise

level. For this scan setting, a noise level of 5 HU (± two standard deviations) was obtained

for both CT scans within an ROI in a homogeneous brain region of an anthropomorphic

head phantom (Fig. 5.2). Due to the beam hardening correction concerning bone included

in the reconstruction kernel, patient-size dependent CT number variations are clearly re-

duced within this brain-tumour patient cohort.

Extraction of Tissue Parameters

The clinical DECT scans were further processed using syngo.MonoPlus and syngo.RhoZ

to calculate 79 keV MonoCT, RED and EAN datasets. Afterwards, 3D RCS and SPR maps

were derived from these three datasets. The SPR image dataset obtained by RhoSigma

was saved in Digital Imaging and Communications in Medicine (DICOM) format. Here, the

SPR in each CT voxel ŜCT is expressed in HU for a better comparability with X-ray CT scans

(e.g. image contrast adjustment by CT windowing).

ŜCT = (Ŝ − 1) · 1000 (7.2)

For the applied implementation of RhoSigma and chosen CT scan settings, SPR datasets

reveal an image noise level of 6 HU (± two standard deviations) as determined in a homo-

geneous brain region of the anthropomorphic head phantom.

To consider only CT voxels within the patient, an external patient contour was automatically

created based on the 80/140 kVp DECT scan using a threshold of -500 HU. Subsequently,

this contour, covering the patient surface, was shrinked by 3 (5) voxels in x (y) direction to

exclude remaining parts of immobilisation devices. In CT scan direction, the image datasets

were limited to only include the head from chin to calvaria. Within this defined area, the fre-

quency distribution of voxelwise correlations of two tissue parameters were determined, i.e.

SPR and RED depending on CT number as well as EAN and RCS depending on RED as

shown in Fig. 7.7.
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The intra- and inter-patient variability was quantified based on the frequency distribution of

(H, Ŝ) correlations. The diversity of human soft tissues due to tissue mixtures and different

tissue types was characterised by the intensity-weighted SPR spread Ω covering 95% of

all CT voxels within the soft-tissue region (-125 HU ≤ H ≤ 75 HU):

Ω = 1
Ntotal

∑
H

N(H) ·
[
p97.5%, SPR(H) − p2.5%, SPR(H)

]
(7.3)

with Ntotal as total number of voxels, N(H) as number of voxels with respective CT number

and px, SPR as xth SPR percentile.

Within the bony region (100 HU ≤ H ≤ 1800 HU), the slope of an intensity-weighted linear

regression serves as measure for variations in bones.

Compensation of Systematic Deviations in Stopping-Power Prediction

As demonstrated in the patient cohort analysis including brain-tumour and prostate-cancer

patients (section 7.2), CT-based SPR prediction significantly differs between the applica-

tion of an HLUT and a DECT-based DirectSPR approach. This resulted in a systematic

global SPR and range deviation on average (Figs. 7.4 and 7.5).

To isolate the influence of tissue variability on SPR prediction, this systematic deviation

needs to be separated by adapting the clinical HLUT. For this purpose, the median SPR of

each CT number was obtained from the frequency distribution of (H, Ŝ) correlations. Sub-

sequently, the Hounsfield scale was divided in four regions corresponding to various tis-

sue types: low-density (-950 HU ≤ H ≤ -160 HU), adipose (-140 HU ≤ H ≤ -40 HU), mus-

cle and brain (-20 HU ≤ H ≤ 40 HU) as well as bone tissue (100 HU ≤ H ≤ 1800 HU). For

each tissue region, the median SPR distribution was described by an intensity-weighted

linear regression depending on the relative occurrence of the respective CT number within

patients. The transitions between different regions were linearly connected.

Determination of Stopping-Power Deviations

The mean SPR deviation between both investigated CT-based SPR prediction approaches

(∆Ŝ = ŜHLUT − ŜRhoSigma) was calculated including all CT voxels within the patient’s exter-

nal contour. Tissue-dependent SPR differences were quantified using only CT voxels of the

respective tissue type defined by the Hounsfield scale.
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7.3.2 Assessment of Tissue Variability

The head region of the investigated patient cohort covers mainly soft and bone tissue with a

mean fraction ± standard deviation of (78.6 ± 2.5)% and (18.9 ± 2.3)%, respectively. Only

a small proportion of (2.5 ± 0.5)% are low-density tissues, which are often tissue mixtures

between air cavities and various soft tissues or even bones.

Diversity Within Soft Tissues

As illustrated in Fig. 7.7, children and adults show a similar soft tissue distribution inde-

pendent from the observed physical quantity (superposition of both colour bars appears

Figure 7.7: Frequency distribution of tissue parameters derived from dual-energy CT scans: relative
electron density (RED), effective atomic number (EAN), relative photon attenuation cross section
(RCS) and stopping-power ratio (SPR). Dashed lines illustrate the correlation within the bony region.
The superposition of both colour bars appears purple. Adapted from Wohlfahrt et al. (2018b).
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purple). The soft tissue region is dominated by brain (H ≈ 40 HU, ϱ̂e ≈ 1.034) and adipose

tissue (H ≈ -100 HU, ϱ̂e ≈ 0.920). Further tissue types, intra-tissue variations and tissue

mixtures between brain and adipose tissue (indicated by a linear connection between the

high-intensity areas of both tissue types) as well as between soft and low-density or bone

tissues yield a broad SPR distribution. Considering the overall cohort of 102 brain-tumour

patients, the soft tissue region shows a mean intra-patient SPR spread ± standard devia-

tion of Ω = (5.6 ± 0.7)%. This intra-patient SPR spread within the soft tissue region differs

significantly between children and adults as demonstrated by a two-sample t-test with a

level of significance of 5% (Fig. 7.8 A). Since the mean relative amount of adipose tissue in

adults with (16.5 ± 4.0)% is slightly higher compared to children with (12.7 ± 4.0)%, the in-

creased soft tissue diversity in adults can potentially arise from the large intrinsic variability

within adipose tissues (Woodard and White, 1986).

Variations Within Bone Tissues

The distribution of bone tissue differs between adults and children as indicated by a linear

function for Ŝ(H) and ϱ̂e(H) and power function for Zeff(ϱ̂e) and σ̂e(ϱ̂e) in Fig. 7.7. Com-

pared with adults, bones in children reveal a smaller effective atomic number for the same

electron density, which is presumably associated with a smaller relative amount of calcium

embedded in bones of children (Woodard and White, 1986; White et al., 1991). Since the

calcium content in bones increases with age, the influence of the photoelectric effect on

Figure 7.8: Age-related variation of the (A) SPR spread within the soft tissue region and (B) slope
of the intensity-weighted linear regression within the bone region for (H, Ŝ) correlations. Box plots
are defined as illustrated in Fig. 6.3. A two-sample t-test was performed with a level of significance
of 5%. Adapted from Wohlfahrt et al. (2018b).
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CT number also increases. As shown in Fig. 7.8 B, this very likely leads to the age-related

significant reduction of the slope in the bony region of the Ŝ(H) domain, which is relevant

for proton treatment planning.

Tissue-Specific Stopping-Power Deviation

Since adults and children obviously differ in bone composition (Fig. 7.8 B), the clinically ap-

plied HLUT was adapted separately for each patient cohort based on the respective DECT

information (Fig. 7.9). To assess whether this adaptation can compensate systematic devi-

ations in stopping-power prediction between RhoSigma and clinically applied HLUT, SPR

differences before (Fig. 7.10 A) and after adaptation (Fig. 7.10 B) were determined for

adults and children, respectively.

The intra-patient SPR deviations of a representative child and adult are comparable to the

SPR differences within the respective patient cohort (Fig. 7.10). SPR deviations of 10%

(relative to the SPR of water, Ŝ = 1) or even more can occur in the soft tissue or bone

region including all (H, Ŝ) correlations with a frequency larger than 10-3% (Fig. 7.10, tran-

sition from grey-shaded to coloured frequency distribution).

For low-density and soft tissues, the clinically applied HLUT before adaptation predicts on

average approximately 2% larger SPRs than RhoSigma (Fig. 7.11). The HLUT also calcu-

lates larger SPRs for low-density bones (100 HU ≤ H ≤ 300 HU). However, smaller SPRs

Figure 7.9: Frequency distribution of correlations between CT number and stopping-power ratio
(SPR) for the (A) children and (B) adults patient cohort. Adapted from Wohlfahrt et al. (2018b).
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Figure 7.10: Difference in stopping-power ratio (SPR) between the DECT-based SPR prediction
and (A) clinically applied or (B) cohort-specifically adapted Hounsfield look-up table (HLUT). For
each cohort, a representative patient was selected in addition to illustrate the intra-patient variability.
Adapted from Wohlfahrt et al. (2018b).

are obtained on average for all bones using the HLUT instead of RhoSigma. Consequently,

SPR deviations in all tissue types can partly compensate, but still a global SPR deviation of

1.3% for children and 1.0% for adults remains. These SPR deviations are comparable with

the results obtained in the systematic evaluation of proton range differences in a smaller

patient cohort covering 25 brain-tumour patients (section 7.2).

The respective adapted HLUT can significantly reduce systematic tissue-specific and global

SPR deviations (Fig. 7.11). However, the intra-patient SPR variation in soft tissues remains
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Figure 7.11: Global and tissue-specific (A) mean signed and (B) mean absolute deviations in
stopping-power ratio (SPR) between DECT-based SPR prediction and clinically applied or adapted
Hounsfield look-up table (HLUT). The relative amount of each tissue type ± standard deviation is
quoted below the label. Box plots are defined as illustrated in Fig. 6.3. Adapted from Wohlfahrt et al.
(2018b).

unchanged (Fig. 7.10 B). This translates into mean absolute SPR deviations of approx-

imately 3% for low-density tissues and bones as well as 1% for soft tissues (Fig. 7.11).

The large inter-patient variation of SPR deviations in bones (Fig. 7.11) illustrates the high

variability in bone composition.

7.3.3 Discussion of Tissue Variability

The evaluation of DECT scans of 102 brain-tumour patients revealed a large intra-patient

soft tissue diversity resulting in a broad SPR distribution with a mean intra-patient spread

of Ω ≈ 6%. Despite that an iterative reconstruction algorithm of maximal strength was ap-

plied on the patient DECT scans, the resulting SPR datasets had an image noise level

(± two standard deviations) of 6 HU in homogeneous areas, which is equivalent to a noise-

induced SPR uncertainty of 0.6% (relative to the SPR of water). Consequently, the mean

SPR spread of Ω = (5.6 ± 0.7)% in the soft tissue region does not only cover SPR varia-

tions arising from different tissue types, tissue mixtures and intra-tissue variability, but also

includes noise-induced SPR variations. The influence of image noise on the SPR spread

can be estimated with 1.2% (related to the SPR of water), which equals twice the image

noise level. Assuming a Gaussian distribution for SPR variations due to tissue diversity as
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well as image noise, the noise-induced effect can be quadratically subtracted from Ω result-

ing in a mean SPR spread of Ω = 5.5%. Even for a direct subtraction of the noise-induced

deviation as a more conservative consideration, a large mean SPR spread of Ω = 4.4% still

remains for soft tissues. This intra-patient SPR spread is associated with a mean absolute

SPR deviation of 1.2% in the soft tissue region.

Furthermore, differences in bone composition between adults and children were observed

using RhoSigma as CT-number-to-SPR conversion. An HLUT adapted for adults would

cause a SPR underestimation of approximately 5% for children younger than 6 years. Con-

sequently, the age-related bone variation – especially in children – and the large soft tissue

variability in general cannot be fully covered by a generic HLUT and lead to deviations by

definition (Yang et al., 2010).

A subgroup-specific adaptation of the clinical HLUT can on average significantly reduce

the systematic global and tissue-specific SPR deviations between both CT-number-to-SPR

conversion methods. Since the intra- and inter-patient tissue variability cannot be consid-

ered by a generic HLUT, an accurate patient-specific SPR prediction using dual-energy

CT, which correctly handles tissue mixtures, is advisable for treatment planning.

To further increase the validity of a DECT-based prediction of age-related changes in bone

composition or to allow for a better age resolution, additional datasets of children could be

evaluated. Further studies could also analyse whether DECT can contribute to quantify se-

nile osteoporosis in patients. Moreover, the intra- and inter-patient tissue variability can be

evaluated in other body regions, such as thorax and pelvis to detect potential differences in

tissue composition and distribution.

7.4 Feasibility of 4D Dual-Spiral Dual-Energy CT

Dual-spiral dual-energy CT is prone to uncertainties due to patient motion during imaging

(e.g. breathing, swallowing, heartbeat and gastro-intestinal peristalsis), leading to a differ-

ent representation of the patient anatomy in the two subsequent 80 kVp and 140 kVp CT

datasets. Therefore, only DECT scans of cerebral and pelvic tumour patients are currently

acquired in the clinical routine at OncoRay for proton and photon treatment planning. In

this study, the feasibility of dual-spiral time-resolved dual-energy CT (4D-DECT) for proton

treatment planning within the thoracic region was analysed, i.e. in the presence of respira-

94



7.4 Feasibility of 4D Dual-Spiral Dual-Energy CT

tory motion. For this purpose, the geometrical similarity of the two consecutively acquired

4D-DECT scans as well as the impact of DECT-derived CT datasets on tumour delineation

and dose calculation were assessed. In addition, the clinical applicability of patient-specific

DECT-based stopping-power prediction using RhoSigma was investigated. This study was

published by Wohlfahrt et al. (2018c).

7.4.1 Design of Proof-of-Principle Study

Three consecutive patients with an advanced stage non-small-cell lung cancer (NSCLC)

participating in the phase II clinical trial PRONTOX (Zschaeck et al., 2016) were selected

for this feasibility study. The individual patient and tumour characteristics are summarised

in Table E.1 of Supplement E.A.

CT Acquisition of Lung-Cancer Patients

For treatment planning, 120 kVp time-resolved single-energy CT (4D-SECT) scans with

(1 × 1 × 2) mm3 voxel spacing were acquired. An iterative reconstruction kernel with beam

hardening correction concerning bone (Q34/5, SAFIRE, CARE Dose4D) was applied.

The respiratory motion during CT acquisition was recorded using a pressure belt system

(ANZAI, Anzai Medical Co., Ltd, Tokyo, Japan) positioned onto the patient’s abdomen. Four

CT datasets representing different breathing phases (maximum and slopes of inhalation

as well as exhalation) were reconstructed using relative local amplitude-based binning of

CT projections according to the patient‘s breathing pattern (Werner et al., 2017). For a

rotation time of 500 ms, a temporal resolution of around 250 ms can be achieved for each

respiratory phase per breathing period (Flohr et al., 2003). Furthermore, a time-averaged

CT dataset was reconstructed using all CT projections.

Based on the 4D-SECT scan, the patient-specific internal gross tumour volume (iGTV)

was defined by an experienced radiation oncologist. The CTV encompassed the iGTV and

involved lymph nodes with 8 mm isotropic margin subsequently corrected for anatomical

boundaries (Fig. E.1 A of Supplement E.A). The respective tumour motion was determined

in cranio-caudal, left-right and anterior-posterior direction using the centre-of-mass of the

GTV, which was delineated on each respiratory phase of the 4D-SECT scan (Table E.1 of

Supplement E.A). Furthermore, the motion of the diaphragm was quantified based on the

visible diaphragm line in exhalation and inhalation CT datasets.
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To assess anatomical and breathing motion changes during the course of treatment, the

patients underwent weekly control 4D-SECT scans according to the clinical protocol. For

the three selected patients, a dual-spiral 4D-DECT scan instead of a 4D-SECT scan was

acquired with similar total CT dose in between fractions 14-19 and 27-32, respectively.

Each dual-spiral 4D-DECT scan comprises two 4D-SECT scans of 80 kVp and 140 kVp

(Table E.2 of Supplement E.A), which were consecutively recorded within approximately

95 s each and a 10 s time delay in between for returning to the start position of the CT

acquisition (Fig. 7.12). Image reconstruction was performed as for 4D-SECT scans using

the same nominal relative amplitude-based binning.

Proton Treatment Planning

Passively scattered proton treatment plans with three fields were generated in the TPS XiO

using the time-averaged planning SECT scan and the clinical HLUT (Fig. 5.9). Average

dose to the CTV was aimed at 66 Gy(RBE) using an RBE of 1.1. For hardware preparation

as well as range and modulation determination, the mean density derived from the GTV

of each 4D-SECT breathing phase was assigned to the iGTV. Treatment uncertainty was

included in aperture margins and compensator smearing of 10 mm as well as in a range

uncertainty of ±(3.5% + 2 mm). Dose calculations were performed without density assign-

ment to the iGTV using a (1 × 1 × 1) mm3 dose grid and a pencil-beam algorithm.

Additionally, worst-case-scenario treatment plans were generated using a single lateral pro-

ton beam covering an artificial target volume that encompassed parts of the diaphragm, the

anatomical region where the largest motion occurred (Fig. E.1 B of Supplement E.A).

4D-DECT Image Post-Processing

The image post-processing application syngo.MonoPlus was used for dual-spiral 4D-DECT

scans to generate MonoCT datasets of 58 keV (α = 1) and 79 keV (α = 0) comprising sim-

ilar X-ray attenuation information as the initial 80 kVp and 140 kVp CT scans, respectively.

During this internal processing, the two consecutively acquired 80 kVp and 140 kVp CT

scans were aligned by DIR (Fig. 7.12). Due to the image post-processing, the 58 keV and

79 keV MonoCT datasets contained less image noise compared with the initial 80 kVp and

140 kVp CT scans (section 2.3.1). SPR datasets were calculated by RhoSigma using 3D

image stacks of RED and RCS.
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Figure 7.12: (A) Clinical acquisition of dual-spiral 4D-DECT and reconstruction of time-averaged 3D
images and datasets considering only specific respiratory phases. (B) Investigated image datasets
derived from 4D-DECT. Adapted from Wohlfahrt et al. (2018c).
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Assessment of 4D-DECT Scan Similarity

For a quantitative comparison of CT datasets representing different X-ray attenuations, their

CT numbers need to be equalised to account for differences in the attenuation behaviour.

Based on the frequency distribution of correlations between CT numbers of a 58 keV and

79 keV MonoCT dataset of a rigid thorax phantom (Dynamic Thorax Phantom, Model 008A,

CIRS, Norfolk, VA), which ensures a constant anatomy, a linear conversion was established

(Figure E.2 of Supplement E.B). The geometrical similarity of dual-spiral 4D-DECT datasets

before (80 kVp and 140 kVp) and after (58 keV and 79 keV) image post-processing including

DIR was assessed visually and by normalised cross correlation (NCC)

NCCROI = 100% ·
( ∑

HiHj∑
H2

i

∑
H2

j

)
ROI

(7.4)

including CT numbers of both datasets, Hi and Hj , within regions of interest (ROIs), e.g.

patient body, CTV, heart and total lung. NCC of 100% declares perfect agreement and 0%

no conformity.

To estimate the sensitivity of NCC against geometrical deviation, a patient dataset was

globally shifted between 1 mm to 10 mm in cranio-caudal, posterior-inferior and left-right

direction and then compared with the non-shifted CT dataset (Table E.3 and Fig. E.3 of

Supplement E.B).

Furthermore, the recorded breathing patterns during the subsequent acquisition of dual-

spiral 4D-DECT scans were compared for each lung-cancer patient with regard to their

variability in respiratory cycle time and the feasibility to identify visual differences in DECT-

derived image datasets.

Evaluation of 79 keV MonoCT Reliability

To assess the influence of anatomical changes in between the two consecutively acquired

dual-spiral 4D-DECT scans and its handling during image post-processing on proton dose

calculation, the clinical and worst-case-scenario proton treatment plans were recalculated

on DECT-derived 79 keV MonoCT datasets and their associated 140 kVp SECT scans as

reference, respectively. Proton dose calculations were performed in the TPS RayStation

6.0 using the same clinical HLUT (Fig. 5.9), because both CT datasets represent a similar

X-ray attenuation. For time-averaged CT datasets and four breathing phases differences in
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dose distributions were quantified by voxelwise dose deviations and a global 2D γ analysis

with a relative dose threshold of 5% as well as two evaluation criteria of γ(1 mm, 0.1%)

and γ(1 mm, 1%). Furthermore, deviations in DVH parameters were evaluated for CTV and

different OARs such as heart, oesophagus and total lung.

Application of RhoSigma Approach

Since a direct import of SPR datasets for dose calculation is not yet supported by the TPS

RayStation 6.0, XiO was used to recalculate clinical treatment plans on 79 keV MonoCT

datasets applying the clinical HLUT and SPR datasets derived by RhoSigma. Deviations

in dose distribution were evaluated as described above for time-averaged CT datasets and

the breathing phases. To assess water-equivalent range shifts between the RhoSigma and

HLUT approach (eq. 7.1), depth-dose curves in beam direction traversing the CTV with

1 mm spacing were analysed for each proton treatment field using an in-house implemented

ray-tracing algorithm.

For the time-averaged CT datasets, the correlation of CT number and SPR obtained from

RhoSigma were determined within the irradiated volume (20% isodose) and illustrated as

frequency distribution.

Evaluation of Delineation Variability

Adjustments in CT acquisition and reconstruction parameters can change the image con-

trast of anatomical structures, which potentially has an impact on tumour detection and

eventually the overall patient treatment. To evaluate this influence, an experienced radia-

tion oncologist delineated the GTV of each patient on several time-averaged CT datasets.

First, only the 79 keV MonoCT dataset was used, which resembles a 140 kVp SECT scan

and represents the clinical standard procedure. In a second step, the DECT-derived RED

and RCS datasets were jointly provided as individual CT image stacks separating the main

X-ray interaction processes (inelastic scattering and photoelectric effect). The GTV delin-

eations were repeated once after one week to quantify the respective intra-observer vari-

ability. The conformity of the GTV contours was assessed by the Jaccard index, defined as

the intersection between two segmentations divided by their union, and Hausdorff distance,

defined as the 95th quantile of minimal distances between two contours (finite set of points),

for each patient (Jaccard, 1912; Taha and Hanbury, 2015).
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7.4.2 Results

Only small anatomical differences were found between the two 80 kVp and 140 kVp dual-

spiral 4D-DECT scans, which were mainly visible on the upper anterior thorax wall and were

in accordance with the observable variability of the breathing amplitudes (Fig. E.4 of Sup-

plement E.C). Changes in respiratory frequency were minor (Table E.4 of Supplement E.C)

and were virtually adjusted in image reconstruction. For time-averaged CT datasets, the

patient body, CTV and heart revealed a NCC > 99.5% and the total lung a NCC > 96%

(Table 7.2), indicating mean shifts between each scan equivalent to global shifts of less

than 0.5 mm (Fig. E.3 of Supplement E.B). CT datasets of individual breathing phases

showed slightly less similarity and the respective NCC corresponded to shifts of approxi-

mately 1 mm to 2 mm. This confirms the general high resemblance of dual-spiral 4D-DECT

scans. NCCs for all patients and ROIs are provided in Supplement E.D.

Patient movement had a larger impact than breathing: In one case (patient 2, 4D-DECT

scan 1), the patient coughed at the end of the first 4D-DECT scan acquired with 80 kVp,

which changed his overall body position, visible by an altered position of the vertebrae

Table 7.2: Conformity assessed by NCC for 80 kVp and 140 kVp CT scans before as well as the
corresponding 58 keV and 79 keV MonoCT datasets after DIR. The time-averaged datasets and
four respiratory phases of two dual-spiral 4D-DECT scans for each investigated lung-cancer patient
were evaluated.

Mean normalised cross correlation (NCC) ± standard deviation* / %

Before
DIR

80 kVp and 140 kVp CT scans

Temporal average Respiratory phases

Body Lung Body Lung

Patient cohort** 99.64 ± 0.09 97.36 ± 0.57 98.90 ± 0.15 89.09 ± 3.05
Coughing patient 97.84 88.35 96.42 ± 0.08 72.47 ± 6.37

After
DIR

58 keV and 79 keV MonoCT datasets

Temporal average Respiratory phases

Body Lung Body Lung

Patient cohort** 99.90 ± 0.02 99.84 ± 0.03 99.85 ± 0.04 99.61 ± 0.15
Coughing patient 99.80 99.80 99.59 ± 0.15 98.97 ± 0.70

* determined including all 4D-DECT datasets independent from the individual patient
** except for the first 4D-DECT dataset of patient 2 (coughing patient)
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Figure 7.13: Exemplary axial CT slices of the time-averaged 80 kVp and 140 kVp CT scans before
as well as the corresponding 58 keV and 79 keV MonoCT datasets after DIR for two 4D-DECT scans
of patient 2 acquired in fraction 19 (A) and 31 (B). This patient coughed at the end of the 80 kVp CT
scan during the first 4D-DECT acquisition as illustrated in the breathing pattern (C). Adapted from
Wohlfahrt et al. (2018c).
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(Fig. 7.13 A and C). The NCC dropped distinctly to 97.8% for body and 88.4% for total

lung, similar to a global shift of approximately 1.3 mm between the time-averaged 80 kVp

and 140 kVp CT datasets.

The differences caused by respiratory motion could almost be completely corrected by

DIR, which was applied to the two 80 kVp and 140 kVp CT datasets prior to further image

post-processing. This resulted in increased NCCs between 58 keV and 79 keV MonoCT

datasets, indicating shifts of less than 0.2 mm, observable also in the coughing patient (Ta-

ble 7.2, Fig. 7.13).

In contrast, movement of other organs or structures, e.g. the oesophagus or gas in the

stomach, and irregularities in respiratory motion visible at the diaphragm could not be suf-

ficiently corrected by DIR and led to remaining uncertainties in DECT-derived datasets.

Since these volumes were quite small, they did not influence the NCC, but were well visible

as artefacts in DECT-derived datasets, such as the SPR (Fig. 7.14).

Reliability of 79 keV MonoCT for Dose Calculation

Dose distributions calculated on 140 kVp and DECT-derived 79 keV MonoCT datasets were

highly similar, leading to no differences in DVH parameters of OARs and CTV. Maximum

dose differences for clinical treatment plans ranged between 0.2 Gy(RBE) and 0.6 Gy(RBE),

resulting in γ(1 mm, 1%) = 100% for all time-averaged CT datasets and evaluated breath-

ing phases. Even the tighter γ criterion revealed average and minimum γ passing rates of

γavg(1 mm, 0.1%) = 99.9% and γmin(1 mm, 0.1%) = 99.2%.

Dose differences of up to 2.2 Gy(RBE) were obtained for worst-case scenarios, which still

led to high γ passing rates of γavg(1 mm, 0.1%) = 99.3%, γmin(1 mm, 0.1%) = 92.4% and

γmin(1 mm, 1%) = 98.0%. DVH parameters of OARs and CTV did not change.

Application of Patient-Specific Stopping-Power Prediction

The high conformity of the two 4D-DECT datasets after DIR in most cases allows for a

reliable application of the patient-specific DirectSPR approach RhoSigma. In comparison

to the state-of-the-art CT-number-to-SPR conversion using a generic HLUT, RhoSigma

resulted in proton dose differences of up to 21.2 Gy(RBE). Overall and field-specific differ-

ences and their associated water-equivalent range shifts are illustrated in Fig. 7.15. The im-

pact on DVH parameters depended on patient anatomy and beam direction. The volume of
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Figure 7.14: Image artefacts due to uncompensated motion in (A) oesophagus, (B) stomach and
(C) diaphragm, visible as bright shining areas in the 50% exhale stopping-power datasets of patient
2. Adapted from Wohlfahrt et al. (2018c).

the contralateral lung receiving 5 Gy(RBE) increased by 4% for one patient with one beam

exiting into this region (Fig. 7.15 B), while the other two patients showed smaller changes

of 1.5% and 0%, respectively. Target coverage, defined by the dose applied to 98% of the
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Figure 7.15: Dose distribution and difference between patient-specific SPR prediction RhoSigma
and HLUT for (A) the overall treatment and (B) single treatment fields of patient 1. Assessment of
WET and relative range shifts in beam direction for each treatment field. The (mean ± standard
deviation) is stated for each BEV. The red dashed line indicates the axial CT slice in BEV. Adapted
from Wohlfahrt et al. (2018c).
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CTV, remained stable for all patients with reductions of only 0.1%. This demonstrates the

robustness of the treatment planning approach against the CT-related uncertainty.

Considering all investigated depth-dose profiles obtained for all 4D-DECT datasets of each

patient, a mean relative water-equivalent range shift ± standard deviation of (2.2 ± 1.2)%

between the RhoSigma and HLUT approach was determined (Fig. 7.16 A). This relative

shift is slightly higher compared with differences derived in cerebral and pelvic tumour pa-

tients (section 7.2). For the evaluated penetration depths, this relative shift corresponds to

a mean absolute water-equivalent range shift of (2.9 ± 1.4) mm. This global bias occurred,

because the HLUT predicts in particular larger SPR for different tissues such as muscles

(H ≈ 40 HU), trabecular bone (100 HU ≤ H ≤ 300 HU) and tissue mixtures with CT num-

bers ranging from -400 HU to 100 HU (Fig. 7.16 B). However, proton range shifts within a

treatment field depended on the distribution of tissues traversed in beam direction and re-

sulted in an intra-patient variability of 1.1%. This is clearly larger than the inter-patient vari-

ation of 0.1% (Fig. 7.16 A). Furthermore, range shifts were similar using the time-averaged

CT dataset (2.3%) or one single breathing phase (2.2%) for dose calculation.

Figure 7.16: (A) Relative water-equivalent range shifts (∆R) between RhoSigma and HLUT illus-
trated as frequency distribution including all depth-dose profiles and as box plot to quantify dif-
ferences between respiratory phases of one representative patient and to assess the inter-patient
variability considering all phases. For comparison, the ∆R distributions obtained in the brain-tumour
and prostate-cancer patient cohort were additionally shown (section 7.2). Box plots are defined as
illustrated in Fig. 6.3. (B) Frequency distribution of voxelwise correlations between CT number and
SPR for the three evaluated NSCLC patients. Adapted from Wohlfahrt et al. (2018c).
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Figure 7.17: Intra-observer variability of GTV delineation using a 79 keV MonoCT dataset (I) as
well as a combination of a DECT-derived electron-density and 79 keV cross-section dataset (II)
assessed by Hausdorff distance (A) and Jaccard index (B). To quantify the delineation variability
between both modalities (III), the fused GTV contours of both delineation sessions were applied.
Box plots are defined as illustrated in Fig. 6.3. Adapted from Wohlfahrt et al. (2018c).

Assessment of Variability in Tumour Delineation

The intra-observer variability of GTV delineation (Supplement E.E) could be slightly re-

duced by jointly using DECT-derived RED and RCS datasets rather than only the 79 keV

MonoCT dataset (Fig. 7.17). This was indicated by an increased mean Jaccard index

± standard deviation of (82.6 ± 2.1)% compared to (80.3 ± 4.9)% and reduced mean Haus-

dorff distance of (3.8 ± 1.1) mm compared to (4.5 ± 0.8) mm.

The agreement between GTV contours (fusion of repeated delineations) obtained on 79 keV

MonoCT as well as combined RED and RCS datasets led to a mean Jaccard index of

(82.8 ± 4.2)% and Hausdorff distance of (3.9 ± 0.5) mm. Since the intra-observer variabil-

ity revealed comparable results, the precision of GTV delineation is almost independent

from the provided datasets.

7.4.3 Discussion of Proof-of-Principle Study

This study demonstrated the clinical feasibility of dual-spiral 4D-DECT in terms of anatom-

ical and dosimetrical consistency for treatment planning in the thoracic region based on a

DECT-derived 79 keV MonoCT dataset still using an HLUT. Furthermore, the large variety

of image datasets for potentially improving tumour delineation as well as patient-specific

DECT-based SPR prediction could be outlined.
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Dual-spiral 4D-DECT assumes a high similarity in motion and anatomy between the two

consecutively acquired 4D-DECT scans. Guckenberger et al. (2007) demonstrated that for

the majority of patients, the position and motion patterns are stable within a 30 minute time-

frame determined by multiple 4D-SECT scans. Malinowski et al. (2012) and Shah et al.

(2012) showed that relevant changes in respiratory motion and tumour position become

more probable with treatment time. In their lung-cancer patient cohort, the mean tumour

position changed by more than 5 mm only in 2% of all cases within the first 20 minutes,

but already in 13% considering a 30 minute timeframe (Malinowski et al., 2012). Since a

dual-spiral 4D-DECT scan takes only a couple of minutes, it can be expected based on

these investigations that relevant position and motion changes will usually occur after a

longer time period as opposed to that required for dual-spiral 4D-DECT. For the patients

investigated in the presented study, the differences between the two consecutively acquired

4D-DECT scans were found to be small. This allows for reliable image post-processing and

eventually application of dual-spiral 4D-DECT for such a patient cohort. Thus the more ac-

curate SPR prediction approach RhoSigma is feasible within the thoracic region.

The acquisition of 4D-DECT scans provides more detailed patient information of crucial

importance for three aspects of proton therapy. First, patient-specific SPR predictions con-

sider tissue heterogeneity and patient variability, which can lead to a more reliable dose

calculation for lung-cancer patients. Since only range shifts were evaluated in this study,

the impact of using a pencil-beam dose algorithm, which limits the precision of dose calcu-

lations in heterogeneous anatomical regions as thorax compared with a more sophisticated

Monte Carlo approach (Grassberger et al., 2014), remains small and would not change the

conclusions drawn here.

Second, multiple datasets of different image contrast can be derived from DECT, which

might support a more reliable target delineation as potentially suggested by the slightly

reduced intra-observer variability of GTV delineation in this NSCLC patient cohort. To de-

termine the effect on delineation more adequately, further studies should include more pa-

tients, more physicians to assess the inter-observer variability and additional DECT-derived

datasets to obtain optimal settings. As delineation of lung tumours is supposed to be more

robust, owing to the large CT image contrast to surrounding tissues, such a study should

also be extended to other tumour entities to analyse site-specific advantages.

Third, information on motion variability can be gained. Differences in breathing pattern over

time are a general challenge in radiotherapy, where a 4D-SECT scan acquired days to
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weeks before treatment is used as single baseline for therapy. The comparison of the two

CT datasets of a dual-spiral 4D-DECT scan can contribute to identify patients with irregular

and non-representative breathing patterns or to illustrate oesophageal motion and regions

of severe gastro-intestinal peristalsis during CT acquisition. These patients might currently

not be appropriate for reliable and accurate DECT-based SPR prediction. However, since

SPR datasets visualise regions of severe motion, an additional image-based algorithm can

be developed in the future to detect motion-induced changes and consider them in SPR

prediction. Even if too large differences during dual-spiral 4D-DECT acquisition hamper

the calculation of reliable DECT-based datasets, still important information on motion vari-

ability and reliability regarding iGTV delineation can be gathered. The two consecutively

acquired 4D-DECT scans could also be included in robust optimisation techniques incorpo-

rating breathing variability in treatment planning (Li et al., 2015; Van Der Voort et al., 2016;

Stützer et al., 2017b). Furthermore, this could also highlight patients who may require the

application of a breathing suppression technique, a close intra-therapeutic monitoring to

ensure short-term plan adaptations or even real-time imaging during treatment (Péguret

et al., 2016).

As the quality of 4D-DECT depends on the respiration reproducibility between the two

DECT scans, all patients within this clinical trial received detailed instructions and expla-

nations about the upcoming procedure in order to calm down and relax. After final patient

preparation, the radiation therapy technologist wait until the breathing pattern is regular

and reproducible and then start CT acquisition. Clinical time pressure might oppose that

aim resulting in unstable respiration cycles. In such cases, standard SECT-based dose cal-

culation can always be performed without limitations using only the 140 kVp CT dataset.

Thus, DECT scans of patients will provide additional information without being a disadvan-

tage for the individual patient.

In this proof-of-principle study, only six dual-spiral 4D-DECT scans of three advanced stage

NSCLC patients with small tumour motion were investigated. As most advanced stage

NSCLC tumours do not move substantially (Li et al., 2014), the presented results will be

valid for the majority of these patients. To assess whether the presented results can be

translated to patients with more complex tumour geometries and movements, an additional

study on 4D-DECT is currently being planned including more patients with larger tumour

motion and other tumour locations within the lung, which may have a larger impact on

proton dose calculation as shown for the diaphragm region.
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7.5 DECT-Based Refinement of the Hounsfield Look-Up Table

As demonstrated in the previous sections, the acquisition of dual-spiral DECT scans for

proton treatment planning is clinically feasible for patients with cerebral, pelvic or thoracic

tumours. For each investigated patient cohort, systematic proton range deviations between

two CT-number-to-SPR conversions – the state-of-the-art HLUT and patient-specific Direct-

SPR approach RhoSigma – were determined ranging from 1.2% (brain) to 2.3% (lung) on

average. A refinement of the HLUT using stopping-power information obtained from patient

DECT scans, as introduced in section 7.3 for brain-tumour patients, can significantly re-

duce systematic SPR deviations between the two methods by considering the composition

and distribution of tissues within patients instead of using tissue surrogates for CT scanner

characterisation and HLUT specification (Wohlfahrt et al., 2017a).

In the following study, the brain-, prostate- and lung-cancer patient cohorts were analysed

to determine whether the reduction of systematic SPR deviations achieved by an HLUT re-

finement directly translates into decreased proton range shifts, which eventually contributes

to an improved dose calculation. Furthermore, it was assessed whether an individual opti-

misation of the HLUT for each patient cohort performs better than a single HLUT adaptation

including all patient information independent from the treated tumour entity.

7.5.1 Optimisation of the Hounsfield Look-Up Table

The HLUT refinement introduced in section 7.3 was based on the distribution of human

tissues in the external contour of brain-tumour patients. To perform an optimal adaptation

for proton therapy, the respective tissue distribution within the irradiated volume of each

patient including also immobilisation devices would be a more realistic selection of the

regions to be considered in treatment planning. DECT scans of the 25 brain-tumour and 25

prostate-cancer patients presented in section 7.2 as well as the three lung-cancer patients

analysed in section 7.4 were investigated to refine the clinical HLUT using DECT-derived

patient information within the irradiated volume defined by the 20% isodose.

Specification of the Adapted Hounsfield Look-Up Table

Based on the frequency distribution of voxelwise correlations between CT numbers of a

79 keV MonoCT dataset and SPRs derived from RhoSigma, the median SPR of each
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CT number was determined. Subsequently, the Hounsfield scale was divided in four re-

gions representing different tissue groups: low-density (-900 HU ≤ H ≤ -150 HU), adipose

(-120 HU ≤ H ≤ -70 HU), muscle and brain (-20 HU ≤ H ≤ 70 HU) as well as bone tissue

(200 HU ≤ H ≤ 1350 HU). For each group, the median SPR distribution was described by

an intensity-weighted linear regression depending on the relative occurrence of the respec-

tive CT number. The transitions between different regions were linearly connected.

The HLUT was adapted separately for each patient cohort as well as collectively consider-

ing the frequency distributions of (H, Ŝ) correlations equally weighted for all cohorts (Fig.

7.18). To assess the performance of each adapted HLUT compared with RhoSigma, SPR

deviations and proton range shifts were quantified as described in section 7.2.

Assessment of Differences in Stopping-Power Ratio

In accordance with the results obtained for 102 brain-tumour patients (Fig. 7.11), an HLUT

refinement based on DECT can substantially reduce systematic SPR deviations between

RhoSigma and the clinically applied HLUT in the evaluated cerebral, pelvic and thoracic

tumour patients (Fig 7.19). After the cohort-specific as well as global HLUT adaptation, the

mean SPR deviation of each investigated patient cohort was within 0.2%. In comparison to

a globally adapted HLUT considering all patients independent from their tumour entity, an

Figure 7.18: Frequency distribution of voxelwise correlations between CT number obtained from
79 keV MonoCT datasets and SPR derived by RhoSigma as well as the respective HLUTs before
and after HLUT refinement based on DECT information.
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HLUT separately refined for each cohort performed only slightly better and led to a further

reduction of absolute SPR deviations of approximately 0.1% on average. With respect to

other uncertainties in dose calculation, the small improvement of a cohort-specific HLUT

refinement can be neglected. From a clinical point of view, the application of a single HLUT

would also facilitate the clinical workflow and prevent possible errors caused by an incor-

rectly assigned HLUT. Hence, the globally adapted HLUT was used for dose calculation to

evaluate the influence of an HLUT refinement on proton range.

Figure 7.19: (A) Distribution of mean SPR deviations and water-equivalent range shifts between
the DirectSPR approach RhoSigma and the clinically applied HLUT as well as the HLUT adapted
separately for each patient cohort or collectively considering all cohorts. Box plots are defined as
illustrated in Fig. 6.3. (B) Distribution of range shifts between RhoSigma and HLUT before (dashed
line) and after (solid line) HLUT refinement. A Gaussian distribution was fitted to the data.
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Assessment of Proton Range Shifts

The mean relative water-equivalent range shift ± standard deviation was reduced from

(1.17 ± 0.22)% to (0.09 ± 0.20)% for cerebral, (1.69 ± 0.24)% to (0.16 ± 0.17)% for pelvic

and (2.32 ± 0.05)% to (0.21 ± 0.02)% for thoracic tumour patients using the globally adapted

HLUT (Fig. 7.19). This is consistent with the results obtained on the SPR level for brain-

tumour and prostate-cancer patients.

However, the distributions of mean SPR deviations and water-equivalent range shifts differ

considerably for the lung-cancer patient cohort (Fig. 7.19). This is certainly caused by the

severe tissue inhomogeneities within the irradiated volume of lung-cancer patients, leading

to an increase of multiple Coulomb scattering. Since proton scattering while traversing het-

erogeneous tissue regions is included in dose calculation, range shifts derived from dose

distributions also cover its influence. However, on the SPR domain this effect cannot be

considered.

The influence of a DECT-based HLUT refinement on dose distributions is exemplarily illus-

trated for a representative prostate-cancer patient in Fig. 7.20.

Figure 7.20: Single treatment field of a representative prostate-cancer patient calculated on (A)
a 79 keV MonoCT dataset using the clinical HLUT, (B) patient-specific DECT-based SPR dataset
obtained by RhoSigma and (C) a 79 keV MonoCT dataset using the DECT-based adapted HLUT in-
cluding all patient cohorts. The dose-difference distribution between DECT-based and each HLUT-
based treatment plan revealed clearly reduced dose deviations and range shifts using the adapted
instead of the clinical HLUT. The red line indicates the evaluated beam path.
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7.5.2 Discussion of the Clinical Relevance

The systematic bias in CT-based SPR and proton range prediction between a state-of-

the-art HLUT and the patient-specific DirectSPR approach RhoSigma can be reduced by

adapting the HLUT based on additional patient information derived from DECT. This can

contribute to an increased SPR accuracy in proton therapy and could thus be used clinically

until an approved medical device for patient-individualised scanner-specific DECT-based

SPR prediction is available and fully integrated into routine treatment planning. A global

HLUT adaptation including DECT information of patients with various tumour entities in dif-

ferent body regions led to SPR and range deviations of below 0.2% on average.

Still, the clinical use of an HLUT assumes an ideal compensation of SPR under- and over-

estimation for various tissues in beam direction. Beam paths differing from the mean tissue

distribution will be further affected and case-dependent range deviations can occur. The

application of a patient-specific DECT-based DirectSPR prediction would additionally ac-

count for the large intra- and inter-patient tissue variability in proton treatment planning

(section 7.3).

Based on the presented investigations, the clinical HLUT was adapted at OncoRay in 2017

using patient-specific DECT information derived from the brain-tumour and prostate-cancer

cohorts with 50 patients in total. The resulting HLUT is comparable to the global HLUT

adapted for all patient cohorts. This HLUT refinement was a further step toward the routine

clinical use of a patient-specific DECT-based stopping-power prediction.
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8 Summary

Dual-energy CT (DECT) was already suggested in the 1970s as a promising imaging

modality to reduce the CT-related range uncertainty in particle therapy (Goitein, 1977).

However, it had not been introduced in radiotherapy until the work on this thesis has been

started at the end of 2014 (van Elmpt et al., 2016). This thesis was dedicated to the trans-

lation of DECT into clinical application in particle therapy by assessing the accuracy and

relevance of DECT for treatment planning in theoretical and experimental studies as well

as retrospective patient cohort analyses. Major contributions were achieved in the:

• development of a DECT scan protocol appropriate for radiotherapy applications,

• experimental validation of SPR accuracy in ground-truth settings,

• assessment of the clinical relevance of DECT-based stopping-power prediction and

its potential to incorporate the tissue variability of patients,

• clinical implementation of an HLUT that was refined using patient information gath-

ered by DECT-based range prediction.

To gain an improved accuracy in radiotherapy with respect to DECT acquisition, a compre-

hensive characterisation of CT scanners and calibration of algorithms for electron-density

as well as stopping-power prediction are indispensable. Quantitative CT scans with high

spatial resolution, low image noise and high CT number constancy concerning variations

in patient size are an integral component for reliable dose calculation. As demonstrated in

this thesis, the influence of beam hardening on CT numbers is appropriately considered by

a beam hardening correction for water and bone as included in a dedicated reconstruction

kernel. Moreover, the application of an iterative reconstruction algorithm and image post-

processing of DECT scans including a multi-band filtering lead to an efficient reduction of

image noise.

The accuracy of stopping-power prediction based on DECT-derived voxelwise material

parameters such as electron density and photon attenuation cross section was validated

within this thesis. For this purpose, the geometrical heterogeneity and realistic human tis-
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sue composition were uncoupled and investigated in two independent experimental studies.

Due to the separation of both effects, an unprecedented measurement uncertainty of be-

low 0.3% in SPR and 1 mm in proton range was achieved. For homogeneous biological

tissue samples, the SPRs derived from DECT were within 0.2% accuracy and thus exceed

the accuracy achieved by single-energy CT (SECT) with a mean absolute error of 1.3%.

DECT also outperformed SECT on the SPR level in a ground-truth anthropomorphic head

phantom as shown by a 10% to 15% higher γ passing rate. These validations confirmed

the high accuracy of DECT-based SPR prediction and underlined the potential of DECT

to reduce the CT-related uncertainty in proton treatment planning for patients. Despite the

improved reliability of DECT compared with SECT on the SPR level, it was shown that im-

age smoothing during image reconstruction and post-processing can still influence proton

range computation in heterogeneous regions. This effect is independent from the applied

SPR prediction approach and needs to be further assessed.

Within this thesis, a stepwise clinical implementation of dual-energy CT in proton therapy

was introduced to ensure a safe application, allowing for a continuous improvement in a

clinical setting. As a first step, the clinical applicability and safety of DECT-derived pseudo-

monoenergetic CT (MonoCT) datasets, still relying on the same heuristic CT-number-to-

SPR conversion (HLUT), were demonstrated for proton treatment planning. Furthermore,

an enhanced image quality compared with 120 kVp SECT, the current standard CT imaging

technique in radiation oncology, was determined without an increase in CT dose. Conse-

quently, OncoRay – as the worldwide first proton therapy facility – has been performing

proton treatment planning on DECT-derived 79 keV MonoCT datasets since 2015. The

continuously growing database of clinical DECT scans enabled a retrospective analysis for

cerebral, pelvic and thoracic tumour patients. This study revealed clinically relevant proton

range shifts between the application of a HLUT and a direct DECT-based SPR predic-

tion, which were significantly larger than 1% on average and partly exceeded 2.5% of the

total range. These large deviations in combination with the previously demonstrated supe-

riority of DECT-based SPR prediction demanded for a refinement of the clinically applied

proton range prediction. To minimise the systematic range deviations, an HLUT was speci-

fied according to the DECT-derived SPR distribution including information of brain-tumour

and prostate-cancer patients. In July 2017, the resulting HLUT was clinically implemented

at OncoRay. For the first time, treatment planning in proton therapy was thus clinically

adapted based on the retrospectively applied direct DECT-based SPR prediction. This al-
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ready leads to an improved range prediction in patients. However, the intra-patient soft

tissue diversity and age-related variability in bone composition, resulting in a mean SPR

variation of approximately 5% as determined within this thesis for brain-tumour patients,

cannot be fully covered by a generic HLUT. The application of the patient-specific DECT-

based SPR prediction would account for this tissue variability. Moreover, the development

of a standardised scanner-specific calibration for electron-density and stopping-power pre-

diction – e.g. directly included in the DECT image post-processing and provided by the CT

vendor – would remove the necessity of cumbersome institute-specific calibration and vali-

dation. Furthermore, it would generate quantitative 3D images of tissue parameters fulfilling

the high demands of radiotherapy applications, such as Monte Carlo dose calculation, and

further techniques for quantitative image analysis such as radiomics (Aerts et al., 2014;

Lambin et al., 2017).

Based on the results obtained in this thesis, it can be concluded that dual-energy CT is

clinically applicable in radiotherapy and allows for an accurate, safe and reliable prediction

of electron density and proton stopping power, which is required for treatment planning in

photon and proton therapy, respectively. The improved accuracy and robustness of DECT-

based SPR prediction might allow for a reduction of clinically applied margins accounting

for the CT-related range uncertainty. This represents an important step to optimise the

treatment delivery in proton therapy.
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9 Zusammenfassung

Die Zwei-Spektren-Computertomographie (DECT) wurde bereits in den 1970er Jahren als

eine vielversprechende Bildgebungsmethode angesehen, die zu einer Reduktion der CT-

bedingten Reichweiteunsicherheit in der Partikeltherapie beitragen kann (Goitein, 1977).

Trotzdessen wurde DECT bis zum Beginn dieser Arbeit im Jahr 2014 nicht in der Strahlen-

therapie eingesetzt (van Elmpt u. a., 2016). In der vorliegenden Arbeit wurde die klinische

Anwendbarkeit von DECT in der Partikeltherapie untersucht. Hierbei wurde die Genauigkeit

und Relevanz von DECT für die Bestrahlungsplanung in theoretischen und experimentellen

Studien sowie retrospektiven Analysen von Patientenkohorten evaluiert. Im Rahmen dieser

Arbeit wurden wesentliche Beiträge geleistet bei:

• der Entwicklung eines DECT-Scanprotokolls, welches für die Anwendungen in der

Strahlentherapie geeignet ist,

• der experimentellen Validierung der Genauigkeit des relativen Bremsvermögens von

Protonen (SPR) gegen eine absolute Referenz,

• der Bewertung der klinischen Relevanz von DECT-basierter SPR-Vorhersage und

ihres Potentials zur Berücksichtigung der Gewebevariabilität von Patienten,

• der klinischen Implementierung einer heuristischen Konvertierung (HLUT), die auf

Grundlage der Ergebnisse der DECT-basierten Reichweitevorhersage in Patienten

neu definiert wurde.

Um eine Verbesserung der Genauigkeit in der Strahlentherapie mit Hilfe von DECT errei-

chen zu können, ist eine umfassende Charakterisierung des CT-Scanners und eine gründ-

liche Kalibrierung der Algorithmen zur voxelweisen Bestimmung der Elektronendichte und

des Bremsvermögens von Protonen unverzichtbar. Quantitative CT-Aufnahmen mit hoher

Ortsauflösung, niedrigem Bildrauschen und hoher Stabilität von CT-Zahlen sind ein wich-

tiger Bestandteil für eine zuverlässige Dosisberechnung. In dieser Arbeit konnte gezeigt

werden, dass der Einfluss von Strahlaufhärtung auf CT-Zahlen durch die Anwendung einer

Strahlaufhärtungskorrektur bezüglich Wasser und Knochen, welche in dedizierten Rekon-
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struktionskernen enthalten ist, angemessen berücksichtigt wird. Des Weiteren kann durch

die Verwendung von iterativen Rekonstruktionsalgorithmen und Frequenzfiltern in der Bild-

nachbearbeitung von DECT-Aufnahmen das Bildrauschen effizient verringert werden.

In dieser Arbeit wurde außerdem die Genauigkeit der DECT-basierten SPR-Vorhersage auf

Grundlage von voxelweisen Materialparametern wie der Elektronendichte und des Wech-

selwirkungsquerschnittes von Photonen validiert. Hierfür wurden zwei unabhängige Expe-

rimente durchgeführt, die zum Einen die Auswirkungen einer heterogenen Geometrie und

zum Anderen den Einfluss von menschenähnlichen Geweben auf die SPR-Genauigkeit

untersuchten. Durch die Separation der beiden Einflussgrößen konnte die Messunsicher-

heit in jedem Einzelexperiment auf unter 0.3% in SPR und 1 mm in der Protonenreich-

weite reduziert werden. Für homogene biologische Gewebeproben war die DECT-basierte

SPR-Vorhersage stets innerhalb einer Genauigkeit von 0.2% and damit deutlich besser

als die mittlere absolute Abweichung von 1.3%, die bei der Verwendung von nur einem

CT-Scan (SECT) erreicht wurde. Auch im anthropomorphen Kopfphantom erzielte DECT

bei der SPR-Vorhersage deutlich bessere Ergebnisse als SECT, was sich in einer 10%

bis 15% höheren γ Erfolgsquote widerspiegelte. Diese experimentellen Validierungen be-

stätigen die hohe Genauigkeit einer DECT-basierten SPR-Vorhersage und unterstreichen

das Potential von DECT, die CT-bedingte Unsicherheit in der Protonentherapie bei der Be-

strahlungsplanung von Patienten zu reduzieren. Trotz der verbesserten Genauigkeit von

DECT im Vergleich zu SECT auf SPR-Ebene konnte gezeigt werden, dass die Bildglättung

während der Bildrekonstruktion und -nachbearbeitung dennoch die Berechnung der Proto-

nenreichweite in heterogenen Bereichen beeinflussen kann. Dieser Effekt ist unabhängig

von der verwendeten Vorhersagemethode und sollte in weiterführenden Studien näher un-

tersucht werden.

Innerhalb dieser Arbeit wurde eine schrittweise klinische Einführung von DECT in die Pro-

tonentherapie vorgestellt, die eine sichere Anwendung zulässt und gleichzeitig eine ste-

te Weiterentwicklung unter klinischen Bedingungen ermöglicht. Zunächst wurde die klini-

sche Anwendbarkeit und Sicherheit von pseudo-monoenergetischen CT-Datensätzen (Mo-

noCT) für die Bestrahlungsplanung in der Protonentherapie nachgewiesen. Diese MonoCT-

Datensätze wurden mit Hilfe des DECT-Scans generiert und verwenden weiterhin eine heu-

ristische Konversion von CT-Zahlen zu Protonenbremsvermögen (HLUT). Des Weiteren

besitzen die MonoCT-Datensätze eine bessere Bildqualität im Vergleich zu 120 kVp SECT-

Aufnahmen, die mit der gleichen Dosis aufgenommen wurden und das derzeitige Stan-
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dardverfahren in der Strahlentherapie darstellen. Dementsprechend hat man sich am On-

coRay im Jahr 2015 entschlossen, als erste Protonentherapie weltweit, die Bestrahlungs-

planung auf 79 keV MonoCT-Datensätzen durchzuführen. Die dadurch kontinuierlich wach-

sende Datenbank an klinischen DECT-Aufnahmen ermöglichte eine retrospektive Analyse

von Krebspatienten mit Tumoren im Kopf, Becken oder Thorax. In dieser Studie konnten

klinisch relevante Reichweiteverschiebungen zwischen der Anwendung einer HLUT und

einer direkten DECT-basierten SPR-Vorhersage festgestellt werden. Diese waren signifi-

kant größer als 1% im Mittel und teilweise sogar größer als 2.5% relativ zur Gesamtreich-

weite. Diese großen Abweichungen in Verbindung mit der bereits nachgewiesenen Ge-

nauigkeit der DECT-basierten SPR-Vorhersage erforderten eine Anpassung der klinisch

verwendeten Reichweitevorhersage. Um die systematischen Reichweiteunterschiede zu

minimieren, wurde eine HLUT auf Grundlage einer mit DECT generierten SPR-Verteilung

von Kopftumor- und Prostatakrebspatienten erstellt. Im Juli 2017 wurde die resultieren-

de HLUT schließlich am OncoRay klinisch eingeführt. Somit wurde erstmalig die Bestrah-

lungsplanung in der Protonentherapie auf Grundlage der retrospektiven Anwendung der

DECT-basierten SPR-Vorhersage klinisch angepasst. Dies führte bereits zu einer besseren

Reichweitevorhersage in Patienten. Jedoch kann die Vielfalt an Weichteilgeweben inner-

halb eines Patienten sowie die altersbedingte Änderung der Knochenzusammensetzung

von einer HLUT nicht vollständig abgedeckt werden, da diese jeweils zu einer mittleren

SPR-Streuung von ungefähr 5% beitragen können, wie in Kopftumorpatienten im Rah-

men dieser Arbeit festgestellt wurde. Die Anwendung einer patientenindividuellen DECT-

basierten SPR-Vorhersage kann die Gewebevariabilität in der Berechnung berücksichti-

gen. Außerdem würde die Entwicklung einer standardisierten und scanner-spezifischen

Kalibrierung zur genauen Vorhersage von Elektronendichte und Protonenbremsvermögen

die Notwendigkeit einer umständlichen Kalibrierung und Validierung in jedem Institut auf-

heben. Ein solches Tool könnte direkt bei der Bildnachbearbeitung von DECT-Aufnahmen

zum Einsatz kommen und von CT-Herstellern zur Verfügung gestellt werden. So könnten in-

stitutsübergreifend quantitative Bilddatensätze von Gewebeparametern generiert werden,

die den hohen Anforderungen an Anwendungen in der Strahlentherapie, wie z.B. Monte

Carlo basierte Dosisberechnung, und weiteren Bildanalysetechniken wie Radiomics ge-

recht werden (Aerts u. a., 2014; Lambin u. a., 2017).

Aus den Ergebnissen dieser Arbeit folgt, dass die Zwei-Spektren-Computertomographie

klinisch in der Strahlentherapie anwendbar ist and eine genaue, sichere und verlässliche
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Vorhersage von Elektronendichte und Protonenbremsvermögen liefert, die für die Bestrah-

lungsplanung in der Photonen- bzw. Protonentherapie notwendig sind. Die verbesserte

Genauigkeit und Robustheit der DECT-basierten SPR-Vorhersage kann zukünftig eine Re-

duzierung des klinischen Sicherheitssaumes ermöglichen, der derzeit die CT-bezogene

Reichweiteunsicherheit enthält. Dies ist ein wichtiger Schritt, um die Dosisapplikation in

der Protonentherapie weiter zu optimieren.
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Appendix

A Investigated Material Samples

Table A.1: Material-specific stopping-power ratio (SPR) for a proton energy of 150 MeV obtained by
proton transmission measurements and calculations using the Bethe formula.

Material Manufacturer Calculated SPR Measured SPR

Sinus cavity CIRS 0.202 0.201 ± 0.002
Soft tissue grey CIRS 1.032 1.030 ± 0.002
Spinal cord CIRS 1.037 1.038 ± 0.002
Brain CIRS 1.040 1.043 ± 0.002
Spinal disk CIRS 1.073 1.073 ± 0.003
Trabecular bone CIRS 1.152 1.155 ± 0.003
Tooth dentin CIRS 1.500 1.501 ± 0.003
Cortical bone CIRS 1.686 1.683 ± 0.003
Tooth enamel CIRS 1.768 1.763 ± 0.003
Tooth enamel CIRS 1.768 1.763 ± 0.003
Lung LN300 Gammex 0.293 0.273 ± 0.006
Lung LN450 Gammex 0.439 0.438 ± 0.006
Fat AP6 Gammex 0.916 0.940 ± 0.007
Solid Water Gammex 0.994 0.996 ± 0.007
Muscle Gammex 1.029 1.034 ± 0.007
Brain SR2 Gammex 1.067 1.062 ± 0.007
Bone 10% CaCO3 Gammex 1.152 1.135 ± 0.007
Bone 30% CaCO3 Gammex 1.275 1.261 ± 0.008
Bone 50% CaCO3 Gammex 1.432 1.424 ± 0.008
Cortical bone SB3 Gammex 1.624 1.619 ± 0.009
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B Spectral-Stoichiometric Prediction of X-Ray Attenuation

Within this thesis, the spectral-stoichiometric CT number prediction was introduced. This

approach incorporates scanner-specific properties like the polychromatic X-ray spectrum

Ω (E) (Fig. 2.2) and detector efficiency ξ (E) (Heismann et al., 2003) to calculate material-

specific CT numbers based on the elemental composition. Since the influence of beam-

hardening on CT numbers can be considered in this method, especially the dependence

on material size, a BHC algorithm with simplified assumptions was included.

Assuming a homogeneous object with projection-independent X-ray attenuation (cylindrical

shape), a 3D image reconstruction using several X-ray projections is not required to deter-

mine its CT number. In this case, the X-ray attenuation coefficient µ arises directly from the

measurable one-dimensional (1D) transmittance T after traversing the investigated material

of thickness d.

T = e−µ d =

Emax∫
0
η (E) · ξ (E) · Ω (E) · e

−
d∫

0
µ(E, x) dx

dE

Emax∫
0
η (E) · ξ (E) · Ω (E) dE

(B.1)

The energy-dependent parameter η (E) in eq. B.1 simulates the influence of beam harden-

ing using a simplified ansatz:

η (E) =
(

E

Emax

)m

with n ≥ 0. (B.2)

The spectral adjustment parameter η can be interpreted as suppression factor for low-

energy photons. A rising grade of beam hardening corresponds to an increasing exponent

m, which describes the attenuation of the scan setup surrounding the material of interest.

Typical beam hardening conditions can be simulated by selecting a suitable m. The CT

number of the investigated material is derived from eqs. 2.3 and B.1:

H (m) = a (m) ·
[

ln T (m) − ln Twater (m)
ln Twater (m) − lnTair (m) · 1000

]
+ b (m) (B.3)

with a (m) and b (m) as additional fit parameters to account for deviations from optimal CT

scanner calibration (Hwater = 0 HU and Hair = -1000 HU).
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B Spectral-Stoichiometric Prediction of X-Ray Attenuation

To mimic clinical BHC algorithms (section 2.2.3) and integrate their functionality in CT num-

ber prediction, a 1D water pre-correction and material-specific BHC are included as con-

secutive CT number adjustment. For this purpose, the size dependence of beam hardening

is characterised to define a reference condition.

Size-Dependent Beam Hardening

The size-dependent X-ray attenuation µ (d) of a material with known elemental composition

can be transferred to its expected attenuation µ̃, corresponding to the initial X-ray spectrum,

by a correction factor λ:

µ̃ = µ (d0) = λ (d) µ (d) with d0 = 100 µm. (B.4)

Since the initial X-ray spectrum remains almost unchanged after traversing a thin target

(d → 0), the expected attenuation µ̃ is well approximated by eq. B.1 with d= 100 µm for

clinically applied X-ray spectra.

Water Pre-Correction

The size-dependent transmittance of water Tw (d) and air Ta (d) can be described as poly-

nomial functions using eq. B.1. Based on Tw (d), the transmittance of any material sample

Ts can be transferred into a water-equivalent thickness dw(Ts) assuming Ts = Tw. Conse-

quently, the water-corrected CT number Hwc ensues from the size-dependent correction

applied for water and air using eq. B.4.

Hwc = λw (dw) µ − λw (d) µw

λw (d) µw − λa (d) µa
· 1000 (B.5)

Material-Specific BHC

For all materials with Hwc > 0, an additional material-specific BHC is applied, which relies

on a database of different human tissues (BHC materials). This material database contains

the water-corrected CT number H̃wc (T ) of each BHC material as a function of transmit-

tance derived from eq. B.1 and B.5. First, those two BHC materials (index + and −) are

identified, whose CT numbers differ least from the water-corrected CT number Hwc (Ts) of
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the investigated material sample (H̃+
wc > Hwc , H̃

−
wc ≤ Hwc). Afterwards, the correction fac-

tors γ+ and γ− are determined to transfer H̃±
wc (Ts) into the expected CT numbers H̃±

wc (T0)

for the reference setting (d= 100 µm):

H̃±
wc (T0) = γ± H̃±

wc (Ts) with T0 = T (d = 100 µm) . (B.6)

Finally, the material-corrected CT number Hmc of the investigated substance is calculated

by multiplying Hwc (Ts) with a correction factor γ:

Hmc = γpHwc =
[
δ γ+ + (1 − δ) γ−

]p
Hwc with p = q + m

10 . (B.7)

The parameter δ equals the weighting factor of the linear interpolation between H̃+
wc and

H̃−
wc resulting in Hwc. To regard different strength levels of BHC algorithms integrated in

clinical reconstruction kernels (section 2.2.3), the purely empirical parameter p is introduced

with p= 1 for an optimal BHC. The exponent p results from a kernel-specific BHC quality

parameter q and the setup-specific parameter m (introduced in eq. B.2). The BHC quality

parameter q is independent from the scan setup and describes a possible systematic under-

(p< 1) or overestimation (p> 1) of beam hardening effects. To prevent the determination of

a negative q based on the expectation p ∈ [0, 2], m is divided by 10 to sum two parameters

of comparable magnitude.
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C Evaluation of Monoenergetic X-Ray Attenuation

C Evaluation of Monoenergetic X-Ray Attenuation

Figure C.1: Flow chart of the material-specific CT number prediction for calculating the energy-
dependent weighting factor α of DECT-based MonoCT approaches. Predicted CT numbers were
saved as pixel data in DICOM standard using measured CT scans in DICOM format as template.
The numbers in orange circles denote the order of the respective calculation step.

Table C.1: Fit parameter of the energy-dependent MonoCT weighting factor α using the equation
α = a ·

(
Emono/keV

)b + c.

Fit parameter syngo.Mono syngo.MonoPlus MonoNIST

a · 103 18.339 ± 1.883 17.441 ± 1.823 36.539 ± 3.251
b −2.244 ± 0.026 −2.232 ± 0.026 −2.413 ± 0.023
c −1.014 ± 0.011 −1.016 ± 0.011 −0.860 ± 0.010
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D Experimental Verification of Stopping-Power Prediction

Figure D.1: Flow chart for CT-based generation of SPR maps for the four SPR prediction ap-
proaches investigated within this thesis and the reference dataset of the anthropomorphic head
phantom.
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D Experimental Verification of Stopping-Power Prediction

Table D.1: Details for tissue surrogates used in Monte Carlo simulation of pencil beams with an
energy of 150.91 MeV and a rectangular momentum spread of 5.455 MeV/c: I-values as given by
FLUKA based on stoichiometry and as used to match the experimental SPRs; range (R80) in water
when passing through 10 mm of the respective material (statistical uncertainty given as standard er-
ror); stopping-power ratio and statistical uncertainty. The beam energy and momentum spread were
adjusted to match the experimental depth-dose profile in water best. Differences in material thick-
ness (simulation: 10 mm, measurement: 20 mm) result in minute relative changes of SPR, which
are negligible compared to other uncertainties. The relatively large changes applied to denser bony
tissue are likely to reflect the currently limited knowledge on the I-value of phosphorus, which is
present in these surrogates.

Material
I / eV

Change in I / % Range / mm SPR
stoichiom. used

Water 75.00 75.00 - 159.033 ± 0.008 1.000
Sinus cavity 69.57 73.32 5.1 167.034 ± 0.010 0.200 ± 0.001
Soft tissue grey 72.17 73.80 2.6 158.732 ± 0.007 1.030 ± 0.001
Spinal cord 72.76 72.45 −0.4 158.642 ± 0.011 1.039 ± 0.001
Brain 74.19 73.01 −1.6 158.598 ± 0.009 1.043 ± 0.001
Spinal disk 79.99 80.64 0.8 158.306 ± 0.011 1.073 ± 0.001
Trabecular bone 76.97 77.51 0.7 157.485 ± 0.008 1.155 ± 0.001
Tooth dentin 97.58 106.26 8.9 154.022 ± 0.012 1.501 ± 0.001
Cortical bone 106.73 120.07 12.5 152.183 ± 0.008 1.685 ± 0.001
Tooth enamel 114.46 133.07 16.3 151.393 ± 0.007 1.764 ± 0.001

Table D.2: Stopping-power ratio (SPR) of homogeneous material samples determined by different
CT-based SPR prediction approaches. The material slabs of 20 mm nominal thickness were pro-
vided by the manufacturer and correspond to the materials built into the head phantom. The mean
SPR ± standard deviation was evaluated in a ROI of the generated SPR datasets.

Material
SPR determined by

120 kVp SECT 79 keV MonoCT RhoSigma RhoZ

Sinus cavity 0.209 ± 0.005 0.208 ± 0.006 0.204 ± 0.008 0.202 ± 0.006
Soft tissue grey 1.034 ± 0.004 1.039 ± 0.005 1.031 ± 0.009 1.026 ± 0.009
Spinal cord 1.040 ± 0.004 1.044 ± 0.004 1.030 ± 0.007 1.025 ± 0.008
Brain 1.046 ± 0.004 1.050 ± 0.004 1.037 ± 0.007 1.032 ± 0.008
Spinal disk 1.088 ± 0.004 1.096 ± 0.005 1.077 ± 0.008 1.070 ± 0.008
Trabecular bone 1.189 ± 0.003 1.189 ± 0.003 1.151 ± 0.008 1.143 ± 0.007
Tooth dentin 1.556 ± 0.004 1.554 ± 0.002 1.505 ± 0.011 1.496 ± 0.011
Cortical bone 1.663 ± 0.004 1.669 ± 0.004 1.707 ± 0.013 1.697 ± 0.012
Tooth enamel 1.969 ± 0.006 1.977 ± 0.006 1.920 ± 0.017 1.869 ± 0.018

Mean error* 1.1% 1.4% 0.1% -0.5%
Mean abs. error* 1.8% 1.8% 0.8% 0.9%

* excluding tooth enamel
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E Clinical Feasibility of 4D Dual-Energy CT

E.A Patient Information and CT Imaging Data

Table E.1: Patient and tumour characteristics. All lung-cancer patients participated in the PRONTOX
trial (Zschaeck et al., 2016).

Characteristic Patient 1 Patient 2 Patient 3

Gender Female Male Male
Age / a 72 64 54

TNM - Stage T4N2M0 - IIIB T4N2M0 - IIIB T2bN2M0 - IIIA

Target location
Left, upper lung
central thorax

Right, upper lung
central thorax

Left, upper lung
middle left lung

GTV / ml
(excluding lymph nodes) 187 200 30

CTV / ml
(including lymph nodes) 387 395 190

Average breathing period / s 3.1 4.3 4.3
Diaphragm motion
cranio-caudal / mm 13 15 23

GTV motion
cranio-caudal / mm 0.2 0.0 0.6

GTV motion
posterior-inferior / mm 0.3 0.0 1.9

GTV motion
left-right / mm 0.1 0.0 0.8

Table E.2: Applied clinical control CT scan protocol during the course of treatment.

Scan parameter Single-energy CT Dual-energy CT

Tube voltage / kV 120 80 140
Qual. Ref. mAs/rot 85 80 20
Slice collimation 16 × 1.2 mm

Gantry rotation time / s 0.5
Pitch 0.09

Reconstruction algorithm SAFIRE
Reconstruction kernel Q34/5

Field of view 500
Slice thickness / mm 2
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E Clinical Feasibility of 4D Dual-Energy CT

Figure E.1: Time-averaged CT dataset with (A) internal gross tumour volume (iGTV) in orange and
clinical target volume (CTV) in red of each investigated patient as well as (B) artificial target volume
in red of the worst-case treatment plan for patient 2. Adapted from Wohlfahrt et al. (2018c).
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E.B Normalised Cross Correlation

To quantitatively compare CT datasets acquired with different X-ray spectra, CT numbers

need to be converted to account for the different attenuation behaviour. A linear conversion

was specified for a static thorax phantom using the frequency distribution of correlations

between 58 keV and 79 keV CT numbers. The median 79 keV CT number of each 58 keV

CT number was obtained. Subsequently, the Hounsfield scale on the x axis was divided

in CT numbers smaller and larger than 0 HU. For both regions, the median CT number

distribution was described by an intensity-weighted linear regression (Fig. E.2).

After equalising the CT numbers of two datasets, the conformity between both can be

assessed by NCC. For a better interpretation of NCC, the NCC was correlated to global

geometrical shifts of the patient. For this purpose, a patient CT dataset was shifted by 1 mm

to 10 mm in cranio-caudal, posterior-inferior and left-right direction and compared with the

non-shifted CT dataset. The conformity was again quantified by NCC. Consequently, the

NCC sensitivity regarding geometrical deviation can be estimated (Table E.3, Fig. E.3).

Figure E.2: Linear conversion of CT numbers for different MonoCT datasets. The 58 keV and 79 keV
MonoCT datasets correspond to the 80 kVp and 140 kVp CT datasets after image post-processing
including a deformable image registration, respectively. The respective time-averaged CT dataset
reconstructed from a 4D-DECT scan of a static thorax phantom was used for this assessment.
Adapted from Wohlfahrt et al. (2018c).

154



E Clinical Feasibility of 4D Dual-Energy CT

Table E.3: Normalised cross correlation (NCC) for a patient CT dataset globally shifted in cranio-
caudal (CC), posterior-inferior (PI) or left-right (LR) direction. Without loss of generality, the 79 keV
MonoCT dataset of maximal inspiration derived from the first 4D-DECT scan of patient 2 was used
for this assessment.

Shift
mm

Normalised cross correlation (NCC) / %

Body CTV Heart Lung

CC PI LR CC PI LR CC PI LR CC PI LR

1 99.4 99.4 99.2 98.9 99.0 98.8 99.9 99.9 99.9 92.4 92.8 90.5

2 98.8 98.2 97.7 97.8 97.1 96.7 99.9 99.9 99.8 84.7 79.1 74.3

3 97.9 97.0 96.1 95.9 95.1 94.7 99.8 99.8 99.6 74.8 66.6 61.7

4 96.9 95.7 94.8 93.9 93.4 93.0 99.7 99.8 99.3 64.9 56.7 53.3

6 95.1 93.3 92.3 90.1 90.4 90.1 99.5 99.6 98.6 53.5 44.0 43.7

8 93.5 90.9 89.8 86.6 87.9 87.4 99.3 99.3 97.7 46.9 36.9 38.5

10 92.2 88.5 87.5 83.4 85.8 84.9 98.9 98.9 96.7 42.7 32.5 35.5

Figure E.3: Normalised cross correlation (NCC) for a patient CT dataset globally shifted in cranio-
caudal, posterior-inferior or left-right direction. The illustrated values refer to Table E.3. Adapted from
Wohlfahrt et al. (2018c).
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E.C Patient Breathing Patterns During CT Acquisition

Figure E.4: Patient breathing patterns for dual-spiral time-resolved dual-energy CT (4D-DECT)
scans consecutively acquired with 80 kVp (orange) and 140 kVp (blue). Adapted from Wohlfahrt
et al. (2018c).
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E Clinical Feasibility of 4D Dual-Energy CT

Table E.4: Average respiratory cycle time for each 80 kVp and 140 kVp 4D-DECT scan. Changes
in average respiratory cycle time between the corresponding 80 kVp and 140 kVp 4D-DECT scans
were within the respective standard deviation and thus relatively small.

Average respiratory cycle time ± standard deviation / s

Patient
4D-DECT scan 1 4D-DECT scan 2

80 kVp 140 kVp 80 kVp 140 kVp

1 3.7 ± 0.2 3.5 ± 0.4 2.8 ± 0.3 2.7 ± 0.3
2 4.3 ± 0.5* 4.3 ± 0.3 4.1 ± 0.6 3.8 ± 0.4
3 4.2 ± 0.5 3.9 ± 0.2 4.3 ± 0.4 4.6 ± 0.7

* including only the breathing pattern before coughing
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E.D Contour-Specific Assessment of Normalised Cross Correlation

NCC for all dual-spiral 4D-DECT datasets of each patient. NCCs are colour-coded corre-

sponding to a global patient shift of ≥ 1 mm (green), ≥ 2 mm (yellow) and > 2 mm (red). For

a conservative estimation, the maximal NCC for each criterion was applied as reference.

Body

Normalised cross correlation (NCC) / %

80 kVp vs 140 kVp 58 keV vs 79 keV

Avg
Ex
0%

In
40%

In
97%

Ex
50%

Avg
Ex
0%

In
40%

In
97%

Ex
50%

Patient 1
DECT 1

99.5 99.0 99.0 98.9 99.0 99.9 99.9 99.9 99.9 99.9

Patient 1
DECT 2

99.6 99.0 99.1 99.1 99.1 99.9 99.9 99.9 99.9 99.9

Patient 2
DECT 1

97.8 96.3 96.4 96.5 96.5 99.8 99.6 99.3 99.7 99.7

Patient 2
DECT 2

99.5 98.7 98.7 98.6 98.7 99.9 99.8 99.8 99.8 99.8

Patient 3
DECT 1

99.7 99.0 99.0 98.8 99.0 99.9 99.8 99.8 99.8 99.8

Patient 3
DECT 2

99.7 98.9 98.9 98.9 98.8 99.9 99.8 99.8 99.8 99.8

CTV

Normalised cross correlation (NCC) / %

80 kVp vs 140 kVp 58 keV vs 79 keV

Avg
Ex
0%

In
40%

In
97%

Ex
50%

Avg
Ex
0%

In
40%

In
97%

Ex
50%

Patient 1
DECT 1

99.7 99.2 99.1 99.1 99.3 100 100 99.9 100 100

Patient 1
DECT 2

99.6 99.0 99.1 99.1 99.1 100 99.9 99.9 99.9 99.9

Patient 2
DECT 1

97.3 96.2 96.4 96.7 96.7 100 99.9 99.9 99.9 99.9

Patient 2
DECT 2

99.8 99.3 99.1 98.9 99.1 100 100 100 100 100

Patient 3
DECT 1

99.6 97.8 97.8 97.5 98.1 100 99.9 99.9 99.9 99.9

Patient 3
DECT 2

99.7 98.4 98.1 98.7 98.4 100 100 99.9 99.9 99.9
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Heart

Normalised cross correlation (NCC) / %

80 kVp vs 140 kVp 58 keV vs 79 keV

Avg
Ex
0%

In
40%

In
97%

Ex
50%

Avg
Ex
0%

In
40%

In
97%

Ex
50%

Patient 1
DECT 1

100 99.8 99.9 99.8 99.8 100 100 100 100 100

Patient 1
DECT 2

100 99.9 99.8 99.8 99.9 100 100 100 100 100

Patient 2
DECT 1

100 99.5 99.6 99.5 99.5 100 99.9 99.9 99.9 99.9

Patient 2
DECT 2

100 99.5 99.6 99.5 99.5 100 99.9 99.9 99.9 99.8

Patient 3
DECT 1

100 99.6 99.6 99.6 99.6 100 99.9 99.9 99.9 99.9

Patient 3
DECT 2

100 99.6 99.7 99.4 99.6 100 99.9 99.9 99.9 99.9

Lung

Normalised cross correlation (NCC) / %

80 kVp vs 140 kVp 58 keV vs 79 keV

Avg
Ex
0%

In
40%

In
97%

Ex
50%

Avg
Ex
0%

In
40%

In
97%

Ex
50%

Patient 1
DECT 1

96.4 90.7 89.8 89.6 88.8 99.8 99.8 99.6 99.7 99.6

Patient 1
DECT 2

97.3 91.1 89.5 92.2 91.2 99.9 99.8 99.6 99.8 99.7

Patient 2
DECT 1

88.4 81.7 72.4 63.7 72.0 99.8 99.6 99.2 97.8 99.3

Patient 2
DECT 2

96.9 91.7 86.3 80.6 84.6 99.8 99.7 99.5 99.3 99.8

Patient 3
DECT 1

97.7 92.9 88.6 84.8 87.0 99.8 99.7 99.5 99.5 99.4

Patient 3
DECT 2

98.0 93.2 90.7 89.2 89.5 99.8 99.8 99.7 99.6 99.5
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Appendix

E.E Intra-Observer Variability of GTV Delineation

Figure E.5: GTV delineated by an experienced physician at day 1 (blue) and day 2 (magenta) on a
time-averaged 79 keV MonoCT dataset derived from dual-energy CT. Adapted from Wohlfahrt et al.
(2018c).

The delineation on a combination of two datasets derived from dual-energy CT, which illus-

trate either the relative electron density (RED) or relative photon attenuation cross section

(RCS), was performed in a multi-step procedure. First, the border of the tumour close to the
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lung tissue was delineated on the RCS dataset using a lung CT window. Subsequently, this

delineation was adapted on the RED dataset applying a lung CT window. Finally, the tu-

mour border along the mediastinum was delineated on the RED dataset using a CT window

for mediastinum.

Figure E.6: GTV delineated by an experienced physician at day 1 (orange) and day 2 (red) on a
combination of time-averaged electron-density and cross-section datasets derived from dual-energy
CT. Adapted from Wohlfahrt et al. (2018c).
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