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Abstract

In recent years, the Internet of Things (IoT) has increasingly received attention
from the Business Process Management (BPM) community. The integration of
sensors and actuators into Process-Aware Information Systems (PAIS) enables the
collection of real-time data about physical properties and the direct manipulation
of real-world objects. In a broader sense, IoT-aware workflows provide means for
context-aware workflow execution involving virtual and physical entities. However,
IoT-aware workflow management imposes new requirements on workflow model-
ing and execution that are outside the scope of current modeling languages and
workflow management systems. Things in the IoT may vanish, appear or stay
unknown during workflow execution, which renders their allocation as workflow re-
sources infeasible at design time. Besides, capabilities of Things are often intended
to be available only in a particular real-world context at runtime, e. g., a service
robot inside a smart home should only operate at full speed, if there are no resi-
dents in direct proximity. Such contextual restrictions for the dynamic exposure of
resource capabilities are not considered by current approaches in IoT resource man-
agement that use services for exposing device functionalities. With this work, we
aim at providing the modeling and runtime support for defining such restrictions on
workflow resources at design time and enabling the dynamic and context-sensitive
runtime allocation of Things as workflow resources. To achieve this goal, we pro-
pose contributions to the fields of resource management, i. e., resource perspective,
and workflow management in the Internet of Things (IoT), divided into the user
perspective representing the workflow modeling phase and the workflow perspective
representing the runtime resource allocation phase.
In the resource perspective, we propose an ontology for the modeling of Things,

Roles, capabilities, physical entities, and their context-sensitive interrelations. The
concept of Role is used to define non-exclusive subsets of capabilities of Things. A
Thing can play a certain Role only under certain contextual restrictions defined
by Semantic Web Rule Language (SWRL) rules. At runtime, the existing relations
between the individuals of the ontology represent the current state of interactions
between the physical and the cyber world. Through the dynamic activation and
deactivation of Roles at runtime, the behavior of a Thing can be adapted to the

7



current physical context. In the user perspective, we allow workflow modelers
to define the goal of a workflow activity either by using semantic queries or by
specifying high-level goals from a Tropos goal model. The goal-based modeling of
workflow activities provides the most flexibility regarding the resource allocation
as several leaf goals may fulfill the user specified activity goal. Furthermore, the
goal model can include additional Quality of Service (QoS) parameters and the
positive or negative contribution of goals towards these parameters. The workflow
perspective includes the Semantic Access Layer (SAL) middleware to enable the
transformation of activity goals into semantic queries as well as their execution on
the ontology for role-based Things. The SAL enables the discovery of fitting Things,
their allocation as workflow resources, the invocation of referenced IoT services, and
the continuous monitoring of the allocated Things as part of the ontology.
We show the feasibility and added value of this work in relation to related ap-

proaches by evaluation within several application scenarios in a smart home setting.
We compare the fulfillment of quantified criteria for IoT-aware workflow manage-
ment based on requirements extracted from related research. The evaluation shows,
that our approach enables an increase in the context-aware modeling of Things as
workflow resources, in the query support for workflow resource allocation, and in
the modeling support of activities using Things as workflow resources.



Publications

This thesis is partially based on the following peer-reviewed publications:

• Steffen Huber, Ronny Seiger, André Kühnert and Thomas Schlegel. Using
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1 Introduction

In recent years, the Internet of Things (IoT) gained more and more attention from
both industry and academia alike. The prospects of interconnected intelligent real
world objects that bridge the gap between the physical and the cyber world, raised
the interest in IoT-technology to the state of Peak of Inflated Expectations, referring
to the Gartner Hype Cycle [Pan16] illustrated in Fig. 1.1. Gartner predicts the IoT
to reach the Plateau of Productivity in 5 to 10 years, while the overall number of
IoT-enabled devices is expected to exceed 20 billion in the year 2020 [vdM15]. This
includes the number of consumer devices, which is forecasted to be larger than 13
billion in the year 2020 [vdM15].
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2011 2016 2021
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Figure 1.1: The Gartner Hype Cycle for the Internet of Things [Pan16].

Consequently, IoT-enabled consumer devices will become ubiquitous and the un-
derlying technologies will reach a productive state of application in the near future.
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1 Introduction

After nearly three decades since Mark Weiser published his vision of Ubiquitous
Computing [Wei91], its wide-spread adoption and realization may be closely cou-
pled to these emerging IoT technologies. Ubiquitous Computing aims at providing
assistance and fulfilling user goals in a highly adaptive and context-sensitive envi-
ronment. These ad-hoc tasks often need context-information both from the cyber
and the physical perspective of the user’s environment. IoT Services can encapsu-
late sensors, actuators, and more complex compounds of mixed sensor, actuator,
and computing systems like robots. In addition to the software context and effects
of a Ubiquitous Computing application, these IoT Services can provide real-world
context data and execute physical tasks. Therefore, IoT is a key enabling technol-
ogy for Ubiquitous Computing.
Beyond the physical technology and the service abstraction, Ubiquitous Comput-

ing relies on the seamless execution of user-centric system behavior [Wei91]. This
includes the interaction between the user and ubiquitous system components in a
goal-oriented manner. Today, workflows are increasingly used to specify and ex-
ecute system behavior in Cyber-physical Systems (CPS) and Systems of Systems
(SoS). The use of a Workflow Management System (WfMS) in these application ar-
eas promises controllable, reusable and user-friendly specification of recurring tasks.
Ad-hoc Workflows are specially designed to cope with the dynamic nature of smart
environments. However, research in ad-hoc workflows is mostly focused on struc-
tural adaptation. In contrast, activity-level adaptation is still necessary to cope
with the dynamic nature of an ubiquitous system. Activity adaptation comprises
service discovery, dynamic resource allocation and subsequent context-sensitive ser-
vice invocation. Using workflows and a WfMS to model and execute behavior in
ubiquitous systems facilitates the vision of Ubiquitous Computing. Therefore, the
guiding research question is:

How can a WfMS fulfill user goals on the activity level while
adapting to context-sensitive IoT resources at runtime?

In this thesis, we will discuss this question in detail and provide a solution that
enables the modeling and execution of goal-based context-sensitive workflows in
the IoT integrating Things as workflow resources. In the following we present a
short introduction into IoT-aware workflows in Section 1.1, illustrate the challenges
and necessary steps for context-sensitive activity-level workflow adaptation in Sec-
tion 1.2, define the research aim and objective of this thesis in Section 1.3, list the
developed contributions in Section 1.4, and conclude the introduction by presenting
the structure of this thesis 1.5.
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1.1 Background

1.1 Background

In this section1, we briefly introduce the concept of IoT-aware workflows and their
prospected benefits. The IoT hype has increasingly received attention from the
Business Process Management (BPM) community. The integration of sensors and
actuators into Process-Aware Information Systems (PAIS) enables the collection of
real-time data about workflow resources and the direct manipulation of real world
objects. In a broader sense, IoT-enabled workflows provide means for context-aware
workflow execution involving virtual and physical entities. We refer to this class
of workflows as IoT-aware workflows [MRM13]. In general, IoT device capabilities
can be classified as either sensing or actuating capabilities [BBDL+13]. IoT-aware
workflows integrate sensing capabilities in the form of special activities represent-
ing sensing tasks. These tasks generate data objects that may trigger the control
flow within the workflow. As these concepts are not directly supported by BPMN
2.0, several extensions to BPMN’s control-flow and data perspective have been
proposed [MRM13, MRH15, GEPF11]. Actuator capabilities can be accessed by
using IoT services, e. g., through service-based method calls within activities. How-
ever, these approaches assume that required workflow resources are identifiable at
design time. Workflow modelers have to consider the runtime context of devices
and Things and already know the respective resource identifiers at design time.
While this is possible in controlled environments, it becomes infeasible for large-
scale ubiquitous systems as the availability of IoT devices may vary significantly at
runtime [RSDS12, KSS+10].

1.2 Motivation

To illustrate the difference between cyber and physical workflow resources, we pro-
vide an application scenario of an IoT-aware workflow in the Smart Home domain.
Figure 1.2 illustrates an automatic emergency call workflow. It defines the follow-
ing system behavior: After the workflow has started, the WfMS listens for events
that indicate an unresponsive resident. In this case, the WfMS tries to contact
the resident. Depending on the response, the workflow either finishes immediately
or triggers an automatic emergency call, leading to the treatment of the possibly
injured resident. From this example, several requirements arise for using workflows
in a smart home setting and in general IoT scenarios. Under the assumption, that
the shown workflow resources, e. g., Smart Watch ID:1, are part of the workflow

1The following sections are partially based on [HSK+16] and [HSS16]
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Resident 

unresponsive

Contact

Resident
Response? TRUE

FALSE

Automatic 

Emergency 

Call

Cyber World

Physical World

Smart Watch

ID:1

Event

Smart Watch

ID:1

Invoke

Method

Response

Smartphone

ID:2

Invoke

Method

Response

Figure 1.2: Automatic emergency call scenario workflow in BPMN.

model, the modeler used implicit knowledge about the IoT devices and their con-
text. Whenever there occurs a mismatch at runtime between the workflow model
and the actual context, the workflow may halt or produce unwanted system be-
havior. For example, in case the resident does not wear the Smart Watch which
detected a false positive situation, the resident is in fact responsive but cannot be
contacted by the WfMS. In this case, an unwanted automatic emergency call is
triggered. Furthermore, if a true positive detection of a resident in need of medical
assistance occurred but the modeled workflow resource, e. g., Smartphone ID:2, for
calling the emergency is unavailable at this moment, the workflow will halt even
if other devices with the same capability are available. From this simple example
follows:

• Knowledge of IoT device capabilities and their context has to be modeled
explicitly.

• Workflow resources have to be allocated at runtime depending on the re-
quirements of the activity and runtime context.

• The requirements of activities have to be modeled explicitly.

Due to the runtime volatility and context-sensitive capabilities of Things, their
integration as workflow resources poses several problems. First, as Things exist in

18



1.3 Aim and Objective

and can manipulate the real world their produced data has to be interpreted in the
location and time context of the measurement. In addition, actuators can change
their location in the real world, rendering design time allocation of such resources
infeasible. In general, all IoT service invocations are context-dependent and need
to be selected and invoked according to their current runtime context, which is
not supported by current resource allocation approaches within existing WfMS. An
extensive requirements analysis for IoT-aware workflow management regarding the
integration of Things as workflow resources is provided in Chapter 3.

1.3 Aim and Objective

The overall goal of IoT-aware workflows is to integrate sensor data and actuators
into the proven concepts of BPM. Our goal is to use the proven concepts of work-
flow modeling and WfMS to define recurring system behavior in highly adaptive
ubiquitous environments using Things as workflow resources. Ultimately, we aim to
combine WfMS and IoT technology to at least partially implement Mark Weiser’s
vision of Ubiquitous Computing.

1.3.1 Research Questions and Scope

The following research questions guide the structure of this work and partially result
from the example scenario in Section 1.2:

• RQ1 What are the differences between workflow resources in the cyber and
the physical world from the perspective of a WfMS?

• RQ2 How to model context-sensitive capabilities of workflow resources in the
IoT?

• RQ3 How can a WfMS cope with the uncertainty of IoT resource availability
during workflow execution?

• RQ4 How to minimize failures during workflow execution caused by unavail-
able resources?

• RQ5 How to allow for flexible as well as correct workflow execution in the
IoT and what are the tradeoffs?

We limit the scope of this work to the activity-level adaptation of workflows and
do not investigate structural workflow adaptation, e. g., control-flow adaptation.
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1 Introduction

Furthermore, we do not aim at developing a WfMS. However, we use a WfMS
to execute our modeled workflows and to trigger the context-sensitive resource
allocation.

1.3.2 Research Goals

To overcome the disadvantages of existing approaches, this thesis aims at fulfilling
the following goal:

Enabling the goal-based modeling and execution of
IoT-aware workflows by using a context-sensitive resource

allocation mechanism for Things at runtime.

This goal entails several subgoals to be fulfilled by the contribution of this work.
First, we want to provide a modeling foundation for expressing the context-
sensitive relations between Things and their capabilities. Second, these relations
need to reflect the runtime state of the physical and cyber world interactions
such that physical context changes as well as virtual resource allocations can be
reflected in the model. Third, a workflow modeler needs to be able to specify
goals of activities. Finally, these goals need to provide enough information for a
subsequent resource allocation using the modeling foundation.

1.4 Contribution

This thesis includes contributions within the fields of resource and workflow man-
agement in the IoT. The resource management, we propose an ontology for role-
based Things with context-sensitive capabilities. In this modeling context, the
role-based approach allows for a fitting concept of defining context-sensitive sub-
sets of capabilities and enabling their activation and deactivation dynamically at
runtime. Furthermore, we propose an update mechanism for context changes
in the developed ontology based on SWRL rules. In the workflow management
perspective, we contribute a workflow metamodel extension to allow for the
modeling of goal-based workflow activities referring to a domain-specific Tropos
goal model. In addition, we propose the Semantic Access Layer (SAL) as a
middleware between the WfMS and the actual IoT services. The SAL provides
the functionalities for resource discovery and allocation based on an ontological
knowledge base.
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1.5 Outline

1.5 Outline

The remainder of this work is illustrated in Fig. 1.3. Chapter 2 provides the basic
concepts and context of this work. This includes an introduction to the Internet
of Things, context and role modeling, goal modeling as well as existing workflow
modeling languages, WfMS and their ability to execute workflows in the IoT. In
Chapter 3, existing requirements for integrating Things as workflow resources are
extracted and discussed from related work. After limiting the requirements to the
scope of this work defined by the research question from Chapter 1.3.1, we review
their fulfillment by state-of-the-art approaches in IoT-aware workflow management.
Then, we present our approach and contribution to fill the identified research gaps.
Chapter 4 introduces three perspectives, resource, user, and workflow, to structure
our contributions and presents the concept of adaptive activity-level workflow adap-
tation in the IoT. Chapter 5 introduces the semantic model for representing Thing,
their context-dependent capabilities and roles as part of the resource perspective. In
addition, the modeling of user goals and workflow activities is presented. Chapter 6
provides an overview of the system architecture for adaptive workflow activities in
the IoT. Chapter 7 describes the implementation of the middleware layer including
aspects of all three perspective. Here, the resource perspective includes the knowl-
edge base, the user perspective includes the goal model and the workflow perspective
the actual activities resulting in service calls to the middleware. Chapter 8 presents
evaluation results in terms of performance measures and adaptation characteristics
which are then compared to the requirements Chapter 3.1 as well as the research
questions in Chapter 1.3.1. Chapter 9 discusses the overall results and contribu-
tions of this work regarding the research questions and goals. Furthermore, the
limitations of our approach is discussed in detail. Finally, Chapter 10 summarizes
the results of this thesis, gives an outlook on future work and concludes.
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Figure 1.3: The structure of this thesis including chapter numbers.
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2 Background for Workflows in the IoT

In this chapter 1, we present relevant basic concepts and some preliminary defi-
nitions related to the contributions of this thesis. First, we introduce IoT as the
technological foundation for IoT-aware workflows. We then present the basic con-
cepts of modeling context with Semantic Web technologies and role-based modeling
languages. Finally, we introduce relevant goal modeling and workflow concepts. We
divided the concepts into three perspectives of IoT-aware workflow management.
Figure 2.1 gives an overview of the relevant concepts within the resource, user, and
workflow perspectives. The resource perspective is rooted within the research field
of resource management while the user and workflow perspectives are rooted in
the field of workflow management. In this context, the user perspective represents
the workflow modeler as an integral part of the workflow modeling phase within
workflow management.

User Goal ModelingInternet of Things

Context Modeling

Semantic Context Modeling

Background for Workflows in the Internet of Things

Role-based Context Modeling

Resource Perspective User Perspective Workflow Perspective

Workflow Concepts

Tropos Goal Modeling Workflow Modeling

IoT-aware Workflow ManagementBackward Reasoning

Features of Things

Figure 2.1: Overview of Topics in the Background Chapter.

1This chapter is partially based on [HSK+16]

23



2 Background for Workflows in the IoT

2.1 Resource Perspective

The resource perspective includes the introduction to the IoT providing the field
of application of this work. This includes the introduction to typical features of
Things as well as the main aspects of the IoT vision. Furthermore, the context and
role modeling are presented as a foundation for the modeling of context-sensitive
capabilities of Things.

2.1.1 Internet of Things

The term Internet of Things semantically means “a world-wide network of inter-
connected objects uniquely addressable, based on standard communication proto-
cols” [INF08]. Therefore, the IoT comprises a large number of heterogeneous de-
vices with communication abilities, i. e., Things. These can be active participants
in business, information and social processes exchanging information sensed about
the environment while reacting autonomously to the physical world [SGFW10].
In the IoT vision, humans will be completely immersed in the world of technol-
ogy [Bor14]. Therefore, Things will be ubiquitous, following the ubiquitous com-
puting paradigm [Wei91], and can provide services by cooperating and interacting.
Things are defined by their basic technical requirements for communicating, sensing
and acting. Miorandi et al. specified Things as smart objects with the following
features [MSDPC12]:

• A physical embodiment and a set of associated physical features.

• A minimal set of communication functionalities, such as the ability to be
discovered and to accept incoming messages and reply to them.

• A unique identifier.

• Association to at least one name and one address. The name is a human-
readable description of the object and can be used for reasoning purposes.
The address is a machine-readable string that can be used to communicate
to the object.

• Some basic computing capabilities. This can range from the ability to match
an incoming message to a given footprint (as in passive RFIDs) to the ability
of performing rather complex computations, including service discovery and
network management tasks.
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2.1 Resource Perspective

• Optional means to sense physical phenomena (e. g., temperature, light, elec-
tromagnetic radiation level) or to trigger actions having an effect on the phys-
ical reality (actuators).

Example domains for the application of IoT technology include smart homes, smart
cities, the manufacturing industry, healthcare, agriculture, the energy sector, ro-
botics and most user-oriented ubiquitous computing scenarios. Figure 2.2 shows
an excerpt of an exemplary IoT reference model that highlights the relevance of
identification through tags and the ability to sense and to act upon a physical en-
tity [BBDL+13]. Here, a physical entity is represented by virtual entity associated
to a IoT service. The service can expose a resource which in turn is composed
of devices. These devices include actuators, tags, and sensors. They can contain
themselve to represent any hierarchical structure. An Actuator can act on a phys-
ical entity which in turn can be monitored by a sensor. The Thing concept is not
represented explicitly but included in the intersection of the concepts physical en-
tity, virtual entity and on-device resource. Capabilities of Things are represented
directly via the hosted devices and exposed to applications by IoT services.

ServiceService Virtual EntityVirtual Entity Physical EntityPhysical Entity

DeviceDevice

ActuatorActuator TagTag SensorSensor

ResourceResource

Network 

Resource

Network 

Resource

On-Device

Resource

On-Device

Resource

exposesexposes

is associated

with

is associated

with

hostshosts

representsrepresents

is attached tois attached to

contains

readsreads

monitorsmonitors

acts onacts on

identifiesidentifies

contains

is associated withis associated with

Figure 2.2: Example IoT reference model [BBDL+13].
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Figure 2.3: Aspects of the IoT notion [AIM10].

Figure 2.3 shows the concept of IoT as an intersection of three perspectives:
Things-oriented, Internet-oriented and Semantic-oriented [AIM10].
The Things perspective covers the technical aspects of identifiyng, sensing and

acting. Prominent technologies for augmenting objects with an Unique Identifier
(UID) are Radio Frequency Identification (RFID) and Near Field Communication
(NFC). A RFID system consists of at least one active or passive transponder, called
tag, and one tag reader. While active tags support longer ranges for data trans-
mission, passive tags have a much higher life span and use the power from the
electromagnetic field of the reader. The tag stores the UID and other metadata for
wireless data transfer and can be attached to various kinds of objects, including
workpieces in manufacturing and products in an entrepot. NFC builds upon RFID
technology but allows for bidirectional data transfer between two NFC enabled de-
vices. Beyond the identification of real world objects, Things are often able to sense
and/or manipulate their environment. Furthermore, technologies from the Wireless
Sensor Network (WSN) domain are used to facilitate the mobility of such devices.
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2.1 Resource Perspective

Regarding the communication abilities of Things, the Internet perspective of the
IoT provides several useful standards and protocols like the Internet Protocol for
Smart Objects (IPSO) [DV08] or the Internet 0 to route IP over any given physical
transmission medium [KG04]. There exists a multitude of IoT related protocols
for most Open Systems Interconnection model (OSI model) layers, e. g., Internet
Protocol Version 6 (IPv6) [Dee98] as an internet layer with 2128 IP addresses to
support the predicted increase of connected devices, and IPv6 over Low power
Wireless Personal Area Network (6LoWPAN) to enable wireless data transmission
with minimal power consumption [Mul07].
The third perspective on the IoT includes Semantic Web technologies to allow

for the interpretation of and reasoning about the gathered data as well as the
triggering of IoT-mediated actions in the real world. One of the benefits of modeling
Things with Semantic Web technologies is the gained interoperability of highly
heterogeneous devices. Our approach also includes these technologies for modeling
Things in relation to their real world context with the help of roles. The foundations
of these concepts are introduced in the following.

2.1.2 Context and Role Modeling

In 2001, Dey provided the following context definition closely related to ubiquitous
systems: “Context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications
themselves.” [Dey01]. As IoT components exist in, and interact with the physical
world, they inherently have associated context parameters, e. g., spatial context.
In addition, Things with sensing capabilities can act as sensors for physical context
phenomena. Actuator capabilities can even trigger a change in the physical context.
Regarding the workflow resource perspective, Things have to be treated with special
consideration for their contextual parameters and capabilities. These have to be
modeled explicitly such that a WfMS can use the available context information to
find the fitting IoT resources for a specific activity. Otherwise, a workflow execution
may cause unwanted side effects. Thus, a workflow execution within the IoT domain
can be categorised as context-aware computing, following the definition: “A system
is context-aware if it uses context to provide relevant information and/or services
to the user, where relevancy depends on the users task.” [Dey01]. Regarding the
approaches for IoT resources modeling within this work, we will introduce both to
the semantic and role-based context modeling.
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2 Background for Workflows in the IoT

Semantic Context Modeling

Within this work, we use the term semantic context model for describing a context
model based on semantic web technology, i. e., ontology 2. The term ontology stems
from the field of philosophy and is an instrument of description, where the “targets
for description are the things in themselves in any domain, and the relations existing
among them.” [Zúñ01]. However, it is “neither reducible to, nor identical with lan-
guage or its formalism.” [Zúñ01]. In contrast, in the domain of information systems,
an ontology is regarded as “a document or file that formally defines the relations
among terms” [BLHL+01]. It represents a basic component of the Semantic Web
and is characterised by a taxonomy and a set on inference rules [BLHL+01]. Like a
Unified Modeling Language (UML)3 model [RJB04], the taxonomy of an ontology
defines “classes of objects and relations among them.” [BLHL+01]. Inference rules
can express knowledge about relations and objects of the taxonomy. By applying
an inference rule to an ontology, hidden or implicit knowledge can be made explicit
in the form of new instances of objects and relations. In the following, we present
an example ontology for Things to illustrate the OWL concepts and their possibili-
ties for the representation of and reasoning about contextual knowledge. Figure 2.4
shows a graphical representation of a semantic context model for Things.

Figure 2.4: Example semantic context model for Things.

2Within this work, we use the term ontology synonymously to models specified with the Web
Ontology Langauge (OWL) 2.0.

3“UML is an industry standard modeling language with a rich graphical notation, and compre-
hensive set of diagrams and elements. It is used to specify, visualize, modify, construct and doc-
ument the artifacts of an object-oriented software-intensive system under development.” [Lee12]
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2.1 Resource Perspective

Here, only the terminological component (TBox) of the model is shown. It in-
cludes classes and relations, much like the M1 level of the Meta-Object Facility 4.
Relations include object, data and annotation properties. The instance level (M0)
is represented by the assertion component (ABox). Ontology instances are called
Individual. The informal description of the model is as follows: A Thing has some
sensor and/or some actuator. The sensor can sense a physical property of a real-
world object. The actuator may manipulate a physical property or a real-world
object. An object can manipulate another object or a physical property and may
contain other objects. Groups of objects can belong to different physical contexts 5.
Furthermore, relations in an ontology can be specified using formal semantic charac-
teristics: Reflexivity, transitivity, symmetry, functionality, equivaleny, disjointness,
inversity.

<Ontology>
...

<SubObjectPropertyOf>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#

manipulate”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<TransitiveObjectProperty>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#

manipulate”/>
</TransitiveObjectProperty>

</Ontology>

Listing 2.1: Example transitive object property axiom

Listing 2.1 shows an excerpt of the example ontology, defining the transitive
object property manipulate. Regarding the example ontology from Figure 2.4, the
transitivity of the manipulate relation is useful for the expression of the following
behavior: An Actuator can manipulate a PhysicalProperty via a PhysicalObject.
The following Table 2.1 includes the descriptions of OWL object properties 67:

4http://www.omg.org/mof/
5For the full ontology specification, please refer to the appendix Section 10.2.
6Syntax is following the Turtle - Terse RDF Triple Language Schema, available online at:
https://www.w3.org/TR/turtle/

7OWL2 Syntax online available at: https://www.w3.org/TR/owl2-syntax/
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2 Background for Workflows in the IoT

Table 2.1: Overview of OWL 2.0 object properties.

Object Property OWL Syntax Description

Reflexivity owl:ReflexiveProperty
antonym:
owl:IrreflexiveProperty

A reflexive object property
P states that each individual
is connected by P to itself.
Therfore, (x,x) is an instance
of P.

Transitivity owl:TransitiveProperty If property P is a transtitive
property, then if (x,y) is an
instance of P and (y,z) is an
instance of P, (x,z) is also an
instance of P.

Symmetry owl:SymmetricProperty
antonym:
owl:AsymmetricProperty

If property P is a symmetric
property, then if (x,y) is an
instance of P, (y,x) is also an
instance of P.

Functionality owl:FunctionalProperty
antonym:
owl:InverseFunctionalProperty

If property P is a functional
property, then if x,y are dis-
tinct individuals, there can
be at most one instance (x,y)
of P. If (x,y) and (x,z) are in-
stances of P, then y=z.

Equivalency owl:EquivalentProperty If object properties P1 and
P2 are equivalent, then
P1 => P2 and P2 => P1
hold.

Disjointness owl:DisjointProperty If object properties P1 and
P2 are disjoint, then if (x,y)
is an inctance of P1 and (x,y)
is an instance of P2, x=y.
Therefore, no individual x
can be connected to an indi-
vidual y by both P1 and P2.

Inversity owl:inverseOf If object property P1 is the
inverse of object property P2,
then if (x,y) is an instance of
P1, (y,x) is an instance of P2.
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2.1 Resource Perspective

To illustrate the benefits of reasoning over a semantic context model, we provide the
following simple example in the smart home domain, using the example ontology in
Figure 2.4. The scenario includes a smart curtain, with an actuator for closing and
opening, and a sensor for detecting ambient light. Therefore, we used the example
ontology to create the following individuals, as shown in Figure 2.5.

Figure 2.5: Individuals of example semantic context model for Things.

Furthermore, we modeled the following relations between these individuals: The
SmartHome has a Room which contains a Curtain and has an Illumination. The
Curtain can manipulate the Illumination. The SmartCurtain has an AmbientLight-
Sensor for sensing the Illumination and a CurtainActuator for manipulating the
Curtain. As we modeled the manipulation relation as transitive, a reasoner should
deduce that the CurtainActuator manipulates the Illumination. As mentioned be-
fore, the main benefit of using a semantic context model is the possibility to use
reasoning and inference rules.
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2 Background for Workflows in the IoT

<ObjectPropertyAssertion>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#

manipulate”/>
<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#

CurtainActuator”/>
<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#

Curtain”/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
manipulate”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Curtain”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Illumination”/>

</ObjectPropertyAssertion>

Listing 2.2: Example transitive object property assertion

Listing 2.2 shows the explicitly modeled axioms for relating the CurtainActuator
with the Curtain and the Curtain with the Illumination via the manipulate re-
lation. After running the HermiT 8 reasoner, an axiom was created for relating
the CurtainActuator with the Illumination via the manipulate relation, as shown
in Listing 2.3. Therefore, a smart home application which integrates this ontology
as a knowledge base can use the inferred axiom and find an actuator (service) to
manipulate the illumination of the room.

<ObjectPropertyAssertion>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#

manipulate”/>
<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#

CurtainActuator”/>
<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#

Illumination”/>
</ObjectPropertyAssertion>

Listing 2.3: Example inferred object property assertion

8HermiT v1.3.8.3 - online available at http://www.hermit-reasoner.com/
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Besides the interpretation of object property assertions, a rule engine can exe-
cute DL-safe 9 rules on top of an ontology. These SWRL rules express additional
knowledge on top of the taxonomy and may create new axioms. We illustrate the
application of SWRL rules in the following example: At first, we add two new ob-
ject property assertions to the ontology in Figure 2.4. These are the transitive affect
and its inverse relation monitor. They express that an actuator may affect a sensor
by altering a physical property sensed by the sensor. In turn, a sensor can monitor
the effects of an actuator. However, we do not include these axioms statically into
the existing individuals in Figure 2.5, as in a dynamic ubiquitous system, these
relations are subject to constant change. Instead, we define the following DL-safe
SWRL rule:

manipulate(?x, ?z) ∧ sense(?y, ?z) → affect(?x, ?y)

The rule states that, if (x,z) are related by the manipulate relation and (y,z) are
related by the sense relation, then x is affecting y. A reasoner also creates the inverse
monitor relation. After exetung the SWRL rule on the ontology, the desired axioms
are created by the reasoner and are shown in the Listing 2.4. This rule may be
executed arbitrarily at runtime to reflect the actual state of the modeled context.

<ObjectPropertyAssertion>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#

affect”/>
<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#

CurtainActuator”/>
<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#

AmbientLightSensor”/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
monitor”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
AmbientLightSensor”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
CurtainActuator”/>

</ObjectPropertyAssertion>

Listing 2.4: Example inference with SRWL rule.

9Description Logic (DL)-safe rules are a decidable subset of SWRL rules restricted to known
individuals. They are used to contain the decidability of OWL2 DL.
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Besides reasoning, a semantic context model specified with OWL, Resource Descrip-
tion Framework (RDF) 10 or Resource Description Framework Schema (RDFS) 11

supports the powerful query language SPARQL Protocol and RDF Query Lan-
guage (SPARQL). SPARQL queries can be useds to retrieve information about the
Terminological component (TBox) and the Assertion component (ABox). To illus-
trate the application of SPARQL, we specified the following query for retrieving all
(actuator, sensor) tuples, that are related by the inferred affect relation.

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX iot: <http://www.semanticweb.org/role based iot ontology#>
SELECT ?actuator ?sensor
WHERE {?actuator rdf:type iot:Actuator.

?sensor rdf:type iot:Sensor.
?actuator iot:affect ?sensor}

Listing 2.5: Example SPARQL query.

As shown in Listing 2.5, the tuples (actuator, sensor) are selected based on the
existence of the relation iot:affect. As intended, the execution of the SPARQL
query results in the finding of one tuple (CurtainActuator, AmbientLightSensor).
The presented technologies and concepts are employed in this work for modeling
context-sensitive Things in the IoT. By reasoning, inference rules and querying, a
knowledge base designed within the OWL also provides tool support for evaluation.

Role-based Context Modeling

The term Role has ambiguous definitions from a variety of domains. The Cam-
bridge Dictionary defines role as “the position or purpose that someone or some-
thing has in a situation, organization, society, or relationship” [Pre17] in addition
to the definition in the context of acting: “an actor’s part in a film or play” [Pre17].
Furthermore, the Merriam-Webster dictionary defines role as “a socially expected
behavior pattern usually determined by an individual’s status in a particular soci-
ety” [MW17].
All of these definitions include aspects, which define a role as a mostly temporary,

context-dependent behaviour of someone or something. In the field of computer

10RDF supports simple triple based (subject, predicate, object) statements and is based on the
Extensible Markup Language (XML).

11RDFS is a language for specifying groups of RDF statements, e. g., classes.
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2.1 Resource Perspective

science, roles have gained general awareness as an important first class modeling
concept in several domains [Ste00]. One of the first explicit notion of role in com-
puter science was introduced in the field of data modeling by Bachman and Daya
in 1977 [BD77]. They motivated the introduction of roles by stating that files from
file records “typically deal with employees, customers, patients, or students, all of
which are role types” [BD77]. They each represent some aspect of entities of the
real world and therefore should not be represented by entities themselves. Further-
more, Bachman and Daya explain that “the reason for the confusion is understood
when it is realized that neither the roles of the real world nor the entities of the
real world are a subset of the other” [BD77]. This separation has been made ex-
plicit by distinguishing role types and natural types by the notions of rigidity and
foundness [Gua92]. The term rigidity is closely related to the identity of a concept.
A natural type is rigid, i. e., an instance of a natural type exists on its own, not
depending on a relation to any other instances of role or natural types. Further-
more, the instance cannot drop the natural type without loosing its identity [Ste00],
e. g., Bird is a natural type and an instance of this natural type will alway be a bird.
However, if a bird is caged it may play the role of a Pet. This role is depending
on the foundation of the relation between the bird and its owner. Therefore, the
role Pet is founded and lacks rigidity, because it cannot exist on its own without
the bird and the person that plays the role of a pet owner. Figure 2.6 shows the
example as an UML diagram. The canPlay relation is regarded as part of the M1
level of the Meta Object Facility (MOF). It is meant to express, that instances of
the associated natural and role types can be bound by a play relation at runtime.
The play relation is therefore part of the M0 level of the MOF.

Pet

(RoleType)

Pet

(RoleType)

Person

(Natural Type)

Person

(Natural Type)

Bird

(Natural Type)

Bird

(Natural Type)

Pet Owner

(Role Type)

Pet Owner

(Role Type)canPlaycanPlay canPlaycanPlay

Figure 2.6: Example natural types and role types.

Steimann surveyed existing approaches on roles in object-oriented as well as con-
ceptual modeling and identified 15 features as a classification scheme for role-based
modeling [Ste00]. The following Table 2.2 gives an overview of the 15 classifying
features. In the context of this work, they will be used to identify the relevant
features for modeling role-based Things in the IoT.
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Table 2.2: Role modeling features by Steimann, extracted from [Ste00].

Nr. Definition

1 A role comes with its own properties and behaviour.

2 Roles depend on relationships.

3 An object may play different roles simultaneously.

4 An object may play the same role several times, simultaneously.

5 An object may acquire and abandon roles dynamically.

6 The sequence in which roles may be acquired and relinquished can be
subject to restrictions.

7 Objects of unrelated types can play the same role.

8 Roles can play roles.

9 A role can be transferred from one object to another.

10 The state of an object can be role-specific.

11 Features of an object can be role-specific.

12 Roles restrict access.

13 Different roles may share structure and behaviour.

14 An object and its roles share identity.

15 An object and its roles have different identities.

The classification scheme has been extended by Kühn et al. to include 11 more
features which are focused on the relations between roles [KLG+14]. Kühn et al.
introduced the notion of compartments as contextual templates for role collabora-
tion [KLG+14]. Table 2.3 shows the added role modeling features.

Table 2.3: Role modeling features by Kühn et al., extracted from [KLG+14].

Nr. Definition

16 Relationships between roles can be constrained.

17 There may be constraints between relationships.

18 Roles can be grouped and constrained together.

19 Roles depend on compartments.

20 Compartments have properties and behaviors.

21 A role can be part of several compartments.

22 Compartments may play roles like objects.

23 Compartments may play roles which are part of themselves.

24 Compartments can contain other compartments.

25 Different compartments may share structure and behavior.

26 Compartments have their own identity.
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As some of the presented features are contradicting, there exists no role-based
modeling language which supports all 26 features. In addition, Kühn et al. devel-
oped a metamodel family for role-based modeling [KLG+14]. They also provide
a modeling tool for feature selection and metamodel generation of a role-based
modeling language [KBRA16].
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Figure 2.7: Extended role-based IoT reference model, based on [BBDL+13].

In relation to this work, roles can be used to represent contextual capabilities
of Things. For example, a service robot inside a smart home may only operate at
full speed, if there are no residents in direct proximity. A role model can group
subsets of all capabilities of a Thing and define contextual constraints for their
activation. Figure 2.7 shows an extension of the IoT reference model to include
roles, capabilities and context restrictions.

2.2 User Perspective

The user perspective is related to the workflow modeling phase in workflow man-
agement. Here, users are workflow modelers using activites and control as well
as data flow to define a certain logic or behaviour within an IoT application sce-
nario. Some approaches consider workflows as programming languages within the
IoT domain [SSOK13, GEPF11].
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2.2.1 Goal Modeling

Goal modeling is an approach to requirements engineering and widely used in the
requirements analysis phase of a software product [KL04]. Goal models can support
all phases of requirements engineering, i. e., requirements elicitation, requirements
negotiation, requirements specification, and requirements validation, by defining an
easy to understand graph of interconnected goals, representing conflicting as well
as supporting stakeholder requirements. Besides this main application domain,
goal models have been used to model and guide the behaviour of self-adaptive
and context-aware systems [ADG09, MS14b]. In this work, we use goal models
to capture the relations between high-level user goals and low level IoT service
invocations. Therefore, users can specify workflow activity goals which are then
translated into service invocations considering the runtime context.

2.2.2 Tropos Goal Modeling Language

We provide an introduction to the Tropos goal modeling methodology and motivate
its application in the context of IoT-aware process modeling. Tropos is an agent-
oriented software development methodology, based on the concepts of agent, goal,
and their relations [BPG+04, CKM02]. Tropos uses goal graphs to represent inter-
relations between these concepts. A goal graph is defined as a pair ⟨G,R⟩, where
G is a set of nodes representing the goals and R is a set of goal relations [SGM04].
The goal graph is subject to the following two restrictions: (1) each goal has at most
one incoming Boolean relation; (2) every loop contains at least one non-Boolean
relation arc [SGM04]. In [GMS05], Tropos is extended with a formal goal model
to relate functional and non-functional requirements of the system-to-be. The for-
mal goal model developed in [GMNS03, SGM04] enables the performance of two
kinds of analytical reasoning tasks. On the one hand, forward reasoning can check
if all root goals are fulfilled based on a set of fulfilled leaf goals. On the other
hand, backward reasoning can find a set of leaf goals that fulfill all root goals. In
this work, we are mainly interested in backward reasoning as it allows the selec-
tion of leaf goals (i. e., goals referring to IoT device capabilities) based on certain
root goals (i. e., activity goals). In addition, the backward reasoning can be ex-
tended to include non-functional requirements (e. g., privacy, clarity, and accuracy)
from the goal model. These may be provided optionally by the process modeler
for each process activity containing goal descriptions. Backward reasoning can be
reduced to the problem of propositional satisfiability (SAT) [SGM04]. In [GMS05]
the backward reasoning formula Φ is introduced:
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Φ := Φgraph ∧ Φoutval ∧ Φbackward [∧Φoptional]

Φgraph encodes a goal graph, the ground axioms for the invariants and the
propagation rules (i. e., goal relation axioms) defined in [GMS05]. Φoutval defines
the desired final output values and Φbackward encodes the backward reasoning as
introduced in [SGM04]. Φoptional defines an optional formula for constraints on
possible values of the goals. In our work, we apply the presented backward reasoning
formula to find the best fitting leaf goals (i. e., IoT device capabilities) based on
activity goals.

2.3 Workflow Perspective

The workflow perspective introduced the relevant workflow concepts including mod-
eling languages and the concept of IoT-aware workflow management.

2.3.1 Workflow Concepts

Workflows are a key technology for the automation of business processes. A business
process is defined as “a kind of process in the domain of business organisational
structure and policy for the purpose of achieving business objectives” [HH95] by the
Workflow Management Coalition (WfMC). Business processes are composed of a set
of activities, i. e., atomic process steps, which as a whole contribute to achieve the
underlying objective of the process. In the context of this work, we consider user-
oriented processes in the IoT instead of traditional business processes. Therefore,
our focused application domain is a smart environment with ubiquitous access to
IoT enabled devices via IoT services. We utilize and build upon workflow related
technologies from the domain of business processes.
According to the WfMC, a “workflow is concerned with the automation of pro-

cedures where documents, information or tasks are passed between participants
according to a defined set of rules to achieve, or contribute to, an overall business
goal” [HH95]. In a shorter definition, a workflow is “the computerised facilitation
or automation of a business process, in whole or part.” [HH95]. Workflow Manage-
ment Systems (WfMS) enable this automation by enacting, i. e., instantiating, and
executing workflows and managing the required and produced process resources.
Figure 2.8 shows the basic characteristics of a WfMS as specified by the Workflow

Management Coalition (WfMC) [HH95]. A WfMS may support several phases
from process design until enactment and runtime resource allocation as well as user
interaction.
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Figure 2.8: Basic characteristics of a WfMS [HH95].

2.3.2 Workflow Modeling

Before a workflow can be enacted, it has to be specified in form of a workflow
model. This can be achieved with the help of workflow modeling tools. The effort
of specifiying a workflow largely depends on the desired level of automation. A
workflow model is build from atomic modeling elements at design time and rep-
resents an executable implementation of a process. In general, workflows can be
modeled either in an imperative or declarative fashion. The declarative workflow
model is a constraint-based model. Therefore, it restricts the set of possible control
flows and data flows between activities. Just like in declarative programming, the
declarative workflow model defines what is to be computed, rather than how it is
to be computed [FLM+09]. In contrast, an imperative workflow model describes
the allowed or wanted behaviour by defining an explicit control flow and data flow
between workflow activites. Therefore, it is concerned with the logic of interacting
process resources. Even though, the declarative modeling approach meets the re-
quirements of smart environments by allowing ad-hoc adaptations of control flow, it
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Figure 2.9: General components of a workflow model [RTHEvdA04b].

is not widely adopted. Fahland et al. propose, that of “two semantically equivalent
process models, establishing sequential information will be easier on the basis of the
model that is created with the process modeling language that is relatively more
imperative in nature.” [FLM+09]. On the other side, “establishing circumstantial
information will be easier on the basis of a declarative process model than with an
imperative process model.” [FLM+09].

Figure 2.9 illustrates the typical components of an imperative workflow model. In
general, a workflow model is a directed graph, where the nodes are tasks, also called
activities, and the vertices define the control-flow. An instance of a workflow model
is called case. Tasks can be atomic, block or multiple instance tasks. Block tasks
incorporate a subworkflow, enabling hierarchical workflow modeling. A multiple
instance task may generate arbitrary equal task instances at runtime. A generic
workflow metamodel includes logical and control-flow structures, e. g., IF, AND,
OR and WHILE. In combination with the explicit modeling of data flow, a workflow
model can be used as a programming language. In fact, when abstracting from
capacity constraints, any workflow language is turing complete [vdAtH05].

Business Process Model and Notation

The Business Process Model and Notation (BPMN) and its extensions are widely
used to model domain-specific business processes. One of the major benefits that
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the current industry standard BPMN 2.0 provides, is the generation of machine-
readable process models from graphical notations. Nevertheless, BPMN lacks the
ability to natively model types of process data and other semantic information,
e. g., resource capabilities and context factors. Therefore, a dynamic mapping of
process activities to available resources at runtime cannot be deduced directly from
a BPMN process model. Wohed et al. analysed the support for workflow patterns in
BPMN [WvdAD+06]. The results indicate that the scope of BPMN does not include
appropriate modeling notations for process resources in general. As stated above,
knowledge about process resources, e. g., resource capabilities and constraints, is
crucial for allowing the intelligent matching of activities to qualified resources. In
addition, the modeling, enactment and adaptation of workflows in the IoT strongly
depends on process resource semantics. While the data flow and orchestration can
be modeled comprehensively through a BPMN process model, there still exists
a gap between the modeling of capabilities and inherent runtime specification of
process data types. However, type-safety of process data is an essential feature
when supporting runtime adaptation and model evolution [Sch09].

Business Process Execution Language

The Web Services Business Process Execution Language (WS-BPEL) has been
the de facto standard for implementing executable processes until it was super-
seded by BPMN 2.0. In contrast to the notations of BPMN and UML, BPEL
contains strong and complete execution semantics [ACD+03]. Although there exist
approaches, which enable a mapping from BPEL to BPMN [VDAL08], these trans-
formations inherently lose information. Furthermore, an ontological representation
of BPEL processes has been developed, in order to reason about executable process
models [NWVL07]. This approach does not only support the explicit knowledge
representation, which usually gets lost during the transition from design time to
runtime, it also enables the use of this knowledge, e. g., semantically annotated
BPEL activities, for process adaptation. However, WS-BPEL is limited to strictly
web service-based system architectures, which is not necessarily given in an ubiq-
uitous environment or the IoT. Furthermore, process modeling with WS-BPEL is
rather execution centric, e. g., activities are directly tied to resources at design time,
and therefore lacks the desired abstraction level we want to support with respect
to the dynamic adaptations of activities and the dynamic assignment of resources
at runtime. Human resources can be integrated and interact with workflows via
WS-HumanTask [AAD+07] and BPEL4People [KKL+05]. These approaches only
support a limited representation of user capabilities and their interaction context.
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Yet Another Workflow Language

Yet Another Workflow Language (YAWL) was introduced in 2005 as a new work-
flow modeling language based on high-level Petri nets [vdAtH05]. The motivation
for creating a novel workflow language derived from an exhaustive feature compari-
son of existing workflow languages based on identified workflow patterns [vdAtH05,
vDATHKB03]. The YAWL notation was developed to overcome the shortcomings
of existing workflow languages [vdAtH05], e. g., WS-BPEL and BPMN. A first, the
introduced workflow patterns only captured the control-flow perspective of work-
flow modeling. Then, they were extended to the data flow and resource perspec-
tive [RTHEvdA04a, RTHEvdA04b]. YAWL does not only integrate the support
for those workflow patterns, but provides a strong formalisation through its origin
based on high-level Petri nets.

2.3.3 Internet of Things-aware Workflow Management

The aim of IoT-aware workflow management is to allow the representation and
useful integration of IoT components as workflow resources. Then, IoT compo-
nents can become part of an integrated workflow model, allowing for intelligent
and dynamic task-specific connections among them. One of the major challenges
of IoT-aware workflow management is to support the heterogeneity of Things and
to cope with the dynamic nature of ad-hoc ubiquitous systems [MRM13, HSS16].
In the following, we will shortly introduce the relevant concepts for workflow ada-
pation in the IoT.

Workflow Adaptation: The IoT and ubiquitous systems introduce additional
challenges for process management regarding the dynamic and heterogeneous na-
ture of these systems. Usually, not all factors, properties and components of the
system are known at design time. In order to customize and evolve the workflows
at runtime, capabilities for process evolution, runtime modeling and end-user devel-
opment have to be provided. The dynamic nature of the IoT and their components
requires flexible processes capable of being adapted at runtime considering con-
text factors and other requirements. Current formal process modeling methods,
e. g., high-level Petri nets and semantic modeling approaches, allow static verifica-
tion of and reasoning about process models at design time. However, the runtime
adaptation of processes introduces new sources of uncertainty, which static verifica-
tion methods cannot address. The integration of user interactions into processes at
design time and runtime even increases the complexity of these issues. Several ap-
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proaches and classifications of process model adaptations have been proposed and
investigated in recent years. A comprehensive overview is provided in [SMR+08].
The various concepts for process flexibility have been classified into four classes
representing different problem areas. Those classes have been identified as flexi-
bility by design, deviation, underspecification and change. The flexibility by design
perspective comprises approaches for handling modifications at design-time and
is inherently provided by process modeling environments. Process flexibility by
deviaton includes short-term or ad-hoc control-flow adaptations at runtime, while
long term process model evolution is covered by the flexibility class change. Fur-
thermore, the underspecification of workflow models can enable the late binding of
process resources and activities. Within this work, we limit the scope for workflow
flexibility to the class of underspecification.

2.4 Summary

In this chapter, we introduced the relevant concepts and definitions on which the
contributions of this work are built upon. We divided these concepts in three per-
spective covering the resource, user, and workflow perspective. From the resource
perspective, we will use the IoT reference model [BBDL+13] as a foundation for
the creation of our ontology for role-based Things. In this, we also employ the
introduced concepts of semantic and role-based context modeling. In the user per-
spective, we will employ the introduced Tropos goal modeling language to specfiy
high-level user goals which in turn can be used for activities in a workflow model.
The workflow perspective also introduced the notion of IoT-aware workflow man-
agement.
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In this chapter, we analyse the requirements for integrating Things as workflow
resources. The goal of the analysis is to illustrate the differences between existing
workflow management approaches and their application in the IoT. We focus our
analysis on giving an overview of the challenges and requirements extracted from
related work for the integration of Things as workflow resources. Also, we develop
a quantified classification scheme for the fulfillment of these criteria and use it to
compare existing approaches. Based on the results of the requirements analysis,
we limit the scope of our contribution to identified gaps in research. Finally, we
describe our approach for contributing towards IoT-aware workflow management
and the relation of this approach to the identified gaps in research. Based on the
application scenario presented in Section 1.2, the following basic requirements for
integrating Things as workflow resources have been identified:

• Knowledge of IoT device capabilities and their context has to be modeled
explicitly.

• Workflow resources have to be allocated at runtime using a late binding
mechanism depending on the requirements of the activity and runtime con-
text.

• The requirements of activities have to be modeled explicitly.

The explicit modeling of activity requirements and IoT device capabilities as well as
their context build the foundation for the late binding of IoT workflow resources at
runtime. The late binding mechanism can take advantage of the modeled context
and activity constraints to find a fitting workflow resource. To provide a more com-
prehensive list of requirements, we performed the following requirements analysis.

3.1 Requirements

In this section, we introduce requirements for integrating Things in the IoT as
workflow resources. Therefore, we review literature from both the perspective of
resource management and the perspective of workflow management in the IoT.
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Figure 3.1: Workflow for resource management in the IoT [DPB17].

3.1.1 IoT Resource Perspective

Resource management in the IoT covers managing an ecosystem of “heterogeneous
interconnected devices, whose data and services (virtual and physical resources)
are used by several different applications that access such pool of resources via
network” [DPB17]. In the context of resource management, a resource is any object
which can be allocated within a system [TW87].
Figure 3.1 shows the typical workflow for resource management in the IoT and

involves the following phases: resource modeling, resource discovery, resource esti-
mation, resource allocation and resource monitoring [DPB17]. Resource modeling
implies the creation of a domain specific model of IoT resources. This can be based
on any modeling language, e. g., object-oriented or semantic, which provides the
necessary degree of abstraction, granularity and formalism [DPB17]. While re-
source modeling is completed at design time, the subsequent resource discovery is
executed at runtime. Resource discovery is the process of searching and discovering
available resources based on some resource requirements or restrictions. Resource
estimation is a way of assuring the QoS for an application by estimating the re-
quired resources based on some calculation [DPB17, KRG+15, MS14a]. Resource
allocation is the activity of satisfying application requirements by binding resources
as data source or data processing system component for a specific task. Resource
monitoring includes the environmental variations and context changes within al-
located resources. It is necessary to adapt and re-allocate resources which have
become unavailable or obsolete with respect to the requirements for allocation. Re-
source monitoring also uses Quality of Context (QoC) parameters for detecting the
need for resource adaptation.
One of the biggest challenges for resource management is the possible large

scale of the IoT [IBGB16]. Applications in the IoT need to scale the number of
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resources involved to avoid the explosion of resources, exchanged data and oper-
ations [GBMP13]. This impacts both the modeling and the discovery phase of
resource management.
The modeling effort can quickly rise to unfeasible levels when the heterogeneity

of devices is considered. The challenge of heterogeneity also encompasses technolo-
gies, services and environments [Bor14]. Service discovery is also affected by a
large-scale IoT scenario both regarding performance and architecture.
Existing service discovery techniques from the distributed systems domain are

not directly applicable, as a service abstraction does not cover the context-aware
nature of Things. Besides, the dynamics in the availability of Things and their in-
terconnections have to be considered within the discovering and monitoring phases.
While discovering resources, it has to be ensured that the states of the physical
world and the virtual world are synchronized. Otherwise, a discovered resource
may not be allocated successfully. This ongoing synchronization process is part of
the monitoring phase.
Furthermore, resources need to be uniquely identifiable within a flexible iden-

tification scheme [PP12]. Flexible identification is concerned with identifying,
naming and addressing IoT devices and their provided resources. Even though the
IPv6 supports a very large address space, it is designed to identify devices, not their
encapsulated resources [PP12]. Therefore, a resource management system needs to
provide an extended identification scheme. Furthermore, applications and users
which employ a resource management system need means to specify quantifying
and qualifying queries for resource discovery.
The query support should allow for exact matches and range queries [PP12].

While traditional Web services are virtual entities providing computational re-
sources, an IoT resource is context-aware as it exists in the real world [WJ12].
An IoT service extends the physical part (hardware) of a Thing with a virtual part
(software) to provide connectivity capabilities. An IoT service can therefore be
categorized as a Cyber-physical system.
In addition, Quality of Context has to be considered, as inconsistent and out-

dated context information is likely to occur inside context models for real time [BG14].
Like the context-awareness requirement, QoC has an impact on the modeling, dis-
covery and monitoring phase of resource management. The modeling and discovery
of context-aware resources are enabled by including context parameters in the re-
source model and using these parameters for discovery. The monitoring phase
continuously checks these context parameters for state changes.
Closely related to the support for context-awareness of Things is the mobility

of devices. As the location of a device can be subject to constant change, the
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provision, quality and availability of resources may vary significantly [HSS16]. The
support forQuality of Service parameters related to the estimation and allocation
phases of resource management [KRG+15]. These QoS parameters are used to find
the best fitting resource within all discovered resources. Furthermore, the service
level agreements have to be continuously monitored for allocated resources.
The requirement to process requests and analytics in real-time is mandatory

for several application domains in healthcare and factory automation. Often, not
only single data events but data stream processing is required to support on-
line analytics tasks in the IoT. The support for real-time processing has an impact
on all runtime phases of resource management. Closely related to the real-time
and QoS requirement is the support for application priorities. In a highly dis-
tributed system, a failure of individual system components is likely and should
not compromise the overall system function and performance [MS14a]. Therefore,
the resource allocation and monitoring phases need to support some kind of fault
tolerance [DPB17].

Load balancing is another requirement within the estimation phase of resource
management and rooted in the distributed nature of the IoT. Additionally, re-
source management requires cost minimization strategies, e. g., regarding the
energy consumption, as well as a secure environment, including robustness to
communication attacks, privacy of data sources and sinks as well as data and device
integrity.
Table 3.1 gives an overview of the introduced requirements for resource manage-

ment in the IoT and highlights the relation of the requirements to the phases of
resource management.
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Table 3.1: Requirements for resource management in the IoT.

Requirement
Relation to Resource Management

Sources
Modeling Discovery Estimation Allocation Monitoring

Large scale X X [IBGB16]
[Bor14]
[GBMP13]
[MSDPC12]

Dynamics X X [IBGB16]
[Bor14]

Flexible ID X X [PP12]
Query support X [PP12]
Context-aware X X X [PP12] [WJ12]

[PZCG14]
[Bor14]
[MSDPC12]

Quality of Context X X X [BG14]
Quality of Service X X [KRG+15]

[MS14a]
[Bor14]
[GBMP13]

Heterogeneity X [DPB17]
[BS11] [Bor14]
[GBMP13]
[MSDPC12]

Real-time X X X X [DPB17]
Data streams X X [DPB17]

[AKF+14]
Application priority X X X [DPB17]
Mobility of devices X X X [DPB17]

[BS11] [Bor14]
[MSDPC12]

Fault tolerance X X [DPB17]
[MS14a]

Load balance X [DPB17]
Cost minimization X X X X X [DPB17]

[Bor14]
[GBMP13]
[MSDPC12]

Secure environment X X X [BS11]
[GBMP13]
[MSDPC12]
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Figure 3.2: Workflow and resource management in the IoT.

3.1.2 Workflow Resource Perspective

From a workflow management perspective, IoT resources can be used as workflow
resources to gather data about the physical context or to trigger actions in the real
world [HSS16]. In this case, all the requirements defined in Table 3.1 also have
to be met by a WfMS or a middleware layer between the WfMS and the actual
IoT resources. However, there exist some additional requirements for the workflow
perspective. In the following, we will introduce these requirements to complement
the resource management perspective. Figure 3.2 shows the relation between work-
flow management (white activities) and resource management (grey activities) in
the IoT [DPB17, VDATHW03]. In fact, all activities besides the modeling of work-
flows and resources are considered as responsibilities of a WfMS [VDAVH04]. In the
following, we present the requirements for integrating Things as workflow resources.
From a workflow modeling perspective, it is necessary to provide native modeling
support for integrating Things as workflow resources [MRH15]. In many sce-
narios, encapsulating IoT devices with services for their subsequent integration as
workflow resources is infeasible due to the missing consideration of the real world
context. This missing context-information about the IoT device at the WfMS
level can lead to unwanted system behaviour. The modeling perspective therefore
needs to support a fitting level of abstracting the capabilities and service interfaces
of Things. In addition, flexibility support for resource allocation is required,
e. g., through late binding mechanisms for specifying context and resource-related
constraints [BS11]. Workflows in ubiquitous systems will require the operation of
highly dynamic and ad-hoc relationships. If resources are found at runtime, there
has to exist a resolution strategy for multiple fitting resources [ST05]. When
IoT resources are no longer responsive or fitting for executing a workflow activity,
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a fault tolerance mechanism is required, e. g., by re-discovering or re-allocation
of resources [SHA17]. Furthermore, if unwanted actions have been triggered in the
real world, Cyber-physical Consistency checks and according rollback strategies
need to be considered [SHHA16]. Cyber-physical Consistency (CpC) is defined as
a synchronous state between the real world context and the virtual representation
of it. With respect to the process modelers, transparency of IoT resource and
workflow interaction is required [CSB16]. Meyer et al. also see the distributed
execution and the entailed distributed data management as a requirement for
executing workflows in the IoT [MSMP11].

Table 3.2: Requirements for workflow management in the IoT.

Requirement
Relation to Workflow Management

Sources
Modeling Configuration Execution Adaptation

Modeling support X [MRH15]
[CSB16]
[MSMP11]

Flexibility support X X X [BS11]
[CSB16]
[MSMP11]

Resolution strategy X [ST05]

Fault tolerance X [SHA17]
[MSMP11]

Cyber-phys. Consistency X X [SHHA16]

Transparency X [CSB16]

Distributed execution X X [MSMP11]

Table 3.2 gives an overview of requirements from the literature on workflow man-
agement in the IoT and their relation to the phases of workflow management.

3.1.3 Relation to Research Questions

To guide our research and to limit the scope of this work, we will map the afore-
mentioned requirements to the following research questions, extracted from Sec-
tion 1.3.1:

• RQ1 What are the differences between workflow resources in the cyber and
the physical world from the perspective of a WfMS?
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• RQ2 How to model context-sensitive capabilities of IoT workflow resources?

• RQ3 How can a WfMS cope with the uncertainty of IoT resource availability
during workflow execution?

• RQ4 How to minimize failures during workflow execution caused by unavail-
able resources?

• RQ5 How to allow for flexible as well as correct workflow execution in the
IoT and what are the tradeoffs?

Table 3.3: Requirements and their relation to the research questions.

Requirement
Relation to Research Questions

RQ1 RQ2 RQ3 RQ4 RQ5

R
e
so

u
rc

e
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a
n
a
g
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n
t

Large scale

Dynamics X X X X

Flexible ID X

Query support X X X

Context-aware X X

Quality of Context X X X

Quality of Service X X

Heterogeneity X X

Real-time X

Data streams X

Application priority

Mobility of devices X X X X X

Fault tolerance X X X

Load balance

Cost minimization

Secure environment

W
o
rk

fl
o
w

M
a
n
a
g
e
m
e
n
t

Modeling support X X

Flexibility support X X

Resolution strategy X X

Fault tolerance X X X

Cyber-phys. Consistency X X X X

Transparency X X

Distributed execution
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Table 3.3 shows the existing relations between the requirements for workflow and
resource management in the IoT and the research questions in the context of this
work. The large scale of the IoT in itself has no direct relation to any of the
research questions. In addition, the support for application priorities, load
balancing, cost minimization, secure environment and the distributed ex-
ecution have no direct impact on this work. However, we note that especially the
cost minimization, e. g., in terms of energy efficiency, and the security concerns for
highly distributed, interconnected and potentially privacy invading IoT technology
are key challenges for enabling a useful employment of Things in many application
scenarios. As these topics are subject to research in their own fields, they are not
considered in the following. The mobility of devices is highly relevant, but also
covered by the requirements context-aware and fault tolerance. Therefore, we
will not investigate the mobility of devices as a separate requirement. Further-
more, we shift the responsibility of fault tolerance in resource management to
the workflow management. In the context of this work, a WfMS has to deal with
runtime defects and connection losses of Things. The need for a flexible iden-
tification scheme has to be provided by the network layer of the OSI model. In
this work, we presume that Things are uniquely addressable within the network
layer and preserve their unique ID after connection losses. Therefore, we do not
investigate the requirement of a flexible identification scheme any further. Even
though the topic of CpC is of high relevance to this work, it is subject to related
research by Seiger et al. [SHA17, SHHA16, SHS16, SNS14]. The remaining require-
ments are used as a quantifiable classification scheme for evaluating related work
both from the field of workflow and resource management towards their support
of IoT-related requirements. Furthermore, the classification scheme is used in the
evaluation chapter to compare the results of this work to related research.

3.2 State of the Art Analysis

The main benefit of using Business Process Management (BPM) technology for
modeling IoT applications is the seamless integration of IoT ecosystems with tra-
ditional information systems [DPB17]. Even though traditional workflow modeling
languages, e. g., BPMN, BPEL and YAWL, and management systems are not tai-
lored to IoT resources, there are approaches that extend these technologies towards
the support of IoT ecosystems. In the following, we will introduce fulfillment criteria
for the subsequent comparison of related work.
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3.2.1 Fulfillment Criteria

To provide a comparable and quantified scheme for classifying existing approaches
regarding their level of fulfillment of the requirements, we introduce the following
criteria:

Table 3.4: Fulfillment criteria for the requirements.

Requirement
Criteria for Level of Fulfillment

Low (*) Medium (**) High (***)

R
e
so

u
rc

e
M

a
n
a
g
e
m
e
n
t

Dynamics Syntactic resource dis-

covery

Model-based resource

discovery

Semantic resource dis-

covery

Query support Exact match queries Range queries Semantic queries

Context-aware Location-based context

model

Context-sensitive capa-

bilities

Context-sensitive rela-

tions between Things

Quality of Context Context parameters Update mechanism Real-time consistency

Quality of Service Model support QoS-aware resource dis-

covery

Continuous QoS moni-

toring

Heterogeneity Model-based input and

output data

Model-based Things Semantic Things

Real-time Possibility for real-time

processing

Real-time processing

(use case specific)

Guaranteed real-time

processing (contracts)

Data streams Possibility for data

stream processing

Event stream processing Real-time data stream

processing

W
o
rk
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M
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a
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e
n
t

Modeling support IoT-sensors IoT-actuators Context-aware Things

with complex capabili-

ties

Flexibility support Late binding Context and resource

constraints

Continuous monitoring

and re-allocation

Resolution strategy Includes context param-

eters

Includes QoC criteria Includes QoS criteria

Fault tolerance Re-allocation Virtual consistency Cyber-physical consis-

tency

Transparency Modeling resource re-

quirements for activity

Modeling resource con-

straints for activity

Modeling intention of

activity
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Table 3.4 gives an overview of the fulfillment criteria. These have been derived
from clustering existing approaches. The criteria levels are additive, such that the
fulfillment level high entails the fulfillment of level middle and low.
To support the dynamics of the IoT, a WfMS can use resource discovery tech-

niques. These are categorized as syntactic, model-based, or semantic. The syntactic
resource discovery includes names and tags as query parameter. In addition, model-
based resource discovery can use typed resources, e. g., with inheritance, to cover
more expressive query parameters. Finally, semantic resource discovery employs se-
mantic web technologies to define more expressive queries and find resources based
on a semantic model. The employment of semantic web technologies is an essential
part of the IoT vision [AIM10].
The query support for resource discovery can either facilitate exact match,

range or semantic queries. Exact match queries can include parameters from a re-
source model, while range queries extend these with cardinality. Semantic queries
support a vast range of parameters and may also use indirect or deducted parame-
ters.

The context-awareness of Things can be supported by using location as context
parameter. In addition, a context model can express context-sensitive capabilities
of Things, e. g., availability of a capability is restricted to a certain location. Finally,
a context model can define the context-sensitive relations between Things.
The Quality of Context can be supported by specifying context parameters

in relation to Things. If these relations are continuously monitored, the quality of
context increases as the parameters can be used as runtime information. When this
update mechanism is operating at real-time, the context parameters are consistent
with the real world.
The Quality of Service parameters need modeling support to be used for re-

source discovery. If QoS parameters are continuously monitored, they can be used
for resource discovery and re-allocation.
The Heterogeneity of Things can be overcome by using a black-box approach,

i. e., model input and output data of devices. In addition, Things can be specified
with a model-based approach to define their characteristics and capabilities. Finally,
a semantic model for Things can include the meaning and relation between these
capabilities and context factors.
The potential for real-time processing of sensor data or actuator commands is

given, if all system components and network protocols define finite time bounds.
If these time bounds can be specified in relation to the workload and fall below a
given definition of real-time, a use-case specific real-time processing is possible. If
all possible processing operations consume less time than the given time boundary,
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real-time processing is guaranteed. However, there exists no general definition of
a real-time processing latency. It is highly use-case specific and can range from
milliseconds up to one second [OMSJ06]. In this classification scheme, an approach
will be classified as being able to provide use-case specific real-time processing if
such measurements and definitions are provided.
Data stream processing is necessary for some sensor-centric IoT applications.

In addition, the data streams can be analyzed and transformed into high-level event
streams. Finally, their generation and analyzation can be provided in real-time.
From a workflow management perspective, the modeling support for IoT has

several stages. At a minimum, IoT-sensors have to be included as data sources.
In addition, IoT-actuators can be triggered by a workflow activity enabling the
manipulation of the real-world by the WfMS. At the highest level, Things and
their capabilities for sensing and acting are modeled in relation to their context.
A basic flexibility support is given by employing late binding for workflow

resources. In addition, context and resource constraints can be used for resource
discovery. In combination with their continuous monitoring, a re-discovery and
re-allocation of resources is feasible.
During the discovery phase, a resolution strategy may include context param-

eters to select a single fitting resource. In addition, QoC and QoS criteria may be
included.
Fault tolerance can be ensured by re-allocating unavailable resources dur-

ing runtime. Furthermore, the state of an ongoing activity can be preserved or
rolled back to maintain virtual consistency between a stateful re-discovery and re-
allocation of workflow resources. Finally, CpC represents the highest level of fault
tolerance as the state of the physical world is considered during fault compensation.

The transparency for workflow modelers requires means for modeling IoT re-
source requirements per activity. Then, modelers can specify which resources are
eligible to execute a specific activity. In addition, the modelers can use constraints
for resource parameters. In the highest level of abstraction, workflow modelers
specify the intent of an activity.

3.2.2 IoT-aware workflow management

The following approaches regard Things and IoT services either from a data-
oriented perspective or as workflow resources. We will now review and classify
the state-of-the-art in IoT-aware workflow management according to their level of
support for the aforementioned requirements. In this context, we do not include
approaches which are strictly limited to resource management.
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Modeling

In the following, we review related research which is mainly rooted in the modeling
phase of IoT-aware workflows.
IoT-aware BPMN: Meyer et al. present an approach for integrating IoT de-

vices as business process resources [MSMP11, MRH15, MRM13]. They extend the
BPMN 2.0 specification to include IoT devices as a Lane subclass and native ser-
vices as subtype of the Performer class. While this approach enables the modeling
and invocation of IoT services, resources have to be addressed explicitly or by a
syntactic expression. Meyer et al. provide a model-based approach for specifying
IoT devices, their parameters and service encapsulation. However, they do not ad-
dress the context-sensitive nature of IoT devices and provide no context model, nor
means to specify QoC or QoS parameters. Even though they provide no measure-
ments for round-trip service invocation, a WfMS which executes such an extended
BPMN model might be able to operate near real-time. As the IoT services em-
ploy an event based communication, there is no native support for data streams.
Their main contribution is the modeling support for sensors and actuators from a
workflow management perspective. In terms of flexibility support, they propose a
resource discovery and allocation mechanism using late binding. As the approach
is centered on modeling, they do not discuss the runtime oriented topics of resolu-
tion strategy or fault tolerance. Finally, workflow modelers are enabled to specify
resource requirements for each activity.
WSN4BPMN: Sungur et al. extend BPMN for modeling WSN (Wireless sensor

network) processes to facilitate WSN programming [SSOK13]. Their goal is to
bridge the gap between the technical expertise needed to program sensor networks
and the domain expertise required to design useful processes [SSOK13]. Sensor and
Actuator functions (capabilities) are exposed such that a discovery mechanism can
be employed. However, the discovery is done at design time, such that a process
model can be transformed into executable code. This is then deployed onto the
sensor and actuator nodes. In addition, QoS parameters can be specified in the form
of performance annotations. These define a performance goal, which adapts the
actual implementation of sensor and actuator tasks. The heterogeneity of sensors
and actuators is considered by specifying an output target and a return operation
inside a 6-tuple for each activity. The system performance has the ability to operate
in real time, as the code can be optimized for performance and is distributed among
the WSN nodes. Sungur et al. claim to support several resolution schemes for
finding a best fit WSN node for a specific task. Furthermore, the workflow modeler
can specify resource requirements and constraints for each task.
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uBPMN: Yousfi et al. propose a BPMN extension for modeling ubiquitous
business processes [YBSD16, YdFDS16]. This includes an extension to the MOF
meta-model and the XML schema definition of BPMN. The approach is limited to
sensor-based devices, such as general sensors, smart readers, cameras, microphones
and virtual sensors (collectors). As their main focus is the modeling support, many
of the requirements for IoT-aware workflow management are not considered. How-
ever, they provide solutions for covering the heterogeneity, modeling support and
transparency. The heterogeneity is supported by providing a meta-model for activ-
ity input and output data. The modeling support is limited to sensor types and the
transparency for the workflow modeler is restricted to use specific activity types for
each supported sensor type.
BPMN4CPS: Graja et al. propose an approach for modeling Cyber-physical

Systems (CPS)-aware processes as a BPMN extension [GKGK16]. They focus on
modeling the physical effects and context of CPS-aware processes. The BPMN ex-
tension supports special task types for the modeling of sensor and actuator tasks.
Furthermore, device capabilities can be grouped into roles as role parameters,
and their availability or activation depends on real-world environment parame-
ters. Therefore, the extension allows for the modeling of context-sensitive device
capabilities. Although the runtime perspective is not part of their contribution,
the approach enables a model-based resource discovery using context and resource
constraints at runtime. The resolution of resource discovery is not addressed, but
at least the context-sensitive capabilities can be used to minimize device ambiguity.
The process modeler can use resource constraints as well as requirements to model
a workflow activity.
CM4BPM: Saidini et al. introduce a modeling approach for context-sensitive

BPM [SRN15]. Their aim is to formalize contextual knowledge relevant to the
business process perspective and to allow for the integration into process modeling.
The motivation for integrating a generic context model into process models is to
use the additional contextual information for runtime process adaptation. As the
modeling approach is centered on the context and not the actual devices or Things,
the resource discovery is not natively supported. The context model is based on
OWL and therefore supports querying with the SPARQL. However, as modeling of
process resources is not provided, there is no possibility for query-based resource
discovery. On the resource management perspective, contextual knowledge is only
supported by location. Due to the employment of SWRL rules, the context model
can be updated based on predefined rules. The availability of resources can be
directly integrated in the context model and used in conjunction with the location
to support a flexible late binding mechanism.
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SPU: Appel et al. propose an approach for modeling and execution of event
stream processing in business processes [AKF+14, AFFB13]. They aim at integrat-
ing IoT-sensor data as event streams into business processes with the help of Event
Stream Processing Units (SPUs). These are realized by extending both BPMN and
Event-driven Process Chain (EPC). The SPUs are not designed to provide model-
ing support for Things in the IoT but for providing a data-centric integration of
sensor data streams. Therefore, the heterogeneity is addressed by providing mod-
eling support for input and output data of sensors tasks. The main contribution is
the integration of real-time sensor data streams into standard business processes.

Table 3.5: Analysis of related research in the modeling phase.

Requirement
Approach

IoT-aware

BPMN

WSN4BPMN uBPMN BPMN4CPS CM4BPM SPU
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Dynamics * * - ** n.a. n.a.

Query support - - - - n.a. -

Context-aware - - - ** * -

Quality of Context - - - * ** -

Quality of Service - ** - - - -

Heterogeneity ** * * - - *

Real-time n.a. * n.a. n.a. n.a. **

Data streams - - - - - ***
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Modeling support ** ** * ** - *

Flexibility support * - - ** ** -

Resolution strategy n.a. * - * - -

Fault tolerance n.a. n.a. - n.a. - -

Transparency * ** * ** n.a. -

Table 3.5 gives an overview of related research focused on the modeling phase of
IoT-aware workflows and shows their level of fulfillment regarding the introduced
requirements.
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Workflow Execution

In the following, we review related research which is mainly rooted in the execu-
tion phase of IoT-aware workflows. This includes the discovery and allocation of
workflow resources and the actual data retrieval or invocation of services.
Decoflow: Loke et al. present a concept for service-oriented device ecology

workflows within a home environment [Lok03]. Their approach uses WS-BPEL
processes to model and manage smart devices and their interactions. However,
devices and their capabilities are not represented in a separate model but direct
service invocations. Therefore, the process modeler needs to know these services
and their functionalities at design time. The hetereogeneity of devices is bridged
by the service abstraction and their input and output modeling inside a decoflow
process model. Within services, sensors as well as actuators are supported. One of
the major benefits of the decoflow approach is the modeling of changes for device
states. Therefore, fault tolerance can be supported by fault handlers, referring to
the device states and their transition. If software agents observe the real world
state of devices and perform these state transitions, a cyber-physical consistency
between the real world and the workflow runtime perspective is achieved.
Presto: Giner et al. propose a software architecture for developing mobile work-

flow support in the IoT [GCFP10]. They aim at providing developer support for
workflow development in the IoT. Their approach is centered on the software ar-
chitecture of Presto and does not provide modeling support for Things or service
capabilities. The architecture itself does support context-aware physical service se-
lection within a certain location-based and task related context. These services are
discovered and allocated at runtime by a late binding mechanism.
BPEL4IoT: Glombitza et al. present a programming-in-the-large approach us-

ing BPEL to realize business processes for an IoT [GEPF11]. The BPEL processes
are used to generate custom tailored IoT applications for different target platforms.
The approach is focused on fast development and providing real-time performance
through the application of a lightweight Web Service transport protocol (LTP) for
messages between WSN and servers. As this approach is focused on code gen-
eration, most of the resource management requirements are not considered. The
heterogeneity of devices can be bridged by using input and output data modeling
for activities of the BPEL processes. Furthermore, due to the reduced overhead of
the generated IoT application code, it can operate and react in real time bound-
aries. However, without using QoS contracts on the allocated services, the real time
processing of requests can not be guaranteed.
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MOPAL: Peng et al. provide an approach for assignment and execution of busi-
ness processes from cloud to mobile [PRS+13]. They propose a BPMN extension for
the support of context constraint, e. g., location and hardware resources, to allow
process assignment and execution on mobile devices. Although, their approach is
not targeted at integrating Things as workflow resources, the integration of mobile
devices as context-sensitive workflow resources has similar requirements. Mobile
devices also suffer from unrealiable connection. They exist and move in the real
world, restricting their provided capabilities to situational contexts. Moreover, the
person operating the mobile device defines the available capabilities for executing
a specific task. MOPAL supports constraint based dynamic resource discovery. A
workflow activity includes a service definition and a context-constraint definition
for dynamic runtime activity assignment. Moreover, a fault tolerance mechanism is
supported for re-assigning resources to activities upon execution failure. The fail-
ure state is monitored such that virtual consistency is supported. The resolution
strategy for ambiguous service invocations uses context constraints, which are part
of the workflow model and increase the transparency of adaptive behaviour for the
process modeler.
ROA: Dar et al. propose a resource oriented integration architecture for the

IoT [DTB+15]. Their aim is to provide a business process-based development of
IoT applications by defining the overall control-flow of the application and gener-
ating service desciption files for the late binding of IoT services. The architecture
provides service registry and service discovery based on standard languages like Web
Services Description Language (WSDL) andWeb Application Description Language
(WADL). Therefore a unified integration of Things can be provided through de-
scribing service methods and their input as well as output data. The volatility of
IoT services is adresses by a service replacement facility. The service discovery itself
is not model-based, but a list of predefined services for each service type. As the
approach relies on WSDL, the definition of QoS characteristics and their usage for
QoS-sensitive service discovery is enabled. The ability to use Constrained Applica-
tion Protocol (CoAP) as internet message protocol allows for real-time performance
of ROA-based IoT applications. The business process modeling perspective support
sensors and actuators with service encapsulations. However, the context-sensitive
nature of provided capabilities is not regarded. The service replacement supports a
virtually consistent fault tolerance by transferring stateful service invocations from
a failing to a newly allocated service. Process modelers can model requirements for
IoT services as part of an activity.
makeSense: Casati et al. present an approach for orchestrating the physical

enterprise with wireless sensor networks using business processes [CDD+12]. Their
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aim is to provide a unified programming framwork and code generator for deploying
applications on WSN nodes. MakeSense supports a model-based discovery of WSN
using capability and context requirements. The context is limited to the location
of WSN. QoS parameters of WSN services are considered in terms of performance
requirements. The heterogeneity of sensors and actuators is bridged by using an
application capability model. This specifies coarse-grained descriptions of the WSN
including available sensors actuators and their operations. Real time operation of
a WSN-based application is possible due to the generation and deployment of low
level code. In the process model, sensors and actuators as well as their context
constraints can be modeled in a new activity type.

Table 3.6: Analysis of related research in the execution phase.

Requirement
Approach

Decoflow Presto BPEL4IoT MOPAL ROA makeSense
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Dynamics - - - ** * **

Query support - - - - - -

Context-aware - * - ** - *

Quality of Context - - - - - -

Quality of Service - - - - ** *

Heterogeneity * - * - * **

Real-time n.a. - ** - ** *

Data streams - - - - - -
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Modeling support ** - * - ** **

Flexibility support - * - ** * **

Resolution strategy - n.a. - * - -

Fault tolerance *** - - * ** -

Transparency - - - ** * **

Table 3.6 gives an overview of related research focused on the execution phase of
IoT-aware workflows and shows their level of fulfillment regarding the introduced
requirements.
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Workflow Adaptation

In the following, we review related research which is mainly rooted in the adaptation
phase of IoT-aware workflows. This includes the context-sensitive discovery and re-
allocation of workflow resources.
SAMProc: Schmidt et al. introduce a middleware for self-adaptive mobile

processes in heterogeneous ubiquitous environment [SH07]. Developers can create
self-adaptive mobile process descriptions which is then mapped by the middleware
to Web services. The approach is focused on providing a Model-driven Architec-
ture (MDA) development approach for self-adaptive mobile applications. The code
generation takes into account the runtime context and state of the mobile devices.
Once the application logic is modeled as a BPEL process, the code generation in-
tegrates migratable Web services. These can adapt themselves by changing their
facet according to the runtime target location. The resource discovery for services
is model-based and uses the location context of mobile devices. Due to the service
oriented approach, input and output data can be modeled to bridge device hetero-
geneity. Re-allocation of resource upon a failure is based on context information and
resource constraints. The state of a failing service is conserved and transferred to
provide vitual consistency. Process modelers need to specify resource requirements
for activities.

CANthings: In [DSR15] Davoudpour et al. argue that services of IoT systems
must perceive the environmental context. The authors propose an IoT framework
based on Timed Colored Petri Nets (TCPN), which allows for modeling service com-
positions of IoT systems by transforming Event-Condition-Action (ECA) rules into
TCPN’s [DSR15]. This enables time-sensitive context modeling that explicitly rep-
resents context changes and service compositions. CANthings includes an ontology
for specifying Things and their context to enable both reusability and interoperabil-
ity. The ontology-based definition of Things enables a semantic resource discovery
and potential query support using SPARQL. However, using semantic queries for
resource discovery is out of the scope of their approach. Also, context-aware capa-
bilities of Things can be modeled within the ontology. Therefore, the heterogeneity
is bridged by providing semantic interoperability. Furthermore, real-time process-
ing is possible due to the employment of TCPN for modeling the context changes.
Even though CANthings is not focused on workflow integration of IoT resources,
the adaptation of context information relates to the workflow adaptation phase as
a technical requirement.

Semantic BPEL4WS: Lee et al. propose an approach for supporting dynamic
workflows in a ubiquitous environment based on semantic modeling [LYS07]. The
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semantic model is constructed into DAML-S ontologies and used by the BPEL4WS
engine to support the dynamic discovery and invocation of semantic Web services.
DAML-S descriptions include a service profil defining semantic service capabilities,
an input, output, precondition and effect specification and a service model. Due
to the semantic modeling of service capabilities, the possibility for a SPARQL
query-based resource discovery is given at runtime. However, semantic queries are
not part of the concept. The WSDL extension also allows for the specification of
QoS parameters for services. The device heterogeneity inside ubiquitous systems
is bridged by defining the input and output data of service methods. From the
workflow management perspective, modeling support and late binding of service
encapsulated IoT sensors and actuators is provided. In case of a service failure, a
re-discovery and allocation is triggered. The process modeler can specify service
requirements for activities.
SitOPT: Wieland et al. present a general purpose situation-aware workflow

management system [WSBL15]. SitOPT aims at automatically adapting workflow
behavior according to runtime situations. These are derived from low-level sensor
data. Workflow models can include situational control-flow to design possible run-
time variations. Situation templates are used to support the situation-recognition.
The focus of SitOPT is the runtime control-flow adaptation of workflows. There-
fore, the modeling of context-aware Things, as well as their dynamic integration as
workflow resources is not considered. Nevertheless, the continuous monitoring of
situational context is relevant in the workflow management perspective. Further-
more, fault tolerance is provided by adapting the control-flow and re-allocation of
resources.
SCORPII: Chang et al. propose a middleware for discovering proximity-based

service-oriented industrial internet of things [CSM15]. Their work aims at provid-
ing a middleware for balancing the context-sensitive task allocation between mobile
devices and cloud services. Therefore, a resource efficient mashup of mobile pro-
cesses can be supported. Functionality of Things, here smart objects, is described
in service metadata. As the main focus is the resource efficient task distribution,
Things are not considered as workflow resources. The service metadata allows for a
location-sensitive model-based resource discovery. Furthermore, QoS requirements
can be specified. The heterogeneity of devices is bridged by modeling input and
output data of service methods. Workflow tasks are distributed at runtime accord-
ing to context and resource constraints. The resolution strategy uses the service
metadata and location information to provide a proximity-based resource discovery.
Also, service failures are compensated by re-allocation of workflow resources.
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Table 3.7: Analysis of related research in the adaptation phase.

Requirement
Approach

SAMProc CANthings Semantic

BPEL4WS

SitOPT SCORPII
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Dynamics ** *** *** - **

Query support - n.a. n.a. - -

Context-aware * ** - - *

Quality of Context - ** - - -

Quality of Service - - * - **

Heterogeneity * *** * - *

Real-time - * - - -

Data streams - - - - -
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Modeling support - - ** - -

Flexibility support ** - * *** **

Resolution strategy - - - - *

Fault tolerance ** - * * *

Transparency * - * - -

Table 3.7 gives an overview of related research focused on the adaptation phase of
IoT-aware workflows and shows their level of fulfillment regarding the introduced
requirements.

3.3 Discussion

By reviewing and classifying related work we aim at identifying existing research
gaps in the field of IoT-aware workflow management. It is important to note that
the heterogeneity of related research regarding their overall aim introduces a cer-
tain level of ambiguity to the classification. Therefore, approaches which have been
classified into the same level of fulfillment for a certain criteria still may differ in
several ways. First, the overall aim of the approach may limit its reusability in other
IoT application scenarios, e. g., approaches using code generation can not take ad-
vantage of a WfMS at runtime. Second, some approaches provide the technical
possibility to fulfill a certain requirement, but do not describe or integrate such fea-
tures. For example, the query support for semantic SPARQL queries is generally
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Figure 3.3: Maximum fulfillment of resource criteria.

supported for most ontology-based modeling approaches. However, none of the pre-
sented research applies semantic queries for resource discovery. Figure 3.3 shows the
fulfillment requirements in resource management and the maximum reached level of
fulfillment over all presented approaches. The number in parentheses represents the
number of approaches which reach the maximum level. Based on the requirements
analysis, we identified the following research gaps in IoT resource management:

Real-time: There exists no approach with support for contract-based real-time
support in IoT resource processing. At least, use case specific real-time processing is
supported by ROA, BPEL4IoT and SPU. ROA provides support for the low latency
CoAP messaging protocol and generates target platform code to omit the use of a
resource intensive WfMS [DTB+15]. This allows for real-time resource allocation
and invocation of service methods. The round trip time of retrieving a reading
from a single temperature sensor was 375 ms at average. Even though this latency
is too high for most real-time systems, e. g., robots and autonomous cars, more
relaxed settings in the Ambient Assisted Living (AAL) for detecting critical health
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conditions can be supported. For example, Dağtas et al. propose an approach for
real-time and secure wireless health monitoring, where data packages are built and
transferred at a minimum speed of 280 ms [DPS+08]. In general, the processing
overhead of a WfMS and the standard HTTP-based messaging are not tailored
for supporting real-time processing capabilities. Higher workflow complexity with
an increasing number of control-flow structures only amplify this problem. In the
course of this work, we will not aim at providing real-time data messaging and
processing for IoT-aware workflows. However, we provide a performance evaluation
of the resource discovery and invocation phase within this work.
Quality of Service: Also, QoS features are considered in many existing ap-

proaches to specify quality characteristics of services and use them for subsequent
quality-aware resource discovery, these quality characteristics are mostly statically
assigned. In an IoT-aware workflow scenario, services represent a real world Thing
with associated context features. Therefore, service quality needs to be monitored
and dynamically changed due to runtime context changes. For example, a smart-
phone may provide limited data processing capabilities when an energy-saving mode
is activated. Therefore, we will consider the definition and employment of QoS
characteristics for functionalities of Things. These are not comparable to existing
QoS descriptions from the Service-oriented Architecture (SOA) field, as the quality
characteristics refer to the sensing and manipulation of real world context.
Quality of Context: The QoC requirement is fulfilled by CANthings and

CM4BPM, such that context parameters can be specified and there exists an up-
date mechanism for a near real-time consistent representation of real-world con-
text [DSR15, SRN15]. However, none of the approaches enable a real-time consis-
tent representation of real-world context. In this work, we are also not aiming to fill
this research gap, but we still consider a near real-time consistent context model as
a necessity for allowing a dynamic and context-sensitive resource discovery in the
IoT. In contrast, when omitting an update mechanism for Thing-related context
information, resource discovery may result in the selection of unavailable or even
unintended IoT services.
Context-aware: The requirement for context-aware modeling of Things, their

capabilities and relations is key for enabling a context-sensitive resource discov-
ery. The concepts in CANthings, MOPAL and BPMN4CPS allow for the model-
ing of location-based context and context-sensitive capabilities [DSR15, PRS+13,
GKGK16]. None of the presented approaches consider the modeling of context-
sensitive relations between Things. For example, an actuator for controlling the
heating in a smart home has an effect on temperature sensor readings. Further-
more, if sensors and actuators are part of the same robot platform, this relation can
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Figure 3.4: Maximum fulfillment of workflow criteria.

be represented as part of the context model and used for resource discovery. With
this work, we aim at providing a context modeling approach to capture location-
based context, context-sensitive capabilities as well as relation between Things.

Query support: Query support within the resource discovery phase in IoT-
aware workflow management is not enabled by any of the presented approaches.
Even though resource discovery often uses service descriptions, tags or other char-
acteristics, queries provide a more expressive approach by specifying expressive
context and quality related constraints. Within in this work, we aim at providing
semantic query support for IoT resource discovery.
Figure 3.4 shows the fulfillment requirements in workflow management and the

maximum reached level of fulfillment over all presented approaches. The number in
parentheses represents the number of approaches which reach the maximum level.
There exists no single approach covering all requirements at the shown maximum
levels. Based on the requirements analysis, we identified the following research gaps
in IoT-aware workflow management:
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Modeling support: The modeling support for integrating Things as workflow
resources is limited to IoT sensors and actuators within existing work. When using
a service abstraction for encapuslating more complex capabilities of Things, the
context-awareness of resource discovery is no longer given. The presented service-
based approaches do not use a semantic description for more complex combinations
of sensing and actuating tasks as methods of an IoT service. Especially the context-
dependent availability of Thing capabilities are not considered yet. Therefore, this
work aims at integrating context-aware Things with complex capabilities as work-
flow resources.
Transparency: The transparency for process modelers is supported for model-

ing resource requirements and constraints for each activity. However, in an ubiq-
uitous system with ever growing number of devices and device types their context
representation will also evolve in time. To decouple the evolving context-model
from the definition of requirements and cosntraints inside a workflow model, a pro-
cess modeler can specify the intention of each activity. Then, another model can
provide the mapping between the intentions and the context model such that work-
flow models do not have to be adapted to changing environments. Therefore, this
work aims at providing a concept for specifying the intention of an activity and to
decouple the workflow model from the context model to increase reusability and
separation of concerns.
Resolution strategy: The resolution strategy for resolving the ambiguity within

the resource discovery phase in existing work is based on including context param-
eters and apply a random selection of one of the discovered resources. To further
minimize the resource ambiguity, we aim at adding QoC and QoS constraints into
our resolution strategy. The addition of an update mechanism for enabling a cer-
tain level of QoC results in a nea real-time consistent virtual representation of the
physical context. Therefore, the selection of a fitting resource is more likely to
result in an available resource within a fitting context for executing the workflow
activity. Furthermore, the addition of QoS limits the search space and provides
more accurate results with respect to the desired resource.
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Figure 3.5: Target level of fulfillment within this work.

3.4 Approach

In the following, we present our approach to bridge the identified research gaps by
fulfilling the requirement levels as shown in Figure 3.5. The green area shows the
target level of requirement fulfillment in the field of resource management. The
light blue area shows the target level of requirement fulfillment in the field of work-
flow management. The red line represents the maximum level of fulfillment for
all requirements by all presented approaches. However, there exists no single ap-
proach that reaches all maximum levels in each category. As shown in Figure 3.5,
this work mainly contributes to the fulfillment of the requirements: Query sup-
port, context-awareness, modeling support and resolution strategy. To
reach the targeted levels of fulfillment in the respective requirements, we provide
the following contributions to IoT-aware workflow management in alignment with
the existing phases in the resource and workflow management perspectives.
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Figure 3.6: Approach in alignment with resource and workflow management.

3.4.1 Contribution to IoT-aware workflow management

Figure 3.6 shows the four contributions of this work and their classification into the
phases of IoT-aware resource and workflow management. The contributions are:

• A role-based resource and context ontology

• A workflow metamodel extension

• A goal model for high level user goals

• A middleware for resource discovery and invocation

We partitioned the contributions into three separate perspectives, which are used
to structure the following chapters. The resource perspective includes the role-based
resource and context ontology to allow for the modeling of context-sensitive capabil-
ities of Things and their relations. The workflow perspective includes the workflow
meta-model extension to include query-based resource discovery and invocation as
well as the more flexible high level user goals. The user perspective includes a
goal model to specify such high level user goals in relation to the capabilities of
role-based Things. The middleware is related to the runtime phase of each of the
three perspectives. Table 3.8 provides an overview of the contributions and their
approach to fulfill the requirements.
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Table 3.8: Contributions and their relation to requirements.

Requirement Notation Related Contributions Approach

Dynamics RQ Dyn Middleware, Ontology Semantic resource discovery
based on role-based ontol-
ogy.

Query support RQ QS Middleware, Ontology,
Workflow Meta-model

Specify SPARQL query in
new activity type. Query
includes ontology roles and
constraints. Middleware ex-
ecutes query on knowledge
base and invokes selected
service method.

Context-aware RQ CA Ontology Modeling role-based capa-
bilities of Things.

Quality of Context RQ QoC Ontology, Middleware Specify and execute SWRL
rules to update the context
ontology.

Quality of Service RQ QoS Goal model, Workflow
Meta-model, Middle-
ware

Specify the quality charac-
teristics in relation to high
level user goals. Use goal-
based activity types. Mid-
dleware translates high level
user goals while results are
ordered by fulfillment of
quality characteristics.

Heterogeneity RQ Het Ontology Modeling Things and Roles.

Modeling support RQ MS Workflow Meta-model Specify requirements and
constraints for Things in
special activity types.

Flexibility support RQ FS Ontology, Middleware Trigger re-allocation for
Things after context (role)
change.

Resolution strategy RQ RS Ontology, Goal model,
Middleware

Use QoS from goal model
and QoC from ontology to
select best fit resources

Fault tolerance RQ FT Middleware Provide re-allocation for un-
available resources or con-
text changes.

Transparency RQ Tra Goal model, Workflow
Meta-model

Use high level goals in spe-
cial activity types.
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3.5 Summary

3.5 Summary

In this chapter, we introduced challenges and requirements for integrating Things
as workflow resources both from the resource management and the workflow man-
agement perspective. We reduced these challanges towards the focus of this work,
defined in the research questions. Based on the requirements, we derived a clas-
sification scheme with four levels of fulfillment. Then, we reviewed and classified
related work using the classification scheme. Subsequently, we limited the scope
of our contributions to the identifed research gaps in the related work. Finally,
we presented the four main goals for contributions of this work and the respective
approaches to cover the target requirements.
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4 Concept for Adaptive Workflow
Activities in the IoT

In this chapter 1, we present the concepts for adaptive workflow activities in the IoT.
We divided the contributions of this work into the three perspectives: Resource, User
andWorkflow Perspective. First, we introduce the relevant concepts for the context-
sensitive modeling of Things as workflow resources in the Resource Perspective.
Then, we present the concepts for modeling high-level user goals and linking them
to the resource model as part of the User Perspective. Finally, we present the
concepts for extending a workflow metamodel to support the integration of query-
based and goal-based resource discovery in the IoT. In addition, we introduce the
middleware concept for the Semantic Access Layer to implement the discovery and
invocation of IoT services.

4.1 Resource Perspective

In this section, we provide the foundation for modeling Things in the IoT with the
aim of enabling the integration of Things as workflow resources.

4.1.1 Role-based Things

As we identified the need for modeling context-sensitive capabilities of Things, their
role-based modeling presents a suitable approach. Within a role-based model, the
relation between a Thing and its capabilities can be expressed as context-dependent
in the following way: A Things can have several capabilities, e. g., a smartphone
can be used as a telephone but also for browsing the internet. The capabilities are
grouped into several non-exclusive sets, called Roles. The ability of a Thing to play
several Roles is covered at design time. At runtime, only the Roles that are allowed
to be played in the current context are available to a Thing. In the following, we
will discuss and select the relevant role modeling features by Steinmann and Kühn
presented in Table 2.3 and Table2.3 in Chapter 2.1.2.

1This chapter is partially based on [HSK+16, HSS16]
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Table 4.1: Relevance of role modeling features in this work.

Nr. Definition Relevance

1 A role comes with its own properties and behaviour. X
2 Roles depend on relationships. X
3 An object may play different roles simultaneously. X
4 An object may play the same role several times, simultane-

ously.
X

5 An object may acquire and abandon roles dynamically. X
6 The sequence in which roles may be acquired and relinquished

can be subject to restrictions.
-

7 Objects of unrelated types can play the same role. X
8 Roles can play roles. -

9 A role can be transferred from one object to another. -

10 The state of an object can be role-specific. -

11 Features of an object can be role-specific. -

12 Roles restrict access. X
13 Different roles may share structure and behaviour. X
14 An object and its roles share identity. X
15 An object and its roles have different identities. -

16 Relationships between roles can be constrained. X
17 There may be constraints between relationships. -

18 Roles can be grouped and constrained together. -

19 Roles depend on compartments. X
20 Compartments have properties and behaviors. -

21 A role can be part of several compartments. X
22 Compartments may play roles like objects. -

23 Compartments may play roles which are part of themselves. -

24 Compartments can contain other compartments. X
25 Different compartments may share structure and behavior. -

26 Compartments have their own identity. -

Table 4.1 gives an overview of existing role modeling features [Ste00, KLG+14]
and their relevancy in this work. In the following we will discuss the role modeling
features (RMF) in detail:
RMF 1: Regarding the survey of Steimann, this feature suggests that roles are

represented as a first-class modeling concept (type) [Ste00]. In this work, roles
are considered as types to enable the dynamic relationship between Things and
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4.1 Resource Perspective

their roles as well as the relationship between roles and capabilities. This feature
is key for allowing the fulfillment of the requirement RQ CA for context-awareness
as shown in Table 3.8.
RMF 2: In this work, a role is only meaningful and can be utilized for resource

discovery if there exists a relationship to a Thing. Therefore, we choose to model
roles as depending on relationships. This feature contributes towards the fulfillment
of RQ Dyn and RQ FS in Table 3.8.

RMF 3: Steimann identified this feature as one of the most broadly accepted
properties of role modeling concepts [Ste00]. We also need to express that Things
can play different roles simultaneously to cope with the concurrent access to IoT
services within various contexts and workflows. For example, a smartphone can be
used as an interaction device while offering a mobile hotspot. As workflows in IoT
scenarios are likely to be executed concurrently, this feature can facilitate a high
degree of capacity utilization.
RMF 4: The possibility for Things to play the same role i. e., to be related

to several instances of the same role type by the play relation, is necessary to
provide concurrent access to sensor data. For example, a temperature sensor can
provide sensor data within concurrent workflows. However, in the case of actuating
capabilities, we restrict the instantiation of roles to one at a time. Steimann argues
that “the main reason to distinguish multiple occurrences in the same role is that
each occurrence of the object in a role is associated with a different state” [Ste00].
In the case of Things in the real world, the state of an object is strictly singular.
Therefore, if a role includes actuating capabilities, a Thing can only have one play
relation to one instance of the role type.
RMF 5: In our approach, we use role instances to represent the runtime state

of the interaction between a WfMS and the Things in the real world. That is,
we instantiate roles and relate them to a Thing via the play relation to either
retrieve sensor data or send commands to an encapsulated actuator in the context
of one workflow execution. After the successful execution of a workflow, all workflow
resources, i. e., traditional workflow resources and Things, are released. This results
in the abandonment of related role instances. Therefore, a dynamic acquirement
and abandonment of roles are required. This feature is key for the fulfillment of
the requirement RQ Dyn in Table 3.8.

RMF 6: Within our approach in the context of role-based Things, a sequential
restriction for role acquisition and abandonment is not required. Roles are aban-
doned after each workflow execution, such that a preservation and restriction of
related states is not useful.
RMF 7: Unrelated Things can provide the same capabilities, e. g., opening the
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4 Concept for Adaptive Workflow Activities in the IoT

shutters can provide an increase in room illumination during daytime while a light
switch offers the same capability at nighttime.
RMF 8: We do not consider roles to be played by roles, as this modeling fea-

ture can lead to complex structures of role cascades which are not necessary for
expressing the runtime state of relating a WfMS to Things.
RMF 9: Within our work, we do not consider a transfer of roles from one Thing

to another due to the possibility of associated real world state. If a Thing becomes
unavailable, the associated roles are abandoned and the affected workflow resources
are re-allocated.
RMF 10: We do not consider the state of a Thing to be role-specific. Steimann

argues that this feature suggests that each “role played by an object should be
viewed as a separate instance of the object” [Ste00]. This modeling feature is not
represented by the rigidity of the real world state of Things.
RMF 11: We do not consider roles to overwrite core behaviour of a Thing.

Therefore, we do not employ the role modeling feature for specifying role-specific
behaviour.
RMF 12: In the context of this work, roles restrict access to capabilities of

Things. For example, a service robot in a smart home may not operate a full speed
when a resident is in the room. This feature contributes towards the fulfillment of
the requirement RQ CA in Table 3.8.

RMF 13: We consider role inheritance for role types to be a useful feature.
Within the resource discovery, the specification of a more general role can provide
further flexibility for finding a resource at runtime.
RMF 14: Once a role is related to a Thing via the play relation, we consider

the role to share the identity of the Thing.
RMF 15: This is already contradicted by using RMF 14.
RMF 16: In this work, we consider the restriction of role relationships as a

useful feature to express mutual exclusive roles of Things.
RMF 17: We do not use the feature for inter-relationship constraints.
RMF 18: Roles of Things are considered individually in the context of this

work.
RMF 19: In this work, roles depend on the current real world context in several

ways. Depending on the real world context, the canPlay relation is updated such
that the dynamics of available capabilities is captured. If a Thing plays a specific
role at runtime and a context change removes the canPlay relation between the
Thing and the role, it will be abandoned as well. Even though, Kühn et al. call
these kind of situational context compartments, we continue to refer to them as
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context. This feature contributes towards the fulfillment of RQ Dyn and RQ CA
in Table 3.8.
RMF 20: In this work, we consider context to be founded and situational. We

do not include behavior as a part of a first-class modeling concept for context.
RMF 21: Especially, regarding sensing capabilities of Things the associated

roles can be part of several contexts and workflow executions.
RMF 22: This is already prohibited by the negation of RMF 20.
RMF 23: This is already prohibited by the negation of RMF 22.
RMF 24: Contexts can be represented hierarchically within our work. For

example, if the location of a Thing is a specific room in a smart home, then the
assertion that the Thing is inside the smart home is also true.
RMF 25: This is already prohibited by the negation of RMF 20.
RMF 26: This is already prohibited by the negation of RMF 20.

The presented and selected role modeling features are the foundation for the cre-
ation of the semantic context model presented in Section 5.1.

4.1.2 Semantic Modeling Concepts

The semantic model represents the taxonomy of Things in relation to roles, capa-
bilities, context and real world objects. In addition to the role modeling features
discussed in the previous Section 4.1.1, the semantic model aims at bridging the
heterogeneity of Things as stated in the requirement RQ Het. For this purpose,
we adapted the IoT reference model [BBDL+13] towards the inclusion of a basic
notion of context and Things.
Figure 4.1 shows the adapted IoT reference model2. At first, we omitted the

service-related aspect of the original IoT reference model as our approach will in-
clude capabilities that relate to a specific service invocation. Next, we substituted
the resource and virtual entity with the concept of Thing. The virtual entity of
the IoT reference model enabled hierarchical structures of representing a physi-
cal entity. We shifted the hierarchy directly to the physical entity which in turn
has attached devices. The devices themselves can be structured in a hierarchical
manner as well via the contains relation. The simplification of the service and
resource concepts of the original IoT reference model allows for a technology ag-
nostic specification of Things and their capabilities. However, as the capabilities
depend on roles we will introduce them as part of the modeling Section 5.1. For

2The IoT relevant part of the original IoT reference model is shown in Figure 2.2 in Section 2.1.1.
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Figure 4.1: Adapted IoT reference model for heterogeneous Things.

now, the concept Thing is a virtual representation of a physical entity and hosts
several devices in the form of actuators, tags and sensors. A Thing is modeled as
a composition of these devices, because they are necessary features as part of the
Thing specification introduced in Section 2.1.1. In addition, we added the concepts
of physical context and physical property to the IoT reference model. The physical
context includes a hierarchy of physical entities which in turn can have physical
properties, e. g., temperature, humidity and illumination. The physical context is
similar to the definition of compartments [KLG+14]. However, the context proper-
ties are only related indirectly via the encapsulated physical entities. Moreover, a
physical context does not include roles and does not represent situational templates
but rather a virtual representation of the relation between physical entities. The
presented conceptual model serves as a basis for the creation of the semantic model
in Section 5.1 and contributes to the fulfillment of the requirement RQ Het.
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4.1.3 SWRL Modeling Concepts

The SWRL enables the expression of DL-safe3 rules on top of a semantic model,
i. e. OWL-DL ontology. Within this work, they are used to generate and update
contextual knowledge of Things, capabilities, roles, and their relations. Due to the
continuous update of these relations, the rule-based reasoning contributes to the
fulfillment of the requirement RQ QoC. The inferred part of the semantic model
needs to update the existence of the relation between Things and playable roles and
can be restricted by a physical context or a physical property of the represented
physical entity. The modeling of the SWRL rules in alignment with the created
ontology is presented in Section 5.1.

4.2 User Perspective

The User Perspective aims at supporting workflow modelers with both modeling of
more precise semantic queries and modeling of high-level activity goals.

4.2.1 Semantic Queries in Workflow Activites

The integration of semantic queries, i. e., SPARQL queries, into workflow activities
aims at enabling a dynamic resource discovery and invocation at runtime [HSS16].
The query support for resource discovery has been identified as a requirement of re-
source management in the IoT [PP12]. As we use an ontological knowledge base, we
choose to support SPARQL queries in workflow activities to select fitting resources
based on the requirements and constraints defined by the workflow modeler. The
utilization of semantic queries contributes to the requirement RQ QS and also in-
creases the transparency of resource discovery for the workflow modeler as required
by RQ Tra.

4.2.2 Goals for Workflow Activites

In extension to the utilization of semantic queries within workflow activities, we
aim at providing an additional abstraction layer for workflow modelers to specify
the goal, and the execution context of an activity. This goal is usually implicit
and hidden in the definition of a semantic query or direct service invocation. As
it contributes to the concept of separation of concerns, we do not presume domain
knowledge about IoT device capabilities from the workflow modeling perspective.

3An introduction to the concept of rule-based reasoning with SWRL is given in Section 2.1.2.

81



4 Concept for Adaptive Workflow Activities in the IoT
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Figure 4.2: Relevant concepts of a Tropos goal model.

Therefore, we introduce the goal modeling perspective as an additional view on IoT-
aware workflow modeling and contribution to the fulfillment of the requirement
RQ Tra. In this perspective, we model dependencies between informal activity
goals and IoT device capabilities from the ontological domain model. Additionally,
non-functional requirements, i. e., quality of service measures, can be expressed
and contribute to the fulfillment of the requirement RQ QoS. The informal goal
definitions can be attributes of workflow activities and increase the reusability of
workflow models. The goal model is represented by a Tropos goal graph, where
leaf goals are executable activity descriptions. An additionally provided mapping
description relates the leaf goals with ontological concepts of the domain ontology.
Figure 4.2 shows an example goal model as it is used in this work. Here, high
level goals can be logically composed (AND, OR) of leaf goals which in turn can
contribute to or negate QoS parameter.

4.2.3 Mapping from Goals to Semantic Queries

The mapping description defines the relation of a leaf goal in a certain goal model
to a partial SPARQL query using concepts of the domain ontology. For every
leaf goal from the goal model, a mapping to a partial SPARQL query has to be
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defined. Based on these mappings, the Semantic Access Layer (SAL)4 generates a
domain specific SPARQL query that selects and invokes the intended IoT services
to satisfy the activity goals. The generation also takes the user-specified context
constraints into account, that are an optional part of the activity specification.
Mapping descriptions are domain specific in the sense that they include prefixes
and concepts of the domain ontology. When merging several partial SPARQL
queries, prefixes, selected subjects and filters are accumulated.

4.3 Workflow Perspective

The workflow perspective includes the workflow modeling and the runtime resource
management. To provide the workflow modeler the possibility to specify resource
requirements and constraints per activity, we extend an existing workflow meta-
model. Furthermore, the resource management, i. e., the resource discovery, es-
timation, allocation and monitoring, is realized through an external middleware.
In the following, we introduce the concepts for the metamodel extension and the
middleware layer.

4.3.1 Workflow metamodel Extensions

To provide the workflow modeler with support to specify the introduced semantic
queries and goals per activity, we extended an existing generic workflow meta-
model [SKNS14]. We choose this specific metamodel, as it already addresses work-
flow modeling for CPS. However, the metamodel extension is the only workflow
modeling language specific aspect within our approach. Therefore, a minimal
BPMN or WS-BPEL metamodel extension will enable the integration of our con-
tributions with well established WfMS.
In the case of a goal-based activity, we propose the GoalBasedInvoke activity

type extension as seen in Figure 4.3. To specify the goals of an activity, work-
flow modelers provide a goal from a goal model. Additionally, context constraints
can be defined in the form of restrictions over ontological concepts as part of the
GoalBasedInvoke. Thus, we are able to specify that only IoT devices in a certain
context, e. g., within a specific location, are to be considered for the fulfillment of
the specified goals. Workflow modelers are also enabled to specify non-functional
requirements if the goal model supports quality metrics, e. g., a goal should be sat-
isfied without violating privacy. When transferred to the SAL, the user-defined

4The Semantic Access Layer (SAL) is introduced in Section 4.3.2.
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Figure 4.3: Extension of the PROtEUS activity metamodel

activity goals are used as input for the backward reasoning SAT solver.
In the case of a user-defined SPARQL query, we differentiate between actuat-

ing and sensing capabilities of IoT devices and introduce novel activity types for
both, because the flow of the workflows depends on whether it is a consuming
or producing activity. Activities that generate data, e. g., sensor data or device
identifiers, need data ports to pass this information on to succeeding steps. This
is realised by the SemanticSelectInvoke. In contrast, the SemanticCommandIn-
voke activity type includes SPARQL queries for invoking actuators and therefore
does not produce data. Additionally, we introduce the SemanticAskInvoke activity
type, which evaluates queries on a Boolean basis. The result is propagated to the
activity’s data ports and can then be used for control-flow adaptations. Figure 4.3
depicts the SemanticInvoke and GoalBasedInvoke as subclasses of the AtomicStep
class, i. e., a non-composable workflow activity. SemanticSelectInvoke, Semantic-
CommandInvoke, and SemanticAskInvoke are subclasses of SemanticInvoke. They
can be instantiated by workflow modelers using an extended version of an existing
workflow modeling tool [SKNS14]. Upon creating a activity of type SemanticInvoke
in the workflow model, the modeler has to specify the SPARQL query.

84



4.3 Workflow Perspective

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iot: <http://www.semanticweb.org/role_based_iot_ontology#>

SELECT DISTINCT ?subject ?cap

WHERE {

?cap rdf:type iot:Capability .

?subject iot:has ?cap .

?cap iot:hasCommand ?cmd .

?cmd a iot:OnCommand .

}

Listing 4.1: Example SPARQL query with command to activate available Things

Listing 4.1 shows an example of an SPARQL query from a SemanticCommand-
Invoke activity. To execute this query, the SAL needs to include the ontology for
modeling role based Things5. The example SemanticCommandInvoke statement
includes a SPARQL query and a semantic command. When executed, the SAL
generates a list of IoT services from the query result. The semantic command is
then transformed into service calls for each IoT service. All of the introduced activ-
ity types use the SAL as a middleware service. The proposed metamodel extensions
contribute towards the fulfillment of the requirements RQ MS and RQ Tra. The
general modeling support for specifying resource requirements and constraints per
activity is enabled. In addition, the transparency is maintained both for the explicit
modeling of semantic queries and the implicit modeling of activity goals.

4.3.2 Middleware for Dynamic Resource Discovery and Allocation

The SAL is the middleware layer for the dynamic discovery of IoT resources and
the subsequent service invocation. Therefore, the SAL provides the support for
interpreting both query-based and goal-based activities. The queries are directly
executed on an integrated knowledge base holding the IoT domain ontology. Goals
are first translated into executable leaf goals via backward reasoning. The asso-
ciated mapping descriptions provide the actual semantic queries, which are then
again executed on the integrated knowledge base. The query execution results in
a set of feasible Things for either retrieving the desired sensor data or activating
an actuator. In this matter, the SAL contributes to the fulfillment of the require-
ment for query support RQ QS and the requirement for dynamic resource discovery
RQ Dyn. In the case of a goal-based resource discovery, also QoS parameters are

5The ontology is presented in Section 5.1
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considered. This contributes to the fulfillment of RQ QoS. Furthermore, the SAL
aims at providing the flexibility support and fault tolerance defined by the re-
quirements RQ FS and RQ FT, by monitoring context changes and triggering the
re-allocation of unavailable or unsuitable resources. To this end, its SWRL rules
are executed continuously to reflect the real world context changes in the knowl-
edge base. This includes the relation between Things and its playable roles. This
continuous update of the context model contributes to RQ QoC. The architecture
of the SAL is presented in Section 6.1.

4.4 Summary

In this chapter, we presented the concepts of our contributions towards enabling
an activity-level adaptation of workflows in the IoT. We identified the relevant
role modeling features to include in the semantic model for IoT resources from
a workflow management perspective. Furthermore, we adapted the IoT reference
model to bridge the heterogeneity of Things and to provide a basic taxonomy for
the creation of the semantic model. In addition, we introduced the concept of
SWRL rules as a update mechanism for real world context changes. From the
user perspective, we addressed the query-based and goal-based activity modeling
as well as the mapping from goals to semantic queries. Consequently, we introduced
an extension to a workflow metamodel to capture the goal-based and query-based
activity types. Finally, we introduced the basic concepts of the SAL as a middleware
layer between a WfMS and the actual IoT services.
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in the IoT

In this chapter 1, we present our models for adaptive workflow activities in the IoT.
First, we introduce the TBox of the ontology for role-based Things in the IoT as
one of the main contributions of this work within the resource perspective. As the
modeling of the ABox of the ontology, the user goal model, the mapping from goals
to semantic queries and the workflow modeling are application domain specific,
we revisit and extend the application scenario from Section 1.2 and provide the
respective models within each perspective. We hereby show how a domain-specific
ABox can be developed for other areas of application.

5.1 Resource Perspective

In this section, we present the ontology for modeling role-based Things with context-
sensitive capabilities in the IoT including the SWRL rules for continuous context
updates as one of the major contributions of this work. First, we introduce the
taxonomy of the ontology and give an overview of the included concepts as well as
the corresponding relations. Subsequently, we describe each class, object property,
and data property in detail, following the description logic (DL) notation. Finally,
we present the SWRL rules and their purpose for representing real-time context
changes in the ontological model.

5.1.1 Role-based Modeling of Context-sensitive Things

Figure 5.1 gives an overview of the taxonomy of the created OWL ontology, show-
ing classes as well as static and inferred object property assertions2. In general,
a Thing is an object of the real world with augmented virtual properties, e. g., a
smartphone, a service robot or a tagged product. A Thing can have several devices

1This chapter is partially based on [HSK+16, HSS16]
2The complete TBox of the created OWL ontology can be found in the Appendix Section10.2.
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of the types Sensor, Actuator or Tag. A Sensor can read a Tag or sense a Phys-
icalProperty of a PhysicalEntity. The latter can contain themselves to represent
arbitrary hierarchies, e. g., a house can contain rooms which in turn may contain
residents and other physical objects. An Actuator can manipulate a PhysicalEntity
or its PhysicalProperty. The manipulation of a PhysicalProperty may be modeled
directly or indirectly via the PhysicalEntity, e. g., an actuator may turn on the
heater which in turn manipulates the room temperature. An Actuator can affect a
Sensor by manipulating a PhysicalProperty which is sensed by the Sensor. In turn,
then the Sensor can monitor the effects of the Actuator. As these relations are
highly dynamic for mobile Things, they are inferred rather than statically modeled.
A PhysicalContext can have several PhysicalEntities, e. g., a Smart Home context
includes all physical entities of the house or apartment. Furthermore, a Thing can
be attached to a PhysicalEntity, e. g., a SmartWatch is attached to a person, and
available in a certain PhysicalContext, e. g., a smartwatch which is attached to a
resident who is at home, is available in the context of the Smart Home and may
provide sensing capabilities for measuring the room temperature within this con-
text. The object property assertion isAvailableIn can be modeled directly or be
inferred from the relation isAttachedTo between a Thing and a PhysicalEntity and
the relation hasEntity between a PhysicalContext and the same PhysicalEntity.

Most of the above concepts are adapted from the IoT reference model [BBDL+13].
In contrast, the Role and Capability concepts are key contributions of this work.
A Thing can be related to a Role by the plays and canPlay relation. Both are
inferred from the runtime context, e. g., by continuously executing SWRL rules.
These specify which Thing can play which Role in a certain situational context. The
plays relation is created upon allocating a Thing in a specific Role for the execution
of an activity. Furthermore, a Role can be played for a specific PhysicalEntity or
PhysicalContext. Here, we also differentiate between the relations canBePlayedFor
and isPlayedFor. The first is again created dynamically depending on the runtime
context and domain specific SWRL rules. The latter is created upon allocating a
Role within a specific activity. In general, the canPlay and canBePlayedFor object
property assertions are changed dynamically according to the runtime context and
reflect the real world state and possibility of interactions between a Thing and
a PhysicalEntity or a PhysicalContext. In contrast, the plays and isPlayedFor
object property assertions represent the virtual state of interactions between a
Thing and a PhysicalEntity or a PhysicalContext. By allowing both states to exist
in parallel inside the ontology, we allow for the detection of inconsistencies between
the cyber and the physical states and provide the foundation for their resolution.
Such inconsistencies are likely to occur when allowing Things and PhysicalEntities
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Figure 5.1: OWL ontology for role-based Things in the IoT.

to be mobile. For example, an interaction device may only provide its capabilities
to a person when they are in the same physical context. Furthermore, a smartphone
may only provide the capability to record a video or take a picture if the battery
charge is above a certain threshold. Therefore, we modeled all capabilities to be
context-sensitive, i. e., to be available only in some and not all possible situational
contexts. A Role can have several Capabilities which in turn use some Device, i. e.,
a Sensor, Actuator or Tag. The Capability can have several Commands which refer
to a functionality of a Device. The accessesDevice relation between a Command
and a Device is inferred from the existence of the usesDevice and hasCommand
object property assertions. Furthermore, Commands are classified to be either a
GetDataCommand, OnCommand or OffCommand. The GetDataCommand can
be used for service calls to retrieve data, e. g., a sensor reading. Also blocking
data retrieval from user interactions are considered as a GetDataCommand. The
OnCommand can be used to trigger an Actuator or to execute a service method,
e. g., turning on the heater or invoking a REST service call. The OffCommand can
be used for switching off a stateful Actuator. Even though these Command types
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are highly simplified from the variety of real world states, they provide a useful
abstraction in many application scenarios, e. g., in the Smart Home domain.

5.1.2 Ontology Classes

In the following, we present the ontology classes in alphabetical order and discuss
their purpose for modeling context-sensitive Things in the IoT.

Actuator

An Actuator is a subclass of the Device type. It can manipulate a PhysicalEntity,
a PhysicalProperty and affect a Sensor. Typical actuators in a Smart Home sce-
nario are heating controls, door openers, light switches but also applications on a
smartphone. The Actuator class is defined by the following DL notation:

Actuator ⊑ Device
Actuator ⊑ ∃ manipulates PhysicalEntity
Actuator ⊑ ∃ manipulates PhysicalProperty
Actuator ⊑ ∃ affects Sensor

Capability

The Capability class is essential for specifying context-sensitive functionalities of
Things. It represents an isolated Device capability, e. g., sensing some Physical-
Property. A capability can have several Commands and is related to a specific
Device via the usesDevice object property assertion. The Capability class is de-
fined by the following DL notation:

Capability ⊑ ∃ hasCommand Command
Capability ⊑ ∃ usesDevice Device

Command

The Command class serves as superclass for the specialized command types. It
includes the inferred object property assertion accessesDevice which is created for
individuals at runtime by executing a SWRL rule. Furthermore, a Command in-
cludes a serviceMethodURL to specify the related service method for invocation.
The specialized command types inherit this relation. The Command class is de-
fined by the following DL notation:
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Command ⊑ ∃ serviceMethodURL Datatype#anyURI
Command ⊑ ∃ accessesDevice Device

GetDataCommand

The GetDataCommand class inherits the accessesDevice relation and is used to
retrieve sensor data or data in general from a Device. The GetDataCommand class
is defined by the following DL notation:

GetDataCommand ⊑ Command

OffCommand

The OffCommand class inherits the accessesDevice relation and is used define com-
mands for switching off Actuators. The OffCommand class is defined by the fol-
lowing DL notation:

OffCommand ⊑ Command

OnCommand

The OnCommand class inherits the accessesDevice relation and is used define com-
mands for switching on Actuators and invoke other IoT services, e. g., use a service
method within a mobile application. The OnCommand class is defined by the
following DL notation:

OnCommand ⊑ Command

PhysicalContext

The PhysicalContext class represents situational context within the real world. A
PhysicalContext can include several PhysicalEntities via the hasEnity relation. As
PhysicalEntities can contain themselves, the contained PhysicalEntities are also
associated within the PhysicalContext. Therefore, it is only possible to create real
subsets of PhysicalEntities within one PhysicalContext if the entities exist in a
parallel hierarchy or on the same hierarchical level of one hierarchy. The Physical-
Context class is defined by the following DL notation:

PhysicalContext ⊑ ∃ hasEntity PhysicalEntity
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PhysicalEntity

The PhysicalEntity class represents all physical objects and beings, which are not
augmented by a cyber component, i. e., in contrast such entities are classified as
Things. A PhysicalEntity may contain other PhysicalEntities, providing the pos-
sibility of arbitrary hierarchical structures. Furthermore, a PhysicalEntity may
manipulate a PhysicalProperty, e. g., a heater increases the room temperature, and
can have several PhysicalProperty, e. g., humidity. The PhysicalEntity class is de-
fined by the following DL notation:

PhysicalEntity ⊑ ∃ contains PhysicalEntity
PhysicalEntity ⊑ ∃ manipulates PhysicalProperty
PhysicalEntity ⊑ ∃ hasProperty PhysicalProperty

PhysicalProperty

The PhysicalProperty class represents properties of PhysicalEntities and has some
data defined by the data property physicalPropertyData. The data value represents
the current real world value of the property within individuals. The PhysicalProp-
erty class is defined by the following DL notation:

PhysicalProperty ⊑ = physicalPropertyData

Role

The Role class is a key concept for the modeling of context-sensitive Capabilities
of Things in the IoT. A Role can have several Capabilities and creates subsets over
all Capabilities of a Device. Access to Roles can be restricted to certain situational
contexts or ranges of PhysicalProperties by the inferred canPlay relation. Therefore,
the Role concept provides context-sensitive views of Device Capabilities. The Role
class is defined by the following DL notation:

Role ⊑ ∃ hasCapability Capability

Sensor

A Sensor is a subclass of the Device type. It can read a Tag, monitor an Actuator
and sense a PhysicalProperty. Typical sensors in a Smart Home scenario are tem-
perature, humidity, and illumination sensors but also user interfaces. The Sensor
class is defined by the following DL notation:
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Sensor ⊑ Device
Sensor ⊑ ∃ reads Tag
Sensor ⊑ ∃ monitors Actuator
Sensor ⊑ ∃ senses PhysicalProperty

Tag

A Tag is a subclass of the Device type. It can provide identification for a Physi-
calEntity. The Tag class is defined by the following DL notation:

Tag ⊑ Device
Tag ⊑ ∃ identifies PhysicalEntity

Thing

The Thing class is an essential concept for modeling context-sensitive capabilities
of Things in the IoT. It is a virtual representation of a physical object with an
augmentation in the cyber world, e. g., a unique identifier or sensing capabilities to
produce data. A Thing can be related to a Role by the canPlay and the plays object
property assertion. The canPlay relation expresses the possibility to activate a Role
for a certain Thing while the plays relation expresses such an activation at runtime.
A Thing can have several Devices, i. e., sensors, actuators and tags. Furthermore, a
Things can be attached to a PhysicalEntity. In this case, certain PhysicalProperties
of the entity can be inferred for the Thing, e. g., location. The Thing class is defined
by the following DL notation:

Thing ⊑ ∃ canPlay Role
Thing ⊑ ∃ plays Role
Thing ⊑ ∃ hasDevice Device
Thing ⊑ ∃ isAttachedTo PhysicalEntity

5.1.3 Ontology Object properties

In the following, we present the ontology object properties in alphabetical order
and discuss their purpose for modeling context-sensitive Things in the IoT.

accessesDevice

The accessesDevice object property is inferred from the object property assertions
usesDevice between a Capability and a Device as well as hasCommand between the
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same Capability and a Command. It is inferred between Commands and Devices
to directly relate a specific command to the specific Device which can execute the
Command. The accessesDevice object property is defined by the following DL
notation:

accessesDevice ⊑ topObjectProperty
∃ accessesDevice Thing ⊑ Command
⊤ ⊑ ∀ accessesDevice Device

affects

The affects object property is inferred from the object property assertions manip-
ulates between an Actuator and a PhysicalProperty as well as senses between a
Sensor and the same PhysicalProperty. It is inferred between Actuators and Sen-
sors to express that the effects of an Actuator can be measured by a Sensor. The
affects object property is inverse to the monitors object property and defined by
the following DL notation:

affects ⊑ topObjectProperty
affects ≡ monitors−

∃ affects Thing ⊑ Actuator
⊤ ⊑ ∀ affects Sensor

canBePlayedFor

The canBePlayedFor object property is inferred from the object property asser-
tions canPlay between a Thing and a Role as well as isAttachedTo between the
same Thing and a PhysicalEntity or isAvailableIn between the same Thing and
a PhysicalContext. It is inferred between Things and PhysicalEntity or Physical-
Context to express the runtime availability of a playable Role for a certain entity
or context. The canBePlayedFor object property is defined by the following DL
notation:

canBePlayedFor ⊑ topObjectProperty
∃ canBePlayedFor Thing ⊑ Role
⊤ ⊑ ∀ canBePlayedFor PhysicalEntity
⊤ ⊑ ∀ canBePlayedFor PhysicalContext
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canPlay

The canPlay object property is inferred at runtime to express the possibility of
a Thing to play a certain Role. The inference is domain specific and depends on
the modeled SWRL rules to create a canPlay a certain situational context. The
canPlay object property is defined by the following DL notation:

canPlay ⊑ topObjectProperty
∃ canPlay Thing ⊑ Thing
⊤ ⊑ ∀ canPlay Role

contains

The contains object property relates a PhysicalEntity to other PhysicalEntities and
therefore enables hierarchical structuring of entities. The contains object property
is transitive and defined by the following DL notation:

contains ⊑ topObjectProperty
TransitiveProperty contains
∃ contains Thing ⊑ PhysicalEntity
⊤ ⊑ ∀ contains PhysicalEntity

hasCapability

The hasCapability object property relates a Role to some Capabilities and is defined
by the following DL notation:

hasCapability ⊑ topObjectProperty
∃ hasCapability Thing ⊑ Role
⊤ ⊑ ∀ hasCapability Capability

hasCommand

The hasCommand object property relates a Capability to some Command and is
defined by the following DL notation:

hasCommand ⊑ topObjectProperty
∃ hasCommand Thing ⊑ Capability
⊤ ⊑ ∀ hasCommand Command
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hasDevice

The hasDevice object property relates a Thing to some Device and is defined by
the following DL notation:

hasDevice ⊑ topObjectProperty
∃ hasDevice Thing ⊑ Thing
⊤ ⊑ ∀ hasDevice Device

hasEntity

The hasEntity object property relates a PhysicalContext to some PhysicalEntity
and is defined by the following DL notation:

hasEntity ⊑ topObjectProperty
∃ hasEntity Thing ⊑ PhysicalContext
⊤ ⊑ ∀ hasEntity PhysicalEntity

hasProperty

The hasProperty object property relates a PhysicalEntity to some PhysicalProptery
and is defined by the following DL notation:

hasProperty ⊑ topObjectProperty
∃ hasProperty Thing ⊑ PhysicalEntity
⊤ ⊑ ∀ hasProperty PhysicalProperty

identifies

The identifies object property relates a Tag to some PhysicalEntity to express the
ability of the Tag to provide identification information, e. g., a unique identifier
(UID), for the specific PhysicalEntity. The identifies object property is defined by
the following DL notation:

identifies ⊑ topObjectProperty
∃ identifies Thing ⊑ Tag
⊤ ⊑ ∀ identifies PhysicalEntity
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isAllocatedTo

The isAllocatedTo object property is inferred at runtime from the object property
assertions plays between a Thing and a Role as well as isPlayedFor between the
same Role and a PhysicalEntity or PhysicalContext. It is inferred between Things
and PhysicalEntity or PhysicalContext to express the runtime allocation of a Thing
to a certain entity or context. The isAllocatedTo object property is defined by the
following DL notation:

isAllocatedTo ⊑ topObjectProperty
∃ isAllocatedTo Thing ⊑ Thing
⊤ ⊑ ∀ isAllocatedTo (PhysicalEntity ⊔ PhysicalContext)

isAttachedTo

The isAttachedTo object property can be modeled between Things and PhysicalEn-
tities to express their physical attachment. The relation can be used to infer Phys-
icalProperties from a PhysicalEntity to the attached Thing, e. g., location. The
isAttachedTo object property is defined by the following DL notation:

isAttachedTo ⊑ topObjectProperty
∃ isAttachedTo Thing ⊑ Device
⊤ ⊑ ∀ isAttachedTo PhysicalEntity

isAvailableIn

The isAvailableIn object property is either modeled directly between a Thing and
a PhysicalContext or inferred at runtime from the object property assertions isAt-
tachedTo between a Thing and a PhysicalEntity as well as hasEntity between the a
PhysicalContext and the same PhysicalEntity. It expresses the runtime availability
of a Thing within a PhysicalContext. The isAvailableIn object property is defined
by the following DL notation:

isAvailableIn ⊑ topObjectProperty
∃ isAvailableIn Thing ⊑ Thing
⊤ ⊑ ∀ isAvailableIn PhysicalContext

isPlayedFor

The isPlayedFor object property is inferred from the object property assertions
plays between a Thing and a Role as well as isAttachedTo between the same Thing
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and a PhysicalEntity or isAvailableIn between the same Thing and a Physical-
Context. It is inferred between Things and PhysicalEntity or PhysicalContext to
express the runtime allocation of a playable Role for a certain entity or context.
The isPlayedFor object property is defined by the following DL notation:

isPlayedFor ⊑ topObjectProperty
∃ isPlayedFor Thing ⊑ Role
⊤ ⊑ ∀ isPlayedFor PhysicalContext
⊤ ⊑ ∀ isPlayedFor PhysicalEntity

manipulates

The manipulates object property can be modeled directly between an Actuator and
a PhysicalEntity, PhysicalEntity and a PhysicalProperty as well as an Actuator and
a PhysicalProperty. In addition, it can be inferred at runtime from the object prop-
erty assertions manipulates between an Actuator and a PhysicalEntity as well as
manipulates between the same PhysicalEntity and a PhysicalProperty. It expresses
the potential effect an Actuator or a PhysicalEntity can cause. The manipulates
object property is defined by the following DL notation:

manipulates ⊑ topObjectProperty
TransitiveProperty manipulates
∃ manipulates Thing ⊑ Actuator ⊔ PhysicalEntity
⊤ ⊑ ∀ manipulates (PhysicalEntity ⊔ PhysicalProperty)

monitors

The monitors object property is the inverse of the affects object property and is
defined by the following DL notation:

monitors ⊑ topObjectProperty
affects ≡ monitors−

∃ monitors Thing ⊑ Sensor
⊤ ⊑ ∀ monitors Actuator

plays

The plays object property relates a Thing to some Role at runtime to execute some
workflow activity. It is defined by the following DL notation:
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plays ⊑ topObjectProperty
∃ plays Thing ⊑ Thing
⊤ ⊑ ∀ plays Role

reads

The reads object property relates a Sensor to some Tag and is defined by the
following DL notation:

reads ⊑ topObjectProperty
∃ reads Thing ⊑ Sensor
⊤ ⊑ ∀ reads Tag

senses

The senses object property relates a Sensor to some PhysicalProperty and is defined
by the following DL notation:

senses ⊑ topObjectProperty
∃ senses Thing ⊑ Sensor
⊤ ⊑ ∀ senses PhysicalProperty

usesDevice

The usesDevice object property relates a Capability to some Device and is defined
by the following DL notation:

usesDevice ⊑ topObjectProperty
∃ usesDevice Thing ⊑ Capability
⊤ ⊑ ∀ usesDevice Device

5.1.4 Ontology Data properties

In this ontology, only PhysicalProperties are represented by data, and only Com-
mands include a service method URL as data. These data properties are defined
by the following DL notation:

∃ physicalPropertyData Datatype#Literal ⊑ PhysicalProperty
⊤ ⊑ ∀ serviceMethodURL #anyURI ⊑ Command
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5.1.5 DL-safe SWRL Rules

The following DL-safe SWRL rules are defined as part of the ontology’s TBox as
they provide some core reasoning for any application domain. However, in a discrete
application scenario one has to specify additional rules depending on the modeled
individuals. The additional rules are essential to express the situational contexts
in which canPlay relations have to be created. Without these, the plays relations
are not created by the Semantic Access Layer.

accessesDevice Inference

usesDevice(?x, ?y) ∧ hasCommand(?x, ?z) → accessesDevice(?z, ?y)

affects Inference

manipulates(?x, ?y) ∧ senses(?z, ?y) → affects(?x, ?z)

isAvailableIn Inference

isAttachedTo(?x, ?y) ∧ hasEntity(?z, ?y) → isAvailableIn(?x, ?z)

isAllocatedTo Inference

plays(?x, ?y) ∧ isP layedFor(?y, ?z) → isAllocatedTo(?x, ?z)

canBePlayedFor Inference

canP lay(?x, ?y) ∧ isAttachedTo(?x, ?z) → canBeP layedFor(?y, ?z)

canP lay(?x, ?y) ∧ isAvailableIn(?x, ?z) → canBeP layedFor(?y, ?z)

isPlayedFor Inference

plays(?x, ?y) ∧ isAttachedTo(?x, ?z) → isP layedFor(?y, ?z)

plays(?x, ?y) ∧ isAvailableIn(?x, ?z) → isP layedFor(?y, ?z)
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5.2 Discussion of Role Modeling Features

In the following, we briefly discuss how the relevant role modeling features (RMF)
identified in Section 4.1.1 have been fulfilled by the created ontology.

Table 5.1: Fulfillment of the relevant role modeling features.

Nr. Definition Fulfillment

1 A role comes with its own
properties and behaviour.

Roles are classes of the ontology with
properties and behaviour.

2 Roles depend on relation-
ships.

A role has to be played by a Thing to be
meaningful.

3 An object may play different
roles simultaneously.

Both the canPlay and the plays relations
can assert a Thing to several Roles.

4 An object may play the same
role several times, simultane-
ously.

A Thing can play a Role for several con-
texts or entities.

5 An object may acquire and
abandon roles dynamically.

The plays relation is dynamically created
and deleted at runtime.

7 Objects of unrelated types can
play the same role.

Possible for specializations of the Thing
class.

12 Roles restrict access. Roles restrict the access to Device Capa-
bilities

13 Different roles may share
structure and behaviour.

It is allowed to create several identical
Roles as distinct individuals.

14 An object and its roles share
identity.

Capabilities are accessed through the
role, therefore the identity is shared.

16 Relationships between roles
can be constrained.

SWRL rules can constrain the creation
of the canPlay relation for related Roles.

19 Roles depend on compart-
ments.

Roles are related to a PhysicalContext by
the isAvailableIn relation.

21 A role can be part of several
compartments.

A Role can be played for several Physi-
calContexts.

24 Compartments can contain
other compartments.

Indirectly via the hierarchical structure
of PhysicalEntities.

101



5 Modeling Adaptive Workflow Activities in the IoT

Figure 5.2: Individuals by classes for example application scenario.

5.3 Example Application Scenario Modeling

As the modeling of the ontology individuals, most SWRL rules, SPARQL queries,
activity goals, and workflows are domain-specific and depend on the application
scenario; we illustrate the respective modeling approaches for the application sce-
nario introduced in Section 1.2. The implicit goal of the scenario workflow is to
provide medical help to residents in a critical health condition within a smart home
context. This is implemented in three activities. First, the health status of resi-
dents is monitored. In case of a critical health event, the next activity is executed
and tries to get feedback from the resident. If the resident is considered as unre-
sponsive, the final activity triggers an automatic emergency call. In the following,
we provide the relevant models for this application scenario within the resource,
user and workflow perspectives according to our contributions.

5.3.1 Resource Perspective

The resource perspective includes the modeling of the ontology ABox and the
domain-specific SWRL rules.
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Figure 5.3: Relations of individuals in example application scenario.

ABox of the Application Scenario

Figure 5.2 gives an overview of the created individuals and their types while Fig-
ure 5.3 shows the object property assertions between the individuals 3. We created
a SmartWatch and a SmartPhone as individuals of the class Thing. These are
the main devices for detecting the critical health status, interacting with the res-
ident and making the emergency call. Consequently, these context-sensitive func-
tionalities are modeled as the Roles : AutomaticEmergencyCaller, HealthMonitor
and InteractionDevice. The available Capabilites are provideMedicalAssistance,
provideResidentResponsiveness and provideHealthStatus. These Capabilities are re-
lated to the Devices : EmergencyCallApp, HealthSensor, and InteractionSensor.
The EmergencyCallApp is an Actuator for making an emergency call via the On-
Command TriggerAutomaticEmergencyCall. The HealthSensor and Interaction-
Sensor are Sensors for detecting the PhysicalProperties HealthStatus and Respon-
siveStatus with the GetDataCommands getHealthStatus and getResponsiveStatus.
The PhysicalContext SmartHomeContext includes the PhysicalEntity SmartHome
via the hasEntity relation. In addition, the SmartHome contains the PhysicalEntity

3The complete ABox of the created OWL ontology for the application scenario can be found in
the Appendix Section10.2.
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Kitchen which in turn contains the PhysicalEntity ResidentBob. In this example,
the workflow aims at monitoring Bob’s health status within the smart home.

SWRL Rules of the Application Scenario

The following SWRL rules are necessary to create and update the canPlay object
property assertions between Things and Roles at runtime. The creation and up-
dating of the canBePlayedFor object property assertion is not necessary as it is
already implemented in the SWRL rules of the ontology. However, we added the
logic to the following rules for the sake of completion.

HealthMonitor Role

The creation and update of the canPlay relation for the HealthMonitor Role is
modeled both for the SmartWatch and the SmartPhone. They both provide the
necessary sensors to detect the HealthStatus of ResidentBob. However, in the case
of the smartwatch the canPlay relation is only created when the smartwatch is
currently attached to Bob, i. e., is located at her wrist:

isAttachedTo(SmartWatch,ResidentBob) ∧
hasDevice(SmartWatch,HealthSensor) ∧

usesDevice(provideHealthStatus,HealthSensor) ∧
hasCapability(HealthMonitor, provideHealthStatus) →

canP lay(SmartWatch,HealthMonitor) ∧
canBeP layedFor(HealthMonitor,ResidentBob)

In case of the smartphone, the canPlay relation is only created when the smartphone
is currently available in the SmartHomeContext and Bob is related to the context
via the hasEntity and the transitive contains relation:

isAvailableIn(SmartPhone, SmartHomeContext) ∧
hasEntity(SmartHomeContext, ?x) ∧ contains(?x,ResidentBob) ∧

hasDevice(SmartPhone,HealthSensor) ∧
usesDevice(provideHealthStatus,HealthSensor) ∧

hasCapability(HealthMonitor, provideHealthStatus) →
canP lay(SmartPhone,HealthMonitor) ∧

canBeP layedFor(HealthMonitor,ResidentBob)
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AutomaticEmergencyCaller Role

The creation and update of the canPlay relation for the AutomaticEmergencyCaller
Role is modeled for the SmartPhone. It provides the necessary Actuator Emergen-
cyCallApp to place an emergency call. However, the canPlay relation is only created
when the smartphone is currently available in the SmartHomeContext :

isAvailableIn(SmartPhone, SmartHomeContext) ∧
hasDevice(SmartPhone,EmergencyCallApp) ∧

usesDevice(provideMedicalAssistance,EmergencyCallApp) ∧
hasCapability(AutomaticEmergencyCaller, provideMedicalAssistance) →

canP lay(SmartPhone,AutomaticEmergencyCaller) ∧
canBeP layedFor(AutomaticEmergencyCaller, SmartHomeContext)

InteractionDevice Role

The creation and update of the canPlay relation for the InteractionDevice Role is
modeled for the SmartWatch. It provides the necessary Sensor InteractionSensor
to sense the HealthStatus of ResidentBob. However, the canPlay relation is only
created when the smartwatch is currently attached to Bob, i. e., is located at her
wrist:

isAttachedTo(SmartWatch,ResidentBob) ∧
hasDevice(SmartWatch, InteractionSensor) ∧

usesDevice(provideResidentResponsiveness, InteractionSensor) ∧
hasCapability(InteractionDevice, provideResidentResponsiveness) →

canP lay(SmartWatch, InteractionDevice) ∧
canBeP layedFor(InteractionDevice,ResidentBob)

5.3.2 User Perspective

Within the user perspective, the goal model and the mapping descriptions are
modeled for the application scenario.

Modeling User Goals

Figure 5.4 shows the goal model for the application scenario. It includes the goals
Get Health Data from SmartWatch, Get Health Data from SmartPhone,
Get Interaction via SmartWatch, and Use Emergency Call App as leafs.
These are executable in the sense that there exists a mapping to semantic queries.
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Figure 5.4: Goal model for example application scenario.

On the next level there exist the goals Detect Critical Health Situation, De-
tect Responsiveness and Make Emergency Call. The upper goals are very
broad and will not be used for the workflow modeling. However, there existence is
necessary to allow for the backward reasoning of leaf goals. The quality parameter
Credibility expresses the level of credibility of the sensed data. If the health sta-
tus is sensed by a smartwatch, it is assumed that the smartwatch is located at the
wrist of the resident and therefore the credibility of the produced data is considered
as high for detecting a critical health situation. This assumption is based on the
modeled SWRL rules for creating the canPlay relation between the SmartWatch
and the HealthMonitor Role. In contrast, if the data is generated by the smart-
phone, it is only guaranteed that the smartphone shares the same context as the
resident. Therefore the credibility of the sensed health status is considered as low.
In addition, the provided interaction via the smartwatch is considered a credible
data source for detecting the responsiveness of a resident.
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Mapping the Goals to SPARQL Queries

Listing 5.1 specifies the mapping of the goal Get Health Data from Smart-
Watch to the corresponding query. Here, capabilities of the iot:HealthMonitor
role are selected which are able to retrieve data via an iot:GetDataCommand. Also,
the iot:SmartWatch has to be able to play the iot:HealthMonitor role as defined by
the goal. Listing 5.2 defines the mapping with a restriction to the iot:SmartPhone.

Get Health Data from SmartWatch ->

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iot: <http://www.semanticweb.org/IoTUDresden#>

SELECT ?cap ?entity

WHERE {

?entity rdf:type iot:PhysicalEntity .

iot:SmartWatch iot:canPlay iot:HealthMonitor .

iot:HealthMonitor iot:canBePlayedFor ?entity .

iot:HealthMonitor iot:hasCapability ?cap .

?cap iot:hasCommand ?cmd .

?cmd rdf:type ?cmdType .

?cmdType rdfs:subClassOf iot:GetDataCommand .

}

Listing 5.1: Mapping for goal Get Health Data from SmartWatch

Get Health Data from SmartPhone ->

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iot: <http://www.semanticweb.org/IoTUDresden#>

SELECT ?cap ?entity

WHERE {

?entity rdf:type iot:PhysicalEntity .

iot:SmartPhone iot:canPlay iot:HealthMonitor .

iot:HealthMonitor iot:canBePlayedFor ?entity .

iot:HealthMonitor iot:hasCapability ?cap .

?cap iot:hasCommand ?cmd .

?cmd rdf:type ?cmdType .

?cmdType rdfs:subClassOf iot:GetDataCommand .

}

Listing 5.2: Mapping for goal Get Health Data from SmartPhone
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Listing 5.3 specifies the mapping of the goal Get Interaction via SmartWatch
to the corresponding query. Here, capabilities of the iot:InteractionDevice role
are selected which are able to retrieve data via an iot:GetDataCommand. Also,
the iot:SmartWatch has to be able to play the iot:InteractionDevice role as de-
fined by the goal. Listing 5.4 defines the mapping of the goal Use Emergency
Call App to place an automatic emergency call via the iot:OnCommand of the
iot:AutomaticEmergencyCaller role.

Get Interaction via SmartWatch ->

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iot: <http://www.semanticweb.org/IoTUDresden#>

SELECT ?cap ?entity

WHERE {

?entity rdf:type iot:PhysicalEntity .

iot:SmartWatch iot:canPlay iot:InteractionDevice .

iot:InteractionDevice iot:canBePlayedFor ?entity .

iot:InteractionDevice iot:hasCapability ?cap .

?cap iot:hasCommand ?cmd .

?cmd rdf:type ?cmdType .

?cmdType rdfs:subClassOf iot:GetDataCommand .

}

Listing 5.3: Mapping for goal Get Interaction via SmartWatch

Use Emergency Call App ->

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iot: <http://www.semanticweb.org/IoTUDresden#>

SELECT ?cap ?entity

WHERE {

?entity rdf:type iot:PhysicalContext .

iot:SmartPhone iot:canPlay iot:AutomaticEmergencyCaller .

iot:AutomaticEmergencyCaller iot:canBePlayedFor ?entity .

iot:AutomaticEmergencyCaller iot:hasCapability ?cap .

?cap iot:hasCommand ?cmd .

?cmd rdf:type ?cmdType .

?cmdType rdfs:subClassOf iot:OnCommand .

}

Listing 5.4: Mapping for goal Use Emergency Call App
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Figure 5.5: Semantic Query-based Workflow Model for Application Scenario.

5.3.3 Workflow Perspective

Modeling in the workflow perspective includes the workflow model itself which is
either based on activities specified by semantic queries or goals from the goal model.

Semantic Query-based Workflow Model

Figure 5.5 shows the workflow model for the application scenario using semantic
queries to specify the implicit goals of activities. The workflow model was created
with the help of an extended process modeling IDE for CPS processes [SKNS14,
HSS16, HSKS16]. The first activity of type SemanticAskInvoke is modeled inside
of a while loop for continuously monitoring the health state of the smart home
residents. As this activity is of type SemanticAskInvoke, it is directly evaluated
to a boolean value depending on the semantic query. The corresponding semantic
query is defined in Listing 5.5. If the query is evaluated to the boolean value
false, the subsequent activity of type SemanticSelectInvoke is triggered. Here, the
responsiveness of the resident is checked by requesting a user interaction. The
corresponding semantic query defined in Listing 5.6. If the resident is responsive,
there is no need for an automatic emergency call and the workflow is completed.
Otherwise, the final activity of type SemanticCommandInvoke is triggered to place
an emergency call via a smartphone app.
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Listing 5.5 defines the SPARQL query for monitoring the health data of a res-
ident. Here, the Role iot:HealthMonitor is searched which can be played for an
entity, i. e., a resident and by the an iot:Thing. The iot:HealthMonitor role has
to provide a Capability for retrieving data of a PhysicalProperty of the resident.
Therefore, the retrieved data represents the health state of the resident. The value
is filtered to be larger than zero. The value is considered to express the severity of a
health problem and is defined as a xsd:float between [0..100]. If the query produces
results, at least one of the residents may have a critical health condition.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iot: <http://www.semanticweb.org/IoTUDresden#>

ASK

WHERE {

?entity rdf:type iot:PhysicalEntity .

?thing rdf:type iot:Thing .

?thing iot:canPlay iot:HealthMonitor .

iot:HealthMonitor iot:canBePlayedFor ?entity .

iot:HealthMonitor iot:hasCapability ?cap .

?cap iot:hasCommand ?cmd .

?cmd rdf:type ?cmdType .

?cmdType rdfs:subClassOf iot:GetDataCommand .

?cmd iot:accessesDevice ?device .

?device iot:senses ?physProp .

?physProp iot:physicalPropertyData ?currentValue .

FILTER(?currentValue > 0.0)

}

Listing 5.5: Query for MonitorHealthData SemanticAskInvoke.

Listing 5.6 defines the SPARQL query for monitoring the responsiveness of a res-
ident. Here, the boolean physicalPropertyData representing the responsiveness of
a resident is retrieved. The data is generated by the execution of a GetDataCom-
mand within the role iot:InteractionDevice. The role has to be playable for an
iot:PhysicalEntity, i. e., a resident. Furthermore, the role iot:InteractionDevice has
to be playable by an iot:Thing. As the query type is specified as SemanticSelectIn-
voke, the data is retrieved and made available at a data output port of the respective
workflow activity.
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iot: <http://www.semanticweb.org/IoTUDresden#>

SELECT ?responsive

WHERE {

?entity rdf:type iot:PhysicalEntity .

?thing rdf:type iot:Thing .

?thing iot:canPlay iot:InteractionDevice .

iot:InteractionDevice iot:canBePlayedFor ?entity .

iot:InteractionDevice iot:hasCapability ?cap .

?cap iot:hasCommand ?cmd .

?cmd rdf:type ?cmdType .

?cmdType rdfs:subClassOf iot:GetDataCommand .

?cmd iot:accessesDevice ?device .

?device iot:senses ?physProp .

?physProp iot:physicalPropertyData ?responsive .

}

Listing 5.6: Query for GetResponsiveness SemanticSelectInvoke.

Listing 5.7 defines the SPARQL query for triggering an AutomaticEmergencyCall.
Here, the playable role AutomaticEmergencyCaller with a corresponding Capability
and OnCommand is searched.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iot: <http://www.semanticweb.org/IoTUDresden#>

SELECT ?cmd ?thing

WHERE {

?entity rdf:type iot:PhysicalContext .

?thing iot:canPlay iot:AutomaticEmergencyCaller .

iot:AutomaticEmergencyCaller iot:canBePlayedFor ?entity .

iot:AutomaticEmergencyCaller iot:hasCapability ?cap .

?cap iot:hasCommand ?cmd .

?cmd rdf:type ?cmdType .

?cmdType rdfs:subClassOf iot:OnCommand .

}

Listing 5.7: Query for AutomaticEmergencyCall SemanticCommandInvoke.
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Figure 5.6: Goal-based Workflow Model for Application Scenario.

Goal-based Workflow Model

In contrast to the semantic query-based workflow model, the goal-based workflow
model only includes activities of the type GoalInvoke. These specify their respective
activity goals as Strings matching the names of the goals from the goal model. The
first activity defines the goalDetect Critical Health Situation. This goal is eval-
uated at runtime, according to the available Things and playable Roles. Within the
goal description of the activity, we also specified to consider the quality parameter
Credibility. Therefore, the backward reasoning inside the goal model determines
the leaf goal Get Health Data from SmartWatch to fulfill the upper goal of the
activity. Then, the mapped SPARQL query is available for execution. The subse-
quent goals are defined respectively for detecting the responsiveness of the resident
and for placing an emergency call. While reducing the expressiveness of the directly
modeled semantic queries, the goal-based workflow model simplifies the workflow
modeling process and allows for the reusability of activity goals. Furthermore, in a
real-world scenario all of the activity types can be used within one workflow model
to provide any degree of abstraction. In case of the goal modeling, a domain expert
is necessary to provide both, the goal model itself and the mappings to semantic
queries based on the domain-specific ABox of the created ontology.
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5.4 Summary

In this chapter, we presented the models for adaptive workflow activities in the IoT.
This includes the TBox of a novel ontology for the modeling of role-based Things
with context-sensitive capabilities, which is designed to be applied in any IoT appli-
cation scenario. The ontology represents the major contribution of this work to the
resource perspective of IoT-aware workflow management. In addition, parts of the
modeling within the resource perspective, the user perspective and the workflow
perspective are domain-specific. Therefore, we revisited the application scenario
introduced in Section 1.2 and provided the respective models for each perspective
to enable context-sensitive activity-level adaptation of the scenario workflow.
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6 Architecture for Adaptive Workflow
Activities in the IoT

In this chapter1, we introduce the overall system architecture and its main compo-
nents for adaptive workflow activities in the IoT. This includes the Semantic Access
Layer (SAL) as the major contribution to the workflow perspective of IoT-aware
workflow management. The SAL serves as a middleware for the context-sensitive
discovery and invocation of Things as workflow resources.

6.1 Overview of the System Architecture

The proposed system architecture for adaptive workflow activities in the IoT is
structured into three-tier as depicted in Figure 6.1. The tiers are: 1) the workflow
execution engine, 2) the Semantic Access Layer (SAL) and 3) IoT services existing
in the cyber world. However, IoT services enable the integration of the physical
world, too. Each Thing existing in the physical world provides sensing or actuat-
ing capabilities. The capabilities of these Things are accessed via IoT services as
proposed in [BBDL+13]. As the IoT services are considered as a given, we only
describe the workflow execution engine and the Semantic Access Layer (SAL).

Workflow Execution Engine

The workflow engine executes model-based workflows that include specialized types
of activities extended to include either goals or SPARQL queries. SPARQL queries
are interpreted directly to discovery fitting Things considering the runtime context
and capability constraints provided by the Role concept. In addition, the workflow
modeler can use high-level goals to define the intention of activities. These goals are
then translated into domain-specific SPARQL queries via a mapping description. A
workflow modeler can use the goals originating from a Tropos goal model including
quality parameters.

1This chapter is partially based on [HSK+16], [HSS16], [HSKS16], [SHS15] and [SHS16]
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Figure 6.1: System Architecture for Adaptive Workflow Activities in the IoT.

Semantic Access Layer

The SAL has access to a knowledge base, which contains the proposed ontology for
the role-based modeling of context-sensitive Things as described in Section 5.1.1. In
addition, the knowledge base includes the domain-specific ontology ABox describing
Things, Roles, their capabilities and context properties. The SAL is responsible
for querying the knowledge base according to the SPARQL queries, which either
were translated from activity goals or are directly included within the workflow
activities. Backward reasoning is used by the SAL to determine which leaf goals
need to be satisfied to reach the specified goal of the workflow activity as described
in Section 2.2.2. Based on these leaf goals, the SAL then translated a domain
specific SPARQL query using a mapping description. After executing a SPARQL
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query, the SAL transforms the result into an IoT service call based on the found
Capability and the desired Command. The latter includes includes a reference
to an IoT service method. The result of the service method invocation is fed
back to the workflow engine. In this manner, the SAL implements the Resource
Discovery, Resource Estimation and Resource Allocation phases of the Resource
Management perspective within the IoT. Furthermore, the Resource Monitoring
phase is implemented by updating the ontology through the execution of SWRL
rules and resolving the possible inconsistencies.

Example Information Flow

In the following, we present an exemplary information flow: When a goal-based
activity is executed by the process engine, the included goal and quality constraints
are sent to the SAL via a REST service. The SAL uses the approach of backward
reasoning [GMNS03] from the goal modeling research domain to select a set of
leaf goals from the Tropos goal model. These leaf goals have been modeled to
represent capabilities of Things. Using a mapping description, the leaf goals are
translated into a SPARQL query. Subsequently, the SAL executes the SPARQL
query on the knowledge base. The query result may contain a set of available
Role Capabilities with an associated Command that fulfills the properties of the
query. In this case, the IoT service method specified by the Command is invoked.
Depending on the type of Command, either sensor data is retrieved or an actuating
command is executed. Finally, the IoT service response is semantically annotated
by the SAL and forwarded to the workflow engine. These transformation steps are
called lowering and lifting [KNM10].

6.2 Specification of System Components

In the following, we describe the relevant components of the system architecture
depicted in Figure 6.1. These are the Knowledge Base as part of the resource
perspective, the Goal and Workflow Model in the context of the user perspective
and the Semantic Access Layer as part of the workflow perspective. Even though
the workflow execution engine is not a contribution in the context of this work, we
shortly introduce the Process Execution System for Cyber-Physical Systems (PRO-
tEUS) [SHS15] for executing the goal-based and semantic query-based workflows.
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6.2.1 Resource Perspective

From an architecture point of view, the resource perspective includes the knowledge
base for managing the ontological model. The knowledge base includes the TBox
of the created ontology for modeling role-based Things in the IoT. In addition, the
domain-specific ABox of the ontology is managed within the knowledge base to
represent and update the physical and the cyber state of PhysicalEntities, Things
and their playable Roles.

6.2.2 User Perspective

The user perspective includes the goal model and the mapping description. The
modeling of the user perspective is introduced in Section 5.3.2, here we discuss
their integration in the overall system architecture. The goal model includes all the
high-level user goals within a specific application scenario as well as their mapping
descriptions. As shown in Figure 6.1, the goal model uses the ontological model
for the mapping descriptions and provides the goals for the modeling of workflow
activities. With respect to the SAL, the goal model serves for the runtime reasoning
from high-level goals to leaf goals. And for their mapping to SPARQL queries.

6.2.3 Workflow Perspective

From an architectural point of view, the workflow perspective includes the workflow
engine, model and the Semantic Access Layer. The latter is the main contribution
of this work within the field of IoT-aware workflow management.

Workflow Model

The workflow model either consists of goal-based or semantic query-based activities.
It is executed by the workflow engine and not exposed to other system components.
However, the execution of goal-based and semantic query-based activities invokes
a service method call to the SAL for performing the resource discovery, estimation,
allocation, and monitoring.

Workflow Engine

The process execution system for cyber-physical systems PROtEUS consists of sev-
eral components designed to meet the specific challenges of CPS [SHS16]. It has
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Figure 6.2: Overview of the PROtEUS workflow engine components.

been designed in alignment with the reference architecture for workflow manage-
ment systems proposed by the WfMC [GdV98, SHS16]. The core of PROtEUS con-
sists of a generic workflow meta-model describing the structure of workflow models
and a workflow engine responsible for instantiating these models and executing ac-
tual workflow instances [SKNS14, SHS16]. The meta-model is designed with regard
to the properties of CPS [SKNS14]. In general, it follows a component-oriented view
of workflow elements. Workflows and activities can be composed hierarchically and
ports describe their input and output with regard to control and typed data flow.
Transitions between these ports allow for the modeling of concrete data and control
flow between activities. Access to the workflow control functionality is achieved by
the workflow manager. A complex event processing (CEP) engine is able to process
large amounts of external sensor data and trigger high-level events within special
activity types [SHS16]. PROtEUS also offers a service platform for deploying and
calling internal services, e. g., Open Services Gateway initiative (OSGi) services, and
an external service invoker. Human interactions are enabled by a human task han-
dler sending interaction requests to interactive clients [SHS16]. The bi-directional
communication with the workflow execution system from remote clients for moni-
toring, interaction and control purposes is enabled by a WebSocket server [SHS16].
The overall system architecture is illustrated in Figure 6.2. The interfaces between
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Figure 6.3: System Components of the Semantic Access Layer

the cyber world and the physical world are represented by the software controlled
sensors and actuators of the CPS [SHS16].
At runtime, the engine instantiates a workflow model and executed activities

according to the modeled control and data flow. Through subtype polymorphism,
the workflow engine is able to call a specific execution method according to the type
of the scheduled activity for execution. There exist special activity types for control
flow logic, e. g., splits and loops, data flow logic and for the invocation of various
types of services. Through specializations of an atomic or a composite activity
type, the meta-model can easily be extended to support a wide range of workflow
elements.

Semantic Access Layer Middleware

Figure 6.3 gives an overview of the SAL’s system components. Conceptually, the
SAL serves as a middleware mediating between the workflow engine and various
IoT services. The SAL provides a REST service interface to receive SemanticIn-
voke queries and GoalBasedInvoke instances from a client, e. g., workflow execution
system. Additionally, the SAL integrates a knowledge base for domain-specific on-
tologies that describe role-based Things in the IoT. At runtime, the ABox of the
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knowledge base includes all available Things, Roles, PhysicalEntities and their re-
lations as well as context data. Among others, context information includes the
absolute or relative location of a Thing. In the following, we introduce each com-
ponent in a chronological order given a service call from the PROtEUS workflow
engine for a goal-based activity.

Resource Discovery: At first, the resource discovery component receives the
service call from the workflow engine. The request is evaluated for the inclusion of
a SPARQL query or a goal. In the latter case, the goal is transferred to the Goal
Reasoning and Transformation component.

Goal Reasoning and Transformation: In the event of a received GoalBasedIn-
voke instance, the SAL uses the goal model and the mapping description to generate
a semantic query. As described in Section 4.2.2, the first step in generating a seman-
tic query is the selection of a set of leaf goals contributing to the satisfaction of the
user-defined activity goals. The SAL uses backward reasoning, cf. Section 2.2.2, to
select the desired leaf goals in polynomial time. In case the workflow modeler pro-
vided quality parameters within the GoalBasedInvoke activity, these are included
in the reasoning process to find the best fit set of leaf goals which satisfy the activ-
ity goal as well as contribute to the specified quality parameter. With the help of
the mapping descriptions, the leaf goals are then substituted to a set of SPARQL
queries. Subsequently, the semantic query is transferred to the SPARQL Query
Engine.

SPARQL Query Engine: Upon receiving or generating a semantic query, the
query engine executes the SPARQL query on the knowledge base. The query result
is then transferred to the resource estimation component.

Resource Estimation: The resource estimation component defined an order of
priority over the query results. As the query result does only include fitting re-
sources in terms of an available canPlay relation between a Thing and a Role as
well as the optional fulfillment of quality parameters, the resource estimation is
based on a simple load balancing strategy. This counts the plays relations of the
Things in the query result and orders them accordingly. Then, the orderd query
result is transferred to the resource allocation component.

Resource Allocation: The resource allocation component is responsible for cre-
ating the plays relation between a Thing and a Role for representing the state
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of runtime allocation of Things as workflow resources. In general, the allocation
of a resource is considered to be active until the workflow instance is completed,
i. e., the control flow reached the end control flow port of the modeled workflow.
Once the plays relation is created, the referred service method of the related Com-
mand is invoked to either gather sensor data or trigger an actuator. Even though,
the knowledge base includes sensor data in the physicalDataProperty data property
assertions, they are only eventually consistent as the resource monitoring compo-
nent updates the data properties following a lazy fetch strategy. Therefore, in case
of a GetDataCommand sensors also have to be allocated and the respective ser-
vice method invoked to gather the data at runtime. This data is then fed back
to the workflow engine, where it becomes available as a data object within the
corresponding workflow instance. In case of a OnCommand or OffCommand, the
provided service methods are invoked.

Resource Monitoring: The resource monitoring component has several function-
alities. At first, it removes the created plays relation axioms of allocated resource
when the corresponding workflow instance is finished or fails. Furthermore, all Get-
DataCommands of the ontology ABox are continuously executed to update the as-
sociated data properties of the PhysicalEntities. However, this update mechanism is
following a lazy fetch strategy to mitigate the processing load of the knowledge base.
The lazy fetch updates the physicalDataProperties whenever axioms are created ei-
ther by the SWRL rule engine, or the resource allocation component. However,
the resource monitoring can also choose a continuous fetch strategy where sensor
data is retrieved and updated according to a discrete time interval. The eventual
consitency of the physicalDataProperties is necessary for enabling SPARQL queries
to use the restriction keyword FILTER. These are extensively used in the Seman-
ticAskInvoke activities to filter query results according to some data threshold. In
addition, the resource monitoring includes the runtime check for inconsistencies
regarding the canPlay and plays as well as the canBePlayedFor and isPlayedFor
relations. If such inconsistencies occur, the respective plays and isPlayedFor rela-
tions are removed for no longer available workflow resources.

SWRL Rule Engine: The SWRL rule engine synchronizes the knowledge base
whenever there is an axiom added, updated or removed from the knowledge base.
For the ontology to represent the runtime state of the physical world, either an ex-
ternal context service is required or extensive data-driven rules have to be modeled
and the resource monitoring needs to use the continuous fetch strategy.
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6.3 Summary

In this chapter, we introduced the overall system architecture and its main compo-
nents for adaptive workflow activities in the IoT. We presented the functionality and
general flow of data between all system components. Furthermore, we introduced
the architeture of the Semantic Access Layer (SAL) as the contribution IoT-aware
workflow management. The SAL is a middleware for the context-sensitive discovery
and invocation of IoT service based on workflow activity goals or semantic queries.
Withing our ontology, the service methods are included as part of the Command
concept.
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7 Implementation of Adaptive Workflow
Activities in the IoT

In this chapter 1, we present the implementation of our proof-of-concept prototype
of the Semantic Access Layer (SAL) as plugins to the OpenHAB platform. Further-
more, we briefly introduce some technical aspects of the related PROtEUS WfMS
for modeling and executing IoT-aware workflows based on our extended workflow
metamodel.

7.1 Resource Perspective

The resource perspective includes the knowledge base for accessing the ontological
model and associated data. We use the OWL API 2 version 3.4.3 and the HermiT
OWL Reasoner 3 in version 1.3.8 within our work to infer the context changes from
SWRL rules and other object property assertions.

7.2 Workflow Perspective

Within the workflow perspective, we describe the PROtEUSWfMS as the execution
engine for our IoT-aware workflows and the Semantic Access Layer (SAL) as the
middleware for context-sensitive resource discovery and invocation.

7.2.1 PROtEUS

PROtEUS is implemented as a Java-based prototype and is currently employed
within a Smart Home Lab [SHS16]. As the Eclipse Modeling Framework (EMF)
[SBMP08] provides a large set of tools for creating metamodels, models, and im-
plementations in an automated way, we based the workflow metamodel and imple-
mentation of the engine on Ecore [SHS16]. An integrated modeling environment

1This chapter is partially based on [HSK+16, HSS16, HSKS16, SHS16]
2The OWL Api is available at http://owlapi.sourceforge.net/.
3The HermiT OWL Reasoner is available at http://www.hermit-reasoner.com/.
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Figure 7.1: Components of the Semantic Access Layer Core

realized as an Eclipse Plugin based on Graphiti [BGK+11] supports the workflow
designer with defining workflows for PROtEUS [SKNS14]. The event processing
engine Esper [BV07] is used for implementing the CEP engine component [SHS16].
The model-based Smart Home middleware Open-HAB [SZZ14] is able to collect
and unify sensor data from various sensors [SHS16]. It serves as the main source
of event data for the CEP engine in PROtEUS and is used in combination with
the ontology for role-based Things in the IoT by the SAL to find Smart Home
services [HSS16]. PROtEUSs service platform is based on the OSGi component
platform [All03]. Using protocol specific adapters, the service invoker is able to call
OSGi services running on the local platform or services on remote servers [SHS16].
We implemented adapters for calling SOAP, REST and XMLRPC services, local
Java classes, to invoke robot services on ROS [QCG+09], and to call services on the
OpenHAB middleware [SHS16]. To realize the WebSocket server, we use an imple-
mentation of the Web Application Messaging Protocol (WAMP) [FM11]. Clients
supporting the processing of human tasks and monitoring of workflows are imple-
mented on Android and tabletop devices [SSMS14].
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Figure 7.2: Eclipse-based workflow model editor

7.2.2 Semantic Access Layer

Figure 7.1 depicts the core components of the SAL in UML notation. We provide
public service-based interfaces for accessing the SAL’s functionality. All compo-
nents are directly integrated as plugins into the OpenHAB Home project [SZZ14].
The ResourceDiscoveryService enables SPARQL and goal-based access to the on-
tological knowledge base. In correspondence with the introduced SemanticInvoke
workflow activities, the SemanticAccessLayerService provides methods to either
execute a select query, send a command, execute an Ask query, or to execute a
goal. The implementation of the semantic service directly accesses available things,
items, and events from the OpenHAB platform. In addition, it uses the semantic
resources within the SAL and exposes their functionalities as REST services. In
the case of a goal-based activity, the semantic access layer service delegates the goal
to query transformation to the resource discovery service. Here, the goal reasoning
service is used to transform a goal with optional quality parameter into a semantic
query based on a mapping description and Tropos goals model. The transforma-
tion is performed by using backward reasoning to find fitting sets of leaf goals to
satisfy the input goal. The ordering of the sets is performed by their contribution
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to the specified quality parameter. If no quality parameter is specified, the sets are
ordered by size from smallest to biggest. The transformed set of queries is then
used to execute the included queries in sequential order until a result is generated.
In addition, the semantic reasoning service provides access to the ontology via the
OWL API and uses the HermiT Reasoner to infer object property relations defined
in SWRL rules. The semantic reasoning service implements the monitoring phase of
workflow management and therefore detects and resolves context mismatches. This
includes the monitoring of existence of plays relations without the corresponding
canPlay relation.

7.3 User Perspective

In the user perspective, we extended the existing PROtEUS workflow model editor
in alignment with the metamodel extension. Therefore, it is possible to include
semantic query-based as well as goal-based workflow activities as part of a work-
flow model. Figure 7.2 shows the workflow model editor with the corresponding
graphical user interface for drag and drop modeling of IoT-aware workflows. The
property window at the bottom allows for the specification of goals, related quality
parameters, as well as semantic queries.

7.4 Summary

In this chapter, we described the technical properties of the proof-of-concept im-
plementation for the contributions of this work. This includes an extended work-
flow modeling editor and the Semantic Access Layer (SAL) middleware for the
context-sensitive resource discovery and invocation. The prototype is implemented
in conjunction with the existing PROtEUS workflow management system for cyber-
physical systems. Furthermore, the SAL is implemented as an OpenHAB plugin
to provide a homogeneous access to local sensors and actuators within our smart
home test lab.
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In this chapter 1, we evaluate our contributions regarding the fulfillment of the
criteria for IoT-aware workflow management introduced in Section 3.2. First, we
revisit the defined goals of this work to provide a foundation for the identification of
individual features to test. Then, we introduce an extended version of the example
application scenario introduced in Section 5.3. Furthermore, we provide the corre-
sponding extended ABox of the ontology for role-based Things in the IoT. Based
on the identified features to test, we develop several test cases within the appli-
cation scenario and provide the entailed workflow models, goal models, mapping
descriptions, SPARQL queries, and SWRL rules.

8.1 Goal and Evaluation Approach

Figure 3.5 shows the targeted goals of this work within the classification scheme de-
veloped in Chapter 3. The main contributions of this work target the requirements
Context-aware (RQ CA), Query support (RQ QS), Transparency (RQ Tra),
Resolution strategy (RQ RS), and Modeling support (RQ MS). Secondary
requirements are the Dynamics (RQ Dyn), Fault tolerance (RQ FT), Flexibil-
ity support (RQ FS), Heterogeneity (RQ Het), Quality of Service (RQ QoS),
and Quality of Context (RQ QoC). The real-time processing as well as the pro-
cessing of data streams are not included in the goals of this work. However, we
also conduct a performance evaluation in Section 8.3. To generate the necessary
test cases for evaluating the individual requirements, we revisit the relations of re-
quirements to contributions as shown in the following Table 8.1 as an extension to
Table 3.8 in Section 3.4.1.

1This chapter is partially based on [HSK+16, HSS16]
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Table 8.1: Revisited relations of contributions to requirements.

Requirement
Relation to Contribution

Test Case
Middleware Ontology Workflow metamodel Goal model

RQ FT X - - - 1

RQ CA - X - -
2

RQ Het - X - -

RQ MS - - X - 3

RQ Dyn X X - -

4RQ FS X X - -

RQ QoC X X - -

RQ QS X X X - 5

RQ RS X X - X 6

RQ Tra - X X X
7

RQ QoS - X X X

We clustered the requirements for their relation to the four contributions of this
work. In result, we generated seven groups with different subsets of relations to the
contributions. We choose to separate the test cases in this way, to focus and limit
their specification on the relevant parts of our contributions. In the following, we
present the approach for each of the seven test cases.

8.1.1 Definition of Test Cases

To define the test cases according to their usage of specific system components and
models, we revisit the Table 3.1 and Table 3.2 which define the relation between the
requirements and the phases of resource and workflow in the IoT. From these, we
identified the relevant phases in IoT-aware resource and workflow management for
each test case according to their encapsulated requirements as defined in Table 8.1.
The results are presented in the following Table 8.2 and provide the foundation for
the specification of the test cases. In the following, we will define the approach for
each test case.
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Table 8.2: Relation of test cases to resource and workflow management.

Test Case
Resource Management Workflow Management

Model. Disc. Est. Alloc. Mon. Model. Conf. Exec. Adapt.

1 - - - - - - - - X

2 X X - - X - - - -

3 - - - - - X - - -

4 X X - - X X - X X

5 - X - - - - - -

6 - - - - - - - X -

7 - - X - X X - - -

Test Case 1

Test case 1 aims at evaluating the fault tolerance within the adaptation phase
of workflow management and is related to the SAL middleware. As defined in
the classification scheme in Table 3.4, fault tolerance can be provided by either re-
allocating resources, supporting virtual consistency or by supporting cyber-physical
consistency. These three levels are additive. However, in the definition of the goals
of this work as depicted in Figure 3.5, we choose that the fault tolerance only has
to be supported by re-allocation of resources. Therefore, test case 1 simulates a
context change for an allocated resource such that the new context does not allow
the Thing to play the Role in which it is currently allocated. In consequence, the
resource monitoring component of the SAL should detect the context mismatch
and trigger a re-allocation.

Test Case 2

Test case 2 aims at evaluating the context-aware modeling of heterogeneous
Things within the modeling, discovery and monitoring phases of resource manage-
ment and is related to the ontology for role-based Things. As defined in the classi-
fication scheme in Table 3.4, context-aware modeling can be provided by modeling
location-based context, context-sensitive capabilities, and the context-sensitive re-
lations between Things. In this test case, we address all of these aspects because
we choose them as a goal of this work. In addition, heterogeneity can be bridged by
modeling model-based input and output data, Things, and semantic Things. In this
test case, we consider all these aspects. Therefore, test case 2 includes the modeling
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of similar Things able to play the same Role to bridge their heterogeneity. Further-
more, to demonstrate the context-awareness of our contribution, the application
scenario includes the discovery and monitoring of Things based on their current
location and capabilities. In addition, we provide an SWRL rule which implements
a role implication. Thus, when a specific role 1 is played, the related Thing also
has to play the specific role 2.

Test Case 3

Test case 3 aims at evaluating the modeling support within the modeling phase
of workflow management and is related to the workflow metamodel. As defined
in the classification scheme in Table 3.4, modeling support can be provided by
modeling sensors, actuators, and context-aware Things with complex capabilities.
Here, the modeling support is related to the workflow model. Therefore, it relates
to the expressiveness of the workflow model regarding the specification of resource
requirements. Test case 3 provides example semantic queries to demonstrate the
specification of activity requirements related to sensors, actuators, and context-
sensitive Things.

Test Case 4

Test case 4 aims at evaluating the dynamics, the flexibility support, and the
Quality of Context requirements using the ontology and the SAL. More specif-
ically, test case 4 is related to the modeling, discovery and monitoring phase in
resource management as well as the modeling, execution and adaptation phase in
workflow management. The dynamics have to be supported in syntactic, model-
based, and semantic resource discovery. The flexibility support includes late bind-
ing, using context and resource constraints as well as the continuous monitoring
and re-allocation of workflow resources. The Quality of Context can be expressed
within context parameters, use an update mechanism, and provide a real-time con-
sistency in terms of cyber-physical consistency. However, in this work we limited
the goals to allow for the expression of context parameters and including an up-
date mechanism. Therefore, test case 4 includes a late binding scenario based on
semantic queries for defining several resource constraints. These include a syntac-
tic definition, i. e., individual, and the definition of semantic constraints for the
resource discovery. Moreover, the continuous monitoring and re-allocation is also
included in test case 1. However, in test case 4 the monitoring and re-allocation is
shown in an extended application scenario for resolving a context mismatch.
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Test Case 5

Test case 5 aims at evaluating the query support within the discovery phase of
resource management and is related to the SAL middleware, the ontology, and the
workflow metamodel. As defined in the classification scheme in Table 3.4, query
support can be provided by exact match queries, range queries and by semantic
queries. Our approach is designed to support semantic queries which entails the
support for exact match queries and range queries. Test case 5 provides example
semantic queries to demonstrate the specification of the required query types. Fur-
thermore, we show their definition as part of a workflow model and execute the
queries to provide the results within the workflow engine.

Test Case 6

Test case 6 aims at evaluating the resolution strategy within the execution phase
of workflow management and is related to the SAL middleware, the ontology, and
the goal model. As defined in the classification scheme in Table 3.4, a resolution
strategy can use context parameters, QoC criteria, and QoS criteria to resolve the
ambiguity in discovering resources. Test case 6 provides an example goal model
and a goal-based workflow model. Based on these, we demonstrate the resolution
within resource discovery as part of the SAL.

Test Case 7

Test case 7 aims at evaluating the transparency in workflow modeling and the
specification of Quality of Service parameters for the estimation and monitoring
of Things. Therefore, test case 7 includes the ontology, the workflow metamodel and
the goal model. As defined in the classification scheme in Table 3.4, transparency
for workflow modelers can be provided by allowing the modeling of resource require-
ments, resource constraints and intentions of activities. Furthermore, the Quality
of Service can be provided by modeling support, QoS-aware resource discovery and
continuous QoS monitoring. This work aims at the QoS-aware resource discovery.
Test case 7 includes the modeling of QoS parameters as part of a goal model. Fur-
thermore, we use these goals to specify the intention of a workflow activity in a
workflow model and execute it to demonstrate the QoS-aware resource discovery.
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Figure 8.1: Extract of the PROtEUS workflow model editor’s property pane

8.2 Scenario Evaluation

In order to evaluate the test cases within our proof-of-concept implementation, we
extend the smart home application scenario introduced in Section 5.3 towards an
AAL scenario. We use the PROtEUS WfMS described in [SHS15] with an ex-
tended workflow meta-model according to the concepts presented in Section 4.3.1.
Figure 8.1 shows an example of the semantic query annotation created with the
workflow editor, which allows us to model semantically annotated activity. The
SPARQL query is contained as a property in the respective activity. In the same
way, we can annotate an activity with a goal from the Tropos goal model. The
SAL is configured to integrate the ontology for role-based Things in the IoT. The
OpenHAB (Open Home Automation Bus) [SZZ14] platform serves as an IoT service
provider and low-level middleware supporting a unified view on device capabilities
in the Smart Home domain. However, OpenHAB does not provide semantic descrip-
tions for these functionalities, which is why we model the device functionality with
the help of our ontology to enable dynamic IoT service discovery and invocation
via the SAL.
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8.2.1 Ambient Assisted Living Setting

Applications in the Ambient Assisted Living (AAL) domain employ sensors, actu-
ators, and software components in order to support elderly people in living a self-
determined life. In the following, we present a modified version of the automatic
emergency call scenario from [SHS15]: Alice and Bob are living in an AAL-enabled
home. Bob is in the kitchen, listening to his favorite music while cooking. Suddenly,
his blood pressure drops and Bob faints. The desired reaction to this situation is as
follows: When Bob faints, the Smart Home should detect his critical health situa-
tion. Upon this detection, Bob should be contacted and asked for his state of health.
If he is unresponsive, the Smart Home should place an automatic emergency call.
In the meantime, all critical appliances, e. g. the stove, in the apartment should be
turned off to prevent further hazardous situations. When medical personnel arrives
and is authenticated at the front door, the door should unlock automatically and
Bob can be provided with medical attention.

8.2.2 Resource Perspective

First, we selected the devices to be integrated into OpenHAB for implementing the
AAL scenario: the Kodi Open Source Home Theatre Software running on a Rasp-
berry Pie computer for playing both Bob’s favourite music and an audio message
asking for Bob’s health status; a digitalSTROM connector powering the kitchen
stove; the Libelium eHealth kit for monitoring Bob’s health status. The front door
lock is controlled by a HomeMatic KeyMatic lock. In order to identify medical
personnel at the front door, we apply an NFC card-based authentication mecha-
nism. Each device is connected to a central OpenHAB server via Ethernet, Wifi,
Bluetooth or USB. For every device, we created the appropriate ABox statements
including the corresponding Things, Roles, capabilities, and their relative locations.

Role-based Resource Ontology

We added the individuals and property as well as data object assertions to the ABox
of the ontology for role-based Things2. The following Figure 8.2 gives an overview
of the individuals and their relations for the extended application scenario.

2The added axiomns for the extended application scenario are listed in the Appendix Section 10.2
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Figure 8.2: Extended ontology Abox for test case evaluation.
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Figure 8.3: Tropos Goal Model for test case evaluation.

8.2.3 User Perspective

In the user perspective, we provide a basic goal model for evaluating the test cases.
The included goals do not cover all of the capabilities within the smart home sce-
nario. Within each test case, we discuss the application of the goals for modeling
and provide the respective mapping description.

Goal Model

Goal modeling for the scenario process was conducted within the Tropos goal mod-
eling language both for the test cases. The model is illustrated in Figure 8.3. It
includes all functional goals and their relations that lead to workflow-based health
assistance to the Smart Home residents. The leaf nodes of the goal model represent
capabilities, i. e., role-based capabilities, that contribute to the satisfaction of the
respective upper goals. From this model follows, that in order to detect a critical
health situation, the Smart Home needs to include at least one device that is able
to produce health data, e. g., smartwatch, smartphone, or dedicated medical sen-
sor. The goal model enables backward reasoning as described in Section 2.2.2. The
leaf goals are marked with a bold edge and represent the capabilities provided by
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Figure 8.4: Extended Automatic emergency call scenario.

the Things and encapsulated within Roles. For each leaf goal, there exists a map-
ping to a SPARQL query in the mapping description. Non-functional requirements,
i. e., Quality of Service parameters, are illustrated as rectangles with round edges.
Each goal may contribute positively (+) or negatively (-) to any number of non-
functional requirements. For example, in order to open the front door to receive
medical personnel, the workflow can either open the door immediately, possibly
violating the privacy of the residents, or use authentication.

8.2.4 Workflow Perspective

In the workflow perspective, we provide an extended workflow model for the appli-
cation scenario shown in Figure 8.4. The first activity is modeled inside a loop and
executed every 10 seconds. We use the first activity of type GoalBasedInvoke to
illustrate the concept of the additional goal-based abstraction layer. The intended
behavior of the process step is to retrieve sensor data from devices that provide
the capability to measure health-related data, e. g., blood pressure, and are related
to a resident. Therefore, we add the goal Detect Critical Health Situation and the
non-functional requirement of credibility from the goal model depicted in Figure 8.3
to the properties of the activity. In the case of a critical health state, the loop is
discontinued and the subsequent activities are executed. The following activity de-
tects if the resident is in fact unresponsive. In this case, an automatic emergency
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call is place. Then, the next two activities are executed in parallel to switch off all
appliances, e. g., stove, in the smart home to prevent further safety hazards. In ad-
dition, the other activity tries to get the information indicating an authentication
of medical personnel. Once the medical personnel arrived at the front door and
used their NFC card, the final activity opens the front door such that the medical
personnel can enter the smart home and treat the resident.

8.2.5 Execution of Test Cases

In the following, we conduct the execution of the seven test cases defined in Sec-
tion 8.1.1 to evaluate the fulfillment of the targeted requirements with this work.

Execution of Test Case 1

In this test case we evaluate the fault tolerance within the SAL. In the scenario,
we assume that the iot:SmartWatch individual of type iot:Thing is related to the
iot:HealthMonitor individual of type Role via the plays and the canPlay relation:

plays(SmartWatch,HealthMonitor)
canP lay(SmartWatch,HealthMonitor)

The associated rule, defining the constraints for the canPlay relation is as follows:

hasDevice(SmartWatch,HealthSensor) ∧
usesDevice(provideHealthStatus,HealthSensor) ∧

hasCapability(HealthMonitor, provideHealthStatus) ∧
hasCapability(InteractionDevice, provideResidentResponsiveness) ∧

isAttachedTo(SmartWatch, ?x) →
canP lay(SmartWatch,HealthMonitor) ∧ canBeP layedFor(HealthMonitor, ?x)

When removing the smartwatch from the arm of a resident and updating this
context change in the ontology by removing the axiom isAttachedTo(SmartWatch,
Bob), the swrl rule inference also excludes the axiom canPlay(SmartWatch, Health-
Monitor). The SAL now only detects the plays relation representing a context
mismatch:

plays(SmartWatch,HealthMonitor)

The SAL then removes this axiom and reruns the associated SPARQL query to
find another fitting resource. As allocated resources are directly invoked for the
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retrieval of data or the triggering of an actuating task, the re-allocation will often
be of no effect to the executed workflow. However, in the case of blocking GetDat-
aCommands, e. g., using an interaction device for user feedback, the re-allocation
will produce a noticeable effect.

Execution of Test Case 2

In this test case we evaluate the modeling of context-aware and heterogeneous
Things and provide a role implication rule within the ontology. In the scenario,
we assume that the iot:SmartHome individual of type iot:PhysicalEntity contains
a iot:Corridor of type iot:PhysicalEntity which in turn contains a iot:FrontDoor.
Through the transitive contains relation, the reasoner infers that the front door is
contained in the Smart Home:

contains(SmartHome, FrontDoor)

Furthermore, we introduce the role iot:ResponsiveResident to represent typical
state of a resident. We define the restriction to play this role as follows:

hasProperty(?x,ResponsiveStatus) ∧
physicalPropertyData(ResponsiveStatus, true) →

plays(?x,ResponsiveResident) ∧ canP lay(?x,ResponsiveResident)

Even though, we did not specify PhysicalEntities to be able to play roles. The
open-world assumption3 in OWL allows for such axioms. Based on this, we define
the following role implication such that a resident who is responsive also open doors,
i. e., play the role of a door opener, if he is in the same location as the door:

plays(?x,ResponsiveResident) ∧ contains(?y, ?x) ∧ contains(?y, FrontDoor) →
canP lay(?x,DoorOpener)

However, such an implication is only possible after the inferred contains relation
is transferred into an explicit axiom of the ontology. To illustrate how the hetero-
geneity is bridged via the role concept, we provide the following SPARQL query
shown in Listing 8.1:

3The open-world asssumption implies that axioms which are not part of the ontology are consid-
ered to be unknown as the closed world assumption implies that everything that is not stated
in a model is false.
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PREFIX iot: <http://www.semanticweb.org/IoTUDresden#>

SELECT ?x

WHERE {

?x iot:canPlay iot:DoorOpener.

}

Listing 8.1: Get all individuals which can play the role of door opener

the query result is presented in the following:

iot : KeyMaticLock
iot : ResidentBob

Execution of Test Case 3

In test case 3, we show the modeling support for the semantic queries and the
specification of goals in the workflow model editor. Figure 8.5 shows the modeling
of a GoalInvoke activity. In the property window, the goal of the activity is specified
under Invoke Goal. Here, the Detect Critical Health Situation goal from the
Tropos goal model is referenced. Therefore, the SAL can translate the goal into a
semantic query at runtime. In addition, Quality of Service priorities can be specified
under Quality.

Figure 8.5: Workflow model editor view for GoalInvoke.
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Figure 8.6: Workflow model editor view for SemanticAskInvoke.

Figure 8.6 shows the modeling of a SemanticAskInvoke activity. In the property
window, the query is directly specified including the prefixes. Here, the is specified
to detect a critical health situation of a resident. The query only returns a result
if a HealthMonitor detects a sensor value larger than 0.0. In the ontology we use
the PhysicalProperty to express the severity of a critical health situation between
the float values 0.0 and 1.0.

Execution of Test Case 4

In this test case, we evaluate the dynamics, flexibility support, and Quality of Con-
text requirements. We use the query-based activity for continuously monitoring the
health state of a resident shown in Figure 8.6. At first, the query does not provide re-
sults. However, when setting the iot:physicalPropertyData of the iot:HealthStatus of
iot:ResidentBob to 1.0, the query result includes the PhysicaEntity iot:ResidentBob.
To illustrate the update mechanism for the context ontology, we add the axiom:

hasDevice(SmartPhone, InteractionSensor)

Furthermore, we specify the following SWRL rule to implement the monitoring
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of the canPlay relation for smartphones to play the role of an InteractionDevice:

hasDevice(?x, InteractionSensor) ∧
usesDevice(provideResidentResponsiveness, InteractionSensor) ∧

isAvailableIn(?x, ?y) ∧ hasEntity(?y, ?z) ∧ contains(?z,ResidentBob) ∧
hasCapability(InteractionDevice, provideResidentResponsiveness) →

canP lay(?x, InteractionDevice) ∧
canBeP layedFor(InteractionDevice,ResidentBob)

It specifies, that the smartphone must have an InteractionSensor, i. e., typically
a smartphone app with the ability to detect a touch event. Furthermore, the role
InteractionDevice needs to provide the capability provideResidentResponsiveness
which in turn has to be linked to the InteractionSensor. As a location constraint,
we specify that the smartphone need to be available in the context which contains
Bob. At runtime, the rule inferred the following relations:

canP lay(SmartPhone, InteractionDevice)
canBeP layFor(InteractionDevice,ResidentBob)

Execution of Test Case 5

In test case 5 we provide several example queries for the specification of workflow
activities. At first, exact match queries can be used to retrieve a specific resource
as shown in Listing 8.2:

PREFIX iot: <http://www.semanticweb.org/IoTUDresden#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT *

WHERE {

?thing owl:sameAs iot:HealthMonitor .

}

Listing 8.2: Exact match query example.

In itself, the query does not provide a useful result, as it merely returns iot:
HealthMonitor. However, it is useful when extended for the retrieval of a specific role
or its referenced commands. In addition, we provide the following range query to
retrieve all PhysicalEntities with a critical health situation as shown in Listing 8.3:
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PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iot: <http://www.semanticweb.org/IoTUDresden#>

SELECT ?entity WHERE {

?entity rdf:type iot:PhysicalEntity .

?thing rdf:type iot:Thing .

?thing iot:canPlay iot:HealthMonitor .

iot:HealthMonitor iot:canBePlayedFor ?entity .

iot:HealthMonitor iot:hasCapability ?cap .

?cap iot:hasCommand ?cmd .

?cmd rdf:type ?cmdType .

?cmdType rdfs:subClassOf iot:GetDataCommand .

?cmd iot:accessesDevice ?device .

?device iot:senses ?physProp .

?physProp iot:physicalPropertyData ?currentValue .

FILTER(?currentValue > 0.0)

}

Listing 8.3: Range query example.

Execution of Test Case 6

In test case 6, we consider the workflow activity to specify the goal Open Front
Door as shown in Figure 8.7. At runtime, the SAL finds the fitting leaf goal sets
{Open Front Door immediately} and {Authenticate Medical Personel, Open Door}.
If not further specified, the SAL will order the sets by size and choose the first set
of leaf goals. In this case, the includes leaf goal Open Front Door immediately
is chosen and translated into a SPARQL query using the mapping description.

Figure 8.7: Goal-based activity to open the front door.
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Open Front Door immediately ->

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iot: <http://www.semanticweb.org/IoTUDresden#>

SELECT ?cmd ?entity WHERE {

?entity rdf:type iot:PhysicalEntity.

?thing rdf:type iot:Thing .

?thing iot:canPlay iot:DoorOpener .

iot:DoorOpener iot:hasCapability ?cap .

iot:DoorOpener iot:canBePlayedFor ?entity .

?cap iot:hasCommand ?cmd .

?cmd rdf:type ?cmdType .

?cmdType rdfs:subClassOf iot:OnCommand .

}

Listing 8.4: Query Mapping for Open Front Door immediately.

The query result includes the desired command and entity iot:openDoor and
iot:FrontDoor. The command does include a reference to the service method for
the door actuator.

Execution of Test Case 7

In test case 7, we demonstrate the QoS-aware resource discovery for the activity
to detect a critical health situation. Here, the goal Detect Critical Health
Situation is defined alongside the quality parameter Credibility. As depicted in
Figure 8.8, this goal can be fulfilled by each of the three leaf goals Get Health
Data from SmartWatch, Get Health Data from SmartPhone, and Get
Health Data from Medical Sensor. However, they each contribute differently
to the quality parameter credibility. At runtime, the SAL finds the three sets {Get
Health Data from Medical Sensor, ++}, {Get Health Data from SmartWatch, +}
and {Get Health Data from SmartPhone, -}. They are ordered for their contribution
to the specified quality parameter. Then, the SAL translates the first leaf goal to
a SPARQL query and executed it on the knowledge base. However, in the current
context, we modeled the LibeliumHealthKit to be unavailable, i. e., there exists no
canPlay relation to the role HealthMonitor. In this case, the SAL takes the next
leaf goal, translates it and executes it on the knowledge base. As this process is
iterated by the while loop in the workflow model, the health state is monitored
dynamically with any available Thing fitting the current runtime context.
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Figure 8.8: Excerpt of goal model for detecting a critical health situation.

8.2.6 Discussion of Results

Within the seven test cases we demonstrated the fulfillment of each of the targeted
goals in this work. Even though, the fulfillment of these criteria was targeted by
design, the criteria themselves are often abstract and can be fulfilled by a range of
concepts. For example, the DL-safe SWRL rules are restricted to the specification
of constraints of individuals and do not extend to classes. Therefore, the rules
can become large, if they are targeted to specify relations for a type of individual
over its relations to other types of individuals. In addition, due to the open-world
assumption there can be ambiguity and inferred relations that hinder an isolated
specification of rules for a specific type of individual. Therefore, the definition of
SWRL rules and object property assertions are prone to failures such that unwanted
relations are generated by the rules. Furthermore, it is best to keep the inferred
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Figure 8.9: Revisiting the criteria and goals within this work.

axioms separated from the modeled axioms to allow for their quick update. Fig-
ure 8.9 shows the achieved goals within this work in relation to the state-of-the-art
approaches. The metrics of the ontology for role-based Things in the IoT as it is
used within the application scenario are listed in the following Table 8.3.

Table 8.3: Metrics of the ontology within the application scenario.

Axiom count 667

Logical axiom count 575

Declaration axioms count 92

Class count 14

Object property count 22

Data property count 2

Individual count 54

Annotation Property count 3

DL expressivity SHOIQ(D)
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8.3 Performance Evaluation

Even though, we did not choose the real-time processing as a requirement for the
SAL, the ontology reasoning or the communication with the WfMS; we want to
conduct a performance measurement due to the possible large-scale of IoT appli-
cations. Although we do not reach levels of real-time processing, our approach
can fulfill near real-time resource discovery and invocation in some applications.
In the following, we present the conducted performance measurements for each of
the three query types available to the workflow activity modeling. It is important
to state that these measurements were conducted using the DogOnt ontology for
the modeling of domotic environments [BC08]. We choose the ontology as it was
easily integrable into the SAL and the OpenHab runtime environment to retrieve
real-world sensor data. Furthermore, we wanted to demonstrate the exchangeabil-
ity of the underlying ontology within the SAL. Our example scenarios cover only
a small-scale system with only a few available Things and Roles to demonstrate
the concepts of workflow-based dynamic service invocation. In the following, we
will verify our approach with respect to scaling up also to large-scale, heteroge-
neous distributed systems. We present several conducted experiments to measure
the performance overhead introduced by using the SAL for semantic service discov-
ery and invocation. The experiments are designed to measure query performance
of all three semantic query types, based on the introduced SemanticInvoke process
step types.

8.3.1 Experimental Setup

In the experiment, SPARQL test queries were utilized to check and retrieve the
current luminance level inside a room from sensor data and to switch on a dimmer
actuator. For the SemanticAskInvoke we utilized the SPARQL query depicted
in Listing 8.5, which checks whether the current luminance level is lower than
the provided lumen value of 290.1 or not. The evaluation of this query results
in a Boolean value. The SemanticCommandInvoke was tested with the SPARQL
query shown in Listing 8.6. It retrieves all available dimmer switches for a given
location. For each resulting device, a service call is generated by the SAL to switch
it on. However, as we are investigating the overhead of the SAL with respect
to execution time, the actual service invocation is not taken into account. The
SemanticSelectInvoke was tested with the SPARQL query shown in Listing 8.7.
This query retrieves sensor values from the knowledge base, which represent the
current luminance level in a given location. We utilized the DogOnt ontology as
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knowledge base of the SAL. As a baseline setting, the knowledge base included
100 OWL classes and 480 triples. Also counting OWL imports and inference, the
base included a total of 1026 OWL classes and 16002 triples.

ASK WHERE {

instance:State_Current_Location

dogont:hasStateValue ?stateValue .

?stateValue dogont:realStateValue ?curRealLoc .

?thing dogont:hasState ?lightState .

?lightState dogont:hasStateValue ?lightValue .

?lightValue rdf:type ?type.

?type rdfs:subClassOf* dogont:BrightnessStateValue .

?lightValue dogont:realStateValue ?currentValue .

?thing dogont:isIn ?loc .

?loc rdfs:label ?realLoc .

FILTER(?curRealLoc = ?realLoc &&

xsd:double(?currentValue) < 290.1)

}

Listing 8.5: SPARQL ask query for checking current illuminance level

SELECT ?func WHERE {

instance:State_Current_Location

dogont:hasStateValue ?stateValue .

?stateValue dogont:realStateValue ?curRealLoc .

?thing dogont:hasFunctionality ?func .

?thing rdf:type ?thingType .

?thing dogont:isIn ?loc .

?thingType rdfs:subClassOf* dogont_DimmerSwitch .

?func dogont:hasCommand ?cmd .

?cmd rdf:type ?cmdType .

?cmdType rdfs:subClassOf* dogont:OnCommand .

?loc rdfs:label ?realLoc .

FILTER(?realLoc = ?curRealLoc)

}

Listing 8.6: SPARQL command query for activating a dimmer actuator
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SELECT ?realLoc ?curRealLoc ?lightState ?currentValue

WHERE {

instance:State_Current_Location

dogont:hasStateValue ?stateValue .

?stateValue dogont:realStateValue ?curRealLoc .

?thing dogont:hasState ?lightState .

?lightState dogont:hasStateValue ?lightValue .

?lightValue rdf:type ?type.

?type rdfs:subClassOf* dogont:BrightnessStateValue .

?lightValue dogont:realStateValue ?currentValue .

?thing dogont:isIn ?loc .

?loc rdfs:label ?realLoc .

FILTER(?curRealLoc = ?realLoc)

}

Listing 8.7: SPARQL select query for retrieving current luminance level

The first set of experiments aimed at measuring execution times for each semantic
activity type for an increasing number of model instances. Therefore, we generated
(10x|x = 1..6) additional instances in the DogOnt ontology by extending an existing
luminance sensor owl:class. We modeled three test workflows each consisting of only
one activity for each semantic activity type. We then executed the test workflows
for each case on a logarithmic scale, i. e., (10x|x = 1..6). For the second set of
experiments, we used the same setup but generated (10x|x = 1..6) additional classes
instead of instances. Each measurement was conducted 10 times. The measurement
times shown in Figures 8.10 are mean values with standard deviations ranging from
19.188% to 54.786%. The experiments were conducted on an Intel Core-i7-3770S
computer equipped with 8192 MB RAM running a Ubuntu Linux distribution.

Performance Impact of Dynamic Service Discovery

Figure 8.10 shows the query performance for each semantic process step type for
the case of additionally generated ontology instances and classes. While the Seman-
tiCommandInvoke shows a linear scaling even for up to 106 instances, the Seman-
ticAskInvoke and SemanticSelectInvoke queries slow down the system significantly
if there are more than 103 instances existing. The evaluation of the SemanticAs-
kInvoke took an average of 366.216 ms for 105 and 68.044 s for 106 instances.
The SemanticSelectInvoke took an average of 850.784 ms for 105 and 108.657 s
for 106 instances. In contrast to the SemantiCommandInvoke, the SemanticSe-
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Figure 8.10: Query performance scaling for ontology instances and classes

lectInvoke and the SemanticAskInvoke retrieve sensor values from the knowledge
base. This indicates that the retrieval of sensor values is the main reason for longer
execution times and the limited overall scalability with respect to the number of
instances. While an increase inthe number of instances slows down the performance
of SemanticAskInvoke and SemanticSelectInvoke queries, an increased number of
classes without associated instances has virtually no impact on query performance
as shown in Figure 8.10. This result meets the expectations as the test queries are
evaluated on the instance level.

8.3.2 Discussion of Results

From the experiments, we draw the following conclusion for the execution of IoT-
aware workflows in large-scale systems: 1) with respect to query performance, the
number of non-instantiated ontology classes is not significant. 2) A domain-specific
approach including required devices should be preferred–even in large-scale scenar-
ios. 3) There are certain limitations for executing time-sensitive workflows with
our approach. In large-scale systems containing more than 106 IoT services, service
discovery and invocation will most likely take minutes. This can be remedied to
a certain degree by increasing and distributing the processing power of the SAL,
e. g., by implementing the SAL as a cloud service. However, in this setup it is
still feasible to execute SemanticInvokeCommand queries as there is no sensor data
retrieved from the SAL’s knowledge base.
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From a workflow modeling view, the semantic queries introduce an additional
overhead. Workflow modelers are not familiar with semantic technologies [TMS+12].
However, there exist several approaches from the workflow and the semantic mod-
eling communities, to generate executable models from natural language descrip-
tions [BHK+08, MPPM15]. The automatic provision and suggestions of vocabu-
lary from the domain-specific ontology can simplify the modeling of the SPARQL
query and facilitate end-user programming. Furthermore, workflow modelers can
be supported by transforming natural language query descriptions into executable
SPARQL queries. To simplify workflow specification and increase the usability of
our approach [HSS16], we use a Tropos goal model. The goal-based modeling ap-
proach provides an additional abstraction layer for workflow modelers. It reduces
the overhead of modeling detailed semantic queries while retaining the concept of
dynamic service discovery and invocation for IoT-aware workflows. Our approach
is suitable to be applied in very dynamic environments consisting of mobile and
resource-constraint IoT devices as well as digitally enhanced things and objects.
In these cyber-physical systems, the SAL knowledge base contains the real world
state of Things and Roles, a description of their capabilities and additional run-
time context information. For stationary and known devices, direct service allo-
cation should be preferred as their performance is independent of the size of the
knowledge base. As our approach is proposed as an extension to existing workflow
meta-models, workflow modelers can combine static binding of resources with dy-
namic IoT-service discovery and invocation. Additionally, our approach allows for
context-sensitive resource allocation by including context parameters in the SAL
knowledge base and specifying restrictions based on the current context in the
goal-based activities or directly in the SPARQL queries.

8.4 Summary

In this chapter, we provided a qualitative and quantitative evaluation of our ap-
proach. First, we deducted the evaluation approach from the targeted requirements
presented in Chapter 3. Then, we defined seven test cases to demonstrate and eval-
uate if and how these requirements are fulfilled by our approach. We described the
execution of each test case in detail and concluded that the targeted requirements
are fulfilled by design. Furthermore, we conducted a performance evaluation of
the semantic query-based resource discovery and invocation. In conclusion, our ap-
proach can support near real-time resource discovery in some application scenarios
with lesser than 106 Things.
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In this chapter, we discuss the contributions and results of the thesis considering
the research question RQ1-RQ5. In addition, we illustrate the extendability and
limitations of the proposed solution within the field of IoT-aware workflow man-
agement.

9.1 Comparison of Solution to Research Questions

In the following, we revisit the research questions to provide the respective answers
regarding our developed contributions:

• RQ1 What are the differences between workflow resources in the cyber and
the physical world from the perspective of a WfMS?

Answer: In Section 2.1.1 we presented the general features of Things. The
distinguishing feature of a Thing in the IoT is the addition of sensors, actua-
tors, and tags to real-world objects as well as their identification by means of
a unique identifier (UID). In the context of IoT-aware workflow management,
the main difference are the context-sensitive capabilities of Things as well as
their ability to sense and influence the real-world context in contrast to static
service methods and virtual capabilities of regular services.

• RQ2 How to model context-sensitive capabilities of workflow resources in the
IoT?

Answer: Within this thesis, we provide means to model and facilitate the
context-sensitive capabilities of Things within a role-based ontology. Here,
roles represent non-exclusive subsets of capabilities provided by a Thing. In
addition, we modeled the physical context and physical entities in relation to
these roles, Things, and capabilities. Therefore, we can express the context-
sensitive relations for the activation and deactivation of roles. The context
restriction can include physical context parameters as well as constraints on
relations within the ontology, e. g., role implication.
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• RQ3 How can a WfMS cope with the uncertainty of IoT resource availability
during workflow execution?

Answer: In general, a model-based approach coupled with a late binding
mechanism can implement a dynamic resource discovery to bridge the un-
certainty in availability by the ad-hoc discovery of Things. We propose a
solution to use an ontology for bridging the heterogeneity of Things and pro-
viding a foundation for a model-based ad-hoc resource discovery in the IoT.
Furthermore, on the workflow modeling perspective, we provide an extended
workflow metamodel to allow for specialized activity types. These provide
means for the specification of resource requirements and constraints based on
semantic queries or goals from a Tropos goal model. Therefore, we decouple
the resource from the workflow model and allow a middleware to cope with
the uncertainty of resource availability at runtime.

• RQ4 How to minimize failures during workflow execution caused by unavail-
able resources?

Answer: In this work, we use SWRL rules to specify an update mechanism
to reflect the real-world state as well as the virtual system state within a co-
herent model. Therefore, we allow the proposed middleware to detect context
mismatches in the ontology and trigger a re-allocation of the according to re-
sources. This leads to an eventually consistent state of context-representation
and resource allocation during workflow execution. However, it is the respon-
sibility of the WfMS to cope with a changing resource in the ongoing execution
of a workflow.

• RQ5 How to allow for flexible as well as correct workflow execution in the
IoT and what are the tradeoffs?

Answer: With our work, we allow for a mixed specification of highly flexible
activities as well as activities using static resources inside a workflow model.
The most flexibility is allowed by the specification of a goal-based activity.
Here, the goal reasoning usually provides several sets of leaf goals for fulfilling
a high-level user goal. In addition, QoS parameters can contribute to the
prioritization of these leaf goals. The ordered set of leaf goals each represent
a feasible solution for the resource discovery problem. In sequentially trans-
lating and executing the goals into semantic queries and their execution on
the knowledge base, the SAL is likely to find a fitting resource for the activity.
If the workflow modeler wants to limit the scope of the resource discovery,
either a specification of a leaf goal or the direct definition of SPARQL queries
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within activities is supported. In general, when increasing the flexibility for
activity goals and goal to resource selection, the intended system behaviour
is challenged by ambiguity of discovered resources and goals. Therefore, the
correct or intended behavior of the workflow and each activity highly depends
on a careful modeling of the Tropos goal model and the respective mapping
descriptions.

9.2 Extendability of the Solutions

In the following, we discuss the extension and replacement of solutions presented
in this thesis.

• Workflow Modeling Language: Even though, we proposed a workflow
metamodel extension the extension of our approach to other workflow mod-
eling languages and WfMS is supported to a certain degree. In general, any
workflow modeling language able to specify REST service calls within ac-
tivities can be coupled with the SAL to provide a context-sensitive resource
discovery and invocation. However, the goal or semantic query has to be
included in a service call parameter. Furthermore, the invocation of actu-
ators is possible, while the retrieval of sensor data has to be supported by
the WfMS as it is an asynchronous data fetch. Even though, we only con-
sidered imperative workflow models in this work; our approach is compatible
with declarative workflow models as well. As our approach is activity-centric
and independent of control-flow adaptation, a declarative workflow model can
include goal-based activities.

• Ontology: As we already showed in the performance evaluation in Sec-
tion 8.3, the SAL can easily integrate any OWL ontology as knowledge base.
However, this entails the respective re-modeling of the mapping descriptions
and semantic query-based activities. Furthermore, the ontology itself can
be extended, e. g., with subtypes for roles, Things and PhysicalEntities. For
example, it is possible to differentiate between regular objects and persons
as subtypes of the class PhysicalEntity. These subtypes can be used in the
semantic queries to provide further query specializations.

• IoT services: Even though, we used local services connected via the Open-
HAB platform for the evaluation scenarios, any IoT service can be integrated
with our approach by referencing the respective service methods within the
Commands of the ontology.
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9.3 Limitations

In the following, we present some of the limitations of this work regarding the
fulfillment of the targeted requirements.

• Large-scale: As mentioned in the performance evaluation in Section 8.3, our
approach can provide near real-time performance of resource discovery within
limited scale application scenarios.

• Quality of Context: The update mechanism for the context-sensitive parts
in the ontology is realized by continuously evaluating SWRL rules. However,
the context changes themselves can only be implemented by these rules to a
certain degree. For example, it is possible to use the up-to-date sensor data
of Things and specify rules evaluating the states to trigger context changes.
By evaluating data properties, rules can specify to detect the taking off of a
smartwatch based on some accelerometer data. However, this approach puts
a high processing demand on the knowledge base. Therefore, we recommend
to use an external context service for the continuous evaluation of such data
and the updating of ontology axioms via an interface.

• Flexibility support: By using a late binding mechanism based on resource
requirements and constraints, we used an abstraction that introduces several
problems within the data-flow perspective of workflow modeling. First, the
input and output data ports need be filled with data from the activity. In
the case of a GetDataCommand, this is possible and also implemented in the
PROtEUS WfMS, but depending on the selected resource, the produced data
may not fit the assumed data type of the subsequent consuming data port.
Therefore, our approach is limited considering the data-flow within workflows.
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In the final chapter 1, we present a summary of this thesis and provide an outlook
on future work in the field of IoT-aware workflow management.

10.1 Summary of the Thesis

Workflow resource allocation in the Internet of Things raises new challenges with
respect to workflow modeling and execution due to the dynamic nature and varying
availability of devices and services as well as the context-sensitive capabilities of
Things. In this thesis, we aimed at implementing MarkWeiser’s vision of Ubiquitous
Computing using IoT technology to specify dynamic and context-sensitive workflow.
Therefore, we targeted the fulfillment of user goals on the activity level of a workflow
while adapting to context-sensitive IoT resources at runtime. We conducted our
research along the outline presented in the following:

• Requirements Analysis: We conducted a requirements analysis to extract
requirements for enabling IoT-aware workflow management from related work.
Based on the requirements, we developed a classification scheme for evaluating
existing approaches for their quantified fulfillment of the requirements.

• Approach: We used the identified gaps in research to define the aims of
this thesis. The main goals of this work are the support for the context-
aware modeling of Things as workflow resources, the modeling support
within workflows to specify the requirements and constraints for resources on
a per activity basis, the query support within these workflow activities, a
resolution strategy to mitigate the ambiguity in resource discovery, and the
improvement of the transparency for the workflow modeler. Even though
it is already supported by related work, we aimed to fulfill the requirement
for the support of the dynamics and general flexibility in the IoT. Based
on the targeted requirements and their level of fulfillment, we developed our

1This chapter is partially based on [HSK+16].
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approach for enabling the integration of context-sensitive Things as workflow
resources.

• Contributions: Within this work, we provided the following contributions:
A role-based resource and context ontology for Things in the IoT. A work-
flow metamodel extension to enable the modeling of resource requirements
and constraints. A goal model for high-level user goals and a middleware
for dynamic resource discovery and invocation in the IoT. The role-based on-
tology for the modeling of Things includes SWRL rules as an update mech-
anism to represent the current state of real-world and virtual context in one
coherent model. In the ontology, Things can play Roles with capabilities wich
in turn can be activated or deactivated with the help of context constraints.
The workflow metamodel extension enables the modeling of semantic query-
based as well as goal-based activities in special activity types. The Tropos
goal model provides means to specify the relation between high-level user
goals and executable leaf goals, annotated with mapping descriptions for their
translation into semantic queries. Furthermore, the goal model can express
additional QoS parameters and the contribution of goals towards these pa-
rameters. Finally, the Semantic Access Layer (SAL) middleware is designed
to mediate between a WfMS and highly dynamic resources in the IoT using
the ontology and the goal model.

• Evaluation: Based on the targeted requirements defined in the requirements
analysis of this work, we developed seven test cases to demonstrate and eval-
uate their fulfillment. Using a proof-of-concept implementation in the Smart
Home domain, we conducted the execution of these test cases in addition to
performance tests regarding the query execution times. The results show that
we reached the targeted requirements by design and the resource discovery
and invocation scales nearly linear up 106 instances representing Things in
the ontology. Furthermore, we identified the problem that there is a signifi-
cant decrease of query performance when sensor values have to be retrieved
from a vast amount of IoT services.

In conclusion, this thesis contributes to enabling the vision of Mark Weiser by
allowing the specification of Ubiquitous System behavior in the form of repeatable
workflows that are able to cope with the dynamics and context-sensitive capabilities
of Things in the IoT.
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10.2 Future Work

Regarding future work, we will further investigate the data-flow perspective such
that dynamically adapted activities can still produce and consume data both syntac-
tically and semantically correct. The data-flow also has an impact on the definition
of the goal model and the command types in the ontology. In addition, to reduce
the modeling overhead of our approach, we will investigate the partial generation
of the different models. We see an opportunity to generate the goal model and
mapping descriptions from the domain-specific part of the ontology such that the
modeling effort is significantly reduced. With respect to the query performance, we
will extend the SAL to store the sensor data in separation to the ontology and to
execute the sensor data retrieval on the separate database. Therefore, the FILTER
part of SPARQL queries need to be extracted and translated into another query
such that both queries can be executed within their respective databases and the
results from the semantic query can be with the results of the external query. This
will dramatically increase the retrieval of sensor data, as ontological knowledge
bases are neither designed to store large amounts of data nor to update such data
within frequent write operations.
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Example Semantic Context Model for IoT-Things

<?xml version=”1.0”?>
<!DOCTYPE Ontology [

<!ENTITY xsd ”http://www.w3.org/2001/XMLSchema#” >
<!ENTITY xml ”http://www.w3.org/XML/1998/namespace” >
<!ENTITY rdfs ”http://www.w3.org/2000/01/rdf−schema#” >
<!ENTITY rdf ”http://www.w3.org/1999/02/22−rdf−syntax−ns#” >

]>
<Ontology xmlns=”http://www.w3.org/2002/07/owl#”

xml:base=”http://www.semanticweb.org/role based iot ontology inferred”
xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”
xmlns:xml=”http://www.w3.org/XML/1998/namespace”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”
xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”
ontologyIRI=”http://www.semanticweb.org/role based iot ontology inferred”>
<Prefix name=”rdf” IRI=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”/>
<Prefix name=”rdfs” IRI=”http://www.w3.org/2000/01/rdf−schema#”/>
<Prefix name=”xsd” IRI=”http://www.w3.org/2001/XMLSchema#”/>
<Prefix name=”owl” IRI=”http://www.w3.org/2002/07/owl#”/>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#Actuator”/
>

<ObjectSomeValuesFrom>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology

#manipulate”/>
<Class IRI=”http://www.semanticweb.org/role based iot ontology#

PhysicalObject”/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#Actuator”/
>

<ObjectSomeValuesFrom>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology

#manipulate”/>
<Class IRI=”http://www.semanticweb.org/role based iot ontology#

PhysicalProperty”/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#IoT Thing”/
>
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<ObjectSomeValuesFrom>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology

#has”/>
<Class IRI=”http://www.semanticweb.org/role based iot ontology#

Actuator”/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#IoT Thing”/
>

<ObjectSomeValuesFrom>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology

#has”/>
<Class IRI=”http://www.semanticweb.org/role based iot ontology#Sensor”

/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#
PhysicalContext”/>

<ObjectSomeValuesFrom>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology

#has”/>
<Class IRI=”http://www.semanticweb.org/role based iot ontology#

PhysicalObject”/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#
PhysicalObject”/>

<ObjectSomeValuesFrom>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology

#contain”/>
<Class IRI=”http://www.semanticweb.org/role based iot ontology#

PhysicalObject”/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#
PhysicalObject”/>

<ObjectSomeValuesFrom>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology
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#manipulate”/>
<Class IRI=”http://www.semanticweb.org/role based iot ontology#

PhysicalObject”/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#
PhysicalObject”/>

<ObjectSomeValuesFrom>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology

#manipulate”/>
<Class IRI=”http://www.semanticweb.org/role based iot ontology#

PhysicalProperty”/>
</ObjectSomeValuesFrom>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#
PhysicalObject”/>

<ObjectMinCardinality cardinality=”1”>
<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology

#has”/>
<Class IRI=”http://www.semanticweb.org/role based iot ontology#

PhysicalProperty”/>
</ObjectMinCardinality>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#Sensor”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology
#sense”/>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#
PhysicalProperty”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<DisjointClasses>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#Actuator”/
>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#Sensor”/>
</DisjointClasses>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#Sensor”/>
<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
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AmbientLightSensor”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#
PhysicalObject”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Curtain”/>

</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#Actuator”/
>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
CurtainActuator”/>

</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#
PhysicalProperty”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Illumination”/>

</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#
PhysicalObject”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Room”/>

</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#IoT Thing”/
>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
SmartCurtain”/>

</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/role based iot ontology#
PhysicalContext”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
SmartHome”/>

</ClassAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
sense”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
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AmbientLightSensor”/>
<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#

Illumination”/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
manipulate”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Curtain”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Illumination”/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
manipulate”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
CurtainActuator”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Illumination”/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
manipulate”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
CurtainActuator”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Curtain”/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
contain”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Room”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Curtain”/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
has”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Room”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
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Illumination”/>
</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
has”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
SmartCurtain”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
AmbientLightSensor”/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
has”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
SmartCurtain”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
CurtainActuator”/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
has”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
SmartHome”/>

<NamedIndividual IRI=”http://www.semanticweb.org/role based iot ontology#
Room”/>

</ObjectPropertyAssertion>
<EquivalentObjectProperties>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
contain”/>

</EquivalentObjectProperties>
<EquivalentObjectProperties>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
has”/>

</EquivalentObjectProperties>
<EquivalentObjectProperties>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
manipulate”/>

</EquivalentObjectProperties>
<EquivalentObjectProperties>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
sense”/>

</EquivalentObjectProperties>
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<EquivalentObjectProperties>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</EquivalentObjectProperties>
<SubObjectPropertyOf>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
manipulate”/>

<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
sense”/>

<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>
</SubObjectPropertyOf>
<InverseObjectProperties>

<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</InverseObjectProperties>
<SymmetricObjectProperty>

<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>
</SymmetricObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
contain”/>

</TransitiveObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI=”http://www.semanticweb.org/role based iot ontology#
manipulate”/>

</TransitiveObjectProperty>
</Ontology>
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T-Box of Ontology for Role-based Things in the IoT

<?xml version=”1.0”?>
<Ontology xmlns=”http://www.w3.org/2002/07/owl#”

xml:base=”http://www.semanticweb.org/IoTUDresden”
xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”
xmlns:xml=”http://www.w3.org/XML/1998/namespace”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”
xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”
ontologyIRI=”http://www.semanticweb.org/IoTUDresden”>
<Prefix name=”owl” IRI=”http://www.w3.org/2002/07/owl#”/>
<Prefix name=”rdf” IRI=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”/>
<Prefix name=”xml” IRI=”http://www.w3.org/XML/1998/namespace”/>
<Prefix name=”xsd” IRI=”http://www.w3.org/2001/XMLSchema#”/>
<Prefix name=”rdfs” IRI=”http://www.w3.org/2000/01/rdf−schema#”/>
<Declaration>

<ObjectProperty IRI=”#canBePlayedFor”/>
</Declaration>
<Declaration>

<Class IRI=”#Tag”/>
</Declaration>
<Declaration>

<Class IRI=”#Device”/>
</Declaration>
<Declaration>

<Class IRI=”#Sensor”/>
</Declaration>
<Declaration>

<Class IRI=”#PhysicalContext”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#canPlay”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#hasCapability”/>
</Declaration>
<Declaration>

<Class IRI=”#PhysicalEntity”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#contains”/>
</Declaration>
<Declaration>
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<ObjectProperty IRI=”#plays”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#isAttachedTo”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#hasEntity”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#affects”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#reads”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#usesDevice”/>
</Declaration>
<Declaration>

<Class IRI=”#Capability”/>
</Declaration>
<Declaration>

<Class IRI=”#PhysicalProperty”/>
</Declaration>
<Declaration>

<Class IRI=”#OnCommand”/>
</Declaration>
<Declaration>

<Class IRI=”#Thing”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#isAvailableIn”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#hasDevice”/>
</Declaration>
<Declaration>

<Class IRI=”#GetDataCommand”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#senses”/>
</Declaration>
<Declaration>
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<ObjectProperty IRI=”#monitors”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#isAllocatedTo”/>
</Declaration>
<Declaration>

<Class IRI=”#Command”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#isPlayedFor”/>
</Declaration>
<Declaration>

<Class IRI=”#Role”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#identifies”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#hasProperty”/>
</Declaration>
<Declaration>

<Class IRI=”#Actuator”/>
</Declaration>
<Declaration>

<DataProperty IRI=”#serviceMethodURL”/>
</Declaration>
<Declaration>

<AnnotationProperty IRI=”http://swrl.stanford.edu/ontologies/3.3/swrla.owl#
isRuleEnabled”/>

</Declaration>
<Declaration>

<ObjectProperty IRI=”#manipulates”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#hasCommand”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”#accessesDevice”/>
</Declaration>
<Declaration>

<DataProperty IRI=”#physicalPropertyData”/>
</Declaration>
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<Declaration>
<Class IRI=”#OffCommand”/>

</Declaration>
<SubClassOf>

<Class IRI=”#Actuator”/>
<Class IRI=”#Device”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”#Actuator”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#affects”/>
<Class IRI=”#Sensor”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Actuator”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#isAttachedTo”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Actuator”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#manipulates”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Actuator”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#manipulates”/>
<Class IRI=”#PhysicalProperty”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Capability”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#hasCommand”/>
<Class IRI=”#Command”/>

</ObjectSomeValuesFrom>
</SubClassOf>

181



<SubClassOf>
<Class IRI=”#Capability”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#usesDevice”/>
<Class IRI=”#Device”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Command”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#accessesDevice”/>
<Class IRI=”#Device”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Command”/>
<DataSomeValuesFrom>

<DataProperty IRI=”#serviceMethodURL”/>
<Datatype abbreviatedIRI=”xsd:anyURI”/>

</DataSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#GetDataCommand”/>
<Class IRI=”#Command”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”#GetDataCommand”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#accessesDevice”/>
<Class IRI=”#Device”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#OffCommand”/>
<Class IRI=”#Command”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”#OffCommand”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#accessesDevice”/>
<Class IRI=”#Device”/>

</ObjectSomeValuesFrom>
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</SubClassOf>
<SubClassOf>

<Class IRI=”#OnCommand”/>
<Class IRI=”#Command”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”#OnCommand”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#accessesDevice”/>
<Class IRI=”#Device”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#PhysicalContext”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#hasEntity”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#PhysicalEntity”/>
<ObjectUnionOf>

<Class IRI=”#Actuator”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectUnionOf>
</SubClassOf>
<SubClassOf>

<Class IRI=”#PhysicalEntity”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#contains”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#PhysicalEntity”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#hasProperty”/>
<Class IRI=”#PhysicalProperty”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#PhysicalEntity”/>
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<ObjectSomeValuesFrom>
<ObjectProperty IRI=”#manipulates”/>
<Class IRI=”#PhysicalProperty”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#PhysicalProperty”/>
<ObjectUnionOf>

<Class IRI=”#PhysicalEntity”/>
<Class IRI=”#PhysicalProperty”/>

</ObjectUnionOf>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Role”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#hasCapability”/>
<Class IRI=”#Capability”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Sensor”/>
<Class IRI=”#Device”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”#Sensor”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#isAttachedTo”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Sensor”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#monitors”/>
<Class IRI=”#Actuator”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Sensor”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#reads”/>
<Class IRI=”#Tag”/>

184



</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Sensor”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#senses”/>
<Class IRI=”#PhysicalProperty”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Tag”/>
<Class IRI=”#Device”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”#Tag”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#identifies”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Tag”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#isAttachedTo”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Thing”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#canPlay”/>
<Class IRI=”#Role”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Thing”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#hasDevice”/>
<Class IRI=”#Device”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>
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<Class IRI=”#Thing”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#isAttachedTo”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Thing”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#isAvailableIn”/>
<Class IRI=”#PhysicalContext”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubClassOf>

<Class IRI=”#Thing”/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI=”#plays”/>
<Class IRI=”#Role”/>

</ObjectSomeValuesFrom>
</SubClassOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#accessesDevice”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#affects”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#canBePlayedFor”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#canPlay”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#contains”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#hasCapability”/>
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<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>
</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#hasCommand”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#hasDevice”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#hasEntity”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#hasProperty”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#isAttachedTo”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#isAvailableIn”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#manipulates”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#monitors”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#plays”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#reads”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
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<SubObjectPropertyOf>
<ObjectProperty IRI=”#senses”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectProperty IRI=”#usesDevice”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</SubObjectPropertyOf>
<InverseObjectProperties>

<ObjectProperty IRI=”#affects”/>
<ObjectProperty IRI=”#monitors”/>

</InverseObjectProperties>
<TransitiveObjectProperty>

<ObjectProperty IRI=”#contains”/>
</TransitiveObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI=”#manipulates”/>
</TransitiveObjectProperty>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#accessesDevice”/>
<Class IRI=”#Command”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#affects”/>
<Class IRI=”#Actuator”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#canBePlayedFor”/>
<Class IRI=”#Role”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#canPlay”/>
<Class IRI=”#Thing”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#contains”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#hasCapability”/>
<Class IRI=”#Role”/>

</ObjectPropertyDomain>
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<ObjectPropertyDomain>
<ObjectProperty IRI=”#hasCommand”/>
<Class IRI=”#Capability”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#hasDevice”/>
<Class IRI=”#Thing”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#hasEntity”/>
<Class IRI=”#PhysicalContext”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#hasProperty”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#identifies”/>
<Class IRI=”#Tag”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#isAllocatedTo”/>
<Class IRI=”#Thing”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#isAttachedTo”/>
<Class IRI=”#Thing”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#isAvailableIn”/>
<Class IRI=”#Thing”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#isPlayedFor”/>
<Class IRI=”#Role”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#manipulates”/>
<ObjectUnionOf>

<Class IRI=”#Actuator”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectUnionOf>
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</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#monitors”/>
<Class IRI=”#Sensor”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#plays”/>
<Class IRI=”#Thing”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#reads”/>
<Class IRI=”#Sensor”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#senses”/>
<Class IRI=”#Sensor”/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI=”#usesDevice”/>
<Class IRI=”#Capability”/>

</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI=”#accessesDevice”/>
<Class IRI=”#Device”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#affects”/>
<Class IRI=”#Sensor”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#canBePlayedFor”/>
<Class IRI=”#PhysicalContext”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#canBePlayedFor”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#canPlay”/>
<Class IRI=”#Role”/>

</ObjectPropertyRange>
<ObjectPropertyRange>
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<ObjectProperty IRI=”#contains”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#hasCapability”/>
<Class IRI=”#Capability”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#hasCommand”/>
<Class IRI=”#Command”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#hasDevice”/>
<Class IRI=”#Device”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#hasEntity”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#hasProperty”/>
<Class IRI=”#PhysicalProperty”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#identifies”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#isAllocatedTo”/>
<Class IRI=”#PhysicalContext”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#isAllocatedTo”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#isAttachedTo”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#isAvailableIn”/>
<Class IRI=”#PhysicalContext”/>
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</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#isPlayedFor”/>
<Class IRI=”#PhysicalContext”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#isPlayedFor”/>
<Class IRI=”#PhysicalEntity”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#manipulates”/>
<ObjectUnionOf>

<Class IRI=”#PhysicalEntity”/>
<Class IRI=”#PhysicalProperty”/>

</ObjectUnionOf>
</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#monitors”/>
<Class IRI=”#Actuator”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#plays”/>
<Class IRI=”#Role”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#reads”/>
<Class IRI=”#Tag”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#senses”/>
<Class IRI=”#PhysicalProperty”/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI=”#usesDevice”/>
<Class IRI=”#Device”/>

</ObjectPropertyRange>
<DataPropertyDomain>

<DataProperty IRI=”#physicalPropertyData”/>
<Class IRI=”#PhysicalProperty”/>

</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”#physicalPropertyData”/>
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<ObjectUnionOf>
<Class IRI=”#PhysicalEntity”/>
<Class IRI=”#PhysicalProperty”/>

</ObjectUnionOf>
</DataPropertyDomain>
<DataPropertyDomain>

<DataProperty IRI=”#serviceMethodURL”/>
<Class IRI=”#Command”/>

</DataPropertyDomain>
<DataPropertyRange>

<DataProperty IRI=”#serviceMethodURL”/>
<Datatype abbreviatedIRI=”xsd:anyURI”/>

</DataPropertyRange>
<DLSafeRule>

<Annotation>
<AnnotationProperty IRI=”http://swrl.stanford.edu/ontologies/3.3/swrla.

owl#isRuleEnabled”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#boolean”>

true</Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:comment”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”></

Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:label”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”>

canBePlayedForPhysicalContext</Literal>
</Annotation>
<Body>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#canPlay”/>
<Variable IRI=”urn:swrl#IoTUDresdenx”/>
<Variable IRI=”urn:swrl#IoTUDresdeny”/>

</ObjectPropertyAtom>
<ObjectPropertyAtom>

<ObjectProperty IRI=”#isAvailableIn”/>
<Variable IRI=”urn:swrl#IoTUDresdenx”/>
<Variable IRI=”urn:swrl#IoTUDresdenz”/>

</ObjectPropertyAtom>
</Body>
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<Head>
<ObjectPropertyAtom>

<ObjectProperty IRI=”#canBePlayedFor”/>
<Variable IRI=”urn:swrl#IoTUDresdeny”/>
<Variable IRI=”urn:swrl#IoTUDresdenz”/>

</ObjectPropertyAtom>
</Head>

</DLSafeRule>
<DLSafeRule>

<Annotation>
<AnnotationProperty IRI=”http://swrl.stanford.edu/ontologies/3.3/swrla.

owl#isRuleEnabled”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#boolean”>

true</Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:comment”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”></

Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:label”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”>

canBePlayedForPhysicalEntity</Literal>
</Annotation>
<Body>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#canPlay”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#y”/>

</ObjectPropertyAtom>
<ObjectPropertyAtom>

<ObjectProperty IRI=”#isAttachedTo”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#z”/>

</ObjectPropertyAtom>
</Body>
<Head>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#canBePlayedFor”/>
<Variable IRI=”urn:swrl#y”/>
<Variable IRI=”urn:swrl#z”/>
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</ObjectPropertyAtom>
</Head>

</DLSafeRule>
<DLSafeRule>

<Annotation>
<AnnotationProperty IRI=”http://swrl.stanford.edu/ontologies/3.3/swrla.

owl#isRuleEnabled”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#boolean”>

true</Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:comment”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”></

Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:label”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”>

accessesDeviceRule</Literal>
</Annotation>
<Body>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#usesDevice”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#y”/>

</ObjectPropertyAtom>
<ObjectPropertyAtom>

<ObjectProperty IRI=”#hasCommand”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#z”/>

</ObjectPropertyAtom>
</Body>
<Head>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#accessesDevice”/>
<Variable IRI=”urn:swrl#z”/>
<Variable IRI=”urn:swrl#y”/>

</ObjectPropertyAtom>
</Head>

</DLSafeRule>
<DLSafeRule>

<Annotation>
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<AnnotationProperty IRI=”http://swrl.stanford.edu/ontologies/3.3/swrla.
owl#isRuleEnabled”/>

<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#boolean”>
true</Literal>

</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:comment”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”></

Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:label”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”>

isAvailableInContextRule</Literal>
</Annotation>
<Body>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#isAttachedTo”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#y”/>

</ObjectPropertyAtom>
<ObjectPropertyAtom>

<ObjectProperty IRI=”#hasEntity”/>
<Variable IRI=”urn:swrl#z”/>
<Variable IRI=”urn:swrl#y”/>

</ObjectPropertyAtom>
</Body>
<Head>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#isAvailableIn”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#z”/>

</ObjectPropertyAtom>
</Head>

</DLSafeRule>
<DLSafeRule>

<Annotation>
<AnnotationProperty IRI=”http://swrl.stanford.edu/ontologies/3.3/swrla.

owl#isRuleEnabled”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#boolean”>

true</Literal>
</Annotation>
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<Annotation>
<AnnotationProperty abbreviatedIRI=”rdfs:comment”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”></

Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:label”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”>

isPlayedForEntity</Literal>
</Annotation>
<Body>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#plays”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#y”/>

</ObjectPropertyAtom>
<ObjectPropertyAtom>

<ObjectProperty IRI=”#isAttachedTo”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#z”/>

</ObjectPropertyAtom>
</Body>
<Head>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#isPlayedFor”/>
<Variable IRI=”urn:swrl#y”/>
<Variable IRI=”urn:swrl#z”/>

</ObjectPropertyAtom>
</Head>

</DLSafeRule>
<DLSafeRule>

<Annotation>
<AnnotationProperty IRI=”http://swrl.stanford.edu/ontologies/3.3/swrla.

owl#isRuleEnabled”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#boolean”>

true</Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:comment”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”></

Literal>
</Annotation>
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<Annotation>
<AnnotationProperty abbreviatedIRI=”rdfs:label”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”>

isPlayedForContext</Literal>
</Annotation>
<Body>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#plays”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#y”/>

</ObjectPropertyAtom>
<ObjectPropertyAtom>

<ObjectProperty IRI=”#isAvailableIn”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#z”/>

</ObjectPropertyAtom>
</Body>
<Head>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#isPlayedFor”/>
<Variable IRI=”urn:swrl#y”/>
<Variable IRI=”urn:swrl#z”/>

</ObjectPropertyAtom>
</Head>

</DLSafeRule>
<DLSafeRule>

<Annotation>
<AnnotationProperty IRI=”http://swrl.stanford.edu/ontologies/3.3/swrla.

owl#isRuleEnabled”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#boolean”>

true</Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:comment”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”></

Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:label”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”>

isAllocatedToRule</Literal>
</Annotation>
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<Body>
<ObjectPropertyAtom>

<ObjectProperty IRI=”#plays”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#y”/>

</ObjectPropertyAtom>
<ObjectPropertyAtom>

<ObjectProperty IRI=”#isPlayedFor”/>
<Variable IRI=”urn:swrl#y”/>
<Variable IRI=”urn:swrl#z”/>

</ObjectPropertyAtom>
</Body>
<Head>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#isAllocatedTo”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#z”/>

</ObjectPropertyAtom>
</Head>

</DLSafeRule>
<DLSafeRule>

<Annotation>
<AnnotationProperty IRI=”http://swrl.stanford.edu/ontologies/3.3/swrla.

owl#isRuleEnabled”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#boolean”>

true</Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:comment”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”></

Literal>
</Annotation>
<Annotation>

<AnnotationProperty abbreviatedIRI=”rdfs:label”/>
<Literal datatypeIRI=”http://www.w3.org/2001/XMLSchema#string”>

monitorAndAffect</Literal>
</Annotation>
<Body>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#manipulates”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#y”/>
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</ObjectPropertyAtom>
<ObjectPropertyAtom>

<ObjectProperty IRI=”#senses”/>
<Variable IRI=”urn:swrl#z”/>
<Variable IRI=”urn:swrl#y”/>

</ObjectPropertyAtom>
</Body>
<Head>

<ObjectPropertyAtom>
<ObjectProperty IRI=”#affects”/>
<Variable IRI=”urn:swrl#x”/>
<Variable IRI=”urn:swrl#z”/>

</ObjectPropertyAtom>
</Head>

</DLSafeRule>
</Ontology>
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A-Box for Example Scenario Model

<?xml version=”1.0”?>
<Ontology xmlns=”http://www.w3.org/2002/07/owl#”

xml:base=”http://www.semanticweb.org/IoTUDresden/ABox”
xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”
xmlns:xml=”http://www.w3.org/XML/1998/namespace”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”
xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”
ontologyIRI=”http://www.semanticweb.org/IoTUDresden/ABox”>
<Prefix name=”owl” IRI=”http://www.w3.org/2002/07/owl#”/>
<Prefix name=”rdf” IRI=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”/>
<Prefix name=”xml” IRI=”http://www.w3.org/XML/1998/namespace”/>
<Prefix name=”xsd” IRI=”http://www.w3.org/2001/XMLSchema#”/>
<Prefix name=”rdfs” IRI=”http://www.w3.org/2000/01/rdf−schema#”/>
<Declaration>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#affects”/>
</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>
</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Capability”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#Kitchen”/
>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalProperty”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
ResidentBob”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Role”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#monitors”/
>

</Declaration>
<Declaration>
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<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
provideHealthStatus”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
HealthMonitor”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Sensor”/>
</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
HealthStatus”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
InteractionDevice”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
</Declaration>
<Declaration>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#contains”/
>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
SmartHome”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OnCommand”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
provideResidentResponsiveness”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
InteractionSensor”/>
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</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalContext”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
SmartHomeContext”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
provideMedicalAssistance”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
HealthSensor”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OffCommand”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
ResponsiveStatus”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
GetResponsiveStatus”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Tag”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
TriggerAutomaticEmergencyCall”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
AutomaticEmergencyCaller”/>

</Declaration>
<Declaration>
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<Class IRI=”http://www.semanticweb.org/IoTUDresden#Actuator”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
GetHealthStatus”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#GetDataCommand”/
>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
SmartPhone”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
EmergencyCallApp”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
SmartWatch”/>

</Declaration>
<Declaration>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#
manipulates”/>

</Declaration>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Actuator”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Actuator”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#GetDataCommand”/
>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OffCommand”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
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</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OnCommand”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Sensor”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Sensor”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Tag”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Tag”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>

</SubClassOf>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Role”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

AutomaticEmergencyCaller”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Actuator”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

EmergencyCallApp”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

EmergencyCallApp”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

EmergencyCallApp”/>
</ClassAssertion>
<ClassAssertion>
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<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

GetHealthStatus”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#GetDataCommand”/
>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
GetHealthStatus”/>

</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

GetResponsiveStatus”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#GetDataCommand”/
>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
GetResponsiveStatus”/>

</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Role”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

HealthMonitor”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

HealthSensor”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Sensor”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

HealthSensor”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

HealthSensor”/>
</ClassAssertion>
<ClassAssertion>
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<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalProperty”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

HealthStatus”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Role”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

InteractionDevice”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

InteractionSensor”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Sensor”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

InteractionSensor”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

InteractionSensor”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#Kitchen”/

>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalContext”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

ResidentBob”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

ResidentBob”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalProperty”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
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ResponsiveStatus”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

SmartHome”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalContext”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

SmartHomeContext”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

SmartHomeContext”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

SmartPhone”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

SmartWatch”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

TriggerAutomaticEmergencyCall”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OnCommand”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

TriggerAutomaticEmergencyCall”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Capability”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

provideHealthStatus”/>
</ClassAssertion>
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<ClassAssertion>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Capability”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

provideMedicalAssistance”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Capability”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

provideResidentResponsiveness”/>
</ClassAssertion>
<InverseObjectProperties>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#affects”/>
<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#monitors”/

>
</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</InverseObjectProperties>
<SymmetricObjectProperty>

<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>
</SymmetricObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#contains”/
>

</TransitiveObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#
manipulates”/>

</TransitiveObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>
</TransitiveObjectProperty>

</Ontology>
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A-Box for Extended Example Scenario Model

<?xml version=”1.0”?>
<Ontology xmlns=”http://www.w3.org/2002/07/owl#”

xml:base=”http://www.semanticweb.org/IoTUDresden/Inferred/ABox”
xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”
xmlns:xml=”http://www.w3.org/XML/1998/namespace”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”
xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”
ontologyIRI=”http://www.semanticweb.org/IoTUDresden/Inferred/ABox”>
<Prefix name=”owl” IRI=”http://www.w3.org/2002/07/owl#”/>
<Prefix name=”rdf” IRI=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”/>
<Prefix name=”xml” IRI=”http://www.w3.org/XML/1998/namespace”/>
<Prefix name=”xsd” IRI=”http://www.w3.org/2001/XMLSchema#”/>
<Prefix name=”rdfs” IRI=”http://www.w3.org/2000/01/rdf−schema#”/>
<Declaration>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#affects”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
DoorStatus”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
StoveController”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Capability”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
provideAudio”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
NFCReader”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#Kitchen”/
>
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</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
ResidentAlice”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#Corridor”
/>

</Declaration>
<Declaration>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#monitors”/
>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
prohibitAccessToHome”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
PersonAuthenticator”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
ResidentBob”/>

</Declaration>
<Declaration>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#contains”/
>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
KeyMaticLock”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
SmartHome”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OnCommand”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

211



DoorActuator”/>
</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalContext”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#stopAudio
”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
switchOnStove”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
switchOffStove”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
DoorOpener”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
LivingRoom”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
AudioPlayer”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#GetDataCommand”/
>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
MusicPlayer”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
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FrontDoor”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
SmartWatch”/>

</Declaration>
<Declaration>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#
manipulates”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
KodiPlayer”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#playAudio
”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
NFCSensor”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalProperty”/>
</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Role”/>
</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Sensor”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
StoveStatus”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
AudioStatus”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
</Declaration>
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<Declaration>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

LibeliumHealthKit”/>
</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#closeDoor
”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#openDoor
”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#Stove”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
PowerSupplySwitch”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
SmartHomeContext”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
DigitalStromController”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
provideAccessToHome”/>

</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OffCommand”/>
</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Tag”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
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provideStoveControl”/>
</Declaration>
<Declaration>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Actuator”/>
</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
SmartPhone”/>

</Declaration>
<Declaration>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
GetIdentification”/>

</Declaration>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Actuator”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Actuator”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#GetDataCommand”/
>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OffCommand”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OnCommand”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Sensor”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Sensor”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>

</SubClassOf>
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<SubClassOf>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Tag”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>

</SubClassOf>
<SubClassOf>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Tag”/>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>

</SubClassOf>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Actuator”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

AudioPlayer”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

AudioPlayer”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

AudioPlayer”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalProperty”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

AudioStatus”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#Corridor”

/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

DigitalStromController”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Actuator”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

DoorActuator”/>

216



</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

DoorActuator”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

DoorActuator”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Role”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

DoorOpener”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalProperty”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

DoorStatus”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

FrontDoor”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

GetIdentification”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#GetDataCommand”/
>

<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
GetIdentification”/>

</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

KeyMaticLock”/>
</ClassAssertion>
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<ClassAssertion>
<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#Kitchen”/

>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

KodiPlayer”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

LibeliumHealthKit”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

LivingRoom”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Role”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

MusicPlayer”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

NFCReader”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

NFCSensor”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Sensor”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

NFCSensor”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
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<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#
NFCSensor”/>

</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Role”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

PersonAuthenticator”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Actuator”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

PowerSupplySwitch”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Device”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

PowerSupplySwitch”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

PowerSupplySwitch”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

ResidentAlice”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalContext”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

ResidentBob”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

ResidentBob”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

SmartHome”/>
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</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalContext”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

SmartHomeContext”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

SmartHomeContext”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

SmartPhone”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Thing”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

SmartWatch”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalEntity”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#Stove”/>

</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Role”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

StoveController”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#PhysicalProperty”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

StoveStatus”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#closeDoor

”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OffCommand”/>
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<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#closeDoor
”/>

</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#openDoor

”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OnCommand”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#openDoor

”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#playAudio

”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OnCommand”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#playAudio

”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Capability”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

prohibitAccessToHome”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Capability”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

provideAccessToHome”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Capability”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

provideAudio”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Capability”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

provideStoveControl”/>
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</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#stopAudio

”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OffCommand”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#stopAudio

”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

switchOffStove”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OffCommand”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

switchOffStove”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#Command”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

switchOnStove”/>
</ClassAssertion>
<ClassAssertion>

<Class IRI=”http://www.semanticweb.org/IoTUDresden#OnCommand”/>
<NamedIndividual IRI=”http://www.semanticweb.org/IoTUDresden#

switchOnStove”/>
</ClassAssertion>
<InverseObjectProperties>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#affects”/>
<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#monitors”/

>
</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>
<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>

</InverseObjectProperties>
<SymmetricObjectProperty>

<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>
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</SymmetricObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#contains”/
>

</TransitiveObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty IRI=”http://www.semanticweb.org/IoTUDresden#
manipulates”/>

</TransitiveObjectProperty>
<TransitiveObjectProperty>

<ObjectProperty abbreviatedIRI=”owl:topObjectProperty”/>
</TransitiveObjectProperty>

</Ontology>
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