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Chapter 1

Preliminaries

1.1 Introduction

Change-point analysis is a field of mathematical statistics, which concerns itself with the
detection and estimation of structural changes within a data set of time-ordered observa-
tions. To reach this target, approximately homogeneous observations are assembled into
segments, which are established on the basis of some criteria such as expectations or vari-
ances of the underlying distributions. This type of problems appears in various scientific
fields. One of the first applications was quality control in companies where the goal is to
find out whether the quality of products is deteriorated from a certain point. Furthermore,
in biology change-point models are used for segmentation of DNA sequences (see for in-
stance Braun and Miiller [3]). Some more applications are indicated in Chen and Gupta
[6] and Fremdt [18] or more detailed in Basseville and Nikiforov [2].

We distinguish in principle the sequential and the retrospective change-point problem. In
sequential problems we make decisions on the appearance of change-points simultaneously

with the sequential process of data collection, i.e., we have to examine with every new
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observation whether a change occurs. However, in retrospective problems the entire data
set is already available. We refer the reader to Brodsky [4], Brodsky and Darkhovsky [5]
or Csorgd and Horvath [8] to get an overview on both approaches.

This work is concerned with the retrospective point of view. The mathematical formulation
of these problems goes back to the 1950s, see for instance Page [22, 23]. In the past re-
searchers have considered many different parametric and non-parametric models to detect
and estimate change-points. Some in the literature discussed methods are mentioned here.
The basic approach of using the maximum likelihood method can be found for instance in
Hinkley [21]. Ferger [12, 13] proposed an estimator of a single change-point determined by
weighted U-statistic-type processes and investigated the convergence in distribution and
the almost sure convergence of such estimators. Doring [10, 11] generalized this approach
to an arbitrary, but known, number of change-points. Another well-known method is the
least squares method. A weighted least squares estimator to estimate a single change-
point was introduced by Ferger [15]. Simultaneously, he established the connection to the
maximum-likelihood estimator and the estimator determined by weighted U-statistic-type
processes.

This thesis is intended to applying the least squares method to estimate two change-points,
which is a generalization of the approach of Ferger [15]. The following non-parametric
framework is handled. Let X; = X,,, 1 <7 < n, n € N, be real-valued random vari-
ables and ()1, Q2 and Y3 be unknown distributions. Assume that there exist unknown
0 < 6#; < 05 <1 such that

;

Q1, 1<i<|nb],

Xi~§Qa, |n0i] +1<i< [nby],

\Qg, [nf| +1<i<mn

for all n € IN. To obtain a well-defined model we further suppose that the expectations

of random variables from adjacent segments are different. The parameter of interest is
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the so-called multiple change-point (01,0z), which is to be estimated by the least squares
method. The main focus of attention lies on the discussion of the consistency as well as
the investigation of the convergence in distribution of such least squares estimators in the
given multiple change-point model. For this purpose, we apply a similar approach used
in Doring [10, 11] and Ferger [14, 15]. At the end of this work we give an outlook on the
asymptotic properties of least squares estimators in the case of an arbitrary, but known,
number of change-points.

We can often find tests to detect change-points in the literature where under the null
hypothesis (no change) the distribution of some test statistic is examined to construct
critical regions. However, note that we look at the alternative hypothesis (existence of
change-points) where the investigation of the distribution of such estimators becomes more
complex than under the null hypothesis. Indeed, if the number of change-points is unknown
for any reason (for example in some practical applications), one has to previously detect
the occurrence of multiple change-points with such tests (see for instance Brodsky [4] or
Csorgo and Horvéth [8]) or determine the number of change-points based on content-related
considerations.

This work is organized as follows. We start with the accurate formulation of the multiple
change-point model. Then we briefly sketch the essential steps to get the main results of the
work. Chapter 2 provides the relevant mathematical tools for our purpose. For simplicity,
Chapter 3 deals with the case of known expectations. This chapter is intended to present
the fundamental recipe to estimate change-points and conclude asymptotic claims for the
estimator. Based on the least squares estimator of the moments of change (|nb;], |nfy|) we
construct the estimator of (0, 6;). Under different moment conditions we show weak and
strong consistency. Furthermore, we investigate convergence in distribution and identify
the limit variable, which is used to derive a confidence region for (|nf |, |[nfs]). From
Chapter 4 on, the expectations are assumed to be unknown. Here, we state and prove the

main results of this work. Section 4.1 contains the simultaneous least squares estimation
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of the change-points and the expectations and discusses the consistency of the resulting
estimators. Since convergence in distribution of the estimator of the multiple change-
point is hard to show, we introduce another least squares estimator in Section 4.2. In
the estimator from Chapter 3 the known expectations are replaced by their estimators.
We thus obtain an estimator with the same structure as in Chapter 3. Consequently, we
can proceed on a similar way to Chapter 3 but some proofs are more technical. We treat
consistency and convergence in distribution. Based on these results, we derive a confidence
region for the parameter (|n# |, |nfs]) in the case of unknown expectations. Chapter 5
indicates the performance of all estimators and several relations by a simulation study. The
last chapter gives an outlook where we discuss our strong conjecture that all of the results
of Chapter 4 can be generalized to an arbitrary, but known, number of change-points.

Moreover, we specify ideas for further work on this field.

1.2 Model

This section presents the multiple change-point model.

Let (Xj,) new be a triangular array of random variables defined on a probability space
<

lgjin
(2, A, P) with values in the measurable space (R, B(R)). Each row of the triangular array
consists of independent random variables, i.e., Xi,,..., X, , are independent for every

n € IN. Let us denote by © and A,,, n € IN, the sets
O:={(st)eR*[0<s<t<1} and A,:={(kl)eN[1<k<i<n-1}.

We assume that there exists a vector 8 := (6;,02) € © such that for all n € IN

(

Q1, 1<i< |nby],

Xin~ 1 Qo |nbh] +1<i< nf, (L.1)

Q?)a LTLQQJ +1 S { S n,
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where )1, Q2, Q3 are arbitrary, but unknown, distributions. It is of interest to estimate the
unknown so-called multiple change-point @ = (61, 6,). The quantities 0y, 6, — 01,1 — 0 give
ratios of how many observations belong to each segment in the statistical population. We
call the also unknown parameters 7, := (7,,0,) := (|nb1], [nb2]) € A,, n € N, moments
of change. These state the last indices before the first and second change of distribution.

In order to get asymptotic results it is necessary to consider such a triangular array. For
increasing n € N, the triangular array guarantees that more and more random variables
arise from each distribution. Roughly speaking, therefore it is possible to estimate the true
parameter 8 = (0, 6,), at all.

Furthermore, we suppose that the expectations a := (a, 8,7) defined by

a;_/Rg; O1(da), 5;_/];; Qa(dz)  and 7:_/];; Qs(dx)

exist, are finite and satisfy

a#p and [ #7. (1.2)

The last condition means that the distributions of adjacent segments differ in their first
moments. It ensures that our multiple change-point model is well-defined.
For illustration, Figure 1.1 depicts the entire model where realizations of some random

variables are represented by dots.

In the whole work it is crucial to consider moment estimates to conclude asymptotic results

for all estimators. For this purpose, let

My = max{ [ el Qu(de). [ Jaf Qufato), | ol Qi) }

denote the maximum of the p-th absolute moments, p € [1,00). Unless otherwise stated
we assume that M; < oo.
To simplify notation, we write X, ..., X,, instead of X, ., ..., X, ,,, n € N, for the n-th row

of the triangular array.
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Figure 1.1: Multiple change-point model with (6;,602) = (0.34,0.78) in the case vy < a < 3
for n = 10 (left) and n = 25 (right) observations.

Finally, let us introduce the argmin notation.

For an arbitrary set A and a mapping
f: A— R we denote by

Argmin(f) :={k € A|f(k) < f(l) for all | € A}

and

Argmax(f) :={k € A|f(k) > f(I) for all | € A}

the set of all minimizing and maximizing points of f, respectively. If we choose a specific

minimizing or maximizing point of f, then we write argmin, ., f(k) or argmax; 4 f(k).
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1.3 Essential results

This section gives a brief exposition of the agenda in this work and summarizes the main
results without proofs. From now on, the fact that some random functions depend on the

sample X1, ..., X, is omitted.

At first, the expectations a = («, 3,7) in our model are assumed to be known. To obtain
an estimator of the multiple change-point 8 = (61, 6,), we have to estimate the moments
of change 7, = (7, 0,) previously. For this purpose, by the least squares method, we are

interested in minimizing the random criterion function
k

l n
Sk, 1) =D (X —a)?+ D (X =B+ D (X, =72 (k1) €A,

i=1 i=k+1 i=l+1
Since it is possible that S, has several minimizers, we choose an arbitrary minimizer
T := argmin S, (k, 1)
(k,l)eAn

as the estimator of 7,. By properties of the floor function it is clear that %’Tn — 0.
n—oo

Therefore, a reasonable estimator of @ is given by 0, := %i’n.
The first aim is to prove consistency of 0,,. To this end, Theorem 2.1 provides conditions

to show almost sure convergence and convergence in probability of random minimizers. To

stay in the context of this theorem, 8,, must be represented in another form:

0,, = argmin p, (s, 1)
(s,t)€OR

with some technical domain ©,, and
1 -
Pn(s,t) = EMH([nSJ, Int]), (s,t) € O,

where M, is some criterion function, which has the same minimizers as S,,. We first have
to show uniform convergence in probability and almost sure uniform convergence of p, to
a deterministic function p, i.e.,

_ P (a.s.)
sup |pn(s,t) — p(s,t)] 0.

(s,t)€O, n—00
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Moreover, 8 = (6;,02) must be a minimizing point of p, which is additionally well-

separated, by definition,
inf{p(s,t) : ||(61,02) — (s,t)|| > ¢, (s,t) € O} — p(b,05) >0

for all € > 0, where || - || denotes the maximum norm. Applying Theorem 2.1 leads to the

weak and strong consistency of 0,, under different moment conditions.

Theorem. If M, < oo, then

0, 0.

n—oo
Theorem. Suppose there is some p € (2,00) such that M, < co. Then
0, 0.
Our next objective is to investigate the convergence in distribution of 7, — 7,. For this
purpose, let (&, )ienw, 7 € {1,2, 3}, be three independent sequences, which for each r consist
of independent and identically distributed random variables with common distribution @),

Write
D(k, 1) =Ty (k) +Ts(1), (k1) e€Z?

where
§

206 —a) Y (&2 —0) +k(a=p)*, k>0,

k
1

)1

—

—~
&y

~—
I

. and

| 28— ) 2, (§in — @) — h(a - B, k<0

1=

[y

(25v = B) S €5 = +UB -7, 120,

FQ(l) = z:l_l

|20 =B) 2 (G2 = B) — (B - 7% 1<0.

=1

Note that the process I' is a sum of random walks. The main idea to examine the conver-

gence in distribution of 7,, — 7, is to introduce the so-called rescaled process

Lok, 1) == My(1 + k, 00 + 1) — My(70,0,), (k1) € Hy,
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where H,, is some technical domain. Since 7, — T, is a minimizer of I',, for each n € IN, we
are able to apply Theorem 2.3, which gives conditions to show convergence in distribution
of random minimizers. The convergence of the finite-dimensional distributions of I',, to T,

i.e., for all m € N and (ky,1y), ..., (km, lm) € Z? it holds

(Co(krs 1), ooy T (B b)) —=— (D (1, 1), ooy DKoy L)),

n—oo
is the first assumption to check. Furthermore, by the Héjek-Rényi Inequality (see Lemma

2.8), we get an estimate of the error probability
Pl < |7, — o] < nd] < Cz?,

where C' > 0 is a constant, 6 > 0 sufficiently small, n € IN sufficiently large and = > 2.
Combining this with the weak consistency of 0,, yields stochastic boundedness of 7, — 7,

(second assumption of Theorem 2.3), i.e.,

lim limsup P[||7, — 7.|| > 2] = 0.
T=00  p—oo

If the distributions @)1, ()2 and @3 are continuous, the limit process I' has almost surely ex-
actly one minimizer. By application of Theorem 2.3, we obtain convergence in distribution

of 7,, — T, to the minimizer of a sum of random walks.

Theorem. If My < oo, then

limsup P[7, — 7, € F] < P[Argmin(T) N F # 0]  for all F C 7.

n—o0

In addition, if Q1, Q2 and Q3 are continuous, then Argmin(I") = {T'} almost surely and

_ c .
Tp—Tn ——T in Z°

n—o0

Based on the last result and the Continuous Mapping Theorem for convergence in distribu-
tion, we derive an asymptotic confidence region for the parameter 7, = (7,,,0,). For this
purpose, let F”_I}H(ﬁ), v € (0,1), denote the ¥-quantile of the distribution function Fjp| of
1]
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Theorem. Suppose that My < oo. Let Q1, Q2 and Q3 be continuous distributions and

v € (0,1). For each n € N, the random interval
1,(0) := [0 — Fih (1= 0), 7 + iy (1 19)] x [a—n — Fih (1= 0), 0, + Figb (1 —0)

is an asymptotic confidence region for T, = (Tn,0,) at level 1 — 9.

We now proceed with the asymptotic behavior of least squares estimators in our multiple
change-point model if the expectations a = (v, 3, 7) are assumed to be unknown. For ab-
breviation, we use )_(uﬂ} = ﬁ Zf:uﬂ X; for u,v € INg with u < v < n. To simultaneously

estimate the moments of change 7,, = (7,,,0,) and the expectations a = (v, 3,7) by the

least squares method, we minimize the criterion function

k l n
Su(k,labe) = (Xi—a)’+ Y (Xi=b)?+ > (Xi—c) (k1) €A,
=1 i=k+1 i=l+1

(a,b,c) € R®.
To do this, set

My(k, 1) = kX3, + (1= k) X2, + (n—DXE,, (k1) € A,

lL,ns

and choose an arbitrary maximizing point

Tn = (Tn, 0p) = argmaan(k, l).
(k,DeA,

We can show that (7, &,,) is a minimizer of S,,, where

ctn = (s B ) 1= (Kos X0 Xn)
So, we have found an estimator of (7,,a). Likewise as before, én = %'f’n is a reasonable
estimator of the multiple change-point 8 = (61, 05).

The strong consistency of @,, was shown by Albrecht [1].

10
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Theorem. Suppose there is some p € (4,00) such that M, < co. Then

Based on the proof of the previous theorem, we conclude the weak consistency under a

weaker moment condition.

Theorem. Suppose there is some p € (2,00) such that M, < co. Then

To get further results, we prove the stochastic boundedness of 7,, — 7,. By applications of
Markov’s Inequality (compare Lemma 2.4) and some maximal inequalities like Chow and
Doob (see Lemmas 2.9 and 2.10), we obtain an estimate of the error probability. This and
the weak consistency of @n lead to the stochastic boundedness of 7, — 7,,. Hence, we are

able to show weak consistency of the estimator of expectations.

Theorem. If My < oo, then

. P

a, —— a.
Likewise as before, the investigation of convergence in distribution of 7, — 7, is based
on the introduction of the rescaled process with respect to M,,. However, the calculation
of the rescaled process is hard to handle. Therefore, we introduce another estimator of
the moments of change 7, = (7,,,0,) and examine the asymptotic behavior of the new
estimator. In the criterion function S,, the known expectations o = (o, 3,7) are replaced

by their associated estimators &, = (@n, Bn, %) Write

l n

k 2
Silk,1) = > (X, — ) Z(Xi—ﬁn>+Z(Xi—%)2, (k,1) € A,.

i=1 i=k+1 i=l+1

11
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It follows that another least squares estimator of (7,, ) is given by (77, &), where

7, = argmin S (k, ()
(k,HeA,

is an arbitrary minimizer of S’. The multiple change-point 8 = (6y,0:) is estimated by
0 = %‘r;"l We can now proceed on a very similar way to the case of known expectations,
because both criterion functions S and S, feature a very similar structure. Observe that
many proofs become more technical, because S involves the estimators of expectations.
To prove weak consistency of 8, and convergence in distribution of 7} — 7, the main
results of our work, we use the weak consistency of &, permanently. Hence, these results

can be proved only for the same moment condition as in the previous theorem.
Theorem. If M, < oo, then

——y}

n—oo

Observe below that 7 — 7,, converges in distribution to the same limit process as 7,, — T,

in the case of known expectations.
Theorem. If M, < oo, then

limsup P[r% — 7, € F] < P[Argmin(T) N F # 0] for all F C 7.

n—oo

In addition, if Q1, Qo and Q3 are continuous, then Argmin(I') = {T'} almost surely and

L :
T —Tn —— T in 72

n—00

By the same steps as before, we get an asymptotic confidence region for 7,, = (7,,0,) in

the case of unknown expectations.

Theorem. Suppose that My < oo. Let Q1, Q2 and Q3 be continuous distributions and

v € (0,1). For each n € N, the random interval

n

L,(0) = |5 — Fil (1 —9), 7% + Fi (1 - ﬁ)} x [a:; — F (1= 0),0% 4 Fih (1 - 0)

is an asymptotic confidence region for T, = (T,,0,) at level 1 — 1.

12



Chapter 2

Fundamentals

This chapter provides the relevant tools to prove the results of this work. In fact, we gather

theorems for convergence of random minimizing points and some inequalities.

2.1 Continuous Mapping Theorems for the argmin

functional

This section deals with the convergence of random minimizing points. The following the-
orem, which is adapted from Ferger [16], gives criteria to prove almost sure convergence
and convergence in probability. For further information about the multivariate Skorokhod

space we refer the reader to Doring [9] or Ferger [16] and the references given there.

Theorem 2.1. Let O C R?, ¢ € IN, be an open set and let Z, Z,, n € N, be stochastic
processes defined on (2, A, P) with trajectories in the multivariate Skorokhod space D(O).
Let (T,)new € O be a sequence such that T,, C T,,11 for every n € N with J, .1 = O.

Furthermore, let o, be a random variable with o, € Argmin(Z,) for each n € N. If

13
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(i) sup | Zo(t) — Z(8)] =0 and
teT, n—r00

(ii) Z has almost surely a minimizing point o satisfying

inf{Z(t) : |o —t|| > ¢, t € O} > Z(0o) (2.1)

for all e > 0, then

a.s. (P)

n
n—o0

Proof. Ferger [16, p. 28, Theorem 3.3 and Remark 3.1] shows the assertion for infimiz-
ing points under the assumption that we have a sequence (T),),en of open sets with
liminf, ,, T,, = O C R% This proof shows that under the new assumption to (7,),en the

assertion is still preserved. Note that every minimizing point is an infimizing point. O]

We call a minimizing point satisfying condition (2.1) well-seperated. The previous theorem
and the next remark help us to prove weak and strong consistency of several estimators of

the multiple change-point.

Remark 2.2. To formulate Theorem 2.1 for maximizing points, replace ,Argmin“ by

,Argmax“,  minimizing“ by ,maximizing® and condition (2.1) by

sup{Z(t) : ||lo —t|| >¢, t € O} < Z(o) forall > 0. (2.2)
The following theorem states under which conditions the convergence in distribution of
minimizers of discrete stochastic processes is ensured.

Theorem 2.3. Let Z, Z,, n € IN, be stochastic processes indexed by 74, q € N, and let

Argmin(Z) and Argmin(Z,) be non-empty. Furthermore, let o, be a random variable with

o, € Argmin(Z,) for each n € IN. If

14
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(i) for allm € N and ky, ..., k,,, € Z4 it holds

(Zn(K1), ooy Zn(ki)) —— (Z(k1), ..., Z(kn))  and

n—>00
(71) limg_,oo limsup,,_, . P||lon| > d] =0,
then
limsup Plo,, € F] < P[Argmin(Z) N F # ()]

n—o0

for all F C Z4. If in addition
(11i) Argmin(Z) ={o}  almost surely,
then

c .
o, —— 0O m 74,

n—o0

Proof. The proof can be found in Ferger [17].

2.2 Inequalities

In many proofs of this work it is crucial to estimate probabilities or moments. For the

convenience of the reader, some in the literature well-known inequalities are recalled with-

out proofs. After this we give some moment estimates for sums of observations from the

model.

Lemma 2.4 (Markov Inequality). Let Z be a random variable and r € (0,00). Then for

alle >0

P(|z| > & < = "E[2[].

15
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Lemma 2.5. Let (2, A, P) be a probability space and let B € A with P[B] > 0. Let Z be

a random variable. Then for all € > 0
P[|Z| > ¢|B] < e *P[B]'E []IBZQ} :

Lemma 2.6 (Chebyshev Inequality). Let Z1,..., Z,, n € N, be pairwise uncorrelated and

centered random variables. Then for all € > 0

>z
i=1

Lemma 2.7 (First Kolmogorov Inequality). Let Zi,...,Z,, n € N, be independent and

P > e

<eg? Xn: V[Z).
=1

centered random variables. Then for all € > 0

<eg? iwzi].
=1

Lemma 2.8 (Héjek-Rényi Inequality). Let Zi, ..., Z, be independent and centered ran-

k

7

i=1

P

max
1<k<n

> €

dom wvariables with finite variances. Let cq,...,c, be a non-increasing sequence of positive

numbers. Then for any € > 0 and for any m € N with 1 <m <n

<e? (c;n S vizd+ Y czwzk]) .

k=m-+1

k

27

i=1

P | max ¢ > ¢

m<k<n

Lemma 2.9 (Chow Inequality). Let (Sk)rew be a submartingale with respect to the fil-

tration (Fi)gken. Then for each € > 0 and apmi1 > Gmyo > ... > a,, myn € N with

m<n
n—1
P l:mfllgi(<n CLkSk Z €:| S {571 (anE [S;ﬂ + kZH(CLk - a/k-Jrl)E [S;j) .

Lemma 2.10 (Doob Inequalities). Let (Sk)rew be a non-negative submartingale with re-

spect to the filtration (Fy)ren-

(i) Let 1 <m <mn ande >0. Then

P [ max Sy > 5} < e 'E[|S,]].

m<k<n

16



2.2 Inequalities

(11) Let 1 <m <mn and r € (1,00). Then

E[max 5,:]g< L )E[S;;].
m<k<n r—1

Lemma 2.11 (Cauchy—Schwarz Inequalities). (i) For anyay, ..., an, b1, ..., b, € R it holds

n n 1/2 n 1/2
Z |aibi| < (Z a?) (Z b?) :
i=1 =1

=1

(ii) For any random variables X and Y it holds
E[|XY] <E[X?]7E[y?]"”.

Lemma 2.12 (Jensen Inequality). Let g : R — R be a convex function. Suppose that

expectations of Z and g(Z) exist. Then
9(E[Z]) < Elg(2)].

Lemma 2.13 (c¢,-Inequality). Let Zy, ..., Z, be random variables and r € (0,00). Then

T

E

>z
i=1

<¢ Y E(Z[ with ¢ =
=1

The next lemma ensures that we can apply some maximal inequalities to a sum of inde-

pendent and centered random variables.

Lemma 2.14. Let (Z;);en be a sequence of independent, centered and p-fold integrable ran-

p .
) 18
kENm,

a non-negative submartingale with respect to the filtration (Fi)rew,, With Fi := 0(Zpm, ...y Z).

dom variables for some p € [1,00). Then for each m € IN the process (‘Zf:m Z;

Proof. The proof can be found for instance in Albrecht [1, p. 15, Lemma 2.6] in the case

m = 1. In the same manner we see the claim for each m € IN. O]

The next proposition helps us to find further moment estimates.

17



Chapter 2 Fundamentals

Lemma 2.15. Let (Z;);ew be a sequence of independent, centered and p-fold integrable
random variables for some p € [2,00). For each n € N and p > 2 there exists a positive

constant B, depending only on p such that

n p

>

=1

E < B Y B[ Zi)].

=1

Proof. Fix n € IN. By the Marcinkiewicz-Zygmund Inequality (see for instance Chow and
Teicher [7, p. 386, Theorem 2]), there exists a positive constant B, depending only on

p € [1,00) such that

n n /2
> Z| | <BE <Z Zf) : (2.3)
=1 =1

We see at once that the assertion of this lemma is true for p = 2. For p > 2 we apply the

p

E

Holder Inequality (see for instance Heuser [20, p. 347, Inequality 59.2]). For this purpose,

we set p := £ > 1. To hold % + % = 1, we obtain § = ﬁ. Holder’s Inequality yields

n p/2 n p/2 n i /5 n 1/g »/2
(ZZE) = (ZIZ?-H) < (Z\ZE\”) (Zm@)
i=1 i=1 i=1 i=1
— S |z
i=1
By (2.3), we have
n p n
E> Z| | <Bn”" Y E[Z]. O
i=1 i=1

Moreover, in this thesis we frequently use the following moment estimates for sums of

centered observations (from our model).

Corollary 2.16. Suppose there is some p € [2,00) such that M, < co. Let u,v € Ny with
u<v<n,necN. Foreachp > 2 there exists a positive constant B, depending only on p

such that

v

> (X - E[X)

i=u-+1

E

P
] < 2°B,M,(v —u)"*.

18



2.2 Inequalities

Proof. Fix u,v € Ng and n € IN with u < v < n. By Lemma 2.15, there exists a positive

constant B, such that

p

E Z (X@ - E[Xz]) =K Z_:(Xuﬂ - E[XUH]) ]
< By(w— ) Y B[ X~ B[P 2.4)

Furthermore, we can conclude that

Bl Xu+i — BXu] 7] < 277 (B[ X ] + [E[X o] ) by ¢-In.
< 2PE[| Xyt4|7] by Jensen In.
< 2PN,
for all i € {1,...,v — u}. Combining this with (2.4) gives the claim. O

If the observations are not centered, we can at least state the following estimate.

Lemma 2.17. Let k € R with |k| < M, p € [1,00), and u,v € Ny with u < v < n,

n € IN. Then there exists a positive constant C, depending only on p such that

v p

> (X — k)

i=u+1

E < CpMpy(v —u)P.

Proof. Fix u,v € Ny with u < v <mn,n € N. Let k € R with |s| < M,, p € [1,00). By

the c,-Inequality, we get

E[|) (Xi—x)| |=E i(xw — k) ] < (v— u)P—liEHXW — kP, (2.5)
i=u+1 i=1 i=1

Another application of the c¢,-Inequality leads to
E[|Xuti — 617 < 27 HE[| Xy '] + |5[7) < 2771 (M, + M) < CpM,

for all ¢ € {1,...,v — u}, where C, > 0 is a constant, which depends on p. Combining this

with (2.5) completes the proof. O
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Chapter 3

Known expectations

In this chapter we study the estimation of the multiple change-point by the least squares
method and the asymptotic properties of such estimators if the expectations a = (v, 3, 7)
are assumed to be known. This assumption is uncommon for practical applications, but
the essential approach as well as the used methods to conclude results in our multiple
change-point model can be well presented.

First we have a closer look at the estimator of the multiple change-point. The next sec-
tion is concerned with the proof of weak and strong consistency. Finally, we investigate

convergence in distribution to derive a confidence region for the moments of change.

3.1 Estimation of the multiple change-point

Our first purpose is to estimate the multiple change-point @ = (0;,605) € ©. To do this,
we estimate the moments of change 7, = (7,,,0,) € A, previously. By the least squares

method, we are interested in finding all minimizers of the random criterion function S,
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Chapter 3 Known expectations

given by
k ! n
Sk, ) == (Xi—a)?+ > (X =B+ D (Xi =% (k1) € Ay (3.1)
i=1 i=k+1 i=l+1

It is easily seen that S, has at least one minimizer. To compute all minimizing points of
S, and get further results, we introduce another random criterion function M,,, which has

the same minimizers. Let
M, (k,l) = zk:al(Xi) + ZZ: ax(Xy), (k1) € A,
i=1 i=1
where the mappings aq,as : R — R are given by
a(z) =28 —a)r+a* - B* and ay(v):=2(y— Bz + % — > (3.2)
Lemma 3.1. Let n € N. Then

Argmin (gn) = Argmin (Mn) .

Proof. Fix n € N and (k,l) € A,,. An easy computation yields

Su(k, ) =S (X —a)® + 'Z (Xi =B+ > (X; =)

= 3 [ — ) = (X = 8] + D [ = ) = (X = 9] + > (X = )°

i=1
Since the last sum does not depend on (k,l) € A, it has no influence on the minimizing
points of S,,. ]
To make sure that the estimator of 7,, = (7,,, 0,,) is well-defined, if more than one minimizer

of S, and M, exists, it might be expedient to define a choice function

¢ : Argmin (Mn) — Ay,

22



3.1 Estimation of the multiple change-point

which accurately chooses one minimizer. Hence it is meant that 7, = ¢ (Argmin (Mn))

when we write

T 1= (Ty, 0,) = argmin M, (k, ) (3.3)
(k,eA,

hereafter.

Remark 3.2. The choice function can be selected arbitrarily. For instance, Seijo and Sen
[25, p. 428, Definition 2.4] have suggested the smallest argmax functional for maximizing
problems. The main idea is to choose the maximizer with the smallest first component.
If there are several maximizing points with the smallest first element, then take this one

with the smallest second component. In this work we assign the approach to minimizers.

The question arises under which condition has M,, an unique minimizer.

Lemma 3.3. Let n € IN and let ()1, Q2, Q3 be continuous distributions. Then

‘Argmin (Mn)| =1 almost surely.

Proof. Fix n € IN. Of course, M, has at least one minimizer, because the domain A, is

finite. It follows that

P HArgmin (Mn)| = 1}

=1-—-P [{!Argmin (Mn)‘ = O} U {‘Argmin (]\7[n)| > 2}]
(

v
—_
I
=
S
—~
o5c}
=,
=
|
N
I
=
+
%
ES
—~
o
=
=
g
Vv
A,

=1—-P HArgmin (Mn)‘ > 2}
—1-P U {0k, 1) = M, (ki 1)}

>1-— > P [M,,(k1,11) — My(ka, 15) = 0] . (3.4)
(k1,l1)#(k2,l2)EAR

We distinguish several cases to compute M, (ky,1;) — M, (ks,[3) by definition.
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Chapter 3 Known expectations

(1) (a) Let 1 <k <ky<ly<ly<n-—1. Then

k‘z ll
Mn(kl, ll) — Mn<k2,l2) = — Z al(Xi) + Z (IQ(XZ'>.
i=k1+1 i=la+1

(b) Let1§k1<k2§l1<l2§n—1 Then

k‘g l2
Mn(kla ll) - Mn<k2>l2) = - Z Gl(Xi) - Z a2<Xi)-
i=k1+1 i=l1+1

(C) Let 1 <k <ly<ky<ly<n-—1. Then

1 ka2 l2
My (kr, ) =My (ks ) = = Y ar(Xi)= D (aa(Xi)+aa(Xi))— Y aa(Xy),
i=k1+1 i=l1+1 1=ko+1

(i) (a) Let 1 < kg <ky <l <lp <nm—1. Then

k‘l l2
Mn(klall) - Mn<k27l2) = Z al(Xi) - Z a2<Xi)-
i=ko+1 i=l1+1

(b) Let 1 <ky<k; <ly<ly <n-—1. Then

k‘l ll
Mn(lﬁ,h) _Mn(k27l2) = Z ar(X;) + Z as(X;).
i=ko+1 i=la+1

(C) Let1§k2<12<k1<l1§n—1. Then

lo k1 I

My (k1 b)) = My(ka o) = > ar(Xi)+ Y (a1(Xy) +aa(X)+ > aa(X).

i=ko+1 i=lo+1 i=k1+1

By the independence of X7, ..., X,, and the definitions of a; and as, we obtain sums of inde-
pendent random variables in each case. Since )1, ()2 and ()3 are continuous distributions,
we can conclude by convolution and the definitions of a; and ay that M, (ky, ;) — M, (ks, l5)
are continuous distributed random variables for each (ki,11), (k2,ls) € A, with (k1,1;) #
(ko,ly). This gives P [Mn(kl,ll) — M, (ka, 1y) = O] = 0 for all (ky,l1), (ko,l2) € A, with
(k1, 1) # (ka2,12). By (3.4), we have P [|Argmin (M,)| =1] = 1. O
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3.1 Estimation of the multiple change-point

Based on the estimator 7,, of moments of change 7,,, we are able to construct an estimator
of the multiple change-point 8. By simple properties of the floor function (compare Lemma

A1 (i), it is easy to check that 27, = L(|n6 ], [nf]) —— (61,65) = 6. Hence
n—oo
0, =-7, (3.5)

is a reasonable estimator of 6.
Though, the proof of consistency in the next section requires another form of 6,,. Let us

denote by p, the random criterion function

pn(s,t) :==M,(|ns]|, |nt]), (s,t) € Oy,

1
n

where

n

@W:{@UGG

1 1 1
SZ—,t—SZ—,l—tZ—}. (3.6)
n n

Lemma 3.4. Let n € N. Then

0,, = argmin p, (s, 1).
(s,t)EOR

Proof. Fixn € N. By (3.3), we have 7, = (7,,6,) € A, = {(k, 1) e N}[1 <k <l <n—1}.

This gives 8,, = % (7w, Gn) € O,. Since (7, 5,) minimizes M,,, we obtain for all (s,t) € ©,

— 1 1
Pn (en) = Pn (ﬁfna ﬁ5n> =

The inequality is a consequence of A, = {(|ns], |nt]) € N?|(s,t) € ©,,}, which is shown

M,(To,50) < —My(|ns], [nt]) = pa(s, ).

SRS
S|

in Lemma A.3. O]

Remark 3.5. The factor n~! in the definition of p, does not influence the minimizing

points of p,, but the proof of consistency of 8,, requires this factor.

Due to the following lemma, we get in the framework of Theorem 2.1 to prove consistency

of 9,,.
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Chapter 3 Known expectations

Lemma 3.6. p,, n € IN, is a stochastic process with trajectories in the multivariate Sko-

rokhod space D(O,,).

Proof. We outline the proof. The details are left to the reader. At first observe that
a sequence of vectors converges to another vector if and only if the convergence occurs
component by component. Notice that the floor function + — |z] is an element of the
Skorokhod space D(R) and |z] € IN for any x € R. Moreover, from analysis it is well-
known that a sequence of natural numbers converges to a natural number if and only if
the numbers of the sequence are constant from an index. Hence, by definitions of p, and

M, it is easy to check the claim. ]

3.2 Consistency of the multiple change-point estimator

This section deals with the weak and strong consistency of 8,,. To get consistency, we apply

Theorem 2.1. The first part of this section is concerned with the uniform convergence of

P
Proposition 3.7. If My < oo, then there exists C' > 0 such that for alln € N and e > 0

P | sup |pu(s,t) — E[pa(s,t)]| > e| < Ce?n".
(s,t)€O,
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3.2 Consistency of the multiple change-point estimator

Proof. Fix n € N. Let C' = C(«, 3,7) > 0 be a generic constant. We have

sup |pn(87 t) - E[ﬁn(S, t)”
(s,t)€OR

_! sup | M, (|ns], [nt]) — E [M,(|ns], [nt])]] by def. of p,

N (5,t)eO,

1 _ _
T (k:{%%i{n ‘Mn(k’ [)-E [M”(k’ l)] | by Lem. A.3

' (a1(X;) — Ela1(X3)]) + Z(aQ(Xi) — IE)[C@(XQ])' by def. of M,

k

> (a1(X5) = Efay(X,)))

1
< — max
n (khedn \ | =

1
= — max
n (kleA,

l

D (a2(X)) - ]E[aQ(Xi)])D by Tr. In.

i=1

+

Throughout the proof, Z; ; and Z5;, 1 <i <n, stand for
Zl,i = al(Xi) — E[(Il(XZ)] and ZQJ‘ = GQ(XZ‘) — E[CLQ(XZ)]

It is a simple matter to conclude that 7, 1, ..., Z; ,, as well as Z 1, ..., Z3 , are independent,

centered and 2-fold integrable (note that X7, ..., X,, are independent and 2-fold integrable).

We deduce that

N ) by An - {17 ...7TL}2
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Consequently, wee see for all € > 0 that

P sup [pn(s, 1) = Elpn(s, 0)]] > 8]

(57t)€®n
l
E Lo
i=1

+P

< P | max E Zy ;| + max
1<k<n |4 ’ 1<i<n

l
E Lo
i=1

2
=P | max ZZM >(ng) + P | max

1<k<n |4

£
<P | max Z Zl,i >n—

max
1<k<n 2

1<i<n

> n%] by Lem. A.4

2
Note that (’Zf:l 2y, ) and (’2;1 Z,i
1<k<n

by Lemma 2.14. We thus apply Doob’s Inequality, given in Lemma 2.10 (i), and obtain

2
) are non-negative submartingales
1<i<n

P | sup |[pn(s,t) = Elpn(s,t)]| > €
(s,t)€OR
<Cen (B D Zu| | +E||D 2 (3.7)
i=1 i=1
In addition, we find some upper bounds for the second moments. We infer that
E Z Zl,i =E Z(al(XZ) — E[al (Xz)])
i=1 i=1
<O E [Jar(X:) — Blaa (X))] by Lem. 2.15
i=1
<CY (B [Jar (X)) + [Blai (X)) by ¢,-In.
i=1
< C’Z]E [la1(X3)[?] - by Jensen In. (3.8)
i=1
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3.2 Consistency of the multiple change-point estimator

We infer for ¢ € {1,...,n} that

E [ja;(X)2] = B [|2(5 —a)X;+a?— 52|2] by def. of a;
<2(12(8 - )PE[IXi] + [o? - 87 by ¢,-In.
<2(2(8 - )M + | - 57°)
<C by My < oo.

By (3.8), we have
n 2

E | Zu| | <Cn. (3.9)

=1

In the same manner we can see that

" 2
E | Zy | <Cn. (3.10)

i=1
Combining (3.7) with (3.9) and (3.10) gives the claim. O

We now calculate E[p, (s, )] for all (s,t) € ©. To do this, we divide © into disjoint subsets
(displayed in Figure 3.1) according to the position of (s,t) € O relative to the multiple

change-point (01, 6) € ©.

Let
6
o=Je, (3.11)
i=1
where
0! :={(s,t) €O|s <t <0 < by}, 0t = {(s,t) € O, < s <t < by},
0% :={(s,t) €O|s < 0 <t <}, ©° = {(s,t) € Ol < s < Oy < t}, (3.12)
0% = {(s,t)€Os <O <Oy <t} O%:={(s1) €Ol < <5<t}
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1 .
e e e
P o ,
e o
Opf- y
(_)1
S
0 0, 0 1

Figure 3.1: Partition of © into ©1!, ..., @

Lemma 3.8. Letn € IN. Then

(M_ [ns| (Q_B)Q_L’;L_U(a_»y)? (S,t) E@lﬂ@n,

1) (52, (5,t) € ©2 N O,

%”—M> (B =) (s,t) € ©4NO,,

)
(
(
(
+("—”+T—"—2”—"> (8 =) (s,t) € ©°N Oy,
(
(
(
(

"_ﬂ+m_2@> (B—7)2, (s,t) € ©° N O,,

+(%_M+%_%>(ﬁ_7>27 (S’t)€®6m®”'
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3.2 Consistency of the multiple change-point estimator

Proof. Fix n € IN. Recall that

)
a, 1<1< 7,

EXil=48 m.+1<i<o,,

75 o, +1 <1< n.

We leave it to the reader to verify that

—(a = B)?, 1<i<T,

Ela1(X:)] = { (« — B)2, T +1<i<o,,

(a_r)/)Z_(B_’Y)Qa O-n+1§l§n
and

(Oé—ﬁ)2—(05—’y>2, 1§i§Tn>

Elas(X;)] = § —(8 — 7)2, Tn+1 <1 < oy,

\(B—V)Q, o, +1<i<n.

As an example, we compute the expectation of p,(s,t) for (s,t) € ©*NO,, since a similar

procedure would bring the remaining cases. Lemma A.1 (ii) leads to
1< ns] <7, < |nt] <o, <n.

By definitions of p,, and M, the sums are split into segments according to above. Hence

_ 1 -
E[pn(s, )] = —E [My(|ns], [nt])
1 [ L] n [nt]
= > Ela (X)) + ) Blaa(X)] + > Elaa(Xy)]
i=1 i=1 i=Tn+1
A simple computation establishes the form as in the assertion. ]
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Figure 3.2: Plot of p for 8 = (04,02) = (0.4,0.8) and a = (v, 3,7) = (0.6,1,0.5).

The function p : © — R is defined by

p(s,t) = (6 = 02)(8 —7)* = bi(a —7)° (3.13)

;

(t=s)(a=B)?+ (6 —t) (=) + (62— 61)(B =) (s,1) €O

(61 = s)(a = B)* + (62 = 1) (B = 7)*, (s.t) € ©,
N (61 = s)(a = B)* + (L = 62)(B — )%, (s, 1) € ©,
(s = 01)(a = B)* + (62 = 1) (B — )%, (s.t) € O
(s = b1)(a = B)* + (L = 62) (B — )%, (s,t) € ©,

(s =) (=724 (t—=s)(B—7)"+ (02— 01)(a—B)? (s,t) €O

The function p (with domain ©) is illustrated in Figure 3.2.

The following estimate states the uniform convergence of the expectation of p, to p.

Proposition 3.9. There exists C' > 0 such that for alln € IN

sup |E[pn (s, t)] — p(s,t)] < Cn~
(s5,t)EO,
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3.2 Consistency of the multiple change-point estimator

Proof. Fix n € N. Our proof starts with the observation that the partition of © gives

sup [E[pa(s,0)] — p(s.t)| = max  sup  [Elpa(s.t)] — pls,0)]. (3.14)
(s,£)€O, i€{1,....6} (s,t)c0iNO,,

We show the way of our proceeding for (s,t) € ©2 N 6,,. We have

ps,t) = (01— 02)(B = 7)* = b1 = 9)* + (61 — s) (o = B)* + (02 — 1) (B — 7)°

= (0h = s) (o = B)* — 01 (= 7)* + (6 — )(B — 7)*.

Lemma 3.8 and the Triangle Inequality now imply

[ns]

Blpa(s,8)] — pls.1)] < ]T o= g |d

Tn
+ ]2 — 6,

Jla=8)? = (a =)+ (8-
Lemmas A.1 (iii) and A.1 (iv) lead to

sup ‘E[ﬁn(s>t)] _p<87t)|
(s,t)€O2NO,,
Lns)

<(a—p)* sup
(s,)€02n0, | T

Lnt]

e [
(s,t)€O2NO,

Tn
g,

+(a=B)P2=(a=7)+(B—7)°|
<=8+ B-y)n+|la-8)°—(a=7)+(B-7)n"

=Cn™',

where C':= C(a, 8,7) = (a = B)* + (B —7)* + (@ = B)* = (@ = 7)* + (B —7)*| > 0. By
an analogous estimate, an upper bound of the form Cn~! can be found for the remaining

partitions ©° of ©, 7 € {1,3,4,5,6}, such that we get the claim by (3.14). O

Propositions 3.7 and 3.9 help us to prove assumption (i) of Theorem 2.1. We now concern
with assumption (i) of Theorem 2.1, which says that @ = (6;,62) € © must be the well-

separated minimizer of p.

Lemma 3.10. The multiple change-point @ = (01,02) € © is the unique minimizer of p.
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Proof. We have to show that p(s,t) — p(61,62) > 0 for all (s,t) € © with (s,t) # (6y,02).

Let us first observe that

p(01,02) = (01 — 02) (8 — 7)2 —01(a — 7)2-

Recall the model assumptions a # 3 and 3 # . For (s,t) € ©! and (6, 6,) € © we notice

0<s<t<#, <b, <1. Hence

p(s,t) — p(0r,02) = (t — s)(a — B)* + (61 — t)(a —7)* + (02 — 61) (8 —7)* > 0.

We check at once that the same procedure leads to p(s,t) — p(6y,62) > 0 for all (s,t) € ©7,
i € {3,4,5,6}. To complete the proof, we consider ©2. For (s,t) € ©2 and (6;,60,) € © we

note that 0 < s < 6; <t <6y < 1. The definition of p and (s,t) # (61,02) yield

p(s,t) = p(0r,02) = (61 — s)(a = B)* + (62 — 1)(B — 7)* > 0. O

Throughout the entire work, let us denote by || - || the maximum norm.

Proposition 3.11. The multiple change-point @ € © is the well-separated minimizer of p.

Proof. We first observe that @ = (0, 6,) € © is a minimizer of p, which was proved in the

previous lemma. By (2.1), it is sufficient to show that
inf{p(s,t) : [[(01,02) = (s,)|| = &, (s,1) € OF = p(0h,02) >0
for all ¢ > 0. Fix ¢ > 0. By decomposition of O, we get

inf{p(s,t) : ”(61792) - (Svt>|| > €, (Svt) € @} - p(91"92)
- inf{p(s,t) - p(81792) : ”(91792) - (S=t>H > €, <S7t) S @}

= min6} inf {p(s,t) — p(61,02) : [|(61,62) — (s,t)]| > &, (s,t) € ©} by (3.11)

1eq{1,...,

i€{lt} (3.15)
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3.2 Consistency of the multiple change-point estimator

Write C' := C(a, 3,7) := min{(a—p)?, (8—v)?} and note that C' > 0 by model assumptions
a # [ and B # ~. By definition of p, we obtain

02 = inf {p(s,t) — p(01,62) : [|(01,02) — (s,1)]| = &, (s,1) € ©%}
=inf {(61 — s)(a — B)* + (62 — t)(B —7)* : max{; — 5,0, — t} > ¢, (s,t) € ©%}
> inf {C((6; — s) + (62 — t)) : max{# — 5,0, — t} > ¢, (s,t) € O}
inf {C(e+ (0 — 1)) : (s,t) €O}, 6 —s> 0y —t,
inf {C((0, — s) +2): (5,8) €O}, 6 —5< bt
=Ce
> 0.

We can now proceed analogously to conclude that g3 > 0, 04 > 0 and p5 > 0. Furthermore,

by definition of p, we have

o1 = inf {p(s,t) — p(61,62) : [|(01,02) — (s,1)]| = &, (s5,1) € ©'}
— inf {(t — 5)(a — B)? + (61 — t)(a — 7)?
(02 = 01)(8 = 7)" : [[(01,02) — (s,1)]| > &, (s,8) € O'}
= (02— 0:1)(8 —)?
> C(6z — 01)

> 0,

the last inequality being a consequence of (01,0,) € ©. It is a simple matter to check

06 > 0. By (3.15), the proof is complete. ]

We can now formulate and prove the weak consistency of 8,,.

Theorem 3.12. If My < oo, then

35



Chapter 3 Known expectations

Proof. We apply Theorem 2.1. p,, n € IN, is a stochastic process with trajectories in the
multivariate Skorokhod space D(0,,) by Lemma 3.6. p has trajectories in the multivariate
Skorokhod space D(0©), since p is continuous, as is easy to check. Moreover, (0,,),eny € ©
is a sequence of sets such that ©,, C ©,,,; for every n € N with UnelN 0, = 6. By Lemma

3.4, 8, is a minimizer of p, for any n € IN. We infer that

sup |pn(87 t) - p(57 t)|

(s,t)€OR
= Ssup |ﬁn(87 t) - E[ﬁn(sa t)] + E[ﬁn(sv t)] - p(S, t)|
(8,t)EOR
< s (1o t) = Elpa(o, ]|+ Bl (o.8)] = s ) by Tr. In
$,t)EOy
< sup |[pn(s,t) = Elpn(s, 1)]| + sup [E[pn(s,t)] — p(s,1)] (3.16)
(s,t)EO, (s,t)€O,

for each n € IN. Letting n — 0o, Propositions 3.7 and 3.9 lead to

_ P
sup [pn(s,t) — p(s,t)] —— 0.

(s,t)€O, n—oo
In addition, 8 € © is the well-separated minimizer of p, see Proposition 3.11. An applica-

tion of Theorem 2.1 finishes the proof. ]

We can even prove strong consistency of 8,,.

Theorem 3.13. Suppose there is some p € (2,00) such that M,, < co. Then

0, =+ 0.
Proof. We apply Theorem 2.1 again. The basic framework is the same as in proof of
Theorem 3.12. Furthermore, 8 € © is the well-separated minimizer of p by propsition

3.11. By (3.16), we observe that

sSup |ﬁn(87 t) - p(S, t)|
(s,t)€OR,

< sup |pu(s,t) = E[pn(s, 0)]] + sup  [E[pa(s,t)] — p(s, t)].
(5,t)EO, (s,t)€O,
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3.2 Consistency of the multiple change-point estimator

Assumption (i) of Theorem 2.1 is fulfilled if

sup |pn(s,t) — p(s, t)] ———= 0.

(8,t)EOR n—oo

By Proposition 3.9, the proof is completed by showing that

sup |pn(s,t) — E[pn(s,t)]| 225 0. (3.17)
(s,t)€O, n—00

For this purpose, we set

&E%Z{ﬂm!m@ﬂ—EmﬁﬁH>%

(s,t)€EOR

for each n € IN and € > 0. By a similar estimate as in the proof of Proposition 3.7, there

exists a constant C' > 0 such that P[4, ()] < Ce™Pn~"? for all £ > 0. Hence

iIP[An(e)] < Ce? in_p/z < 00.
n=1

n=1

The finiteness holds, because the series converges for p > 2. The first Borel-Cantelli Lemma
(see for instance Schmidt [24, p. 227, Lemma 11.1.12]) leads to P [lim sup,,_,., A,(¢)] =0

for all € > 0. Hence

P sup |pn(s,t) = Elpn(s,t)]] ——= 0| =P

(s,6)€O, n—00

ARSRARTOL

e€Q>0 mEN nelN,,

| U N U e

Le€Q>0 mEN nelN,,

=1-P U limsup 4,(¢)

n—oo
Le€Q>0

The last equality holds, because the countable union of null sets is also a null set. We have

shown (3.17), which is our desired conclusion. O
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3.3 Convergence in distribution

We proceed with the study of convergence in distribution of 7, — 7,,. To do this, we apply
Theorem 2.3. To stay in the framework of Theorem 2.3, the main idea is to introduce
another process I',,, which is minimized by #,, — T, for each n € IN. The so-called rescaled

process Iy, is defined by

Lok, 1) = My(1, + k,0, +1) — My (1n,0,), (k1) € H,,
where

Hy={(k)eZk>1-7p, l—-k>1— (0, —7T), n—1>0,+1}.
Lemma 3.14. Let n € N. Then

Tn — Tn € Argmin (fn) .

Proof. Fix n € IN. Note that 7, — 7,, = (T, — T, 0n — 0,,) lies in H,,, which is clear from
T, € A, and 7, € N2, Moreover, from (k,l) € H, it follows that (7, + k,0, + 1) € A,.

Since T, is a minimizer of M,,, we obtain

Uo(Tn—Tn, 0n—0y) = Mn(fn,6n)—]\7fn(7n,on) < Mn(Tn—l—k,Un—i-l)—Mn(Tn,Un) = fn(k,l)

for all (k,1) € Hy,. O

I, has the following form.

Lemma 3.15. Letn € N and (k,l) € H,. Then

Lok, 1) = Dy (k) + Tna(l)

with

k !
_ Z a1<X7'n+i)7 k>0, Z az(XJn_H‘), [ >0,
Fn,l(k) = and Fnyg(l) = ¢ =l

—k

—> a1 (X —iv1), k<O — > as(Xs,—it1), 1 <0,

i=1 =1

where ay and ay are given by (3.2).
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3.3 Convergence in distribution

Proof. Fix n € N and let (k,1) € H,. By definitions of I',, and M,,, we have

f‘n(k, ) = Mn(rn + ko, +1) — Mn(Tn, on)

For k£ > 0 we have

Tnt+k k
Toa(k) = Y ar(Xy) = a1(Xr4i) = T (k)
i=Tn+1 =1
and for kK <0
Fnl(k) == Z Cl1(Xz) = - Zal(Xm—i—H) = Fnl(k)
i=Tn+h+1 i=1
The cases I > 0 and [ < 0 to obtain the form of fng are left to the reader. O

To show assumption (i) of Theorem 2.3, we establish convergence in distribution of all
finite-dimensional distributions of T',,. To this end, let (&, )ien, 7 € {1,2,3}, be three
independent sequences, which for each r consist of independent and identically distributed

random variables with common distribution @),. Set

D(k, 1) :=T1(k) +To(l), (k1) €Z? (3.18)
where
k I
>oai(&iz), k>0, > as(&iz), 1>0,
y(k) = i:{k and T'y(l) := izlil
- ;al(fi,l)a k<0 — ;CLQ(&’2>’ [ <0.

Remark 3.16. A trivial verification shows that [ is a sum of two random walks with
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Chapter 3 Known expectations

Figure 3.3: Plot of I', I'; and I'y for Q1 = N(3.2,1), Q3 = N(5,1), Q3 = N(2.6,1).
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positive drift. More precisely, we have T'(k, 1) = T';(k) + T'o(1) with

Iy (k)

[o(1)

208—0a) 3 (G2 =B +kla=p)*, k=0,

k

—2(8—a) 3 (&g —a) —kla—B)% k<0

=

1 z—)+UB—)? 120,
—1

—2(y=B) > (&2 —B)—U(B—7)% 1<0

=1

k
1

~

and

—_

2(y - p)

l
1=

for each (k,1) € Z*. Furthermore, the drift functions of I'; and 'y are given by

E[Ly (k)] = (o = 8)*[k| and E[l2(D)] = (8 —)|ll.

The processes I', I'; and I'y are displayed in Figure 3.3. Note that these processes are only

defined on integer numbers, but for clarity the processes are illustrated on real numbers

(single points are connected).

Lemma 3.17. Let m € N. Then for each collection (ky,1y), ..., (km,ln) € Z* there exists

ng = 7’Lo<k1, ll, ceey

Emylm) € N such that for all n > nyg

(Colkr, 1), ooy T (B b)) = (D1, 1), oo, DKoy L))
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3.3 Convergence in distribution

Proof. Fix m € N and (ky,11), ..., (km, lm) € Z2. Since it holds
Th —> 00, O0p—Tp——00 and n-—o0, — 00 (3.19)

n—oo n—oo n—oo

by Lemma A.2, we have |J, . H, = Z*. From this we can conclude that there exists

ny = ny(ki,l, .y km, L) € IN such that for all n > ny
(k1,01), oy (ks L) € H,. (3.20)
Furthermore, by (3.19), there exists ny = ng(ki, 1, ..., km, l,) € IN such that for all n > ny
max{|ki|, [l1], .-, [kmls |lm|} < 00 — T (3.21)

From now on, let n > ngy := max{ni,ny}. We consider several cases. Fix r € {1, ..., m}.
(i) We distinguish two cases for k.

(a) Let k. > 0. By (3.21), for all i € {1, ..., k. } we see that
Tn+1§7n+i§7n+k7§7n+(gn_7n):Un7

and consequently X, ; ~ Q5.

(b) Let k. < 0. By (3.20), for all ¢ € {1,..., —k,} we find that
Tw2Th—i+1>7m+k+1>270+(1—7)+1=2,

and so X, ;11 ~ Q.
(ii) We distinguish two cases for I,..

(a) Let [, > 0. By (3.20), for all 7 € {1,...,[,.} we obtain
on+tl1<o,+i<o,+l. <o, +(n—0,—1)=n—-1,

and hence X, ; ~ Qs.
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(b) Let I, < 0. By (3.21), for all i € {1, ..., =} we have
opn>0n—i+1>0,—(=l,)+1>0,— (0 —7) +1=7,+1,

which gives X, ;11 ~ Qs.

Write Xn = (Xlu---7Xn> and £n = <€1717"'7£Tn,17£1,27"'7€0n*7’n,27£1,37"'75”*0'71,3)7 Where
(&i1)ien, (&i2)iew and (&3)iew are the sequences defined in (3.18). The independence of

observations, distinction of cases and independence assumptions to the sequences imply

®]PX_®]PX ® ®]PX® ® P,

1=Tn+1 1=on+1
On—Tn n—0on
_®IP§11® ®IP§12® ®IP&3

- ]P€n :

Therefore X, £ ¢,. The crucial fact is that the processes I',, and I' depend on random
variables. Thus, I',, and I' can be considered as measurable transformations of X,, and &,

which lead to

(Faks ) Tl b)) = (Fafs 133 Xo)s s Pl s X))
£ (To(ky,1:€,), oo, Pl Lt €1))
= (D(ky, 135 €)ooy T Koy L €,,))
= (T(k1, 1), oo Dy ). -

We get convergence in distribution of all finite-dimensional distributions of T',, to I.

Proposition 3.18. Let m € N and (ki,11), ..., (km,lm) € Z*. Then

(Colkr 1), ooy T (Ko L)) ﬁ (D(ky, 11)s ooy T (Ko, ).
Proof. The assertion follows directly from Lemma 3.17. O
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3.3 Convergence in distribution

The task is now to prove stochastic boundedness of 7, — 7, see assumption (ii) of The-
orem 2.3. The following two technical lemmas are useful to estimate the error probability

previously.

Lemma 3.19. There exist 6 > 0 and nyg € IN such that
(i) 1+nd <1, —nd,

(ii) T +nd < 0, —nd and

(iii) o, +nd <n—nd

for all n > ny.

Proof. The procedure is to find a condition to ¢ > 0 such that all inequalities are satisfied
for a sufficiently large n € IN. For example, we consider Inequality (ii), which is equivalent

to

2nd < 0y — Ty (3.22)
First observe that the properties of the floor function (Lemma A.1 (i)) lead to

Opn — Tp = |nb2| — |nb1] > nby — 1 —nby =n(fy —6;) — 1.

Consequently, the inequality holds in (3.22) if § < 1(6, — 6;) — % Suppose for a moment
that n > ﬁ. Then we can choose § with § < %(92 — 01). Set ny(b,0:) := LﬁJ +1
and 0q(61,05) := %(92 — 61). Now, (3.22) holds for d5(0;,0) and every n > ny(61,60). By
similar arguments, we get 0,(6,) = %91, ni(6y) = {%J + 1 and d3(63) := %(1 — 6) such
that Inequality (i) holds for 0,(f;) and all n > n(6;), and Inequality (iii) is fulfilled for
93(02) and all n € IN. If we choose § := §(0y,02) := min{01(01),02(61,62),03(02)} and
no := no(0y, 6z) := max{n,(01),n2(61,02)}, then the lemma follows. From (0;,6,) € © we

deduce that 6 > 0. O
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Recall that || - || stands for the maximum norm. Let us denote by H, . s the set
Hyz5 = {(k,1) € Holw < |[(k, D] < nd}
forn € N, z > 0 and 6 > 0.

Lemma 3.20. Let x >0, 0 >0 and n € N. Then

{e<|lFa—7ull <nsy < (J {-Tulk,l)>0}.

(k’l)eHTL,I,6

Proof. Suppose, contrary to our claim, that there exists w € {z < ||7,, — 7,.|| < nd}, but

w¢ | {-Tulk) >0},

(k;vl)eHn,.r,é

So, we get —I',(k,l) < O for all (k,l) € H,, 5. By Lemma 3.14, we have 7,, — 7, € H,,

and, in consequence, T, — 7,, € H, ;s by assumption. The definition of L, gives

which contradicts the fact that 7,, minimizes M,,. O

We now derive an error estimate.

Lemma 3.21. Suppose that My < oo. Then there exist ng € IN, 6 > 0 and a constant

C > 0 such that for all n > ny we have
Plx < |7, — 7| < nd] < Ca™!

for all x > 2.

Proof. Let x > 2. By Lemma 3.19, there exist 6 > 0 and ny € IN such that for all

n > ng the conditions (i)-(iii) in Lemma 3.19 hold. Consider n > ng and § > 0 and let

44



3.3 Convergence in distribution

C = C(a,B,7) > 0 be a generic constant. By Lemma 3.20, we first observe that

-l <nitc |J {-TukD =0

(k,))eHp 2.5
c U {-mukn=0}u (J {-Tuk1)>0}
2<|k|<ns [k|<ns
il<ns 2<|il<ns
= EUF. (3.23)

To simplify notation, the fact that some in this proof defined sets, random variables and
probabilities depend on n, x or ¢ is omitted. We give the proof only for the estimate of

the probability of E; the other case follows the same pattern. We find that

Ec |J {-Tukp=0}u [J {-Tulk) >0}

z<k<né x<k<né
0<i<né —nd<I<0
u | {-Tukp=0tu |J {-TukD) =0}
—nd<k<-—z —nd<k<-—z
0<i<no —nd<I<0
= EFHDyEH) yEEHD U B, (3.24)

We describe our proceeding only for the estimate of the probability of E(+) in detail. It
holds

ECY = ) | {-@uak)+Ta2() >0}

r<k<nd 0<I<nd

k l
C - . -~ ) > . 3.
C {mgtzgcw 4 ar(X,, i) + e 4 as(Xo, +:) > 0} by Lem. 3.15
= {v v =0} (3.25)

By Lemma 3.19 (ii), we see that (XTRH, --~>Xrn+Ln6J) and (Xan+1> ...,Xgnﬂmgj) are inde-

pendent vectors. Thus,

Vi =¥ (KXo, Xoinsy) and VS =Y (X400, Xon i pns))
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as two measurable transformations of independent vectors are also independent. By (3.25)

and Lemma A.8, we get

R 2
For abbreviation, we write Z; := —a1(X,, 1) + Ela1(X,, )], 1 < i < [nd|. We next

consider the integrand. For all y € R we obtain

i k
P [Yl(ﬂ > —y] =P | max —ay( Xy, 4i) > —y]
_xgkgnz? Py
i k k
-r U { Z1; 2> ) Elai(Xr,10)] y}] :
Lz<k<nd =1 =1

By Lemma 3.19 (ii), we conclude that 7, +1 < 7, +i < g, for 1 <i <k with x < k < nd.

In the proof of Lemma 3.8 we have seen that
Ela; (X, )] = (a—p)* for 1<i<k with z<k<nd

By model assumptions a # 8 and 3 # 7, it holds p := min {(a — 8)2, (8 —~v)?} > 0. It
follows for all ¥y € R that

- k
P [5/1(+) > —y] =P U {Z Zy; > k(a—B)?* — y}]

Lz<k<nd \ i=1

SIP_ U {izuzzw—y}]

Lz<k<nd \ i=1

= P(y). (3.27)
We distinguish several cases for y to get an estimate for P(y).

(i) In the case y < 0 we have —y > 0. The independence of X3, ..., X, leads to the
independence of Z; 1, ..., 21, * < k < nd. Furthermore, (kfl)Llegkﬂm;J is a non-
increasing sequence of positive numbers. The Héjek-Rényi Inequality (Lemma 2.8)

implies
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3.3 Convergence in distribution

P(y) <P _ U {ij Zy; > ku}]

Lz<k<ndé \ i=1

<P max k7!
|z ] <k<|nd]

Lz Lnd]

<u?| |z QZVZM—F Z kY[ Zy ]
k=|z]+1

By definition of Z; ; and Equation (3.2), it is evident that
V[Z1x] = 4(a — B)*V[X,, k] < 4(a— B)* M,

for all k € {1, ..., |[nd|}. From M, < oo we conclude that

[nd]

P)<C [ La)+ Y #

i=|x]+1
Note that the properties of the floor function give || > z — 1 > %x for x > 2.
Lemmas A.5 and A.1 (i) now yield

P(y) <Cla| ' <Cat.

(ii) Let y > 0. By k > z, we have

e

Let 0 <y < Lux. It follows that ky —y > 1k,u As in (i), we obtain
2

P(y) <P U {Zzuz%ku}]

Lz<k<nd

<P max
2| <k< Ln5J

< Czx 1.
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(b) In the case y > sux we estimate P(y) < 1.

Applying (3.26) and (3.27) with regard to the previous distinction of cases gives

P [EC)]
< L0 o)+ /(O,éu:c)IP(y) Pt /WOO)IP@) P o (dy)

1 |
<Ca Py <o| + Ca'P [o <y < 5;@} + P {Y;” > 5,@}

1
<Cx '4+P [YQ(H > E,ua:} ) (3.28)

For abbreviation, we write Zsy; := —aa(X,,+i) + Elaz(Xos, )], 1 < i < |[nd]. We now

handle the probability in the last estimate. By definition, we have

l
(+) > 1 _ _ . 1
{Y 2 } {orgnl%)ég ' as( Xy, 1) > 2ﬂx

=1

= U {ZZ21>ZEG2 on-ti) ‘l';ul’}

0<iI<néd

Note that {22:1 Zoi > S Elag(Xy, 1) + %,ux} = ) for | = 0, because 1z > 0. From
Lemma 3.19 (iii) we deduce that o, +1 <o, +i <n for 1 <i <[ with 1 <[ <nd. The

proof of Lemma 3.8 provides
Elay( Xy, 44)] = (8 —7)* for 1<i<l with 1<I<nd.

It follows that

!
1 Z 1
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3.3 Convergence in distribution

Observe that Zy1,...,Z2;, 1 < I < nd, are independent and (2! + x);<1[<tn6j is a non-
increasing sequence of positive numbers for any x > 0. Another application of the Hajek-

Rényi Inequality (Lemma 2.8) yields

+) < 1 1
]P{YQ 25,49? U {(21+x)

L1<i<néd i=1
- . .
_ -1 1> =
P 1§rln§aféﬂ(2l + x) ZZI Zyi| > 2u]
[nd]

<Ap?) (214 2)72V[Zyy).

=1

By definition of Z; » and Equation (3.2), it is clear that
V[Zs] = 4(8 — V) V[ Xy, 1] <4(8 —7)* M,

foralll € {1,...,|nd]}. Note that we have 2l +x > [+ 1+ |z] forall l € {1,...,[nd]}. We
thus get

[nd)
1
P {Y;” > é,ux] <CY (I+1+x))  by2l+z>I+1+[z], My<oo
=1

6]+ 2] +1
=C Z m?

m=|x|+2
<C(lz)+1)7! by Lem. A.5
< Cz . by Lem. A.1 (i)

The rest of the proof runs as before. We outline the proof for E4=), EC+) and E(—7). Set

—k -l
Y1(_) ‘= max ZCH(Xm—z'H) and YQ(_) ‘= max as( Xy, —it1)-

—nd<k<—x 4 —nd<I<0 4
=1 =
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By Equation (3.24) and Lemma 3.15, it holds
) — {Y1<+> Ly > 0} o ECH = {Yl(_) Ly > 0} and
B — {yl(—> Ty > 0}‘

The pairwise independence of the measurable transformations

)/1(+) = }/1(+) (XTnJrla e X’rn—l-LntU) and Y’Q(i) = YQ(i) (XUW_L"5J+1’ e X"") ’
Y1(_) _ Y1(_) (XrnﬂnéHl’ ...,XTn) and YQ(H = Y2(+) (Xan+17 ---7Xan+Ln5J) ’

Vi =V X syt o X)) and YT = V(X sty e X))

follow from Lemma 3.19 and the independence of the observations X1, ..., X,,. Lemma 3.19
showsthat 1 < 7,—i+1<7,forl <i< —kwithe < -Ek<ndand7,+1 <o0,—i+1 <0,

for 1 <i < —[ with 1 < —[ <nd. The proof of Lemma 3.8 establishes

Ela;(X;, _iz1)] = —(a—p)* for 1<i<—k with z<-k<nd and

Elay( Xy, _iz1)] = —(8—7)* for 1<i< -l with 1<—I <nd.

Similar arguments used in the estimate of the probability of E++) lead to
P [E(J“_)} <Cz ', P [E(_J“)} <Czr ' and P [E(__)] < Ozt
Applying (3.24) yields
PIE]<P[EYD] 4+ P[EMI)]+P[ECH] +P[EC)] < Ca
In the same manner we can see that
P[F] < Cx '
Altogether, by (3.23), we have
Plz < ||7, — 7a]| <nd] <P[E]|+P[F] < Cx,

which is our claim. O
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3.3 Convergence in distribution

We obtain the stochastic boundedness of 7, — 7,,.

Proposition 3.22. If M, < oo, then

lim limsup P[||7, — 7.|| > 2] = 0.
T—=00  p—oo

Proof. By Lemma 3.21, there exist ng € N, 6 > 0 and a constant C' > 0 such that

PllTn = 7ol = 2] < Ple < |70 = 7all < 0] + P[[|7n — 70l > nd]

< Cx '+ P70 — 70l > nd] (3.29)
for all x > 2 and n > ny. Fix for a moment n > ng. Furthermore, we conclude that

Pl||7n — Tall > nd]
=Pl|7, — nO +nb — 7,| > nd|
< P|[||7n — nB| + ||[nO — T,| > nd] by Tr. In.
1 1
<P|||Fn—nb] > 5715} +P {Hn@ — 1, > Ené by Lem. A.4. (3.30)
By Lemma A.1 (i), we get
|In@ — 7,|| = max {nb; — |nb;],nby — [nby]} < 1.
Accordingly, by definition of 8,, (see (3.5)), it follows that
_ _ 1 1
P[||7, — Tnl > né] <P [Hen - 6| > 55} +P {1 > 571(5} .
By (3.29), we infer that
i} B _ 1 1
Pll|7, — ol > 2] < Cz™' + P |6, — 0| > 30| +P|1>5nd).
The weak consistency of 8,,, given in Theorem 3.12, implies
lim sup P[||7, — 7| > 2] < Ca ™.

n—o0

Letting x — oo completes the proof. O
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Chapter 3 Known expectations

To ensure convergence in distribution of 7, — 7, we look closer at the limit process I'. The
aim is to find conditions such that I" has almost surely an unique minimizer (assumption
(iii) of Theorem 2.3). We begin by considering the minimizers of I'y and I'y. After this we

establish the relation to the minimizers of T.

Lemma 3.23. There exist a minimizer of I'y and a minimaizer of I's almost surely.

Proof. We only show the assertion for I'y. The same approach can be applied to I'y. Set

206 —a)(&i2a—B8)+(a—=p)? k=0,

—2(8—a) (&1 —a)+(a—pB)?% k<0

for i« € N. By Remark 3.16, for each k£ € Z, I'y can be written as
||

Ty(k) =) Y

Note that Y;, i € IN, are independent and identically distributed, which follow from the
assumptions to the sequences (§1)iew and (§2)iew. The Strong Law of Large Numbers

(see for instance Schmidt [24, p. 347, Theorem 15.2.7]) yields

EDi(k) = 4 >V =5 B[Yi] = (a - B)%

By model assumption a # 3, we have (o — ($)? > 0. By ﬁ —— 0, it follows that

|k|—o00

|k|—o0

We thus get Argmin(T'y) # @) almost surely. O

Lemma 3.24. Let ()1, Q2 and Q3 be continuous distributions. Then each process I'y and

['s has an unique minimizer almost surely.
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3.3 Convergence in distribution

Proof. We only show the claim for I'y again. A similar approach can be applied to I's.

Lemma 3.23 and similar arguments used in the proof of Lemma 3.3 lead to

P[| Argmin(Ty)[ =1] > 1— Y P[[y(k;) — Ty (ke) = 0]. (3.31)
k1#ko€Z

We discuss the cases k; > ko and ky > ky to compute I'y (k1) — I'1(k2) by Equation (3.18).

(i) (a) Let ky > ko > 0. Then

k1
F1(/7<?1) - F1(/€2) = th(fm ZCM 512 Z a1 fn
i=1

i=ko+1

(b) Let k1 > 0 > ko. Then

ks

F( Zal 512 +Za1 521

(c) Let 0 > ky > ko. Then

—k1 —k2 —k2

I'y(k1) —Di(ks) = — Zal(fi,l) + 2@1(@,1) = Z ar(&in)-
i=1 i=1 i=—k141
(ii) (a) Let ko > k; > 0. Then
k1 ko
[y(kr) — Ti(ke) = Z ar(&i2) Z ai(&i2) Z ar(&i2)-
i=1 i=ky+1
(b) Let k3 > 0 > k;. Then
—k;l k‘2
Ti(k) = Ti(ke) = =Y ai(&1) — > a1(&2).
i=1 i=1
(c) Let 0 > kg > ky. Then
—ky — ks —ky
F1(k31) - Fl(k‘Q) = = Zal(fi,l) + Zéh(fm) = = Z a1(§i,1)~
i=1 i=1 i=—ko+1
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Chapter 3 Known expectations

By the independence assumptions to the sequences (& 1)iew and (& 2)ien, we obtain sums
of independent random variables in each case. Since )1, ()2 and ()3 are continuous distri-
butions, we can conclude by convolution and definition of a; (see (3.2)) that I'y (k1) —T'1 (k2)
are continuous distributed random variables for each ki, ks € Z with ky # ko, and conse-
quently P[['y (k1) — 'y (k2) = 0] = 0 for all ky, ke € Z with ky # ke. By (3.31), we have
P[| Argmin(Ty)| = 1] = 1. O

Lemma 3.25. It holds

Argmin(T") = Argmin(I';) x Argmin(T'y).

Proof. The proof is straightforward.

(i) We first prove that (mq,mg) € Argmin(I') implies m; € Argmin(I'y) and my €
Argmin(I'y). Fix (mq, ms) € Argmin(I"). As defined in (3.18), it follows that

Fl(ml) + Fg(mg) = F(ml, mg) S F(l{, l) = Fl(k‘) + Fg(l)

for all (k,1) € Z*. We choose [ := my to get T'y(my) < Ty (k) for all k € Z or k :=m,

to see I'y(mg) < I'y(1) for all [ € Z. Hence m; € Argmin(I'y) and my € Argmin(I'y).

(ii) Fix m; € Argmin(I'y) and me € Argmin(I'y). To deduce (my,mg) € Argmin(I),

observe by Equation (3.18) that
F(ml,mg) = Fl(ml) + Fg(mg) S Fl(k’) + Pz(l) = F(k?, l)
for all (k1) € Z2. O

Proposition 3.26. Let Q1, Q2 and Q)3 be continuous distributions. Then I' has an unique

mainimizer almost surely.

Proof. Combining Lemma 3.24 with Lemma 3.25 gives the assertion. [
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3.3 Convergence in distribution

We are now in a position to show that 7,, — 7, converges in distribution to the minimizer

of a sum of random walks if the underlying distributions are continuous.

Theorem 3.27. If M, < oo, then

limsup P[7, — 7, € F] < P[Argmin(T)NF # 0]  for all F C 7.

n—0o0

In addition, if Q1, Q2 and Q3 are continuous, then Argmin(I") = {T'} almost surely and

_ c .
Fn—Tn —— T in Z2

n—o0

Proof. We apply Theorem 2.3. By Lemmas 3.14, 3.23 and 3.25, we first observe that
T, — Tp is a minimizer of T, and T has at least one minimizer. Assumptions (i) and (ii)
of Theorem 2.3 are fulfilled by Propositions 3.18 and 3.22, which give the first claim. The

second claim is obtained by applying Proposition 3.26. ]

Corollary 3.28. Suppose that My < co. Let (Q1, Q2 and Q)3 be continuous distributions.
Then

_ c : , _ L : :
Tp —Tn —— argminl'y(k) i Z and &, — 0, —— argmin's(l) in Z.
n—00 kEeZ n—00 leZ

Proof. By Theorem 3.27 and Lemma 3.25, we get

(Th—Tn, On—0pn) = Tn—"Th — £ argmin D(k,l) = (argmin I'y(k), argmin PQ(Z)> in Z*
N0 (k1) eZ? kez leZ

Since the projections are continuous, the assertion follows from the Continuous Mapping

Theorem (see for instance Van der Vaart [26, p. 7, Theorem 2.3)). O
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Chapter 3 Known expectations

3.4 Asymptotic confidence region

As an application of Theorem 3.27, this section is intended to present an asymptotic

confidence region to estimate the moments of change 7, = (7,,, 0,).

The statistician is interested in finding a preferably small (asymptotic) confidence region.
For this purpose, let FH_Tl” (1), ¥ € (0, 1), stand for the ¥-quantile of the distribution function

Fyr) of ||T||, where T is the almost surely unique minimizer of I' (see Theorem 3.27).

Based on Theorem 3.27 and the Continuous Mapping Theorem, we derive an asymptotic

confidence region.

Theorem 3.29. Suppose that My < co. Let @1, Q2 and Q3 be continuous distributions

and 9 € (0,1). For each n € N, the random interval

I,(9) == |7, — F,

(1= 9T+ Figy (1= 9)] x |00 —

i (L= ), 00+ Fipy (1= 0)

is an asymptotic confidence region for T, = (Tn,0,) at level 1 — 9.

Proof. Fix 9 € (0,1). Since the maximum norm is non-negative and continuous on Z?, by
Theorem 3.27 and the Continuous Mapping Theorem (see for instance Van der Vaart [26,

p. 7, Theorem 2.3]), we conclude that
_ c :
|17 — Tull —— ||T|| in N,.
n—r00
Since ||7, — 75| and ||T|| are discrete random variables, we obtain

lim Plr, € [,(9)] = lim P [max{\%n — 7l 6 — oul} < Fpy (1 =)
n—oo n—oo

= 1im P [, — 7 < i} (1= )]

=P (I < iz (1= )]

>1-14. ]
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3.4 Asymptotic confidence region

Observe that the quantile F“’Tln(l — 1), ¥ € (0,1), which is used in the theorem above, is

unknown. Though, it can be approximated by a Monte-Carlo simulation:

(i) Generate N € IN processes 'V ... T™) as defined in (3.18):
(1) Determine &;,, i € IN, 1 <r < 3, based on bootstrap method:
(a) Generate m € IN independent random variables Uy, ..., U,, ~ U(0,1).

(b) Let Gy, 1 and G, 2 and G, 3 be the empirical distribution functions pertaining
to Xy,..., X5, and X5 44,..., X5, and X5, 11, ..., X,,. Foreach 1 <7 < m put

6’577‘ = G;&T(Uz), 1 S T S 3

(2) Use the known expectations «, £ and 7y to compute a; (&), 1 <i<m, 1 <r <2

and as (§,), 1 <i<m,2<r <3, as defined in (3.2).

1111

-~ HT(N)H. Then

(iii) Let Hy be the empirical distribution function pertaining to HT(U

Hy'(1 —99) is a reasonable estimate for F”_Tlu(l — ).

For further investigation of the asymptotic confidence region based on a simulation study,
we refer the reader to Chapter 5. Here, numerous asymptotic confidence regions are im-

plemented to determine the approximated coverage probability.
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Chapter 4

Unknown expectations

In this chapter we proceed with the estimation of the multiple change-point in a more
general setting. From now on, the expectations a = (av, 3,7) are assumed to be unknown.
At first we simultaneously estimate the multiple change-point and the expectations by the
least squares method. Furthermore, weak consistency of the resulting estimators is proved.
The next section is devoted to the introduction of another estimator of the multiple change-
point. We state and prove consistency and convergence in distribution, which are the main
results of this work. Finally, an asymptotic confidence region for the moments of change

Tn = (Tn, 0,) s derived.

4.1 Parameter estimation

Here and subsequently, we let X, ,, u,v € Ny with u < v < n, stand for

_ 1 v
Xu,v = v —u Z Xz

i=u+1
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Chapter 4 Unknown expectations

4.1.1 Estimation approach

At first our focus lies on the simultaneous estimation of the moments of change 7, =
(Tn,0n) and the expectations e = («, 3,7) by the least squares method. To do this, we

are interested in finding all minimizing points of the random criterion function

k l n
Sulk,labe) =) (X;—a)’+ ) (X =0+ ) (X;—c)? (k1) €A, (41)
=1 i=k+1 i=l+1

(a,b,c) € R
To solve this problem on a simple way, let us introduce the random criterion function
M, (k1) = kX3, + (1= k)XE, + (n—D)XZ,, (k1) €A,
Roughly speaking, S,, can be minimized by maximizers of M, and means of segments of
Xy, ..., X,,, where the borders of each segment are obtained by the maximizers of M,.

Theorem 4.1. Let n € IN. Then

~

Argmin (S,) = {<kn7Z"’X0,l%n7Xl%n,in’Xin,n> e A, xR?

<l%n, Zn> € Argmax <Mn> } )

The following lemma is essential for the proof.

Lemma 4.2 (Interchange of order of minimization). Let p,q € IN. For any sets A C R?

and BCR? let f: Ax B — R be a mapping. Set

fe(a):= inf f(a,b) and fa(b):= inf f(a,b).

beB
Then
s (0P = (0 Fo () = o Jalb)
and
Arginf(f) = {(5, B) € A x Bla € Arginf fg(a), b € Arginf f (a,b)

acA beB }

{(5, B) € Ax B‘b € ArginffA(b), a € Arginf f (a, B)

beB acA
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4.1 Parameter estimation

Proof. An appropriate assertion for supremizing problems was shown in Albrecht [1, p. 59,

A.1]. A similar proof can be used for infimizing problems. ]

Proof of Theorem 4.1. The proof is divided into two steps. Fix n € IN and write

k l n
Sulk, 1) =3 (X = Xou) '+ Y (= X)+ Y (K- Xiw)®, (k1) € A,
i=1 i=k+1 i=l4+1

(i) We begin by proving

Argmin (S,,)

~ ~ — —

_ {(kn b Koy Xi iy Xy ) € B x BY| (I, I ) € Argmin (Sn)} (4.2)

based on Lemma 4.2. Fix (k,1) € A, and consider S, (k,[,-) as a function on R? at

first. An easy computation of the gradient and the Hessian matrix shows that

k
—2 Z Xl + 2ka
i=1
l

VSa(k,labc) = | -2 S X, +20- kb and
i=k+1

-2 > X;+2(n—1)c
i=1+1

stn(k7laavbv C) = 0 2(l - k) 0

For all y = (y1,92,y3) € R*\{0} we have
Yy V2Su(k L a,be)y =2 (kyi + (I — k)ys + (n — Dy3) >0

by (k,l) € A,. Accordingly, the Hessian matrix is positive-definit. Therefore,
Sy(k,l,+) is strictly convex. We are able to conclude that S,(k,[,-) has an unique

minimizer. Using the necessary condition VS, (k,,a,b,c) = 0 we get

(Xo,k7Xk,laXl,n) = argmin Sn(k’J; ) (4'3)
(a,b,c)eR3
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Chapter 4 Unknown expectations

Altogether, by definitions, we have

~

min Sn(k7 la a, b7 C) = Sn (ka l7 XO,I{: Xk,la Xl,n) = Sn(k7 l)
(a,b,c)eR3

for all (k,l) € A,,. We now apply Lemma 4.2. By definition of S, it is clear that we

~

can find an element (k;n, Zn) € Argmin (Sn) By (4.3), we have

<X07’5n’)_(l%n,in>)_(in,n> = argmin S, (l%n, Zn, > ,
(a,b,c)ER3

which proves the claim (4.2) .

(ii) In the second part we show the theorem. By the Binomial Formula, a simple calcu-

lation yields
Sn(k,1) = zn:Xf — M, (k1)
i=1
for all (k,1) € A,. Since the sum does not depend on (k,l) € A,, we have
Argmin (gn> = Argmax (Mn) .
The proof is completed by combining this with (4.2). O

Similarly to Equation (3.3), we use a choice function ¢ : Argmin (Mn> — A, if more

than one minimizing point of M, exists. Write

T = (Tn, 6,) := argmax M, (k, 1) (4.4)
(k,DeA,

~

for 7, = ¢ (Argmin (Mn>> Furthermore, let
dn = (dna Bm ’Ayn> = (XO,‘T'mX‘fn,&an&n,n) . (45)

According to Theorem 4.1, the parameter vector (7,,a) € A, x R? can be estimated by

the least squares estimator

(T, &) € Argmin(S,). (4.6)
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4.1 Parameter estimation

Remark 4.3. Albrecht [1] has investigated the estimation of multiple change-points in
normal distribution models with changes in mean (variance is constant). The maximum-
likelihood method was applied to estimate the moments of change 7, = (7,,0,) and the
unknown expectations a = («, 3, y) simultaneously. Now, it turns out that the maximum-
likelihood estimator in this parametric model and the least squares estimator (7, &) in

our non-parametric model are identical.

A simulation study (see Chapter 5 for more details) gives the conjecture that M, has an

unique minimizer if all distributions are continuous.

Conjecture 4.4. Let n € IN and let )1, ()2, Q3 be continuous distributions. Then

=1 almost surely.

‘Argmax (Mn)

The further approach to estimate the multiple change-point 8 = (6, 6,) is analogous to

the last part of Section 3.1. We define the estimator

0, = —7, (4.7)
for the multiple change-point and set

. I~

Pn(s,t) = EMH([nSJ, |nt]), (s,t) € O,,
where O, is given by (3.6).

Lemma 4.5. Let n € N. Then

6,, = argmax j,, (s, t).
(s,t)€O

Proof. By similar arguments used in the proof of Lemma 3.4, we obtain the claim. ]

Remark 4.6. The factor n~! in the definition of p, does not influence the maximizing

points of p,, but the proof of consistency of 6,, requires this factor.

63



Chapter 4 Unknown expectations

Lemma 4.7. p,, n € IN, is a stochastic process with trajectories in the multivariate Sko-

rokhod space D(O,,).

Proof. The proof of Lemma 3.6 remains valid for p,, and Mn instead of p, and M,,. O

4.1.2 Consistency of the multiple change-point estimator

In this section we discuss the weak and strong consistency of 0,. To apply Theorem 2.1
again, some results are adapted from Albrecht [1].

Let us introduce the function p: © — R defined by

(

ta® + (1 —1t)

Gt + B4 Ly, (5,1) € O,

5a2+ t—s

) (
) (b=2a + 03 ) +(1—t) (L=t 4 Lt 957) ., (s,t) € ©%

S

(5.4) sa’+ (t—s) (B=2a+ 2205 + 0 ) + (1 — )72, (s,t) € ©3,
p(s,t) =
s(Ba+=0p8) 4 (t—s)B2+ (1—t) (2248 + =29)" (s,1) € O,

>

s(Za+=08)" + (t—s) (22 +529) + (1 -2 (5,1) €67,

s (%t 5505 4 ) 4 (1= s)y, (s,) € ©°,
\

>

where ©1, ..., 05 are given by (3.12). The function p is illustrated in Figure 4.1.

We show uniform convergence in probability of p,, to p (assumption (i) of Theorem 2.1).

Proposition 4.8. Suppose there is some p € (2,00) such that M, < co. Then

~ ~ P
sup [pn(s,t) — p(s,t)] —— 0.

(s,t)€O, =00

Proof. Fix n € N for a moment. By Lemma 3.2 in Albrecht [1, p. 24], we get the

decomposition py(s,t) = 6, (s, t)+ o, (s, t) for all (s,t) € ©,, where 4, is a certain stochastic
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4.1 Parameter estimation

Figure 4.1: Plot of p for 8 = (61,62) = (0.4,0.8) and a = (o, 5,7) = (0.6,1,0.5).

process and 0, a deterministic function. The concrete forms are specified in Lemma B.1.

We have

sup |/3n<57t) o ﬁ(S,t)| = sup

Sl 1) + 0u(s.1) = pls,1)

(s,t)€O, (s,t)€O,
< swp (|6l 0] +1on(s,) = p(s,D]) by Tr. In
(s,t)€OR
< swp [Guls,t)] + s ou(st) = ps, )] (4.9)
(s,t)€OR (s,t)EOR

Furthermore, we find in the proof of Lemma 3.6 in Albrecht [1, p. 42-54] that for each
€ > 0 there exists a constant C}, > 0, which depends only on p, such that

~

P 6n(s,t)’ >e| < CePn P Ving,

sup
(s,t)€OR

Since p > 2, we have £ — 1 > 0. L’Hopital’s rule yields for all € > 0

lim P &L(s,t)‘ > e

< Cpe P lim n~ > Vinp
n—oo

n—oo

sup
(s,t)€O,

=Ce™? <]—9 - )_1 lim n~/2~1
2

n—o0

=0,
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Chapter 4 Unknown expectations

which leads to

L>O.

n—o0

sup |0, (s, )

(s,t)EO,

Moreover, by Lemma 3.5 in Albrecht [1, p. 38], it holds

sup |0n(s,t) — p(s, t)] —— 0. (4.10)
(s,t)€O, n—oo
The assertion follows by applying (4.9). O

We obtain assumption (ii) of Theorem 2.1 by the following proposition.

Proposition 4.9. The multiple change-point 8 € © is the well-separated maximizer of p.

Proof. This was proved by Albrecht [1, p. 32, Lemma 3.4]. ]

We can now prove weak consistency of 6,,.

Theorem 4.10. Suppose there is some p € (2,00) such that M,, < co. Then

Proof. We apply Theorem 2.1. p,, n € N, is a stochastic process with trajectories in
the multivariate Skorokhod space by Lemma 4.7. p has trajectories in the multivariate
Skorokhod space D(©), since p is continuous, which was shown in Albrecht [1, p. 29,
Lemma 3.3]. Moreover, (0,),en € © is a sequence of sets such that ©, C ©,; for
every n € N with (J, .y ©» = ©. By Lemma 4.5, 6., is a maximizer of pn for any n € IN.
Assumption (i) of Theorem 2.1 and (2.2) are satisfied by Propositions 4.8 and 4.9. Applying

Theorem 2.1 and Remark 2.2 gives the claim. [

Albrecht [1] even showed the strong consistency of 0, if there exists a larger moment.
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4.1 Parameter estimation

Theorem 4.11. Suppose there is some p € (4,00) such that M, < co. Then

Proof. The proof can be found in Albrecht [1, p. 52, Theorem 3.7]. ]

4.1.3 Stochastic boundedness

We now treat stochastic boundedness of 7, — 7,,, which is required to prove consistency

of &,, in the next section.

We begin with the observation that the function p has a local peak at the multiple change-
point 8 = (61, 65).

Lemma 4.12. There exist 6 > 0 and a constant L = L(6) > 0 such that
p(0r,02) — p(s,t) = Ll|(s, 1) — (61, 65)] (4.11)

for all (s,t) € Bs(61,62).

To show this lemma, we characterize the property (4.11) by directional derivatives. For
this purpose, let us recall the definition of directional derivatives. Let U C R%, ¢ € IN, be

an open set, f: U — R a mapping and v € R? a vector with ||v|| = 1. The limit

01 (t) i tiun LAV — (0

i 3 (4.12)

is said to be directional derivative of f in t € U if the limit exists.

Lemma 4.13. The following conditions are equivalent:
(i) p sastisfies (4.11).

(ZZ) It holds max {8(170)ﬁ<01, 62), (9(_1,0),6(91, 02), 8(0,1),6(91, 92), 8(0’_1)ﬁ<91, 62)} < 0.
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Chapter 4 Unknown expectations

Proof. Déring [9, p. 52, Lemma 3.11] showed the assertion for another function. The same

proof remains valid for p. ]

Proof of Lemma 4.12. The proof is straightforward. It is sufficient to compute the direc-
tional derivatives of p, which are given in Lemma 4.13. To this end, we have to consider p
on the domains ©%, ©3 and ©* (compare Equation (3.12) and Figure 3.1). As defined in

(4.8), the representation
(

sa? 4+ (t—s) (5=2(a—B) + B)" + (1 — 1) (2B —~) +7)", (s.1) € 07

pls.t) = Qs+ (t —s) (2=2(a — B) + B+ =2(y — 8))" + (1 — )72, (s,t) € ©3,

t—

s(2=2(a—B)+a)’ + (t—s)B2+ (1 —1) (2=L(B—=1) +1)", (s,) € ©*

\

simplifies the computation of the directional derivatives. We observe that
p(01,0) = 010% + (0o — 01) 8% + (1 — Ox)7>.

We first look at

. o PO — A 65) — (61, 62)
a(—l,o)P(Qh 02) = 1/&8 )\ .

For A > 0 we have (0; — \,6;) € ©2. A trivial verification shows that

)\2 _ 2
p(01 — N, 0s) — p(b:,05) = % —Ma—B)2

Hence

a(—1,0)P(91, 92) = 1/{&)1

(Ma—m2

Oy — 0, + N (o — 5)2) = —(a—pB)%

In the same manner we can see that

Oz — 01+ A
(3 — ~)2
d0,-1)p(61,02) = liﬁ)l (1 (_ﬁ92 ;y_))\ —(B- )2) = —(B—9)*
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4.1 Parameter estimation

By model assumptions a #  and 3 # ~, we conclude that

max {—(a — B)*, —(8 —7)*} <0,
which establishes condition (ii) in Lemma 4.13. An application of Lemma 4.13 completes
our proof. [
The following both lemmas are useful to get an error estimate.

Lemma 4.14. Let g, be the deterministic function from Lemma B.1. Then there exist an

arbitrary small 6 > 0, a constant L = L(§) > 0 and ng € N such that

9

n

. <7’n Jn> onlsit) > QLH(WSJ [nt]) = (T, o) (4.13)

On
n

for allmn > ngy and (s,t) € Bs(61,02).

Proof. We first observe that (T” C’:) € 0, by model assumption (1.1). Furthermore, by
Lemma 4.12; there exist an arbitrary small § > 0 and a constant L = L(6) > 0 such that
p(01,02) — p(s,t) > Ll|(s,t) — (01,65)] for all (s,t) € Bs(61,02). Moreover, for all n € IN
and (s,t) € Bs(01,02) we have
~ (Tn On
o (7, %) = du(s, 1)

TL n

_ (s (T On n [([ns], [nt]) = (Tn, 00
- (9” (? n> on(s, t)) (s, (nt]) — (Twy o)l n

(s, M2 10D = Gl "

The uniform convergence of g,, given in (4.10), and the properties of the floor function
(uniform convergence, see Lemma A.1 (iii)) lead to

)
00 (5,%2) = 0uls.t) _ pl01,05) = p(s,t)
‘ 1(s,t) — (61, 62)[| —

lim b,(s,t) = lim > L

n—00 n—00 H(Lns] M) . (o'_n T_n)

n '’ n )

uniformly for all (s,t) € Bs(#,6,). Combining this with (4.14) ensures the existence of
no € IN such that (4.13) holds for all n > ng and (s,t) € Bs(61,02). O
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Chapter 4 Unknown expectations

Recall that || - || stands for the maximum norm. Let G, . s denote the set
Gns = {(k;1) € Aple <|(k, 1) = (7o, o)[| < nd}
forn e N, x > 0 and 6 > 0.

Lemma 4.15. Let x >0, 6 >0 and n € N. Then

< r-mil<nitc | {p(%%)—p(%%)ZO}

(kal)EGn,z,é

Proof. Tt is easily seen that (%, %) € 0, for (k1) € G, s and (%”, "7”) € 0,, by model

assumption (1.1). Conversely, suppose that there exists w € {z < |7, — T,/ < nd}, but

e U () -n 200

(k,l)EGn’x,(;

It follows that p, (%, %) — Pn (T—” %") < 0 for all (k,l) € G, 5. By definition of 7, we see

n’

that 7, = (7, 6,,) € Ap, and so 7, € Gy, .5 by assumption. The definition of 9n gives

o (Th On . (Tn On (1. . (1 L / (1
0> Pn\ —>— | — Pn <_a _> =Pn| —Tn)] = Pnl| —Tn)| =Pn <0n) —Pn| —Tn|,
n n n n n n n

which contradicts the fact that 8, maximizes pn by Lemma 4.5. [

The following error estimate provides the basis for the proof of stochastic boundedness.

Lemma 4.16. Suppose there is some p € (2,00) such that M, < oco. Then there exist

ng €N, >0, ke (0, %) and a constant C' > 0 such that for all n > ny we have
IP[IL‘ < ||+TL - TTLH < 715] < C (n_(p/2_1) + :L,—(l/Q—n)p)

for all x > 4.
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4.1 Parameter estimation

Proof. Fix x > 4. By Lemma 3.19, there exist § > 0 and ng € IN such that for all n > ng

the conditions hold in Lemma 3.19. Let us regard n > ng and § > 0 as fixed. By Lemma

4.15 and the decomposition of p, (Lemma B.1), we see that

{z < |70 — 7ull < nd}
(k1 . (Tn Opn
- (kl)g 5 {pn <E’E) o (ﬁ’?) - O}
A k 1 A Tn Onp N k1 ~ Tn On
U {5n(——)—%(—v—)*@n(;’;)—@n(?;)20}-

n’'n
(kal)EGn,z,é

By Lemma 4.14, there exist a constant L = L(J) > 0 and 7g € IN such that for all n > ng

{z < 170 = 7all < nd}

© U (i) gttt o)

(kvl)eGn,z,é wen
n ~ (k1 ° (Tn On 1

= Z )= noZn >

LU Wer=tma (0 (ez) -5 (25)) 2 1)

) n,z,0

n ~ (k1 8 (Tn On 1

C Y L)) > 2L
= U {’/{—Tn‘ (5n<n’n) 5"<n’n>)_2 }

<|k—Tn|<nd
|k—Tn|>|l—0on|

s U () 4 E2)

l—0o
z<|l—opn|<nd | n|
10> k=]

= EUF (4.15)

To simplify notation, the fact that some in this proof defined sets and random variables
depend on n, x or J is omitted. From now on, let n > max{ng,no}. We give the proof

only for the estimate of the probability of E; the other case follows the same pattern.
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Chapter 4 Unknown expectations

Computing the absolute values give

n ~ (k1 s (Tn On 1
e U hfm<%ﬁaﬁ‘@4zﬁﬂ>z§4

r<k—7p<néd
0<l—op<k—T1n

© U

r<k—7p<nd
0<on—I<k—1p

(
o U {mﬁk(&
(

r<71n—k<nd
0<l—on<mn—k

— OE (4.16)

The technique of the proof is presented for £; and F,. Throughout the proof, we use the

abbreviation Sy, = >, (X; — E[Xj]) for u,v € Ny with v < v. Let us consider E.

We first observe that

mtar<k<m+ni<o,<l<o,+nd<n (4.17)

by Lemma 3.19. Hence (%, L) € ©°NO,. By Lemma B.1 and the Binomial Formula, an

n

easy computation yields
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4.1 Parameter estimation

_ 2 2
nk(SO n + Senkc) oy (Som,, + Sry k) + T—h (Skor + S i)
2((0n = k)B + (I = 0n)7) 1 2 2y
+ ) (Skgn—f—Sgnl)-i- ( —Z)Sln+ nSl’n
1 2a0 1 2
— {—nngn So.m + o (S + Skon ) + TB(STW k4 Sko,)
2
2 —_—
* n(n — o,) (St & Sin)” + TS0t + Sim)
o 1/1 1 9 2(k — 1) (B — @) 2
- ﬁ (E Tn) SOT nk SOTn—’_%SOTnSTnk
1 /1 1 9 27, (a0 — ) 2
+ n (k o, — n) STn,k + ]f STn,k: ’)’L(O’n — Tn) STn,kSk,a'n
1/ 1 1 >, 2l—0n)(v—5) 2
4 (l —k o, Tn) Ohon T n(l — k) St + n(l — k)Sk’U"SU”’l
1 1 1 5 2(o, — k)(B—7) 2
T (l -k n- Jn) St n(l — k) Sou n(n — n)SU"’lSl’"
1 1 1
)
n\n—I[{ n-—o,
13
- Al,i(ka l)

<.
Il
-
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Chapter 4 Unknown expectations

Observe that for | = o, we have Ay ;(k,l) =0, i € {9,...,13}. We can conclude that

13
n 1
Er = U {Z k— TnAlﬂ'(kv 1) > §L} by def. of E;

r<k—7p,<néd i=1
1§l_0'n§k—7'n
13
n 1
< U U {k — TnAl,i(kal) > %L} by Lem. A.4

i=1 z<k—7p<nd
1<l—on<k—Tn

| l n 1
. ISk—?fSné k— TnAlﬂ(k,l) > 26,L
=1 \ 1<l—0,<k—7n

n

1
Ak, 1) > =L
, ijgl?—lgj{gmﬂ k—, ik, 1) = 26
=1 \ 1<l—on<k—mn

13
i=1
We now estimate the probabilities of the events Ei;, i € {1,...,13}, successively. To do
this, note that there exist positive constants ¢; = ¢1(61), ca = 2(01,62), c3 = c3(62),
cq = c4(0), c5 = c5(01, 02, 9) and natural numbers ny = n1(0;), ne = ny(61,6s), ng = n3(6s),
ng = ny(9), ns = ns(0y1, 6,,0) such that
T, > cin for all n > nq,
On — Tn > con for all n > no,
n — o, > csn for all n > ns, (4.19)
|[nd| > cyn for all n > ny,
Opn —Tp — [n6] > csn for all n > ns.

To see this, consider for example the last assertion. By properties of the floor function (see

Lemma A.1 (i)), we obtain
Op —Tp — [n6] = |nbs| — [nb] — |nd| >n(fy— 6, —0) — 1
for each n € IN. It is easily seen that there exists ns = ns(01,65,6) € IN such that

1 < 3n(f — 6 — ) for all n > ns. Accordingly, we get 0, — 7, — [nd] > csn with
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4.1 Parameter estimation

¢s := c5(01,02,0) == 5(02 — 6y — &) for each n > ns.

From now on, fix n > ng := max{ng, ng, n1, na, N3, N4, ns} and let
C =C(p,k,0,01,02,a,3,7) > 0 be a generic constant and p > 2. We begin by estimating
the probability of £} ;. It holds

n

El,l = max
lz|<k—Tn<|nd| kK — Ty,
1<l—on<k—T1n

1
A > —L
1,1<k7l) - 26

n ?/2 1 p/2
< Ak, > (=L
B LIDJSEETE){SLMJ k—, (k)] = (26 )
1<l—on<k—7n
We have
k6 p/2
A =g (f )% by def. of A
‘k—Tn 1,1( ) ) ‘(kj—’]’n)n (k Tn) 0,7 y del. o 11
= (k7)™ |50,
< 7_n—p |SO,Tn|p by k> T
< Cn?[Sor,[° by (4.19).

By Markov’s Inequality (see Lemma 2.4), Corollary 2.16, M, < oo and 7, < n, it follows

that
P[E ] < P[|So. [P > Cn?] < CnPE||Sy,,|"] < CMn P7r* < Cn"2,

We next consider Fj 5. It holds

n

ELQ = max
lz|<k—Tn<|nd| kK — Ty,
1<l—on<k—T1n

1
A > —L
1,2<k7l) = 92

P P
> (L
> (")

n

c Aia(k, 1)

LngEﬁfs 1ns) |k — T,

1<l-on<k—Tn
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Chapter 4 Unknown expectations

We find that

p

2n(k — 1,)(8 — ) b
(i = o)k So.r, by def. of A,

= 2la = BIPk™ | S0, ["

Ao (k1)

‘ n

n

< 2P|l = BIP7, 7 107, [P by k > 7,

< Cn7P|So., [ by (4.19).
Similar arguments used in the estimate of the probability of E; ; give
P [Fy ] < P[|So., [P > Cn?] < Cn~"2
We next consider Ej 3. It holds

n 1

A > —L
1,3<k7l) = 9%

E1’3 = max
lz|<k—7n<|nd| kK — Ty,
1<l—on<k—T1n

" el s (LAY
C (1,
=\ Lej<immzing) |k — 7o sk, )| = (26 )
1<l—on<k—Tn
We see that
n P 2n P
Aalh D) =Ty by def. of A
‘k—Tn 173( ) ) ‘(k—Tn)nkSO’TnST"’k v def. o "

= ka—p(k — Tn)_p |Soy.,-ns.,-n7k‘p
< 287 P(k — 7) 7P S0 S e by k > 7,

< COnP(k —71,) 7" S0, Sr k[ by (4.19).

P [El,g] S P max (l{? — Tn)_p |SO,TnSTn,k|p Z C'np
_szgkf‘rnngiJ

Tn+[nd]
=P | U {(k=7)7"[S0r 54" > Cn?}
| k=Tn+|x]
Tn+|nd |
< > PllSorSrl” = CnP(k — 7).
k=7n+|z)

(4.20)
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4.1 Parameter estimation

The independence of Xj,..., X, establishes the independence of Sy, and S, for each

ke {r, + |z|,....7n + [nd]|}. By Markov’s Inequality (see Lemma 2.4), we conclude that

Tn+|nd |

P[Eis) <Cn > (k—7) "E[|So, S k"

k=1n+ ]
Tn+|nd]
=Cn? Y (k= 7) PE[Sor, B[S, (4.21)
k=Tn+ 2]
We can deduce that
Tn+[nd]
P[E) 3] < CM[?n_ij;/Q Z (k —7,)""" by Cor. 2.16
—Y
[nd]
< Cn~"? Z m="? by 7, <n, M, < 0o
m=|z]
< C«nfp/2 Z mfp/2.
m=1

Since the series converges for p > 2, we obtain

P [E173] S C’n_p/Q.

We next consider Ej 4. Since (K —7,)"' > 0 and Sf_mk > 0, we have

n n 1 1
Ava(ke ) = —2 (= 2
k—1, 1a(k, ) (k —1)n (k: o —Tn> St

By definition of E} 4, it holds

n

1
Fra= Ak 1) > =L

1<l—on<k—T7n

{ max  (k—7,)7'S2 , > Cn}
lz|<k—7n<|nd| n

N

- { max
lz|<k—Tn<|nd]

(k — 1) 728, 1P > Cn”/Q} .

by def. of A 4

by k7! — (0n — Tn)_l < k!

by k > 7,

by (4.19).
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Chapter 4 Unknown expectations

Let S, m denote the process Sy, = S (Xp i — E[X,,4]) for 2] < m < |nd].
Notice that (
(m™")

Inequality (Lemma 2.9), we get

~ p
Smm‘ >LJ s is a non-negative submartingale by Lemma 2.14 and
z|<m<|n

| <m< [ns] is a non-increasing sequence. By an index transformation and Chow’s

P [E174]

<P [ max  (k—7,) "2 4P > C’nm}

|z | <k—7n<|nd|

:IP{ max m "/

ng7m ‘p Z Cnp/Q}

L] <m<|nd]
[ ) [nd)—1 )
< Cn™"* | |nd| "R [ ST,L,LWSJ‘ ] + Z (m™* = (m+1)""*)E [ Srm }
L m=|z|
[ ) |nd)—1 »
< Cn | () B | S*T,“Lngj‘ |+ £ mE 5em| ]| (4.22)
L m=|z|
The last inequality follows from Lemma A.6. We see that
P [nd]—1
P[Ey4 < CMun™? |1+ 3 > om™ by Cor. 2.16
m=|x|
< Cn [1 + 3(1 +In([nd) — 1))} by Lem. A.5, M, < 0o
< Cn~"?1n(n) by [nd] —1 < n.

We next consider E; 5. It holds

n

E1’5 = max
lz|<k—Tn<|nd| kK — Ty,
1<l—on<k—1n

1
A > —L
1,5<k7l) = 2%

n

= Ay,
B LIEJSE%SELMJ k—r, 1,5(k, 1)

1<l-on<k—Tn
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4.1 Parameter estimation

We find that
n P 2nt,(a— B) P
A5k )| = |—————2£S, by def. of A
‘k—Tn 1,5(k, 1) (k — )k .k y del. oL Ajs
=2%|a — BPPTRRTP (kb — 7)) 7P | Sr il
< 2o — BIP(k — 70) 7P |Sm, k| by k> 7,

< Ck—7)7 P15k
Applying Chow’s Inequality (Lemma 2.9) and Lemma A.6 similarly to (4.22) yields

PE ;) <P { max (k — 1) 7P |S5 k" > C’}

|z]<k—mn<|nd]

[nd]—1

< C | [nd]PE [ ngLmSJ p} +p Z m~ et E [ Srm p} . (4.23)
m=|x|
We get
[nd]—1
P[Ers) < CM, | [n6] ™ +p Y m 0P by Cor. 2.16  (4.24)
m=|x|
< C(|nd] 2|z — 1)) by Lem. A.5, M, < cc.

Note that the properties of the floor function give |z] —1 >z —2 > %x for x > 4. By
(4.19), we infer that

P [E175] S C (n_p/2 + x_p/2> .
We next consider F; . It holds

n

1
A > —L
1,6<k7l) = 9%

P P
> (L
> (")

E1,6 = max
lz|<k—Tn<|nd| kK — Ty,
1<l—on<k—T1n

n
-

Ay 6(k,1)

LngEﬁfs 1ns) |k — T,

1<l-on<k—Tn
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Chapter 4 Unknown expectations

We obtain
n P —2n P
A gk, D) = S 1:5%.o by def. of A
‘k e 1.6(k, 1) ‘(k—Tn)n(an ) 0, kR k,on y del. oI Ajg
=2%(0y, — 7)) Pk — 70) P |55, kSkon |”
S Cn*p(k — Tn)ip ‘Sfmkskpnlp by (419)

The independence of the observations X7, ..., X,, and (4.17) lead to the independence of
Sy, k and Sy, for each k € {7, + |z],...,7, + [nd]|}. Applying subadditivity of P and
Markov’s Inequality similarly to (4.20) and (4.21) yields

lz]<k—mn<|nd]
Tn+|nd|
<Cn? Y (k= 7)) PE[|Sr, k") B[Sk "]

k=mn+|z|

il =T { max (k= 72) 7 |55, 1Skl = O

Since k > 7,, we have 0, — k < 0,, — 7, < n. It follows that

Tn+[nd]
P[E g < CM]?n_p Z (k — Tn)_p/2(0'n — k’)p/2 by Cor. 2.16
k=Tn+|z]
Tn+|nd]
<on ™ Y (k) by o, — k <n, M, < 0o

k=7n+|z|

< C«nfp/2’
since Zﬁzl m~"? < co. We next consider E, 7. It holds

n

1
A > —L
1,7<k7l) = 92

p/2 p/2
> (L
> (")

Ei 7= max
lz|<k—Tn<|nd| kK — Ty,
1<l—on<k—T1n

n
k— 1,

Ay 7(k,1)

max
lz|<k—mn<[nd]
1<l-on<k—Tn
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4.1 Parameter estimation

Since o, < [, we have o, — 7, — (I — k) < k — 7,. We thus get

p/2

Ay 7(k, D)

n
k—1,

B n L1 g2
N (k—mo)n \l—k o0,—7, k.on

= (00— T0) (L= k) (0 — T — (1= K))"2(k — 70) 2| Sko I”

p/2

by def. of A, 7

< (o0 = 7a) (00 = k)" Sk,

< O (0 — k)2 Sy, P by (4.19).

Put Spo, = S0 (Xo i1 — E[X,, i11]) for 0, — 7, — [n6] <m < 7, —7, — |2]. Notice
that (’S’mon

(m™")

on—Tn—|nd|<m<on,—Tn—|x a I; ma 2 4 and

o — 16| <m<om —mm— || 1 & NON-INCTeasing sequence. By an index transformation and

similar arguments used in the case Ej 4, we see that

P [E1,7] <P { max (0p — k>fp/2 |Sk’0n|p > Cnp/z]
2| <k—7n<|nd]
~ P
= ]P |: max m—P/Q Sm’o-n Z Cnp/2:|
on—Tn—|né]<m<on—Tn—|z]

< Cn~"?1n(n).

We next consider F;g. It holds

n

E1,8 = max
lz|<k—Tn<|nd| kK — Ty,
1<l—on<k—T1n

1
A > —L
1,8<k7l) = 9%

n

C Ay g(k, 1)

LngEﬁfs 1ns) |k — T,

1<l-on<k—Tn
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Chapter 4 Unknown expectations

Since | > 0, and k < 7, + |nd|, we have [ — k > 0, — 7,, — |nd|. We obtain

p
n
‘ A ()
2n(l — on)(y — B) .
- by def. of A
(= myn(l — k) ke y aeh Of £

=218 —P(L = k) P(l — 00)"(k — 7) 7 [ Sk |”
<2p|ﬁ_7|p(0—n_7—n_ Ln(sj)_p|sk,an|p byl_k>0—n_7_n_ I_TL(SJ, l_gn Sk_Tn
< O [Sio, |” by (4.19).

~ p
In the previous case we have seen that (‘Smpn

) is a non-negative
on—Tn—|nd0 |<Mm<on—Tn—|x|

submartingale. An index transformation leads to

IP [El,g] S IP |: max |Sk10n|p Z C’np}
2] <k—7n<[nd]

=P [ max Sm’(,n g > Cnp}
on—Tn—|nd | <m<on—Tn—|z]
N P
< COn PE [ Seon—ta—|z],0n ] by Doob In.
< OMyn~P(0, — 0 — |2))"? by Cor. 2.16
< Cn~"? by o, — 7, — 2] <n, M, < 0.

We next consider F 9. It holds

n

Eig= max

lz|<k—1n<|né] k — Ty,
1<l—on<k—T1n

1
Ai1g(k, 1) > —L
1,9( 9 )_ 2%

n

- max
lz|<k—Tn<|nd]
1<l—-on<k—1n

1
Avo(k,1)| > =L
k— T, 1’9(’)‘_26

Since | > 0, and k < 7, + |nd], we have | — k > 0, — 7, — [nd|. We get
2n
(k—1o)n(l — k)

=201 — k)" "k — 1) ko, Son il

Arg(k,l)| = Sk.onSon by def. of Ay 9

‘ n

n

< 2(0, — 7 — [16]) (= 00) " |Skion Som

S Cnila — Un)il |Sk’gnSon7l’ by (4.19).
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4.1 Parameter estimation

The penultimate inequality follows from | — k > 0, — 7, — |nd| and k — 7, > | — 0. It

follows that

By C max (I —0n)"" [Ske,Sonul > Cn
2] <k—70<|nd]
1§l70'ngk*7'n

C _ -1 > B <
= mgf_lffﬂndj(l n)" |SkonSonil = Cn by k — 7, < [né]
1<l—0pn < |nd)
= {( max \S;wn]> < max (I —o,)"" ‘ngl‘) > C’n}
2] <k—n<[nd] 1<l~0n<|nd]
= {UV > Cn}.

The independence of the observations Xi, ..., X,, and (4.17) lead to the independence of
the vectors (Srnﬂxj,ana e STnHm;Jpn) and (Samgnﬂ, - ngonJr\_m;J), which establishes the
independence of U and V. We infer that

P [Eyy) < P[UV > Cn]

P [V > Cnu™'| Py(du) by Lem. A.9
(0,00)

< / P [V? > CnPu?] Py(du). (4.25)
(0,00)

To treat the integrand, we write Sy, m = Sor  (Xo,1i — E[Xy, 1)) for 1 < m < [nd].

i=1
~ p
Observe that ( Samm‘ ) s is a non-negative submartingale by Lemma 2.14 and
1<m<|n

p . . . . . .
(m™P), <m<|ns| 1S @ NON-increasing sequence. By an index transformation and similar argu-

ments used to get (4.23) and (4.24), we can deduce that
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P [Vp > C’npu_p]

p
=P [( max ([ —o,)"" |S,,ml|) > Cnpu_p}

1<l—op<|nd]

:]P{ max m P
1<m<[nd]|

~ p
ngm‘ > C’npu_p]

[nd]—1
< CMyn=Puf |[nd]~"* +p Z m~ )

m=1

< CnPuP [Lnéj 2 qp Z m_(p/2+1)] by M, < cc. (4.26)
m=1

Since the series converges for p > 2, there exists a constant C, > 0 such that

[nd |~ 4+ p 322 m~@2tD) < C). Consequently,
P [Vp > C’npu_p] < COn™Pub.
We conclude that
P[E; o] < C’np/ u? Py (du) by (4.25)

(0,00)

< Cn_p/u” Py (du)
R

= Cn PE[U?]. (4.27)
Moreover, in the case £ 7 we have seen that <‘§m0n ) is a non-
on—Tn—|nd|<m<on—7n—|z|
negative submartingale. An index transformation gives
P
E[UP] = E {( max |Sk,an|) }
|z) <k—7n<|nd)
~ P
=E { max —— }
on—Tn—|ndé|<m<on—7n—|z| ’
- P
< CE [ Son—ta—|z],0n } by Doob In.
< OMy(o, — 7 — |2])"? by Cor. 2.16
< Cn"? by o, — 7, — || <n, M, < 0.
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4.1 Parameter estimation

By (4.27), the result is
P [E1,9] S C'n_p/Q.

We next consider Ej 9. Since | > o, and k < 7, + |nd], we have | — k > 0, — 7, — |nd].

By (k—7,)7' > 0and S2 , >0, we can assert that

n
Aqqo(k, 1
[y 110(k, 1)
n 1 1
:(k‘—T)n <l_k_n_g)53—n,l by def. of A; 19
<=k k=) lS2, by (1= k)" = (n— ) < (1= k)

< (0p —Tp — |n0]) (1 — Gn)_ISfrml byl—k>o,—1,— |nd], k
<Cn Y l—0,)7'S2

-7, >l -0,

by (4.19).
We obtain
E — (k1) > 1
110 = \_;vj<k Tn<|_n6J k — 1,10 26

1<l—on<k—T7n

C { max (I —o0,)"'S2 ,>Cn
x| <k— Tn<|_n6J "
1<l—-on<k—T7n

= {1<z Igﬁi(LnéJ (1= on) 50,1 2 Cn} by k= < 0]

1<l—op<|nd]

C { max (I — o0)2|S,, .7 > Cnp/2} .

~ p
So'nvm

In the previous case we have seen that (

) is a non-negative submartingale.
1<m<|nd |

Furthermore, (m*p / 2)1 <m<|né] is a non-increasing sequence. An index transformation and

similar arguments applied in the case E} 4 lead to

1<l—0op,<|nd]

P [E1,10] S P |: max (l — O‘n)_p/2|50—n7l|p Z C?’LP/Q:|

~ p
:IP{ max m "/ Seomm

1<m<|nd]

2 Cnp/2:|

< Cn~"*1n(n).
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Chapter 4 Unknown expectations

We next consider F; ;;. Fix an arbitrary s € (O, %) It holds

1
A1 1(k,l) > =L

B =
Lt LxJ<l£n?j<<Ln6J k — 26
1<l-on<k—Tn
n P 1\’
C A (kD] > | =L
- Lmjgg—lgj{gmaj k— 1, (k0| = (26 )

1<l—on<k—1n

Note that the properties of the floor function give k — 7, > |z| > 2 —1 > %x for x > 2.

Hence
p

A1,11(k7 )

‘]{Z—Tn

_ |2n(on—k)(B—1)
| (k—r)n(l — k) S

= 2|3 =P (k — )" (k — 1)~ (0, — B)P(L— k)PS5l

p

by def. of Al,ll

< 2027| g — Py CmRIP(] — g, )RR |G P

< Ca~ (Y2—k p(l o Un)—(1/2+n)p ’San,l’p'

The penultimate inequality follows from k — 7, > %x, k—r1,>1l—0, and ] > o,. Hence

El,ll C max (l — an)*(l/H“)P |ngl|p > O (Y/2=r)p
lz] <k—7n<|nd]
1<l—0pn<k—Tpn

C { max (I —o,)" 2P |5, P > C’m(l/Q_“)p} by k — 7, < [nd].

1<l—0n<|né]

We can now proceed analogously to (4.26). We conclude that

P [El,ll] S I |: max (l - Un)i(l/%q{)p ’Soml’p Z Cl’(l/2n)p:|

1<l—0on<|nd |

=P | max m~ /2P
1<m<|nd |

< Cp=C2=rp [L ] ”p+( ) mep“].

The series converges, because we find that kp +1 > 1 for K > 0 and p > 2. Therefore,

m”’ > Cw(l/z—n)p]

there exists Cy > 0 such that [nd |~ + (Y2 + k)p 300 m~¢#+1) < Cy. This gives

P[E ] < Co™ (fe=re,
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4.1 Parameter estimation

We next consider Ej ;2. It holds

n 1
iz = Aiqo(k, ) > =L
1<l—on<k—Tn
n p 1 P
< Ak D] > (=L
B LIJS;I—I?S(SLWSJ kE—r1, L2k )] = (26 >
1<l—0n<k—Ty
We have
n g —2n p
At ] = S ttn by def. of A
‘k — Tn 1712( ) ) ) (]{ — Tn)n(n — O—n) n, UL, y del. o 112

=2(n—0,)P(k — 1) 7P S0, 151"
<2%(n—0,)P(l — 00) 7P S0, 1510 " by k—7,>1—0,

<Cn7P(l—0,)7" S5, 050" by (4.19).

The independence of the observations Xi, ..., X,, and (4.17) lead to the independence of
S, and Sy, for each | € {0, +1,...,0, + [nd]}. We see that
Ey1 C max (I —0,) 7|8, 15." > CnP

|z | <k—7n<|nd|
1<l—0n<k—Tn

C { max (Il —0,)7?|S,, 15" > Cnp} by k — 1, < |nd].

1<l—op<[nd]

Applying similar arguments used in the case Ej g yields

P[E; o) <P [ max (I —0,)7?|Ss, 151" > C’n”]
1<l—0on<|nd|
< Cn~"2,

We next consider Ej ;3. It holds

n

1
A > —L
1,13(k7l) i 26

p/2 p/2
> (21
> ()

E1,13 = max
|z] <k—Tn<|né] k — Ty,
1<l—-on<k—7n

n

-
k— 1,

Al,l?)(ka l)

max
|z | <k—7n<|nd|
1<l—on<k—T1n
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Chapter 4 Unknown expectations

We find that
p/2 p/2
n n 1 1
A k,l = - 2 by def. of A
‘k—Tn 11s(k, 1) ‘(/{;—Tn)n<n—l n—an)SZ’” y et ot Siis
= (n—0,)"(n = 1)k = 7)1 = 0,)" |50l
< (n =) (n = 1)), by k=71, >1— 0,
S Cnfp/2<n _ l)*?’/? ‘Shn‘p by (419)
Hence
Ei13 C max (n— l)_p/2 |Sl7n|p > Cn"?
|z | <k—7n<|nd|
1<l—0n<k—Tn
C _1\—P/2 P~ p/2 _ < .
= {1§1—I§3§an(n D77 1Sl = Cn } by k= < 0]

Write S'm,n = > (Xn—is1 — E[X,—ia]) for n — o, — [nd] < m < n—o, — 1. Notice
that (‘Smn
()

the case L; 4, we obtain

is a non-negative submartingale by Lemma 2.14 and

p)
n—onp—|nd|<m<n—on,—1

n—om—|nb] <m<n—on—1 15 & NON-INCreasing sequence. By similar arguments applied in

P[Ei 13 <P [ max  (n—1)""*|S;,[" > Cnp/Q}

1<l—0on<|nd|
~ p
=P max m~? 1S, . > Cn?
n—on—|nd|<m<n—on,—1 ’

< Cn~"21n(n).
Altogether, by (4.18), the previous estimates provide

P(E)] <Y P[Ey] < C(n +n™In(n) + 277 + o= 7P (4.28)

1

where z > 4 and k € (0,3). We next consider E,, which is given in (4.16). We will see

that we get a substantially deteriorate estimate. Observe that

mtare<k<rm+ni<o,—nd<Il<og,<n. (4.29)
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4.1 Parameter estimation

by Lemma 3.19. Hence (%, 7%) € ©1N©O,. By Lemma B.1 and the Binomial Formula, a

trivial verification shows that

(58~ (3%)

1 ,  2mat (k—7,)8) L
— oy (So,frn + S’Fn,k) + nk (SO,Tn + Ska) —+ n(l — k) Sk,l
23 1 2, 2((on = DB+ (n—0n))
+ - Sk + n(n—1) (St.on + Sonm)” + (= 1) (St.on + Sonn)
1 2
— {—SST + S0 + (Sruk + Skt + St0,)?
Tn " n n(an — Tn)
2 1 2
+ —B(Srn,k + Ski+ Sioy) + ———S2 L+ —WSUmn
n n(n—o,) 7" n
(1 1Y 2(k—T)(a—p) 2
N n (k’ n) SO’T” T nk Soan + nk SO,TnSTn,k
1 /1 1 2 27 (a — B) 2
* n (k On — Tn) Sk ¥ nk Sk n(o, — Tn)ST"’kSk’l
1 1 1 2 2
j— — 52 _ —S S o — —ST S .
+ . (l T Tn> k.l (0 — T) k1Pl (0n — ) kLo
1 1 1 5 2(n —on)(y — B) 1
T (n -1l o,— Tn) Stion n(n —1) St + n(n — Z)SI’G"SU”’"
1/ 1 1 2o — V(G —
e S L
n\n—101 n-—o, " n(n —1) ’
14
= Ay (k1)

-.
Il
—

Observe that for [ = o,, we have Ay ;(k,l) =0, i € {8, ...,12}. We now proceed analogously
to (4.18) and obtain

14
U m n 1
E, C Ap(b) > 1L
"o LwJSk—?fgLn(sJ k—r1, 2 (k1) = 98

1=1 1<op—I<k—7n

14
_. U E;. (4.30)
i=1

We next present further techniques to estimate the probabilities of Ey s and Eyg. We first
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Chapter 4 Unknown expectations

consider Fyg. It holds

n

max
lz|<k—Tn<|nd] k— Tn
1<op—I<k—T1n

1
Eyg = A > L
2,6 2,6(1{571) = 98

P P
>(Lr
= (")

n

- max
lz|<k—7n<|nd|
1<on—I<k—T1n

As (k1)

k—m,

We infer that

n A(kl)p —2n s S0l by def. of A
= "~ ef. o
k-1 2,6\F; (k — m)n(om — 1) kO k,l Y 2,6
= 2p(0'n — Tn)ip(k — Tn)ip |S7—mk5kyl|p
S Cn_p(k; - ,/_n)—p |STn7kSk7l|p by (419)
Therefore
FEy6 C max  (k—7,) 7" |55, kSki)” > CnP
lz|<k—7n<|nd|
1<op—I<k—7n
C —7,)7? P> COnP -7, <
C mglgr_l?j(ﬂndj(k: T) P |Sr kSkal” > Cn by k — 7, < [nd]
1<on —1<|né]
C { max ( max (k—7,)7" \STn’kSk,l\p) > Cnp}
lz|<k—Tn<[nd] \1<on—I<|nd]
Tn+|nd |
- U { max  |S,, xSkl > CnP(k — Tn)p} . (4.31)
bt 2] 1<o,—I<|nd]

We next prove that (]S, xSk.i|") is a non-negative submartingale for each

on—|ndé|<I<op—1
k€ {m, + |x],...,7n + |nd]}. For this purpose, fix k € {7, + |z],....,7 + [nd]|} and let
Fi:=0(X;,41, ..., X;) be the o-algebra generated by X, 11,..., X;. Then (F)o, — ns|<i<on-1
is a filtration in A (o-algebra in the probability space in our model). The independence of

the observations Xi, ..., X,, and (4.29) lead to the independence of S, ; and Sy, for every

I € {0, — |nd],..,0, — 1}. By Corollary 2.16, there exists a constant Cy > 0 such that

E[|Sy, 5 Skl"] = Bl S, s "TESkal”] < CsMy (k= 7)"*(1 = k)"
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4.1 Parameter estimation

foralll € {o,,—|nd],...,0,—1}, and consequently E[| S, xSk|P] < co by M, < co. Further-
more, since k < 7, + [nd| < o, — [nd| by (4.29), it follows that |S., x|” is F;- measurable.
By Lemma 2.14, we see that (|Skvl|p)on7Ln5J<l<0nfl is a non-negative submartingale. We

obtain

E[|Sr, £ Ski41l” [ F] = [Sm kl” El|Sksa " | F1]
>S5, k" [Skal”

= S5 1Ska|” .

We thus conclude that the process (]S, rSk.|”) | is a non-negative submartin-

on—|nd|<I<on—

gale for each k € {7, + [z], ..., 7, + [nd]} with respect to the filtration (F;)s,—ns|<i<on—1-
By (4.31) and Doob’s Inequality (Lemma 2.10 (i)), it follows that

Tn+|nd|
P(Epgl< ), P L—Lnfsﬂ@?i |SnaSul” = Ok — 7y
k=Tn+|x| -
Tn+|nd |
<Cn? Y (k= 7) PE[Sr, 4 Ske, -1l
k=7n+|z|

The independence of the observations Xj, ..., X,, and (4.29) lead to the independence of
Sy, & and Sk, 1 for each k € {7, + |z|,...,7 + [nd|}. Since k > 7,, we conclude that
op—1—k<o,—7,—1<mn. It holds
Tn+|nd |
P[Eyel <Cn? Y (k—7) PE (IS k") B [|Sk0, 1]
k=7n+|z|
Tn+|nd|
< CMin™? Z (k—7) (0, — 1 —k)"* by Cor. 2.16
k=mn+|x|
Tn+[nd |
< Cn™"" Z (k —71,) 7" by 0, —1—k<n, M, <oc.
k=Tn+|x|

Since Y °°°_ m™2 < oo for p > 2, we get

P [EQ,G] < Cn*m.
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Chapter 4 Unknown expectations

We next consider EFsg. It holds

n

1
Fs = Agg(k,l) > —L
. L’EJSE?S{SMJJ k—1, 28(k; 1) > 78

1<on,—I<k—T1n

n P 1 \?
C Asg(k, 1) > —L
= Lx]<l§ngj( <|nd| |k — T, 28(k, 1)) 2 (28 )
1<op—I<k—T1n
We see that
p —271/ p
Asg(k, )| = Sk151.o by def. of A
‘ e 28( ) ‘(k‘—Tn)n(O'n—Tn) EIOLoy, y de€l. oI Azg
= 2p(0'n — Tn)ip(k — Tn)ip |Sk,lSl,crn’p
< 2%(0p — 1) (00 — )P |SkiSton | by k—7, >0, —1
S Cn_p(an - l)—p |Sk7lsl’0n|p by (419)
We get
E2’8 Q max ( Op — l)ip ‘Sk,lSl’gnV) Z C’np
lz|<k—7n<|nd|
1<U7L_l<k Tn
C — )P P> COnP — 7, <
C ijglfr—l?j{gméj(% D7P|SkiS1en]" > Cn by k — 1, < [nd]
1<o,—I<[nd |

{ max < max (o, —1)77? |Sk,lSl’an|p) > C’n”}
lz|<k—mn<|nd| \1<on—I<|nd|

Tn+ I_n6J on—1

- U U {|Sk7lSl,0n|p Z C’np(an — l)p} .

k=rn+|z| l=0opn—|nd]
The subadditivity of P and the Markov Inequality (see Lemma 2.4) imply

Tn+|nd] on—1
PEds Y S PSSl 2 Colon -1y
k=Tn+|x| l=0n—|nd]|
Tn+[nd] on—1

< Cn? Z Z n— ) PE[|SkiSie, "] -

k=7n+|z| l=0pn—|nd]
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4.1 Parameter estimation

The independence of the observations Xi, ..., X,, and (4.29) lead to the independence of
Sk, and S;, for each k € {7, + |z]|,...,7, + [nd]} and | € {0}, — |nd],...,0, — 1}. Since
l <o, and k > 7,, we have | — k < 0, — 7, < n. We deduce that

Tn+|nd | on—1
P[Eg]<Cn? Y > (00— D) "E[Sul | E[Si,,[]
k=Tn+|x]| l=0pn—|nd]
Tn+[nd] on—1
<CMpn™ ) > )Rl — k) by Cor. 2.16
k=7p+|z]| l=0n—|nd]

on—1

<Cn~(nd) = =] +1) > (on—1)7"  byl—k<n, M,<oo
l=0y—|nd|
on—1
< Cn~ 7D Z (0, — 1) by [nd] — x| +1 <n.
l=0p—|nd]

Since > m™"? < oo for p > 2, we can assert that
P [E278] S C’n_(p/Q_l).
The remaining sets Es;, i € {1,...,14}\{6, 8}, can be handled as before. By (4.30), we get

PIE:] < 3" P[Fai] < C (w07 4 - () 4+ C-0).

where x > 4 and k € (0, %) Similarly to (4.28) and above, we obtain such upper bounds
for the probabilities of E5 and E4. By (4.16), we see that

4
<Y PE]<SC(n+n ) 4 P In(n) + 27 4 27 270P)
<C (n_(p/z_l) + x—(1/2—f€)p) '

The last inequality follows from n™2 < n™"?In(n) < n=*2=Y and 72 < 2=(/2=%P_ The
same upper bound can be found for the probability of F' on a similar way. By (4.15), the

result is

Plx < |70 — 7ol < nd] < P[E]+ P[F] < C (n~ @270 4 g~ (mrp) a
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Chapter 4 Unknown expectations

We now obtain stochastic boundedness of 7, — 7,,.

Proposition 4.17. Suppose there is some p € (2,00) such that M, < co. Then

lim limsup P[||7, — .|| > 2] = 0.
T=00  p—oo

Proof. The same proceeding as in the proof of Proposition 3.22 leads to

. 1 1
P+, — ol = 2] < Pl < || — 7l| < nd] + P U 6,-06| > 55} +P [1 > 5@]

with 6 > 0, x > 0 and n € IN. Applying the error estimate in Lemma 4.16 and the weak

consistency of 6, (see Theorem 4.10) we conclude that

limsup P[||7, — 7| > 2] < Cx’(l/%"‘)p,

n—o0

where C' >0, x >4 and k € (0, %) Letting x — oo yields the claim. ]

4.1.4 Consistency of the estimator of expectations

This section contains the proof of weak consistency of &,,, which is based on the stochastic

boundedness of 7, — T,,.
Theorem 4.18. If M, < oo, then
. P
a, — o
Proof. Let us first recall that
. - A P
o = <an>5n>7n> m (04,57’7) =
if and only if

. P 5P P
Qy — Q Bp —— B and A, —— 7.

n—oo n—oo n—o0
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4.1 Parameter estimation

We give the proof only for the convergence in probability of 3, to B. In the same manner
we can see the convergence in probability of &, to a and 4, to 7. Fix n € IN, ¢ > 0 and
x > 1. To simplify notation, the fact that some mathematical objects, which are defined

in this proof depend on n, € or x is omitted. Write

1

By the rules of De Morgan, we obtain

Bn_6‘>€}7 Ay ={|fn — 7| <2} and Ay :={|6, —0n| < z}.

A=(AN(A1NA))U <A N(AN A2)C>

g(AmAmAﬂu(AEuAE).

By definition of Bn, we thus get

P

On

1
5.7 > (Xi—p)

"=t

>e T =Tl <z, |0, —on] <z

Bn—5’>€]§IP

+ P |70 — 7| > 2] + P[|6,, — 00| > 7]

= ]Pl + IP2 + lpg. (432)

At the end of the proof we apply the stochastic boundedness of 7, — 7,, which is given in

Propostion 4.17. Therefore, we only need to estimate the first probability. It follows that

> e, |k — 7| <, |l — oy Sx,fn:k,&n:l}

1 l
T— & > (X —B)
i=k+1

k=11=1
I£k
n n l
1 A ~
< ZIP l—k,z (Xi —B) >5’|k_Tn’§$7“—0n\§$,7n:k,an:l]
k=1 =1 i=k—+1
1£k
n n ] !
= o _ ]
2 Z l—kizk;(XZ B)| > &, T =k, on l]

k=1 =1
|k—Tn|<z |l—0n|<z,l#k

A

Without loss of generality we assume that P [7, = k,5,, =[] > 0, since otherwise we get
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Chapter 4 Unknown expectations

P, = 0. The definition of the conditional probability and Lemma 2.5 lead to

l

z:k—l—l
|k— Tn|<.77 [i— an\<x
14k
1 2
Z Z (I = k)°E |15k s ( > (X - 5))
i=k+1

|k— ‘rn\<:r: [i— an|<x I#k
Throughout the proof, we use the abbreviations

: 4
P(k)=Plr,=k,0,=1 and E(kI):=E ( Z (X; — ﬁ)) : (4.33)
i=k+1
By the Cauchy—Schwarz Inequality (see Lemma 2.11 (ii)), we infer that
Py <e” Z Z (1 —k)2P(k, 1) E(k,1)". (4.34)
|k— Tn\<$ [l— Un|<:c I#£k

Lemma A.2 ensures that o, — 7, —— oco. Accordingly, there exists ng = ng(x) € IN such
n—o0

that 7, + < 0, — x for all n > ny. From now on, let n > ny. In (4.34) the summation

indices (k,1) € {1,...,n}? fulfill
Tn—rx<k<tm,+r<o,—x<Il<o0,+x. (4.35)
Set

Iy ={keN1<k<n, 7,—2x<k<T,—1},
It ={keNl1<k<n, 7, <k<7, +z},
Iy ={leN|1<i<n, o,—2<1<0,} and

Iy ={leN|1<i<n, o, +1<I1<0,+x}
Observe that the cardinality of the sets amount

| =|L]=1=] and |If|=|L|=|z]+1 (4.36)

96



4.1 Parameter estimation

We split the sums in (4.34) and obtain

Py <e?) Y (1—k)°P(k,1)"Ek,1)"

kel lely

e Y (1= k) Pk, D)PE(k, 1)

kel lelf

e Y (1= k) Pk, D) E(k, 1)

kEI lely

e Y (1= k) PPk D) E(k, 1)

kel lerf

Let C' > 0 be a generic constant. We first estimate Dj.

(4.37)

Note that E[X;] = / for all

i€ {k+1,..,0} withk € I;f and [ € I, . By Equation (4.33), Corollary 2.16 and M, < oo,

we have
E(k,1) < CMy(l - k)* < C(l — k)

for all k € I and [ € I, . Hence

Dy <Ce® Y ) (1= k)" P(k, 1)

kertiery

The Cauchy—Schwarz Inequality (Lemma 2.11 (i)) implies

1/2

Dy<Ce? | Y > (1—k)? > Pk

kel iery kerfiery

(4.38)

Since the events {7, = k,d,, = [} are disjoint for all k € I;" and [ € I, , we can estimate

by Equation (4.33)

1/2

Y>> Pk =P |J U GF=ko.=1

kertiery kerfiery

<1. (4.39)
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Chapter 4 Unknown expectations

For k € I]” we have k < 7, + |z]. Tt follows that
1/2
Dy <Ce? [ (la) + 1) (1= (7a + |2])? by (4.38), (4.36), (4.39)

lely

1/2
on—Tn—|x]
= Ce™(|z] + 1) Z m? by index transformation

m=op,—Tn—2||

< Ce?(|z) +1)(0p — 10 — 2|2) — 1) by Lem. A.5. (4.40)

1

Here and subsequently, let S, := > ., . (X; — ) for u,v € N with u < v. We next
)

consider Dy. We first estimate E(k,1) = E [S; ] for fixed k € I; and | € I]. By proper

splitting of Si; and the Binomial Formula, we get

S’il = (Skyo'n + So'nyl)4
= S, F 4500 St + 650, Se 1+ 48k Se 1+ S5

S S;CL,O‘n + 4 ’Sk,a'n|3 |S¢7n,l| + 65]3,0‘7153’,1,[ + 4 |Sk70'n| : |S¢7n,l|3 + S;l'n,l‘
Furthermore, we have

S’io'n = (Skv'r’n + STn7Un)4
=Sp. 4S8, Sron +650 . 52 L +48,..5 . + S

Tn,On Tn,On

S S’iTn + 45}3,7'”57'

n

on T 65]3,771‘5271,071 + 4 |Sk,7'n| ’ ’STmUn’EI + Sﬁn,ﬂn'

The independence of Xi, ..., X,, ensures the independence of Sy ,,, and S,,, ; as well as Sy, -,

and S, 5. We thus get

E(k> l) =E [Slil}
<E[Si, ] +4E[S;. ] E[S: 0. +6E[Si,. [ E[S2 ,.]

FAE [|Stn 1 E [|Sronl’] T E[SE o ] +4E [|Stonl’] E[|Sonl]

+6E [SE, JE[S2 ] +4E[[Sko, | E [|Ss."] + E [S2 ] -
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4.1 Parameter estimation

Since E[X;] = B for alli € {7, +1, ..., 0, }, the absolute moments of S;, ,,, can be estimated
by Corollary 2.16 and we have E[S,, ,,] = 0. We estimate the other absolute moments by

Lemma 2.17. The result is

E(k, 1) < CMy(r, — k)4 + C’M22(Tn — k)z(an —7,) + CM Ms(1,, — k) (0, — Tn)3/2
+ CMy(o, — 12)* + CM Ms(o,, — k)*(1 — 0,) + CMZ(0, — k) (1 — 0,,)?

+ C M Ms(o, — k)(I — 0,)* + OMy(l — 0,)*. (4.41)

From M, < oo we deduce that M, < oo for 1 < p < 4. By definition of Dy, (4.41) and

Lemma A.7, we can assert that

e Y (- k) Pk D) E(k, 1)

kel le[
ey N -k — k)*P(k,1)""
kel le]
e D U= k)= K)o — ) Pk, 1) "
kel leI
_2 Z Z l_ o k)l/Q( Tn)3/4p(k7l)l/2
kel; le]
+Ce? > (1= k) 200 — 1) P(k, 1)
kel leLf
Ce? D > (1= k) (o0 — k)Pl — 00) 2P (k, 1)
kel lerf
Ce? > > (1—k) (00 — k)1 — 00)P(k, 1)
kel lerf
Ce? > > (1= k) (0w — k)1 — 0)*P(k, 1)
kel lelf
e D (1= k)1 —0a)* Pk 1)
kel leI

8
=Y Dy, (4.42)
=1
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The further proceeding is presented for Ds3 and Dy 5. The Cauchy-Schwarz Inequality

(Lemma 2.11 (i)) and similar arguments used in (4.39) lead to

D273 _ 0872 Z Z(l i k)—Q(Tn B k>1/2<0,n . Tn>3/4p(k, l>1/2

kel lely
1/2 Y
<Ce? | DYDY (1= k) Hr = k) (on —7)?? > > Pk
kel lerf kel lerf
1/2
<Ce (D)D) (=B M= k) (o —T)| (4.43)
kel lerf

Since 7, — k < |z| and | > o, for k € I; and [ € I, we see by (4.36) and an index

transformation that

1/2
Doy < Ce™ | |a)(on =)D (o0 —k)*
lelf kely
On—Tn+|x] &
—o aPlon—m) S

m=opn—"p+1

By Lemma A.5, we obtain
Dy 5 < Ce2 <|_£IJJ2<0n — Tn)B/Q(on — Tn)_3)1/2 = e ?|z)(0y, — Tn)_3/4.
We next consider Dss. As in (4.43), we get

Doy =Ce® Y > (1= k) >(0n — k)*(1 = 0,) " P(k, 1)?
kel lelf
1/2

<Ce? DD (1 =k) Mo —k)*(1—0n)

kel lerf
Since | — 0, < |x| and [ > o, for | € I}, we deduce that
1/2
Doy <Ce | 2] > (on— k)

kel lelf
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4.1 Parameter estimation

For k € I] we have k < 7,,. By (4.36), we infer that

1/2

D275 < 06_2 .Z’J Z Z - Tn

kel lelf

Ce?|z] 3/2(0n — Tn)_l/Q.

A similar proceeding leads to the estimate of the remaining terms. We get

V(o =) + CS*QLQ?J?’”( — )"

+ Ce 2|z |¥(0n — )t 4+ Ce 220, — 1)

The estimate of D; and Dy runs as before. By (4.37), we obtain

e ) (1= k)PP(k, 1) E(k, 1)

kel lely
e D -k — k)?P(k, 1)
kel lely
e D -k — k)1 — 1) 2Pk, 1)
kel lely
SN D= R R — R = )P 1)
kel lely
e Y (1=K (1 —7) Pk, 1)
kel lely

< Ce x| (op — 10 — |2] = 1)+ Ce72| 2] (0 — T —

+Ce?|z|(oy — T — 2] — 1)73/4 + Ce?|z| 1/2(0n — T, —

2] - 1)~

|z| — 1) "2
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and

e Y (1= k) PPk, D) E(k, 1)

kerfierf

<Ce?> Y (1= k) (0w — k) P(k, 1)

kel lerf

O 3 N (= k) 20w — )L — o)V Pk, 1)

kel lerf

Ce? > > (1= k) (o — k)(l — o) P(k, 1)

kel lerf

e > (—k) (1 —00)* Pk, 1)

kel lerf
< Ce? Ed 1/2(an — T, — |z] — 1)_1/2 + 02 |z |(op — T — || — 1)_3/4

+Ce? L:EJS/Q(Jn —Tp— 2] = 1) 4 Ce? La:J5/2(0n -7, — |x] — 1)_3/2.

In summary, by (4.37), (4.40) and the estimates above, there exist ny = ng(z) € IN and a

constant C > 0 such that

IN
Q

(Lol (on = = o) = 1% 4 Lo, = 7~ La] - 1)

+ ) (on =m0 — 2] =)V + (2] (o — 7 — 2] = 1)

+ )P (00 = 7)™+ 2] (o0 — 1) 1) (00 — 7)

+ ) (o = )T L) (o — 1) TV L) 00 — )T

+ )2 (o — 1) 7 L) (00 = )T+ (L) + 1) P00 — 7 = 2(2) = 1)
+ ) (o0 =7 — 2] = D)7+ 2 (0 — 7 — 2] = 1)

+ 2] (0n — 10 — 2] = D)7+ 22 (00 — 0 — |) — 1)—3/2) (4.44)

for all n > ng, € > 0 and x > 1. To see convergence in probability of Bn to [, we now

apply the stochastic boundedness of 7, — 7,. By (4.32) and the maximum norm, we infer
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that
Py < P[||7n — Tl > 2] and Py <P[||7, — 7l > 7]

for all > 0. By (4.32), we conclude that

lim sup P [ B, — 8| > 5] < limsup (Py + Py + P3)
n—00 n—00
< limsup Py + 2limsup P [||7,, — 7| > 2] (4.45)
n—o0 n—o0

for all e > 0 and « > 1. Since 0,, — 7, — o0 by Lemma A.2, we deduce by (4.44) that

n—o0

limsuplP; =0

n—o0

for all ¢ > 0 and > 1. By (4.45) and Proposition 4.17, letting x — 0o gives

lim P

n—oo |:

BTL - 6 > €i| - 07
which means

B —— B.

n—oo

In the same manner we can see that

. P . P
&, —— « and Ay, — 7. ]
n—oo

n—oo

Corollary 4.19. If M, < oo, then

0,,6,) —s (0, ).
(60 )

n—oo

Proof. The claim follows from Theorems 4.10 and 4.18 and the properties of convergence

in probability. ]
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Chapter 4 Unknown expectations

4.2 Another estimation approach for the multiple

change-point

In the previous section we have seen the point estimation of @ and 7,,, respectively. Another
aim is to estimate 7, by an asymptotic confidence region (as specified in Section 3.4 in
the case of known expectations). Unfortunately, the rescaled process with respect to M, is
hard to handle to examine convergence in distribution of 7, — 7, (compare Section 3.3 in
the case of known expectations). Therefore, in this section we construct another estimator
of 7, based on the consistent estimator &, of expectations, which allows us to proceed

similarly to Chapter 3.

4.2.1 Estimation of the multiple change-point

We begin with the estimation of the moments of change 7, = (7,,0,) again. Now, the
main idea is to replace the unknown expectations a = («, 3,7) in the criterion function
S,,, defined in (3.1), by their associated estimators &, = (&n, Bm%). Let us denote by

Sy the random criterion function

n

(X, — )+ Y <Xi - Bn>2 + 37 (X =4 (kD) € A, (4.46)

1 i=k+1 i=l+1

Sk, 1) =

k
1=
Note that S features the same structure as S,. Consequently, our further approach is
very similar to Chapter 3. It is evident that S’ has at least one minimizer. Similarly

to Equation (3.3), we use a choice function ¢* : Argmin (S}) — A,, if more than one

minimizing point of S exists. Here and subsequently,

* [yp—
n

(17,00) := argmin S} (k, ) (4.47)
(k,DeA,

T

stands for 7 = ¢* (Argmin (S})).
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4.2 Another estimation approach for the multiple change-point

We first observe that (7}, &) is also a least squares estimator of (7,, ).

Lemma 4.20. Let n € IN. Then

(17, &) € Argmin(S,,).

Proof. Fix n € IN. By Equations (4.4) and (4.47), we have 7, € A, and 7} € A,.
Equations (4.1), (4.46) and (4.47) lead to

* A —_ Qx *) : * < * (4 )
Sn (Tn7 an) Sn (Tn) (kg)lgin Sn<k7 l) — Sn (Tn)

In addition, Equations (4.46) and (4.1) and (4.6) yield

S:L (+n> = Sn (’f'r“ &n) = (k7l7a1,a2%il)’leAan3 Sn(k, l, a, as, (13) S Sn (T;, dn) .

Especially, we obtain

* A .
Sy (T, 0n) = min Sp(k,l, a1, a9,a3),
(k,l,a1,a2,a3)€A, XR3

which is our claim. O

Adapted from Chapter 3, for simplicity of notation, we apply the abbreviations

A1 (X5) =2 <5n - dn) Xi+a2—p2 and (4.48)
@ o(Xi) =2 (3 — B ) Xi + 52 = 42

for i € {1,...,n} and write

My(k 1) = aq (X)) + Y _an, (X)), (k1) €A, (4.49)

i=1 =1

Lemma 4.21. Let n € IN. Then

Argmin (S))) = Argmin (M) .
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Chapter 4 Unknown expectations

Proof. The proof of Lemma 3.1 works for Sy, My, a;, |, a, 5, G, Bn and ¥, instead of S,,,

n’ “n,1y Yn

M,, ay, as, o, B and . O

According to the previous lemma, we use the representation

T = (17,0}) = argmin M (k,1). (4.50)
(kDeA,

to estimate 7, = (7, 0,).
A simulation study (see Chapter 5 for more details) provides the following conjecture. If all

distributions are continuous, then the estimators 7 and 7,, are almost surely identical.
Conjecture 4.22. Let n € N and let @1, @2, Q3 be continuous distributions. Then

Argmin (M) = {7,}  almost surely,

A

which means 7} = 7,, almost surely. Furthermore, it holds P[7} # 7,] > 0.

The further approach to estimate the multiple change-point @ = (6;,65) is analogous to

the last part of Section 3.1. The estimator of the multiple change-point is given by

Moreover, we define
kS 1 *
pr(s,t) = EMH(LnsJ, Int]), (s,t) € O,
where O, is given by (3.6).
Lemma 4.23. Let n € IN. Then

0; = argmin p; (s, t).
(s,t)EOR

Proof. The proof of Lemma 3.4 works by replacing (3.3), T, = (70, 0n), 0n, pn and M,, by
(450), 75 = (2,02, 0}, i and M. s
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4.2 Another estimation approach for the multiple change-point

Remark 4.24. The factor n~! in the definition of p¥ does not influence the minimizing

points of M, but the proof of consistency of @ requires this factor.
Lemma 4.25. p;, n € N, is a stochastic process with trajectories in the multivariate

Skorokhod space D(©,,).

Proof. The proof of Lemma 3.6 remains valid for p} and M} instead of p,, and M,,. O

4.2.2 Consistency of the multiple change-point estimator

This section deals with the weak conistency of 8. For this purpose, we apply Theorem 2.1
again. To get uniform convergence in probability of p! (assumption (i) of Theorem 2.1),

we give a decomposition of p first.

Lemma 4.26. Let n € N and (s,t) € ©,,. Then

p;(s,t) = 5;(Sat) + Q;(S’t)>

where o) and o} are specified in Lemma B.2.

Proof. Fix n € IN. We first recall that

)
a, 1<1< T,

L7 o, +1<1<n.

Definitions of p; and M yield

[ns] [nt]
pun(s,t) = —M;([ns], [nt]) = —~ > Can (X)) + ) an (X))
=1 =1
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for all (s,t) € ©,,. We only discuss the case (s,t) € ©2NO,,. Lemma A.1 (ii) gives
1< |ns| <t < |nt] <o, <n.

We split the sums into segments according to above and obtain

[ns) Tn [nt]
* 1 * * *
pn(S’ t) = E Z an,l(‘Xi) + Zan,Q(Xi) + Z an,Q(X’i)
i=1 =1 1=Tp+1

We now use the expectations to center X;, i.e., X; = (X; —E[X;]) +E[X}], i € {1, ..., |[nt]}.

By definitions of @), ; and a;, ,, an easy computation shows that p} (s, t) = 6 (s,t) + 0}, (s, 1),

where
Lns] Tn
i(50) = = (B —6) S (Xi—a) + 2 (3= 5u) DX~ a)
=1 i=1
Lt
+2 (- B) X (X p) (152)
i=Tp+1
and

] T

on(s,t) = (Za (Bn - an) +a; — BZ) LnTs +2(a—f) (% - Bn> o

A A nt
(28 (- B) 22— 52) 4. (4.53)
The details and the other cases are left to the reader. O]

We prove in the following both lemmas that ¢ uniformly converges in probability to zero

and o} to the limit process p, given in (3.13).

Lemma 4.27. If My < oo, then

sup |07 (s, )] RN
(s,t)€EOR n—00

Proof. Fix n € N. Our proof starts with the observation that the partition of © gives

sup [6:(s,t)] = max sup |05 (s,t)]. (4.54)
(s,)€O, i€{1,..,6} (s,t)cOINO,
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4.2 Another estimation approach for the multiple change-point

We look at case (s,t) € ©2 N O, which leads to 1 < |ns| <7, < [nt] <o, <n. Set

I_nsj Tn I_ntJ
5n,1(8) = ﬁ Z(Xl - a)a 671,2 = ﬁ Z(Xl - a) and 6n,3<t) = E Z (XZ - /8)
i=1 i=1 i=rmt1

By (4.52) and the Triangle Inequality, we obtain

sup  [05(5,8)] < 2|Bu—Gn|  sup |65 1(8)| + 2 [An — Ba| - |57,]
(s,6)€O2NO, (s,)€O2NO,
+2\4 — Bl sup |85 5(t)]. (4.55)
(s,t)€O2NO,,

By the weak consistency of &, = (o?n, Bm%> (see Theorem 4.18) and the properties of

convergence in probability, it is sufficient to show that

sup |0} ()] —L o, |67 o ~—" 50 and sup |07 o (t)] RN (4.56)
(s,1)€02NO, n—00 © n—oo (s,1)€02nO, n—00

To apply the first Kolmogorov Inequality (Lemma 2.7) and the Chebyshev Inequality

(Lemma 2.6), we observe that we have sums of independent and centered random variables.

We conclude for all € > 0 that

P sup |6 (s)| > €
(s,£)€O2NO,
k

< _
<@ s S0k 0|2

PR
<en Z VI[X; —q] by first Kolmogorov In.

i=1

< Mye*n"%r, by V[X;] < M,
< Moe2n~1 by 7, < n. (4.57)
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Furthermore, we get for all € > 0

Tn

> (Xi—a)

=1

P [|(5;;2| > 5] =P

> ns]

<e?n? ZV [X; — q] by Chebyshev In.
i=1
< Mye2n"%7, by V[X;] < M,
< Myent by 7, < n. (4.58)

Moreover, by an index transformation, we see for all € > 0 that

P

sup [0, 3(t)| > 5] (4.59)

(s,t)€O2NO,
> n€]

. ]
On—Tn

<e*n? Z V[X; — f] by first Kolmogorov In.
i=1

l

> (X - B)

1=Tn+1

<P max
Tn+1<I<on

l—Tn

Z (Xrn-i-i - B)

i=1

=P max
1<l—Tn<on—"Tn

< Mye™*n"2(0, — 7)) by VIX;] < M,

< Mye2n7t by o, — 7, < n. (4.60)

From M, < oo we see that My < co. To deduce (4.56) from (4.57), (4.58) and (4.59), let

n — 00. The rest of the proof runs as before. We find that

sup |07 (s,t)] LN
(5,t)€OINO,, n—oo

for all i € {1,3,4,5,6}. The assertion follows by (4.54). O

Lemma 4.28. [f My < oo, then

* P
sup |0} (s, ) — p(s, )] —— 0.

(s,t)€O, n—oo
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4.2 Another estimation approach for the multiple change-point

Proof. By the partition of O (see (3.11)), we have

sup [0,(s,t) — p(s,t)| = max  sup |on(s,t) = p(s,1)]. (4.61)
(5,6)€EO, i€{1,....6} (5,t)c0iNO,,

We consider the case (s,t) € ©* N O,, again. As defined in (3.13), we see that
p(s,t) =—s(a—B)* —t(B—7)"+ 01 ((a = B)* + (B—7)" = (@ =7)%).
Equation (4.53) and the Triangle Inequality lead to

sup |QZ(Sut) —,0<S,t)|
(s,t)€O2NO,

< oo [5 (a (Bum) £ 3) - oo o)
7]

+ sup
(s,t)€O2NO,

+ ‘2%‘((1 ) <% - 5n> — 61 ((a =B+ (B=7)°—(a—7)%)|.

] (26 (% — Bn) + 42 - %Z) —t(=(8—-7)?)

n

Note that it holds AB — ab = B(A — a) + (B — b)a for all A, B,a,b € R. Therefore, the

Triangle Inequality gives

sup o (s,t) — p(s,1)]
(s,t)€O2NO,,

sup
(s,t)€O2NO,,

+’2a<6n—@n)+di—53+(a—ﬁ)2

n

o)

sup s
(s,t)€O2NO,

. R N R nt
+’25(%—Bn>+52—75 sup L—J—t
(s,)€02n0, | T
+ ’25 (% - Bn> F A2 A2 (B2 sup |t

(s,t)€EO2NO,

+[260=8) (5. - )
20— 8) (= 81) = ((a =B + (8- = (a =) 6.

Tn
iy
n

We further estimate

sup  |s| <1 and sup  |t| < 1.
(s,t)€O2NO,, (s,t)€O2NO,
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Lemma A.1 (iii) and (iv) yield

sup g (s,t) — p(s,1)]
(s,t)€O2NO,

< [20 (B, — ) +a2 - B2
+ |28 (3n = B) + B2 - 42
+l2a—8) (3 - 5)| -
+ |20 =) (3= Ba) = (0= 9 + (8 =7)* = (a =)?)

1 . .
—+‘2a<ﬁn—dn>+di—ﬂ2+(a—ﬁ)2‘
n

~ o+ [26 (= Bu) + B2 - 42+ (-

n

0.

By the consistency of a,, = (dn, Bn, %> (see Theorem 4.18) and the properties of conver-

gence in probability, a trivial verification shows that

* P
sup oy, (s,t) — p(s,t)| —= 0.
(5,t)€02NO,, n—00

In the same manner we can see that

* P
sup |Qn(sat)_p(87t)| —0
(5,t)€OINO,, n—oo

for all i € {1,3,4,5,6}. Combining this with (4.61) finishes the proof. O

We can now state and prove weak consistency of @, which is one of our main results.

Theorem 4.29. If M, < oo, then

6: — 6.
n—oo
Proof. We apply Theorem 2.1. pr, n € N, is a stochastic process with trajectories in the
multivariate Skorokhod space D(©,,) by Lemma 4.25. p has trajectories in the multivariate
Skorokhod space D(©), since p is continuous, as is easy to check. Moreover, (0,,),ew € ©

is a sequence of sets such that ©,, C ©,,,; for every n € N with UnelN 0, = 6. By Lemma
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4.2 Another estimation approach for the multiple change-point

4.23, @7 is a minimizer of p! for any n € IN. By the decomposition of p¥ (see Lemma 4.26)
and the Triangle Inequality, for each n € IN we conclude that
sup [p;,(s,t) — p(s,t)] = sup |6,(s,t) + op(s,t) — p(s, 1)
(s8,t)EO, (s,t)€O,

< sup ([0,(s,8)] + [on(s, 1) — p(s, 1)])
(s,t)€O,

< sup |6(s,t)|+ sup |oi(s,t) — p(s,t)].
(5,t)€O, (s,t)€O,

Letting n — oo, Lemmas 4.27 and 4.28 lead to

* P
sup ’pn(‘g?t) - p(S,t)| — 0.

(s,t)€O, n—o0
In addition, @ € © is the well-separated minimizer of p by Propsition 3.11. An application

of Theorem 2.1 gives the claim. ]

Corollary 4.30. If M, < oo, then

(07, &) —— (0, ).

n—o0

Proof. The assertion follows from Theorems 4.29 and 4.18 and the properties of convergence

in probability. [
4.2.3 Convergence in distribution

This section is devoted to the study of convergence in distribution of 7 — 7.

The approach to get another main result of this work is very similar to Section 3.3, but

some proofs are technical harder. To apply Theorem 2.3, we have to consider the rescaled

process, which is minimized by 7} — 7,,. For this purpose, recall the notation

Hy={(k1) €2k >1 =7, I =k>1— (04 —T0), n—1>0,+1}.
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The rescaled process I'} is defined by
U (k,l) .= M (1, + k,on + 1) — M (1,0,), (k1) € Hy,.
Lemma 4.31. Let n € N. Then

T, — Ty € Argmin (I')) .

Proof. The proof of Lemma 3.14 remains valid for 7} = (7}, 0%), I': and M} instead of

T = (T, 0,), [y and M,,. O

I'y has the following form.

Lemma 4.32. Let n € N and (k,l) € H,,. Then

FZU@ l) = FZ,I(k) + F:g(l)

with
k !
Z a;kz,l(XTnJri)? k> 07 Z a;«kl72(Xo'n+/i>7 [ > 07
Ly (k) =4 and T%,(1) = { =

—k
> an (Xp—iv1), k<O
=1

where a), , and ay , are given by (4.48).

Proof. The proof of Lemma 3.15 works by replacing T',,, fnm fn727 M,, a; and ay by T,
F*

n,1»

1—‘*

* * *
n2 My, ag 1 and ag 5. [

n,1

We next prove convergence in distribution of all finite-dimensional distributions of I'}
(assumption (i) of Theorem 2.3). For this purpose, we previously show that the rescaled

processes in the case of known and unknown expectations are stochastically equivalent.

Lemma 4.33. Let m € N and (ky,1y), ..., (kpm, L) € Z2. If My < 0o, then

max |4 (kr, 1) — Tu(kr, )| —— 0.

1<r<m n—00
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4.2 Another estimation approach for the multiple change-point

Proof. Fix m € N and (ky,11), ..., (km, lm) € Z2. The proof of Lemma 3.17 provides that
(k1,00)5 ey (Kimy L) € Hy (4.62)

for a sufficiently large n € IN. It suffices to show that

T (kyy 1) = Colkep, 1) —— 0 (4.63)

n—o0

for all » € {1,...,m}. Fix an arbitrary r € {1,...,m} and fix n € IN sufficiently large for a
moment. As an example, we show (4.63) for k. > 0 and [, < 0. The remaining three cases
k.>0,1l.>0and k. <0, [. >0 and k. <0, [, <0 follows analogously. By definitions of

I and T, we have

F;(kﬂ lr) - fn(kra lr)‘

ey —l, ey —l,
Y0 s - (L) )|
i=1 i=1 i=1 i=1
Moreover, the proof of Lemma 3.17 shows that there exists ng = ng(k1, 1, ..., km, lm) € N
such that for all n > ny we get X, 4; ~ @ for each i € {1,...,k.} and X, ;11 ~ Q2 for
each i € {1,...,—[,} and condition (4.62) is fulfilled. From now on, let n > ny. Centering

the observations and applying the Triangle Inequality gives by an easy computation

F:;(kry lr) - Fn<kra lr)‘

§2<|&n—a|+

Bn—BD + 28k, (|dn—a]+

i(xw - 5) )

+kr(

A2 2
Q, — « |+

Rl

B = 8] + P =) |3

1=

S (Xt — 5)'

— 281, ( B -

B = 8|+ 15m = 71) = 1

+

2-77). (4.64)

To continue, we have to recall the following property of convergence in probability. Let
(Zn)nen and (Vy,)new be sequences of arbitrary random variables with Z, P50 and
n—oo

lim, o limsup,,_, . P[|V,| > 2] = 0. Then Z,V,, SN}

n—oo

115



Chapter 4 Unknown expectations

Furthermore, by Chebyshev’s Inequality (see Lemma 2.6) and V[X;] < My, 1 <i < n, we

have for all z > 0

kT k'r
P Z(XTnJri - B) > .CE] S :L,—2 ZV [X‘rn+i - 5]
i=1 i=1
S l{?TZL‘_QMQ
and
—ly —ly
]P Z(Xo'n_i+1 - /8) > x] S .'L‘_2 ZV [Xo'n—i"‘l - ﬁ}
=1

i=1

S —ZTI72M2.

From M, < oo we see that M, < co. We can deduce that
> a:] =0
I,

Z(Xgn,zqu - B)

i=1

k.

Z(anﬂ' - 6)

i=1

lim lim sup P
T=0 poo

and

lim limsup IP
T—=00  p—oo

>£L‘] =0.

Combining (4.64) with the weak consistency of &,, = (&m B, %) (see Theorem 4.18) leads
to (4.63) by an application of the mentioned property of convergence in probability. Since

re{l,...,m} and (ki,0y), ..., (km, ) are arbitrary, we get the claim. ]

Proposition 4.34. Let m € N and (ky,11), ..., (km, ) € Z2. If My < oo, then

(T (K1 10 eoes T (s 1))~ (D (K1, 12 ooy T (Ko L)),

n—oo

where T is given by (3.18).

Proof. We apply one of Cramér’s Theorems, which says that all finite-dimensional distri-
butions of two stochastically equivalent processes converge in distribution to the finite-
dimensional distributions of the same process (see for instance Génssler and Stute [19, p.
352, Theorem 8.6.2]). An application of Proposition 3.18 and Lemma 4.33 completes the

proof. ]
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4.2 Another estimation approach for the multiple change-point

The next aim is to prove stochastic boundedness of ) — 7,,, which establish assumption

(ii) of Theorem 2.3. First recall the notation
Hyo5 = {(k,1) € Holz < ||(k,))|| < nd}
forme N,z >0and d > 0.

Lemma 4.35. Let x > 0,6 >0 andn € N. Then

{g<|m—mll<noyC |J {-Tuk1) >0}
(kD)EHp 4,5

Proof. The proof of Lemma 3.20 works for 77, I'}, M and Lemma 4.31 instead of 7, I';,,
M,, and Lemma 3.14. O

We get the following error estimate.

Lemma 4.36. Suppose that My < oco. Then there exist ng € IN, 6 > 0 and g9 > 0 such
that for all ¢ € (0,g0] there exist a constant C. > 0, which depends on e, and another

constant C' > 0 such that for all n > ng we have

Ple <7, — 7|l < nd]

< Caxt4Cxt

~

+8(Pllan—al > e + P[|ou— 8| > | + P[5 -1 > <)),

for all x > 2.

Proof. The proof is similar in spirit to the proof of Lemma 3.21 but technical harder. Let
x > 2. By Lemma 3.19, there exist 6 > 0 and ny € IN such that for all n > ny the

conditions hold in Lemma 3.19. Let us regard n > ng and 6 > 0 as fixed. By Lemma 4.35,
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Chapter 4 Unknown expectations

we first observe that

{e<|lmp—mull <nsy < |J  {-Tuk,D) >0}

(k1l)€Hn,z,§
c |J (mwn=otu |J {-TikD =0}
o<[k|<nd |k|<nd
[t]<nd z<[l|<né
— EUF. (4.65)

To simplify notation, the fact that all in this proof defined sets, random variables and
probabilities depend on n, x, § or € is omitted. We give the proof only for the estimate of

the probability of E; the other case follows the same pattern. We find that

Ec |J {-mkn=o0u |J {-Tik1) >0}

z<k<nd z<k<nd
0<I<né —ndé<I<0
u U {mkp=oru [J {-Tik0D) >0}
—né<k<-—z —ndé<k<—z
0<I<né —nd<I<0
= By ) U EED U B, (4.66)

We only describe our proceeding for the estimate of the probability of E++) in detail.
Inserting the expectations «, # and v on proper positions we conclude by Lemma 4.32 and

the definitions of aj, ; and aj, 5 that

E)

[2 (OAén —a+ ﬁ - Bn) XTn+’i + Bi - 52 =+ Oé2 - 65721 - &1(X‘Fn+i):|

12 (B = B+7 =) Xowsi + 42 = 77+ B2 = B2 — 0a(Xo, )| 2 o},
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4.2 Another estimation approach for the multiple change-point

where a; and ay are given by (3.2). The problem occurs that both sums contain the
estimators &,,, Bn and 4,, which depend on the observatations Xj, ..., X,,. Therefore, the
independence of both sums cannot be ensured (as in proof of Lemma 3.21). However, we

are able to create independence as follows. The Triangle Inequality leads to

E)

S [2 (60—t 8- B) Xoweit 2= 3 4 a? - ]

i=1

- U U

r<k<nd 0<Ii<né

o[z (B =4y =) Ko 4 A =474 = B

i=1

k l
+ Z al Tn+l + Z _a2(X0n+i) 2 0}

=1 =1

<y U {i[z (& = 8]) 1041l + |42 — o7 + |32 - 7
r<k<nd 0<I<nd i=1
+Z[ (| = 8]+ Fn = ) 1Kol + |82 = 82| + 142 = 2°]]
=1
+ Z —ay(Xr, i) + i —a(Xo,4i) > O}
=1 =1
— F(+). (4.67)

Write for fixed € > 0

Av={lan—al e}, Ar = {|B

—B‘ Sg} and Az := {5, — | <e}.
By the rules of De Morgan, we obtain

BOD = ( EHD A (AN AN Ag)) <E(++> N (AN Ay N Ag)c)

N

( EGH) mAlmAzmA3>u<A'{uAguA§>

= EFPu A (4.68)
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We next treat the set Eﬁﬂ. Note that the Binomial Formula and the Triangle Inequality

gives for all a,b € R
la®> —b*| =|a—b|-|a—b+2b <la—0b|-(|a—>b]+2[b|) = |a—b]* +2|a—b|-|b].
On the events A;, Ay and A3 we have

al —ao’| < |ézn—a|2+2|dn—a| al < e* 4+ 2¢lal,

R

Bu = 8| 181 <&+ 2218 and

32 =2 <A = +215 = - |7 < +2e]y).
Hence

BSD 2 B A AL 0 Ay A

< U LJ{ZA&%M+M+MM+W%mme

r<k<nd 0<I<nd i=1

l
+ ) 46| X, gl + 267 + 2e(18] + V) — 02(Xo,44)] > 0}'
Set

Yl(ﬂ = max Znﬁ) and Y = max 27722,

0<i<néd

15 = 4| X, ] + 26+ 2¢(Ja] + |8]) — ai(Xp4s)  and

sy = e | X, il 2% + 25(16] + 1) — 42(X, ).
It follows analogously to (3.25) that
otacke {Yl(+) LY > 0} ' (4.69)

Since § > 0 is suffiently small (see Lemma 3.19) and the estimators &, Bn and 4, are

eliminated, we can conclude that

Vi =Y (KXo, Xoipnsy) and VS =Y (X400, Xon i pns))
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4.2 Another estimation approach for the multiple change-point

as two measurable transformations of two independent vectors (Xrn+1, D, S J) and

(Xon+1, s Xgnﬂmgj) are also independent. By (4.69) and Lemma A.8, we deduce that

P [Yf” > —y} P, (dy). (4.70)
R

For abbreviation, we write Z;; := nﬂ_) E [nf;.)], 1 < i < [nd]. We next consider the

integrand. We find for all y € R that

z<k<nd

P[}/l(+)2—y] =P | max Zn“ > — ]

—p U {ZZM>ZE[ nh}—y}].

Lz<k<nd

By Lemma 3.19 (ii), we conclude that 7, +1 < 7, +i < g, for 1 <i < k with x < k < nd.

In the proof of Lemma 3.8 we have seen that
Ela; (X, )] = (a—p)* for 1<i<k with z<k<nd
We thus get for 1 < i < k with x < k <né

B |=n{})] = Blo (Xn, )] = (428 [|Xr, ] + 25 + 26(Ja] + |8)))

> (a— B)* — (45M1 +2e% + 2¢(|a| + |,8|)) .

From M; < 0o we see that M; < oo. Since € > 0 is arbitrary, there exists e; = £1(a, 8) > 0

such that

(0 = B)*

1
4e My +2e° + 2¢(|a + |8]) < 3

for all € < e&;. From now on, let ¢ < e;. We obtain for 1 <7 < k with x < k <nd

E [ nif)} (o —B)°

[\Dlt—\

By model assumptions a # 3 and 3 # 7, it holds p := min {(a — 8)2, (8 —v)?} > 0. It
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follows for all y € R that

P [Y1(+) > —y] <P U {zk: Zi; > %k(a —B)* ZJ}]

Lz<k<né \ i=1
_ & )
<P U {ZZLZ'Z§]QM—?J}]
Lz<k<nd \ i=1
— P(y). (4.71)

We distinguish several cases for y to get an estimate for P(y). Let C. = C.(a, 8,7) > 0
be a generic constant, which depends on ¢, and let C' = C(«, 3,7) > 0 be another generic

constant.

(i) In the case y < 0 we have —y > 0. Applying the same arguments used in case (i) in

the proof of Lemma 3.21 leads to

lz] [nd]
P(y) <4p™? | 2] 2D VIZi)+ Y V(2] ] (4.72)
=1 i=|xz]+1

We use the abbreviation Zu =de | X, | —2(8—a)X,, 14, 1 <i < |nd], to estimate

the variance. Fix for a moment ¢ € {1,...,[nd]}. By definition of Z;,; and the

1

Moreover, by the Triangle Inequality and the Binomial Formula, we can assert that

calculation rules of variances, a trivial verification shows that

vizi =V (2] —E[2] - (B[2]) <B[2] =& |2

|20 < B Ul 4126 - X0
= 16"E [| X, 14| + 16¢|a — BIE [| X, 14%] + 4(a — B)°E [| X, 14]]
< (162* + 16| — B]) Mz + 4(a — B)* My
<C.+C,

since My < oo. By (4.72), an analogous proceeding as in case (i) in the proof of

Lemma 3.21 gives for z > 2

P(y) < Cox™' +Cxt.
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4.2 Another estimation approach for the multiple change-point

(ii) Let y > 0. By k > z, we have

1 1 Y 1 Y
T A Y (A
g Y (2’“‘ k)_ (2“ x>

(a) Let 0 <y < tpa. It follows that $ku —y > tkp. As in (i), we obtain

U {32 jud

r<k<nd

< C.x '+ Cxt.

P(y) <

(b) In the case y > Tux we estimate P(y) < 1.
Applying (4.70) and (4.71) gives
PIE"]
< / P(y) P+ (dy) +/ P(y) P+ (dy) +/ P(y) P+ (dy)
(—00,0] 2 (O,%u:c) 2 [%,uz,oo) 2
< (Cx '+ Cax HP [YQH) < O]

+ (Cox '+ Ca™HP

1 1
0< YQ(JF) < le} +P {Yf) > Z”x]
1
<Ca'+Cx'4+P [YQH) > Z,ux} . (4.73)

For abbreviation, we write Zs; := 775;) E [77;?]7 1 < i < |nd]. We now handle the

probability in the last estimate. By definition, we have

{172 g - {0%2552% > 4“‘”}
= U {ZZ22>ZE[ 7721]%—1#35}

0<i<néd
Note that {ZZ i > S0 1]E[ 77% } 4,ux} = for | = 0, because tuz > 0. From
Lemma 3.19 (iii) we deduce that o, +1 < o, +i <n for 1 <i <[ with 1 <[ <nd. The

proof of Lemma 3.8 provides

Elay(X,, )] = (8 —7)* for 1<i<l with 1<1<né.
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By similar arguments used for the estimate of E [_7757;)]7 there exists 9 = e9(8,7) > 0
such that
1 1
nss >5(B=1"25n

foralle <eyand 1 <i <[ with1 <[ <nd.Fromnow on, let ¢ < min{ey,ey}. It follows

that

{Yz(”ziu} U {ZZQZ_—lqul }

’ 4 .

C U { (204 x)~*
The further proceeding is analogous to the approach of Y2(+) in the proof of Lemma 3.21.

1<I<nd

We get

[nd)
1

=1

The variance can be handled as in case (i). We obtain
V[Za] < (16€” + 16e]8 — y]) Mz + 4(8 — 7)*Ma < C: + C

for 1 <1< [nd]. We infer in much the same way as in proof of Lemma 3.21

1
P {YQ(JF) —,ux} <Ca'+Ca.

=~

By (4.73), we see that
P [Eﬁ*)} < Cr '+ Cz!

Summarizing, by (4.67) and (4.68), we have for all ¢ < min{e,e,}
P[EHD] <P B + P4

< C.x 4 Cxt

+]P[|an—a|>e]+1P[

8] >¢| +Pllin =11 > <.
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4.2 Another estimation approach for the multiple change-point

The rest of the proof runs as before. We outline the proof for E4=), EC+) and E(—). Set

where

77&') =4 | X, 1| + 262 + 2¢(|a] + |B]) + a1 (X7, —i41) and
Sy = e | Xy, ] + 267 + 2218 + ) + 02X i11).

A similar approach as in the first part of the proof leads to

E(-‘r—) C {)/1("") + Y'2(—) > 0} UA, E(—+) C {Y'l(—) —|—Y2(+) > 0} UA and
B O+ v 20 ua,

where A is given by (4.68). The pairwise independence of the measurable transformations
VI =Y (Xt Xopnay) and Yy = Y37 (Ko psgns o X))

}/1(7) = }/1(7) (XTn—LTL(sJ-Fl? ceey XTn) and }/2(+) = }/é(+) (XO'n+17 ceey XG'n-l-LTL(SJ) y

}/1(_) = }/1(_) (XTn7Ln5J+17 ) XTn) and }/é(_) = }/é(_) (Xanan5J+17 ) Xan)

follow from Lemma 3.19 and the independence of the observations X1, ..., X,,. Lemma 3.19
showsthat 1 < 7,—i+1<7,forl <i< —kwithz < —-Ek<ndand7,+1 <o0,—i+1 <0,

for 1 <i < —[ with 1 < —[ <nd. The proof of Lemma 3.8 establishes

Elai(X,, _iy1)] = —(a—B)* for 1<i<—k with < -k<nd and

Elay( Xy, _iz1)] = —(B—7)* for 1<i< -l with 1< -] <nd.
Hence there exist €3 = e3(a, ) > 0 and €4 = €4(5,7) > 0 such that

_ 1
E [_775,1)} > é(a - 5)2 forall e <eg and 1 <i<—k with 2 <—-k<nd and

_ 1
E [—77571-)} > 5(6 - 7)2 forall e<egy and 1 <i<—] with 1 < -] <né.
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Chapter 4 Unknown expectations

Similar arguments used in the estimate of the probability of E++) lead to

P [E(’L_)} <Ca '+ Cor '+ P[la, —a| >+ P [

B‘>€}+P[|’Yn 7| > €]
for all ¢ < min{ey, e},

P[ECP] <Ca™+Co ' +P[la, —a| >+ P [

8] > ] +P LA =71 > <]
for all € < min{eq,e3} and

P [E(__)} <Ca '+ Cor '+ P[la, —a| >+ P [

8] >¢| + P~ >4
for all ¢ < min{es,e4}. Applying (4.66) yields

PE|<P[ESD]+P[EC)] + P [ECD] + P [ECT)]

SCE$71+C$71+4( [|an—a]>£]+IP[

— 8] > ] +Pl1An =11 > <)
for all ¢ < 5(()1) := min{e, €9,€3,64}. In the same manner we can see that there exists

582) = 50 ( ,B,7) > 0 such that

P[F] < C.a™! + Oz~ +4< (|6 — ] > €] + P [

—B| > | + P13 =1 > <)
i (1) (2
for all ¢ < 50 Altogether, by (4.65), we have for all € < gy := min {50 L €0 }

Pl < |77, = 7al < nd]
< P[E] + P[F]

<Ca '+ Ca '+ ( [, —al > el + P [

5\ >s} Y P31 >g]) O
We obtain stochastic boundedness of 7 — 7, (assumption (ii) of Theorem 2.3).

Proposition 4.37. If M, < oo, then

lim limsup P[||7), — 7,.|| > 2] = 0.

T—r00 n—oo
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4.2 Another estimation approach for the multiple change-point

Proof. The same proceeding as in proof of Proposition 3.22 leads to
1 1
Pl — ol 2 1) < Ble < 7, —7all < nd] + P 105, - 0] > 23] + 2 [1> g

with 6 > 0, x > 0 and n € IN. Applying the error estimate in Lemma 4.36 and the weak

consistency of &, = (dn, Bn, %) and @, (see Theorems 4.18 and 4.29) implies

limsup P[||7F — 7, > 2] < C.o™' + Ca

n—o0

where C. > 0 (¢ > 0 sufficiently small), C' > 0 and x > 2. Letting + — 0o we get the

claim. =

We can now formulate and prove another main result of this work. If all distributions are
continuous, it turns out that 7 — 7, converges in distribution to the minimizer of I', where

I' is a sum of random walks, which we have already investigated in Chapter 3.

Theorem 4.38. If M, < oo, then

limsup P[r% — 7, € F] < P[Argmin(T) N F # 0]  for all F C 7.

n—o0

In addition, if Q1, Q2 and Q3 are continuous, then Argmin(I") = {T'} almost surely and

c :
Tt -1, ——T in Z*

n—o0

Proof. We apply Theorem 2.3. By Lemmas 4.31, 3.23 and 3.25, we first observe that
T) — T, is a minimizer of I'} and I' has at least one minimizer. Propositions 4.34 and
4.37 establish assumptions (i) and (ii) of Theorem 2.3, which give the first claim. By

Proposition 3.26, we conclude the second claim. O

Corollary 4.39. Suppose that My < oco. Let (Q1,Q2 and Q3 be continuous distributions.
Then

c : , c : :
Tr — T, —— argminI'1(k) in Z and o) — o0, —— argminl's(l) in Z.
n—00 keZ n—oo leZ

Proof. The proof of Corollary 3.28 works by replacing Theorem 3.27 and 7, = (7,,, 5,) by
Theorem 4.38 and 7}, = (7, 07). O

n-n
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Chapter 4 Unknown expectations

4.2.4 Asymptotic confidence region

This section provides an asymptotic confidence region to estimate the moments of change

Tn = (Tn, 0,,) in the case of unknown expectations.

For this purpose, let FH_Tl” (1), ¥ € (0, 1), stand for the ¥-quantile of the distribution function

Fyr) of ||T||, where T is the almost surely unique minimizer of I' (see Theorem 4.38).

To get an asymptotic confidence region, we use a similar approach as in Section 3.4, i.e.,
the convergence in distribution of 7} —7,, (see Theorem 4.38) and the Continuous Mapping

Theorem are applied.

Theorem 4.40. Suppose that My < co. Let 1, Q2 and Q3 be continuous distributions

and ¥ € (0,1). For each n € IN, the random interval

1,(0) = |5 — Fi (1 =), 7% + Fi (1 - 19)} x [a:; — Fh (1= 0),0% + Fih (1 - 0)

n

is an asymptotic confidence region for T, = (Tn,0n) at level 1 — 9.

Proof. The proof of Theorem 3.29 remains valid for 7} = (7,5, 0% ) and Theorem 4.38 instead

of 7, = (Tn, d,) and Theorem 3.27. O]

The important point to note here is that the quantile F”_Tl”(l —4), ¥ € (0,1) is unknown,
but it can be approximated by a Monte-Carlo method as described in Section 3.4. Indeed,
we use the estimators dy,, (3, and 4, (defined in (4.5)) instead of the unknown expectations

a,  and v to generate the process I' (compare step (i) (2) in Section 3.4).

For further investigation of the asymptotic confidence region one can find a simulation study
in Chapter 5, which contains of approximated coverage probabilities for given confidence

levels.
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Chapter 5

Simulation study

This chapter contains a brief summary of conclusions based on a simulation study in the

software environment R, version 3.3.1.

To get empirical results, we choose a multiple change-point @ = (6y,60;) with 0 < 6; <
0y < 1 and the distributions @)y, @2, I3, where the first moments of adjacent segments
are different (see (1.2)). Furthermore, we generate a data set of independent observations
Xi, ..., X, such that the segments Xi,..., X n9, |, X{ngy |15y X|noo) and Xipgy |41, ..., Xy
arise from the given distributions (compare (1.1)). For some examples, the results of this

simulation study are given in Appendix C.

At first we look closer at the criterion functions M,, M, and M} to confirm Lemma 3.3 and
the Conjectures 4.4 and 4.22. As an example, in Table C.1 we set n = 10 and 6 = (0.4,0.8)
and consider different binomial, poisson, normal and exponential distributions ()1, ()2 and
(3, where the expectations are fixed by a = (1,2, 1). The sets of all minimizers and max-

imizers are computed by 10° Monte-Carlo repetitions, respectively. If the distributions are

129



Chapter 5 Simulation study

chosen to be continuous, as in the second block in Table C.1, then we observe that M, has
exactly one minimizer, M,, has one maximizer and M} has only one minimizer, namely
the smallest maximizer of M, (which is used to construct M?*, compare (4.49), (4.48) and
(4.5)). However, it is not sufficient to assume that at least one distribution must be con-

tinuous, as one can see in the third block in Table C.1.

In order to evaluate the performance of the estimators 6, 0, and 0 of the multiple
change-point and the estimator &, of expectations, the bias and root mean square error
(RMSE) were estimated over 10* Monte-Carlo repetitions. For this purpose, different nor-
mal distributions from which the observations arise were chosen. As a simple consequence
of Conjecture 4.22, we obtain the same results by computing 0, and 0. Therefore, we
only consider @) in the case of unknown expectations.

The empirical results, listed in Tables C.2 and C.3, indicate some conclusions. We find
that the estimation is more accurate for larger sample sizes, which is clear due to the con-
sistency of our estimators (see Theorems 3.12; 4.29 and 4.18). Though, it is evident that
0,, performs better than 7, because the expectations are assumed to be known to compute
6,,. Furthermore, since é&, depends on +, = 1, (compare Equations (4.5) and (4.7)), it
is plausible that &, converges slower than the estimators of the multiple change-point.

In general, the distributions and the location of change-points influence the quality of con-
vergence of our estimators. To be more precise, we consider the estimator @ for given
0 = (0.4,0.8) and o = (0,1,—1) (variance of @)1, Q2 and Q3 is 1). Then even for the
sample size n = 100 the true multiple change-point is accurately estimated. When we
choose change-points, which are closer to the boundary or closer together, the speed of
convergence slightly decreases. In our examples in Table C.2 a sample size of more than
1000 is required to get an acceptable result. The same effect can be seen if the difference

within expectations is small or the variances are increased.
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Finally, we want to discuss the convergence in distribution of 7,, — 7, and 7 — 7,, based
on the asymptotic confidence regions for 7, = (7,,0,) in the case of known and unknown
expectations (see Theorems 3.29 and 4.40). The simulation of these asymptotic confidence
regions was described in Sections 3.4 and 4.2.4. We use m = max{7,, 0, — T,,n — 7, } (case
of known expectations) and m = max{7}, 0} — 7%, n— 0} (case of unknown expectations)
to generate N = 10% processes I' and their minimizers. To evaluate the convergence
in distribution, we compute the approximated coverage probability on the basis of 10?
intervals.

The same framework as for the performance of estimators is considered. The empirical
results can be found in Table C.4. We can observe a similar pattern as before. Let us
consider for example the case of unknown expectations. The speed of convergence of
7! — T, decreases if the change-points are closer to the boundary or closer together, the
difference within expectations is small or the variances are increased. So, in our examples a
sample size more than 5000 is required such that the coverage probability attains the given
confidence level. On the contrary, in the first example 8 = (0.4,0.8) and a = (0,1, —1)
(variance of @1, Q2 and Q3 is 1) a sample size of more than 500 suffices. Moreover, in
the case of known expectations it is interesting that the coverage probability attains the
confidence level almost every time. This observation indicates that the location of change-

points and distributions hardly influence the quality of convergence of 7, — 7.
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Chapter 6

Outlook

In this chapter we discuss the generalization of the previous results to an arbitrary, but

known, number of change-points and give some ideas for further work on this field.

6.1 Generalization

The question naturally arises whether the results of our work can be generalized to an arbi-
trary, but known, number of change-points ¢ € IN. The detailed reply of this question may
be content of further work. However, in this section we formulate conjectures according to
the previous results and hint some problems of proofs. Since in practical applications it is
common to have unknown expectations, we only focus on this case. For the convenience

of the reader we use almost the same notation as in the previous chapters.

We begin with the formulation of the generalized multiple change-point model. Let

(Xjn) nen be a triangular array of random variables defined on a probability space
1<j<n
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(Q, A, IP) with values in the measurable space (R, B(R)). Each row of the triangular ar-
ray consists of independent random variables, i.e., X1 ,, ..., X, , are independent for every

n € IN. Let us denote by © and A,,, n € N, the sets

O ={t=(t1,..,t,) e RO < t; < .. <t, <1} and

An = {k = (k’l, ...,k‘q) € Nq|1 <k<..< kq <n-— 1}
We assume that there exists a vector 0 := (64, ...,0,) € O such that for all n € N
Xi,n ~ Q'r for Lner—lJ +1 S i S Ln@rj, 1 S r S q + ]-7

where @1, ..., Qq41 are arbitrary, but unknown, distributions and 6y := 0,0,4, := 1. We
call @ multiple change-point and T, := (Tp1,...; Tng) = ([n01], ..., |nb,]) € Ay, n € N,
moments of change. Furthermore, we suppose that the expectations o := (ay, ..., ag+1)

defined by o, 1= [pz Q,(dz), 1 <7 < g+ 1, exist, are finite and satisfy

Ay 7& Oyl

for all r € {1, ...,q}. The parameters 8 and a are assumed to be unknown.
For simplicity of notation, we write Xi, ..., X,, instead of X ,,..., X, », n € IN, for the n-

th row of the triangular array. Moreover, set

— p
My = max { [l @it}

for the maximum of the p-th absolute moments, p € [1,00). Unless otherwise stated we

assume that M; < oo.

The same approach as in Chapter 4 should also yield results in our multiple change-point
model. To simultaneously estimate the moments of change 7, = (7,1, ..., Tn,) and the

expectations & = (a, ..., g11) by the least squares method, we minimize the criterion
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6.1 Generalization

function

g+1 kr

Sulkya):=> " Y (Xi—a,)? k= (k.. k) €Ay a=(ar,..,a01) € R,

r=1 i=k,_1+1
where ko := 0 and k,41 := n. To do this, set

q+1

My (k) = (k= ko) X yr k= (k1,0 k) € A,

r=1

and choose an arbitrary maximizing point

Tn = (Tnl, s Tng) = argmax Mn(k)
kEA,

A generalization of Theorem 4.1 would bring the result that (7, &,) with

~

Qy = (an,la Sz} an,q—H) = (Xf'n,rfn,wrl)ogrgq

is a minimizer of S,, for each n € IN, where 7,,o := 0 and 7, 441 := n. Hence (7,,&,) is a

least squares estimator of (7,,a) and @ can be estimated by 0, = %%n.

To show consistency of @,,, we have to identify a limit process j (see (4.8) in the case ¢ = 2)
such that @ is the well-separated maximizer of p. The problem here is the partitioning of ©
into disjoint subsets according to the position of t = (1, ...,t,) € © relative to the multiple
change-point 8 = (64, ...,6,) € ©. The number of subsets is (¢ + 1)! (compare (3.11) and
(3.12) in the case ¢ = 2). Hence we cannot discuss all cases to obtain a limit process. Up to
now, there is no self-contained representation of p. If we are able to solve this problem, the

proofs of weak and strong consistency of 6,, should be very similar to the work of Albrecht

[1] and Section 4.1.2.

Conjecture 6.1. Suppose there is some p € (4, 00) such that M, < co. Then

n—oo

Conjecture 6.2. Suppose there is some p € (2, 00) such that M, < co. Then
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Chapter 6 Outlook

The problem to get further results lies in the estimate of the error probability to show
stochastic boundedness of 7,, — 7,. As at the beginning of the proof of Lemma 4.16, we
have to consider several cases by computing the maximum norm. For ¢ > 3 there are lots
of such cases which all must be handled. The solution of this problem would lead to the
estimate of the error probability, and, in consequence, to the stochastic boundedness.

Immediately, the proof of weak consistency of &,, (see Theorem 4.18) can be simply gen-

eralized by rules of convergence in probability.

Conjecture 6.3. If M, < oo, then

. P
&, — .
n—oo

We now generalize the estimation approach from Section 4.2. The criterion function here

is given by

For abbreviation, set

~

CL* (Xz) =2 (dn,r—i-l - dn,r) X’L + &zL,T - Oé?%,'l’-ﬁ-l

n,r

for1<i<nand1l<r<gqand
q  kr
Mik) =" ay (Xi), k= (k... k) € A
r=1 i=1
By arguments applied in the proofs of Lemmas 4.21 and 4.20, we see that an arbitrary
minimizer

T, = (Th1, - Th ) = argmin M, (k)
keA,

of M minimizes S} and (7}, &) is also a least squares estimator of (7,,, a). The estimator

of the multiple change-point 0 is given by 0 := %’T

*
ne
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*

», we have to identify a limit variable p (see (3.13) in the case

To prove consistency of 6
g = 2) such that 6 is the well-separated minimizer of p. The same problem occurs as
described above (consistency of 9n) If we find a self-contained representation of p, we can

proceed as in Section 4.2.2 to get weak consistency of 8.

Conjecture 6.4. If M, < oo, then

[/ ——y}

n—oo

The next step is to investigate convergence in distribution of ) —7,,. To this end, consider

the rescaled process
(k) :=M;(r,+k)— M (1), k= (ki,....k,) € Hp,
where

Hy, ={k = (ki,...kg) € ZI|k; — ky_1 > 1 — (Tyy — Tuy—1) for all v € {1, ..., ¢},

n—Fky> Tog+ 1}

and 7,0 := 0 and 7, 441 := n. As in the proof of Lemma 4.31 follows that 7 —7,, minimizes

*
Iy,

which would allow us to apply Theorem 2.3. We now generalize the process I' given
in (3.18) and Remark 3.16. For this purpose, let (&, )iew, 7 € {1,....,q + 1}, be ¢ + 1
independent sequences, which for each r consist of independent and identically distributed

random variables with common distribution @),. Let

q
P(k) =Y To(k), k= (ki,...k,) € Z,
r=1

where
k'r
2(ar+1 - O{,») Z (gi,r—i-l - ar+1) + kr(ar - ar+1)27 kr 2 O;
Ly (k) = lzl_kr
_2(ar+1 - ar) Z (éi,r - ar) - ]{?(Oé,,« - ar+1)27 k’r < 0.
i=1
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Chapter 6 Outlook

To obtain convergence in distribution of 7 — 7, we would apply Theorem 2.3. A very
similar proceeding as in the Sections 4.2.3 and 3.3 establishes assumptions (i) and (iii) of
Theorem 2.3. To conclude assumption (ii), the main difficulty also appears by computing
the maximum norm in the error estimate to infer stochastic boundedness of 7} — 7,
(compare the beginning of the proof of Lemma 4.36), since there are many cases to treat.
If we can solve this problem, 7, —7,, converges in distribution to the minimizer of I', where

I' is a sum of ¢ random walks.

Conjecture 6.5. If M, < oo, then

limsup Plr) — 7, € F] < P[Argmin(I')NF # 0]  for all F C Z°.

n—o0

In addition, if @1, ..., Q+1 are continuous, then Argmin(I') = {T'} almost surely and

c .
T, —T, —— T in Z%

n—o0

Let us denote by F]rTl\\(ﬁ)v ¥ € (0,1), the ¥-quantile of the distribution function Fjp| of
|T||. The same arguments used in the proof of Theorem 4.40 would lead to the following

asymptotic confidence region for 7, = (7, 1, ..., Tnq)-

Conjecture 6.6. Suppose that M, < oo. Let @1, ..., Q441 be continuous distributions and
¥ € (0,1). For each n € IN, the random interval
[,(9) = >§ [T;;T — FA (L —0), 75, Fih (1-0)

is an asymptotic confidence region for 7,, = (7,1, ..., Tnq) at level 1 — 9.
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6.2 Further research

6.2 Further research

This section gives a brief exposition of ideas for further research on this field.

The first aim of further research should be the generalization of our results to an arbitrary,
but known, number of change-points, which was indicated in Section 6.1. Up to now, we
have mainly focused on the estimation approach of the multiple change-point. However,
one can examine strong consistency and convergence in distribution of &,. Thus the strong
consistency of @, can be proved and it is possible to construct an asymptotic confidence
region for the expectations. Furthermore, it is desirable to derive a statistical test for the
existence of ¢ € IN change-points adjusted to our model.

Moreover, one may imagine a slight modification of our model, what is known as the so-
called diminishing disorders. We assume that all distributions @)1, ..., Q41 depend on the
sample size n € IN in the sense that the expectations of adjacent segments approach for
growing n € IN. Here, weak and strong consistency and convergence in distribution of all

estimators can be also investigated.
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Appendix A

Technical lemmas

In this chapter we compile some technical lemmas.

Lemma A.1. The floor function has the following properties:

(i) Let x € R. Then

r—1<|z]<z<|z]+1

(ii) Let z,y € R andn € N. Ify —x >n"!, then |nz] < |ny].

(i1i) Let n € N and A C R. Then

1
<=
n n

sup
T€EA

(iv) Lety € R and n € N. Then

S|

P

Proof. (i) The inequalities follow from the definition of the floor function.

141



Appendix A Technical lemmas

(ii) Fix z,y € Rand n € N. By (i) and y — 2 > n™', we get
lny| — [nx| >ny—1—nz=n(y—z)—1>0.

(i) Fix n € N and A C R. Repeated application of (i) leads to

[nz]

n

— sup nr — |nx| < sup |nx] +1— |nx| _

1
sup —.
€A n €A n n

z€EA

— X

(iv) Fix y € R and n € IN. By (iii), we have

n nT 1
M—y’ﬁsupL J—x < —. ]
n weR| M n
Lemma A.2. It holds
Tp — 00, Op — Ty, —— OO and n— o, — Q.
n—oo n—oo n—oo

Proof. As an example, we show that o,,—7,, —— oo. The other claims follows analogously.
n—oo

By definitions 7, = [n#, | and 0, = |n#y] and a simple application of Lemma A.1 (i), it is

clear that

ns—0;)—1<o0,—7,<n(ly—01)+1
for n € IN. Letting n — oo completes the proof. O
Lemma A.3. Let n € N. Then

A, = {(ns], [nt]) € N*|(s,t) € ©,}.

Proof. Fix n € N. We first recall

A, = (k,l)E]N2|1§k<l§n—1} and
O

{
n:{@ﬂe@

1 1 1
s> —t—s>—,1—t>—>.
n n n
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1. We first show that A, C {(|ns], [nt]) € N?|(s,t) € ©,}.
(£,1). Then we have (|ns], |nt]) = (k,1) € N?

n’n

Let (k,1) € A, and define (s,t) :

and (s,t) € O,,.

2. We next prove that {(|ns], [nt]) € N?|(s,t) € ©,} C A,.
Let (|ns], [nt]) € {(|ns], [nt]) € N?|(s,t) € ©,}. By (s,t) € ©,, we observe that
ns > 1. On the contrary, suppose that |ns| < 1. Accordingly, ns < 1, which is a
contradiction. Hence |ns| > 1. Moreover, since (s,t) € ©,, we see that nt < n — 1.
By an application of Lemma A.1 (i), we infer that [nt] < n — 1. It still remains to

show that |ns| < [nt]. By another application of Lemma A.1 (i), we obtain
|nt] — |ns] >nt—1—ns=n(t—s)—1>0,
where the last inequality is deduced from (s,t) € ©,,. ]

Lemma A.4. Let Zy,...,Z,, n € N, be random variables and ¢ > 0. Then
{Zzix} clJ{z>z<}.
i=1 i=1

Proof. Fix n € N and € > 0. To obtain a contradiction, suppose that there exists

we{>r,Z>¢eh butw¢ U, {Z > <} Hence Z(w) < < forall i € {1,...,n}. We

thus get
n n
D Zilw) <) s=c
i=1 i=1
which contradicts our assumption. [

Lemma A.5. Let r € [1,00) and u,v € Ny with u < v. Then

v 1+ In(v), r=1,
S <

%(u - D" re(l,00).
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Proof. Fix u,v € Ny with u < v. For r = 1 we conclude that

Zm_r < Zm_’” = 1+Zm_’" < 1+/ x"dxr =1+ In(v).
m=u m=1 m=2 1
For r € (1,00) we have

v v o) 1
Z m- < / " dx < / " dx = (u— 1), O
m—u u—1 u r—1

-1

Lemma A.6. Let m,r € (0,00). Then

m™—(m+1)" < rm Y,

Proof. Fix m,r € (0,00). Define the continuous and monotonically decreasing mapping
f:Rso — R by f(x) := 27". By the Mean Value Theorem (see for instance Heuser [20,

p. 279, 49.1)), there exists n € (m, m + 1) such that

f<:)—_(7];(”+1 1+) DI gl =m0 < o,

=G = ) 41 = |
The last inequality follows from 1 > m. ]

Lemma A.7. Let n € N. For any by, ...,b, € (0,00) it holds

n 1/2 n
($0) <3
=1 =1

Proof. The proof is by induction on n € IN. Let n = 2. Then the assertion is equivalent
to by + by < by + by + QbY Qb;/ ?_ which is obviously fulfilled. We now suppose the induction
hypothesis (37, b;)"* < 32", b/”. Tt follows that

i=1 i=1"1

n+1

n+1 12 n 1/2 n 1/2 n
(Z bz-> - (Z b + an) < (Z bi> +05 <> b0 =Y b O
i=1 i=1 i=1 i=1 i=1
Lemma A.8. Let Y and Z be independent random variables. Then

]P[Y+ZZO]—/IP[Y2—2] P (d2).
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Proof. By the tower property of the conditional expectation, we conclude that
PY+Z2>0]=E[lyizso] =E[E [Iyy1250|Z]] -
Define the function g : R = R by g(z) := E [L{y4z>01|Z = z]. It follows that
P +2 20 =Els(2)] = [ 4(:) Paldo) (A1)
The independence of Y and Z leads to
9(2) = E [Iy o] = P[Y > 2]
for all z € R. Applying (A.1) establishes the claim. ]

Lemma A.9. LetY and Z be independent random variables with' Y > 0 and Z > 0 almost

surely. Let € > 0. Then

PYZ>¢e|= /(0 )11> (2> ey™'] Py(dy).

Proof. Similar arguments applied in the proof of Lemma A.8 gives the assertion. ]
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Appendix B

Some functions

This chapter contains some criterion functions with their decompositions. To shorten

notations, we use for u,v € Ng with u < v the abbreviation

v

Suw = Y (X; — B[X)]).

i=u+1

Lemma B.1. Let n € IN and (s,t) € ©,,. Then
ﬁn(sa t) = 5n(57 t) + @n(S, t),

where

~ _ ; 9 1 9 z
5n(87t)|@1ﬂ@n - nLTLSJ SO,LnsJ + n(LntJ — LTLSJ)SMSJ’L”H + naSO,\_ntJ
1 2
(= [ty
2<<Tn - L?’LtJ)Of + (Un - Tn)ﬁ + (TL - O-n)’y)S
n(n — |nt]) Lntlms
On(s,1)| =L 208 + ! S?
n\%, l)|©2n6, — nLnsJ 0,|ns] n 0,[ns] TL( LntJ . LTLSJ) |ns|,|nt]
2((7 — [ns])a + ([nt] — 7)B) R
n(lnt] = nsl) et G gy e
(

+

+

+
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. 1, 2 1 p
5n(87t)|e3m®n = Mso,msj + EO‘S&LnsJ + n([nt] — LnSJ)SLnsj,LntJ

4 270 = [ns])a + (00 = 7)B + ([nt] = 00)7)

n(lnt] — [ns]) Sinst e
1 2
+ msfntj n + Erys[ntj oy
. 1 2, —r,
on(5,t)]etne, = W S,WJ (Tma +7§ﬁi 7)5) So, [ns)
! S? + 2BS + ;52
n(|nt] — [ns)) Lns),[nt) T PR ns] nt] n(n — [nt]) |nt],n
2((on — [nt])B + (n— 00)7)
+ n(n — |nt]) Sint).m
. 1 2, _
0n(s,t)|esne, = nns] g,\_ns] (e i&gi ™)8) S0, ns)
1 2((on — [ns])B + (Int] —on)Y)
T lnt] - LnSJ)Sf"SJ’L"tJ i n(|nt] — [ns]) Slns) ]
1

2
————= 57 =Y S|nt)ns
+ n(n_ LntJ) |_ntj,n+ n’)/ [nt],

R 1 9 Q(TnOé + (Un - Tn)ﬁ + (LHSJ — U”)rw
= — S ns
Ou(s,Olesne, = ;oSG sy + nlns] el
1 2
S2 - Sns n
+ n(LntJ — I_nSJ) [ns],|nt] + n’}/ [ns],[nt]
1,2
— 0~ - Sn n
+ n(n— L?’Lﬂ)stn”’n + n’)/ [nt],
and
) _nt] o, m—lnt] (m=lnt]  ow=m , n=—oy
Qn(sat)’(@lﬂ@n_ 0 o+ n n—LntJOé_'_n—LntJﬁ_Fn—\_ntJ’y )

0n(5,t)]|02n0, =

o 1) (o )
= [nt] (Un_ LntJﬁ n—o, )2,

n n— |nt] +n—[mﬁj7
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[ns] o

0n(5,t)|e3ne, = -

\nt] — |ns| [ 7a — |ns] o, — T Int] —o, \°
* (LntJ ")V Tt] — (ns]” T k] — L) ”)

L _nLntJ 2,
on(s,t)|e1ne, = U;SJ (L;Z;J o+ Wﬁl(‘; Tnﬁ) 4 Mﬁa
n-— I.ntJ On — [ntj n—op, 2
T (”_Lnﬂﬁ—’—n—[ntjy) ’
1 (3 )
|nt] — |ns] [ on— |ns] nt] —on \* n—|nt] ,
N (e e ) R

0n(5,1t)|esre, =

5 (e T+ )

Proof. The proof can be found in Albrecht [1, p. 24, Lemma 3.2]. ]

Lemma B.2. Let n € N and (s,t) € ©,,. Then

pn(s:t) = 0,(s,t) + 0,(s, 1),

where
2 /4 . 2
5n<57t)‘91ﬂ@ - E <Bn - an) SO [ns] + E <7n - Bn) SO [nt]»
. 2 /4 . 2 /. - 2 /. ~
5n(87 t)|62|’1®n ﬁ (Bn - an) SO [ns] + ﬁ (’Yn - ﬁn) SO ™ T (771 - 671) STn,Lntja
. 2 /- . 2 /. 2 /. R
5n(87 t)|@3ﬂ@n = E (Bn - an) SO [ns| + E <’Yn - 671) SO T Tn — 671) STn,an
2 /. A~
+ E (’Yn - n) Son,Lntja
. 2 . . 2 (4 . 2 /. -
6n(8, t)‘@‘lﬂ(%n = ﬁ (’)/n - Oén) SO,Tn + E (ﬂn - an) Srn,LnsJ + E (771 - ﬁn) STn,LntJ7
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515, oo, =~ Cin = @) S + = (B = 60) Septs + = (3= ) Sracr
5 (30 ) St

6ﬁam@mn=%ﬁ%—@»&@+§&%—dwsm%+%(@—@stmﬂ
s

and

o = 20 ) 8 8) 2L an (-2 42 ) 2

oi (s, Dlomnon = (20 (B — an) + 02 = 32) 2 o0 — ) (5, - ) ™
oo )  —2) 2

dils Dlese, = (20 (n—an) +a2 = 3) "t ot = ) (30— ) 2
+2(6—7)(%—A>%+(2 (An_5n>+62_Ai>Ma

+ (28 (50— Ba) + B2 - 42)
on(5,t)|esne, = 2(a — ) (Y0 — Ozn) (26 (5 ) + a2 — 2) %
+2(8 =) (% —5n> i (2 (30 B) + B2 - a2) 4,

(5 Dlorre, = 20 = B) (G = @) = +2(8 = 7) (§ — &) 2

n
+ (20 (B - an) +a2 - p2) 2

+ (27 (% 6n> + 5 - AQ) %

Proof. The proof is given in Lemma 4.26 only for the case (s,t) € ©2 N ©O,, n € IN; the

other cases follows the same pattern. ]
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Appendix C

Results of a simulation study

This chapter provides the results of a simulation study in the software environment R,

version 3.3.1. An explanation of each table can be found in Chapter 5.
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Appendix C Results of a simulation study

Distributions M,, has exactly M, has exactly M has only the
Q1 Q> Q3 one minimizer  one maximizer minimizer 7,
B(5,0.2) B(4,0.5) B(5,0.2) 721418 928041 999737
Poi(1) Poi(2) Poi(1) 743371 940360 999801
Poi(1)  B(4,0.5) B(5,0.2) 730525 930016 999789
N(1,1)  N(2,1) N(1,1) 1000000 1000000 1000000
Exp(l) Ezp(0.5) Ezp(l) 1000000 1000000 1000000
Exp(l)  N(2,1)  Exzp(l) 1000000 1000000 1000000
Poi(1) Poi(2) N(1,1) 784575 985335 1000000
Exzp(l) B(4,0.5) Exp(l) 866390 1000000 1000000
Poi(1)  Exp(0.5) B(5,0.2) 944946 986814 1000000

Table C.1: Minimizers and maximizers of M,, M, and M* based on 10® Monte-Carlo

repetitions with n = 10 and @ = (0.4, 0.8), respectively.
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0, 6,
n Bias RMSE Bias RMSE

Q1 =N(0,1), @2 =N(1,1), Q3 = N(—1,1), 8 = (0.4,0.8)
100 | (-0.00023,0.00006) (0.05159,0.01212) | (0.00220,-0.00044) (0.07237,0.015780)
500 | (0.00010,0.00002) (0.01020,0.00242) | (-0.00007,0.00001) (0.01096,0.00249)
1000 | (0.00002,0.00000)  (0.00504,0.00124) | (0.00003,0.00000)  (0.00518,0.00126)
5000 | (0.00000,0. OOOOO) (0.00104,0.00025) | (0.00000,0.000