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Chapter 1

Preliminaries

1.1 Introduction

Change-point analysis is a field of mathematical statistics, which concerns itself with the

detection and estimation of structural changes within a data set of time-ordered observa-

tions. To reach this target, approximately homogeneous observations are assembled into

segments, which are established on the basis of some criteria such as expectations or vari-

ances of the underlying distributions. This type of problems appears in various scientific

fields. One of the first applications was quality control in companies where the goal is to

find out whether the quality of products is deteriorated from a certain point. Furthermore,

in biology change-point models are used for segmentation of DNA sequences (see for in-

stance Braun and Müller [3]). Some more applications are indicated in Chen and Gupta

[6] and Fremdt [18] or more detailed in Basseville and Nikiforov [2].

We distinguish in principle the sequential and the retrospective change-point problem. In

sequential problems we make decisions on the appearance of change-points simultaneously

with the sequential process of data collection, i.e., we have to examine with every new
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Chapter 1 Preliminaries

observation whether a change occurs. However, in retrospective problems the entire data

set is already available. We refer the reader to Brodsky [4], Brodsky and Darkhovsky [5]

or Csörgö and Horváth [8] to get an overview on both approaches.

This work is concerned with the retrospective point of view. The mathematical formulation

of these problems goes back to the 1950s, see for instance Page [22, 23]. In the past re-

searchers have considered many different parametric and non-parametric models to detect

and estimate change-points. Some in the literature discussed methods are mentioned here.

The basic approach of using the maximum likelihood method can be found for instance in

Hinkley [21]. Ferger [12, 13] proposed an estimator of a single change-point determined by

weighted U-statistic-type processes and investigated the convergence in distribution and

the almost sure convergence of such estimators. Döring [10, 11] generalized this approach

to an arbitrary, but known, number of change-points. Another well-known method is the

least squares method. A weighted least squares estimator to estimate a single change-

point was introduced by Ferger [15]. Simultaneously, he established the connection to the

maximum-likelihood estimator and the estimator determined by weighted U-statistic-type

processes.

This thesis is intended to applying the least squares method to estimate two change-points,

which is a generalization of the approach of Ferger [15]. The following non-parametric

framework is handled. Let Xi = Xi,n, 1 ≤ i ≤ n, n ∈ N, be real-valued random vari-

ables and Q1, Q2 and Q3 be unknown distributions. Assume that there exist unknown

0 < θ1 < θ2 < 1 such that

Xi ∼


Q1, 1 ≤ i ≤ bnθ1c,

Q2, bnθ1c+ 1 ≤ i ≤ bnθ2c,

Q3, bnθ2c+ 1 ≤ i ≤ n

for all n ∈ N. To obtain a well-defined model we further suppose that the expectations

of random variables from adjacent segments are different. The parameter of interest is

2



1.1 Introduction

the so-called multiple change-point (θ1, θ2), which is to be estimated by the least squares

method. The main focus of attention lies on the discussion of the consistency as well as

the investigation of the convergence in distribution of such least squares estimators in the

given multiple change-point model. For this purpose, we apply a similar approach used

in Döring [10, 11] and Ferger [14, 15]. At the end of this work we give an outlook on the

asymptotic properties of least squares estimators in the case of an arbitrary, but known,

number of change-points.

We can often find tests to detect change-points in the literature where under the null

hypothesis (no change) the distribution of some test statistic is examined to construct

critical regions. However, note that we look at the alternative hypothesis (existence of

change-points) where the investigation of the distribution of such estimators becomes more

complex than under the null hypothesis. Indeed, if the number of change-points is unknown

for any reason (for example in some practical applications), one has to previously detect

the occurrence of multiple change-points with such tests (see for instance Brodsky [4] or

Csörgö and Horváth [8]) or determine the number of change-points based on content-related

considerations.

This work is organized as follows. We start with the accurate formulation of the multiple

change-point model. Then we briefly sketch the essential steps to get the main results of the

work. Chapter 2 provides the relevant mathematical tools for our purpose. For simplicity,

Chapter 3 deals with the case of known expectations. This chapter is intended to present

the fundamental recipe to estimate change-points and conclude asymptotic claims for the

estimator. Based on the least squares estimator of the moments of change (bnθ1c, bnθ2c) we

construct the estimator of (θ1, θ2). Under different moment conditions we show weak and

strong consistency. Furthermore, we investigate convergence in distribution and identify

the limit variable, which is used to derive a confidence region for (bnθ1c, bnθ2c). From

Chapter 4 on, the expectations are assumed to be unknown. Here, we state and prove the

main results of this work. Section 4.1 contains the simultaneous least squares estimation

3



Chapter 1 Preliminaries

of the change-points and the expectations and discusses the consistency of the resulting

estimators. Since convergence in distribution of the estimator of the multiple change-

point is hard to show, we introduce another least squares estimator in Section 4.2. In

the estimator from Chapter 3 the known expectations are replaced by their estimators.

We thus obtain an estimator with the same structure as in Chapter 3. Consequently, we

can proceed on a similar way to Chapter 3 but some proofs are more technical. We treat

consistency and convergence in distribution. Based on these results, we derive a confidence

region for the parameter (bnθ1c, bnθ2c) in the case of unknown expectations. Chapter 5

indicates the performance of all estimators and several relations by a simulation study. The

last chapter gives an outlook where we discuss our strong conjecture that all of the results

of Chapter 4 can be generalized to an arbitrary, but known, number of change-points.

Moreover, we specify ideas for further work on this field.

1.2 Model

This section presents the multiple change-point model.

Let (Xj,n) n∈N
1≤j≤n

be a triangular array of random variables defined on a probability space

(Ω,A,P) with values in the measurable space (R,B(R)). Each row of the triangular array

consists of independent random variables, i.e., X1,n, ..., Xn,n are independent for every

n ∈ N. Let us denote by Θ and ∆n, n ∈ N, the sets

Θ :=
{

(s, t) ∈ R2
∣∣0 < s < t < 1

}
and ∆n :=

{
(k, l) ∈ N2

∣∣1 ≤ k < l ≤ n− 1
}
.

We assume that there exists a vector θ := (θ1, θ2) ∈ Θ such that for all n ∈ N

Xi,n ∼


Q1, 1 ≤ i ≤ bnθ1c,

Q2, bnθ1c+ 1 ≤ i ≤ bnθ2c,

Q3, bnθ2c+ 1 ≤ i ≤ n,

(1.1)
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1.2 Model

where Q1, Q2, Q3 are arbitrary, but unknown, distributions. It is of interest to estimate the

unknown so-called multiple change-point θ = (θ1, θ2). The quantities θ1, θ2− θ1, 1− θ2 give

ratios of how many observations belong to each segment in the statistical population. We

call the also unknown parameters τ n := (τn, σn) := (bnθ1c, bnθ2c) ∈ ∆n, n ∈ N, moments

of change. These state the last indices before the first and second change of distribution.

In order to get asymptotic results it is necessary to consider such a triangular array. For

increasing n ∈ N, the triangular array guarantees that more and more random variables

arise from each distribution. Roughly speaking, therefore it is possible to estimate the true

parameter θ = (θ1, θ2), at all.

Furthermore, we suppose that the expectations α := (α, β, γ) defined by

α :=

∫
R

x Q1(dx), β :=

∫
R

x Q2(dx) and γ :=

∫
R

x Q3(dx)

exist, are finite and satisfy

α 6= β and β 6= γ. (1.2)

The last condition means that the distributions of adjacent segments differ in their first

moments. It ensures that our multiple change-point model is well-defined.

For illustration, Figure 1.1 depicts the entire model where realizations of some random

variables are represented by dots.

In the whole work it is crucial to consider moment estimates to conclude asymptotic results

for all estimators. For this purpose, let

Mp := max

{∫
R

|x|p Q1(dx),

∫
R

|x|p Q2(dx),

∫
R

|x|p Q3(dx)

}
denote the maximum of the p-th absolute moments, p ∈ [1,∞). Unless otherwise stated

we assume that M1 <∞.

To simplify notation, we write X1, ..., Xn instead of X1,n, ..., Xn,n, n ∈ N, for the n-th row

of the triangular array.
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Figure 1.1: Multiple change-point model with (θ1, θ2) = (0.34, 0.78) in the case γ < α < β

for n = 10 (left) and n = 25 (right) observations.

Finally, let us introduce the argmin notation. For an arbitrary set A and a mapping

f : A→ R we denote by

Argmin(f) := {k ∈ A|f(k) ≤ f(l) for all l ∈ A} and

Argmax(f) := {k ∈ A|f(k) ≥ f(l) for all l ∈ A}

the set of all minimizing and maximizing points of f , respectively. If we choose a specific

minimizing or maximizing point of f , then we write argmink∈A f(k) or argmaxk∈A f(k).
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1.3 Essential results

1.3 Essential results

This section gives a brief exposition of the agenda in this work and summarizes the main

results without proofs. From now on, the fact that some random functions depend on the

sample X1, ..., Xn is omitted.

At first, the expectations α = (α, β, γ) in our model are assumed to be known. To obtain

an estimator of the multiple change-point θ = (θ1, θ2), we have to estimate the moments

of change τ n = (τn, σn) previously. For this purpose, by the least squares method, we are

interested in minimizing the random criterion function

S̄n(k, l) :=
k∑
i=1

(Xi − α)2 +
l∑

i=k+1

(Xi − β)2 +
n∑

i=l+1

(Xi − γ)2, (k, l) ∈ ∆n.

Since it is possible that S̄n has several minimizers, we choose an arbitrary minimizer

τ̄ n := argmin
(k,l)∈∆n

S̄n(k, l)

as the estimator of τ n. By properties of the floor function it is clear that 1
n
τ n −−−→

n→∞
θ.

Therefore, a reasonable estimator of θ is given by θ̄n := 1
n
τ̄ n.

The first aim is to prove consistency of θ̄n. To this end, Theorem 2.1 provides conditions

to show almost sure convergence and convergence in probability of random minimizers. To

stay in the context of this theorem, θ̄n must be represented in another form:

θ̄n = argmin
(s,t)∈Θn

ρ̄n(s, t)

with some technical domain Θn and

ρ̄n(s, t) :=
1

n
M̄n(bnsc, bntc), (s, t) ∈ Θn,

where M̄n is some criterion function, which has the same minimizers as S̄n. We first have

to show uniform convergence in probability and almost sure uniform convergence of ρ̄n to

a deterministic function ρ, i.e.,

sup
(s,t)∈Θn

|ρ̄n(s, t)− ρ(s, t)| P (a.s.)−−−−→
n→∞

0.
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Moreover, θ = (θ1, θ2) must be a minimizing point of ρ, which is additionally well-

separated, by definition,

inf{ρ(s, t) : ‖(θ1, θ2)− (s, t)‖ ≥ ε, (s, t) ∈ Θ} − ρ(θ1, θ2) > 0

for all ε > 0, where ‖ · ‖ denotes the maximum norm. Applying Theorem 2.1 leads to the

weak and strong consistency of θ̄n under different moment conditions.

Theorem. If M2 <∞, then

θ̄n
P−−−→

n→∞
θ.

Theorem. Suppose there is some p ∈ (2,∞) such that Mp <∞. Then

θ̄n
a.s.−−−→
n→∞

θ.

Our next objective is to investigate the convergence in distribution of τ̄ n − τ n. For this

purpose, let (ξi,r)i∈N, r ∈ {1, 2, 3}, be three independent sequences, which for each r consist

of independent and identically distributed random variables with common distribution Qr.

Write

Γ(k, l) := Γ1(k) + Γ2(l), (k, l) ∈ Z2,

where

Γ1(k) :=


2(β − α)

k∑
i=1

(ξi,2 − β) + k(α− β)2, k ≥ 0,

−2(β − α)
−k∑
i=1

(ξi,1 − α)− k(α− β)2, k < 0

and

Γ2(l) :=


2(γ − β)

l∑
i=1

(ξi,3 − γ) + l(β − γ)2, l ≥ 0,

−2(γ − β)
−l∑
i=1

(ξi,2 − β)− l(β − γ)2, l < 0.

Note that the process Γ is a sum of random walks. The main idea to examine the conver-

gence in distribution of τ̄ n − τ n is to introduce the so-called rescaled process

Γ̄n(k, l) := M̄n(τn + k, σn + l)− M̄n(τn, σn), (k, l) ∈ Hn,

8



1.3 Essential results

where Hn is some technical domain. Since τ̄ n−τ n is a minimizer of Γ̄n for each n ∈ N, we

are able to apply Theorem 2.3, which gives conditions to show convergence in distribution

of random minimizers. The convergence of the finite-dimensional distributions of Γ̄n to Γ,

i.e., for all m ∈ N and (k1, l1), ..., (km, lm) ∈ Z2 it holds(
Γ̄n(k1, l1), ..., Γ̄n(km, lm)

) L−−−→
n→∞

(Γ(k1, l1), ...,Γ(km, lm)),

is the first assumption to check. Furthermore, by the Hájek-Rényi Inequality (see Lemma

2.8), we get an estimate of the error probability

P[x ≤ ‖τ̄ n − τ n‖ ≤ nδ] ≤ Cx−1,

where C > 0 is a constant, δ > 0 sufficiently small, n ∈ N sufficiently large and x ≥ 2.

Combining this with the weak consistency of θ̄n yields stochastic boundedness of τ̄ n − τ n

(second assumption of Theorem 2.3), i.e.,

lim
x→∞

lim sup
n→∞

P[‖τ̄ n − τ n‖ ≥ x] = 0.

If the distributions Q1, Q2 and Q3 are continuous, the limit process Γ has almost surely ex-

actly one minimizer. By application of Theorem 2.3, we obtain convergence in distribution

of τ̄ n − τ n to the minimizer of a sum of random walks.

Theorem. If M2 <∞, then

lim sup
n→∞

P[τ̄ n − τ n ∈ F ] ≤ P[Argmin(Γ) ∩ F 6= ∅] for all F ⊆ Z2.

In addition, if Q1, Q2 and Q3 are continuous, then Argmin(Γ) = {T } almost surely and

τ̄ n − τ n
L−−−→

n→∞
T in Z2.

Based on the last result and the Continuous Mapping Theorem for convergence in distribu-

tion, we derive an asymptotic confidence region for the parameter τ n = (τn, σn). For this

purpose, let F−1
‖T ‖(ϑ), ϑ ∈ (0, 1), denote the ϑ-quantile of the distribution function F‖T ‖ of

‖T ‖.

9
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Theorem. Suppose that M2 < ∞. Let Q1, Q2 and Q3 be continuous distributions and

ϑ ∈ (0, 1). For each n ∈ N, the random interval

In(ϑ) :=
[
τ̄n − F−1

‖T ‖(1− ϑ), τ̄n + F−1
‖T ‖(1− ϑ)

]
×
[
σ̄n − F−1

‖T ‖(1− ϑ), σ̄n + F−1
‖T ‖(1− ϑ)

]
is an asymptotic confidence region for τ n = (τn, σn) at level 1− ϑ.

We now proceed with the asymptotic behavior of least squares estimators in our multiple

change-point model if the expectations α = (α, β, γ) are assumed to be unknown. For ab-

breviation, we use X̄u,v := 1
v−u

∑v
i=u+1 Xi for u, v ∈ N0 with u < v ≤ n. To simultaneously

estimate the moments of change τ n = (τn, σn) and the expectations α = (α, β, γ) by the

least squares method, we minimize the criterion function

Sn(k, l, a, b, c) :=
k∑
i=1

(Xi − a)2 +
l∑

i=k+1

(Xi − b)2 +
n∑

i=l+1

(Xi − c)2, (k, l) ∈ ∆n,

(a, b, c) ∈ R3.

To do this, set

M̂n(k, l) := kX̄2
0,k + (l − k)X̄2

k,l + (n− l)X̄2
l,n, (k, l) ∈ ∆n,

and choose an arbitrary maximizing point

τ̂ n := (τ̂n, σ̂n) := argmax
(k,l)∈∆n

M̂n(k, l).

We can show that (τ̂ n, α̂n) is a minimizer of Sn, where

α̂n :=
(
α̂n, β̂n, γ̂n

)
:=
(
X̄0,τ̂n , X̄τ̂n,σ̂n , X̄σ̂n,n

)
.

So, we have found an estimator of (τ n,α). Likewise as before, θ̂n := 1
n
τ̂ n is a reasonable

estimator of the multiple change-point θ = (θ1, θ2).

The strong consistency of θ̂n was shown by Albrecht [1].
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Theorem. Suppose there is some p ∈ (4,∞) such that Mp <∞. Then

θ̂n
a.s.−−−→
n→∞

θ.

Based on the proof of the previous theorem, we conclude the weak consistency under a

weaker moment condition.

Theorem. Suppose there is some p ∈ (2,∞) such that Mp <∞. Then

θ̂n
P−−−→

n→∞
θ.

To get further results, we prove the stochastic boundedness of τ̂ n− τ n. By applications of

Markov’s Inequality (compare Lemma 2.4) and some maximal inequalities like Chow and

Doob (see Lemmas 2.9 and 2.10), we obtain an estimate of the error probability. This and

the weak consistency of θ̂n lead to the stochastic boundedness of τ̂ n − τ n. Hence, we are

able to show weak consistency of the estimator of expectations.

Theorem. If M4 <∞, then

α̂n
P−−−→

n→∞
α.

Likewise as before, the investigation of convergence in distribution of τ̂ n − τ n is based

on the introduction of the rescaled process with respect to M̂n. However, the calculation

of the rescaled process is hard to handle. Therefore, we introduce another estimator of

the moments of change τ n = (τn, σn) and examine the asymptotic behavior of the new

estimator. In the criterion function S̄n the known expectations α = (α, β, γ) are replaced

by their associated estimators α̂n =
(
α̂n, β̂n, γ̂n

)
. Write

S∗n(k, l) :=
k∑
i=1

(Xi − α̂n)2 +
l∑

i=k+1

(
Xi − β̂n

)2

+
n∑

i=l+1

(Xi − γ̂n)2 , (k, l) ∈ ∆n.

11



Chapter 1 Preliminaries

It follows that another least squares estimator of (τ n,α) is given by (τ ∗n, α̂n), where

τ ∗n := argmin
(k,l)∈∆n

S∗n(k, l)

is an arbitrary minimizer of S∗n. The multiple change-point θ = (θ1, θ2) is estimated by

θ∗n := 1
n
τ ∗n. We can now proceed on a very similar way to the case of known expectations,

because both criterion functions S∗n and S̄n feature a very similar structure. Observe that

many proofs become more technical, because S∗n involves the estimators of expectations.

To prove weak consistency of θ∗n and convergence in distribution of τ ∗n − τ n, the main

results of our work, we use the weak consistency of α̂n permanently. Hence, these results

can be proved only for the same moment condition as in the previous theorem.

Theorem. If M4 <∞, then

θ∗n
P−−−→

n→∞
θ.

Observe below that τ ∗n−τ n converges in distribution to the same limit process as τ̄ n−τ n

in the case of known expectations.

Theorem. If M4 <∞, then

lim sup
n→∞

P[τ ∗n − τ n ∈ F ] ≤ P[Argmin(Γ) ∩ F 6= ∅] for all F ⊆ Z2.

In addition, if Q1, Q2 and Q3 are continuous, then Argmin(Γ) = {T } almost surely and

τ ∗n − τ n
L−−−→

n→∞
T in Z2.

By the same steps as before, we get an asymptotic confidence region for τ n = (τn, σn) in

the case of unknown expectations.

Theorem. Suppose that M4 < ∞. Let Q1, Q2 and Q3 be continuous distributions and

ϑ ∈ (0, 1). For each n ∈ N, the random interval

In(ϑ) :=
[
τ ∗n − F−1

‖T ‖(1− ϑ), τ ∗n + F−1
‖T ‖(1− ϑ)

]
×
[
σ∗n − F−1

‖T ‖(1− ϑ), σ∗n + F−1
‖T ‖(1− ϑ)

]
is an asymptotic confidence region for τ n = (τn, σn) at level 1− ϑ.

12



Chapter 2

Fundamentals

This chapter provides the relevant tools to prove the results of this work. In fact, we gather

theorems for convergence of random minimizing points and some inequalities.

2.1 Continuous Mapping Theorems for the argmin

functional

This section deals with the convergence of random minimizing points. The following the-

orem, which is adapted from Ferger [16], gives criteria to prove almost sure convergence

and convergence in probability. For further information about the multivariate Skorokhod

space we refer the reader to Döring [9] or Ferger [16] and the references given there.

Theorem 2.1. Let O ⊆ Rq, q ∈ N, be an open set and let Z, Zn, n ∈ N, be stochastic

processes defined on (Ω,A,P) with trajectories in the multivariate Skorokhod space D(O).

Let (Tn)n∈N ⊆ O be a sequence such that Tn ⊆ Tn+1 for every n ∈ N with
⋃
n∈N Tn = O.

Furthermore, let σn be a random variable with σn ∈ Argmin(Zn) for each n ∈ N. If

13



Chapter 2 Fundamentals

(i) sup
t∈Tn
|Zn(t)− Z(t)| a.s. (P)−−−−→

n→∞
0 and

(ii) Z has almost surely a minimizing point σ satisfying

inf{Z(t) : ‖σ − t‖ ≥ ε, t ∈ O} > Z(σ) (2.1)

for all ε > 0, then

σn
a.s. (P)−−−−→
n→∞

σ.

Proof. Ferger [16, p. 28, Theorem 3.3 and Remark 3.1] shows the assertion for infimiz-

ing points under the assumption that we have a sequence (Tn)n∈N of open sets with

lim infn→∞ Tn = O ⊆ Rq. This proof shows that under the new assumption to (Tn)n∈N the

assertion is still preserved. Note that every minimizing point is an infimizing point.

We call a minimizing point satisfying condition (2.1) well-seperated. The previous theorem

and the next remark help us to prove weak and strong consistency of several estimators of

the multiple change-point.

Remark 2.2. To formulate Theorem 2.1 for maximizing points, replace
”
Argmin“ by

”
Argmax“,

”
minimizing“ by

”
maximizing“ and condition (2.1) by

sup{Z(t) : ‖σ − t‖ ≥ ε, t ∈ O} < Z(σ) for all ε > 0. (2.2)

The following theorem states under which conditions the convergence in distribution of

minimizers of discrete stochastic processes is ensured.

Theorem 2.3. Let Z, Zn, n ∈ N, be stochastic processes indexed by Zq, q ∈ N, and let

Argmin(Z) and Argmin(Zn) be non-empty. Furthermore, let σn be a random variable with

σn ∈ Argmin(Zn) for each n ∈ N. If

14
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(i) for all m ∈ N and k1, ...,km ∈ Zq it holds

(Zn(k1), ..., Zn(km))
L−−−→

n→∞
(Z(k1), ..., Z(km)) and

(ii) limd→∞ lim supn→∞P[‖σn‖ > d] = 0,

then

lim sup
n→∞

P[σn ∈ F ] ≤ P[Argmin(Z) ∩ F 6= ∅]

for all F ⊆ Zq. If in addition

(iii) Argmin(Z) = {σ} almost surely,

then

σn
L−−−→

n→∞
σ in Zq.

Proof. The proof can be found in Ferger [17].

2.2 Inequalities

In many proofs of this work it is crucial to estimate probabilities or moments. For the

convenience of the reader, some in the literature well-known inequalities are recalled with-

out proofs. After this we give some moment estimates for sums of observations from the

model.

Lemma 2.4 (Markov Inequality). Let Z be a random variable and r ∈ (0,∞). Then for

all ε > 0

P [|Z| ≥ ε] ≤ ε−rE[|Z|r].

15
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Lemma 2.5. Let (Ω,A,P) be a probability space and let B ∈ A with P[B] > 0. Let Z be

a random variable. Then for all ε > 0

P[|Z| ≥ ε|B] ≤ ε−2P[B]−1E
[
1BZ

2
]
.

Lemma 2.6 (Chebyshev Inequality). Let Z1, ..., Zn, n ∈ N, be pairwise uncorrelated and

centered random variables. Then for all ε > 0

P

[∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ ≥ ε

]
≤ ε−2

n∑
i=1

V[Zi].

Lemma 2.7 (First Kolmogorov Inequality). Let Z1, ..., Zn, n ∈ N, be independent and

centered random variables. Then for all ε > 0

P

[
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

Zi

∣∣∣∣∣ ≥ ε

]
≤ ε−2

n∑
i=1

V[Zi].

Lemma 2.8 (Hájek-Rényi Inequality). Let Z1, ..., Zn be independent and centered ran-

dom variables with finite variances. Let c1, ..., cn be a non-increasing sequence of positive

numbers. Then for any ε > 0 and for any m ∈ N with 1 ≤ m ≤ n

P

[
max
m≤k≤n

ck

∣∣∣∣∣
k∑
i=1

Zi

∣∣∣∣∣ ≥ ε

]
≤ ε−2

(
c2
m

m∑
k=1

V[Zk] +
n∑

k=m+1

c2
kV[Zk]

)
.

Lemma 2.9 (Chow Inequality). Let (Sk)k∈N be a submartingale with respect to the fil-

tration (Fk)k∈N. Then for each ε > 0 and am+1 ≥ am+2 ≥ ... ≥ an, m,n ∈ N with

m < n

P

[
max

m+1≤k≤n
akSk ≥ ε

]
≤ ε−1

(
anE

[
S+
n

]
+

n−1∑
k=m+1

(ak − ak+1)E
[
S+
k

])
.

Lemma 2.10 (Doob Inequalities). Let (Sk)k∈N be a non-negative submartingale with re-

spect to the filtration (Fk)k∈N.

(i) Let 1 ≤ m ≤ n and ε > 0. Then

P

[
max
m≤k≤n

Sk ≥ ε

]
≤ ε−1E[|Sn|].
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(ii) Let 1 ≤ m ≤ n and r ∈ (1,∞). Then

E

[
max
m≤k≤n

Srk

]
≤
(

r

r − 1

)r
E [Srn] .

Lemma 2.11 (Cauchy–Schwarz Inequalities). (i) For any a1, ..., an, b1, ..., bn ∈ R it holds

n∑
i=1

|aibi| ≤

(
n∑
i=1

a2
i

)1/2( n∑
i=1

b2
i

)1/2

.

(ii) For any random variables X and Y it holds

E[|XY |] ≤ E
[
X2
]1/2
E
[
Y 2
]1/2

.

Lemma 2.12 (Jensen Inequality). Let g : R −→ R be a convex function. Suppose that

expectations of Z and g(Z) exist. Then

g(E[Z]) ≤ E[g(Z)].

Lemma 2.13 (cr-Inequality). Let Z1, ..., Zn be random variables and r ∈ (0,∞). Then

E

[∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣
r]
≤ cr

n∑
i=1

E [|Zi|r] with cr =


1, r ≤ 1,

nr−1, r > 1.

The next lemma ensures that we can apply some maximal inequalities to a sum of inde-

pendent and centered random variables.

Lemma 2.14. Let (Zi)i∈N be a sequence of independent, centered and p-fold integrable ran-

dom variables for some p ∈ [1,∞). Then for each m ∈ N the process
(∣∣∣∑k

i=m Zi

∣∣∣p)
k∈Nm

is

a non-negative submartingale with respect to the filtration (Fk)k∈Nm with Fk := σ(Zm, ..., Zk).

Proof. The proof can be found for instance in Albrecht [1, p. 15, Lemma 2.6] in the case

m = 1. In the same manner we see the claim for each m ∈ N.

The next proposition helps us to find further moment estimates.
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Lemma 2.15. Let (Zi)i∈N be a sequence of independent, centered and p-fold integrable

random variables for some p ∈ [2,∞). For each n ∈ N and p ≥ 2 there exists a positive

constant Bp depending only on p such that

E

[∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣
p]
≤ Bpn

p/2−1

n∑
i=1

E [|Zi|p] .

Proof. Fix n ∈ N. By the Marcinkiewicz-Zygmund Inequality (see for instance Chow and

Teicher [7, p. 386, Theorem 2]), there exists a positive constant Bp depending only on

p ∈ [1,∞) such that

E

[∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣
p]
≤ BpE

( n∑
i=1

Z2
i

)p/2
 . (2.3)

We see at once that the assertion of this lemma is true for p = 2. For p > 2 we apply the

Hölder Inequality (see for instance Heuser [20, p. 347, Inequality 59.2]). For this purpose,

we set p̃ := p
2
> 1. To hold 1

p̃
+ 1

q̃
= 1, we obtain q̃ = p

p−2
. Hölder’s Inequality yields(

n∑
i=1

Z2
i

)p/2

=

(
n∑
i=1

∣∣Z2
i · 1

∣∣)p/2

≤

( n∑
i=1

∣∣Z2
i

∣∣p̃)1/p̃( n∑
i=1

|1|q̃
)1/q̃

p/2

= n
p/2−1

n∑
i=1

|Zi|p.

By (2.3), we have

E

[∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣
p]
≤ Bpn

p/2−1

n∑
i=1

E [|Zi|p] .

Moreover, in this thesis we frequently use the following moment estimates for sums of

centered observations (from our model).

Corollary 2.16. Suppose there is some p ∈ [2,∞) such that Mp <∞. Let u, v ∈ N0 with

u < v ≤ n, n ∈ N. For each p ≥ 2 there exists a positive constant Bp depending only on p

such that

E

[∣∣∣∣∣
v∑

i=u+1

(Xi − E[Xi])

∣∣∣∣∣
p]
≤ 2pBpMp(v − u)

p/2.
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Proof. Fix u, v ∈ N0 and n ∈ N with u < v ≤ n. By Lemma 2.15, there exists a positive

constant Bp such that

E

[∣∣∣∣∣
v∑

i=u+1

(Xi − E[Xi])

∣∣∣∣∣
p]

= E

[∣∣∣∣∣
v−u∑
i=1

(Xu+i − E[Xu+i])

∣∣∣∣∣
p]

≤ Bp(v − u)
p/2−1

v−u∑
i=1

E [|Xu+i − E[Xu+i]|p] . (2.4)

Furthermore, we can conclude that

E[|Xu+i − E[Xu+i]|p] ≤ 2p−1(E[|Xu+i|p] + |E[Xu+i]|p) by cr-In.

≤ 2pE[|Xu+i|p] by Jensen In.

≤ 2pMp

for all i ∈ {1, ..., v − u}. Combining this with (2.4) gives the claim.

If the observations are not centered, we can at least state the following estimate.

Lemma 2.17. Let κ ∈ R with |κ| ≤ Mp, p ∈ [1,∞), and u, v ∈ N0 with u < v ≤ n,

n ∈ N. Then there exists a positive constant Cp depending only on p such that

E

[∣∣∣∣∣
v∑

i=u+1

(Xi − κ)

∣∣∣∣∣
p]
≤ CpMp(v − u)p.

Proof. Fix u, v ∈ N0 with u < v ≤ n, n ∈ N. Let κ ∈ R with |κ| ≤ Mp, p ∈ [1,∞). By

the cr-Inequality, we get

E

[∣∣∣∣∣
v∑

i=u+1

(Xi − κ)

∣∣∣∣∣
p]

= E

[∣∣∣∣∣
v−u∑
i=1

(Xu+i − κ)

∣∣∣∣∣
p]
≤ (v − u)p−1

v−u∑
i=1

E[|Xu+i − κ|p]. (2.5)

Another application of the cr-Inequality leads to

E[|Xu+i − κ|p] ≤ 2p−1(E[|Xu+i|p] + |κ|p) ≤ 2p−1(Mp +Mp
p ) ≤ CpMp

for all i ∈ {1, ..., v − u}, where Cp > 0 is a constant, which depends on p. Combining this

with (2.5) completes the proof.
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Chapter 3

Known expectations

In this chapter we study the estimation of the multiple change-point by the least squares

method and the asymptotic properties of such estimators if the expectations α = (α, β, γ)

are assumed to be known. This assumption is uncommon for practical applications, but

the essential approach as well as the used methods to conclude results in our multiple

change-point model can be well presented.

First we have a closer look at the estimator of the multiple change-point. The next sec-

tion is concerned with the proof of weak and strong consistency. Finally, we investigate

convergence in distribution to derive a confidence region for the moments of change.

3.1 Estimation of the multiple change-point

Our first purpose is to estimate the multiple change-point θ = (θ1, θ2) ∈ Θ. To do this,

we estimate the moments of change τ n = (τn, σn) ∈ ∆n previously. By the least squares

method, we are interested in finding all minimizers of the random criterion function S̄n
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given by

S̄n(k, l) :=
k∑
i=1

(Xi − α)2 +
l∑

i=k+1

(Xi − β)2 +
n∑

i=l+1

(Xi − γ)2, (k, l) ∈ ∆n. (3.1)

It is easily seen that S̄n has at least one minimizer. To compute all minimizing points of

S̄n and get further results, we introduce another random criterion function M̄n, which has

the same minimizers. Let

M̄n(k, l) :=
k∑
i=1

a1(Xi) +
l∑

i=1

a2(Xi), (k, l) ∈ ∆n,

where the mappings a1, a2 : R −→ R are given by

a1(x) := 2(β − α)x+ α2 − β2 and a2(x) := 2(γ − β)x+ β2 − γ2. (3.2)

Lemma 3.1. Let n ∈ N. Then

Argmin
(
S̄n
)

= Argmin
(
M̄n

)
.

Proof. Fix n ∈ N and (k, l) ∈ ∆n. An easy computation yields

S̄n(k, l) =
k∑
i=1

(Xi − α)2 +
l∑

i=k+1

(Xi − β)2 +
n∑

i=l+1

(Xi − γ)2

=
k∑
i=1

[
(Xi − α)2 − (Xi − β)2

]
+

l∑
i=1

[
(Xi − β)2 − (Xi − γ)2

]
+

n∑
i=1

(Xi − γ)2

=
k∑
i=1

a1(Xi) +
l∑

i=1

a2(Xi) +
n∑
i=1

(Xi − γ)2

= M̄n(k, l) +
n∑
i=1

(Xi − γ)2.

Since the last sum does not depend on (k, l) ∈ ∆n, it has no influence on the minimizing

points of S̄n.

To make sure that the estimator of τ n = (τn, σn) is well-defined, if more than one minimizer

of S̄n and M̄n exists, it might be expedient to define a choice function

φ̄ : Argmin
(
M̄n

)
−→ ∆n,
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which accurately chooses one minimizer. Hence it is meant that τ̄ n = φ̄
(
Argmin

(
M̄n

))
when we write

τ̄ n := (τ̄n, σ̄n) := argmin
(k,l)∈∆n

M̄n(k, l) (3.3)

hereafter.

Remark 3.2. The choice function can be selected arbitrarily. For instance, Seijo and Sen

[25, p. 428, Definition 2.4] have suggested the smallest argmax functional for maximizing

problems. The main idea is to choose the maximizer with the smallest first component.

If there are several maximizing points with the smallest first element, then take this one

with the smallest second component. In this work we assign the approach to minimizers.

The question arises under which condition has M̄n an unique minimizer.

Lemma 3.3. Let n ∈ N and let Q1, Q2, Q3 be continuous distributions. Then

∣∣Argmin
(
M̄n

)∣∣ = 1 almost surely.

Proof. Fix n ∈ N. Of course, M̄n has at least one minimizer, because the domain ∆n is

finite. It follows that

P
[∣∣Argmin

(
M̄n

)∣∣ = 1
]

= 1− P
[{∣∣Argmin

(
M̄n

)∣∣ = 0
}
∪
{∣∣Argmin

(
M̄n

)∣∣ ≥ 2
}]

≥ 1−
(
P
[∣∣Argmin

(
M̄n

)∣∣ = 0
]

+ P
[∣∣Argmin

(
M̄n

)∣∣ ≥ 2
])

= 1− P
[∣∣Argmin

(
M̄n

)∣∣ ≥ 2
]

= 1− P

 ⋃
(k1,l1)6=(k2,l2)∈∆n

{
M̄n(k1, l1) = M̄n(k1, l1)

}
≥ 1−

∑
(k1,l1)6=(k2,l2)∈∆n

P
[
M̄n(k1, l1)− M̄n(k2, l2) = 0

]
. (3.4)

We distinguish several cases to compute M̄n(k1, l1)− M̄n(k2, l2) by definition.
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(i) (a) Let 1 ≤ k1 < k2 < l2 < l1 ≤ n− 1. Then

M̄n(k1, l1)− M̄n(k2, l2) = −
k2∑

i=k1+1

a1(Xi) +

l1∑
i=l2+1

a2(Xi).

(b) Let 1 ≤ k1 < k2 ≤ l1 < l2 ≤ n− 1. Then

M̄n(k1, l1)− M̄n(k2, l2) = −
k2∑

i=k1+1

a1(Xi)−
l2∑

i=l1+1

a2(Xi).

(c) Let 1 ≤ k1 < l1 < k2 < l2 ≤ n− 1. Then

M̄n(k1, l1)−M̄n(k2, l2) = −
l1∑

i=k1+1

a1(Xi)−
k2∑

i=l1+1

(a1(Xi)+a2(Xi))−
l2∑

i=k2+1

a2(Xi).

(ii) (a) Let 1 ≤ k2 < k1 < l1 < l2 ≤ n− 1. Then

M̄n(k1, l1)− M̄n(k2, l2) =

k1∑
i=k2+1

a1(Xi)−
l2∑

i=l1+1

a2(Xi).

(b) Let 1 ≤ k2 < k1 ≤ l2 < l1 ≤ n− 1. Then

M̄n(k1, l1)− M̄n(k2, l2) =

k1∑
i=k2+1

a1(Xi) +

l1∑
i=l2+1

a2(Xi).

(c) Let 1 ≤ k2 < l2 < k1 < l1 ≤ n− 1. Then

M̄n(k1, l1)−M̄n(k2, l2) =

l2∑
i=k2+1

a1(Xi)+

k1∑
i=l2+1

(a1(Xi)+a2(Xi))+

l1∑
i=k1+1

a2(Xi).

By the independence of X1, ..., Xn and the definitions of a1 and a2, we obtain sums of inde-

pendent random variables in each case. Since Q1, Q2 and Q3 are continuous distributions,

we can conclude by convolution and the definitions of a1 and a2 that M̄n(k1, l1)−M̄n(k2, l2)

are continuous distributed random variables for each (k1, l1), (k2, l2) ∈ ∆n with (k1, l1) 6=

(k2, l2). This gives P
[
M̄n(k1, l1)− M̄n(k2, l2) = 0

]
= 0 for all (k1, l1), (k2, l2) ∈ ∆n with

(k1, l1) 6= (k2, l2). By (3.4), we have P
[∣∣Argmin

(
M̄n

)∣∣ = 1
]

= 1.
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Based on the estimator τ̄ n of moments of change τ n, we are able to construct an estimator

of the multiple change-point θ. By simple properties of the floor function (compare Lemma

A.1 (i)), it is easy to check that 1
n
τ n = 1

n
(bnθ1c, bnθ2c) −−−→

n→∞
(θ1, θ2) = θ. Hence

θ̄n :=
1

n
τ̄ n (3.5)

is a reasonable estimator of θ.

Though, the proof of consistency in the next section requires another form of θ̄n. Let us

denote by ρ̄n the random criterion function

ρ̄n(s, t) :=
1

n
M̄n(bnsc, bntc), (s, t) ∈ Θn,

where

Θn :=

{
(s, t) ∈ Θ

∣∣∣∣s ≥ 1

n
, t− s ≥ 1

n
, 1− t ≥ 1

n

}
. (3.6)

Lemma 3.4. Let n ∈ N. Then

θ̄n = argmin
(s,t)∈Θn

ρ̄n(s, t).

Proof. Fix n ∈ N. By (3.3), we have τ̄ n = (τ̄n, σ̄n) ∈ ∆n =
{

(k, l) ∈ N2
∣∣1 ≤ k < l ≤ n− 1

}
.

This gives θ̄n = 1
n

(τ̄n, σ̄n) ∈ Θn. Since (τ̄n, σ̄n) minimizes M̄n, we obtain for all (s, t) ∈ Θn

ρ̄n
(
θ̄n
)

= ρ̄n

(
1

n
τ̄n,

1

n
σ̄n

)
=

1

n
M̄n(τ̄n, σ̄n) ≤ 1

n
M̄n(bnsc, bntc) = ρ̄n(s, t).

The inequality is a consequence of ∆n = {(bnsc, bntc) ∈ N2|(s, t) ∈ Θn}, which is shown

in Lemma A.3.

Remark 3.5. The factor n−1 in the definition of ρ̄n does not influence the minimizing

points of ρ̄n, but the proof of consistency of θ̄n requires this factor.

Due to the following lemma, we get in the framework of Theorem 2.1 to prove consistency

of θ̄n.
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Lemma 3.6. ρ̄n, n ∈ N, is a stochastic process with trajectories in the multivariate Sko-

rokhod space D(Θn).

Proof. We outline the proof. The details are left to the reader. At first observe that

a sequence of vectors converges to another vector if and only if the convergence occurs

component by component. Notice that the floor function x −→ bxc is an element of the

Skorokhod space D(R) and bxc ∈ N for any x ∈ R. Moreover, from analysis it is well-

known that a sequence of natural numbers converges to a natural number if and only if

the numbers of the sequence are constant from an index. Hence, by definitions of ρ̄n and

M̄n, it is easy to check the claim.

3.2 Consistency of the multiple change-point estimator

This section deals with the weak and strong consistency of θ̄n. To get consistency, we apply

Theorem 2.1. The first part of this section is concerned with the uniform convergence of

ρ̄n.

Proposition 3.7. If M2 <∞, then there exists C > 0 such that for all n ∈ N and ε > 0

P

[
sup

(s,t)∈Θn

|ρ̄n(s, t)− E[ρ̄n(s, t)]| > ε

]
≤ Cε−2n−1.
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3.2 Consistency of the multiple change-point estimator

Proof. Fix n ∈ N. Let C = C(α, β, γ) > 0 be a generic constant. We have

sup
(s,t)∈Θn

|ρ̄n(s, t)− E[ρ̄n(s, t)]|

=
1

n
sup

(s,t)∈Θn

∣∣M̄n(bnsc, bntc)− E
[
M̄n(bnsc, bntc)

]∣∣ by def. of ρ̄n

=
1

n
max

(k,l)∈∆n

∣∣M̄n(k, l)− E
[
M̄n(k, l)

]∣∣ by Lem. A.3

=
1

n
max

(k,l)∈∆n

∣∣∣∣∣
k∑
i=1

(a1(Xi)− E[a1(Xi)]) +
l∑

i=1

(a2(Xi)− E[a2(Xi)])

∣∣∣∣∣ by def. of M̄n

≤ 1

n
max

(k,l)∈∆n

(∣∣∣∣∣
k∑
i=1

(a1(Xi)− E[a1(Xi)])

∣∣∣∣∣+

∣∣∣∣∣
l∑

i=1

(a2(Xi)− E[a2(Xi)])

∣∣∣∣∣
)

by Tr. In.

Throughout the proof, Z1,i and Z2,i, 1 ≤ i ≤ n, stand for

Z1,i := a1(Xi)− E[a1(Xi)] and Z2,i := a2(Xi)− E[a2(Xi)].

It is a simple matter to conclude that Z1,1, ..., Z1,n as well as Z2,1, ..., Z2,n are independent,

centered and 2-fold integrable (note that X1, ..., Xn are independent and 2-fold integrable).

We deduce that

sup
(s,t)∈Θn

|ρ̄n(s, t)− E[ρ̄n(s, t)]|

≤ 1

n
max

(k,l)∈{1,...,n}2

(∣∣∣∣∣
k∑
i=1

Z1,i

∣∣∣∣∣+

∣∣∣∣∣
l∑

i=1

Z2,i

∣∣∣∣∣
)

by ∆n ⊆ {1, ..., n}2

=
1

n

(
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

Z1,i

∣∣∣∣∣+ max
1≤l≤n

∣∣∣∣∣
l∑

i=1

Z2,i

∣∣∣∣∣
)
.
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Consequently, wee see for all ε > 0 that

P

[
sup

(s,t)∈Θn

|ρ̄n(s, t)− E[ρ̄n(s, t)]| > ε

]

≤ P

[
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

Z1,i

∣∣∣∣∣+ max
1≤l≤n

∣∣∣∣∣
l∑

i=1

Z2,i

∣∣∣∣∣ > nε

]

≤ P

[
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

Z1,i

∣∣∣∣∣ > n
ε

2

]
+ P

[
max
1≤l≤n

∣∣∣∣∣
l∑

i=1

Z2,i

∣∣∣∣∣ > n
ε

2

]
by Lem. A.4

= P

max
1≤k≤n

∣∣∣∣∣
k∑
i=1

Z1,i

∣∣∣∣∣
2

>
(
n
ε

2

)2

+ P

max
1≤l≤n

∣∣∣∣∣
l∑

i=1

Z2,i

∣∣∣∣∣
2

>
(
n
ε

2

)2

 .

Note that

(∣∣∣∑k
i=1 Z1,i

∣∣∣2)
1≤k≤n

and

(∣∣∣∑l
i=1 Z2,i

∣∣∣2)
1≤l≤n

are non-negative submartingales

by Lemma 2.14. We thus apply Doob’s Inequality, given in Lemma 2.10 (i), and obtain

P

[
sup

(s,t)∈Θn

|ρ̄n(s, t)− E[ρ̄n(s, t)]| > ε

]

≤ Cε−2n−2

E
∣∣∣∣∣

n∑
i=1

Z1,i

∣∣∣∣∣
2
+ E

∣∣∣∣∣
n∑
i=1

Z2,i

∣∣∣∣∣
2
 . (3.7)

In addition, we find some upper bounds for the second moments. We infer that

E

∣∣∣∣∣
n∑
i=1

Z1,i

∣∣∣∣∣
2
 = E

∣∣∣∣∣
n∑
i=1

(a1(Xi)− E[a1(Xi)])

∣∣∣∣∣
2


≤ C
n∑
i=1

E
[
|a1(Xi)− E[a1(Xi)]|2

]
by Lem. 2.15

≤ C
n∑
i=1

(
E
[
|a1(Xi)|2

]
+ |E[a1(Xi)]|2

)
by cr-In.

≤ C
n∑
i=1

E
[
|a1(Xi)|2

]
. by Jensen In. (3.8)
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3.2 Consistency of the multiple change-point estimator

We infer for i ∈ {1, ..., n} that

E
[
|a1(Xi)|2

]
= E

[∣∣2(β − α)Xi + α2 − β2
∣∣2] by def. of a1

≤ 2
(
|2(β − α)|2E

[
|Xi|2

]
+
∣∣α2 − β2

∣∣2) by cr-In.

≤ 2
(
|2(β − α)|2M2 +

∣∣α2 − β2
∣∣2)

≤ C by M2 <∞.

By (3.8), we have

E

∣∣∣∣∣
n∑
i=1

Z1,i

∣∣∣∣∣
2
 ≤ Cn. (3.9)

In the same manner we can see that

E

∣∣∣∣∣
n∑
i=1

Z2,i

∣∣∣∣∣
2
 ≤ Cn. (3.10)

Combining (3.7) with (3.9) and (3.10) gives the claim.

We now calculate E[ρ̄n(s, t)] for all (s, t) ∈ Θ. To do this, we divide Θ into disjoint subsets

(displayed in Figure 3.1) according to the position of (s, t) ∈ Θ relative to the multiple

change-point (θ1, θ2) ∈ Θ.

Let

Θ =
6⋃
i=1

Θi, (3.11)

where

Θ1 := {(s, t) ∈ Θ|s < t ≤ θ1 < θ2}, Θ4 := {(s, t) ∈ Θ|θ1 < s < t ≤ θ2},

Θ2 := {(s, t) ∈ Θ|s ≤ θ1 < t ≤ θ2}, Θ5 := {(s, t) ∈ Θ|θ1 < s ≤ θ2 < t}, (3.12)

Θ3 := {(s, t) ∈ Θ|s ≤ θ1 < θ2 < t}, Θ6 := {(s, t) ∈ Θ|θ1 < θ2 < s < t}.
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Θ1

Θ2

Θ3

Θ4

Θ5 Θ6

s

t

θ1

θ2

1

0 θ1 θ2 1

Figure 3.1: Partition of Θ into Θ1, ...,Θ6

Lemma 3.8. Let n ∈ N. Then

E[ρ̄n(s, t)] =



(
bntc
n
− bnsc

n

)
(α− β)2 − bntc

n
(α− γ), (s, t) ∈ Θ1 ∩Θn,(

τn
n
− bnsc

n

)
(α− β)2 − τn

n
(α− γ)2

+
(
τn
n
− bntc

n

)
(β − γ)2, (s, t) ∈ Θ2 ∩Θn,(

τn
n
− bnsc

n

)
(α− β)2 − τn

n
(α− γ)2

+
(
bntc
n

+ τn
n
− 2σn

n

)
(β − γ)2, (s, t) ∈ Θ3 ∩Θn,(

bnsc
n
− τn

n

)
(α− β)2 − τn

n
(α− γ)2

+
(
τn
n
− bntc

n

)
(β − γ)2, (s, t) ∈ Θ4 ∩Θn,(

bnsc
n
− τn

n

)
(α− β)2 − τn

n
(α− γ)2

+
(
bntc
n

+ τn
n
− 2σn

n

)
(β − γ)2, (s, t) ∈ Θ5 ∩Θn,(

σn
n
− τn

n

)
(α− β)2

+
(
bnsc
n
− τn

n
− σn

n

)
(α− γ)2

+
(
bntc
n
− bnsc

n
+ τn

n
− σn

n

)
(β − γ)2, (s, t) ∈ Θ6 ∩Θn.
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3.2 Consistency of the multiple change-point estimator

Proof. Fix n ∈ N. Recall that

E[Xi] =


α, 1 ≤ i ≤ τn,

β, τn + 1 ≤ i ≤ σn,

γ, σn + 1 ≤ i ≤ n.

We leave it to the reader to verify that

E[a1(Xi)] =


−(α− β)2, 1 ≤ i ≤ τn,

(α− β)2, τn + 1 ≤ i ≤ σn,

(α− γ)2 − (β − γ)2, σn + 1 ≤ i ≤ n

and

E[a2(Xi)] =


(α− β)2 − (α− γ)2, 1 ≤ i ≤ τn,

−(β − γ)2, τn + 1 ≤ i ≤ σn,

(β − γ)2, σn + 1 ≤ i ≤ n.

As an example, we compute the expectation of ρ̄n(s, t) for (s, t) ∈ Θ2 ∩Θn, since a similar

procedure would bring the remaining cases. Lemma A.1 (ii) leads to

1 ≤ bnsc ≤ τn < bntc ≤ σn < n.

By definitions of ρ̄n and M̄n, the sums are split into segments according to above. Hence

E[ρ̄n(s, t)] =
1

n
E
[
M̄n(bnsc, bntc)

]
=

1

n

bnsc∑
i=1

E[a1(Xi)] +
τn∑
i=1

E[a2(Xi)] +

bntc∑
i=τn+1

E[a2(Xi)]

 .

A simple computation establishes the form as in the assertion.
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Figure 3.2: Plot of ρ for θ = (θ1, θ2) = (0.4, 0.8) and α = (α, β, γ) = (0.6, 1, 0.5).

The function ρ : Θ −→ R is defined by

ρ(s, t) := (θ1 − θ2)(β − γ)2 − θ1(α− γ)2 (3.13)

+



(t− s)(α− β)2 + (θ1 − t)(α− γ)2 + (θ2 − θ1)(β − γ)2, (s, t) ∈ Θ1,

(θ1 − s)(α− β)2 + (θ2 − t)(β − γ)2, (s, t) ∈ Θ2,

(θ1 − s)(α− β)2 + (t− θ2)(β − γ)2, (s, t) ∈ Θ3,

(s− θ1)(α− β)2 + (θ2 − t)(β − γ)2, (s, t) ∈ Θ4,

(s− θ1)(α− β)2 + (t− θ2)(β − γ)2, (s, t) ∈ Θ5,

(s− θ2)(α− γ)2 + (t− s)(β − γ)2 + (θ2 − θ1)(α− β)2, (s, t) ∈ Θ6.

The function ρ (with domain Θ) is illustrated in Figure 3.2.

The following estimate states the uniform convergence of the expectation of ρ̄n to ρ.

Proposition 3.9. There exists C > 0 such that for all n ∈ N

sup
(s,t)∈Θn

|E[ρ̄n(s, t)]− ρ(s, t)| ≤ Cn−1.
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3.2 Consistency of the multiple change-point estimator

Proof. Fix n ∈ N. Our proof starts with the observation that the partition of Θ gives

sup
(s,t)∈Θn

|E[ρ̄n(s, t)]− ρ(s, t)| = max
i∈{1,...,6}

sup
(s,t)∈Θi∩Θn

|E[ρ̄n(s, t)]− ρ(s, t)|. (3.14)

We show the way of our proceeding for (s, t) ∈ Θ2 ∩Θn. We have

ρ(s, t) = (θ1 − θ2)(β − γ)2 − θ1(α− γ)2 + (θ1 − s)(α− β)2 + (θ2 − t)(β − γ)2

= (θ1 − s)(α− β)2 − θ1(α− γ)2 + (θ1 − t)(β − γ)2.

Lemma 3.8 and the Triangle Inequality now imply

|E[ρ̄n(s, t)]− ρ(s, t)| ≤
∣∣∣∣bnscn − s

∣∣∣∣ (α− β)2 +

∣∣∣∣bntcn − t
∣∣∣∣ (β − γ)2

+
∣∣∣τn
n
− θ1

∣∣∣ · ∣∣(α− β)2 − (α− γ)2 + (β − γ)2
∣∣ .

Lemmas A.1 (iii) and A.1 (iv) lead to

sup
(s,t)∈Θ2∩Θn

|E[ρ̄n(s, t)]− ρ(s, t)|

≤ (α− β)2 sup
(s,t)∈Θ2∩Θn

∣∣∣∣bnscn − s
∣∣∣∣+ (β − γ)2 sup

(s,t)∈Θ2∩Θn

∣∣∣∣bntcn − t
∣∣∣∣

+
∣∣(α− β)2 − (α− γ)2 + (β − γ)2

∣∣ · ∣∣∣τn
n
− θ1

∣∣∣
≤ (α− β)2n−1 + (β − γ)2n−1 +

∣∣(α− β)2 − (α− γ)2 + (β − γ)2
∣∣n−1

= Cn−1,

where C := C(α, β, γ) := (α − β)2 + (β − γ)2 + |(α− β)2 − (α− γ)2 + (β − γ)2| > 0. By

an analogous estimate, an upper bound of the form Cn−1 can be found for the remaining

partitions Θi of Θ, i ∈ {1, 3, 4, 5, 6}, such that we get the claim by (3.14).

Propositions 3.7 and 3.9 help us to prove assumption (i) of Theorem 2.1. We now concern

with assumption (ii) of Theorem 2.1, which says that θ = (θ1, θ2) ∈ Θ must be the well-

separated minimizer of ρ.

Lemma 3.10. The multiple change-point θ = (θ1, θ2) ∈ Θ is the unique minimizer of ρ.
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Proof. We have to show that ρ(s, t) − ρ(θ1, θ2) > 0 for all (s, t) ∈ Θ with (s, t) 6= (θ1, θ2).

Let us first observe that

ρ(θ1, θ2) = (θ1 − θ2)(β − γ)2 − θ1(α− γ)2.

Recall the model assumptions α 6= β and β 6= γ. For (s, t) ∈ Θ1 and (θ1, θ2) ∈ Θ we notice

0 < s < t ≤ θ1 < θ2 < 1. Hence

ρ(s, t)− ρ(θ1, θ2) = (t− s)(α− β)2 + (θ1 − t)(α− γ)2 + (θ2 − θ1)(β − γ)2 > 0.

We check at once that the same procedure leads to ρ(s, t)− ρ(θ1, θ2) > 0 for all (s, t) ∈ Θi,

i ∈ {3, 4, 5, 6}. To complete the proof, we consider Θ2. For (s, t) ∈ Θ2 and (θ1, θ2) ∈ Θ we

note that 0 < s ≤ θ1 < t ≤ θ2 < 1. The definition of ρ and (s, t) 6= (θ1, θ2) yield

ρ(s, t)− ρ(θ1, θ2) = (θ1 − s)(α− β)2 + (θ2 − t)(β − γ)2 > 0.

Throughout the entire work, let us denote by ‖ · ‖ the maximum norm.

Proposition 3.11. The multiple change-point θ ∈ Θ is the well-separated minimizer of ρ.

Proof. We first observe that θ = (θ1, θ2) ∈ Θ is a minimizer of ρ, which was proved in the

previous lemma. By (2.1), it is sufficient to show that

inf{ρ(s, t) : ‖(θ1, θ2)− (s, t)‖ ≥ ε, (s, t) ∈ Θ} − ρ(θ1, θ2) > 0

for all ε > 0. Fix ε > 0. By decomposition of Θ, we get

inf{ρ(s, t) : ‖(θ1, θ2)− (s, t)‖ ≥ ε, (s, t) ∈ Θ} − ρ(θ1, θ2)

= inf{ρ(s, t)− ρ(θ1, θ2) : ‖(θ1, θ2)− (s, t)‖ ≥ ε, (s, t) ∈ Θ}

= min
i∈{1,...,6}

inf
{
ρ(s, t)− ρ(θ1, θ2) : ‖(θ1, θ2)− (s, t)‖ ≥ ε, (s, t) ∈ Θi

}
by (3.11)

=: min
i∈{1,...,6}

%i. (3.15)
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3.2 Consistency of the multiple change-point estimator

Write C := C(α, β, γ) := min{(α−β)2, (β−γ)2} and note that C > 0 by model assumptions

α 6= β and β 6= γ. By definition of ρ, we obtain

%2 = inf
{
ρ(s, t)− ρ(θ1, θ2) : ‖(θ1, θ2)− (s, t)‖ ≥ ε, (s, t) ∈ Θ2

}
= inf

{
(θ1 − s)(α− β)2 + (θ2 − t)(β − γ)2 : max{θ1 − s, θ2 − t} ≥ ε, (s, t) ∈ Θ2

}
≥ inf

{
C((θ1 − s) + (θ2 − t)) : max{θ1 − s, θ2 − t} ≥ ε, (s, t) ∈ Θ2

}
≥


inf {C(ε+ (θ2 − t)) : (s, t) ∈ Θ2} , θ1 − s ≥ θ2 − t,

inf {C((θ1 − s) + ε) : (s, t) ∈ Θ2} , θ1 − s < θ2 − t,

= Cε

> 0.

We can now proceed analogously to conclude that %3 > 0, %4 > 0 and %5 > 0. Furthermore,

by definition of ρ, we have

%1 = inf
{
ρ(s, t)− ρ(θ1, θ2) : ‖(θ1, θ2)− (s, t)‖ ≥ ε, (s, t) ∈ Θ1

}
= inf

{
(t− s)(α− β)2 + (θ1 − t)(α− γ)2

+(θ2 − θ1)(β − γ)2 : ‖(θ1, θ2)− (s, t)‖ ≥ ε, (s, t) ∈ Θ1
}

= (θ2 − θ1)(β − γ)2

≥ C(θ2 − θ1)

> 0,

the last inequality being a consequence of (θ1, θ2) ∈ Θ. It is a simple matter to check

%6 > 0. By (3.15), the proof is complete.

We can now formulate and prove the weak consistency of θ̄n.

Theorem 3.12. If M2 <∞, then

θ̄n
P−−−→

n→∞
θ.
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Proof. We apply Theorem 2.1. ρ̄n, n ∈ N, is a stochastic process with trajectories in the

multivariate Skorokhod space D(Θn) by Lemma 3.6. ρ has trajectories in the multivariate

Skorokhod space D(Θ), since ρ is continuous, as is easy to check. Moreover, (Θn)n∈N ⊆ Θ

is a sequence of sets such that Θn ⊆ Θn+1 for every n ∈ N with
⋃
n∈NΘn = Θ. By Lemma

3.4, θ̄n is a minimizer of ρ̄n for any n ∈ N. We infer that

sup
(s,t)∈Θn

|ρ̄n(s, t)− ρ(s, t)|

= sup
(s,t)∈Θn

|ρ̄n(s, t)− E[ρ̄n(s, t)] + E[ρ̄n(s, t)]− ρ(s, t)|

≤ sup
(s,t)∈Θn

(|ρ̄n(s, t)− E[ρ̄n(s, t)]|+ |E[ρ̄n(s, t)]− ρ(s, t)|) by Tr. In.

≤ sup
(s,t)∈Θn

|ρ̄n(s, t)− E[ρ̄n(s, t)]|+ sup
(s,t)∈Θn

|E[ρ̄n(s, t)]− ρ(s, t)| (3.16)

for each n ∈ N. Letting n→∞, Propositions 3.7 and 3.9 lead to

sup
(s,t)∈Θn

|ρ̄n(s, t)− ρ(s, t)| P−−−→
n→∞

0.

In addition, θ ∈ Θ is the well-separated minimizer of ρ, see Proposition 3.11. An applica-

tion of Theorem 2.1 finishes the proof.

We can even prove strong consistency of θ̄n.

Theorem 3.13. Suppose there is some p ∈ (2,∞) such that Mp <∞. Then

θ̄n
a.s.−−−→
n→∞

θ.

Proof. We apply Theorem 2.1 again. The basic framework is the same as in proof of

Theorem 3.12. Furthermore, θ ∈ Θ is the well-separated minimizer of ρ by propsition

3.11. By (3.16), we observe that

sup
(s,t)∈Θn

|ρ̄n(s, t)− ρ(s, t)|

≤ sup
(s,t)∈Θn

|ρ̄n(s, t)− E[ρ̄n(s, t)]|+ sup
(s,t)∈Θn

|E[ρ̄n(s, t)]− ρ(s, t)|.
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3.2 Consistency of the multiple change-point estimator

Assumption (i) of Theorem 2.1 is fulfilled if

sup
(s,t)∈Θn

|ρ̄n(s, t)− ρ(s, t)| a.s.−−−→
n→∞

0.

By Proposition 3.9, the proof is completed by showing that

sup
(s,t)∈Θn

|ρ̄n(s, t)− E[ρ̄n(s, t)]| a.s.−−−→
n→∞

0. (3.17)

For this purpose, we set

An(ε) :=

{
sup

(s,t)∈Θn

|ρ̄n(s, t)− E[ρ̄n(s, t)]| > ε

}

for each n ∈ N and ε > 0. By a similar estimate as in the proof of Proposition 3.7, there

exists a constant C > 0 such that P[An(ε)] ≤ Cε−pn−p/2 for all ε > 0. Hence

∞∑
n=1

P[An(ε)] ≤ Cε−p
∞∑
n=1

n−
p/2 <∞.

The finiteness holds, because the series converges for p > 2. The first Borel-Cantelli Lemma

(see for instance Schmidt [24, p. 227, Lemma 11.1.12]) leads to P [lim supn→∞An(ε)] = 0

for all ε > 0. Hence

P

[
sup

(s,t)∈Θn

|ρ̄n(s, t)− E[ρ̄n(s, t)]| −−−→
n→∞

0

]
= P

[ ⋂
ε∈Q>0

⋃
m∈N

⋂
n∈Nm

An(ε){

]

= 1− P

[ ⋃
ε∈Q>0

⋂
m∈N

⋃
n∈Nm

An(ε)

]

= 1− P

[ ⋃
ε∈Q>0

lim sup
n→∞

An(ε)

]

= 1.

The last equality holds, because the countable union of null sets is also a null set. We have

shown (3.17), which is our desired conclusion.
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3.3 Convergence in distribution

We proceed with the study of convergence in distribution of τ̄ n−τ n. To do this, we apply

Theorem 2.3. To stay in the framework of Theorem 2.3, the main idea is to introduce

another process Γ̄n, which is minimized by τ̄ n− τ n for each n ∈ N. The so-called rescaled

process Γ̄n is defined by

Γ̄n(k, l) := M̄n(τn + k, σn + l)− M̄n(τn, σn), (k, l) ∈ Hn,

where

Hn :=
{

(k, l) ∈ Z2
∣∣k ≥ 1− τn, l − k ≥ 1− (σn − τn), n− l ≥ σn + 1

}
.

Lemma 3.14. Let n ∈ N. Then

τ̄ n − τ n ∈ Argmin
(
Γ̄n
)
.

Proof. Fix n ∈ N. Note that τ̄ n − τ n = (τ̄n − τn, σ̄n − σn) lies in Hn, which is clear from

τ̄ n ∈ ∆n and τ n ∈ N2. Moreover, from (k, l) ∈ Hn it follows that (τn + k, σn + l) ∈ ∆n.

Since τ̄ n is a minimizer of M̄n, we obtain

Γ̄n(τ̄n−τn, σ̄n−σn) = M̄n(τ̄n, σ̄n)−M̄n(τn, σn) ≤ M̄n(τn+k, σn+l)−M̄n(τn, σn) = Γ̄n(k, l)

for all (k, l) ∈ Hn.

Γ̄n has the following form.

Lemma 3.15. Let n ∈ N and (k, l) ∈ Hn. Then

Γ̄n(k, l) = Γ̄n,1(k) + Γ̄n,2(l)

with

Γ̄n,1(k) :=


k∑
i=1

a1(Xτn+i), k ≥ 0,

−
−k∑
i=1

a1(Xτn−i+1), k < 0

and Γ̄n,2(l) :=


l∑

i=1

a2(Xσn+i), l ≥ 0,

−
−l∑
i=1

a2(Xσn−i+1), l < 0,

where a1 and a2 are given by (3.2).
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3.3 Convergence in distribution

Proof. Fix n ∈ N and let (k, l) ∈ Hn. By definitions of Γ̄n and M̄n, we have

Γ̄n(k, l) = M̄n(τn + k, σn + l)− M̄n(τn, σn)

=

(
τn+k∑
i=1

a1(Xi)−
τn∑
i=1

a1(Xi)

)
+

(
σn+l∑
i=1

a2(Xi)−
σn∑
i=1

a2(Xi)

)
=: Γ̃n,1(k) + Γ̃n,2(l).

For k ≥ 0 we have

Γ̃n,1(k) =
τn+k∑
i=τn+1

a1(Xi) =
k∑
i=1

a1(Xτn+i) = Γ̄n,1(k)

and for k < 0

Γ̃n,1(k) = −
τn∑

i=τn+k+1

a1(Xi) = −
−k∑
i=1

a1(Xτn−i+1) = Γ̄n,1(k).

The cases l ≥ 0 and l < 0 to obtain the form of Γ̄n,2 are left to the reader.

To show assumption (i) of Theorem 2.3, we establish convergence in distribution of all

finite-dimensional distributions of Γ̄n. To this end, let (ξi,r)i∈N, r ∈ {1, 2, 3}, be three

independent sequences, which for each r consist of independent and identically distributed

random variables with common distribution Qr. Set

Γ(k, l) := Γ1(k) + Γ2(l), (k, l) ∈ Z2, (3.18)

where

Γ1(k) :=


k∑
i=1

a1(ξi,2), k ≥ 0,

−
−k∑
i=1

a1(ξi,1), k < 0

and Γ2(l) :=


l∑

i=1

a2(ξi,3), l ≥ 0,

−
−l∑
i=1

a2(ξi,2), l < 0.

Remark 3.16. A trivial verification shows that Γ is a sum of two random walks with
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Figure 3.3: Plot of Γ, Γ1 and Γ2 for Q1 = N(3.2, 1), Q2 = N(5, 1), Q3 = N(2.6, 1).

positive drift. More precisely, we have Γ(k, l) = Γ1(k) + Γ2(l) with

Γ1(k) =


2(β − α)

k∑
i=1

(ξi,2 − β) + k(α− β)2, k ≥ 0,

−2(β − α)
−k∑
i=1

(ξi,1 − α)− k(α− β)2, k < 0

and

Γ2(l) =


2(γ − β)

l∑
i=1

(ξi,3 − γ) + l(β − γ)2, l ≥ 0,

−2(γ − β)
−l∑
i=1

(ξi,2 − β)− l(β − γ)2, l < 0

for each (k, l) ∈ Z2. Furthermore, the drift functions of Γ1 and Γ2 are given by

E[Γ1(k)] = (α− β)2|k| and E[Γ2(l)] = (β − γ)2|l|.

The processes Γ, Γ1 and Γ2 are displayed in Figure 3.3. Note that these processes are only

defined on integer numbers, but for clarity the processes are illustrated on real numbers

(single points are connected).

Lemma 3.17. Let m ∈ N. Then for each collection (k1, l1), ..., (km, lm) ∈ Z2 there exists

n0 = n0(k1, l1, ..., km, lm) ∈ N such that for all n ≥ n0(
Γ̄n(k1, l1), ..., Γ̄n(km, lm)

) L
= (Γ(k1, l1), ...,Γ(km, lm)).
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3.3 Convergence in distribution

Proof. Fix m ∈ N and (k1, l1), ..., (km, lm) ∈ Z2. Since it holds

τn −−−→
n→∞

∞, σn − τn −−−→
n→∞

∞ and n− σn −−−→
n→∞

∞ (3.19)

by Lemma A.2, we have
⋃
n∈NHn = Z2. From this we can conclude that there exists

n1 = n1(k1, l1, ..., km, lm) ∈ N such that for all n ≥ n1

(k1, l1), ..., (km, lm) ∈ Hn. (3.20)

Furthermore, by (3.19), there exists n2 = n2(k1, l1, ..., km, lm) ∈ N such that for all n ≥ n2

max{|k1|, |l1|, ..., |km|, |lm|} ≤ σn − τn. (3.21)

From now on, let n ≥ n0 := max{n1, n2}. We consider several cases. Fix r ∈ {1, ...,m}.

(i) We distinguish two cases for kr.

(a) Let kr > 0. By (3.21), for all i ∈ {1, ..., kr} we see that

τn + 1 ≤ τn + i ≤ τn + kr ≤ τn + (σn − τn) = σn,

and consequently Xτn+i ∼ Q2.

(b) Let kr < 0. By (3.20), for all i ∈ {1, ...,−kr} we find that

τn ≥ τn − i+ 1 ≥ τn + kr + 1 ≥ τn + (1− τn) + 1 = 2,

and so Xτn−i+1 ∼ Q1.

(ii) We distinguish two cases for lr.

(a) Let lr > 0. By (3.20), for all i ∈ {1, ..., lr} we obtain

σn + 1 ≤ σn + i ≤ σn + lr ≤ σn + (n− σn − 1) = n− 1,

and hence Xσn+i ∼ Q3.
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(b) Let lr < 0. By (3.21), for all i ∈ {1, ...,−lr} we have

σn ≥ σn − i+ 1 ≥ σn − (−lr) + 1 ≥ σn − (σn − τn) + 1 = τn + 1,

which gives Xσn−i+1 ∼ Q2.

Write Xn := (X1, ..., Xn) and ξn := (ξ1,1, ..., ξτn,1, ξ1,2, ..., ξσn−τn,2, ξ1,3, ..., ξn−σn,3), where

(ξi,1)i∈N, (ξi,2)i∈N and (ξi,3)i∈N are the sequences defined in (3.18). The independence of

observations, distinction of cases and independence assumptions to the sequences imply

PXn =
n⊗
i=1

PXi =
τn⊗
i=1

PXi ⊗
σn⊗

i=τn+1

PXi ⊗
n⊗

i=σn+1

PXi

=
τn⊗
i=1

Pξi,1 ⊗
σn−τn⊗
i=1

Pξi,2 ⊗
n−σn⊗
i=1

Pξi,3

= Pξn .

Therefore Xn
L
= ξn. The crucial fact is that the processes Γ̄n and Γ depend on random

variables. Thus, Γ̄n and Γ can be considered as measurable transformations of Xn and ξn,

which lead to

(
Γ̄n(k1, l1), ..., Γ̄n(km, lm)

)
=
(
Γ̄n(k1, l1; Xn), ..., Γ̄n(km, lm; Xn)

)
L
=
(
Γ̄n(k1, l1; ξn), ..., Γ̄n(km, lm; ξn)

)
= (Γ(k1, l1; ξn), ...,Γ(km, lm; ξn))

= (Γ(k1, l1), ...,Γ(km, lm)).

We get convergence in distribution of all finite-dimensional distributions of Γ̄n to Γ.

Proposition 3.18. Let m ∈ N and (k1, l1), ..., (km, lm) ∈ Z2. Then

(
Γ̄n(k1, l1), ..., Γ̄n(km, lm)

) L−−−→
n→∞

(Γ(k1, l1), ...,Γ(km, lm)).

Proof. The assertion follows directly from Lemma 3.17.
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3.3 Convergence in distribution

The task is now to prove stochastic boundedness of τ̄ n − τ n, see assumption (ii) of The-

orem 2.3. The following two technical lemmas are useful to estimate the error probability

previously.

Lemma 3.19. There exist δ > 0 and n0 ∈ N such that

(i) 1 + nδ < τn − nδ,

(ii) τn + nδ < σn − nδ and

(iii) σn + nδ < n− nδ

for all n ≥ n0.

Proof. The procedure is to find a condition to δ > 0 such that all inequalities are satisfied

for a sufficiently large n ∈ N. For example, we consider Inequality (ii), which is equivalent

to

2nδ < σn − τn. (3.22)

First observe that the properties of the floor function (Lemma A.1 (i)) lead to

σn − τn = bnθ2c − bnθ1c > nθ2 − 1− nθ1 = n(θ2 − θ1)− 1.

Consequently, the inequality holds in (3.22) if δ < 1
2
(θ2 − θ1)− 1

2n
. Suppose for a moment

that n > 5
θ2−θ1 . Then we can choose δ with δ < 2

5
(θ2 − θ1). Set n2(θ1, θ2) :=

⌊
5

θ2−θ1

⌋
+ 1

and δ2(θ1, θ2) := 1
3
(θ2 − θ1). Now, (3.22) holds for δ2(θ1, θ2) and every n ≥ n2(θ1, θ2). By

similar arguments, we get δ1(θ1) := 1
3
θ1, n1(θ1) :=

⌊
10
θ1

⌋
+ 1 and δ3(θ2) := 1

3
(1 − θ2) such

that Inequality (i) holds for δ1(θ1) and all n ≥ n1(θ1), and Inequality (iii) is fulfilled for

δ3(θ2) and all n ∈ N. If we choose δ := δ(θ1, θ2) := min {δ1(θ1), δ2(θ1, θ2), δ3(θ2)} and

n0 := n0(θ1, θ2) := max{n1(θ1), n2(θ1, θ2)}, then the lemma follows. From (θ1, θ2) ∈ Θ we

deduce that δ > 0.
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Recall that ‖ · ‖ stands for the maximum norm. Let us denote by Hn,x,δ the set

Hn,x,δ := {(k, l) ∈ Hn|x ≤ ‖(k, l)‖ ≤ nδ}

for n ∈ N, x > 0 and δ > 0.

Lemma 3.20. Let x > 0, δ > 0 and n ∈ N. Then

{x ≤ ‖τ̄ n − τ n‖ ≤ nδ} ⊆
⋃

(k,l)∈Hn,x,δ

{
−Γ̄n(k, l) ≥ 0

}
.

Proof. Suppose, contrary to our claim, that there exists ω ∈ {x ≤ ‖τ̄ n − τ n‖ ≤ nδ}, but

ω /∈
⋃

(k,l)∈Hn,x,δ

{
−Γ̄n(k, l) ≥ 0

}
.

So, we get −Γ̄n(k, l) < 0 for all (k, l) ∈ Hn,x,δ. By Lemma 3.14, we have τ̄ n − τ n ∈ Hn,

and, in consequence, τ̄ n − τ n ∈ Hn,x,δ by assumption. The definition of Γ̄n gives

0 > −Γ̄n(τ̄ n − τ n) = M̄n(τ n)− M̄n(τ̄ n),

which contradicts the fact that τ̄ n minimizes M̄n.

We now derive an error estimate.

Lemma 3.21. Suppose that M2 < ∞. Then there exist n0 ∈ N, δ > 0 and a constant

C > 0 such that for all n ≥ n0 we have

P[x ≤ ‖τ̄ n − τ n‖ ≤ nδ] ≤ Cx−1

for all x ≥ 2.

Proof. Let x ≥ 2. By Lemma 3.19, there exist δ > 0 and n0 ∈ N such that for all

n ≥ n0 the conditions (i)-(iii) in Lemma 3.19 hold. Consider n ≥ n0 and δ > 0 and let
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3.3 Convergence in distribution

C = C(α, β, γ) > 0 be a generic constant. By Lemma 3.20, we first observe that

{x ≤ ‖τ̄ n − τ n‖ ≤ nδ} ⊆
⋃

(k,l)∈Hn,x,δ

{
−Γ̄n(k, l) ≥ 0

}
⊆

⋃
x≤|k|≤nδ
|l|≤nδ

{
−Γ̄n(k, l) ≥ 0

}
∪

⋃
|k|≤nδ
x≤|l|≤nδ

{
−Γ̄n(k, l) ≥ 0

}

=: E ∪ F. (3.23)

To simplify notation, the fact that some in this proof defined sets, random variables and

probabilities depend on n, x or δ is omitted. We give the proof only for the estimate of

the probability of E; the other case follows the same pattern. We find that

E ⊆
⋃

x≤k≤nδ
0≤l≤nδ

{
−Γ̄n(k, l) ≥ 0

}
∪

⋃
x≤k≤nδ
−nδ≤l<0

{
−Γ̄n(k, l) ≥ 0

}
∪

⋃
−nδ≤k≤−x

0≤l≤nδ

{
−Γ̄n(k, l) ≥ 0

}
∪

⋃
−nδ≤k≤−x
−nδ≤l<0

{
−Γ̄n(k, l) ≥ 0

}
=: E(++) ∪ E(+−) ∪ E(−+) ∪ E(−−). (3.24)

We describe our proceeding only for the estimate of the probability of E(++) in detail. It

holds

E(++) =
⋃

x≤k≤nδ

⋃
0≤l≤nδ

{
−
(
Γ̄n,1(k) + Γ̄n,2(l)

)
≥ 0
}

⊆

{
max
x≤k≤nδ

k∑
i=1

−a1(Xτn+i) + max
0≤l≤nδ

l∑
i=1

−a2(Xσn+i) ≥ 0

}
by Lem. 3.15

=:
{
Y

(+)
1 + Y

(+)
2 ≥ 0

}
. (3.25)

By Lemma 3.19 (ii), we see that
(
Xτn+1, ..., Xτn+bnδc

)
and

(
Xσn+1, ..., Xσn+bnδc

)
are inde-

pendent vectors. Thus,

Y
(+)

1 = Y
(+)

1

(
Xτn+1, ..., Xτn+bnδc

)
and Y

(+)
2 = Y

(+)
2

(
Xσn+1, ..., Xσn+bnδc

)
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as two measurable transformations of independent vectors are also independent. By (3.25)

and Lemma A.8, we get

P
[
E(++)

]
= P

[
Y

(+)
1 + Y

(+)
2 ≥ 0

]
=

∫
R

P
[
Y

(+)
1 ≥ −y

]
P
Y

(+)
2

(dy). (3.26)

For abbreviation, we write Z1,i := −a1(Xτn+i) + E[a1(Xτn+i)], 1 ≤ i ≤ bnδc. We next

consider the integrand. For all y ∈ R we obtain

P
[
Y

(+)
1 ≥ −y

]
= P

[
max
x≤k≤nδ

k∑
i=1

−a1(Xτn+i) ≥ −y

]

= P

[ ⋃
x≤k≤nδ

{
k∑
i=1

Z1,i ≥
k∑
i=1

E[a1(Xτn+i)]− y

}]
.

By Lemma 3.19 (ii), we conclude that τn + 1 ≤ τn + i < σn for 1 ≤ i ≤ k with x ≤ k ≤ nδ.

In the proof of Lemma 3.8 we have seen that

E[a1(Xτn+i)] = (α− β)2 for 1 ≤ i ≤ k with x ≤ k ≤ nδ.

By model assumptions α 6= β and β 6= γ, it holds µ := min {(α− β)2, (β − γ)2} > 0. It

follows for all y ∈ R that

P
[
Y

(+)
1 ≥ −y

]
= P

[ ⋃
x≤k≤nδ

{
k∑
i=1

Z1,i ≥ k(α− β)2 − y

}]

≤ P

[ ⋃
x≤k≤nδ

{
k∑
i=1

Z1,i ≥ kµ− y

}]

=: P(y). (3.27)

We distinguish several cases for y to get an estimate for P(y).

(i) In the case y ≤ 0 we have −y ≥ 0. The independence of X1, ..., Xn leads to the

independence of Z1,1, ..., Z1,k, x ≤ k ≤ nδ. Furthermore, (k−1)bxc+1≤k≤bnδc is a non-

increasing sequence of positive numbers. The Hájek-Rényi Inequality (Lemma 2.8)

implies
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3.3 Convergence in distribution

P(y) ≤ P

[ ⋃
x≤k≤nδ

{
k∑
i=1

Z1,i ≥ kµ

}]

≤ P

[
max
x≤k≤nδ

k−1

∣∣∣∣∣
k∑
i=1

Z1,i

∣∣∣∣∣ ≥ µ

]

≤ P

[
max

bxc≤k≤bnδc
k−1

∣∣∣∣∣
k∑
i=1

Z1,i

∣∣∣∣∣ ≥ µ

]

≤ µ−2

bxc−2

bxc∑
k=1

V[Z1,k] +

bnδc∑
k=bxc+1

k−2V[Z1,k]

 .

By definition of Z1,k and Equation (3.2), it is evident that

V[Z1,k] = 4(α− β)2V[Xτn+k] ≤ 4(α− β)2M2

for all k ∈ {1, ..., bnδc}. From M2 <∞ we conclude that

P(y) ≤ C

bxc−1 +

bnδc∑
i=bxc+1

k−2

 .

Note that the properties of the floor function give bxc ≥ x − 1 ≥ 1
2
x for x ≥ 2.

Lemmas A.5 and A.1 (i) now yield

P(y) ≤ Cbxc−1 ≤ Cx−1.

(ii) Let y > 0. By k ≥ x, we have

kµ− y = k
(
µ− y

k

)
≥ k

(
µ− y

x

)
.

(a) Let 0 < y < 1
2
µx. It follows that kµ− y ≥ 1

2
kµ. As in (i), we obtain

P(y) ≤ P

[ ⋃
x≤k≤nδ

{
k∑
i=1

Z1,i ≥
1

2
kµ

}]

≤ P

[
max

bxc≤k≤bnδc
k−1

∣∣∣∣∣
k∑
i=1

Z1,i

∣∣∣∣∣ ≥ 1

2
µ

]
≤ Cx−1.
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(b) In the case y ≥ 1
2
µx we estimate P(y) ≤ 1.

Applying (3.26) and (3.27) with regard to the previous distinction of cases gives

P
[
E(++)

]
≤
∫

(−∞,0]

P(y) P
Y

(+)
2

(dy) +

∫
(0, 1

2
µx)
P(y) P

Y
(+)
2

(dy) +

∫
[ 12µx,∞)

P(y) P
Y

(+)
2

(dy)

≤ Cx−1P
[
Y

(+)
2 ≤ 0

]
+ Cx−1P

[
0 < Y

(+)
2 <

1

2
µx

]
+ P

[
Y

(+)
2 ≥ 1

2
µx

]
≤ Cx−1 + P

[
Y

(+)
2 ≥ 1

2
µx

]
. (3.28)

For abbreviation, we write Z2,i := −a2(Xσn+i) + E[a2(Xσn+i)], 1 ≤ i ≤ bnδc. We now

handle the probability in the last estimate. By definition, we have{
Y

(+)
2 ≥ 1

2
µx

}
=

{
max

0≤l≤nδ

l∑
i=1

−a2(Xσn+i) ≥
1

2
µx

}

=
⋃

0≤l≤nδ

{
l∑

i=1

Z2,i ≥
l∑

i=1

E[a2(Xσn+i)] +
1

2
µx

}
.

Note that
{∑l

i=1 Z2,i ≥
∑l

i=1E[a2(Xσn+i)] + 1
2
µx
}

= ∅ for l = 0, because 1
2
µx > 0. From

Lemma 3.19 (iii) we deduce that σn + 1 ≤ σn + i < n for 1 ≤ i ≤ l with 1 ≤ l ≤ nδ. The

proof of Lemma 3.8 provides

E[a2(Xσn+i)] = (β − γ)2 for 1 ≤ i ≤ l with 1 ≤ l ≤ nδ.

It follows that{
Y

(+)
2 ≥ 1

2
µx

}
=

⋃
1≤l≤nδ

{
l∑

i=1

Z2,i ≥ l(β − γ)2 +
1

2
µx

}

⊆
⋃

1≤l≤nδ

{
l∑

i=1

Z2,i ≥ lµ+
1

2
µx

}

⊆
⋃

1≤l≤nδ

{
(2l + x)−1

∣∣∣∣∣
l∑

i=1

Z2,i

∣∣∣∣∣ ≥ 1

2
µ

}
.
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3.3 Convergence in distribution

Observe that Z2,1, ..., Z2,l, 1 ≤ l ≤ nδ, are independent and (2l + x)−1
1≤l≤bnδc is a non-

increasing sequence of positive numbers for any x > 0. Another application of the Hájek-

Rényi Inequality (Lemma 2.8) yields

P

[
Y

(+)
2 ≥ 1

2
µx

]
≤ P

[ ⋃
1≤l≤nδ

{
(2l + x)−1

∣∣∣∣∣
l∑

i=1

Z2,i

∣∣∣∣∣ ≥ 1

2
µ

}]

= P

[
max

1≤l≤bnδc
(2l + x)−1

∣∣∣∣∣
l∑

i=1

Z2,i

∣∣∣∣∣ ≥ 1

2
µ

]

≤ 4µ−2

bnδc∑
l=1

(2l + x)−2V[Z2,l].

By definition of Zl,2 and Equation (3.2), it is clear that

V[Z2,l] = 4(β − γ)2V[Xσn+l] ≤ 4(β − γ)2M2

for all l ∈ {1, ..., bnδc}. Note that we have 2l+ x ≥ l+ 1 + bxc for all l ∈ {1, ..., bnδc}. We

thus get

P

[
Y

(+)
2 ≥ 1

2
µx

]
≤ C

bnδc∑
l=1

(l + 1 + bxc)−2 by 2l + x ≥ l + 1 + bxc, M2 <∞

= C

bnδc+bxc+1∑
m=bxc+2

m−2

≤ C(bxc+ 1)−1 by Lem. A.5

≤ Cx−1. by Lem. A.1 (i)

Summarizing, by (3.28), we have

P
[
E(++)

]
≤ Cx−1.

The rest of the proof runs as before. We outline the proof for E(+−), E(−+) and E(−−). Set

Y
(−)

1 := max
−nδ≤k≤−x

−k∑
i=1

a1(Xτn−i+1) and Y
(−)

2 := max
−nδ≤l<0

−l∑
i=1

a2(Xσn−i+1).
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Chapter 3 Known expectations

By Equation (3.24) and Lemma 3.15, it holds

E(+−) =
{
Y

(+)
1 + Y

(−)
2 ≥ 0

}
, E(−+) =

{
Y

(−)
1 + Y

(+)
2 ≥ 0

}
and

E(−−) =
{
Y

(−)
1 + Y

(−)
2 ≥ 0

}
.

The pairwise independence of the measurable transformations

Y
(+)

1 = Y
(+)

1

(
Xτn+1, ..., Xτn+bnδc

)
and Y

(−)
2 = Y

(−)
2

(
Xσn−bnδc+1, ..., Xσn

)
,

Y
(−)

1 = Y
(−)

1

(
Xτn−bnδc+1, ..., Xτn

)
and Y

(+)
2 = Y

(+)
2

(
Xσn+1, ..., Xσn+bnδc

)
,

Y
(−)

1 = Y
(−)

1

(
Xτn−bnδc+1, ..., Xτn

)
and Y

(−)
2 = Y

(−)
2

(
Xσn−bnδc+1, ..., Xσn

)
follow from Lemma 3.19 and the independence of the observations X1, ..., Xn. Lemma 3.19

shows that 1 ≤ τn−i+1 ≤ τn for 1 ≤ i ≤ −k with x ≤ −k ≤ nδ and τn+1 ≤ σn−i+1 ≤ σn

for 1 ≤ i ≤ −l with 1 ≤ −l ≤ nδ. The proof of Lemma 3.8 establishes

E[a1(Xτn−i+1)] = −(α− β)2 for 1 ≤ i ≤ −k with x ≤ −k ≤ nδ and

E[a2(Xσn−i+1)] = −(β − γ)2 for 1 ≤ i ≤ −l with 1 ≤ −l ≤ nδ.

Similar arguments used in the estimate of the probability of E(++) lead to

P
[
E(+−)

]
≤ Cx−1, P

[
E(−+)

]
≤ Cx−1 and P

[
E(−−)

]
≤ Cx−1.

Applying (3.24) yields

P [E] ≤ P
[
E(++)

]
+ P

[
E(+−)

]
+ P

[
E(−+)

]
+ P

[
E(−−)

]
≤ Cx−1.

In the same manner we can see that

P [F ] ≤ Cx−1.

Altogether, by (3.23), we have

P[x ≤ ‖τ̄ n − τ n‖ ≤ nδ] ≤ P [E] + P [F ] ≤ Cx−1,

which is our claim.
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3.3 Convergence in distribution

We obtain the stochastic boundedness of τ̄ n − τ n.

Proposition 3.22. If M2 <∞, then

lim
x→∞

lim sup
n→∞

P[‖τ̄ n − τ n‖ ≥ x] = 0.

Proof. By Lemma 3.21, there exist n0 ∈ N, δ > 0 and a constant C > 0 such that

P[‖τ̄ n − τ n‖ ≥ x] ≤ P[x ≤ ‖τ̄ n − τ n‖ ≤ nδ] + P[‖τ̄ n − τ n‖ > nδ]

≤ Cx−1 + P[‖τ̄ n − τ n‖ > nδ] (3.29)

for all x ≥ 2 and n ≥ n0. Fix for a moment n ≥ n0. Furthermore, we conclude that

P[‖τ̄ n − τ n‖ > nδ]

= P [‖τ̄ n − nθ + nθ − τ n‖ > nδ]

≤ P [‖τ̄ n − nθ‖+ ‖nθ − τ n‖ > nδ] by Tr. In.

≤ P
[
‖τ̄ n − nθ‖ >

1

2
nδ

]
+ P

[
‖nθ − τ n‖ >

1

2
nδ

]
by Lem. A.4. (3.30)

By Lemma A.1 (i), we get

‖nθ − τ n‖ = max {nθ1 − bnθ1c, nθ2 − bnθ2c} ≤ 1.

Accordingly, by definition of θ̄n (see (3.5)), it follows that

P[‖τ̄ n − τ n‖ > nδ] ≤ P
[∥∥θ̄n − θ∥∥ > 1

2
δ

]
+ P

[
1 >

1

2
nδ

]
.

By (3.29), we infer that

P[‖τ̄ n − τ n‖ ≥ x] ≤ Cx−1 + P

[∥∥θ̄n − θ∥∥ > 1

2
δ

]
+ P

[
1 >

1

2
nδ

]
.

The weak consistency of θ̄n, given in Theorem 3.12, implies

lim sup
n→∞

P[‖τ̄ n − τ n‖ ≥ x] ≤ Cx−1.

Letting x→∞ completes the proof.
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Chapter 3 Known expectations

To ensure convergence in distribution of τ̄ n−τ n, we look closer at the limit process Γ. The

aim is to find conditions such that Γ has almost surely an unique minimizer (assumption

(iii) of Theorem 2.3). We begin by considering the minimizers of Γ1 and Γ2. After this we

establish the relation to the minimizers of Γ.

Lemma 3.23. There exist a minimizer of Γ1 and a minimizer of Γ2 almost surely.

Proof. We only show the assertion for Γ1. The same approach can be applied to Γ2. Set

Yi := Yi(k) :=


2(β − α) (ξi,2 − β) + (α− β)2, k ≥ 0,

−2(β − α) (ξi,1 − α) + (α− β)2, k < 0

for i ∈ N. By Remark 3.16, for each k ∈ Z, Γ1 can be written as

Γ1(k) =

|k|∑
i=1

Yi.

Note that Yi, i ∈ N, are independent and identically distributed, which follow from the

assumptions to the sequences (ξi,1)i∈N and (ξi,2)i∈N. The Strong Law of Large Numbers

(see for instance Schmidt [24, p. 347, Theorem 15.2.7]) yields

1
|k|Γ1(k) = 1

|k|

|k|∑
i=1

Yi
a.s.−−−−→
|k|→∞

E[Y1] = (α− β)2.

By model assumption α 6= β, we have (α− β)2 > 0. By 1
|k| −−−−→|k|→∞

0, it follows that

Γ1(k)
a.s.−−−−→
|k|→∞

∞.

We thus get Argmin(Γ1) 6= ∅ almost surely.

Lemma 3.24. Let Q1, Q2 and Q3 be continuous distributions. Then each process Γ1 and

Γ2 has an unique minimizer almost surely.
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3.3 Convergence in distribution

Proof. We only show the claim for Γ1 again. A similar approach can be applied to Γ2.

Lemma 3.23 and similar arguments used in the proof of Lemma 3.3 lead to

P[|Argmin(Γ1)| = 1] ≥ 1−
∑

k1 6=k2∈Z

P[Γ1(k1)− Γ1(k2) = 0]. (3.31)

We discuss the cases k1 > k2 and k2 > k1 to compute Γ1(k1)− Γ1(k2) by Equation (3.18).

(i) (a) Let k1 > k2 > 0. Then

Γ1(k1)− Γ1(k2) =

k1∑
i=1

a1(ξi,2)−
k2∑
i=1

a1(ξi,2) =

k1∑
i=k2+1

a1(ξi,2).

(b) Let k1 > 0 > k2. Then

Γ1(k1)− Γ1(k2) =

k1∑
i=1

a1(ξi,2) +

−k2∑
i=1

a1(ξi,1).

(c) Let 0 > k1 > k2. Then

Γ1(k1)− Γ1(k2) = −
−k1∑
i=1

a1(ξi,1) +

−k2∑
i=1

a1(ξi,1) =

−k2∑
i=−k1+1

a1(ξi,1).

(ii) (a) Let k2 > k1 > 0. Then

Γ1(k1)− Γ1(k2) =

k1∑
i=1

a1(ξi,2)−
k2∑
i=1

a1(ξi,2) = −
k2∑

i=k1+1

a1(ξi,2).

(b) Let k2 > 0 > k1. Then

Γ1(k1)− Γ1(k2) = −
−k1∑
i=1

a1(ξi,1)−
k2∑
i=1

a1(ξi,2).

(c) Let 0 > k2 > k1. Then

Γ1(k1)− Γ1(k2) = −
−k1∑
i=1

a1(ξi,1) +

−k2∑
i=1

a1(ξi,1) = −
−k1∑

i=−k2+1

a1(ξi,1).
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Chapter 3 Known expectations

By the independence assumptions to the sequences (ξi,1)i∈N and (ξi,2)i∈N, we obtain sums

of independent random variables in each case. Since Q1, Q2 and Q3 are continuous distri-

butions, we can conclude by convolution and definition of a1 (see (3.2)) that Γ1(k1)−Γ1(k2)

are continuous distributed random variables for each k1, k2 ∈ Z with k1 6= k2, and conse-

quently P[Γ1(k1) − Γ1(k2) = 0] = 0 for all k1, k2 ∈ Z with k1 6= k2. By (3.31), we have

P[|Argmin(Γ1)| = 1] = 1.

Lemma 3.25. It holds

Argmin(Γ) = Argmin(Γ1)× Argmin(Γ2).

Proof. The proof is straightforward.

(i) We first prove that (m1,m2) ∈ Argmin(Γ) implies m1 ∈ Argmin(Γ1) and m2 ∈

Argmin(Γ2). Fix (m1,m2) ∈ Argmin(Γ). As defined in (3.18), it follows that

Γ1(m1) + Γ2(m2) = Γ(m1,m2) ≤ Γ(k, l) = Γ1(k) + Γ2(l)

for all (k, l) ∈ Z2. We choose l := m2 to get Γ1(m1) ≤ Γ1(k) for all k ∈ Z or k := m1

to see Γ2(m2) ≤ Γ2(l) for all l ∈ Z. Hence m1 ∈ Argmin(Γ1) and m2 ∈ Argmin(Γ2).

(ii) Fix m1 ∈ Argmin(Γ1) and m2 ∈ Argmin(Γ2). To deduce (m1,m2) ∈ Argmin(Γ),

observe by Equation (3.18) that

Γ(m1,m2) = Γ1(m1) + Γ2(m2) ≤ Γ1(k) + Γ2(l) = Γ(k, l)

for all (k, l) ∈ Z2.

Proposition 3.26. Let Q1, Q2 and Q3 be continuous distributions. Then Γ has an unique

minimizer almost surely.

Proof. Combining Lemma 3.24 with Lemma 3.25 gives the assertion.
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3.3 Convergence in distribution

We are now in a position to show that τ̄ n − τ n converges in distribution to the minimizer

of a sum of random walks if the underlying distributions are continuous.

Theorem 3.27. If M2 <∞, then

lim sup
n→∞

P[τ̄ n − τ n ∈ F ] ≤ P[Argmin(Γ) ∩ F 6= ∅] for all F ⊆ Z2.

In addition, if Q1, Q2 and Q3 are continuous, then Argmin(Γ) = {T } almost surely and

τ̄ n − τ n
L−−−→

n→∞
T in Z2.

Proof. We apply Theorem 2.3. By Lemmas 3.14, 3.23 and 3.25, we first observe that

τ̄ n − τ n is a minimizer of Γ̄n and Γ has at least one minimizer. Assumptions (i) and (ii)

of Theorem 2.3 are fulfilled by Propositions 3.18 and 3.22, which give the first claim. The

second claim is obtained by applying Proposition 3.26.

Corollary 3.28. Suppose that M2 < ∞. Let Q1, Q2 and Q3 be continuous distributions.

Then

τ̄n − τn
L−−−→

n→∞
argmin
k∈Z

Γ1(k) in Z and σ̄n − σn
L−−−→

n→∞
argmin
l∈Z

Γ2(l) in Z.

Proof. By Theorem 3.27 and Lemma 3.25, we get

(τ̄n−τn, σ̄n−σn) = τ̄ n−τ n
L−−−→

n→∞
argmin
(k,l)∈Z2

Γ(k, l) =

(
argmin
k∈Z

Γ1(k), argmin
l∈Z

Γ2(l)

)
in Z2.

Since the projections are continuous, the assertion follows from the Continuous Mapping

Theorem (see for instance Van der Vaart [26, p. 7, Theorem 2.3]).
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Chapter 3 Known expectations

3.4 Asymptotic confidence region

As an application of Theorem 3.27, this section is intended to present an asymptotic

confidence region to estimate the moments of change τ n = (τn, σn).

The statistician is interested in finding a preferably small (asymptotic) confidence region.

For this purpose, let F−1
‖T ‖(ϑ), ϑ ∈ (0, 1), stand for the ϑ-quantile of the distribution function

F‖T ‖ of ‖T ‖, where T is the almost surely unique minimizer of Γ (see Theorem 3.27).

Based on Theorem 3.27 and the Continuous Mapping Theorem, we derive an asymptotic

confidence region.

Theorem 3.29. Suppose that M2 < ∞. Let Q1, Q2 and Q3 be continuous distributions

and ϑ ∈ (0, 1). For each n ∈ N, the random interval

In(ϑ) :=
[
τ̄n − F−1

‖T ‖(1− ϑ), τ̄n + F−1
‖T ‖(1− ϑ)

]
×
[
σ̄n − F−1

‖T ‖(1− ϑ), σ̄n + F−1
‖T ‖(1− ϑ)

]
is an asymptotic confidence region for τ n = (τn, σn) at level 1− ϑ.

Proof. Fix ϑ ∈ (0, 1). Since the maximum norm is non-negative and continuous on Z2, by

Theorem 3.27 and the Continuous Mapping Theorem (see for instance Van der Vaart [26,

p. 7, Theorem 2.3]), we conclude that

‖τ̄ n − τ n‖
L−−−→

n→∞
‖T ‖ in N0.

Since ‖τ̄ n − τ n‖ and ‖T ‖ are discrete random variables, we obtain

lim
n→∞

P[τ n ∈ In(ϑ)] = lim
n→∞

P
[
max{|τ̄n − τn|, |σ̄n − σn|} ≤ F−1

‖T ‖(1− ϑ)
]

= lim
n→∞

P
[
‖τ̄ n − τ n‖ ≤ F−1

‖T ‖(1− ϑ)
]

= P
[
‖T ‖ ≤ F−1

‖T ‖(1− ϑ)
]

≥ 1− ϑ.
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3.4 Asymptotic confidence region

Observe that the quantile F−1
‖T ‖(1 − ϑ), ϑ ∈ (0, 1), which is used in the theorem above, is

unknown. Though, it can be approximated by a Monte-Carlo simulation:

(i) Generate N ∈ N processes Γ(1), ...,Γ(N) as defined in (3.18):

(1) Determine ξi,r, i ∈ N, 1 ≤ r ≤ 3, based on bootstrap method:

(a) Generate m ∈ N independent random variables U1, ..., Um ∼ U(0, 1).

(b) LetGm,1 andGm,2 andGm,3 be the empirical distribution functions pertaining

to X1, ..., Xτ̄n and Xτ̄n+1, ..., Xσ̄n and Xσ̄n+1, ..., Xn. For each 1 ≤ i ≤ m put

ξi,r := G−1
m,r(Ui), 1 ≤ r ≤ 3.

(2) Use the known expectations α, β and γ to compute a1 (ξi,r), 1 ≤ i ≤ m, 1 ≤ r ≤ 2,

and a2 (ξi,r), 1 ≤ i ≤ m, 2 ≤ r ≤ 3, as defined in (3.2).

(ii) For each 1 ≤ i ≤ N compute T (i) := argmin(k,l)∈{−m,...,m}2 Γ(i)(k, l) by Lemma 3.25.

(iii) Let HN be the empirical distribution function pertaining to
∥∥∥T (1)

∥∥∥ , ...,∥∥∥T (N)
∥∥∥. Then

H−1
N (1− ϑ) is a reasonable estimate for F−1

‖T ‖(1− ϑ).

For further investigation of the asymptotic confidence region based on a simulation study,

we refer the reader to Chapter 5. Here, numerous asymptotic confidence regions are im-

plemented to determine the approximated coverage probability.
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Chapter 4

Unknown expectations

In this chapter we proceed with the estimation of the multiple change-point in a more

general setting. From now on, the expectations α = (α, β, γ) are assumed to be unknown.

At first we simultaneously estimate the multiple change-point and the expectations by the

least squares method. Furthermore, weak consistency of the resulting estimators is proved.

The next section is devoted to the introduction of another estimator of the multiple change-

point. We state and prove consistency and convergence in distribution, which are the main

results of this work. Finally, an asymptotic confidence region for the moments of change

τ n = (τn, σn) is derived.

4.1 Parameter estimation

Here and subsequently, we let X̄u,v, u, v ∈ N0 with u < v ≤ n, stand for

X̄u,v :=
1

v − u

v∑
i=u+1

Xi.
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Chapter 4 Unknown expectations

4.1.1 Estimation approach

At first our focus lies on the simultaneous estimation of the moments of change τ n =

(τn, σn) and the expectations α = (α, β, γ) by the least squares method. To do this, we

are interested in finding all minimizing points of the random criterion function

Sn(k, l, a, b, c) :=
k∑
i=1

(Xi − a)2 +
l∑

i=k+1

(Xi − b)2 +
n∑

i=l+1

(Xi − c)2, (k, l) ∈ ∆n, (4.1)

(a, b, c) ∈ R3.

To solve this problem on a simple way, let us introduce the random criterion function

M̂n(k, l) := kX̄2
0,k + (l − k)X̄2

k,l + (n− l)X̄2
l,n, (k, l) ∈ ∆n.

Roughly speaking, Sn can be minimized by maximizers of M̂n and means of segments of

X1, ..., Xn, where the borders of each segment are obtained by the maximizers of M̂n.

Theorem 4.1. Let n ∈ N. Then

Argmin (Sn) =

{(
k̂n, l̂n, X̄0,k̂n

, X̄k̂n,l̂n
, X̄l̂n,n

)
∈ ∆n ×R3

∣∣∣∣ (k̂n, l̂n) ∈ Argmax
(
M̂n

)}
.

The following lemma is essential for the proof.

Lemma 4.2 (Interchange of order of minimization). Let p, q ∈ N. For any sets A ⊆ Rp

and B ⊆ Rq let f : A×B → R̄ be a mapping. Set

f̃B(a) := inf
b∈B

f(a,b) and f̃A(b) := inf
a∈A

f(a,b).

Then

inf
(a,b)∈A×B

f(a,b) = inf
a∈A

f̃B(a) = inf
b∈B

f̃A(b)

and

Arginf(f) =

{(
ā, b̄

)
∈ A×B

∣∣∣∣ā ∈ Arginf
a∈A

f̃B(a), b̄ ∈ Arginf
b∈B

f (ā,b)

}
=

{(
ā, b̄

)
∈ A×B

∣∣∣∣b̄ ∈ Arginf
b∈B

f̃A(b), ā ∈ Arginf
a∈A

f
(
a, b̄

)}
.
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4.1 Parameter estimation

Proof. An appropriate assertion for supremizing problems was shown in Albrecht [1, p. 59,

A.1]. A similar proof can be used for infimizing problems.

Proof of Theorem 4.1. The proof is divided into two steps. Fix n ∈ N and write

Ŝn(k, l) :=
k∑
i=1

(
Xi − X̄0,k

)2
+

l∑
i=k+1

(
Xi − X̄k,l

)2
+

n∑
i=l+1

(
Xi − X̄l,n

)2
, (k, l) ∈ ∆n.

(i) We begin by proving

Argmin (Sn)

=

{(
k̂n, l̂n, X̄0,k̂n

, X̄k̂n,l̂n
, X̄l̂n,n

)
∈ ∆n ×R3

∣∣∣∣ (k̂n, l̂n) ∈ Argmin
(
Ŝn

)}
(4.2)

based on Lemma 4.2. Fix (k, l) ∈ ∆n and consider Sn(k, l, ·) as a function on R3 at

first. An easy computation of the gradient and the Hessian matrix shows that

∇Sn(k, l, a, b, c) =


−2

k∑
i=1

Xi + 2ka

−2
l∑

i=k+1

Xi + 2(l − k)b

−2
n∑

i=l+1

Xi + 2(n− l)c

 and

∇2Sn(k, l, a, b, c) =


2k 0 0

0 2(l − k) 0

0 0 2(n− l)

 .

For all y = (y1, y2, y3) ∈ R3\{0} we have

yT∇2Sn(k, l, a, b, c)y = 2
(
ky2

1 + (l − k)y2
2 + (n− l)y2

3

)
> 0

by (k, l) ∈ ∆n. Accordingly, the Hessian matrix is positive-definit. Therefore,

Sn(k, l, ·) is strictly convex. We are able to conclude that Sn(k, l, ·) has an unique

minimizer. Using the necessary condition ∇Sn(k, l, a, b, c) = 0 we get

(
X̄0,k, X̄k,l, X̄l,n

)
= argmin

(a,b,c)∈R3

Sn(k, l, ·). (4.3)
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Altogether, by definitions, we have

min
(a,b,c)∈R3

Sn(k, l, a, b, c) = Sn
(
k, l, X̄0,k, X̄k,l, X̄l,n

)
= Ŝn(k, l)

for all (k, l) ∈ ∆n. We now apply Lemma 4.2. By definition of Ŝn, it is clear that we

can find an element
(
k̂n, l̂n

)
∈ Argmin

(
Ŝn

)
. By (4.3), we have(

X̄0,k̂n
, X̄k̂n,l̂n

, X̄l̂n,n

)
= argmin

(a,b,c)∈R3

Sn

(
k̂n, l̂n, ·

)
,

which proves the claim (4.2) .

(ii) In the second part we show the theorem. By the Binomial Formula, a simple calcu-

lation yields

Ŝn(k, l) =
n∑
i=1

X2
i − M̂n(k, l)

for all (k, l) ∈ ∆n. Since the sum does not depend on (k, l) ∈ ∆n, we have

Argmin
(
Ŝn

)
= Argmax

(
M̂n

)
.

The proof is completed by combining this with (4.2).

Similarly to Equation (3.3), we use a choice function φ̂ : Argmin
(
M̂n

)
−→ ∆n if more

than one minimizing point of M̂n exists. Write

τ̂ n := (τ̂n, σ̂n) := argmax
(k,l)∈∆n

M̂n(k, l) (4.4)

for τ̂ n = φ̂
(

Argmin
(
M̂n

))
. Furthermore, let

α̂n :=
(
α̂n, β̂n, γ̂n

)
:=
(
X̄0,τ̂n , X̄τ̂n,σ̂n , X̄σ̂n,n

)
. (4.5)

According to Theorem 4.1, the parameter vector (τ n,α) ∈ ∆n × R3 can be estimated by

the least squares estimator

(τ̂ n, α̂n) ∈ Argmin(Sn). (4.6)
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Remark 4.3. Albrecht [1] has investigated the estimation of multiple change-points in

normal distribution models with changes in mean (variance is constant). The maximum-

likelihood method was applied to estimate the moments of change τ n = (τn, σn) and the

unknown expectations α = (α, β, γ) simultaneously. Now, it turns out that the maximum-

likelihood estimator in this parametric model and the least squares estimator (τ̂ n, α̂n) in

our non-parametric model are identical.

A simulation study (see Chapter 5 for more details) gives the conjecture that M̂n has an

unique minimizer if all distributions are continuous.

Conjecture 4.4. Let n ∈ N and let Q1, Q2, Q3 be continuous distributions. Then∣∣∣Argmax
(
M̂n

)∣∣∣ = 1 almost surely.

The further approach to estimate the multiple change-point θ = (θ1, θ2) is analogous to

the last part of Section 3.1. We define the estimator

θ̂n :=
1

n
τ̂ n (4.7)

for the multiple change-point and set

ρ̂n(s, t) :=
1

n
M̂n(bnsc, bntc), (s, t) ∈ Θn,

where Θn is given by (3.6).

Lemma 4.5. Let n ∈ N. Then

θ̂n = argmax
(s,t)∈Θn

ρ̂n(s, t).

Proof. By similar arguments used in the proof of Lemma 3.4, we obtain the claim.

Remark 4.6. The factor n−1 in the definition of ρ̂n does not influence the maximizing

points of ρ̂n, but the proof of consistency of θ̂n requires this factor.
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Lemma 4.7. ρ̂n, n ∈ N, is a stochastic process with trajectories in the multivariate Sko-

rokhod space D(Θn).

Proof. The proof of Lemma 3.6 remains valid for ρ̂n and M̂n instead of ρ̄n and M̄n.

4.1.2 Consistency of the multiple change-point estimator

In this section we discuss the weak and strong consistency of θ̂n. To apply Theorem 2.1

again, some results are adapted from Albrecht [1].

Let us introduce the function ρ̂ : Θ −→ R defined by

ρ̂(s, t) =



tα2 + (1− t)
(
θ1−t
1−t α + θ2−θ1

1−t β + 1−θ2
1−t γ

)2
, (s, t) ∈ Θ1,

sα2 + (t− s)
(
θ1−s
t−s α + t−θ1

t−s β
)2

+ (1− t)
(
θ2−t
1−t β + 1−θ2

1−t γ
)2
, (s, t) ∈ Θ2,

sα2 + (t− s)
(
θ1−s
t−s α + θ2−θ1

t−s β + t−θ2
t−s γ

)2
+ (1− t)γ2, (s, t) ∈ Θ3,

s
(
θ1
s
α + s−θ1

s
β
)2

+ (t− s)β2 + (1− t)
(
θ2−t
1−t β + 1−θ2

1−t γ
)2
, (s, t) ∈ Θ4,

s
(
θ1
s
α + s−θ1

s
β
)2

+ (t− s)
(
θ2−s
t−s β + t−θ2

t−s γ
)2

+ (1− t)γ2, (s, t) ∈ Θ5,

s
(
θ1
s
α + θ2−θ1

s
β + s−θ2

s
γ
)2

+ (1− s)γ2, (s, t) ∈ Θ6,

(4.8)

where Θ1, ...,Θ6 are given by (3.12). The function ρ̂ is illustrated in Figure 4.1.

We show uniform convergence in probability of ρ̂n to ρ̂ (assumption (i) of Theorem 2.1).

Proposition 4.8. Suppose there is some p ∈ (2,∞) such that Mp <∞. Then

sup
(s,t)∈Θn

|ρ̂n(s, t)− ρ̂(s, t)| P−−−→
n→∞

0.

Proof. Fix n ∈ N for a moment. By Lemma 3.2 in Albrecht [1, p. 24], we get the

decomposition ρ̂n(s, t) = δ̂n(s, t)+%̂n(s, t) for all (s, t) ∈ Θn, where δ̂n is a certain stochastic
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Figure 4.1: Plot of ρ̂ for θ = (θ1, θ2) = (0.4, 0.8) and α = (α, β, γ) = (0.6, 1, 0.5).

process and %̂n a deterministic function. The concrete forms are specified in Lemma B.1.

We have

sup
(s,t)∈Θn

|ρ̂n(s, t)− ρ̂(s, t)| = sup
(s,t)∈Θn

∣∣∣δ̂n(s, t) + %̂n(s, t)− ρ̂(s, t)
∣∣∣

≤ sup
(s,t)∈Θn

(∣∣∣δ̂n(s, t)
∣∣∣+ |%̂n(s, t)− ρ̂(s, t)|

)
by Tr. In.

≤ sup
(s,t)∈Θn

∣∣∣δ̂n(s, t)
∣∣∣+ sup

(s,t)∈Θn

|%̂n(s, t)− ρ̂(s, t)| . (4.9)

Furthermore, we find in the proof of Lemma 3.6 in Albrecht [1, p. 42-54] that for each

ε > 0 there exists a constant Cp > 0, which depends only on p, such that

P

[
sup

(s,t)∈Θn

∣∣∣δ̂n(s, t)
∣∣∣ > ε

]
≤ Cpε

−pn−(p/2−1) lnn.

Since p > 2, we have p
2
− 1 > 0. L’Hôpital’s rule yields for all ε > 0

lim
n→∞

P

[
sup

(s,t)∈Θn

∣∣∣δ̂n(s, t)
∣∣∣ > ε

]
≤ Cpε

−p lim
n→∞

n−(p/2−1) lnn

= Cpε
−p
(p

2
− 1
)−1

lim
n→∞

n−(p/2−1)

= 0,
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which leads to

sup
(s,t)∈Θn

∣∣∣δ̂n(s, t)
∣∣∣ P−−−→

n→∞
0.

Moreover, by Lemma 3.5 in Albrecht [1, p. 38], it holds

sup
(s,t)∈Θn

|%̂n(s, t)− ρ̂(s, t)| −−−→
n→∞

0. (4.10)

The assertion follows by applying (4.9).

We obtain assumption (ii) of Theorem 2.1 by the following proposition.

Proposition 4.9. The multiple change-point θ ∈ Θ is the well-separated maximizer of ρ̂.

Proof. This was proved by Albrecht [1, p. 32, Lemma 3.4].

We can now prove weak consistency of θ̂n.

Theorem 4.10. Suppose there is some p ∈ (2,∞) such that Mp <∞. Then

θ̂n
P−−−→

n→∞
θ.

Proof. We apply Theorem 2.1. ρ̂n, n ∈ N, is a stochastic process with trajectories in

the multivariate Skorokhod space by Lemma 4.7. ρ̂ has trajectories in the multivariate

Skorokhod space D(Θ), since ρ̂ is continuous, which was shown in Albrecht [1, p. 29,

Lemma 3.3]. Moreover, (Θn)n∈N ⊆ Θ is a sequence of sets such that Θn ⊆ Θn+1 for

every n ∈ N with
⋃
n∈NΘn = Θ. By Lemma 4.5, θ̂n is a maximizer of ρ̂n for any n ∈ N.

Assumption (i) of Theorem 2.1 and (2.2) are satisfied by Propositions 4.8 and 4.9. Applying

Theorem 2.1 and Remark 2.2 gives the claim.

Albrecht [1] even showed the strong consistency of θ̂n if there exists a larger moment.
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Theorem 4.11. Suppose there is some p ∈ (4,∞) such that Mp <∞. Then

θ̂n
a.s.−−−→
n→∞

θ.

Proof. The proof can be found in Albrecht [1, p. 52, Theorem 3.7].

4.1.3 Stochastic boundedness

We now treat stochastic boundedness of τ̂ n − τ n, which is required to prove consistency

of α̂n in the next section.

We begin with the observation that the function ρ̂ has a local peak at the multiple change-

point θ = (θ1, θ2).

Lemma 4.12. There exist δ > 0 and a constant L = L(δ) > 0 such that

ρ̂(θ1, θ2)− ρ̂(s, t) ≥ L‖(s, t)− (θ1, θ2)‖ (4.11)

for all (s, t) ∈ Bδ(θ1, θ2).

To show this lemma, we characterize the property (4.11) by directional derivatives. For

this purpose, let us recall the definition of directional derivatives. Let U ⊆ Rq, q ∈ N, be

an open set, f : U −→ R a mapping and v ∈ Rq a vector with ‖v‖ = 1. The limit

∂vf(t) := lim
λ↓0

f(t + λv)− f(t)

λ
(4.12)

is said to be directional derivative of f in t ∈ U if the limit exists.

Lemma 4.13. The following conditions are equivalent:

(i) ρ̂ sastisfies (4.11).

(ii) It holds max
{
∂(1,0)ρ̂(θ1, θ2), ∂(−1,0)ρ̂(θ1, θ2), ∂(0,1)ρ̂(θ1, θ2), ∂(0,−1)ρ̂(θ1, θ2)

}
< 0.
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Proof. Döring [9, p. 52, Lemma 3.11] showed the assertion for another function. The same

proof remains valid for ρ̂.

Proof of Lemma 4.12. The proof is straightforward. It is sufficient to compute the direc-

tional derivatives of ρ̂, which are given in Lemma 4.13. To this end, we have to consider ρ̂

on the domains Θ2, Θ3 and Θ4 (compare Equation (3.12) and Figure 3.1). As defined in

(4.8), the representation

ρ̂(s, t) =


sα2 + (t− s)

(
θ1−s
t−s (α− β) + β

)2
+ (1− t)

(
θ2−t
1−t (β − γ) + γ

)2
, (s, t) ∈ Θ2,

sα2 + (t− s)
(
θ1−s
t−s (α− β) + β + t−θ2

t−s (γ − β)
)2

+ (1− t)γ2, (s, t) ∈ Θ3,

s
(
θ1−s
s

(α− β) + α
)2

+ (t− s)β2 + (1− t)
(
θ2−t
1−t (β − γ) + γ

)2
, (s, t) ∈ Θ4

simplifies the computation of the directional derivatives. We observe that

ρ̂(θ1, θ2) = θ1α
2 + (θ2 − θ1)β2 + (1− θ2)γ2.

We first look at

∂(−1,0)ρ̂(θ1, θ2) = lim
λ↓0

ρ̂(θ1 − λ, θ2)− ρ̂(θ1, θ2)

λ
.

For λ > 0 we have (θ1 − λ, θ2) ∈ Θ2. A trivial verification shows that

ρ̂(θ1 − λ, θ2)− ρ̂(θ1, θ2) =
λ2(α− β)2

θ2 − θ1 + λ
− λ(α− β)2.

Hence

∂(−1,0)ρ̂(θ1, θ2) = lim
λ↓0

(
λ(α− β)2

θ2 − θ1 + λ
− (α− β)2

)
= −(α− β)2.

In the same manner we can see that

∂(1,0)ρ̂(θ1, θ2) = lim
λ↓0

(
λ(α− β)2

θ1 + λ
− (α− β)2

)
= −(α− β)2,

∂(0,1)ρ̂(θ1, θ2) = lim
λ↓0

(
λ(β − γ)2

θ2 − θ1 + λ
− (β − γ)2

)
= −(β − γ)2,

∂(0,−1)ρ̂(θ1, θ2) = lim
λ↓0

(
λ(β − γ)2

1− θ2 + λ
− (β − γ)2

)
= −(β − γ)2.
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By model assumptions α 6= β and β 6= γ, we conclude that

max
{
−(α− β)2,−(β − γ)2

}
< 0,

which establishes condition (ii) in Lemma 4.13. An application of Lemma 4.13 completes

our proof.

The following both lemmas are useful to get an error estimate.

Lemma 4.14. Let %̂n be the deterministic function from Lemma B.1. Then there exist an

arbitrary small δ > 0, a constant L = L(δ) > 0 and n0 ∈ N such that

%̂n

(τn
n
,
σn
n

)
− %̂n(s, t) ≥ 1

2
L
‖(bnsc, bntc)− (τn, σn)‖

n
(4.13)

for all n ≥ n0 and (s, t) ∈ Bδ(θ1, θ2).

Proof. We first observe that
(
τn
n
, σn
n

)
∈ Θn by model assumption (1.1). Furthermore, by

Lemma 4.12, there exist an arbitrary small δ > 0 and a constant L = L(δ) > 0 such that

ρ̂(θ1, θ2) − ρ̂(s, t) ≥ L‖(s, t) − (θ1, θ2)‖ for all (s, t) ∈ Bδ(θ1, θ2). Moreover, for all n ∈ N

and (s, t) ∈ Bδ(θ1, θ2) we have

%̂n

(τn
n
,
σn
n

)
− %̂n(s, t)

=
(
%̂n

(τn
n
,
σn
n

)
− %̂n(s, t)

) n

‖(bnsc, bntc)− (τn, σn)‖
‖(bnsc, bntc)− (τn, σn)‖

n

=: bn(s, t)
‖(bnsc, bntc)− (τn, σn)‖

n
. (4.14)

The uniform convergence of %̂n, given in (4.10), and the properties of the floor function

(uniform convergence, see Lemma A.1 (iii)) lead to

lim
n→∞

bn(s, t) = lim
n→∞

%̂n
(
τn
n
, σn
n

)
− %̂n(s, t)∥∥∥( bnscn , bntc

n

)
−
(
σn
n
, τn
n

)∥∥∥ =
ρ̂(θ1, θ2)− ρ̂(s, t)

‖(s, t)− (θ1, θ2)‖
≥ L

uniformly for all (s, t) ∈ Bδ(θ1, θ2). Combining this with (4.14) ensures the existence of

n0 ∈ N such that (4.13) holds for all n ≥ n0 and (s, t) ∈ Bδ(θ1, θ2).
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Recall that ‖ · ‖ stands for the maximum norm. Let Gn,x,δ denote the set

Gn,x,δ := {(k, l) ∈ ∆n|x ≤ ‖(k, l)− (τn, σn)‖ ≤ nδ}

for n ∈ N, x > 0 and δ > 0.

Lemma 4.15. Let x > 0, δ > 0 and n ∈ N. Then

{x ≤ ‖τ̂ n − τ n‖ ≤ nδ} ⊆
⋃

(k,l)∈Gn,x,δ

{
ρ̂n

(
k

n
,
l

n

)
− ρ̂n

(τn
n
,
σn
n

)
≥ 0

}
.

Proof. It is easily seen that
(
k
n
, l
n

)
∈ Θn for (k, l) ∈ Gn,x,δ and

(
τn
n
, σn
n

)
∈ Θn by model

assumption (1.1). Conversely, suppose that there exists ω ∈ {x ≤ ‖τ̂ n − τ n‖ ≤ nδ}, but

ω /∈
⋃

(k,l)∈Gn,x,δ

{
ρ̂n

(
k

n
,
l

n

)
− ρ̂n

(τn
n
,
σn
n

)
≥ 0

}
.

It follows that ρ̂n
(
k
n
, l
n

)
− ρ̂n

(
τn
n
, σn
n

)
< 0 for all (k, l) ∈ Gn,x,δ. By definition of τ̂ n, we see

that τ̂ n = (τ̂n, σ̂n) ∈ ∆n, and so τ̂ n ∈ Gn,x,δ by assumption. The definition of θ̂n gives

0 > ρ̂n

(
τ̂n
n
,
σ̂n
n

)
− ρ̂n

(τn
n
,
σn
n

)
= ρ̂n

(
1

n
τ̂ n

)
− ρ̂n

(
1

n
τ n

)
= ρ̂n

(
θ̂n

)
− ρ̂n

(
1

n
τ n

)
,

which contradicts the fact that θ̂n maximizes ρ̂n by Lemma 4.5.

The following error estimate provides the basis for the proof of stochastic boundedness.

Lemma 4.16. Suppose there is some p ∈ (2,∞) such that Mp < ∞. Then there exist

n0 ∈ N, δ > 0, κ ∈
(
0, 1

2

)
and a constant C > 0 such that for all n ≥ n0 we have

P[x ≤ ‖τ̂ n − τ n‖ ≤ nδ] ≤ C
(
n−(p/2−1) + x−(1/2−κ)p

)
for all x ≥ 4.
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Proof. Fix x ≥ 4. By Lemma 3.19, there exist δ > 0 and ñ0 ∈ N such that for all n ≥ ñ0

the conditions hold in Lemma 3.19. Let us regard n ≥ ñ0 and δ > 0 as fixed. By Lemma

4.15 and the decomposition of ρ̂n (Lemma B.1), we see that

{x ≤ ‖τ̂ n − τ n‖ ≤ nδ}

⊆
⋃

(k,l)∈Gn,x,δ

{
ρ̂n

(
k

n
,
l

n

)
− ρ̂n

(τn
n
,
σn
n

)
≥ 0

}

=
⋃

(k,l)∈Gn,x,δ

{
δ̂n

(
k

n
,
l

n

)
− δ̂n

(τn
n
,
σn
n

)
+ %̂n

(
k

n
,
l

n

)
− %̂n

(τn
n
,
σn
n

)
≥ 0

}
.

By Lemma 4.14, there exist a constant L = L(δ) > 0 and n̂0 ∈ N such that for all n ≥ n̂0

{x ≤ ‖τ̂ n − τ n‖ ≤ nδ}

⊆
⋃

(k,l)∈Gn,x,δ

{
δ̂n

(
k

n
,
l

n

)
− δ̂n

(τn
n
,
σn
n

)
− 1

2
L
‖(k, l)− (τn, σn)‖

n
≥ 0

}

=
⋃

(k,l)∈Gn,x,δ

{
n

‖(k, l)− (τn, σn)‖

(
δ̂n

(
k

n
,
l

n

)
− δ̂n

(τn
n
,
σn
n

))
≥ 1

2
L

}

⊆
⋃

x≤|k−τn|≤nδ
|k−τn|≥|l−σn|

{
n

|k − τn|

(
δ̂n

(
k

n
,
l

n

)
− δ̂n

(τn
n
,
σn
n

))
≥ 1

2
L

}

∪
⋃

x≤|l−σn|≤nδ
|l−σn|≥|k−τn|

{
n

|l − σn|

(
δ̂n

(
k

n
,
l

n

)
− δ̂n

(τn
n
,
σn
n

))
≥ 1

2
L

}

=: E ∪ F. (4.15)

To simplify notation, the fact that some in this proof defined sets and random variables

depend on n, x or δ is omitted. From now on, let n ≥ max{ñ0, n̂0}. We give the proof

only for the estimate of the probability of E; the other case follows the same pattern.
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Computing the absolute values give

E ⊆
⋃

x≤k−τn≤nδ
0≤l−σn≤k−τn

{
n

k − τn

(
δ̂n

(
k

n
,
l

n

)
− δ̂n

(τn
n
,
σn
n

))
≥ 1

2
L

}

∪
⋃

x≤k−τn≤nδ
0≤σn−l≤k−τn

{
n

k − τn

(
δ̂n

(
k

n
,
l

n

)
− δ̂n

(τn
n
,
σn
n

))
≥ 1

2
L

}

∪
⋃

x≤τn−k≤nδ
0≤l−σn≤τn−k

{
n

τn − k

(
δ̂n

(
k

n
,
l

n

)
− δ̂n

(τn
n
,
σn
n

))
≥ 1

2
L

}

∪
⋃

x≤τn−k≤nδ
0≤σn−l≤τn−k

{
n

τn − k

(
δ̂n

(
k

n
,
l

n

)
− δ̂n

(τn
n
,
σn
n

))
≥ 1

2
L

}

=:
4⋃
i=1

Ei. (4.16)

The technique of the proof is presented for E1 and E2. Throughout the proof, we use the

abbreviation Su,v :=
∑v

i=u+1(Xi − E[Xi]) for u, v ∈ N0 with u < v. Let us consider E1.

We first observe that

τn + x ≤ k ≤ τn + nδ < σn ≤ l ≤ σn + nδ < n (4.17)

by Lemma 3.19. Hence
(
k
n
, l
n

)
∈ Θ5 ∩ Θn. By Lemma B.1 and the Binomial Formula, an

easy computation yields
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δ̂n

(
k

n
,
l

n

)
− δ̂n

(τn
n
,
σn
n

)
=

1

nk
(S0,τn + Sτn,k)

2 +
2(τnα + (k − τn)β)

nk
(S0,τn + Sτn,k) +

1

n(l − k)
(Sk,σn + Sσn,l)

2

+
2((σn − k)β + (l − σn)γ)

n(l − k)
(Sk,σn + Sσn,l) +

1

n(n− l)
S2
l,n +

2γ

n
Sl,n

−
[

1

nτn
S2

0,τn +
2α

n
S0,τn +

1

n(σn − τn)
(Sτn,k + Sk,σn)2 +

2β

n
(Sτn,k + Sk,σn)

+
1

n(n− σn)
(Sσn,l + Sl,n)2 +

2γ

n
(Sσn,l + Sl,n)

]
=

1

n

(
1

k
− 1

τn

)
S2

0,τn +
2(k − τn)(β − α)

nk
S0,τn +

2

nk
S0,τnSτn,k

+
1

n

(
1

k
− 1

σn − τn

)
S2
τn,k +

2τn(α− β)

nk
Sτn,k −

2

n(σn − τn)
Sτn,kSk,σn

+
1

n

(
1

l − k
− 1

σn − τn

)
S2
k,σn +

2(l − σn)(γ − β)

n(l − k)
Sk,σn +

2

n(l − k)
Sk,σnSσn,l

+
1

n

(
1

l − k
− 1

n− σn

)
S2
σn,l +

2(σn − k)(β − γ)

n(l − k)
Sσn,l −

2

n(n− σn)
Sσn,lSl,n

+
1

n

(
1

n− l
− 1

n− σn

)
S2
l,n

=:
13∑
i=1

A1,i(k, l).
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Observe that for l = σn we have A1,i(k, l) = 0, i ∈ {9, ..., 13}. We can conclude that

E1 =
⋃

x≤k−τn≤nδ
1≤l−σn≤k−τn

{
13∑
i=1

n

k − τn
A1,i(k, l) ≥

1

2
L

}
by def. of E1

⊆
13⋃
i=1

 ⋃
x≤k−τn≤nδ

1≤l−σn≤k−τn

{
n

k − τn
A1,i(k, l) ≥

1

26
L

} by Lem. A.4

=
13⋃
i=1

 max
x≤k−τn≤nδ

1≤l−σn≤k−τn

n

k − τn
A1,i(k, l) ≥

1

26
L


⊆

13⋃
i=1

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,i(k, l) ≥

1

26
L


=:

13⋃
i=1

E1,i. (4.18)

We now estimate the probabilities of the events E1,i, i ∈ {1, ..., 13}, successively. To do

this, note that there exist positive constants c1 = c1(θ1), c2 = c2(θ1, θ2), c3 = c3(θ2),

c4 = c4(δ), c5 = c5(θ1, θ2, δ) and natural numbers n1 = n1(θ1), n2 = n2(θ1, θ2), n3 = n3(θ2),

n4 = n4(δ), n5 = n5(θ1, θ2, δ) such that

τn ≥ c1n for all n ≥ n1,

σn − τn ≥ c2n for all n ≥ n2,

n− σn ≥ c3n for all n ≥ n3, (4.19)

bnδc ≥ c4n for all n ≥ n4,

σn − τn − bnδc ≥ c5n for all n ≥ n5.

To see this, consider for example the last assertion. By properties of the floor function (see

Lemma A.1 (i)), we obtain

σn − τn − bnδc = bnθ2c − bnθ1c − bnδc ≥ n(θ2 − θ1 − δ)− 1

for each n ∈ N. It is easily seen that there exists n5 = n5(θ1, θ2, δ) ∈ N such that

1 ≤ 1
2
n(θ2 − θ1 − δ) for all n ≥ n5. Accordingly, we get σn − τn − bnδc ≥ c5n with
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c5 := c5(θ1, θ2, δ) := 1
2
(θ2 − θ1 − δ) for each n ≥ n5.

From now on, fix n ≥ n0 := max{ñ0, n̂0, n1, n2, n3, n4, n5} and let

C = C(p, κ, δ, θ1, θ2, α, β, γ) > 0 be a generic constant and p > 2. We begin by estimating

the probability of E1,1. It holds

E1,1 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,1(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

∣∣∣∣ n

k − τn
A1,1(k, l)

∣∣∣∣p/2 ≥ ( 1

26
L

)p/2

 .

We have∣∣∣∣ n

k − τn
A1,1(k, l)

∣∣∣∣p/2 =

∣∣∣∣ n

(k − τn)n

(
1

k
− 1

τn

)
S2

0,τn

∣∣∣∣p/2 by def. of A1,1

= (kτn)−
p/2 |S0,τn|

p

< τ−pn |S0,τn|
p by k > τn

≤ Cn−p |S0,τn|
p by (4.19).

By Markov’s Inequality (see Lemma 2.4), Corollary 2.16, Mp < ∞ and τn ≤ n, it follows

that

P [E1,1] ≤ P [|S0,τn|
p ≥ Cnp] ≤ Cn−pE [|S0,τn|

p] ≤ CMpn
−pτ

p/2
n ≤ Cn−

p/2.

We next consider E1,2. It holds

E1,2 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,2(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

∣∣∣∣ n

k − τn
A1,2(k, l)

∣∣∣∣p ≥ ( 1

26
L

)p .
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We find that∣∣∣∣ n

k − τn
A1,2(k, l)

∣∣∣∣p =

∣∣∣∣2n(k − τn)(β − α)

(k − τn)nk
S0,τn

∣∣∣∣p by def. of A1,2

= 2p|α− β|pk−p |S0,τn|
p

< 2p|α− β|pτ−pn |S0,τn|
p by k > τn

≤ Cn−p |S0,τn|
p by (4.19).

Similar arguments used in the estimate of the probability of E1,1 give

P [E1,2] ≤ P [|S0,τn|
p ≥ Cnp] ≤ Cn−

p/2.

We next consider E1,3. It holds

E1,3 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,3(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

∣∣∣∣ n

k − τn
A1,3(k, l)

∣∣∣∣p ≥ ( 1

26
L

)p .

We see that∣∣∣∣ n

k − τn
A1,3(k, l)

∣∣∣∣p =

∣∣∣∣ 2n

(k − τn)nk
S0,τnSτn,k

∣∣∣∣p by def. of A1,3

= 2pk−p(k − τn)−p |S0,τnSτn,k|
p

< 2pτ−pn (k − τn)−p |S0,τnSτn,k|
p by k > τn

≤ Cn−p(k − τn)−p |S0,τnSτn,k|
p by (4.19).

Hence

P [E1,3] ≤ P
[

max
bxc≤k−τn≤bnδc

(k − τn)−p |S0,τnSτn,k|
p ≥ Cnp

]

= P

 τn+bnδc⋃
k=τn+bxc

{
(k − τn)−p |S0,τnSτn,k|

p ≥ Cnp
}

≤
τn+bnδc∑
k=τn+bxc

P [|S0,τnSτn,k|
p ≥ Cnp(k − τn)p] . (4.20)
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The independence of X1, ..., Xn establishes the independence of S0,τn and Sτn,k for each

k ∈ {τn + bxc, ..., τn + bnδc}. By Markov’s Inequality (see Lemma 2.4), we conclude that

P [E1,3] ≤ Cn−p
τn+bnδc∑
k=τn+bxc

(k − τn)−pE [|S0,τnSτn,k|
p]

= Cn−p
τn+bnδc∑
k=τn+bxc

(k − τn)−pE [|S0,τn|
p]E [|Sτn,k|

p] . (4.21)

We can deduce that

P [E1,3] ≤ CM2
pn
−pτ

p/2
n

τn+bnδc∑
k=τn+bxc

(k − τn)−
p/2 by Cor. 2.16

≤ Cn−
p/2

bnδc∑
m=bxc

m−
p/2 by τn ≤ n, Mp <∞

≤ Cn−
p/2

∞∑
m=1

m−
p/2.

Since the series converges for p > 2, we obtain

P [E1,3] ≤ Cn−
p/2.

We next consider E1,4. Since (k − τn)−1 > 0 and S2
τn,k
≥ 0, we have

n

k − τn
A1,4(k, l) =

n

(k − τn)n

(
1

k
− 1

σn − τn

)
S2
τn,k by def. of A1,4

≤ k−1(k − τn)−1S2
τn,k by k−1 − (σn − τn)−1 ≤ k−1

< τ−1
n (k − τn)−1S2

τn,k by k > τn

≤ Cn−1(k − τn)−1S2
τn,k by (4.19).

By definition of E1,4, it holds

E1,4 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,4(k, l) ≥ 1

26
L


⊆
{

max
bxc≤k−τn≤bnδc

(k − τn)−1S2
τn,k ≥ Cn

}
⊆
{

max
bxc≤k−τn≤bnδc

(k − τn)−
p/2|Sτn,k|p ≥ Cn

p/2

}
.
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Let S̃τn,m denote the process S̃τn,m :=
∑m

i=1(Xτn+i − E [Xτn+i]) for bxc ≤ m ≤ bnδc.

Notice that
(∣∣∣S̃τn,m∣∣∣p)

bxc≤m≤bnδc
is a non-negative submartingale by Lemma 2.14 and(

m−p/2
)
bxc≤m≤bnδc is a non-increasing sequence. By an index transformation and Chow’s

Inequality (Lemma 2.9), we get

P [E1,4]

≤ P
[

max
bxc≤k−τn≤bnδc

(k − τn)−
p/2|Sτn,k|p ≥ Cn

p/2

]
= P

[
max

bxc≤m≤bnδc
m−

p/2
∣∣∣S̃τn,m∣∣∣p ≥ Cn

p/2

]

≤ Cn−
p/2

bnδc−p/2E [∣∣∣S̃τn,bnδc∣∣∣p]+

bnδc−1∑
m=bxc

(
m−

p/2 − (m+ 1)−
p/2
)
E
[∣∣∣S̃τn,m∣∣∣p]


≤ Cn−

p/2

bnδc−p/2E [∣∣∣S̃τn,bnδc∣∣∣p]+
p

2

bnδc−1∑
m=bxc

m−(p/2+1)E
[∣∣∣S̃τn,m∣∣∣p]

 . (4.22)

The last inequality follows from Lemma A.6. We see that

P [E1,4] ≤ CMpn
−p/2

1 +
p

2

bnδc−1∑
m=bxc

m−1

 by Cor. 2.16

≤ Cn−
p/2
[
1 +

p

2
(1 + ln(bnδc − 1))

]
by Lem. A.5, Mp <∞

≤ Cn−
p/2 ln(n) by bnδc − 1 ≤ n.

We next consider E1,5. It holds

E1,5 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,5(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

∣∣∣∣ n

k − τn
A1,5(k, l)

∣∣∣∣p ≥ ( 1

26
L

)p .
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We find that∣∣∣∣ n

k − τn
A1,5(k, l)

∣∣∣∣p =

∣∣∣∣2nτn(α− β)

(k − τn)nk
Sτn,k

∣∣∣∣p by def. of A1,5

= 2p|α− β|pτ pnk−p(k − τn)−p |Sτn,k|
p

< 2p|α− β|p(k − τn)−p |Sτn,k|
p by k > τn

≤ C(k − τn)−p |Sτn,k|
p .

Applying Chow’s Inequality (Lemma 2.9) and Lemma A.6 similarly to (4.22) yields

P [E1,5] ≤ P
[

max
bxc≤k−τn≤bnδc

(k − τn)−p |Sτn,k|
p ≥ C

]

≤ C

bnδc−pE [∣∣∣S̃τn,bnδc∣∣∣p]+ p

bnδc−1∑
m=bxc

m−(p+1)E
[∣∣∣S̃τn,m∣∣∣p]

 . (4.23)

We get

P [E1,5] ≤ CMp

bnδc−p/2 + p

bnδc−1∑
m=bxc

m−(p/2+1)

 by Cor. 2.16 (4.24)

≤ C
(
bnδc−p/2 + 2(bxc − 1)−

p/2
)

by Lem. A.5, Mp <∞.

Note that the properties of the floor function give bxc − 1 ≥ x − 2 ≥ 1
2
x for x ≥ 4. By

(4.19), we infer that

P [E1,5] ≤ C
(
n−

p/2 + x−
p/2
)
.

We next consider E1,6. It holds

E1,6 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,6(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

∣∣∣∣ n

k − τn
A1,6(k, l)

∣∣∣∣p ≥ ( 1

26
L

)p .
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We obtain

∣∣∣∣ n

k − τn
A1,6(k, l)

∣∣∣∣p =

∣∣∣∣ −2n

(k − τn)n(σn − τn)
Sτn,kSk,σn

∣∣∣∣p by def. of A1,6

= 2p(σn − τn)−p(k − τn)−p |Sτn,kSk,σn|
p

≤ Cn−p(k − τn)−p |Sτn,kSk,σn |
p by (4.19).

The independence of the observations X1, ..., Xn and (4.17) lead to the independence of

Sτn,k and Sk,σn for each k ∈ {τn + bxc, ..., τn + bnδc}. Applying subadditivity of P and

Markov’s Inequality similarly to (4.20) and (4.21) yields

P [E1,6] ≤ P
[

max
bxc≤k−τn≤bnδc

(k − τn)−p |Sτn,kSk,σn|
p ≥ Cnp

]
≤ Cn−p

τn+bnδc∑
k=τn+bxc

(k − τn)−pE [|Sτn,k|
p]E [|Sk,σn|

p] .

Since k > τn, we have σn − k ≤ σn − τn ≤ n. It follows that

P [E1,6] ≤ CM2
pn
−p

τn+bnδc∑
k=τn+bxc

(k − τn)−
p/2(σn − k)

p/2 by Cor. 2.16

≤ Cn−
p/2

τn+bnδc∑
k=τn+bxc

(k − τn)−
p/2 by σn − k ≤ n, Mp <∞

≤ Cn−
p/2,

since
∑∞

m=1 m
−p/2 <∞. We next consider E1,7. It holds

E1,7 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,7(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

∣∣∣∣ n

k − τn
A1,7(k, l)

∣∣∣∣p/2 ≥ ( 1

26
L

)p/2

 .
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Since σn < l, we have σn − τn − (l − k) < k − τn. We thus get

∣∣∣∣ n

k − τn
A1,7(k, l)

∣∣∣∣p/2
=

∣∣∣∣ n

(k − τn)n

(
1

l − k
− 1

σn − τn

)
S2
k,σn

∣∣∣∣p/2 by def. of A1,7

= (σn − τn)−
p/2(l − k)−

p/2(σn − τn − (l − k))
p/2(k − τn)−

p/2 |Sk,σn|
p

< (σn − τn)−
p/2(σn − k)−

p/2 |Sk,σn|
p

≤ Cn−
p/2(σn − k)−

p/2 |Sk,σn|
p by (4.19).

Put S̃m,σn :=
∑m

i=1(Xσn−i+1−E [Xσn−i+1]) for σn− τn−bnδc ≤ m ≤ σn− τn−bxc. Notice

that
(∣∣∣S̃m,σn∣∣∣p)

σn−τn−bnδc≤m≤σn−τn−bxc
is a non-negative submartingale by Lemma 2.14 and

(m−p)σn−τn−bnδc≤m≤σn−τn−bxc is a non-increasing sequence. By an index transformation and

similar arguments used in the case E1,4, we see that

P [E1,7] ≤ P
[

max
bxc≤k−τn≤bnδc

(σn − k)−
p/2 |Sk,σn|

p ≥ Cn
p/2

]
= P

[
max

σn−τn−bnδc≤m≤σn−τn−bxc
m−

p/2
∣∣∣S̃m,σn∣∣∣p ≥ Cn

p/2

]
≤ Cn−

p/2 ln(n).

We next consider E1,8. It holds

E1,8 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,8(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

∣∣∣∣ n

k − τn
A1,8(k, l)

∣∣∣∣p ≥ ( 1

26
L

)p .

81



Chapter 4 Unknown expectations

Since l > σn and k ≤ τn + bnδc, we have l − k > σn − τn − bnδc. We obtain∣∣∣∣ n

k − τn
A1,8(k, l)

∣∣∣∣p
=

∣∣∣∣2n(l − σn)(γ − β)

(k − τn)n(l − k)
Sk,σn

∣∣∣∣p by def. of A1,8

= 2p|β − γ|p(l − k)−p(l − σn)p(k − τn)−p |Sk,σn|
p

< 2p|β − γ|p(σn − τn − bnδc)−p |Sk,σn|
p by l − k > σn − τn − bnδc, l − σn ≤ k − τn

≤ Cn−p |Sk,σn|
p by (4.19).

In the previous case we have seen that
(∣∣∣S̃m,σn∣∣∣p)

σn−τn−bnδc≤m≤σn−τn−bxc
is a non-negative

submartingale. An index transformation leads to

P [E1,8] ≤ P
[

max
bxc≤k−τn≤bnδc

|Sk,σn|
p ≥ Cnp

]
= P

[
max

σn−τn−bnδc≤m≤σn−τn−bxc

∣∣∣S̃m,σn∣∣∣p ≥ Cnp
]

≤ Cn−pE
[∣∣∣S̃σn−τn−bxc,σn∣∣∣p] by Doob In.

≤ CMpn
−p(σn − τn − bxc)p/2 by Cor. 2.16

≤ Cn−
p/2 by σn − τn − bxc ≤ n, Mp <∞.

We next consider E1,9. It holds

E1,9 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,9(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

∣∣∣∣ n

k − τn
A1,9(k, l)

∣∣∣∣ ≥ 1

26
L

 .

Since l > σn and k ≤ τn + bnδc, we have l − k > σn − τn − bnδc. We get∣∣∣∣ n

k − τn
A1,9(k, l)

∣∣∣∣ =

∣∣∣∣ 2n

(k − τn)n(l − k)
Sk,σnSσn,l

∣∣∣∣ by def. of A1,9

= 2(l − k)−1(k − τn)−1 |Sk,σnSσn,l|

< 2(σn − τn − bnδc)−1(l − σn)−1 |Sk,σnSσn,l|

≤ Cn−1(l − σn)−1 |Sk,σnSσn,l| by (4.19).
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The penultimate inequality follows from l − k > σn − τn − bnδc and k − τn ≥ l − σn. It

follows that

E1,9 ⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

(l − σn)−1 |Sk,σnSσn,l| ≥ Cn


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤bnδc

(l − σn)−1 |Sk,σnSσn,l| ≥ Cn

 by k − τn ≤ bnδc

=

{(
max

bxc≤k−τn≤bnδc
|Sk,σn|

)(
max

1≤l−σn≤bnδc
(l − σn)−1 |Sσn,l|

)
≥ Cn

}
=: {UV ≥ Cn} .

The independence of the observations X1, ..., Xn and (4.17) lead to the independence of

the vectors
(
Sτn+bxc,σn , ..., Sτn+bnδc,σn

)
and

(
Sσn,σn+1, ..., Sσn,σn+bnδc

)
, which establishes the

independence of U and V . We infer that

P [E1,9] ≤ P [UV ≥ Cn]

=

∫
(0,∞)

P
[
V ≥ Cnu−1

]
PU(du) by Lem. A.9

≤
∫

(0,∞)

P
[
V p ≥ Cnpu−p

]
PU(du). (4.25)

To treat the integrand, we write S̃σn,m :=
∑m

i=1(Xσn+i − E [Xσn+i]) for 1 ≤ m ≤ bnδc.

Observe that
(∣∣∣S̃σn,m∣∣∣p)

1≤m≤bnδc
is a non-negative submartingale by Lemma 2.14 and

(m−p)1≤m≤bnδc is a non-increasing sequence. By an index transformation and similar argu-

ments used to get (4.23) and (4.24), we can deduce that
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P
[
V p ≥ Cnpu−p

]
= P

[(
max

1≤l−σn≤bnδc
(l − σn)−1 |Sσn,l|

)p
≥ Cnpu−p

]
= P

[
max

1≤m≤bnδc
m−p

∣∣∣S̃σn,m∣∣∣p ≥ Cnpu−p
]

≤ CMpn
−pup

bnδc−p/2 + p

bnδc−1∑
m=1

m−(p/2+1)


≤ Cn−pup

[
bnδc−p/2 + p

∞∑
m=1

m−(p/2+1)

]
by Mp <∞. (4.26)

Since the series converges for p > 2, there exists a constant C̃1 > 0 such that

bnδc−p/2 + p
∑∞

m=1 m
−(p/2+1) ≤ C̃1. Consequently,

P
[
V p ≥ Cnpu−p

]
≤ Cn−pup.

We conclude that

P [E1,9] ≤ Cn−p
∫

(0,∞)

up PU(du) by (4.25)

≤ Cn−p
∫
R

up PU(du)

= Cn−pE[Up]. (4.27)

Moreover, in the case E1,7 we have seen that
(∣∣∣S̃m,σn∣∣∣p)

σn−τn−bnδc≤m≤σn−τn−bxc
is a non-

negative submartingale. An index transformation gives

E [Up] = E

[(
max

bxc≤k−τn≤bnδc
|Sk,σn|

)p]
= E

[
max

σn−τn−bnδc≤m≤σn−τn−bxc

∣∣∣S̃m,σn∣∣∣p]
≤ CE

[∣∣∣S̃σn−τn−bxc,σn∣∣∣p] by Doob In.

≤ CMp(σn − τn − bxc)p/2 by Cor. 2.16

≤ Cn
p/2 by σn − τn − bxc ≤ n, Mp <∞.
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By (4.27), the result is

P [E1,9] ≤ Cn−
p/2.

We next consider E1,10. Since l > σn and k ≤ τn + bnδc, we have l − k > σn − τn − bnδc.

By (k − τn)−1 > 0 and S2
σn,l
≥ 0, we can assert that

n

k − τn
A1,10(k, l)

=
n

(k − τn)n

(
1

l − k
− 1

n− σn

)
S2
σn,l by def. of A1,10

≤ (l − k)−1(k − τn)−1S2
σn,l by (l − k)−1 − (n− σn)−1 ≤ (l − k)−1

< (σn − τn − bnδc)−1(l − σn)−1S2
σn,l by l − k > σn − τn − bnδc, k − τn ≥ l − σn

≤ Cn−1(l − σn)−1S2
σn,l by (4.19).

We obtain

E1,10 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,10(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

(l − σn)−1S2
σn,l ≥ Cn


⊆
{

max
1≤l−σn≤bnδc

(l − σn)−1S2
σn,l ≥ Cn

}
by k − τn ≤ bnδc

⊆
{

max
1≤l−σn≤bnδc

(l − σn)−
p/2|Sσn,l|p ≥ Cn

p/2

}
.

In the previous case we have seen that
(∣∣∣S̃σn,m∣∣∣p)

1≤m≤bnδc
is a non-negative submartingale.

Furthermore,
(
m−p/2

)
1≤m≤bnδc is a non-increasing sequence. An index transformation and

similar arguments applied in the case E1,4 lead to

P [E1,10] ≤ P
[

max
1≤l−σn≤bnδc

(l − σn)−
p/2|Sσn,l|p ≥ Cn

p/2

]
= P

[
max

1≤m≤bnδc
m−

p/2
∣∣∣S̃σn,m∣∣∣p ≥ Cn

p/2

]
≤ Cn−

p/2 ln(n).
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We next consider E1,11. Fix an arbitrary κ ∈
(
0, 1

2

)
. It holds

E1,11 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,11(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

∣∣∣∣ n

k − τn
A1,11(k, l)

∣∣∣∣p ≥ ( 1

26
L

)p .

Note that the properties of the floor function give k − τn ≥ bxc > x − 1 ≥ 1
2
x for x ≥ 2.

Hence∣∣∣∣ n

k − τn
A1,11(k, l)

∣∣∣∣p
=

∣∣∣∣2n(σn − k)(β − γ)

(k − τn)n(l − k)
Sσn,l

∣∣∣∣p by def. of A1,11

= 2p|β − γ|p(k − τn)−(1/2−κ)p(k − τn)−(1/2+κ)p(σn − k)p(l − k)−p |Sσn,l|
p

< 2(3/2−κ)p|β − γ|px−(1/2−κ)p(l − σn)−(1/2+κ)p |Sσn,l|
p

≤ Cx−(1/2−κ)p(l − σn)−(1/2+κ)p |Sσn,l|
p .

The penultimate inequality follows from k − τn > 1
2
x, k − τn ≥ l − σn and l > σn. Hence

E1,11 ⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

(l − σn)−(1/2+κ)p |Sσn,l|
p ≥ Cx(1/2−κ)p


⊆
{

max
1≤l−σn≤bnδc

(l − σn)−(1/2+κ)p |Sσn,l|
p ≥ Cx(1/2−κ)p

}
by k − τn ≤ bnδc.

We can now proceed analogously to (4.26). We conclude that

P [E1,11] ≤ P
[

max
1≤l−σn≤bnδc

(l − σn)−(1/2+κ)p |Sσn,l|
p ≥ Cx(1/2−κ)p

]
= P

[
max

1≤m≤bnδc
m−(1/2+κ)p

∣∣∣S̃σn,m∣∣∣p ≥ Cx(1/2−κ)p

]
≤ Cx−(1/2−κ)p

[
bnδc−κp +

(
1

2
+ κ

)
p
∞∑
m=1

m−(κp+1)

]
.

The series converges, because we find that κp + 1 > 1 for κ > 0 and p > 2. Therefore,

there exists C̃2 > 0 such that bnδc−κp + (1/2 + κ)p
∑∞

m=1 m
−(κp+1) ≤ C̃2. This gives

P [E1,11] ≤ Cx−(1/2−κ)p.

86



4.1 Parameter estimation

We next consider E1,12. It holds

E1,12 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,12(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

∣∣∣∣ n

k − τn
A1,12(k, l)

∣∣∣∣p ≥ ( 1

26
L

)p .

We have∣∣∣∣ n

k − τn
A1,12(k, l)

∣∣∣∣p =

∣∣∣∣ −2n

(k − τn)n(n− σn)
Sσn,lSl,n

∣∣∣∣p by def. of A1,12

= 2p(n− σn)−p(k − τn)−p |Sσn,lSl,n|
p

≤ 2p(n− σn)−p(l − σn)−p |Sσn,lSl,n|
p by k − τn ≥ l − σn

≤ Cn−p(l − σn)−p |Sσn,lSl,n|
p by (4.19).

The independence of the observations X1, ..., Xn and (4.17) lead to the independence of

Sσn,l and Sl,n for each l ∈ {σn + 1, ..., σn + bnδc}. We see that

E1,12 ⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

(l − σn)−p |Sσn,lSl,n|
p ≥ Cnp


⊆
{

max
1≤l−σn≤bnδc

(l − σn)−p |Sσn,lSl,n|
p ≥ Cnp

}
by k − τn ≤ bnδc.

Applying similar arguments used in the case E1,6 yields

P [E1,12] ≤ P
[

max
1≤l−σn≤bnδc

(l − σn)−p |Sσn,lSl,n|
p ≥ Cnp

]
≤ Cn−

p/2.

We next consider E1,13. It holds

E1,13 =

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

n

k − τn
A1,13(k, l) ≥ 1

26
L


⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

∣∣∣∣ n

k − τn
A1,13(k, l)

∣∣∣∣p/2 ≥ ( 1

26
L

)p/2

 .
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We find that∣∣∣∣ n

k − τn
A1,13(k, l)

∣∣∣∣p/2 =

∣∣∣∣ n

(k − τn)n

(
1

n− l
− 1

n− σn

)
S2
l,n

∣∣∣∣p/2 by def. of A1,13

= (n− σn)−
p/2(n− l)−p/2(k − τn)−

p/2(l − σn)
p/2 |Sl,n|p

≤ (n− σn)−
p/2(n− l)−p/2 |Sl,n|p by k − τn ≥ l − σn

≤ Cn−
p/2(n− l)−p/2 |Sl,n|p by (4.19).

Hence

E1,13 ⊆

 max
bxc≤k−τn≤bnδc
1≤l−σn≤k−τn

(n− l)−p/2 |Sl,n|p ≥ Cn
p/2


⊆
{

max
1≤l−σn≤bnδc

(n− l)−p/2 |Sl,n|p ≥ Cn
p/2

}
by k − τn ≤ bnδc.

Write S̃m,n :=
∑m

i=1(Xn−i+1 − E [Xn−i+1]) for n − σn − bnδc ≤ m ≤ n − σn − 1. Notice

that
(∣∣∣S̃m,n∣∣∣p)

n−σn−bnδc≤m≤n−σn−1
is a non-negative submartingale by Lemma 2.14 and(

m−p/2
)
n−σn−bnδc≤m≤n−σn−1

is a non-increasing sequence. By similar arguments applied in

the case E1,4, we obtain

P [E1,13] ≤ P
[

max
1≤l−σn≤bnδc

(n− l)−p/2 |Sl,n|p ≥ Cn
p/2

]
= P

[
max

n−σn−bnδc≤m≤n−σn−1
m−

p/2
∣∣∣S̃m,n∣∣∣p ≥ Cn

p/2

]
≤ Cn−

p/2 ln(n).

Altogether, by (4.18), the previous estimates provide

P[E1] ≤
13∑
i=1

P[E1,i] ≤ C
(
n−

p/2 + n−
p/2 ln(n) + x−

p/2 + x−(1/2−κ)p
)
, (4.28)

where x ≥ 4 and κ ∈
(
0, 1

2

)
. We next consider E2, which is given in (4.16). We will see

that we get a substantially deteriorate estimate. Observe that

τn + x ≤ k ≤ τn + nδ < σn − nδ ≤ l ≤ σn < n. (4.29)
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by Lemma 3.19. Hence
(
k
n
, l
n

)
∈ Θ4 ∩ Θn. By Lemma B.1 and the Binomial Formula, a

trivial verification shows that

δ̂n

(
k

n
,
l

n

)
− δ̂n

(τn
n
,
σn
n

)
=

1

nk
(S0,τn + Sτn,k)

2 +
2(τnα + (k − τn)β)

nk
(S0,τn + Sτn,k) +

1

n(l − k)
S2
k,l

+
2β

n
Sk,l +

1

n(n− l)
(Sl,σn + Sσn,n)2 +

2((σn − l)β + (n− σn)γ)

n(n− l)
(Sl,σn + Sσn,n)

−
[

1

nτn
S2

0,τn +
2α

n
S0,τn +

1

n(σn − τn)
(Sτn,k + Sk,l + Sl,σn)2

+
2β

n
(Sτn,k + Sk,l + Sl,σn) +

1

n(n− σn)
S2
σn,n +

2γ

n
Sσn,n

]
=

1

n

(
1

k
− 1

τn

)
S2

0,τn +
2(k − τn)(α− β)

nk
S0,τn +

2

nk
S0,τnSτn,k

+
1

n

(
1

k
− 1

σn − τn

)
S2
τn,k +

2τn(α− β)

nk
Sτn,k −

2

n(σn − τn)
Sτn,kSk,l

+
1

n

(
1

l − k
− 1

σn − τn

)
S2
k,l −

2

n(σn − τn)
Sk,lSl,σn −

2

n(σn − τn)
Sτn,kSl,σn

+
1

n

(
1

n− l
− 1

σn − τn

)
S2
l,σn +

2(n− σn)(γ − β)

n(n− l)
Sl,σn +

1

n(n− l)
Sl,σnSσn,n

+
1

n

(
1

n− l
− 1

n− σn

)
S2
σn,n +

2(σn − l)(β − γ)

n(n− l)
Sσn,n

=:
14∑
i=1

A2,i(k, l).

Observe that for l = σn we have A2,i(k, l) = 0, i ∈ {8, ..., 12}. We now proceed analogously

to (4.18) and obtain

E2 ⊆
14⋃
i=1

 max
bxc≤k−τn≤bnδc
1≤σn−l≤k−τn

n

k − τn
A2,i(k, l) ≥

1

28
L


=:

14⋃
i=1

E2,i. (4.30)

We next present further techniques to estimate the probabilities of E2,6 and E2,8. We first
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consider E2,6. It holds

E2,6 =

 max
bxc≤k−τn≤bnδc
1≤σn−l≤k−τn

n

k − τn
A2,6(k, l) ≥ 1

28
L


⊆

 max
bxc≤k−τn≤bnδc
1≤σn−l≤k−τn

∣∣∣∣ n

k − τn
A2,6(k, l)

∣∣∣∣p ≥ ( 1

28
L

)p .

We infer that∣∣∣∣ n

k − τn
A2,6(k, l)

∣∣∣∣p =

∣∣∣∣ −2n

(k − τn)n(σn − τn)
Sτn,kSk,l

∣∣∣∣p by def. of A2,6

= 2p(σn − τn)−p(k − τn)−p |Sτn,kSk,l|
p

≤ Cn−p(k − τn)−p |Sτn,kSk,l|
p by (4.19).

Therefore

E2,6 ⊆

 max
bxc≤k−τn≤bnδc
1≤σn−l≤k−τn

(k − τn)−p |Sτn,kSk,l|
p ≥ Cnp


⊆

 max
bxc≤k−τn≤bnδc
1≤σn−l≤bnδc

(k − τn)−p |Sτn,kSk,l|
p ≥ Cnp

 by k − τn ≤ bnδc

⊆
{

max
bxc≤k−τn≤bnδc

(
max

1≤σn−l≤bnδc
(k − τn)−p |Sτn,kSk,l|

p

)
≥ Cnp

}
=

τn+bnδc⋃
k=τn+bxc

{
max

1≤σn−l≤bnδc
|Sτn,kSk,l|

p ≥ Cnp(k − τn)p
}
. (4.31)

We next prove that (|Sτn,kSk,l|
p)σn−bnδc≤l≤σn−1 is a non-negative submartingale for each

k ∈ {τn + bxc, ..., τn + bnδc}. For this purpose, fix k ∈ {τn + bxc, ..., τn + bnδc} and let

Fl := σ(Xτn+1, ..., Xl) be the σ-algebra generated by Xτn+1, ..., Xl. Then (Fl)σn−bnδc≤l≤σn−1

is a filtration in A (σ-algebra in the probability space in our model). The independence of

the observations X1, ..., Xn and (4.29) lead to the independence of Sτn,k and Sk,l for every

l ∈ {σn − bnδc, ..., σn − 1}. By Corollary 2.16, there exists a constant C̃3 > 0 such that

E[|Sτn,kSk,l|p] = E[|Sτn,k|p]E[|Sk,l|p] ≤ C̃3M
2
p (k − τn)

p/2(l − k)
p/2
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for all l ∈ {σn−bnδc, ..., σn−1}, and consequently E[|Sτn,kSk,l|p] <∞ by Mp <∞. Further-

more, since k ≤ τn + bnδc < σn − bnδc by (4.29), it follows that |Sτn,k|
p is Fl- measurable.

By Lemma 2.14, we see that (|Sk,l|p)σn−bnδc≤l≤σn−1 is a non-negative submartingale. We

obtain

E [|Sτn,kSk,l+1|p |Fl] = |Sτn,k|
p
E[|Sk,l+1|p |Fl]

≥ |Sτn,k|
p |Sk,l|p

= |Sτn,kSk,l|
p .

We thus conclude that the process (|Sτn,kSk,l|
p)σn−bnδc≤l≤σn−1 is a non-negative submartin-

gale for each k ∈ {τn + bxc, ..., τn + bnδc} with respect to the filtration (Fl)σn−bnδc≤l≤σn−1.

By (4.31) and Doob’s Inequality (Lemma 2.10 (i)), it follows that

P [E2,6] ≤
τn+bnδc∑
k=τn+bxc

P

[
max

σn−bnδc≤l≤σn−1
|Sτn,kSk,l|

p ≥ Cnp(k − τn)p
]

≤ Cn−p
τn+bnδc∑
k=τn+bxc

(k − τn)−pE [|Sτn,kSk,σn−1|p] .

The independence of the observations X1, ..., Xn and (4.29) lead to the independence of

Sτn,k and Sk,σn−1 for each k ∈ {τn + bxc, ..., τn + bnδc}. Since k > τn, we conclude that

σn − 1− k < σn − τn − 1 ≤ n. It holds

P [E2,6] ≤ Cn−p
τn+bnδc∑
k=τn+bxc

(k − τn)−pE [|Sτn,k|
p]E [|Sk,σn−1|p]

≤ CM2
pn
−p

τn+bnδc∑
k=τn+bxc

(k − τn)−
p/2(σn − 1− k)

p/2 by Cor. 2.16

≤ Cn−
p/2

τn+bnδc∑
k=τn+bxc

(k − τn)−
p/2 by σn − 1− k ≤ n, Mp <∞.

Since
∑∞

m=1 m
−p/2 <∞ for p > 2, we get

P [E2,6] ≤ Cn−
p/2.
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We next consider E2,8. It holds

E2,8 =

 max
bxc≤k−τn≤bnδc
1≤σn−l≤k−τn

n

k − τn
A2,8(k, l) ≥ 1

28
L


⊆

 max
bxc≤k−τn≤bnδc
1≤σn−l≤k−τn

∣∣∣∣ n

k − τn
A2,8(k, l)

∣∣∣∣p ≥ ( 1

28
L

)p .

We see that∣∣∣∣ n

k − τn
A2,8(k, l)

∣∣∣∣p =

∣∣∣∣ −2n

(k − τn)n(σn − τn)
Sk,lSl,σn

∣∣∣∣p by def. of A2,8

= 2p(σn − τn)−p(k − τn)−p |Sk,lSl,σn|
p

≤ 2p(σn − τn)−p(σn − l)−p |Sk,lSl,σn|
p by k − τn ≥ σn − l

≤ Cn−p(σn − l)−p |Sk,lSl,σn|
p by (4.19).

We get

E2,8 ⊆

 max
bxc≤k−τn≤bnδc
1≤σn−l≤k−τn

(σn − l)−p |Sk,lSl,σn|
p ≥ Cnp


⊆

 max
bxc≤k−τn≤bnδc
1≤σn−l≤bnδc

(σn − l)−p |Sk,lSl,σn|
p ≥ Cnp

 by k − τn ≤ bnδc

⊆
{

max
bxc≤k−τn≤bnδc

(
max

1≤σn−l≤bnδc
(σn − l)−p |Sk,lSl,σn|

p

)
≥ Cnp

}
=

τn+bnδc⋃
k=τn+bxc

σn−1⋃
l=σn−bnδc

{|Sk,lSl,σn|
p ≥ Cnp(σn − l)p} .

The subadditivity of P and the Markov Inequality (see Lemma 2.4) imply

P [E2,8] ≤
τn+bnδc∑
k=τn+bxc

σn−1∑
l=σn−bnδc

P [|Sk,lSl,σn|
p ≥ Cnp(σn − l)p]

≤ Cn−p
τn+bnδc∑
k=τn+bxc

σn−1∑
l=σn−bnδc

(σn − l)−pE [|Sk,lSl,σn|
p] .
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The independence of the observations X1, ..., Xn and (4.29) lead to the independence of

Sk,l and Sl,σn for each k ∈ {τn + bxc, ..., τn + bnδc} and l ∈ {σn − bnδc, ..., σn − 1}. Since

l < σn and k > τn, we have l − k < σn − τn ≤ n. We deduce that

P [E2,8] ≤ Cn−p
τn+bnδc∑
k=τn+bxc

σn−1∑
l=σn−bnδc

(σn − l)−pE [|Sk,l|p]E [|Sl,σn|
p]

≤ CM2
pn
−p

τn+bnδc∑
k=τn+bxc

σn−1∑
l=σn−bnδc

(σn − l)−p/2(l − k)
p/2 by Cor. 2.16

≤ Cn−
p/2(bnδc − bxc+ 1)

σn−1∑
l=σn−bnδc

(σn − l)−p/2 by l − k ≤ n, Mp <∞

≤ Cn−(p/2−1)

σn−1∑
l=σn−bnδc

(σn − l)−p/2 by bnδc − bxc+ 1 ≤ n.

Since
∑∞

m=1 m
−p/2 <∞ for p > 2, we can assert that

P [E2,8] ≤ Cn−(p/2−1).

The remaining sets E2,i, i ∈ {1, ..., 14}\{6, 8}, can be handled as before. By (4.30), we get

P[E2] ≤
14∑
i=1

P[E2,i] ≤ C
(
n−

p/2 + n−(p/2−1) + n−
p/2 ln(n) + x−(1/2−κ)p

)
,

where x ≥ 4 and κ ∈
(
0, 1

2

)
. Similarly to (4.28) and above, we obtain such upper bounds

for the probabilities of E3 and E4. By (4.16), we see that

P[E] ≤
4∑
i=1

P[Ei] ≤ C
(
n−

p/2 + n−(p/2−1) + n−
p/2 ln(n) + x−

p/2 + x−(1/2−κ)p
)

≤ C
(
n−(p/2−1) + x−(1/2−κ)p

)
.

The last inequality follows from n−p/2 ≤ n−p/2 ln(n) ≤ n−(p/2−1) and x−p/2 ≤ x−(1/2−κ)p. The

same upper bound can be found for the probability of F on a similar way. By (4.15), the

result is

P [x ≤ ‖τ̂ n − τ n‖ ≤ nδ] ≤ P [E] + P [F ] ≤ C
(
n−(p/2−1) + x−(1/2−κ)p

)
.
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We now obtain stochastic boundedness of τ̂ n − τ n.

Proposition 4.17. Suppose there is some p ∈ (2,∞) such that Mp <∞. Then

lim
x→∞

lim sup
n→∞

P[‖τ̂ n − τ n‖ ≥ x] = 0.

Proof. The same proceeding as in the proof of Proposition 3.22 leads to

P[‖τ̂ n − τ n‖ ≥ x] ≤ P[x ≤ ‖τ̂ n − τ n‖ ≤ nδ] + P

[∥∥∥θ̂n − θ∥∥∥ > 1

2
δ

]
+ P

[
1 >

1

2
nδ

]
with δ > 0, x > 0 and n ∈ N. Applying the error estimate in Lemma 4.16 and the weak

consistency of θ̂n (see Theorem 4.10) we conclude that

lim sup
n→∞

P[‖τ̂ n − τ n‖ ≥ x] ≤ Cx−(1/2−κ)p,

where C > 0, x ≥ 4 and κ ∈
(
0, 1

2

)
. Letting x→∞ yields the claim.

4.1.4 Consistency of the estimator of expectations

This section contains the proof of weak consistency of α̂n, which is based on the stochastic

boundedness of τ̂ n − τ n.

Theorem 4.18. If M4 <∞, then

α̂n
P−−−→

n→∞
α.

Proof. Let us first recall that

α̂n =
(
α̂n, β̂n, γ̂n

)
P−−−→

n→∞
(α, β, γ) = α

if and only if

α̂n
P−−−→

n→∞
α, β̂n

P−−−→
n→∞

β and γ̂n
P−−−→

n→∞
γ.
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We give the proof only for the convergence in probability of β̂n to β. In the same manner

we can see the convergence in probability of α̂n to α and γ̂n to γ. Fix n ∈ N, ε > 0 and

x ≥ 1. To simplify notation, the fact that some mathematical objects, which are defined

in this proof depend on n, ε or x is omitted. Write

A :=
{∣∣∣β̂n − β∣∣∣ > ε

}
, A1 := {|τ̂n − τn| ≤ x} and A2 := {|σ̂n − σn| ≤ x} .

By the rules of De Morgan, we obtain

A = (A ∩ (A1 ∩ A2)) ∪
(
A ∩ (A1 ∩ A2){

)
⊆ (A ∩ A1 ∩ A2) ∪

(
A{

1 ∪ A{
2

)
.

By definition of β̂n, we thus get

P
[∣∣∣β̂n − β∣∣∣ > ε

]
≤ P

[∣∣∣∣∣ 1

σ̂n − τ̂n

σ̂n∑
i=τ̂n+1

(Xi − β)

∣∣∣∣∣ > ε, |τ̂n − τn| ≤ x, |σ̂n − σn| ≤ x

]

+ P [|τ̂n − τn| > x] + P [|σ̂n − σn| > x]

=: P1 + P2 + P3. (4.32)

At the end of the proof we apply the stochastic boundedness of τ̂ n− τ n, which is given in

Propostion 4.17. Therefore, we only need to estimate the first probability. It follows that

P1 = P

 n⋃
k=1

n⋃
l=1
l 6=k

{∣∣∣∣∣ 1

l − k

l∑
i=k+1

(Xi − β)

∣∣∣∣∣ > ε, |k − τn| ≤ x, |l − σn| ≤ x, τ̂n = k, σ̂n = l

}
≤

n∑
k=1

n∑
l=1
l 6=k

P

[∣∣∣∣∣ 1

l − k

l∑
i=k+1

(Xi − β)

∣∣∣∣∣ > ε, |k − τn| ≤ x, |l − σn| ≤ x, τ̂n = k, σ̂n = l

]

=
n∑
k=1

|k−τn|≤x

n∑
l=1

|l−σn|≤x,l 6=k

P

[∣∣∣∣∣ 1

l − k

l∑
i=k+1

(Xi − β)

∣∣∣∣∣ > ε, τ̂n = k, σ̂n = l

]
.

Without loss of generality we assume that P [τ̂n = k, σ̂n = l] > 0, since otherwise we get
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P1 = 0. The definition of the conditional probability and Lemma 2.5 lead to

P1 ≤
n∑
k=1

|k−τn|≤x

n∑
l=1

|l−σn|≤x
l 6=k

P

[∣∣∣∣∣ 1

l − k

l∑
i=k+1

(Xi − β)

∣∣∣∣∣ > ε

∣∣∣∣∣τ̂n = k, σ̂n = l

]
P [τ̂n = k, σ̂n = l]

≤ ε−2

n∑
k=1

|k−τn|≤x

n∑
l=1

|l−σn|≤x,l 6=k

(l − k)−2E

1{τ̂n=k,σ̂n=l}

(
l∑

i=k+1

(Xi − β)

)2
 .

Throughout the proof, we use the abbreviations

P (k, l) := P [τ̂n = k, σ̂n = l] and E(k, l) := E

( l∑
i=k+1

(Xi − β)

)4
 . (4.33)

By the Cauchy–Schwarz Inequality (see Lemma 2.11 (ii)), we infer that

P1 ≤ ε−2

n∑
k=1

|k−τn|≤x

n∑
l=1

|l−σn|≤x,l 6=k

(l − k)−2P (k, l)
1/2E(k, l)

1/2. (4.34)

Lemma A.2 ensures that σn − τn −−−→
n→∞

∞. Accordingly, there exists n0 = n0(x) ∈ N such

that τn + x < σn − x for all n ≥ n0. From now on, let n ≥ n0. In (4.34) the summation

indices (k, l) ∈ {1, ..., n}2 fulfill

τn − x ≤ k ≤ τn + x < σn − x ≤ l ≤ σn + x. (4.35)

Set

I−1 := {k ∈ N| 1 ≤ k ≤ n, τn − x ≤ k ≤ τn − 1},

I+
1 := {k ∈ N| 1 ≤ k ≤ n, τn ≤ k ≤ τn + x},

I−2 := {l ∈ N| 1 ≤ l ≤ n, σn − x ≤ l ≤ σn} and

I+
2 := {l ∈ N| 1 ≤ l ≤ n, σn + 1 ≤ l ≤ σn + x}.

Observe that the cardinality of the sets amount

∣∣I−1 ∣∣ =
∣∣I+

2

∣∣ = bxc and
∣∣I+

1

∣∣ =
∣∣I−2 ∣∣ = bxc+ 1. (4.36)
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4.1 Parameter estimation

We split the sums in (4.34) and obtain

P1 ≤ ε−2
∑
k∈I−1

∑
l∈I−2

(l − k)−2P (k, l)
1/2E(k, l)

1/2

+ ε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2P (k, l)
1/2E(k, l)

1/2

+ ε−2
∑
k∈I+1

∑
l∈I−2

(l − k)−2P (k, l)
1/2E(k, l)

1/2

+ ε−2
∑
k∈I+1

∑
l∈I+2

(l − k)−2P (k, l)
1/2E(k, l)

1/2

=:
4∑
i=1

Di. (4.37)

Let C > 0 be a generic constant. We first estimate D3. Note that E[Xi] = β for all

i ∈ {k+ 1, ..., l} with k ∈ I+
1 and l ∈ I−2 . By Equation (4.33), Corollary 2.16 and M4 <∞,

we have

E(k, l) ≤ CM4(l − k)2 ≤ C(l − k)2

for all k ∈ I+
1 and l ∈ I−2 . Hence

D3 ≤ Cε−2
∑
k∈I+1

∑
l∈I−2

(l − k)−1P (k, l)
1/2.

The Cauchy–Schwarz Inequality (Lemma 2.11 (i)) implies

D3 ≤ Cε−2

∑
k∈I+1

∑
l∈I−2

(l − k)−2

1/2∑
k∈I+1

∑
l∈I−2

P (k, l)

1/2

. (4.38)

Since the events {τ̂n = k, σ̂n = l} are disjoint for all k ∈ I+
1 and l ∈ I−2 , we can estimate

by Equation (4.33)∑
k∈I+1

∑
l∈I−2

P (k, l)

1/2

= P

 ⋃
k∈I+1

⋃
l∈I−2

{τ̂n = k, σ̂n = l}

1/2

≤ 1. (4.39)
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For k ∈ I+
1 we have k ≤ τn + bxc. It follows that

D3 ≤ Cε−2

(bxc+ 1)
∑
l∈I−2

(l − (τn + bxc))−2

1/2

by (4.38), (4.36), (4.39)

= Cε−2(bxc+ 1)
1/2

 σn−τn−bxc∑
m=σn−τn−2bxc

m−2

1/2

by index transformation

≤ Cε−2(bxc+ 1)
1/2(σn − τn − 2bxc − 1)−

1/2 by Lem. A.5. (4.40)

Here and subsequently, let Su,v :=
∑v

i=u+1(Xi − β) for u, v ∈ N with u < v. We next

consider D2. We first estimate E(k, l) = E
[
S4
k,l

]
for fixed k ∈ I−1 and l ∈ I+

2 . By proper

splitting of Sk,l and the Binomial Formula, we get

S4
k,l = (Sk,σn + Sσn,l)

4

= S4
k,σn + 4S3

k,σnSσn,l + 6S2
k,σnS

2
σn,l + 4Sk,σnS

3
σn,l + S4

σn,l

≤ S4
k,σn + 4 |Sk,σn|

3 |Sσn,l|+ 6S2
k,σnS

2
σn,l + 4 |Sk,σn| · |Sσn,l|

3 + S4
σn,l.

Furthermore, we have

S4
k,σn = (Sk,τn + Sτn,σn)4

= S4
k,τn + 4S3

k,τnSτn,σn + 6S2
k,τnS

2
τn,σn + 4Sk,τnS

3
τn,σn + S4

τn,σn

≤ S4
k,τn + 4S3

k,τnSτn,σn + 6S2
k,τnS

2
τn,σn + 4 |Sk,τn | · |Sτn,σn|

3 + S4
τn,σn .

The independence of X1, ..., Xn ensures the independence of Sk,σn and Sσn,l as well as Sk,τn

and Sτn,σn . We thus get

E(k, l) = E
[
S4
k,l

]
≤ E

[
S4
k,τn

]
+ 4E

[
S3
k,τn

]
E [Sτn,σn ] + 6E

[
S2
k,τn

]
E
[
S2
τn,σn

]
+ 4E [|Sk,τn|]E

[
|Sτn,σn|

3]+ E
[
S4
τn,σn

]
+ 4E

[
|Sk,σn|

3]
E [|Sσn,l|]

+ 6E
[
S2
k,σn

]
E
[
S2
σn,l

]
+ 4E [|Sk,σn|]E

[
|Sσn,l|

3]+ E
[
S4
σn,l

]
.
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Since E[Xi] = β for all i ∈ {τn+1, ..., σn}, the absolute moments of Sτn,σn can be estimated

by Corollary 2.16 and we have E[Sτn,σn ] = 0. We estimate the other absolute moments by

Lemma 2.17. The result is

E(k, l) ≤ CM4(τn − k)4 + CM2
2 (τn − k)2(σn − τn) + CM1M3(τn − k)(σn − τn)

3/2

+ CM4(σn − τn)2 + CM1M3(σn − k)3(l − σn) + CM2
2 (σn − k)2(l − σn)2

+ CM1M3(σn − k)(l − σn)3 + CM4(l − σn)4. (4.41)

From M4 < ∞ we deduce that Mp < ∞ for 1 ≤ p < 4. By definition of D2, (4.41) and

Lemma A.7, we can assert that

D2 = ε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2P (k, l)
1/2E(k, l)

1/2

≤ Cε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2(τn − k)2P (k, l)
1/2

+ Cε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2(τn − k)(σn − τn)
1/2P (k, l)

1/2

+ Cε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2(τn − k)
1/2(σn − τn)

3/4P (k, l)
1/2

+ Cε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2(σn − τn)P (k, l)
1/2

+ Cε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2(σn − k)
3/2(l − σn)

1/2P (k, l)
1/2

+ Cε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2(σn − k)(l − σn)P (k, l)
1/2

+ Cε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2(σn − k)
1/2(l − σn)

3/2P (k, l)
1/2

+ Cε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2(l − σn)2P (k, l)
1/2

=:
8∑
i=1

D2,i. (4.42)
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The further proceeding is presented for D2,3 and D2,5. The Cauchy–Schwarz Inequality

(Lemma 2.11 (i)) and similar arguments used in (4.39) lead to

D2,3 = Cε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2(τn − k)
1/2(σn − τn)

3/4P (k, l)
1/2

≤ Cε−2

∑
k∈I−1

∑
l∈I+2

(l − k)−4(τn − k)(σn − τn)
3/2

1/2∑
k∈I−1

∑
l∈I+2

P (k, l)

1/2

≤ Cε−2

∑
k∈I−1

∑
l∈I+2

(l − k)−4(τn − k)(σn − τn)
3/2

1/2

. (4.43)

Since τn − k ≤ bxc and l > σn for k ∈ I−1 and l ∈ I+
2 , we see by (4.36) and an index

transformation that

D2,3 ≤ Cε−2

bxc(σn − τn)
3/2
∑
l∈I+2

∑
k∈I−1

(σn − k)−4

1/2

= Cε−2

bxc2(σn − τn)
3/2

σn−τn+bxc∑
m=σn−τn+1

m−4

1/2

.

By Lemma A.5, we obtain

D2,3 ≤ Cε−2
(
bxc2(σn − τn)

3/2(σn − τn)−3
)1/2

= Cε−2bxc(σn − τn)−
3/4.

We next consider D2,5. As in (4.43), we get

D2,5 = Cε−2
∑
k∈I−1

∑
l∈I+2

(l − k)−2(σn − k)
3/2(l − σn)

1/2P (k, l)
1/2

≤ Cε−2

∑
k∈I−1

∑
l∈I+2

(l − k)−4(σn − k)3(l − σn)

1/2

.

Since l − σn ≤ bxc and l > σn for l ∈ I+
2 , we deduce that

D2,5 ≤ Cε−2

bxc∑
k∈I−1

∑
l∈I+2

(σn − k)−1

1/2

.
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For k ∈ I−1 we have k < τn. By (4.36), we infer that

D2,5 ≤ Cε−2

bxc∑
k∈I−1

∑
l∈I+2

(σn − τn)−1

1/2

= Cε−2bxc3/2(σn − τn)−
1/2.

A similar proceeding leads to the estimate of the remaining terms. We get

D2 ≤
8∑
i=1

D2,i

≤ Cε−2bxc5/2(σn − τn)−
3/2 + Cε−2bxc3/2(σn − τn)−1

+ Cε−2bxc(σn − τn)−
3/4 + Cε−2bxc1/2(σn − τn)−

1/2

+ Cε−2bxc3/2(σn − τn)−
1/2 + Cε−2bxc3/2(σn − τn)−

1/2

+ Cε−2bxc2(σn − τn)−1 + Cε−2bxc5/2(σn − τn)−
3/2.

The estimate of D1 and D4 runs as before. By (4.37), we obtain

D1 = ε−2
∑
k∈I−1

∑
l∈I−2

(l − k)−2P (k, l)
1/2E(k, l)

1/2

≤ Cε−2
∑
k∈I−1

∑
l∈I−2

(l − k)−2(τn − k)2P (k, l)
1/2

+ Cε−2
∑
k∈I−1

∑
l∈I−2

(l − k)−2(τn − k)(l − τn)
1/2P (k, l)

1/2

+ Cε−2
∑
k∈I−1

∑
l∈I−2

(l − k)−2(τn − k)
1/2(l − τn)

3/4P (k, l)
1/2

+ Cε−2
∑
k∈I−1

∑
l∈I−2

(l − k)−2(l − τn)P (k, l)
1/2

≤ Cε−2bxc5/2(σn − τn − bxc − 1)−
3/2 + Cε−2bxc3/2(σn − τn − bxc − 1)−1

+ Cε−2bxc(σn − τn − bxc − 1)−
3/4 + Cε−2bxc1/2(σn − τn − bxc − 1)−

1/2.
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and

D4 = ε−2
∑
k∈I+1

∑
l∈I+2

(l − k)−2P (k, l)
1/2E(k, l)

1/2

≤ Cε−2
∑
k∈I+1

∑
l∈I+2

(l − k)−2(σn − k)P (k, l)
1/2

+ Cε−2
∑
k∈I+1

∑
l∈I+2

(l − k)−2(σn − k)
3/4(l − σn)

1/2P (k, l)
1/2

+ Cε−2
∑
k∈I+1

∑
l∈I+2

(l − k)−2(σn − k)
1/2(l − σn)P (k, l)

1/2

+ Cε−2
∑
k∈I+1

∑
l∈I+2

(l − k)−2(l − σn)2P (k, l)
1/2

≤ Cε−2bxc1/2(σn − τn − bxc − 1)−
1/2 + Cε−2bxc(σn − τn − bxc − 1)−

3/4

+ Cε−2bxc3/2(σn − τn − bxc − 1)−1 + Cε−2bxc5/2(σn − τn − bxc − 1)−
3/2.

In summary, by (4.37), (4.40) and the estimates above, there exist n0 = n0(x) ∈ N and a

constant C > 0 such that

P1 ≤
4∑
i=1

D4

≤ Cε−2

(
bxc5/2(σn − τn − bxc − 1)−

3/2 + bxc3/2(σn − τn − bxc − 1)−1

+ bxc(σn − τn − bxc − 1)−
3/4 + bxc1/2(σn − τn − bxc − 1)−

1/2

+ bxc5/2(σn − τn)−
3/2 + bxc3/2(σn − τn)−1 + bxc(σn − τn)−

3/4

+ bxc1/2(σn − τn)−
1/2 + bxc3/2(σn − τn)−

1/2 + bxc3/2(σn − τn)−
1/2

+ bxc2(σn − τn)−1 + bxc5/2(σn − τn)−
3/2 + (bxc+ 1)

1/2(σn − τn − 2bxc − 1)−
1/2

+ bxc1/2(σn − τn − bxc − 1)−
1/2 + bxc(σn − τn − bxc − 1)−

3/4

+ bxc3/2(σn − τn − bxc − 1)−1 + bxc5/2(σn − τn − bxc − 1)−
3/2

)
(4.44)

for all n ≥ n0, ε > 0 and x ≥ 1. To see convergence in probability of β̂n to β, we now

apply the stochastic boundedness of τ̂ n− τ n. By (4.32) and the maximum norm, we infer
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that

P2 ≤ P [‖τ̂ n − τ n‖ > x] and P3 ≤ P [‖τ̂ n − τ n‖ > x]

for all x > 0. By (4.32), we conclude that

lim sup
n→∞

P
[∣∣∣β̂n − β∣∣∣ > ε

]
≤ lim sup

n→∞
(P1 + P2 + P3)

≤ lim sup
n→∞

P1 + 2 lim sup
n→∞

P [‖τ̂ n − τ n‖ > x] (4.45)

for all ε > 0 and x ≥ 1. Since σn − τn −−−→
n→∞

∞ by Lemma A.2, we deduce by (4.44) that

lim sup
n→∞

P1 = 0

for all ε > 0 and x ≥ 1. By (4.45) and Proposition 4.17, letting x→∞ gives

lim
n→∞

P
[∣∣∣β̂n − β∣∣∣ > ε

]
= 0,

which means

β̂n
P−−−→

n→∞
β.

In the same manner we can see that

α̂n
P−−−→

n→∞
α and γ̂n

P−−−→
n→∞

γ.

Corollary 4.19. If M4 <∞, then(
θ̂n, α̂n

)
P−−−→

n→∞
(θ,α).

Proof. The claim follows from Theorems 4.10 and 4.18 and the properties of convergence

in probability.
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4.2 Another estimation approach for the multiple

change-point

In the previous section we have seen the point estimation of θ and τ n, respectively. Another

aim is to estimate τ n by an asymptotic confidence region (as specified in Section 3.4 in

the case of known expectations). Unfortunately, the rescaled process with respect to M̂n is

hard to handle to examine convergence in distribution of τ̂ n − τ n (compare Section 3.3 in

the case of known expectations). Therefore, in this section we construct another estimator

of τ n based on the consistent estimator α̂n of expectations, which allows us to proceed

similarly to Chapter 3.

4.2.1 Estimation of the multiple change-point

We begin with the estimation of the moments of change τ n = (τn, σn) again. Now, the

main idea is to replace the unknown expectations α = (α, β, γ) in the criterion function

S̄n, defined in (3.1), by their associated estimators α̂n =
(
α̂n, β̂n, γ̂n

)
. Let us denote by

S∗n the random criterion function

S∗n(k, l) :=
k∑
i=1

(Xi − α̂n)2 +
l∑

i=k+1

(
Xi − β̂n

)2

+
n∑

i=l+1

(Xi − γ̂n)2 , (k, l) ∈ ∆n. (4.46)

Note that S∗n features the same structure as S̄n. Consequently, our further approach is

very similar to Chapter 3. It is evident that S∗n has at least one minimizer. Similarly

to Equation (3.3), we use a choice function φ∗ : Argmin (S∗n) −→ ∆n if more than one

minimizing point of S∗n exists. Here and subsequently,

τ ∗n := (τ ∗n, σ
∗
n) := argmin

(k,l)∈∆n

S∗n(k, l) (4.47)

stands for τ ∗n = φ∗ (Argmin (S∗n)).
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We first observe that (τ ∗n, α̂n) is also a least squares estimator of (τ n,α).

Lemma 4.20. Let n ∈ N. Then

(τ ∗n, α̂n) ∈ Argmin(Sn).

Proof. Fix n ∈ N. By Equations (4.4) and (4.47), we have τ̂ n ∈ ∆n and τ ∗n ∈ ∆n.

Equations (4.1), (4.46) and (4.47) lead to

Sn (τ ∗n, α̂n) = S∗n (τ ∗n) = min
(k,l)∈∆n

S∗n(k, l) ≤ S∗n (τ̂ n) .

In addition, Equations (4.46) and (4.1) and (4.6) yield

S∗n (τ̂ n) = Sn (τ̂ n, α̂n) = min
(k,l,a1,a2,a3)∈∆n×R3

Sn(k, l, a1, a2, a3) ≤ Sn (τ ∗n, α̂n) .

Especially, we obtain

Sn (τ ∗n, α̂n) = min
(k,l,a1,a2,a3)∈∆n×R3

Sn(k, l, a1, a2, a3),

which is our claim.

Adapted from Chapter 3, for simplicity of notation, we apply the abbreviations

a∗n,1(Xi) := 2
(
β̂n − α̂n

)
Xi + α̂2

n − β̂2
n and (4.48)

a∗n,2(Xi) := 2
(
γ̂n − β̂n

)
Xi + β̂2

n − γ̂2
n

for i ∈ {1, ..., n} and write

M∗
n(k, l) :=

k∑
i=1

a∗n,1(Xi) +
l∑

i=1

a∗n,2(Xi), (k, l) ∈ ∆n. (4.49)

Lemma 4.21. Let n ∈ N. Then

Argmin (S∗n) = Argmin (M∗
n) .
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Proof. The proof of Lemma 3.1 works for S∗n, M∗
n, a∗n,1, a∗n,2, α̂n, β̂n and γ̂n instead of S̄n,

M̄n, a1, a2, α, β and γ.

According to the previous lemma, we use the representation

τ ∗n = (τ ∗n, σ
∗
n) = argmin

(k,l)∈∆n

M∗
n(k, l). (4.50)

to estimate τ n = (τn, σn).

A simulation study (see Chapter 5 for more details) provides the following conjecture. If all

distributions are continuous, then the estimators τ ∗n and τ̂ n are almost surely identical.

Conjecture 4.22. Let n ∈ N and let Q1, Q2, Q3 be continuous distributions. Then

Argmin (M∗
n) = {τ̂ n} almost surely,

which means τ ∗n = τ̂ n almost surely. Furthermore, it holds P[τ ∗n 6= τ̂ n] > 0.

The further approach to estimate the multiple change-point θ = (θ1, θ2) is analogous to

the last part of Section 3.1. The estimator of the multiple change-point is given by

θ∗n :=
1

n
τ ∗n.

Moreover, we define

ρ∗n(s, t) :=
1

n
M∗

n(bnsc, bntc), (s, t) ∈ Θn,

where Θn is given by (3.6).

Lemma 4.23. Let n ∈ N. Then

θ∗n = argmin
(s,t)∈Θn

ρ∗n(s, t).

Proof. The proof of Lemma 3.4 works by replacing (3.3), τ̄ n = (τ̄n, σ̄n), θ̄n, ρ̄n and M̄n by

(4.50), τ ∗n = (τ ∗n, σ
∗
n), θ∗n, ρ∗n and M∗

n.
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Remark 4.24. The factor n−1 in the definition of ρ∗n does not influence the minimizing

points of M∗
n, but the proof of consistency of θ∗n requires this factor.

Lemma 4.25. ρ∗n, n ∈ N, is a stochastic process with trajectories in the multivariate

Skorokhod space D(Θn).

Proof. The proof of Lemma 3.6 remains valid for ρ∗n and M∗
n instead of ρ̄n and M̄n.

4.2.2 Consistency of the multiple change-point estimator

This section deals with the weak conistency of θ∗n. For this purpose, we apply Theorem 2.1

again. To get uniform convergence in probability of ρ∗n (assumption (i) of Theorem 2.1),

we give a decomposition of ρ∗n first.

Lemma 4.26. Let n ∈ N and (s, t) ∈ Θn. Then

ρ∗n(s, t) = δ∗n(s, t) + %∗n(s, t),

where δ∗n and %∗n are specified in Lemma B.2.

Proof. Fix n ∈ N. We first recall that

E[Xi] =


α, 1 ≤ i ≤ τn,

β, τn + 1 ≤ i ≤ σn,

γ, σn + 1 ≤ i ≤ n.

(4.51)

Definitions of ρ∗n and M∗
n yield

ρ∗n(s, t) =
1

n
M∗

n(bnsc, bntc) =
1

n

bnsc∑
i=1

a∗n,1(Xi) +

bntc∑
i=1

a∗n,2(Xi)


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for all (s, t) ∈ Θn. We only discuss the case (s, t) ∈ Θ2 ∩Θn. Lemma A.1 (ii) gives

1 ≤ bnsc ≤ τn < bntc ≤ σn < n.

We split the sums into segments according to above and obtain

ρ∗n(s, t) =
1

n

bnsc∑
i=1

a∗n,1(Xi) +
τn∑
i=1

a∗n,2(Xi) +

bntc∑
i=τn+1

a∗n,2(Xi)

 .

We now use the expectations to center Xi, i.e., Xi = (Xi−E[Xi])+E[Xi], i ∈ {1, ..., bntc}.

By definitions of a∗n,1 and a∗n,2, an easy computation shows that ρ∗n(s, t) = δ∗n(s, t)+%∗n(s, t),

where

δ∗n(s, t) :=
2

n

(
β̂n − α̂n

) bnsc∑
i=1

(Xi − α) +
2

n

(
γ̂n − β̂n

) τn∑
i=1

(Xi − α)

+
2

n

(
γ̂n − β̂n

) bntc∑
i=τn+1

(Xi − β) (4.52)

and

%∗n(s, t) :=
(

2α
(
β̂n − α̂n

)
+ α̂2

n − β̂2
n

) bnsc
n

+ 2(α− β)
(
γ̂n − β̂n

) τn
n

+
(

2β
(
γ̂n − β̂n

)
+ β̂2

n − γ̂2
n

) bntc
n

. (4.53)

The details and the other cases are left to the reader.

We prove in the following both lemmas that δ∗n uniformly converges in probability to zero

and %∗n to the limit process ρ, given in (3.13).

Lemma 4.27. If M4 <∞, then

sup
(s,t)∈Θn

|δ∗n(s, t)| P−−−→
n→∞

0.

Proof. Fix n ∈ N. Our proof starts with the observation that the partition of Θ gives

sup
(s,t)∈Θn

|δ∗n(s, t)| = max
i∈{1,...,6}

sup
(s,t)∈Θi∩Θn

|δ∗n(s, t)|. (4.54)
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We look at case (s, t) ∈ Θ2 ∩Θn, which leads to 1 ≤ bnsc ≤ τn < bntc ≤ σn < n. Set

δ∗n,1(s) :=
1

n

bnsc∑
i=1

(Xi − α), δ∗n,2 :=
1

n

τn∑
i=1

(Xi − α) and δ∗n,3(t) :=
1

n

bntc∑
i=τn+1

(Xi − β).

By (4.52) and the Triangle Inequality, we obtain

sup
(s,t)∈Θ2∩Θn

|δ∗n(s, t)| ≤ 2
∣∣∣β̂n − α̂n∣∣∣ sup

(s,t)∈Θ2∩Θn

|δ∗n,1(s)|+ 2
∣∣∣γ̂n − β̂n∣∣∣ · ∣∣δ∗n,2∣∣

+ 2
∣∣∣γ̂n − β̂n∣∣∣ sup

(s,t)∈Θ2∩Θn

|δ∗n,3(t)|. (4.55)

By the weak consistency of α̂n =
(
α̂n, β̂n, γ̂n

)
(see Theorem 4.18) and the properties of

convergence in probability, it is sufficient to show that

sup
(s,t)∈Θ2∩Θn

|δ∗n,1(s)| P−−−→
n→∞

0, |δ∗n,2|
P−−−→

n→∞
0 and sup

(s,t)∈Θ2∩Θn

|δ∗n,3(t)| P−−−→
n→∞

0. (4.56)

To apply the first Kolmogorov Inequality (Lemma 2.7) and the Chebyshev Inequality

(Lemma 2.6), we observe that we have sums of independent and centered random variables.

We conclude for all ε > 0 that

P

[
sup

(s,t)∈Θ2∩Θn

|δ∗n,1(s)| > ε

]

≤ P

[
max

1≤k≤τn

∣∣∣∣∣
k∑
i=1

(Xi − α)

∣∣∣∣∣ > nε

]

≤ ε−2n−2

τn∑
i=1

V [Xi − α] by first Kolmogorov In.

≤M2ε
−2n−2τn by V[Xi] ≤M2

≤M2ε
−2n−1 by τn ≤ n. (4.57)
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Furthermore, we get for all ε > 0

P
[
|δ∗n,2| > ε

]
= P

[∣∣∣∣∣
τn∑
i=1

(Xi − α)

∣∣∣∣∣ > nε

]

≤ ε−2n−2

τn∑
i=1

V [Xi − α] by Chebyshev In.

≤M2ε
−2n−2τn by V[Xi] ≤M2

≤M2ε
−2n−1 by τn ≤ n. (4.58)

Moreover, by an index transformation, we see for all ε > 0 that

P

[
sup

(s,t)∈Θ2∩Θn

|δ∗n,3(t)| > ε

]
(4.59)

≤ P

[
max

τn+1≤l≤σn

∣∣∣∣∣
l∑

i=τn+1

(Xi − β)

∣∣∣∣∣ > nε

]

= P

[
max

1≤l−τn≤σn−τn

∣∣∣∣∣
l−τn∑
i=1

(Xτn+i − β)

∣∣∣∣∣ > nε

]

≤ ε−2n−2

σn−τn∑
i=1

V [Xi − β] by first Kolmogorov In.

≤M2ε
−2n−2(σn − τn) by V[Xi] ≤M2

≤M2ε
−2n−1 by σn − τn ≤ n. (4.60)

From M4 < ∞ we see that M2 < ∞. To deduce (4.56) from (4.57), (4.58) and (4.59), let

n→∞. The rest of the proof runs as before. We find that

sup
(s,t)∈Θi∩Θn

|δ∗n(s, t)| P−−−→
n→∞

0

for all i ∈ {1, 3, 4, 5, 6}. The assertion follows by (4.54).

Lemma 4.28. If M4 <∞, then

sup
(s,t)∈Θn

|%∗n(s, t)− ρ(s, t)| P−−−→
n→∞

0.
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Proof. By the partition of Θ (see (3.11)), we have

sup
(s,t)∈Θn

|%∗n(s, t)− ρ(s, t)| = max
i∈{1,...,6}

sup
(s,t)∈Θi∩Θn

|%∗n(s, t)− ρ(s, t)|. (4.61)

We consider the case (s, t) ∈ Θ2 ∩Θn again. As defined in (3.13), we see that

ρ(s, t) = −s(α− β)2 − t(β − γ)2 + θ1

(
(α− β)2 + (β − γ)2 − (α− γ)2

)
.

Equation (4.53) and the Triangle Inequality lead to

sup
(s,t)∈Θ2∩Θn

|%∗n(s, t)− ρ(s, t)|

≤ sup
(s,t)∈Θ2∩Θn

∣∣∣∣bnscn (
2α
(
β̂n − α̂n

)
+ α̂2

n − β̂2
n

)
− s

(
−(α− β)2

)∣∣∣∣
+ sup

(s,t)∈Θ2∩Θn

∣∣∣∣bntcn (
2β
(
γ̂n − β̂n

)
+ β̂2

n − γ̂2
n

)
− t
(
−(β − γ)2

)∣∣∣∣
+
∣∣∣2τn
n

(α− β)
(
γ̂n − β̂n

)
− θ1

(
(α− β)2 + (β − γ)2 − (α− γ)2

)∣∣∣ .
Note that it holds AB − ab = B(A − a) + (B − b)a for all A,B, a, b ∈ R. Therefore, the

Triangle Inequality gives

sup
(s,t)∈Θ2∩Θn

|%∗n(s, t)− ρ(s, t)|

≤
∣∣∣2α(β̂n − α̂n)+ α̂2

n − β̂2
n

∣∣∣ sup
(s,t)∈Θ2∩Θn

∣∣∣∣bnscn − s
∣∣∣∣

+
∣∣∣2α(β̂n − α̂n)+ α̂2

n − β̂2
n + (α− β)2

∣∣∣ sup
(s,t)∈Θ2∩Θn

|s|

+
∣∣∣2β (γ̂n − β̂n)+ β̂2

n − γ̂2
n

∣∣∣ sup
(s,t)∈Θ2∩Θn

∣∣∣∣bntcn − t
∣∣∣∣

+
∣∣∣2β (γ̂n − β̂n)+ β̂2

n − γ̂2
n + (β − γ)2

∣∣∣ sup
(s,t)∈Θ2∩Θn

|t|

+
∣∣∣2(α− β)

(
γ̂n − β̂n

)∣∣∣ · ∣∣∣τn
n
− θ1

∣∣∣
+
∣∣∣2(α− β)

(
γ̂n − β̂n

)
−
(
(α− β)2 + (β − γ)2 − (α− γ)2

)∣∣∣ θ1.

We further estimate

sup
(s,t)∈Θ2∩Θn

|s| ≤ 1 and sup
(s,t)∈Θ2∩Θn

|t| ≤ 1.
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Lemma A.1 (iii) and (iv) yield

sup
(s,t)∈Θ2∩Θn

|%∗n(s, t)− ρ(s, t)|

≤
∣∣∣2α(β̂n − α̂n)+ α̂2

n − β̂2
n

∣∣∣ 1

n
+
∣∣∣2α(β̂n − α̂n)+ α̂2

n − β̂2
n + (α− β)2

∣∣∣
+
∣∣∣2β (γ̂n − β̂n)+ β̂2

n − γ̂2
n

∣∣∣ 1

n
+
∣∣∣2β (γ̂n − β̂n)+ β̂2

n − γ̂2
n + (β − γ)2

∣∣∣
+
∣∣∣2(α− β)

(
γ̂n − β̂n

)∣∣∣ 1

n

+
∣∣∣2(α− β)

(
γ̂n − β̂n

)
−
(
(α− β)2 + (β − γ)2 − (α− γ)2

)∣∣∣ θ1.

By the consistency of α̂n =
(
α̂n, β̂n, γ̂n

)
(see Theorem 4.18) and the properties of conver-

gence in probability, a trivial verification shows that

sup
(s,t)∈Θ2∩Θn

|%∗n(s, t)− ρ(s, t)| P−−−→
n→∞

0.

In the same manner we can see that

sup
(s,t)∈Θi∩Θn

|%∗n(s, t)− ρ(s, t)| P−−−→
n→∞

0

for all i ∈ {1, 3, 4, 5, 6}. Combining this with (4.61) finishes the proof.

We can now state and prove weak consistency of θ∗n, which is one of our main results.

Theorem 4.29. If M4 <∞, then

θ∗n
P−−−→

n→∞
θ.

Proof. We apply Theorem 2.1. ρ∗n, n ∈ N, is a stochastic process with trajectories in the

multivariate Skorokhod space D(Θn) by Lemma 4.25. ρ has trajectories in the multivariate

Skorokhod space D(Θ), since ρ is continuous, as is easy to check. Moreover, (Θn)n∈N ⊆ Θ

is a sequence of sets such that Θn ⊆ Θn+1 for every n ∈ N with
⋃
n∈NΘn = Θ. By Lemma
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4.23, θ∗n is a minimizer of ρ∗n for any n ∈ N. By the decomposition of ρ∗n (see Lemma 4.26)

and the Triangle Inequality, for each n ∈ N we conclude that

sup
(s,t)∈Θn

|ρ∗n(s, t)− ρ(s, t)| = sup
(s,t)∈Θn

|δ∗n(s, t) + %∗n(s, t)− ρ(s, t)|

≤ sup
(s,t)∈Θn

(|δ∗n(s, t)|+ |%∗n(s, t)− ρ(s, t)|)

≤ sup
(s,t)∈Θn

|δ∗n(s, t)|+ sup
(s,t)∈Θn

|%∗n(s, t)− ρ(s, t)| .

Letting n→∞, Lemmas 4.27 and 4.28 lead to

sup
(s,t)∈Θn

|ρ∗n(s, t)− ρ(s, t)| P−−−→
n→∞

0.

In addition, θ ∈ Θ is the well-separated minimizer of ρ by Propsition 3.11. An application

of Theorem 2.1 gives the claim.

Corollary 4.30. If M4 <∞, then

(θ∗n, α̂n)
P−−−→

n→∞
(θ,α).

Proof. The assertion follows from Theorems 4.29 and 4.18 and the properties of convergence

in probability.

4.2.3 Convergence in distribution

This section is devoted to the study of convergence in distribution of τ ∗n − τ n.

The approach to get another main result of this work is very similar to Section 3.3, but

some proofs are technical harder. To apply Theorem 2.3, we have to consider the rescaled

process, which is minimized by τ ∗n − τ n. For this purpose, recall the notation

Hn =
{

(k, l) ∈ Z2
∣∣k ≥ 1− τn, l − k ≥ 1− (σn − τn), n− l ≥ σn + 1

}
.
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The rescaled process Γ∗n is defined by

Γ∗n(k, l) := M∗
n(τn + k, σn + l)−M∗

n(τn, σn), (k, l) ∈ Hn.

Lemma 4.31. Let n ∈ N. Then

τ ∗n − τ n ∈ Argmin (Γ∗n) .

Proof. The proof of Lemma 3.14 remains valid for τ ∗n = (τ ∗n, σ
∗
n), Γ∗n and M∗

n instead of

τ̄ n = (τ̄n, σ̄n), Γ̄n and M̄n.

Γ∗n has the following form.

Lemma 4.32. Let n ∈ N and (k, l) ∈ Hn. Then

Γ∗n(k, l) = Γ∗n,1(k) + Γ∗n,2(l)

with

Γ∗n,1(k) :=


k∑
i=1

a∗n,1(Xτn+i), k ≥ 0,

−
−k∑
i=1

a∗n,1(Xτn−i+1), k < 0

and Γ∗n,2(l) :=


l∑

i=1

a∗n,2(Xσn+i), l ≥ 0,

−
−l∑
i=1

a∗n,2(Xσn−i+1), l < 0,

where a∗n,1 and a∗n,2 are given by (4.48).

Proof. The proof of Lemma 3.15 works by replacing Γ̄n, Γ̄n,1, Γ̄n,2, M̄n, a1 and a2 by Γ∗n,

Γ∗n,1, Γ∗n,2, M∗
n, a∗n,1 and a∗n,2.

We next prove convergence in distribution of all finite-dimensional distributions of Γ∗n

(assumption (i) of Theorem 2.3). For this purpose, we previously show that the rescaled

processes in the case of known and unknown expectations are stochastically equivalent.

Lemma 4.33. Let m ∈ N and (k1, l1), ..., (km, lm) ∈ Z2. If M4 <∞, then

max
1≤r≤m

∣∣Γ∗n(kr, lr)− Γ̄n(kr, lr)
∣∣ P−−−→

n→∞
0.
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Proof. Fix m ∈ N and (k1, l1), ..., (km, lm) ∈ Z2. The proof of Lemma 3.17 provides that

(k1, l1), ..., (km, lm) ∈ Hn (4.62)

for a sufficiently large n ∈ N. It suffices to show that

∣∣Γ∗n(kr, lr)− Γ̄n(kr, lr)
∣∣ P−−−→

n→∞
0 (4.63)

for all r ∈ {1, ...,m}. Fix an arbitrary r ∈ {1, ...,m} and fix n ∈ N sufficiently large for a

moment. As an example, we show (4.63) for kr ≥ 0 and lr < 0. The remaining three cases

kr ≥ 0, lr ≥ 0 and kr < 0, lr ≥ 0 and kr < 0, lr < 0 follows analogously. By definitions of

Γ∗n and Γ̄n, we have

∣∣Γ∗n(kr, lr)− Γ̄n(kr, lr)
∣∣

=

∣∣∣∣∣
kr∑
i=1

a∗n,1(Xτn+i)−
−lr∑
i=1

a∗n,2(Xσn−i+1)−

(
kr∑
i=1

a1(Xτn+i)−
−lr∑
i=1

a2(Xσn−i+1)

)∣∣∣∣∣ .
Moreover, the proof of Lemma 3.17 shows that there exists n0 = n0(k1, l1, ..., km, lm) ∈ N

such that for all n ≥ n0 we get Xτn+i ∼ Q2 for each i ∈ {1, ..., kr} and Xσn−i+1 ∼ Q2 for

each i ∈ {1, ...,−lr} and condition (4.62) is fulfilled. From now on, let n ≥ n0. Centering

the observations and applying the Triangle Inequality gives by an easy computation

∣∣Γ∗n(kr, lr)− Γ̄n(kr, lr)
∣∣

≤ 2
(
|α̂n − α|+

∣∣∣β̂n − β∣∣∣)
∣∣∣∣∣
kr∑
i=1

(Xτn+i − β)

∣∣∣∣∣+ 2βkr

(
|α̂n − α|+

∣∣∣β̂n − β∣∣∣)
+ kr

(∣∣α̂2
n − α2

∣∣+
∣∣∣β̂2
n − β2

∣∣∣)+ 2
(∣∣∣β̂n − β∣∣∣+ |γ̂n − γ|

) ∣∣∣∣∣
−l∑
i=1

(Xσn−i+1 − β)

∣∣∣∣∣
− 2βlr

(∣∣∣β̂n − β∣∣∣+ |γ̂n − γ|
)
− lr

(∣∣∣β̂2
n − β2

∣∣∣+
∣∣γ̂2
n − γ2

∣∣) . (4.64)

To continue, we have to recall the following property of convergence in probability. Let

(Zn)n∈N and (Vn)n∈N be sequences of arbitrary random variables with Zn
P−−−→

n→∞
0 and

limx→∞ lim supn→∞P[|Vn| > x] = 0. Then ZnVn
P−−−→

n→∞
0.
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Furthermore, by Chebyshev’s Inequality (see Lemma 2.6) and V[Xi] ≤M2, 1 ≤ i ≤ n, we

have for all x > 0

P

[∣∣∣∣∣
kr∑
i=1

(Xτn+i − β)

∣∣∣∣∣ > x

]
≤ x−2

kr∑
i=1

V [Xτn+i − β]

≤ krx
−2M2

and

P

[∣∣∣∣∣
−lr∑
i=1

(Xσn−i+1 − β)

∣∣∣∣∣ > x

]
≤ x−2

−lr∑
i=1

V [Xσn−i+1 − β]

≤ −lrx−2M2.

From M4 <∞ we see that M2 <∞. We can deduce that

lim
x→∞

lim sup
n→∞

P

[∣∣∣∣∣
kr∑
i=1

(Xτn+i − β)

∣∣∣∣∣ > x

]
= 0

and

lim
x→∞

lim sup
n→∞

P

[∣∣∣∣∣
−lr∑
i=1

(Xσn−i+1 − β)

∣∣∣∣∣ > x

]
= 0.

Combining (4.64) with the weak consistency of α̂n =
(
α̂n, β̂n, γ̂n

)
(see Theorem 4.18) leads

to (4.63) by an application of the mentioned property of convergence in probability. Since

r ∈ {1, ...,m} and (k1, l1), ..., (km, lm) are arbitrary, we get the claim.

Proposition 4.34. Let m ∈ N and (k1, l1), ..., (km, lm) ∈ Z2. If M4 <∞, then

(Γ∗n(k1, l1), ...,Γ∗n(km, lm))
L−−−→

n→∞
(Γ(k1, l1), ...,Γ(km, lm)),

where Γ is given by (3.18).

Proof. We apply one of Cramér’s Theorems, which says that all finite-dimensional distri-

butions of two stochastically equivalent processes converge in distribution to the finite-

dimensional distributions of the same process (see for instance Gänssler and Stute [19, p.

352, Theorem 8.6.2]). An application of Proposition 3.18 and Lemma 4.33 completes the

proof.
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The next aim is to prove stochastic boundedness of τ ∗n − τ n, which establish assumption

(ii) of Theorem 2.3. First recall the notation

Hn,x,δ = {(k, l) ∈ Hn|x ≤ ‖(k, l)‖ ≤ nδ}

for n ∈ N, x > 0 and δ > 0.

Lemma 4.35. Let x > 0, δ > 0 and n ∈ N. Then

{x ≤ ‖τ ∗n − τ n‖ ≤ nδ} ⊆
⋃

(k,l)∈Hn,x,δ

{−Γ∗n(k, l) ≥ 0} .

Proof. The proof of Lemma 3.20 works for τ ∗n, Γ∗n, M∗
n and Lemma 4.31 instead of τ̄ n, Γ̄n,

M̄n and Lemma 3.14.

We get the following error estimate.

Lemma 4.36. Suppose that M2 < ∞. Then there exist n0 ∈ N, δ > 0 and ε0 > 0 such

that for all ε ∈ (0, ε0] there exist a constant Cε > 0, which depends on ε, and another

constant C > 0 such that for all n ≥ n0 we have

P[x ≤ ‖τ ∗n − τ n‖ ≤ nδ]

≤ Cεx
−1 + Cx−1

+ 8
(
P [|α̂n − α| > ε] + P

[∣∣∣β̂n − β∣∣∣ > ε
]

+ P [|γ̂n − γ| > ε]
)
,

for all x ≥ 2.

Proof. The proof is similar in spirit to the proof of Lemma 3.21 but technical harder. Let

x ≥ 2. By Lemma 3.19, there exist δ > 0 and n0 ∈ N such that for all n ≥ n0 the

conditions hold in Lemma 3.19. Let us regard n ≥ n0 and δ > 0 as fixed. By Lemma 4.35,
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we first observe that

{x ≤ ‖τ ∗n − τ n‖ ≤ nδ} ⊆
⋃

(k,l)∈Hn,x,δ

{−Γ∗n(k, l) ≥ 0}

⊆
⋃

x≤|k|≤nδ
|l|≤nδ

{−Γ∗n(k, l) ≥ 0} ∪
⋃
|k|≤nδ
x≤|l|≤nδ

{−Γ∗n(k, l) ≥ 0}

=: E ∪ F. (4.65)

To simplify notation, the fact that all in this proof defined sets, random variables and

probabilities depend on n, x, δ or ε is omitted. We give the proof only for the estimate of

the probability of E; the other case follows the same pattern. We find that

E ⊆
⋃

x≤k≤nδ
0≤l≤nδ

{−Γ∗n(k, l) ≥ 0} ∪
⋃

x≤k≤nδ
−nδ≤l<0

{−Γ∗n(k, l) ≥ 0}

∪
⋃

−nδ≤k≤−x
0≤l≤nδ

{−Γ∗n(k, l) ≥ 0} ∪
⋃

−nδ≤k≤−x
−nδ≤l<0

{−Γ∗n(k, l) ≥ 0}

=: E(++) ∪ E(+−) ∪ E(−+) ∪ E(−−). (4.66)

We only describe our proceeding for the estimate of the probability of E(++) in detail.

Inserting the expectations α, β and γ on proper positions we conclude by Lemma 4.32 and

the definitions of a∗n,1 and a∗n,2 that

E(++)

=
⋃

x≤k≤nδ

⋃
0≤l≤nδ

{
k∑
i=1

−a∗n,1(Xτn+i) +
l∑

i=1

−a∗n,2(Xσn+i) ≥ 0

}

=
⋃

x≤k≤nδ

⋃
0≤l≤nδ{ k∑

i=1

[
2
(
α̂n − α + β − β̂n

)
Xτn+i + β̂2

n − β2 + α2 − α̂2
n − a1(Xτn+i)

]
+

l∑
i=1

[
2
(
β̂n − β + γ − γ̂n

)
Xσn+i + γ̂2

n − γ2 + β2 − β̂2
n − a2(Xσn+i)

]
≥ 0

}
,
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where a1 and a2 are given by (3.2). The problem occurs that both sums contain the

estimators α̂n, β̂n and γ̂n, which depend on the observatations X1, ..., Xn. Therefore, the

independence of both sums cannot be ensured (as in proof of Lemma 3.21). However, we

are able to create independence as follows. The Triangle Inequality leads to

E(++)

⊆
⋃

x≤k≤nδ

⋃
0≤l≤nδ

{∣∣∣∣∣
k∑
i=1

[
2
(
α̂n − α + β − β̂n

)
Xτn+i + β̂2

n − β2 + α2 − α̂2
n

]∣∣∣∣∣
+

∣∣∣∣∣
l∑

i=1

[
2
(
β̂n − β + γ − γ̂n

)
Xσn+i + γ̂2

n − γ2 + β2 − β̂2
n

]∣∣∣∣∣
+

k∑
i=1

−a1(Xτn+i) +
l∑

i=1

−a2(Xσn+i) ≥ 0

}

⊆
⋃

x≤k≤nδ

⋃
0≤l≤nδ

{
k∑
i=1

[
2
(
|α̂n − α|+

∣∣∣β̂n − β∣∣∣) |Xτn+i|+
∣∣α̂2

n − α2
∣∣+
∣∣∣β̂2
n − β2

∣∣∣]
+

l∑
i=1

[
2
(∣∣∣β̂n − β∣∣∣+ |γ̂n − γ|

)
|Xσn+i|+

∣∣∣β̂2
n − β2

∣∣∣+
∣∣γ̂2
n − γ2

∣∣]
+

k∑
i=1

−a1(Xτn+i) +
l∑

i=1

−a2(Xσn+i) ≥ 0

}
=: Ẽ(++). (4.67)

Write for fixed ε > 0

A1 := {|α̂n − α| ≤ ε} , A2 :=
{∣∣∣β̂n − β∣∣∣ ≤ ε

}
and A3 := {|γ̂n − γ| ≤ ε} .

By the rules of De Morgan, we obtain

Ẽ(++) =
(
Ẽ(++) ∩ (A1 ∩ A2 ∩ A3)

)
∪
(
Ẽ(++) ∩ (A1 ∩ A2 ∩ A3){

)
⊆
(
Ẽ(++) ∩ A1 ∩ A2 ∩ A3

)
∪
(
A{

1 ∪ A{
2 ∪ A{

3

)
=: Ẽ

(++)
1 ∪ A. (4.68)
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We next treat the set Ẽ
(++)
1 . Note that the Binomial Formula and the Triangle Inequality

gives for all a, b ∈ R

|a2 − b2| = |a− b| · |a− b+ 2b| ≤ |a− b| · (|a− b|+ 2|b|) = |a− b|2 + 2|a− b| · |b|.

On the events A1, A2 and A3 we have∣∣α̂2
n − α2

∣∣ ≤ |α̂n − α|2 + 2 |α̂n − α| · |α| ≤ ε2 + 2ε|α|,∣∣∣β̂2
n − β2

∣∣∣ ≤ ∣∣∣β̂n − β∣∣∣2 + 2
∣∣∣β̂n − β∣∣∣ · |β| ≤ ε2 + 2ε|β| and∣∣γ̂2

n − γ2
∣∣ ≤ |γ̂n − γ|2 + 2 |γ̂n − γ| · |γ| ≤ ε2 + 2ε|γ|.

Hence

Ẽ
(++)
1 = Ẽ(++) ∩ A1 ∩ A2 ∩ A3

⊆
⋃

x≤k≤nδ

⋃
0≤l≤nδ

{
k∑
i=1

[
4ε |Xτn+i|+ 2ε2 + 2ε(|α|+ |β|)− a1(Xτn+i)

]
+

l∑
i=1

[
4ε |Xσn+i|+ 2ε2 + 2ε(|β|+ |γ|)− a2(Xσn+i)

]
≥ 0

}
.

Set

Y
(+)

1 := max
x≤k≤nδ

k∑
i=1

η
(+)
1,i and Y

(+)
2 := max

0≤l≤nδ

l∑
i=1

η
(+)
2,i ,

where

η
(+)
1,i := 4ε |Xτn+i|+ 2ε2 + 2ε(|α|+ |β|)− a1(Xτn+i) and

η
(+)
2,i := 4ε |Xσn+i|+ 2ε2 + 2ε(|β|+ |γ|)− a2(Xσn+i).

It follows analogously to (3.25) that

Ẽ
(++)
1 ⊆

{
Y

(+)
1 + Y

(+)
2 ≥ 0

}
. (4.69)

Since δ > 0 is suffiently small (see Lemma 3.19) and the estimators α̂n, β̂n and γ̂n are

eliminated, we can conclude that

Y
(+)

1 = Y
(+)

1

(
Xτn+1, ..., Xτn+bnδc

)
and Y

(+)
2 = Y

(+)
2

(
Xσn+1, ..., Xσn+bnδc

)
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as two measurable transformations of two independent vectors
(
Xτn+1, ..., Xτn+bnδc

)
and(

Xσn+1, ..., Xσn+bnδc
)

are also independent. By (4.69) and Lemma A.8, we deduce that

P
[
Ẽ

(++)
1

]
≤ P

[
Y

(+)
1 + Y

(+)
2 ≥ 0

]
=

∫
R

P
[
Y

(+)
1 ≥ −y

]
P
Y

(+)
2

(dy). (4.70)

For abbreviation, we write Z1,i := η
(+)
1,i − E

[
η

(+)
1,i

]
, 1 ≤ i ≤ bnδc. We next consider the

integrand. We find for all y ∈ R that

P
[
Y

(+)
1 ≥ −y

]
= P

[
max
x≤k≤nδ

k∑
i=1

η
(+)
1,i ≥ −y

]

= P

[ ⋃
x≤k≤nδ

{
k∑
i=1

Z1,i ≥
k∑
i=1

E
[
−η(+)

1,i

]
− y

}]
.

By Lemma 3.19 (ii), we conclude that τn + 1 ≤ τn + i < σn for 1 ≤ i ≤ k with x ≤ k ≤ nδ.

In the proof of Lemma 3.8 we have seen that

E[a1(Xτn+i)] = (α− β)2 for 1 ≤ i ≤ k with x ≤ k ≤ nδ.

We thus get for 1 ≤ i ≤ k with x ≤ k ≤ nδ

E
[
−η(+)

1,i

]
= E[a1(Xτn+i)]−

(
4εE [|Xτn+i|] + 2ε2 + 2ε(|α|+ |β|)

)
≥ (α− β)2 −

(
4εM1 + 2ε2 + 2ε(|α|+ |β|)

)
.

From M2 <∞ we see that M1 <∞. Since ε > 0 is arbitrary, there exists ε1 = ε1(α, β) > 0

such that

4εM1 + 2ε2 + 2ε(|α|+ |β|) ≤ 1

2
(α− β)2

for all ε ≤ ε1. From now on, let ε ≤ ε1. We obtain for 1 ≤ i ≤ k with x ≤ k ≤ nδ

E
[
−η(+)

1,i

]
≥ 1

2
(α− β)2.

By model assumptions α 6= β and β 6= γ, it holds µ := min {(α− β)2, (β − γ)2} > 0. It
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follows for all y ∈ R that

P
[
Y

(+)
1 ≥ −y

]
≤ P

[ ⋃
x≤k≤nδ

{
k∑
i=1

Z1,i ≥
1

2
k(α− β)2 − y

}]

≤ P

[ ⋃
x≤k≤nδ

{
k∑
i=1

Z1,i ≥
1

2
kµ− y

}]

=: P(y). (4.71)

We distinguish several cases for y to get an estimate for P(y). Let Cε = Cε(α, β, γ) > 0

be a generic constant, which depends on ε, and let C = C(α, β, γ) > 0 be another generic

constant.

(i) In the case y ≤ 0 we have −y ≥ 0. Applying the same arguments used in case (i) in

the proof of Lemma 3.21 leads to

P(y) ≤ 4µ−2

bxc−2

bxc∑
i=1

V[Z1,i] +

bnδc∑
i=bxc+1

i−2V[Z1,i]

 . (4.72)

We use the abbreviation Z̃1,i := 4ε |Xτn+i|−2(β−α)Xτn+i, 1 ≤ i ≤ bnδc, to estimate

the variance. Fix for a moment i ∈ {1, ..., bnδc}. By definition of Z1,i and the

calculation rules of variances, a trivial verification shows that

V[Z1,i] = V
[
Z̃1,i

]
= E

[
Z̃2

1,i

]
−
(
E
[
Z̃1,i

])2

≤ E
[
Z̃2

1,i

]
= E

[∣∣∣Z̃1,i

∣∣∣2] .
Moreover, by the Triangle Inequality and the Binomial Formula, we can assert that

E

[∣∣∣Z̃1,i

∣∣∣2] ≤ E [(4ε |Xτn+i|+ |2(β − α)Xτn+i|)2]
= 16ε2E

[
|Xτn+i|2

]
+ 16ε|α− β|E

[
|Xτn+i|2

]
+ 4(α− β)2E

[
|Xτn+i|2

]
≤
(
16ε2 + 16ε|α− β|

)
M2 + 4(α− β)2M2

≤ Cε + C,

since M2 < ∞. By (4.72), an analogous proceeding as in case (i) in the proof of

Lemma 3.21 gives for x ≥ 2

P(y) ≤ Cεx
−1 + Cx−1.
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(ii) Let y > 0. By k ≥ x, we have

1

2
kµ− y = k

(
1

2
µ− y

k

)
≥ k

(
1

2
µ− y

x

)
.

(a) Let 0 < y < 1
4
µx. It follows that 1

2
kµ− y ≥ 1

4
kµ. As in (i), we obtain

P(y) ≤ P

[ ⋃
x≤k≤nδ

{
k∑
i=1

Z1,i ≥
1

4
kµ

}]

≤ Cεx
−1 + Cx−1.

(b) In the case y ≥ 1
4
µx we estimate P(y) ≤ 1.

Applying (4.70) and (4.71) gives

P
[
Ẽ

(++)
1

]
≤
∫

(−∞,0]

P(y) P
Y

(+)
2

(dy) +

∫
(0, 1

4
µx)
P(y) P

Y
(+)
2

(dy) +

∫
[ 14µx,∞)

P(y) P
Y

(+)
2

(dy)

≤ (Cεx
−1 + Cx−1)P

[
Y

(+)
2 ≤ 0

]
+ (Cεx

−1 + Cx−1)P

[
0 < Y

(+)
2 <

1

4
µx

]
+ P

[
Y

(+)
2 ≥ 1

4
µx

]
≤ Cεx

−1 + Cx−1 + P

[
Y

(+)
2 ≥ 1

4
µx

]
. (4.73)

For abbreviation, we write Z2,i := η
(+)
2,i − E

[
η

(+)
2,i

]
, 1 ≤ i ≤ bnδc. We now handle the

probability in the last estimate. By definition, we have{
Y

(+)
2 ≥ 1

4
µx

}
=

{
max

0≤l≤nδ

l∑
i=1

η
(+)
2,i ≥

1

4
µx

}

=
⋃

0≤l≤nδ

{
l∑

i=1

Z2,i ≥
l∑

i=1

E
[
−η(+)

2,i

]
+

1

4
µx

}

Note that
{∑l

i=1 Z2,i ≥
∑l

i=1E
[
−η(+)

2,i

]
+ 1

4
µx
}

= ∅ for l = 0, because 1
4
µx > 0. From

Lemma 3.19 (iii) we deduce that σn + 1 ≤ σn + i < n for 1 ≤ i ≤ l with 1 ≤ l ≤ nδ. The

proof of Lemma 3.8 provides

E[a2(Xσn+i)] = (β − γ)2 for 1 ≤ i ≤ l with 1 ≤ l ≤ nδ.
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By similar arguments used for the estimate of E
[
−η(+)

1,i

]
, there exists ε2 = ε2(β, γ) > 0

such that

E
[
−η(+)

2,i

]
≥ 1

2
(β − γ)2 ≥ 1

2
µ

for all ε ≤ ε2 and 1 ≤ i ≤ l with 1 ≤ l ≤ nδ . From now on, let ε ≤ min{ε1, ε2}. It follows

that {
Y

(+)
2 ≥ 1

4
µx

}
⊆

⋃
1≤l≤nδ

{
l∑

i=1

Z2,i ≥
1

2
lµ+

1

4
µx

}

⊆
⋃

1≤l≤nδ

{
(2l + x)−1

∣∣∣∣∣
l∑

i=1

Z2,i

∣∣∣∣∣ ≥ 1

4
µ

}
.

The further proceeding is analogous to the approach of Y
(+)

2 in the proof of Lemma 3.21.

We get

P

[
Y

(+)
2 ≥ 1

4
µx

]
≤ 16µ−2

bnδc∑
l=1

(2l + x)−2V[Z2,l].

The variance can be handled as in case (i). We obtain

V[Z2,l] ≤
(
16ε2 + 16ε|β − γ|

)
M2 + 4(β − γ)2M2 ≤ Cε + C

for 1 ≤ l ≤ bnδc. We infer in much the same way as in proof of Lemma 3.21

P

[
Y

(+)
2 ≥ 1

4
µx

]
≤ Cεx

−1 + Cx−1.

By (4.73), we see that

P
[
Ẽ

(++)
1

]
≤ Cεx

−1 + Cx−1.

Summarizing, by (4.67) and (4.68), we have for all ε ≤ min{ε1, ε2}

P
[
E(++)

]
≤ P

[
Ẽ

(++)
1

]
+ P[A]

≤ Cεx
−1 + Cx−1

+ P [|α̂n − α| > ε] + P
[∣∣∣β̂n − β∣∣∣ > ε

]
+ P [|γ̂n − γ| > ε] .
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4.2 Another estimation approach for the multiple change-point

The rest of the proof runs as before. We outline the proof for E(+−), E(−+) and E(−−). Set

Y
(−)

1 := max
−nδ≤k≤−x

−k∑
i=1

η
(−)
1,i and Y

(−)
2 := max

−nδ≤l<0

−l∑
i=1

η
(−)
2,i ,

where

η
(−)
1,i := 4ε |Xτn−i+1|+ 2ε2 + 2ε(|α|+ |β|) + a1(Xτn−i+1) and

η
(−)
2,i := 4ε |Xσn−i+1|+ 2ε2 + 2ε(|β|+ |γ|) + a2(Xσn−i+1).

A similar approach as in the first part of the proof leads to

E(+−) ⊆
{
Y

(+)
1 + Y

(−)
2 ≥ 0

}
∪ A, E(−+) ⊆

{
Y

(−)
1 + Y

(+)
2 ≥ 0

}
∪ A and

E(−−) ⊆
{
Y

(−)
1 + Y

(−)
2 ≥ 0

}
∪ A,

where A is given by (4.68). The pairwise independence of the measurable transformations

Y
(+)

1 = Y
(+)

1

(
Xτn+1, ..., Xτn+bnδc

)
and Y

(−)
2 = Y

(−)
2

(
Xσn−bnδc+1, ..., Xσn

)
,

Y
(−)

1 = Y
(−)

1

(
Xτn−bnδc+1, ..., Xτn

)
and Y

(+)
2 = Y

(+)
2

(
Xσn+1, ..., Xσn+bnδc

)
,

Y
(−)

1 = Y
(−)

1

(
Xτn−bnδc+1, ..., Xτn

)
and Y

(−)
2 = Y

(−)
2

(
Xσn−bnδc+1, ..., Xσn

)
follow from Lemma 3.19 and the independence of the observations X1, ..., Xn. Lemma 3.19

shows that 1 ≤ τn−i+1 ≤ τn for 1 ≤ i ≤ −k with x ≤ −k ≤ nδ and τn+1 ≤ σn−i+1 ≤ σn

for 1 ≤ i ≤ −l with 1 ≤ −l ≤ nδ. The proof of Lemma 3.8 establishes

E[a1(Xτn−i+1)] = −(α− β)2 for 1 ≤ i ≤ −k with x ≤ −k ≤ nδ and

E[a2(Xσn−i+1)] = −(β − γ)2 for 1 ≤ i ≤ −l with 1 ≤ −l ≤ nδ.

Hence there exist ε3 = ε3(α, β) > 0 and ε4 = ε4(β, γ) > 0 such that

E
[
−η(−)

1,i

]
≥ 1

2
(α− β)2 for all ε ≤ ε3 and 1 ≤ i ≤ −k with x ≤ −k ≤ nδ and

E
[
−η(−)

2,i

]
≥ 1

2
(β − γ)2 for all ε ≤ ε4 and 1 ≤ i ≤ −l with 1 ≤ −l ≤ nδ.
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Similar arguments used in the estimate of the probability of E(++) lead to

P
[
E(+−)

]
≤ Cεx

−1 + Cx−1 + P [|α̂n − α| > ε] + P
[∣∣∣β̂n − β∣∣∣ > ε

]
+ P [|γ̂n − γ| > ε]

for all ε ≤ min{ε1, ε4},

P
[
E(−+)

]
≤ Cεx

−1 + Cx−1 + P [|α̂n − α| > ε] + P
[∣∣∣β̂n − β∣∣∣ > ε

]
+ P [|γ̂n − γ| > ε]

for all ε ≤ min{ε2, ε3} and

P
[
E(−−)

]
≤ Cεx

−1 + Cx−1 + P [|α̂n − α| > ε] + P
[∣∣∣β̂n − β∣∣∣ > ε

]
+ P [|γ̂n − γ| > ε]

for all ε ≤ min{ε3, ε4}. Applying (4.66) yields

P[E] ≤ P
[
E(++)

]
+ P

[
E(+−)

]
+ P

[
E(−+)

]
+ P

[
E(−−)

]
≤ Cεx

−1 + Cx−1 + 4
(
P [|α̂n − α| > ε] + P

[∣∣∣β̂n − β∣∣∣ > ε
]

+ P [|γ̂n − γ| > ε]
)

for all ε ≤ ε
(1)
0 := min{ε1, ε2, ε3, ε4}. In the same manner we can see that there exists

ε
(2)
0 = ε

(2)
0 (α, β, γ) > 0 such that

P[F ] ≤ Cεx
−1 + Cx−1 + 4

(
P [|α̂n − α| > ε] + P

[∣∣∣β̂n − β∣∣∣ > ε
]

+ P [|γ̂n − γ| > ε]
)

for all ε ≤ ε
(2)
0 . Altogether, by (4.65), we have for all ε ≤ ε0 := min

{
ε

(1)
0 , ε

(2)
0

}
P[x ≤ ‖τ ∗n − τ n‖ ≤ nδ]

≤ P[E] + P[F ]

≤ Cεx
−1 + Cx−1 + 8

(
P [|α̂n − α| > ε] + P

[∣∣∣β̂n − β∣∣∣ > ε
]

+ P [|γ̂n − γ| > ε]
)
.

We obtain stochastic boundedness of τ ∗n − τ n (assumption (ii) of Theorem 2.3).

Proposition 4.37. If M4 <∞, then

lim
x→∞

lim sup
n→∞

P[‖τ ∗n − τ n‖ ≥ x] = 0.
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4.2 Another estimation approach for the multiple change-point

Proof. The same proceeding as in proof of Proposition 3.22 leads to

P[‖τ ∗n − τ n‖ ≥ x] ≤ P[x ≤ ‖τ ∗n − τ n‖ ≤ nδ] + P

[
‖θ∗n − θ‖ >

1

2
δ

]
+ P

[
1 >

1

2
nδ

]
with δ > 0, x > 0 and n ∈ N. Applying the error estimate in Lemma 4.36 and the weak

consistency of α̂n =
(
α̂n, β̂n, γ̂n

)
and θ∗n (see Theorems 4.18 and 4.29) implies

lim sup
n→∞

P[‖τ ∗n − τ n‖ ≥ x] ≤ Cεx
−1 + Cx−1,

where Cε > 0 (ε > 0 sufficiently small), C > 0 and x ≥ 2. Letting x → ∞ we get the

claim.

We can now formulate and prove another main result of this work. If all distributions are

continuous, it turns out that τ ∗n−τ n converges in distribution to the minimizer of Γ, where

Γ is a sum of random walks, which we have already investigated in Chapter 3.

Theorem 4.38. If M4 <∞, then

lim sup
n→∞

P[τ ∗n − τ n ∈ F ] ≤ P[Argmin(Γ) ∩ F 6= ∅] for all F ⊆ Z2.

In addition, if Q1, Q2 and Q3 are continuous, then Argmin(Γ) = {T } almost surely and

τ ∗n − τ n
L−−−→

n→∞
T in Z2.

Proof. We apply Theorem 2.3. By Lemmas 4.31, 3.23 and 3.25, we first observe that

τ ∗n − τ n is a minimizer of Γ∗n and Γ has at least one minimizer. Propositions 4.34 and

4.37 establish assumptions (i) and (ii) of Theorem 2.3, which give the first claim. By

Proposition 3.26, we conclude the second claim.

Corollary 4.39. Suppose that M4 < ∞. Let Q1, Q2 and Q3 be continuous distributions.

Then

τ ∗n − τn
L−−−→

n→∞
argmin
k∈Z

Γ1(k) in Z and σ∗n − σn
L−−−→

n→∞
argmin
l∈Z

Γ2(l) in Z.

Proof. The proof of Corollary 3.28 works by replacing Theorem 3.27 and τ̄ n = (τ̄n, σ̄n) by

Theorem 4.38 and τ ∗n = (τ ∗n, σ
∗
n).
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Chapter 4 Unknown expectations

4.2.4 Asymptotic confidence region

This section provides an asymptotic confidence region to estimate the moments of change

τ n = (τn, σn) in the case of unknown expectations.

For this purpose, let F−1
‖T ‖(ϑ), ϑ ∈ (0, 1), stand for the ϑ-quantile of the distribution function

F‖T ‖ of ‖T ‖, where T is the almost surely unique minimizer of Γ (see Theorem 4.38).

To get an asymptotic confidence region, we use a similar approach as in Section 3.4, i.e.,

the convergence in distribution of τ ∗n−τ n (see Theorem 4.38) and the Continuous Mapping

Theorem are applied.

Theorem 4.40. Suppose that M4 < ∞. Let Q1, Q2 and Q3 be continuous distributions

and ϑ ∈ (0, 1). For each n ∈ N, the random interval

In(ϑ) :=
[
τ ∗n − F−1

‖T ‖(1− ϑ), τ ∗n + F−1
‖T ‖(1− ϑ)

]
×
[
σ∗n − F−1

‖T ‖(1− ϑ), σ∗n + F−1
‖T ‖(1− ϑ)

]
is an asymptotic confidence region for τ n = (τn, σn) at level 1− ϑ.

Proof. The proof of Theorem 3.29 remains valid for τ ∗n = (τ ∗n, σ
∗
n) and Theorem 4.38 instead

of τ̄ n = (τ̄n, σ̄n) and Theorem 3.27.

The important point to note here is that the quantile F−1
‖T ‖(1− ϑ), ϑ ∈ (0, 1) is unknown,

but it can be approximated by a Monte-Carlo method as described in Section 3.4. Indeed,

we use the estimators α̂n, β̂n and γ̂n (defined in (4.5)) instead of the unknown expectations

α, β and γ to generate the process Γ (compare step (i) (2) in Section 3.4).

For further investigation of the asymptotic confidence region one can find a simulation study

in Chapter 5, which contains of approximated coverage probabilities for given confidence

levels.
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Chapter 5

Simulation study

This chapter contains a brief summary of conclusions based on a simulation study in the

software environment R, version 3.3.1.

To get empirical results, we choose a multiple change-point θ = (θ1, θ2) with 0 < θ1 <

θ2 < 1 and the distributions Q1, Q2, Q3, where the first moments of adjacent segments

are different (see (1.2)). Furthermore, we generate a data set of independent observations

X1, ..., Xn such that the segments X1, ..., Xbnθ1c, Xbnθ1c+1, ..., Xbnθ2c and Xbnθ2c+1, ..., Xn

arise from the given distributions (compare (1.1)). For some examples, the results of this

simulation study are given in Appendix C.

At first we look closer at the criterion functions M̄n, M̂n and M∗
n to confirm Lemma 3.3 and

the Conjectures 4.4 and 4.22. As an example, in Table C.1 we set n = 10 and θ = (0.4, 0.8)

and consider different binomial, poisson, normal and exponential distributions Q1, Q2 and

Q3, where the expectations are fixed by α = (1, 2, 1). The sets of all minimizers and max-

imizers are computed by 106 Monte-Carlo repetitions, respectively. If the distributions are
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Chapter 5 Simulation study

chosen to be continuous, as in the second block in Table C.1, then we observe that M̄n has

exactly one minimizer, M̂n has one maximizer and M∗
n has only one minimizer, namely

the smallest maximizer of M̂n (which is used to construct M∗
n, compare (4.49), (4.48) and

(4.5)). However, it is not sufficient to assume that at least one distribution must be con-

tinuous, as one can see in the third block in Table C.1.

In order to evaluate the performance of the estimators θ̄n, θ̂n and θ∗n of the multiple

change-point and the estimator α̂n of expectations, the bias and root mean square error

(RMSE) were estimated over 104 Monte-Carlo repetitions. For this purpose, different nor-

mal distributions from which the observations arise were chosen. As a simple consequence

of Conjecture 4.22, we obtain the same results by computing θ̂n and θ∗n. Therefore, we

only consider θ∗n in the case of unknown expectations.

The empirical results, listed in Tables C.2 and C.3, indicate some conclusions. We find

that the estimation is more accurate for larger sample sizes, which is clear due to the con-

sistency of our estimators (see Theorems 3.12, 4.29 and 4.18). Though, it is evident that

θ̄n performs better than θ∗n, because the expectations are assumed to be known to compute

θ̄n. Furthermore, since α̂n depends on τ̂ n = nθ̂n (compare Equations (4.5) and (4.7)), it

is plausible that α̂n converges slower than the estimators of the multiple change-point.

In general, the distributions and the location of change-points influence the quality of con-

vergence of our estimators. To be more precise, we consider the estimator θ∗n for given

θ = (0.4, 0.8) and α = (0, 1,−1) (variance of Q1, Q2 and Q3 is 1). Then even for the

sample size n = 100 the true multiple change-point is accurately estimated. When we

choose change-points, which are closer to the boundary or closer together, the speed of

convergence slightly decreases. In our examples in Table C.2 a sample size of more than

1000 is required to get an acceptable result. The same effect can be seen if the difference

within expectations is small or the variances are increased.
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Finally, we want to discuss the convergence in distribution of τ̄ n − τ n and τ ∗n − τ n based

on the asymptotic confidence regions for τ n = (τn, σn) in the case of known and unknown

expectations (see Theorems 3.29 and 4.40). The simulation of these asymptotic confidence

regions was described in Sections 3.4 and 4.2.4. We use m = max{τ̄n, σ̄n− τ̄n, n− σ̄n} (case

of known expectations) and m = max{τ ∗n, σ∗n− τ ∗n, n− σ∗n} (case of unknown expectations)

to generate N = 104 processes Γ and their minimizers. To evaluate the convergence

in distribution, we compute the approximated coverage probability on the basis of 103

intervals.

The same framework as for the performance of estimators is considered. The empirical

results can be found in Table C.4. We can observe a similar pattern as before. Let us

consider for example the case of unknown expectations. The speed of convergence of

τ ∗n − τ n decreases if the change-points are closer to the boundary or closer together, the

difference within expectations is small or the variances are increased. So, in our examples a

sample size more than 5000 is required such that the coverage probability attains the given

confidence level. On the contrary, in the first example θ = (0.4, 0.8) and α = (0, 1,−1)

(variance of Q1, Q2 and Q3 is 1) a sample size of more than 500 suffices. Moreover, in

the case of known expectations it is interesting that the coverage probability attains the

confidence level almost every time. This observation indicates that the location of change-

points and distributions hardly influence the quality of convergence of τ̄ n − τ n.
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Chapter 6

Outlook

In this chapter we discuss the generalization of the previous results to an arbitrary, but

known, number of change-points and give some ideas for further work on this field.

6.1 Generalization

The question naturally arises whether the results of our work can be generalized to an arbi-

trary, but known, number of change-points q ∈ N. The detailed reply of this question may

be content of further work. However, in this section we formulate conjectures according to

the previous results and hint some problems of proofs. Since in practical applications it is

common to have unknown expectations, we only focus on this case. For the convenience

of the reader we use almost the same notation as in the previous chapters.

We begin with the formulation of the generalized multiple change-point model. Let

(Xj,n) n∈N
1≤j≤n

be a triangular array of random variables defined on a probability space
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(Ω,A,P) with values in the measurable space (R,B(R)). Each row of the triangular ar-

ray consists of independent random variables, i.e., X1,n, ..., Xn,n are independent for every

n ∈ N. Let us denote by Θ and ∆n, n ∈ N, the sets

Θ := {t = (t1, ..., tq) ∈ Rq|0 < t1 < ... < tq < 1} and

∆n := {k = (k1, ..., kq) ∈ Nq|1 ≤ k1 < ... < kq ≤ n− 1}.

We assume that there exists a vector θ := (θ1, ..., θq) ∈ Θ such that for all n ∈ N

Xi,n ∼ Qr for bnθr−1c+ 1 ≤ i ≤ bnθrc, 1 ≤ r ≤ q + 1,

where Q1, ..., Qq+1 are arbitrary, but unknown, distributions and θ0 := 0, θq+1 := 1. We

call θ multiple change-point and τ n := (τn,1, ..., τn,q) := (bnθ1c, ..., bnθqc) ∈ ∆n, n ∈ N,

moments of change. Furthermore, we suppose that the expectations α := (α1, ..., αq+1)

defined by αr :=
∫
R
x Qr(dx), 1 ≤ r ≤ q + 1, exist, are finite and satisfy

αr 6= αr+1

for all r ∈ {1, ..., q}. The parameters θ and α are assumed to be unknown.

For simplicity of notation, we write X1, ..., Xn instead of X1,n, ..., Xn,n, n ∈ N, for the n-

th row of the triangular array. Moreover, set

Mp := max
1≤r≤q+1

{∫
R
|x|p Qr(dx)

}
for the maximum of the p-th absolute moments, p ∈ [1,∞). Unless otherwise stated we

assume that M1 <∞.

The same approach as in Chapter 4 should also yield results in our multiple change-point

model. To simultaneously estimate the moments of change τ n = (τn,1, ..., τn,q) and the

expectations α = (α1, ..., αq+1) by the least squares method, we minimize the criterion
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function

Sn(k, a) :=

q+1∑
r=1

kr∑
i=kr−1+1

(Xi − ar)2, k = (k1, ..., kq) ∈ ∆n, a = (a1, ..., aq+1) ∈ Rq+1,

where k0 := 0 and kq+1 := n. To do this, set

M̂n(k) :=

q+1∑
r=1

(kr − kr−1)X̄kr−1,kr , k = (k1, ..., kq) ∈ ∆n

and choose an arbitrary maximizing point

τ̂ n := (τ̂n,1, ..., τ̂n,q) := argmax
k∈∆n

M̂n(k).

A generalization of Theorem 4.1 would bring the result that (τ̂ n, α̂n) with

α̂n := (α̂n,1, ..., α̂n,q+1) :=
(
X̄τ̂n,r,τ̂n,r+1

)
0≤r≤q

is a minimizer of Sn for each n ∈ N, where τ̂n,0 := 0 and τ̂n,q+1 := n. Hence (τ̂ n, α̂n) is a

least squares estimator of (τ n,α) and θ can be estimated by θ̂n := 1
n
τ̂ n.

To show consistency of θ̂n, we have to identify a limit process ρ̂ (see (4.8) in the case q = 2)

such that θ is the well-separated maximizer of ρ̂. The problem here is the partitioning of Θ

into disjoint subsets according to the position of t = (t1, ..., tq) ∈ Θ relative to the multiple

change-point θ = (θ1, ..., θq) ∈ Θ. The number of subsets is (q + 1)! (compare (3.11) and

(3.12) in the case q = 2). Hence we cannot discuss all cases to obtain a limit process. Up to

now, there is no self-contained representation of ρ̂. If we are able to solve this problem, the

proofs of weak and strong consistency of θ̂n should be very similar to the work of Albrecht

[1] and Section 4.1.2.

Conjecture 6.1. Suppose there is some p ∈ (4,∞) such that Mp <∞. Then

θ̂n
a.s.−−−→
n→∞

θ.

Conjecture 6.2. Suppose there is some p ∈ (2,∞) such that Mp <∞. Then

θ̂n
P−−−→

n→∞
θ.
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The problem to get further results lies in the estimate of the error probability to show

stochastic boundedness of τ̂ n − τ n. As at the beginning of the proof of Lemma 4.16, we

have to consider several cases by computing the maximum norm. For q ≥ 3 there are lots

of such cases which all must be handled. The solution of this problem would lead to the

estimate of the error probability, and, in consequence, to the stochastic boundedness.

Immediately, the proof of weak consistency of α̂n (see Theorem 4.18) can be simply gen-

eralized by rules of convergence in probability.

Conjecture 6.3. If M4 <∞, then

α̂n
P−−−→

n→∞
α.

We now generalize the estimation approach from Section 4.2. The criterion function here

is given by

S∗n(k) :=

q+1∑
r=1

kr∑
i=kr−1+1

(Xi − α̂n,r)2 , k = (k1, ..., kq) ∈ ∆n.

For abbreviation, set

a∗n,r(Xi) := 2 (α̂n,r+1 − α̂n,r)Xi + α̂2
n,r − α̂2

n,r+1

for 1 ≤ i ≤ n and 1 ≤ r ≤ q and

M∗
n(k) :=

q∑
r=1

kr∑
i=1

a∗n,r(Xi), k = (k1, ..., kq) ∈ ∆n.

By arguments applied in the proofs of Lemmas 4.21 and 4.20, we see that an arbitrary

minimizer

τ ∗n := (τ ∗n,1, ..., τ
∗
n,q) := argmin

k∈∆n

M∗
n(k)

of M∗
n minimizes S∗n and (τ ∗n, α̂n) is also a least squares estimator of (τ n,α). The estimator

of the multiple change-point θ is given by θ∗n := 1
n
τ ∗n.
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To prove consistency of θ∗n, we have to identify a limit variable ρ (see (3.13) in the case

q = 2) such that θ is the well-separated minimizer of ρ. The same problem occurs as

described above (consistency of θ̂n). If we find a self-contained representation of ρ, we can

proceed as in Section 4.2.2 to get weak consistency of θ∗n.

Conjecture 6.4. If M4 <∞, then

θ∗n
P−−−→

n→∞
θ.

The next step is to investigate convergence in distribution of τ ∗n−τ n. To this end, consider

the rescaled process

Γ∗n(k) := M∗
n(τ n + k)−M∗

n(τ n), k = (k1, ..., kq) ∈ Hn,

where

Hn := {k = (k1, ..., kq) ∈ Zq
∣∣kr − kr−1 ≥ 1− (τn,r − τn,r−1) for all r ∈ {1, ..., q},

n− kq ≥ τn,q + 1}

and τn,0 := 0 and τn,q+1 := n. As in the proof of Lemma 4.31 follows that τ ∗n−τ n minimizes

Γ∗n, which would allow us to apply Theorem 2.3. We now generalize the process Γ given

in (3.18) and Remark 3.16. For this purpose, let (ξi,r)i∈N, r ∈ {1, ..., q + 1}, be q + 1

independent sequences, which for each r consist of independent and identically distributed

random variables with common distribution Qr. Let

Γ(k) :=

q∑
r=1

Γr(kr), k = (k1, ..., kq) ∈ Zq,

where

Γr(kr) :=


2(αr+1 − αr)

kr∑
i=1

(ξi,r+1 − αr+1) + kr(αr − αr+1)2, kr ≥ 0,

−2(αr+1 − αr)
−kr∑
i=1

(ξi,r − αr)− k(αr − αr+1)2, kr < 0.
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To obtain convergence in distribution of τ ∗n − τ n, we would apply Theorem 2.3. A very

similar proceeding as in the Sections 4.2.3 and 3.3 establishes assumptions (i) and (iii) of

Theorem 2.3. To conclude assumption (ii), the main difficulty also appears by computing

the maximum norm in the error estimate to infer stochastic boundedness of τ ∗n − τ n

(compare the beginning of the proof of Lemma 4.36), since there are many cases to treat.

If we can solve this problem, τ ∗n−τ n converges in distribution to the minimizer of Γ, where

Γ is a sum of q random walks.

Conjecture 6.5. If M4 <∞, then

lim sup
n→∞

P[τ ∗n − τ n ∈ F ] ≤ P[Argmin(Γ) ∩ F 6= ∅] for all F ⊆ Zq.

In addition, if Q1, ..., Qq+1 are continuous, then Argmin(Γ) = {T } almost surely and

τ ∗n − τ n
L−−−→

n→∞
T in Zq.

Let us denote by F−1
‖T ‖(ϑ), ϑ ∈ (0, 1), the ϑ-quantile of the distribution function F‖T ‖ of

‖T ‖. The same arguments used in the proof of Theorem 4.40 would lead to the following

asymptotic confidence region for τ n = (τn,1, ..., τn,q).

Conjecture 6.6. Suppose that M4 <∞. Let Q1, ..., Qq+1 be continuous distributions and

ϑ ∈ (0, 1). For each n ∈ N, the random interval

In(ϑ) :=
q

×
r=1

[
τ ∗n,r − F−1

‖T ‖(1− ϑ), τ ∗n,r + F−1
‖T ‖(1− ϑ)

]
is an asymptotic confidence region for τ n = (τn,1, ..., τn,q) at level 1− ϑ.
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6.2 Further research

6.2 Further research

This section gives a brief exposition of ideas for further research on this field.

The first aim of further research should be the generalization of our results to an arbitrary,

but known, number of change-points, which was indicated in Section 6.1. Up to now, we

have mainly focused on the estimation approach of the multiple change-point. However,

one can examine strong consistency and convergence in distribution of α̂n. Thus the strong

consistency of θ∗n can be proved and it is possible to construct an asymptotic confidence

region for the expectations. Furthermore, it is desirable to derive a statistical test for the

existence of q ∈ N change-points adjusted to our model.

Moreover, one may imagine a slight modification of our model, what is known as the so-

called diminishing disorders. We assume that all distributions Q1, ..., Qq+1 depend on the

sample size n ∈ N in the sense that the expectations of adjacent segments approach for

growing n ∈ N. Here, weak and strong consistency and convergence in distribution of all

estimators can be also investigated.
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Appendix A

Technical lemmas

In this chapter we compile some technical lemmas.

Lemma A.1. The floor function has the following properties:

(i) Let x ∈ R. Then

x− 1 < bxc ≤ x < bxc+ 1.

(ii) Let x, y ∈ R and n ∈ N. If y − x ≥ n−1, then bnxc < bnyc.

(iii) Let n ∈ N and A ⊆ R. Then

sup
x∈A

∣∣∣∣bnxcn − x
∣∣∣∣ ≤ 1

n
.

(iv) Let y ∈ R and n ∈ N. Then∣∣∣∣bnycn − y
∣∣∣∣ ≤ 1

n
.

Proof. (i) The inequalities follow from the definition of the floor function.
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(ii) Fix x, y ∈ R and n ∈ N. By (i) and y − x ≥ n−1, we get

bnyc − bnxc > ny − 1− nx = n(y − x)− 1 ≥ 0.

(iii) Fix n ∈ N and A ⊆ R. Repeated application of (i) leads to

sup
x∈A

∣∣∣∣bnxcn − x
∣∣∣∣ = sup

x∈A

nx− bnxc
n

≤ sup
x∈A

bnxc+ 1− bnxc
n

=
1

n
.

(iv) Fix y ∈ R and n ∈ N. By (iii), we have∣∣∣∣bnycn − y
∣∣∣∣ ≤ sup

x∈R

∣∣∣∣bnxcn − x
∣∣∣∣ ≤ 1

n
.

Lemma A.2. It holds

τn −−−→
n→∞

∞, σn − τn −−−→
n→∞

∞ and n− σn −−−→
n→∞

∞.

Proof. As an example, we show that σn−τn −−−→
n→∞

∞. The other claims follows analogously.

By definitions τn = bnθ1c and σn = bnθ2c and a simple application of Lemma A.1 (i), it is

clear that

n(θ2 − θ1)− 1 ≤ σn − τn ≤ n(θ2 − θ1) + 1

for n ∈ N. Letting n→∞ completes the proof.

Lemma A.3. Let n ∈ N. Then

∆n =
{

(bnsc, bntc) ∈ N2
∣∣(s, t) ∈ Θn

}
.

Proof. Fix n ∈ N. We first recall

∆n =
{

(k, l) ∈ N2
∣∣1 ≤ k < l ≤ n− 1

}
and

Θn =

{
(s, t) ∈ Θ

∣∣∣∣s ≥ 1

n
, t− s ≥ 1

n
, 1− t ≥ 1

n

}
.
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1. We first show that ∆n ⊆
{

(bnsc, bntc) ∈ N2
∣∣(s, t) ∈ Θn

}
.

Let (k, l) ∈ ∆n and define (s, t) :=
(
k
n
, l
n

)
. Then we have (bnsc, bntc) = (k, l) ∈ N2

and (s, t) ∈ Θn.

2. We next prove that
{

(bnsc, bntc) ∈ N2
∣∣(s, t) ∈ Θn

}
⊆ ∆n.

Let (bnsc, bntc) ∈
{

(bnsc, bntc) ∈ N2
∣∣(s, t) ∈ Θn

}
. By (s, t) ∈ Θn, we observe that

ns ≥ 1. On the contrary, suppose that bnsc < 1. Accordingly, ns < 1, which is a

contradiction. Hence bnsc ≥ 1. Moreover, since (s, t) ∈ Θn, we see that nt ≤ n− 1.

By an application of Lemma A.1 (i), we infer that bntc ≤ n − 1. It still remains to

show that bnsc < bntc. By another application of Lemma A.1 (i), we obtain

bntc − bnsc > nt− 1− ns = n(t− s)− 1 ≥ 0,

where the last inequality is deduced from (s, t) ∈ Θn.

Lemma A.4. Let Z1, ..., Zn, n ∈ N, be random variables and ε > 0. Then{
n∑
i=1

Zi > ε

}
⊆

n⋃
i=1

{
Zi >

ε
n

}
.

Proof. Fix n ∈ N and ε > 0. To obtain a contradiction, suppose that there exists

ω ∈ {
∑n

i=1 Zi > ε}, but ω /∈
⋃n
i=1

{
Zi >

ε
n

}
. Hence Zi(ω) ≤ ε

n
for all i ∈ {1, ..., n}. We

thus get

n∑
i=1

Zi(ω) ≤
n∑
i=1

ε
n

= ε,

which contradicts our assumption.

Lemma A.5. Let r ∈ [1,∞) and u, v ∈ N2 with u < v. Then

v∑
m=u

m−r ≤


1 + ln(v), r = 1,

1
r−1

(u− 1)1−r, r ∈ (1,∞).
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Proof. Fix u, v ∈ N2 with u < v. For r = 1 we conclude that

v∑
m=u

m−r ≤
v∑

m=1

m−r = 1 +
v∑

m=2

m−r ≤ 1 +

∫ v

1

x−r dx = 1 + ln(v).

For r ∈ (1,∞) we have

v∑
m=u

m−r ≤
∫ v

u−1

x−r dx ≤
∫ ∞
u−1

x−r dx =
1

r − 1
(u− 1)1−r.

Lemma A.6. Let m, r ∈ (0,∞). Then

m−r − (m+ 1)−r ≤ rm−(r+1).

Proof. Fix m, r ∈ (0,∞). Define the continuous and monotonically decreasing mapping

f : R>0 → R by f(x) := x−r. By the Mean Value Theorem (see for instance Heuser [20,

p. 279, 49.1]), there exists η ∈ (m,m+ 1) such that

m−r−(m+1)−r = f(m)−f(m+1) =

∣∣∣∣f(m)− f(m+ 1)

m− (m+ 1)

∣∣∣∣ = |f ′(η)| = rη−(r+1) ≤ rm−(r+1).

The last inequality follows from η > m.

Lemma A.7. Let n ∈ N. For any b1, ..., bn ∈ (0,∞) it holds(
n∑
i=1

bi

)1/2

≤
n∑
i=1

b
1/2
i .

Proof. The proof is by induction on n ∈ N. Let n = 2. Then the assertion is equivalent

to b1 + b2 ≤ b1 + b2 + 2b
1/2
1 b

1/2
2 , which is obviously fulfilled. We now suppose the induction

hypothesis (
∑n

i=1 bi)
1/2 ≤

∑n
i=1 b

1/2
i . It follows that(

n+1∑
i=1

bi

)1/2

=

(
n∑
i=1

bi + bn+1

)1/2

≤

(
n∑
i=1

bi

)1/2

+ b
1/2
n+1 ≤

n∑
i=1

b
1/2
i + b

1/2
n+1 =

n+1∑
i=1

b
1/2
i .

Lemma A.8. Let Y and Z be independent random variables. Then

P [Y + Z ≥ 0] =

∫
R

P [Y ≥ −z] PZ(dz).
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Proof. By the tower property of the conditional expectation, we conclude that

P [Y + Z ≥ 0] = E
[
1{Y+Z≥0}

]
= E

[
E
[
1{Y+Z≥0}

∣∣Z]] .
Define the function g : R→ R by g(z) := E

[
1{Y+Z≥0}|Z = z

]
. It follows that

P [Y + Z ≥ 0] = E [g(Z)] =

∫
R

g(z) PZ(dz). (A.1)

The independence of Y and Z leads to

g(z) = E
[
1{Y+z≥0}

]
= P [Y ≥ −z]

for all z ∈ R. Applying (A.1) establishes the claim.

Lemma A.9. Let Y and Z be independent random variables with Y ≥ 0 and Z ≥ 0 almost

surely. Let ε > 0. Then

P [Y Z ≥ ε] =

∫
(0,∞)

P
[
Z ≥ εy−1

]
PY (dy).

Proof. Similar arguments applied in the proof of Lemma A.8 gives the assertion.
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Appendix B

Some functions

This chapter contains some criterion functions with their decompositions. To shorten

notations, we use for u, v ∈ N0 with u < v the abbreviation

Su,v :=
v∑

i=u+1

(Xi − E[Xi]).

Lemma B.1. Let n ∈ N and (s, t) ∈ Θn. Then

ρ̂n(s, t) = δ̂n(s, t) + %̂n(s, t),

where

δ̂n(s, t)|Θ1∩Θn =
1

nbnsc
S2

0,bnsc +
1

n(bntc − bnsc)
S2
bnsc,bntc +

2

n
αS0,bntc

+
1

n(n− bntc)
S2
bntc,n

+
2((τn − bntc)α + (σn − τn)β + (n− σn)γ)

n(n− bntc)
Sbntc,n,

δ̂n(s, t)|Θ2∩Θn =
1

nbnsc
S2

0,bnsc +
2

n
αS0,bnsc +

1

n(bntc − bnsc)
S2
bnsc,bntc

+
2((τn − bnsc)α + (bntc − τn)β)

n(bntc − bnsc)
Sbnsc,bntc +

1

n(n− bntc)
S2
bntc,n

+
2((σn − bntc)β + (n− σn)γ)

n(n− bntc)
Sbntc,n,
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δ̂n(s, t)|Θ3∩Θn =
1

nbnsc
S2

0,bnsc +
2

n
αS0,bnsc +

1

n(bntc − bnsc)
S2
bnsc,bntc

+
2((τn − bnsc)α + (σn − τn)β + (bntc − σn)γ)

n(bntc − bnsc)
Sbnsc,bntc

+
1

n(n− bntc)
S2
bntc,n +

2

n
γSbntc,n,

δ̂n(s, t)|Θ4∩Θn =
1

nbnsc
S2

0,bnsc +
2(τnα + (bnsc − τn)β)

nbnsc
S0,bnsc

+
1

n(bntc − bnsc)
S2
bnsc,bntc +

2

n
βSbnsc,bntc +

1

n(n− bntc)
S2
bntc,n

+
2((σn − bntc)β + (n− σn)γ)

n(n− bntc)
Sbntc,n,

δ̂n(s, t)|Θ5∩Θn =
1

nbnsc
S2

0,bnsc +
2(τnα + (bnsc − τn)β)

nbnsc
S0,bnsc

+
1

n(bntc − bnsc)
S2
bnsc,bntc +

2((σn − bnsc)β + (bntc − σn)γ)

n(bntc − bnsc)
Sbnsc,bntc

+
1

n(n− bntc)
S2
bntc,n +

2

n
γSbntc,n,

δ̂n(s, t)|Θ6∩Θn =
1

nbnsc
S2

0,bnsc +
2(τnα + (σn − τn)β + (bnsc − σn)γ)

nbnsc
S0,bnsc

+
1

n(bntc − bnsc)
S2
bnsc,bntc +

2

n
γSbnsc,bntc

+
1

n(n− bntc)
S2
bntc,n +

2

n
γSbntc,n

and

%̂n(s, t)|Θ1∩Θn =
bntc
n

α2 +
n− bntc

n

(
τn − bntc
n− bntc

α +
σn − τn
n− bntc

β +
n− σn
n− bntc

γ

)2

,

%̂n(s, t)|Θ2∩Θn =
bnsc
n

α2 +
bntc − bnsc

n

(
τn − bnsc
bntc − bnsc

α +
bntc − τn
bntc − bnsc

β

)2

+
n− bntc

n

(
σn − bntc
n− bntc

β +
n− σn
n− bntc

γ

)2

,
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%̂n(s, t)|Θ3∩Θn =
bnsc
n

α2

+
bntc − bnsc

n

(
τn − bnsc
bntc − bnsc

α +
σn − τn
bntc − bnsc

β +
bntc − σn
bntc − bnsc

γ

)2

+
n− bntc

n
γ2,

%̂n(s, t)|Θ4∩Θn =
bnsc
n

(
τn
bnsc

α +
bnsc − τn
bnsc

β

)2

+
bntc − bnsc

n
β2

+
n− bntc

n

(
σn − bntc
n− bntc

β +
n− σn
n− bntc

γ

)2

,

%̂n(s, t)|Θ5∩Θn =
bnsc
n

(
τn
bnsc

α +
bnsc − τn
bnsc

β

)2

+
bntc − bnsc

n

(
σn − bnsc
bntc − bnsc

β +
bntc − σn
bntc − bnsc

γ

)2

+
n− bntc

n
γ2,

%̂n(s, t)|Θ6∩Θn =
bnsc
n

(
τn
bnsc

α +
σn − τn
bnsc

β +
bnsc − σn
bnsc

γ

)2

+
n− bnsc

n
γ2.

Proof. The proof can be found in Albrecht [1, p. 24, Lemma 3.2].

Lemma B.2. Let n ∈ N and (s, t) ∈ Θn. Then

ρ∗n(s, t) = δ∗n(s, t) + %∗n(s, t),

where

δ∗n(s, t)|Θ1∩Θn =
2

n

(
β̂n − α̂n

)
S0,bnsc +

2

n

(
γ̂n − β̂n

)
S0,bntc,

δ∗n(s, t)|Θ2∩Θn =
2

n

(
β̂n − α̂n

)
S0,bnsc +

2

n

(
γ̂n − β̂n

)
S0,τn +

2

n

(
γ̂n − β̂n

)
Sτn,bntc,

δ∗n(s, t)|Θ3∩Θn =
2

n

(
β̂n − α̂n

)
S0,bnsc +

2

n

(
γ̂n − β̂n

)
S0,τn +

2

n

(
γ̂n − β̂n

)
Sτn,σn

+
2

n

(
γ̂n − β̂n

)
Sσn,bntc,

δ∗n(s, t)|Θ4∩Θn =
2

n
(γ̂n − α̂n)S0,τn +

2

n

(
β̂n − α̂n

)
Sτn,bnsc +

2

n

(
γ̂n − β̂n

)
Sτn,bntc,
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δ∗n(s, t)|Θ5∩Θn =
2

n
(γ̂n − α̂n)S0,τn +

2

n

(
β̂n − α̂n

)
Sτn,bnsc +

2

n

(
γ̂n − β̂n

)
Sτn,σn

+
2

n

(
γ̂n − β̂n

)
Sσn,bntc,

δ∗n(s, t)|Θ6∩Θn =
2

n
(γ̂n − α̂n)S0,τn +

2

n
(γ̂n − α̂n)Sτn,σn +

2

n

(
β̂n − α̂n

)
Sσn,bnsc

+
2

n

(
γ̂n − β̂n

)
Sσn,bntc

and

%∗n(s, t)|Θ1∩Θn =
(

2α
(
β̂n − α̂n

)
+ α̂2

n − β̂2
n

) bnsc
n

+
(

2α
(
γ̂n − β̂n

)
+ β̂2

n − γ̂2
n

) bntc
n

,

%∗n(s, t)|Θ2∩Θn =
(

2α
(
β̂n − α̂n

)
+ α̂2

n − β̂2
n

) bnsc
n

+ 2(α− β)
(
γ̂n − β̂n

) τn
n

+
(

2β
(
γ̂n − β̂n

)
+ β̂2

n − γ̂2
n

) bntc
n

,

%∗n(s, t)|Θ3∩Θn =
(

2α
(
β̂n − α̂n

)
+ α̂2

n − β̂2
n

) bnsc
n

+ 2(α− β)
(
γ̂n − β̂n

) τn
n

+ 2(β − γ)
(
γ̂n − β̂n

) σn
n

+
(

2γ
(
γ̂n − β̂n

)
+ β̂2

n − γ̂2
n

) bntc
n

,

%∗n(s, t)|Θ4∩Θn = 2(α− β) (γ̂n − α̂n)
τn
n

+
(

2β
(
β̂n − α̂n

)
+ α̂2

n − β̂2
n

) bnsc
n

+
(

2β
(
γ̂n − β̂n

)
+ β̂2

n − γ̂2
n

) bntc
n

,

%∗n(s, t)|Θ5∩Θn = 2(α− β) (γ̂n − α̂n)
τn
n

+
(

2β
(
β̂n − α̂n

)
+ α̂2

n − β̂2
n

) bnsc
n

+ 2(β − γ)
(
γ̂n − β̂n

) σn
n

+
(

2γ
(
γ̂n − β̂n

)
+ β̂2

n − γ̂2
n

) bntc
n

,

%∗n(s, t)|Θ6∩Θn = 2(α− β) (γ̂n − α̂n)
τn
n

+ 2(β − γ) (γ̂n − α̂n)
σn
n

+
(

2γ
(
β̂n − α̂n

)
+ α̂2

n − β̂2
n

) bnsc
n

+
(

2γ
(
γ̂n − β̂n

)
+ β̂2

n − γ̂2
n

) bntc
n

.

Proof. The proof is given in Lemma 4.26 only for the case (s, t) ∈ Θ2 ∩ Θn, n ∈ N; the

other cases follows the same pattern.
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Results of a simulation study

This chapter provides the results of a simulation study in the software environment R,

version 3.3.1. An explanation of each table can be found in Chapter 5.
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Distributions M̄n has exactly M̂n has exactly M∗
n has only the

Q1 Q2 Q3 one minimizer one maximizer minimizer τ̂ n

B(5, 0.2) B(4, 0.5) B(5, 0.2) 721418 928041 999737

Poi(1) Poi(2) Poi(1) 743371 940360 999801

Poi(1) B(4, 0.5) B(5, 0.2) 730525 930016 999789

N(1, 1) N(2, 1) N(1, 1) 1000000 1000000 1000000

Exp(1) Exp(0.5) Exp(1) 1000000 1000000 1000000

Exp(1) N(2, 1) Exp(1) 1000000 1000000 1000000

Poi(1) Poi(2) N(1, 1) 784575 985335 1000000

Exp(1) B(4, 0.5) Exp(1) 866390 1000000 1000000

Poi(1) Exp(0.5) B(5, 0.2) 944946 986814 1000000

Table C.1: Minimizers and maximizers of M̄n, M̂n and M∗
n based on 106 Monte-Carlo

repetitions with n = 10 and θ = (0.4, 0.8), respectively.

152



θ̄n θ∗n

n Bias RMSE Bias RMSE

Q1 = N(0, 1), Q2 = N(1, 1), Q3 = N(−1, 1), θ = (0.4, 0.8)

100 (-0.00023,0.00006) (0.05159,0.01212) (0.00220,-0.00044) (0.07237,0.015780)

500 (0.00010,0.00002) (0.01020,0.00242) (-0.00007,0.00001) (0.01096,0.00249)

1000 (0.00002,0.00000) (0.00504,0.00124) (0.00003,0.00000) (0.00518,0.00126)

5000 (0.00000,0.00000) (0.00104,0.00025) (0.00000,0.00000) (0.00105,0.00024)

Q1 = N(0, 1), Q2 = N(1, 1), Q3 = N(−1, 1), θ = (0.02, 0.995)

100 (0.01409,-0.00849) (0.03747,0.01211) (0.34715,-0.28674) (0.47619,0.42556)

500 (0.00081,-0.00118) (0.00870,0.00241) (0.09855,-0.09769) (0.26300, 0.26904)

1000 (0.00014,-0.00003) (0.00476,0.00116) (0.01293,-0.02102) (0.09249,0.13102)

5000 (-0.00001,-0.00001) (0.00101,0.00025) (0.00003,-0.00002) (0.00108,0.00028)

Q1 = N(0, 1), Q2 = N(1, 1), Q3 = N(−1, 1), θ = (0.4, 0.41)

100 (-0.02767,-0.00507) (0.07082,0.04941) (-0.06516,0.15034) (0.16195,0.25758)

500 (-0.00121,0.00055) (0.00969,0.00490) (-0.04467,0.07796) (0.12205,0.18953)

1000 (-0.00019,0.00013) (0.00466,0.00164) (-0.02124,0.03437) (0.08279,0.12793)

5000 (0.00000,0.00000) (0.00102,0.00024) (-0.00010,0.00000) (0.00140,0.00026)

Q1 = N(0, 1), Q2 = N(0.2, 1), Q3 = N(−0.1, 1), θ = (0.4, 0.8)

100 (-0.05802,-0.04673) (0.21302,0.19812) (0.04664,-0.21390) (0.27874,0.34980)

500 (-0.00434,-0.00207) (0.15000,0.08254) (0.09646,-0.14945) (0.27686,0.29455)

1000 (0.00020,0.00121) (0.10799 0.05214) (0.08323,-0.07960) (0.23571,0.21369)

5000 (-0.00008,0.00008) (0.02485,0.01135) (0.00093,-0.00046) (0.03344,0.01300)

Q1 = N(0, 1), Q2 = N(1, 9), Q3 = N(−1, 4), θ = (0.4, 0.8)

100 (0.07637,-0.01904) (0.13208,0.06757) (0.16493,-0.08421) (0.21121,0.13958)

500 (0.03235,-0.00532) (0.06525,0.01824) (0.06450,-0.01148) (0.12059,0.03361)

1000 (0.01715,-0.00284) (0.03557,0.00941) (0.02321,-0.00373) (0.05109,0.01151)

5000 (0.00344,-0.00055) (0.00726,0.00184) (0.00362,-0.00059) (0.00783,0.00191)

Table C.2: Bias and RMSE of the estimators for θ based on 104 Monte-Carlo repetitions.
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Appendix C Results of a simulation study

α̂n =
(
α̂n, β̂n, γ̂n

)
n Bias RMSE

Q1 = N(0, 1), Q2 = N(1, 1), Q3 = N(−1, 1), θ = (0.4, 0.8)

100 (-0.03245,0.03902,-0.00995) (0.21268,0.26622,0.23837)

500 (-0.00412,0.00501,-0.00323) (0.07183,0.07232,0.10094)

1000 (-0.00255,0.00260,-0.00100) (0.04994,0.05055,0.07091)

5000 (-0.00057,0.00077,-0.00019) (0.02252,0.02258,0.03171)

Q1 = N(0, 1), Q2 = N(1, 1), Q3 = N(−1, 1), θ = (0.02, 0.995)

100 (0.41605,0.28725,0.86562) (0.97340,1.57808,1.60021)

500 (0.01621,0.04968,0.17739) (0.59334,0.85231,0.99755)

1000 (-0.03681,0.00483,-0.00685) (0.32479,0.34236,0.61582)

5000 (-0.00892,0.00067,-0.00879) (0.10336,0.01424,0.20663)

Q1 = N(0, 1), Q2 = N(1, 1), Q3 = N(−1, 1), θ = (0.4, 0.41)

100 (-0.02554,-1.32110,0.02672) (0.58107,2.07587,0.58404)

500 (-0.01511,-0.55697,-0.00485) (0.36609,1.51170,0.37467)

1000 (-0.01050,-0.16806,0.00248) (0.24122,1.04335,0.24829)

5000 (-0.00075,0.02567,-0.00021) (0.02228,0.15521,0.01818)

Q1 = N(0, 1), Q2 = N(0.2, 1), Q3 = N(−0.1, 1), θ = (0.4, 0.8)

100 (0.00465,0.02073,0.04219) (0.50418,1.88874,0.51612)

500 (0.01036,0.04757,0.03723) (0.29624,1.74360,0.32200)

1000 (-0.00124,0.04277,0.01302) (0.21621,1.38223,0.20856)

5000 (-0.00359,0.00633,-0.00451) (0.02393,0.04574,0.03272)

Q1 = N(0, 1), Q2 = N(1, 9), Q3 = N(−1, 4), θ = (0.4, 0.8)

100 (0.09506,1.95064,0.20147) (0.26613,4.10713,0.72572)

500 (0.03204,0.41988,0.01171) (0.12747,1.39036,0.23704)

1000 (0.00749,0.08324,-0.00190) (0.06577,0.29948,0.14719)

5000 (0.00105,0.01198,-0.00028) (0.02325,0.06900,0.06344)

Table C.3: Bias and RMSE of the estimator of α based on 104 Monte-Carlo repetitions.
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Confidence level

0.90 0.95 0.99

Expectations are assumed to be

n known unknown known unknown known unknown

Q1 = N(0, 1), Q2 = N(1, 1), Q3 = N(−1, 1), θ = (0.4, 0.8)

100 0.929 0.832 0.971 0.894 0.997 0.950

500 0.912 0.881 0.962 0.940 0.992 0.986

1000 0.932 0.925 0.974 0.969 0.996 0.995

5000 0.910 0.902 0.949 0.945 0.998 0.996

Q1 = N(0, 1), Q2 = N(1, 1), Q3 = N(−1, 1), θ = (0.02, 0.995)

100 0.987 0.252 0.995 0.292 1.000 0.347

500 0.977 0.631 0.997 0.689 1.000 0.756

1000 0.936 0.802 0.974 0.858 0.997 0.927

5000 0.925 0.900 0.964 0.950 0.990 0.983

Q1 = N(0, 1), Q2 = N(1, 1), Q3 = N(−1, 1), θ = (0.4, 0.41)

100 0.935 0.256 0.953 0.361 0.975 0.545

500 0.974 0.475 0.991 0.578 1.000 0.695

1000 0.950 0.659 0.988 0.743 1.000 0.842

5000 0.913 0.871 0.958 0.928 0.990 0.979

Q1 = N(0, 1), Q2 = N(0.2, 1), Q3 = N(−0.1, 1), θ = (0.4, 0.8)

100 0.970 0.091 0.985 0.141 0.996 0.232

500 0.958 0.205 0.978 0.240 0.998 0.307

1000 0.944 0.342 0.975 0.403 1.000 0.486

5000 0.890 0.823 0.951 0.903 0.995 0.972

Continued on the next page
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Appendix C Results of a simulation study

Q1 = N(0, 1), Q2 = N(1, 9), Q3 = N(−1, 4), θ = (0.4, 0.8)

100 0.914 0.233 0.964 0.282 0.996 0.358

500 0.857 0.706 0.920 0.759 0.987 0.836

1000 0.853 0.838 0.917 0.903 0.970 0.963

5000 0.865 0.854 0.931 0.930 0.984 0.989

Table C.4: Approximated coverage probabilities (based on 103 intervals) for given confi-

dence levels with respect to the asymptotic confidence regions for τ n = (τn, σn)

in the case of known and unknown expectations.
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[11] M. Döring. Convergence in distribution of multiple change point estimators. Journal

of Statistical Planning and Inference, 141(7):2238 – 2248, 2011.

[12] D. Ferger. Change-point estimators in case of small disorders. Journal of Statistical

Planning and Inference, 40(1):33–49, 1994.

[13] D. Ferger. Exponential and polynomial tailbounds for change-point estimators. Jour-

nal of Statistical Planning and Inference, 92(1):73–109, 2001.

[14] D. Ferger. A continuous mapping theorem for the argmax-functional in the non-unique

case. Statistica Neerlandica, 58(1):83–96, 2004.

[15] D. Ferger. Weighted Least Squares Estimators for a Change-Point. Economic Quality

Control, 20(2):255–270, 2005.

[16] D. Ferger. Arginf-Sets of Multivariate Cadlag Processes and their Convergence in

Hyperspace Topolgies. Theory of Stochastic Processes, 20(2):13–41, 2015.

[17] D. Ferger. Unpublished Manuscript, Technische Universität Dresden, 2018.

[18] S. Fremdt. Asymptotic Methods in Change-Point Analysis. PhD thesis, Universiät zu
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