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Abstract

In this thesis, we consider various notions of approximate representa-

tions of groups. Loosely speaking, an approximate representation is a map

from a group into the unitary operators on a Hilbert space that satisfies

the homomorphism equation up to a small error. Maps that are close to

actual representations are trivial examples of approximate representations,

and a natural question to ask is whether all approximate representations of

a given group arise in this way. A group with this property is called stable.

In joint work with Lev Glebsky, Alexander Lubotzky and Andreas

Thom, we approach the stability question in the setting of local asymptotic

representations. We provide sufficient condition in terms of cohomology

vanishing for a finitely presented group to be stable. We use this result to

provide new examples of groups that are stable with respect to the Frobe-

nius norm, including the first examples of groups that are not Frobenius

approximable.

In joint work with Narutaka Ozawa and Andreas Thom, we gener-

alize a theorem by Gowers and Hatami about maps with non-vanishing

uniformity norm. We use this to prove a very general stability result for

uniform ε-representations of amenable groups which subsumes results by

both Gowers-Hatami and Kazhdan.
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Introduction

Unitary representations are fundamental objects of study in group theory and

have been so since the birth of the subject. A unitary representation is simply

a homomorphism from a group into the group of unitary operators on a Hilbert

space. The main theme of this thesis is approximate representations, a broad

notion that subsumes various generalizations of the definition of a unitary repre-

sentation. The fundamental philosophy behind all kinds of approximate repre-

sentations, which goes back to Turing [69] and Ulam [70], is to relax the defining

equation of a homomorphism, that is, ϕ(xy) = ϕ(x)ϕ(y), so that it only holds

up to some error ε ≥ 0. This error is measured in an appropriate metric, typi-

cally induced by a norm ‖·‖ on the bounded operators on the Hilbert space, that

is,

‖ϕ(xy)− ϕ(x)ϕ(y)‖ ≤ ε. (?)

Depending on which version of an approximate representation we are dealing

with, we require Equation (?) to be satisfied for some, “most” or all x and y in the

group. Loosely speaking, we can divide approximate representations into local
ones, where we consider a sequence of maps such that Equation (?) is satisfied

on larger and larger finite subsets of the group and for smaller and smaller ε
as n grows, and global ones, where we only consider a single map satisfying

Equation (?) for all (or most) x, y ∈ Γ. One (but not the only) central question

of this thesis is the question of stability: given an approximate representation, is

there a genuine representation which is “close” to the approximate representation

in some sense? The precise formulation and answer to this question depend

much on the particular notion of approximate representation we work with.

Let us make the above more precise and outline the main results of this the-

sis. In the local setting, we consider the notion of an asymptotic representa-
tion. This is a sequence of maps ϕn : Γ → U(Hn) from a discrete, count-

able group Γ into the unitary group U(Hn) on a Hilbert space Hn such that

‖ϕn(xy) − ϕn(x)ϕn(y)‖n → 0, for n → ∞, all x, y ∈ Γ and some family

of norms ‖·‖n on the bounded operators on Hn. In this setting, the stability

question becomes the following: For a given asymptotic representation (ϕn)n∈N,

can one find a sequence of genuine representations πn : Γ → U(Hn) such that

v
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‖ϕn(x)−πn(x)‖ → 0, for n→ ∞ and all x ∈ Γ? This question is treated in the

literature for various groups and norms, maybe most famously by Voiculescu

in [71], where he provides an example of asymptotically commuting matrices

that are not close to any commuting matrices with respect to the operator norm.

Our main contribution to this topic is a stability result for asymptotic representa-

tions with respect to the Frobenius norm (also called the unnormalized Hilbert-

Schmidt norm). In a joint work with Lev Glebsky, Alexander Lubotzky and An-

dreas Thom [18] we provide non-trivial examples of asymptotic representations

and give a sufficient condition for a group to be stable in terms of cohomology

vanishing.

Another notion that emerges in the context of asymptotic representations is

that of approximable groups. It is an open problem to determine whether all
groups are approximable, both with respect to the operator norm and the nor-

malized Hilbert-Schmidt norm. This is related to more general open problems

stated by Kirchberg [9] and Connes [17]. Using our stability result, we pro-

vide examples of groups that are not approximable with respect to the Frobenius

norm.

In the global setting, we generalize an inverse theorem for the uniformity

norm, proven by Gowers and Hatami [36]. They prove that any matrix-valued

map from a finite group with non-vanishing uniformity norm is correlated to a

representation in a certain sense. A map with “big” uniformity norm can be

interpreted as a rather weak form of global approximate representation. In joint

work with Narutaka Ozawa and Andreas Thom [19], we prove a similar result

for maps from amenable groups that take values in the bounded operators on a

Hilbert space. As a corollary, we prove a stability theorem for so-called uniform
ε-representations: Any map from an amenable group that satisfies Equation (?)

for all x, y ∈ Γ is uniformly close to a genuine representation. This generalizes

earlier stability results of both [45] and [36].

The thesis is divided into three parts. The first part consists of all the pre-

liminary theory that is needed in order to prove the main theorems. The second

part is devoted to the local notion of asymptotic representations. The third part

is about global approximate representations. For convenience of the reader, we

provide an overview of the contents.

Part I

• In Chapter 1, we review various elements of group theory. We define

the notion of an amenable group, we discuss the special unitary group of

quaternion algebras and review the basics of group cohomology.
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• In Chapter 2, we discuss the basic operator algebra we need, with focus on

von Neumann algebras and the notion of unitarily invariant norms together

with positive definite maps.

• In Chapter 3, we recall the definition of an ultrafilter and review the notion

of ultraproducts, both in the context of metric groups and Banach algebras.

Part II

• In Chapter 4, the objects of study are the asymptotic representations, in

particular for finitely presented groups. This chapter also has an introduc-

tory flavor as we provide the background knowledge necessary to under-

stand our main theorems in the following chapter.

• In Chapter 5, we prove our main results about asymptotic representations.

That is, we show that groups that have vanishing second cohomology with

Hilbert space coefficients are Frobenius stable and use this characteriza-

tion together with facts about algebraic groups to provide examples of

groups that are not approximable with respect to the Frobenius norm.

Part III

• In Chapter 6, we turn our attention from the local to the global picture.

We discuss and prove an inverse theorem for maps with non-vanishing

uniformity norm for amenable groups.

• In Chapter 7, we discuss the notion of uniform ε-representations. The

main theorem from the previous chapter is used to prove a stability result

in this context.

The thesis also includes a section on further research and a list of equations

that are used throughout the thesis and can be used a quick reference for the

convenience of the reader.

Notation and conventions

We use the letters N, Z, Q, R and C for the natural numbers, the integers, the

rational numbers, the real numbers and the complex numbers, respectively. The

cardinality of a any set S is written |S|. We also use |·| to denote the absolute

value on C. The imaginary unit is denoted i ∈ C and complex conjugation of
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λ ∈ C is denoted λ̄. The complex unit circle is denoted T = {λ ∈ C | |λ| = 1}.

Given a group or ring A, we use 1A to denote the (multiplicative) identity. In the

special case where A is the bounded operators B(H ) on a Hilbert space, we use

the notation 1H for the identity and if H has finite dimension n ∈ N, we write

1n instead. We let Mn(A) to denote the the n × n-matrices with entries in A,

for n ∈ N. We shall write diag(a1, . . . , an) or for the diagonal matrix in Mn(A)
with entries a1, . . . , an in A. For a non-empty set S with |S| = n we let FS or

Fn denote the free group generated by S, and for R ⊆ FS we let ⟪R⟫ denote the

normal subgroup generated by R. We define 〈S | R〉 = FS/⟪R⟫. Depending on

the context, we denote the trivial group by 0 or 1. For a prime number p ∈ N we

let Qp and Zp denote the p-adic rationals and integers, respectively. We use |·|p
to denote the p-adic absolute value on Qp. Throughout the thesis, ω will denote

a fixed, free ultrafilter on N, and for a sequence (xn)n∈N in a topological space

X , we shall write limn→ω xn = x or xn → x for n → ω to indicate that xn
converges to some x in X along ω. We also adopt the Landau notation to this

setting, O(xn) and o(xn), for n → ω, as explained in Chapter 3. If A ⊆ B is an

inclusion of sets, we let χA : B → {0, 1} denote the characteristic function onA,

which takes the value 1 on A and 0 on B\A. For a normed space V over C, we

let V ∗ be the dual space consisting of bounded linear maps ϕ : V → C. Given a

set Γ and p ∈ [1,∞) we let `p(Γ) be the space of p-summable complex-valued

functions f : Γ → C, and, similarly, we let `∞(Γ) denote the space of bounded,

complex-valued functions on Γ. Given Φ ∈ (`∞(Γ))∗ we shall write Φxf(x) for

Φ(f), where it is understood that x is an element of Γ.

We want to emphasize some standing assumptions and conventions that we

follow throughout this thesis: The natural numbers do not contain zero, that is

N = {1, 2, . . .}. The word countable means finite or countably infinite. All

Hilbert spaces are assumed to be separable, that is, they have a countable basis.

We allow vector space norms to attain the value ∞. By a metric group, we

mean a group G equipped with a bi-invariant metric d. Being bi-invariant means

that for all g, h, k ∈ G, it holds that d(g, h) = d(kg, kh) = d(gk, hk). In

the construction of the ultraproduct of metric groups in Chapter 3, we do not

require sequences to be bounded. Given a statement P (n), for n ∈ N, we use

the phrasing P (n) holds for most n ∈ N to signify {n ∈ N | P (n)} ∈ ω, where

ω is the fixed ultrafilter from above.
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Chapter 1

Groups

In this preliminary chapter we review the group theory that we need in the thesis.

The topics are quite diverse ranging from the theory of discrete, amenable groups

to the unitary group of a quaternion algebra and group cohomology. We do

not try to give a complete picture of any of these topics but we introduce the

necessary notions and fundamental theorems so to make the thesis more or less

self-contained. In the beginning of every section we provide general references

to the topics.

1.1 Amenable groups

Amenability of discrete groups is an important notion with a wide range of appli-

cations. It has its roots in measure theory and the definition was given in 1929 by

von Neumann [48]. We recall this definition and provide some basic examples of

amenable groups. For a thorough treatment of amenability, we refer the reader

to [42], or [16, Chapter 4] for a somewhat shorter but very good introduction

to the subject. For a group Γ we let `∞(Γ) denote the space of complex-valued

functions ϕ : Γ → C that are bounded, that is,

‖ϕ‖`∞(Γ) = sup
x∈Γ

|ϕ(x)| <∞,

and let 1`∞(Γ) denote the constant function 1 on Γ. For a linear map Φ: `∞(Γ) →
C, we shall write Φxf(x) = Φ(f) whenever convenient. Here it is understood

that x runs through elements in Γ.

Definition 1.1. A mean on a group Γ is a linear functional E : `∞(Γ) → C such

that E(1`∞(Γ)) = 1 and E(f) ≥ 0 for all f ∈ `∞(Γ) with f ≥ 0. A mean E is

called left-invariant, if

Eyf(xy) = Eyf(y), (a)

3
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for all x ∈ Γ and f ∈ `∞(Γ). Similarly, E is right-invariant, if Eyf(yx) =
Eyf(y) for all x ∈ Γ. A mean that is both left- and right-invariant is called

bi-invariant. A mean which satisfies

Exf(x
−1) = Exf(x), (b)

for all f ∈ `∞(Γ), is called symmetric.

Definition 1.2. A group Γ is amenable if there exists a left-invariant mean on Γ.

Proposition 1.3. A group Γ is amenable if and only if there exists a bi-invariant,
symmetric mean on Γ.

Proof. It is easy to see that E ∈ `∞(Γ) is a left-invariant mean if and only if

f 7→ Exf(x
−1), for f ∈ `∞(Γ), is a right-invariant mean. Furthermore, the

mean f 7→ ExEyf(xy
−1), f ∈ `∞(Γ) is bi-invariant. Also, if E is already bi-

invariant, then

f 7→ 1
2
Ex(f(x) + f(x−1))

is symmetric and bi-invariant, which concludes the proof.

For the most part, we are content with left-invariance, but as right-invariance

and symmetry might come in handy, we usually work with means enjoying all

these properties, and the above proposition ensures that we lose no generality in

the context of amenable groups.

Amenable groups have many interesting properties, but an invariant mean is

in itself a powerful tool which we shall use a lot. In fact we shall not delve too

deep into the theory of amenable groups. We shall, however, provide some basic

examples of amenable groups.

Example 1.4. Any finite group Γ is amenable. The functional E : `∞(Γ) → C
given by

E(f) =
1

|Γ|
∑

x∈Γ
f(x),

is a bi-invariant symmetric mean. In fact, it is the only left-invariant mean on Γ.

Observe that in this case it holds that

ExEyF (x, y) = EyExF (x, y),

for all F ∈ `∞(Γ × Γ). As we shall see, this is not the case in general and this

fact turns out to pose a technical issue when stating the main results in Chapters

6 and 7.
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Example 1.5. The additive group Z is amenable. Indeed, we can define a sym-

metric, bi-invariant mean µ : `∞(Z) → C as a limit along the ultrafilter ω (see

Chapter 3):

µn(f) = lim
n→ω

1

2n+ 1

n∑

x=−n

f(x),

for f ∈ `∞(Z).

The technical issue mentioned in the first example is already apparent for Z.

To see this, first note that if f ∈ `∞(Z) is finitely supported, i.e. f(x) = 0 for

all but finitely many x ∈ Z, then E(f) = 0 for all left-invariant means E on Z.

Consider the function F : Z2 → R given by

F (x, y) =

{
1, |x| ≤ |y|,
0, |x| > |y|.

Using the above fact, it is easy to see that we have that ExEyF (x, y) = 1,

whereas EyExF (x, y) = 0 for all left-invariant means on Z. In fact, it is not

hard to generalize this to any infinite amenable group.

The class of amenable groups is stable under taking subgroups, quotients,

extensions and inductive limits, so from the above examples one can construct

plenty of new ones. In particular, all solvable groups are amenable. A basic

example of a non-amenable group is the free group on two generators F2. Thus,

also every group containing F2 is non-amenable.

1.2 Quaternions and their unitary group

We now turn our attention to something completely different. For the main re-

sults in Chapter 5.3, we consider the special unitary group over quaternion alge-

bras. In this section, we introduce the relevant notions. For more information on

quaternion algebras, we refer the reader to [31]. For a unital, commutative ring

A, we let A〈x1, . . . , xn〉 denote the free unital A-algebra (of non-commutative

polynomials) in the variables x1, . . . , xn. Given elements a1, . . . , an in the alge-

bra A〈x1, . . . , xn〉, we let (a1, . . . , an) ⊆ A〈x1, . . . , xn〉 be the ideal generated

by the set {a1, . . . , an}. We consider the quaternions over A, defined by

D(A) = A〈i, j,k〉/(i2 + 1, j2 + 1,k2 + 1, ijk+ 1),

and we define a map τ = τA : D(A) → D(A) by τ(x + yi + zj + wk) =
x− yi− zj−wk. This map is an involution, that is, an A-module map such that
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τ 2 = idD(A) and τ(ξη) = τ(η)τ(ξ) for all ξ, η ∈ D(A). For n ∈ N we can define

a non-degenerate, hermitian sequilinear form hn : D(A)n ×D(A)n → D(A) by

h((x1, . . . , xn), (y1, . . . , yn)) =
n∑

j=1

τ(yj)xj,

for xj, yj ∈ D(A) and j = 1, . . . , n. We are mostly interested in the case, where

A = K. We have the following dichotomy (see [31, Proposition 1.1.7]):

Proposition 1.6. Let K be a field of characteristic different from 2. Then either

• D(K) is a division algebra or

• D(K) ' M2(K).

If the latter holds, we say that D(K) splits. Even if D(K) does not split, the

quadratic extension K ′ = K(
√
−1) of K is a splitting field for D(K), which

simply means that

D(K)⊗K K ′ ' M2(K
′).

In particular, there is an embedding of K-algebras from D(K) to M2(K
′).

Proposition 1.7. Let K be a field of characteristic different from 2. Assume that
D(K) splits and let ϕ : D(K) → M2(K) be any K-algebra isomorphism. Then

ϕ ◦ τ ◦ ϕ−1(T ) = J−1
2 T tJ2, T ∈ M2(K),

where T t is the transposed matrix of T and J2 =

(
0 1K

−1K 0

)
.

Proof. Let σ = ϕ ◦ τ ◦ ϕ−1. The map T 7→ σ(T t), T ∈ M2(K) is a unital

automorphism of M2(K) and hence inner, that is, there exists S ∈ GL2(K)
such that

σ(T t) = STS−1,

for T ∈ M2(K). In particular, we get that

T = σ2(T ) = σ(ST tS−1) = (StS−1)−1TStS−1,

for T ∈ M2(K), which entails that StS−1 ∈ K1M2(K). In other words S = xSt

for some x ∈ K, but since S = (St)t = (xS)t = x2S, we get x = ±1. That

is, S is either symmetric or skew-symmetric. It is easy to see that S cannot be

symmetric. Indeed, if S = St, then σ(S) = S, which entails S ∈ K1M2(K), so

σ(T ) = T t, for T ∈ M2(K). This is not the case, as the transposition map has
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non-central fixed points, e.g. the diagonal matrix diag(1K , 0), whereas the only

fixed points of σ are K1M2(K). Thus S is skew-symmetric, that is

S =

(
0 −x
x 0

)
= xJ−1

2

for some x ∈ K\{0}, and the result follows.

For any odd prime number p ∈ N, we have that D(Qp) splits. Indeed, by

Proposition 1.6 we need only to show that D(Qp) contains zero-divisors. A

basic counting argument shows that the equation

x2 + y2 = −1

is solvable modulo p, which implies, by Hensel’s lemma, that it is solvable in

Qp as well. We take x, y ∈ Qp satisfying the equation. The element ξ = xi +
yj + k is then a zero divisor since τ(ξ)ξ = h1(ξ) = 0. By the way, an explicit

isomorphism D(Qp) → M2(Qp) is given by

i 7→
(
x y
y −x

)
, j 7→

(
−y x
x y

)
, k 7→

(
0 −1
1 0

)
,

where x, y ∈ Qp satisfy x2 + y2 = −1 as above. In contrast, the algebra D(R)
is a division algebra, which is usually called the Hamiltonian quaternions and

sometimes denoted H. Indeed, one checks that h1 is positive definite, that is,

h1(ξ, ξ) > 0 for all ξ ∈ D(R)\{0} so
τ(ξ)
h1(ξ)

is an inverse to ξ.

Now fix n ∈ N and let K be a field of characteristic zero. Let K ′ ⊇ K
be any field such that D(K) ⊗K K ′ ' M2(K

′) and define the determinant
of an element of Mn(D(K)) ' D(K) ⊗K Mn(K) as the determinant of the

corresponding element in M2n(K
′) ' M2(K

′) ⊗K′ Mn(K
′). It can be shown

that this definition is independent of the splitting fieldK ′ [31, Section 2.6]. Thus

we can define

G(K) = SUn(D(K), hn),

the group of n × n-matrices with entries in D(K) of determinant 1 such that

the form hn is preserved. Let p ∈ N be an odd prime number. We can use the

discussion above to describe G(Qp). Since D(Qp) ' M2(Qp), it easily follows

from Proposition 1.7 that G(Qp) is the symplectic group. That is

G(Qp) ' Sp2n(Qp) = {T ∈ M2n(Qp) | T tJ2nT = J2n},

where, J2n ∈ M2n(Qp) is the block matrix

J2n =

(
0 1Mn(Qp)

−1Mn(Qp) 0

)
.
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Now, we consider G(R). As an R-vector space, we can identify D(R)n and

Cn ⊕ Cn. Concretely, we identify the entries using the map D(R) → C ⊕ C,

given by

1D(K) 7→ (1, 0), i 7→ (i, 0), j 7→ (0, 1), k 7→ (0, i).

It is now straightforward to check that, under this identification, hn splits into

a hermitian form hn1 : C2n ⊕ C2n → C and a non-degenerate symplectic form

hn2 : C2n ⊕ C2n → C in the sense that

hn(ξ, η) = (hn1(ξ, η), hn2(ξ, η)) ∈ C⊕ C,

for all ξ, η ∈ Cn ⊕ Cn. It follows that G(R) can be identified with the matrices

in M2(C) that preserve both a Hermitian and a symplectic form. In other words,

G(R) ' U(2n)∩Sp2n(C), where U(2n) denotes the unitary group of complex

2n× 2n-matrices.

1.3 Group cohomology

In Chapter 4, we shall associate an element of the second cohomology group

to a local asymptotic representation. We recall a fairly concrete construction of

group cohomology that will suffice for our needs. For more information on the

topic, we refer to [11]. Let Γ be any group. A Γ-module is an abelian group

V equipped with a left action π of Γ. For the definition of cohomology we

consider both Γ and V as abstract groups without any topology. Consider the

chain complex

0 −→ V
d0−→ C1(Γ, V )

d1−→ C2(Γ, V )
d2−→ C3(Γ, V )

d3−→ · · · ,

where the n-cochains Cn(Γ, V ), for n ∈ N, is the space of functions from Γn to

V and d0(v)(x1) = π(x)v − v for v ∈ V and x ∈ Γ, and

dn(f)(x1, . . . , xn+1) = π(x1)f(x2, . . . , xn+1)

+
n∑

j=1

(−1)jf(x1, . . . , xjxj+1, . . . , xn+1)

+ (−1)n+1f(x1, . . . , xn),

for n ∈ N and x1, x2, . . . , xn+1 ∈ Γ. The image of dn−1, denoted Bn(Γ, V ), is

called the n-coboundaries, is contained in the kernel of dn, denoted Zn(Γ, V ),
called the n-cocycles, for all n ≥ 0, so we can compute the quotient groups,
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denoted Hn(Γ, V ), which we call the .cohomology of Γ with coefficients in V .

More precisely, H0(Γ, V ) = Z0(Γ, V ) and

Hn(Γ, V ) = Zn(Γ, V )/Bn(Γ, V ),

for n ∈ N. Given an n-cocycle c in Zn(Γ, V ) we write [c] for the corresponding

cohomology class in Hn(Γ, V ). As we shall focus on the second cohomology,

let us spell out what the above means in this case. Cocycles c ∈ Z2(Γ, V ) are

functions c : Γ× Γ → V such that

π(x)c(y, z)− c(xy, z) + c(x, yz)− c(x, y) = 0,

for all x, y, z ∈ Γ, and c ∈ B2(Γ, V ) if and only if there exists b : Γ → V with

c(x, y) = (d1b)(x, y) = π(x)b(y)− b(xy) + b(y),

for all x, y ∈ Γ.

Cohomology vanishing for Hilbert space coefficients

We now consider the special case where V = H is a Hilbert space and Γ is a

(countable, discrete) group that acts on H through a unitary representation π. In

this setting, we want to examine groups for which the n’th cohomology groups

vanish.

Definition 1.8. Let n ∈ N. A group Γ is called n-Kazhdan if Hn(Γ,Hπ) = 0
for all Hilbert spaces Hπ and unitary representations π : Γ → U(Hπ). We call

Γ strongly n-Kazhdan if Γ is k-Kazhdan for all k ∈ {1, 2, . . . , n}.

We recall that a finitely generated group has Kazhdan’s Property (T) if and

only if it is 1-Kazhdan (see [8] for more information on the subject). Thus, being

n-Kazhdan can be thought of as a higher dimensional version of Property (T).

The study of higher dimensional cohomology vanishing has been carried out in

many contexts, and we refer the interested reader to [4, 5, 10, 23, 24, 50, 52].

Example 1.9. Finite groups are n-Kazhdan for any n ∈ N. Indeed, if Γ is a

finite group and π : Γ → U(H ) is a unitary representation, then for every c ∈
Zn(Γ,H ) we can define b ∈ Cn−1(Γ,H ) by

b(x1, . . . , xn−1) =
1

|Γ|
∑

x∈Γ
c(x1, . . . , xn−1, x), x1, . . . , xn−1 ∈ Γ.

It is now straightforward to check that dn−1b = c, which impliesHn(Γ,H ) = 0.
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Let us examine some properties of n-Kazhdan groups. We note that if Γ
is countable, then Cn(Γ,H ) has some extra structure; it is a Fréchet space.

Indeed, the countable family of seminorms defined by

‖f‖F = max
x∈F

‖f(x)‖H ,

for f ∈ Cn(Γ,H ) and finite F ⊆ Γn, is clearly separating, and since ‖·‖H is

complete, the metric associated to the above family of seminorms is complete

as well. We recall that between Fréchet spaces a version of the open mapping

theorem applies (see e.g. [61]).

Proposition 1.10. Let n ∈ N and let Γ be a countable n-Kazhdan group. Then
for every finite set F ⊆ Γn−1 there are a finite set F0 ⊆ Γn and a constant
K > 0 such that for all unitary representations π : Γ → U(H ) and all cocycles
c ∈ Zn(Γ,H ) there is an element b ∈ Cn−1(Γ,H ) such that c = dn−1b and
‖b‖F ≤ K‖c‖F0 .

Proof. Throughout the proof, we fix F ⊆ Γn−1. We call a triple (π, F0, K) good
if it satisfies the conclusion of the proposition we are about to prove and bad
otherwise. We first prove that for every fixed π, there exist F0 and K such that

(π, F,K) is good. By definition of the topology on Cn(Γ,H ), the basic open

sets are given by

Uδ,F ′ = {f ∈ Cn(Γ,H ) | ‖f‖F ′ < δ},
for a finite F ′ ⊆ Γn and δ > 0. By assumption, the map dn−1 : Cn−1(Γ,H ) →
Zn(Γ,H ) is surjective and since π is unitary, it follows that dn−1 is bounded as

well, so by the open mapping theorem there are K ≥ 0 and F0 ⊆ Γn, such that

UK−1,F0
∩ Zn(Γ,H ) ⊆ dn−1(U1,F ).

By rescaling by K‖c‖F0 on both sides, this can be rephrased as

U‖c‖F0
,F0 ∩ Zn(Γ,H ) ⊆ dn−1(UKπ‖c‖F0

,F ),

for c ∈ Zn(Γ,H ) and it follows that (π, F0, K) is good.

We now want to prove the existence of F0 and K such that (π, F0, K) is

good for all π simultaneously. Note that if (π1, F1, K1) is good, then so is

(π2, F2, K2) for all subrepresentations π2 of π1, F2 ⊇ F1 and K2 ≥ K1. As-

sume for contradiction that there exist bad triples (πj, Fj, Kj), for j ∈ N, such

that F1 ⊆ F2 ⊆ · · · ⊆ ⋃∞
j=1 Fj = Γn and Kj → ∞ for j → ∞. Consider the

direct sum π′ =
⊕

j∈N πj which is a unitary representation on the Hilbert space

direct sum. We just saw that π′ is part of a good triple, say (π′, F ′, K ′), but this

contradicts the fact that πj is a subrepresentation of π′ for all j ∈ N and that

Fj ⊇ F ′ and Kj ≥ K for most j ∈ N.
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We need an extension theorem for n-Kazhdan groups, which follows imme-

diately from the Hochschild-Serre spectral sequence in group cohomology. For

convenience, we extracted the content of the spectral sequence that we need in

the following proposition. To make sense of this proposition, we recall that if

1 → Λ → Γ̃ → Γ → 1 is a short exact sequence of groups and V is a Γ̃-module,

then there is a natural action of Γ on Hk(Λ, V ), for k ∈ N, which is induced by

the conjugation action of Γ̃ on Λ.

Proposition 1.11. Let 1 → Λ → Γ̃ → Γ → 1 be a short exact sequence of
group and let V be a Γ-module. Then there exist subgroups 0 ⊆ M0 ⊆ M1 ⊆
· · · ⊆Mn = Hn(Γ̃, V ) such that

Hk(Γ, Hn−k(Λ, V )) =Mk/Mk−1

for k = 0, . . . , n.

We shall not prove the above here; an exposition of spectral sequences can

be found in [11, Chapter VII].

Theorem 1.12. Consider a short exact sequence of groups 1 → Λ → Γ̃ → Γ →
1. If Λ is strongly n-Kazhdan and Γ is n-Kazhdan, then Γ̃ is also n-Kazhdan. In
particular, this applies if Λ is finite.

Proof. By Proposition 1.11 it is enough to show Hk(Γ, Hn−k(Λ,H )) = 0 for

k = 0, . . . n − 1. If k < n, then Hn−k(Λ,H ) = 0 by assumption. For k = n,

we have that H0(Λ,H ) is the closed subspace of π|Λ-fixed points in H and the

Γ-action is simply induced from the unitary action of Γ̃ on H , so we conclude

that Hn(Γ, H0(Λ,H )) = 0.

Remark 1.13. For simplicity, we have chosen to work with Hilbert space coeffi-

cients. We note that most statements are true in the more general setting where

V = H is a Banach space and π is a linear isometric action of Γ on V . The only

place where one has to be careful is in Proposition 1.10, since it is a statement

about the whole class of actions on Hilbert spaces, but the corollary still holds

true if we consider any class of Banach spaces that allow for taking direct sums

of isometric actions. For instance, it holds for the class of C∗-algebras.





Chapter 2

Von Neumann algebras

We also need some preliminaries about operator algebras, especially the basic

theory of von Neumann algebras. We provide the definitions we need and cite

some fundamental results. Since unitarily invariant norms are central to the the-

sis, we devote an entire section to this topic. We end the chapter with a section

about positive definite functions, where the notion of an amenable group from

last chapter will come into play. As in the previous chapter, we do not aim to

treat the topic exhaustively and many theorems are given without proofs. For

more information on the theory of von Neumann algebras, we refer the reader to

[53], [65] and [12].

2.1 Definitions and fundamental results

Fix a separable Hilbert space H , that is H ' `2(N) or H ' Cn for some

n ∈ N. We denote the inner product of H by 〈·, ·〉 and the associated norm by

‖·‖H . In the context of operator algebras, we always work with the complex

numbers C as base field. We let B(H ) denote the bounded linear operators on

H , that is, linear maps T : H → H so that

‖T‖op = sup{‖Tξ‖H | ξ ∈ H , ‖ξ‖H = 1} <∞.

Given T ∈ B(H ) we denote the adjoint operator of T by T ∗. This is the

unique linear operator on H satisfying 〈T ∗ξ, η〉 = 〈ξ, Tη〉 for ξ, η ∈ H . Note

that T 7→ T ∗ is an involution, i.e. (T ∗)∗ = T and (TS)∗ = S∗T ∗. We call

T ∈ B(H )

• normal, if T ∗T = TT ∗,

• self-adjoint, if T = T ∗,

13
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• skew-Hermitian, if T = −T ∗,

• postive, if there is S ∈ B(H ) such that T = S∗S,

• a projection, if T = T ∗ = T 2,

• a partial isometry, if T ∗T (or, equivalently TT ∗) is a projection,

• an isometry, if T ∗T = 1H,

• a co-isometry, if T ∗ is an isometry and

• unitary, if T ∗T = TT ∗ = 1H .

We let σ(T ) ⊆ C denote the spectrum of T , that is, λ ∈ σ(T ) if and only if

T − λ1H is not invertible in B(H ). Recall that σ(T ) is a non-empty compact

subset of C and if T is normal, then T is self-adjoint if and only if σ(T ) is

contained in R, T is positive if and only if σ(T ) is contained in [0,∞), and T
is unitary if and only if σ(T ) is contained in T. Recall that the operator norm
‖·‖op defined above turns B(H ) into a Banach ∗-algebra. Furthermore, recall

the C∗-identity which we will use again and again: ‖T ∗T‖op = ‖T‖2op. Also,

recall that an operator T is positive if and only if 〈Tξ, ξ〉 ≥ 0 for all ξ ∈ H .

For self-adjoint T, S ∈ B(H ) we write T ≤ S if S − T is positve. This is a

partial order on the set of self-adjoint operators. We also recall that if T ≤ S and

R ∈ B(H ) then RTR∗ ≤ RSR∗ and ‖T‖op ≤ ‖S‖op. The last claim follows

from he fact that if T = A∗A, S = B∗B and ξ ∈ H , then

‖Aξ‖2
H

= 〈Tξ, ξ〉 ≤ 〈Sξ, ξ〉 = ‖Bξ‖2
H
,

so ‖A‖op ≤ ‖B‖op and, using the C∗-identity, we get

‖T‖op = ‖A‖2op ≤ ‖B‖2op = ‖S‖op.

Definition 2.1. The weak operator topology is the topology on B(H ) generated

by the seminorms

T 7→ |〈Tξ, η〉|, ξ, η ∈ H , T ∈ B(H ).

The strong operator topology is the topology on B(H ) generated by the semi-

norms

T 7→ ‖Tξ‖H , ξ ∈ H , T ∈ B(H ).

The weak operator topology is weaker than the strong operator topology

which is weaker than the topology induced by ‖·‖op, and the topologies are
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equivalent if and only if H is finite dimensional. A feature of the weak op-

erator topology is that the unit ball of B(H ) is compact in this topology. A

reason to work with the strong operator topology is that if (Tj)j∈J is an oper-

ator norm bounded, increasing net (with respect to the abovementioned order),

it has a least upper bound T and (Tj)j∈J converges to T in the strong operator

topology.

Definition 2.2. A C∗-algebra is a ∗-subalgebra A ⊆ B(H ) which is closed

in the topology coming from ‖·‖op. A von Neumann algebra is a ∗-subalgebra

M ⊆ B(H ), such that 1H ∈ M, which is closed in the strong operator topol-

ogy

Since the strong operator topology is weaker than the norm topology, every

von Neumann algebra is a C∗-algebra. Let A be a C∗-algebra. We let A+ be

the set of positive elements, let A∗ denote the dual vector space of bounded

linear functionals and we let U(A) denote the unitary group of A, that is, the

group of unitary elements. In the special case A = B(H ) we write U(H )
instead and if H = Cn we simply write U(n). A fundamental fact about von

Neumann algebras, which goes back to the eponymous von Neumann, is the

Bicommutant Theorem. For a subset S ⊆ B(H ) we denote the commutant of S
by S ′ = {T ∈ B(H ) | ST = TS, for all S ∈ S} and S ′′ = (S ′)′.

Theorem 2.3. Let M ⊆ B(H ) be a unital ∗-subalgebra. The following are
equivalent:

• M is a von Neumann algebra,

• M is closed in the weak operator topology and

• M = M′′.

Given elements S and T in a von Neumann algebra M, we define

SMT = {SRT ∈ M | R ∈ M}.

If P ∈ M is a projection, then the corner PMP is again a von Neumann algebra

when viewed as a subalgebra of B(PH ). Let K be another (separable) Hilbert

space. Given two von Neumann algebras M ⊆ B(H ) and N ⊆ B(K ) we

define the von Neumann algebra tensor product

M⊗̄N ⊆ B(H ⊗ K )

as the von Neumann algebra generated by the operators T⊗S ∈ B(H ⊗K ) for

T ∈ M and S ∈ N . We define M∞ = M⊗̄B(`2(N)), and view M as a corner
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of M∞. More precisely, we implicitly fix a rank 1-projection E ∈ B(`2(N))
and identify

M ' (1M ⊗ E)M∞(1M ⊗ E),

where 1M is the unit of M. Consistent with this identification, we write 1M
instead of 1M ⊗ E.

Definition 2.4. Let A be a C∗-algebra. A linear functional ϕ : A → C is called

positive if ϕ(T ) ≥ 0 for all T ∈ A with T ≥ 0. A positive linear functional ϕ is

called a state if ϕ(1A) = 1.

We recall the Cauchy-Schwarz inequality |ϕ(S∗T )|2 ≤ ϕ(S∗S)ϕ(T ∗T ), for

S, T ∈ A which is valid for all positive linear functionals ϕ : A → C.

Definition 2.5. Let M and N be von Neumann algebras. A linear map ϕ : M →
N is called normal if for all operator norm bounded, increasing nets (Tj)j∈J ⊆
M of self-adjoint operators with least upper bound T , we have that ϕ(Tj) con-

verges and

lim
j→∞

ϕ(Tj) = ϕ(T ).

For a von Neumann algebra M, we let M∗ ⊆ M∗ denote the the subspace of

normal functionals on M.

Let us mention a small caveat: Not all representations M → B(H ) are

normal! However, we defined M as a subalgebra of B(H ) and fortunately

the inclusion map is a normal representation. Henceforth, whenever we write

M ⊆ B(H ) we tacitly assume that the inclusion map is normal. The following

fundamental theorem is due to Sakai [62].

Theorem 2.6. The space M∗ is a predual of M in the sense that the map
Φ: M → (M∗)

∗ given by

Φ(T )(ξ) = ξ(T ),

for T ∈ M, ξ ∈ M∗, is an isometric isomorphism. Furthermore the predual of
M is unique up to isometric isomorphism.

Definition 2.7. The weak*-topology on M coming from the unique predual is

called the ultraweak topology.

The ultraweak toplogy is stronger than the weak topology and weaker than

the strong topology. We recall that in the ultraweak topology the unit ball of M is

compact (just as for the weak topology). Now, we let recall the Borel functional

calculus. For a subset X ⊆ C let C(X) denote the ∗-algebra of complex-valued,
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continuous functions onX and let B∞(X) denote the algebra of complex-valued,

bounded Borel measurable functions on X . Given T ∈ B(H ) we let C∗(T )
denote the C∗-algebra generated by T and 1H , and vNalg(T ) the von Neumann

algebra generated by T (which, by definition, contains 1H ). Also, recall that χX

Theorem 2.8 (Borel functional calculus). Let T ∈ B(H ) be a normal operator.
There is a unique ∗-isomorphism C(σ(T )) → C∗(T ) such that idσ(T )(T ) =
T and χσ(T )(T ) = 1H , which extends to a ∗-homomorphism B∞(σ(T )) →
vNalg(T ). For f ∈ B∞(σ(T )), we write f(T ) for the image of f under this
∗-homomorphism. If (fj)j∈J is a bounded, increasing net of real-valued Borel
measurable functions with limj→∞ fj(x) = f(x) for (almost) all x ∈ X , then
f(T ) = limj→∞ fj(T ), where the limit is taken in the strong operator topology.

We also recall the polar decomposition:

Proposition 2.9. Let T ∈ B(H ) and let |T | =
√
T ∗T ∈ C∗(T ) by the con-

tinuous functional calculus. Then there exists a partial isometry U ∈ vNalg(T )
such that

T = U |T |, |T | = U∗T.

If T ∈ PMQ for some projections P,Q ∈ M, then we can assume that U ∈
PMQ as well.

As an illustration of how to utilize the above proposition, we recall the proof

of the following basic lemmata, which we shall need later.

Lemma 2.10. Let T = U |T | be the polar decomposition of T ∈ B(H ) and let
P ∈ vNalg(|T |) be a projection. Then UP is a partial isometry.

Proof. Since U∗U |T | = |T | = |T |∗ = |T |U∗U we have that PU∗U = U∗UP by

the Bicommutant Theorem. It follows that (UP )∗UP = PU∗UP is a projection,

so UP is a partial isometry by definition.

Lemma 2.11. Let M be a von Neumann algebra, let P,Q ∈ M be projections
and let S ∈ PMQ with ‖S‖op ≤ 1. Then there are partial isometries V1, V2 ∈
PMQ such that

S =
1

2
(V1 + V2).

Proof. We write S = U |S| where U ∈ PMQ is a partial isometry. It follows by

our assumptions that |S|2 ≤ Q so we can define V± = |S| ± i
√
Q− |S|2 using

functional calculus. One checks that V± are unitaries in QMQ and

S =
1

2
(UV+ + UV−).
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It is now easy to check that V1 = UV+ and V2 = UV− are partial isometries with

the desired properties.

We need a strengthening of the Russo-Dye Theorem. The following state-

ment was proved in [43] (and later elaborated on in [39]).

Theorem 2.12. Let M be a von Neumann algebra, let n ∈ N, n ≥ 3 and let
T ∈ M with ‖T‖op < 1 − 2

n
. Then there are unitaries U1, . . . , Un ∈ M such

that

T =
1

n
(U1 + · · ·+ Un).

Now it is time to recall the representation theorem for von Neumann alge-

bras, which describes the structure of normal ∗-homomorphisms M → B(K ).
Recall that we defined M∞ = M⊗̄B(`2(N)) for a von Neumann algebra M.

For a proof of the following, see e.g. [65, Theorem IV.5.5].

Theorem 2.13. Let M ⊆ B(H ) be a von Neumann algebra, and let π : M →
B(K ) be a normal representation on a separable Hilbert space K . Then there
is an isometry V : K → H ⊗ `2(N) such that P = V V ∗ ∈ (M⊗ 1`2(N))

′ and

π(T ) = V ∗(T ⊗ 1`2(N))V, T ∈ M.

Lastly, we briefly recall the lingo of unbounded traces. Addition and multi-

plication of positive real numbers is extended to [0,∞] in the standard way with

x+∞ = ∞ for all x ∈ [0,∞], ∞ · x = ∞ if x > 0 and ∞ · 0 = 0.

Definition 2.14. A trace on a von Neumann algebra M is a map τ : M+ →
[0,∞] such that τ(S + T ) = τ(S) + τ(T ), τ(λT ) = λτ(T ) and τ(T ∗T ) =
τ(TT ∗) for all S, T ∈ M+ and λ ∈ [0,∞).

A trace τ is called faithful if τ(T ) > 0 for all T  0, τ is called semi-finite
if for all T ∈ M+ there is 0 � S ≤ T such that τ(S) < ∞ and τ is called

finite if τ(1M) < ∞. The notion of a normal trace is an obvious modification

of the definition for functionals: a trace is called normal if for all operator norm

bounded, increasing nets (Tj)j∈J ⊆ M+ with least upper bound T , we have that

sup
j∈J

τ(Tj) = τ(T ).

All traces that we consider are semi-finite and normal. We provide the most

basic example of a trace.
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Example 2.15. We define the trace Tr: B(H )+ → C by

Tr(T ) =
∑

j∈J
〈Tξj, ξj〉,

for T ∈ M+ and some countable orthonormal basis (ξj)j∈J of H . This defini-

tion is independent of the choice of basis. The trace Tr is normal, faithful and

semi-finite and, up to multiplication with a positive scalar, this is the only trace

on B(H ). This example works in particular if H ' Cn is finite dimensional,

where Trn = Tr is a finite trace. We might find use of the normalized trace on
Mn(C) which is defined as trn = tr = 1

n
Tr.

2.2 Unitarily invariant norms

Unitarily invariant norms play a major role in all of the thesis. In this section,

we provide the basic examples of such norms and state and prove quite a few

fundamental facts about them. We already used the word norm in the previous

sections as something well-known, but note that in this thesis we allow norms to

attain the value ∞ in order to cover the “norms” arising from semi-finite traces

on von Neumann algebras.

Definition 2.16. A norm on a C∗-algebra A is a map ‖·‖ : A → [0,∞], such

that for all λ ∈ C and S, T ∈ A, the following holds: ‖λT‖ = |λ|‖T‖,

‖S + T‖ ≤ ‖S‖+ ‖T‖, (c)

and ‖T‖ = 0 if and only if T = 0. A norm is called unitarily invariant if for all

U, V ∈ U(A) and T ∈ A, it holds that

‖UTV ‖ = ‖T‖. (d)

A norm is called submultiplicative if ‖ST‖ ≤ ‖S‖‖T‖ for all S, T ∈ A. If A is a

von Neumann algebra, the norm ‖·‖ is called ultraweakly lower semi-continuous
if the unit ball {T ∈ M | ‖T‖ ≤ 1} is closed in the ultraweak toplogy.

All norms considered in this thesis will be unitarily invariant. Submulti-

plicativity plays an important role in Part II of this thesis and we shall discuss

this property briefly at the end of this section (Proposition 2.23). Lower semi-

continuity will be useful in Part III, more precisely, we need this property in

Lemma 2.29, which will be used extensively in Part III. Note that this property

is trivially satisfied for norms on finite dimensional von Neumann algebras.



20 CHAPTER 2. VON NEUMANN ALGEBRAS

Example 2.17. As already mentioned, the operator norm on B(H ) is defined

as

‖T‖op = sup{‖Tξ‖H | ξ ∈ H , ‖ξ‖H = 1},
for T ∈ B(H ). This norm is unitarily invariant, submultiplicative and ultra-

weakly lower semi-continuous. Note that by definition of B(H ), we have that

‖T‖op <∞ for all T ∈ B(H ).

Example 2.18. Let M be a von Neumann algebra with a semifinite faithful trace

τ : M → C and let p ∈ [1,∞). The p-norm is given by

‖T‖p,τ = τ(|T |p)1/p, T ∈ M.

Since τ is faithful, this is actually a norm (otherwise it is a seminorm). By

the trace property this norm is unitarily invariant, and if τ is infinite it might

attain the value ∞. If τ is assumed to be normal, the norm is ultraweakly lower

semi-continuous. Of particular interest to us are the norms coming from the

normalized and unnormalized trace on Mn(C) for p = 2. We mention them

explicitly and give them names as to be able to distinguish them easily. The

norm

‖T‖2,tr =

√√√√ 1

n

n∑

i,j=1

|Tij|2, T = [Tij]
n
i,j=1 ∈ Mn(C),

associated to the normalized trace we call normalized Hilbert-Schmidt norm, and

the norm

‖T‖2,Tr =

√√√√
n∑

i,j=1

|Tij|2, T = [Tij]
n
i,j=1 ∈ Mn(C),

associated to the unnormalized trace we call the Frobenius norm. As it turns out,

‖·‖2,Tr is submultiplicative, whereas ‖·‖2,tr is not. These claims can be proven

directly without much of a hassle, but it will also follow from Proposition 2.23.

There are more interesting examples of unitarily invariant, ultraweakly lower

semi-continuous norms that we shall not delve into, but it is worth mentioning

that there are nice structure results for such norms on von Neumann algebras

(see for instance [28, 27]). We want to prove some basic properties of unitarily

invariant norms that we need throughout the whole thesis. For this, we need a

basic fact about positive operators in von Neumann algebras.

Proposition 2.19. Let R, S ∈ M and assume 0 ≤ R ≤ S. Then there exists
T ∈ M with ‖T‖op ≤ 1 and R = S1/2TS1/2.
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Proof. Let H1 be the closure of the subspace S1/2H in H . Since we have

that ‖R1/2ξ‖op ≤ ‖S1/2ξ‖op for all ξ ∈ H , the linear map S1/2ξ 7→ R1/2ξ, for

ξ ∈ H , is bounded and thus extends to a operator A : H0 → H . We define

Aη = 0 for η in the orthogonal complement of H0. Thus we get an operator

A : H → H . Evidently ‖A‖op ≤ 1 and AS1/2 = R1/2, and it follows that

S1/2A∗AS1/2 = (R1/2)∗R1/2 = R. By the bi-commutant theorem, we have

that A ∈ M. Indeed if B ∈ M′, then BAS1/2ξ = BR1/2ξ = R1/2Bξ =
AS1/2Bξ = ABS1/2ξ for all ξ ∈ H , so AB and BA agree on H0. On the

other hand, if η is orthogonal to H0, then so is Bη, so ABη = 0 = BAη. Thus

A ∈ M′′ = M. Letting T = A∗A, we reach the desired conclusion.

The following proposition is used a lot in this thesis, especially in Part III.

The equations are contained in the list on page 87 for quick reference.

Proposition 2.20. Let M be a von Neumann algebra and let ‖·‖ : M → [0,∞]
be a unitarily invariant norm on M. Then, for all R, S, T ∈ M, we have that

‖RTS‖ ≤ ‖R‖op‖T‖‖S‖op, (e)

‖T‖ = ‖T ∗‖ = ‖|T |‖, (f)

‖T ∗T‖ = ‖TT ∗‖. (g)

If, furthermore, 0 ≤ R ≤ S, then

‖R‖ ≤ ‖S‖. (h)

Proof. We begin with the proof of Equation (e). Assume that ‖R‖op, ‖S‖op < 1.

By Theorem 2.12, for some n ∈ N big enough,R and S are convex combinations

of n unitaries, R = 1
n

∑n
i=1 Ui and S = 1

n

∑n
j=1 Vj, with Ui, Vj ∈ U(M), i, j =

1, . . . , n, so

‖RTS‖ ≤ 1

n2

n∑

i,j=1

‖UiTVj‖ =
1

n2

n∑

i,j=1

‖T‖ = ‖T‖.

Now let R and S be general and let ε > 0. Define

Rε =
1

‖R‖op + ε
R, Sε =

1

‖S‖op + ε
S.

Then ‖Rε‖op, ‖Sε‖op < 1, so

‖RTS‖ = (‖R‖op + ε)(‖S‖op + ε)‖RεTSε‖ ≤ (‖R‖op + ε)(‖S‖op + ε)‖T‖.

Since this holds for all ε > 0, the result follows.
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Now, for Equation (f), by the polar decomposition, we have that T = U |T |
and |T | = U∗T for a partial isometry U ∈ M. Thus, according to Equation (e),

we have that

‖T‖ = ‖U |T |‖ ≤ ‖|T |‖ = ‖U∗T‖ ≤ ‖T‖,
so ‖T‖ = ‖|T |‖. By taking adjoints on both sides of the equations, one proves

that ‖T ∗‖ = ‖|T |‖.

Proceeding with Equation (g), using the polar decomposition as above, we

get

‖T ∗T‖ = ‖|T |2‖ = ‖|T ||T |∗‖ = ‖U∗TT ∗U‖
≤ ‖TT ∗‖ = ‖U |T ||T |U∗‖ ≤ ‖T ∗T‖.

Finally, we prove Equation (h). Assuming that R ≤ S, we use Proposition

2.19 to determine T ∈ M with ‖T‖op ≤ 1 such that R = S1/2TS1/2. Since

(S1/2T 1/2)∗ = T 1/2S1/2, it follows from Equation (g) and Equation (e) that

‖R‖ = ‖S1/2TS1/2‖ = ‖T 1/2ST 1/2‖ ≤ ‖S‖.

We note that Equation (e) is really a characterization of unitary invariance.

Corollary 2.21. Let M be a von Neumann algebra and let ‖·‖ : M → [0,∞]
be a unitarily invariant norm on M. Let S, T, P ∈ M with ‖S‖op, ‖T‖op ≤ 1,
such that P ≥ S∗S and P ≥ T ∗T . Then

max{‖P − S∗S‖, ‖P − T ∗T‖} ≤ 2‖P − S∗T‖. (i)

Proof. Since P − S∗S, P − T ∗T and (S − T )∗(S − T ) are positive, we get that

0 ≤ P − S∗S ≤ P − S∗S + P − T ∗T + (S − T )∗(S − T )

= P − S∗S + P − T ∗T + S∗S + T ∗T − S∗T − T ∗S

= P − S∗T + P − T ∗S.

Similarly, we have

0 ≤ P − T ∗T ≤ P − S∗T + P − T ∗S.

By Equation (h) and Equation (f), using that (P − T ∗S)∗ = P − S∗T (since P
is positive), the result follows.

Corollary 2.22. Let M be a von Neumann algebra, let ‖·‖ : M → [0,∞] be a
unitarily invariant norm on M and let S, T ∈ M. Then

‖S∗T‖ ≤ 1

2
(‖S∗S‖+ ‖T ∗T‖) = 1

2
(‖SS∗‖+ ‖TT ∗‖). (j)
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Proof. By the polar decomposition and Equation (g), we can find an operator U
with ‖U‖op ≤ 1 so that U∗S∗T ≥ 0 and ‖S∗T‖ = ‖U∗S∗T‖. Note that this

implies that U∗S∗T = T ∗SU . Thus

0 ≤ (SU − T )∗(SU − T ) = U∗S∗SU + T ∗T − U∗S∗T − T ∗SU

= U∗S∗SU + T ∗T − 2U∗S∗T,

so U∗S∗T ≤ 1
2
(U∗S∗SU + T ∗T ), and the inequality follows from Equation (h)

and Equation (e). The last equality is Equation (g).

The following proposition characterizes submultiplicative norms among the

unitarily invariant ones.

Proposition 2.23. Let M be a von Neumann algebra let ‖·‖ : M → [0,∞] be a
unitarily invariant norm. The following are equivalent:

(1) ‖·‖ is submultiplicative,

(2) ‖T‖ ≥ ‖T‖op for all T ∈ M and

(3) ‖P‖ ≥ 1 for all non-zero projections P ∈ M.

Proof. We prove (1) ⇒ (3) ⇒ (2) ⇒ (1). The first implication (1) ⇒ (3) is

immediate, since ‖P‖ = ‖P 2‖ ≤ ‖P‖2.
To prove (3) ⇒ (2), first note that we may assume that T ≥ 0 by Equation

(f). We might also assume that ‖T‖op = 1. Under these assumptions, let ε > 0
and consider the projection Pε = χ[1−ε,1](T ), which is non-zero and (1−ε)Pε ≤
T , so by Equation (h) it follows that

1− ε ≤ ‖(1− ε)Pε‖ ≤ ‖T‖.

Since ε > 0 was arbitrary, 1 ≤ ‖T‖ which is the desired conclusion.

The implication (2) ⇒ (1) follows from from Equation (e). Indeed

‖ST‖ ≤ ‖S‖op‖T‖ ≤ ‖S‖‖T‖.

In particular, it proves the claims made at the end of Example 2.18 that ‖·‖2,Tr
is submultiplicative and ‖·‖2,tr is not (for n ≥ 2). For instance, one can apply (3)

above and the fact that ‖P‖2,Tr =
√
rankP ≥ 1 and ‖P‖2,tr =

√
rank(P )

n
< 1

for all projections P ∈ Mn(C) that are not zero or the identity.
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2.3 Positive definite functions

We now combine the theory of amenable groups with operator algebras. We still

consider H a fixed separable Hilbert space with inner product 〈·, ·〉.

Definition 2.24. Let Γ be a group and let M ⊆ B(H ) be a von Neumann

algebra. A map ϕ : Γ → M is called positive definite if for all finite sets F ⊆ Γ,

the matrix [ϕ(x−1y)]x,y∈F ∈ Mn(M), where n = |F |, is positive as an operator

on H n. Specifically, ∑

x,y∈F
〈ϕ(x−1y)ξy, ξx〉 ≥ 0,

for all ξx ∈ H and x ∈ F .

This innocent-looking definition turns out to impose a lot of structure on the

map ϕ in question. Indeed, we recall the Stinespring Dilation Theorem below

which essentially says that all positive definite maps come as cut-downs of rep-

resentations. The precise statement that we need is a bit more subtle as we want

to control in which algebra the representation lives. The construction is classi-

cal (see [64, 44]), but for convenience we include it here. Recall our notation

M∞ = M⊗̄B(`2(N)), where we regard M as the corner 1MM∞1M.

Theorem 2.25. Let Γ be a countable group and let M ⊆ B(H ) be a von
Neumann algebra. For every positive definite map

ϕ : Γ → M

there exist U ∈ M∞1M and a representation π : Γ → U(M∞) such that

ϕ(x) = U∗π(x)U,

for x ∈ Γ. In particular ‖U‖2op = ‖ϕ(1)‖op.

Proof. Consider the vector space A = Cfin(Γ,H ) of finitely supported maps

Γ → H equipped with the sequilinear form

〈f, g〉ϕ =
∑

x,y∈Γ
〈ϕ(x−1y)f(y), g(x)〉,

for f, g ∈ A. Since ϕ is positive definite, this is a positive semidefinite sequilin-

ear form, so A/Nϕ is a pre-Hilbert space where

Nϕ = {f ∈ A | 〈f, f〉ϕ = 0}.
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By completion, we get a Hilbert space H̃ where Γ acts as unitaries by the for-

mula

π0(x)[f ] = [x.f ],

for f ∈ A, where x.f(y) = f(x−1y), for x, y ∈ Γ, is the left translation action

and [f ] = f +Nϕ. Furthermore, let U0 : H → H̃ be given by

U0(ξ) = [χ{1Γ}ξ],

for ξ ∈ H , where χ{1Γ} is the indicator function on the one-point set {1Γ}.

Note that since ϕ is positive definite, it holds that ϕ(x−1) = ϕ(x)∗ for all x ∈ Γ.

Thus, for all ξ ∈ H and f ∈ A, we have

〈U0ξ, f〉ϕ =
∑

x∈Γ
〈ϕ(x−1)ξ, f(x)〉H = 〈ξ,

∑

x∈Γ
ϕ(x)f(x)〉H ,

and we conclude U∗
0 ([f ]) =

∑
x∈Γ ϕ(x)f(x) for f ∈ A. It follows that

ϕ(x) = U∗
0π0(x)U0, x ∈ Γ.

We also define an action of the commutant M′ ⊆ B(H ) on A by

(ρ(T )f)(x) = T (f(x)), T ∈ M′, f ∈ A, x ∈ Γ.

In order to extend ρ to a normal representation of M′ on H̃ , we have to check

that ρ(Nϕ) = {0} and that ρ is bounded. Let T ∈ M′, let F ⊆ Γ be finite

and let diag(T ) and diag(T ∗) be the operators on H n (where n = |F |) that act

diagonally as T and T ∗, respectively. Since [ϕ(x−1y)]x,y∈F is positive for any

F , the operator S = diag(T ∗)[ϕ(x−1y)]x,y∈F diag(T ) is positive; in fact, since

T commutes with ϕ(x), we get that 0 ≤ S ≤ ‖T‖2op[ϕ(x−1y)]x,y∈F , so

‖[Tf ]‖2
H̃

=
∑

x,y∈Γ
〈T ∗ϕ(x−1y)Tf(y), f(x)〉

= 〈Sf, f〉H n ≤ ‖T‖2op
∑

x,y∈Γ
〈ϕ(x−1y)f(y), f(x)〉 = ‖T‖2op‖f‖2H̃ ,

which implies both desired properties of ρ. (Here, with a slight abuse of notation,

we consider f as a vector in H n where n is the cardinality of the support of

f .) It is now easy to see that ρ is a normal representation of M′. Thus, by

Theorem 2.13, there is an isometry V : H̃ → H ⊗ `2(N) such that ρ(T ) =
V ∗(T ⊗ 1`2(N))V and V V ∗ ∈ (M′ ⊗ 1`2(N))

′. Clearly π0(Γ) ⊆ ρ(M′)′, so

π(x) = V π0(x)V
∗ + 1M∞

− V V ∗ ∈ (M′ ⊗ 1`2(N))
′ = M∞,

for x ∈ Γ, is a unitary representation of Γ which, together with the map U =
V U0, has the desired properties.
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Note that all maps x 7→ U∗π(x)U, x ∈ Γ are positive definite, where π : Γ →
U(H ) and U ∈ B(H ), so the above theorem really characterizes positive

definite functions. As we see in the next proposition, amenable groups have a lot

of positive definite maps. For any bounded map we can relate a positive definite

map by means of a mean. For this, we recall a basic construction, which, in

particular, allows us to take the mean of a map from an amenable group into a

von Neumann algebra. Let Γ be any discrete group, let V be a Banach space,

let µ ∈ (`∞(Γ))∗ and let ϕ : Γ → V ∗ be a map which is bounded in the sense

supx∈Γ‖ϕ(x)‖V ∗ <∞. We define µ(ϕ) ∈ V ∗ by the formula

µ(ϕ)(v) = µx(ϕ(x)(v)),

for all v ∈ V . We shall use this construction in two particular settings. First,

given map ϕ : Γ → M, which is bounded with respect to the operator norm, we

use the unique predual V = M∗ to realize the above construction. The defining

formula can be expressed like

f(µ(ϕ)) = µ(f ◦ ϕ), f ∈ M∗,

since M∗ consists of normal linear functionals on M. Note that, given bounded

maps ϕ, ψ : Γ → M and S, T ∈ M, we have

µx(Sϕ(x)T + ψ(x)) = Sµx(ϕ(x))T + µx(ψ(x)).

This follows from the fact that the maps T 7→ f(STR), S, R, T ∈ M are normal

whenever f ∈ M∗.

Alternatively, if ϕ : Γ → H takes values in our Hilbert space H , we let

V = H̄ be the conjugate Hilbert space which is a predual of H and the formula

looks like

〈µ(ϕ), η〉 = µx(〈ϕ(x), η〉), η ∈ H .

Proposition 2.26. Let Γ be an amenable group with left-invariant mean E, let
M ⊆ B(H ) be a von Neumann algebra and let ϕ : Γ → M be given such that
supx∈Γ‖ϕ(x)‖op <∞. Then the map ϕ̃ : Γ → M defined by

ϕ̃(x) = Ezϕ(xz)ϕ(z)
∗,

for x ∈ Γ, is positive definite.
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Proof. The functionals T 7→ 〈Tξ, η〉 are normal for all ξ, η ∈ H so they com-

mute with the mean E. Let F ⊆ Γ be finite and let ξx ∈ H for x ∈ F . Then

∑

x,y∈F
〈ϕ̃(x−1y)ξy, ξx〉 =

∑

x,y∈F
Ez〈ϕ(x−1yz)ϕ(z)∗ξy, ξx〉

=
∑

x,y∈F
Ez〈ϕ(x−1z)ϕ(y−1z)∗ξy, ξx〉

=
∑

x,y∈F
Ez〈ϕ(y−1z)∗ξy, ϕ(x

−1z)∗ξx〉

= Ez

〈∑

y∈F
ϕ(y−1z)∗ξy,

∑

x∈F
ϕ(x−1z)∗ξx

〉
≥ 0.

Here we used that E is left-invariant and positive and that 〈ξ, ξ〉 ≥ 0, for all

ξ ∈ H .

At one place we need the notion of a positive definite kernel. There is a

representation theorem for such kernels in the spirit of the GNS-construction or

Theorem 2.25. Also the proof goes along the same line, and we shall not present

it here.

Definition 2.27. Let Γ be a group. A map κ : Γ × Γ → C is called a kernel. A

kernel κ is called positive definite if [k(x, y)]x,y∈F ∈ Mn(C) is a positive as an

operator on Cn for all finite F ⊆ Γ with n = |F |.

Theorem 2.28. Let Γ be a countable group. For any positive definite kernel
κ : Γ× Γ → C there exists a Hilbert space H and a map α : Γ → H such that

κ(x, y) = 〈α(x), α(y)〉, x, y ∈ Γ.

The only place where we use ultraweak lower semi-continuity of a norm is

in the following lemma. In fact, this extra assumption on the norm ‖·‖ is only

necessary for this thesis if the group Γ is infinite, since Equation (k) follows

directly from the triangle inequality in the case of finite groups.

Lemma 2.29. Let Γ be an amenable group with left-invariant mean E, let M
be a von Neumann algebra, let ‖·‖ : M → [0,∞] be a ultraweakly lower semi-
continuous norm on M and let ϕ : Γ → M such that supx∈Γ‖ϕ(x)‖op < ∞.
Then

‖Exϕ(x)‖ ≤ Ex‖ϕ(x)‖. (k)

Proof. Note that for µ ∈ `1(Γ) ⊆ `∞(Γ)∗ we have that µ(ϕ) =
∑

x∈Γ µ(x)ϕ(x),
where the sum converges in operator norm. If furthermore µ(x) ≥ 0 for all
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x ∈ Γ, then for all finite F ⊆ Γ, we have that

‖
∑

x∈F
µ(x)ϕ(x)‖ ≤

∑

x∈F
µ(x)‖ϕ(x)‖ ≤ µx(‖ϕ(x)‖).

Using lower semi-continuity of the norm, it follows that

‖µ(ϕ)‖ ≤ µx(‖ϕ(x)‖).

Now let µj ∈ `1(Γ), for j ∈ J , be a net of positive functions with ‖µj‖1 =
1 converging to E in the weak*-topology on `∞(Γ)∗. This implies that µj(ϕ)
converges to E(ϕ) in the ultraweak topology, whence we conclude that

‖E(ϕ)‖ ≤ lim inf
j→∞

‖µj(ϕ)‖ ≤ lim inf
j→∞

(µj)x(‖ϕ(x)‖) = Ex‖ϕ(x)‖.



Chapter 3

Ultrafilters and ultraproducts

As mentioned in the notation section (page vii), we fix a free ultrafilter ω on N
throughout the thesis and this chapter is devoted to the task of explaining what

this means. We recall the definition of filters, ultrafilters, limits of sequences

along filters and ultraproducts of groups and Banach spaces. For more informa-

tion, we refer the reader to [14, Appendix B].

3.1 Filters

In this thesis we work only with (ultra)filters on N and we shall only provide the

relevant definitions in this setting.

Definition 3.1. A filter on N is a subset F ⊆ P(N) of the power set of N such

that

(1) ∅ /∈ F ,

(2) if A,B ∈ F , then A ∩ B ∈ F and

(3) if A ⊆ B and A ∈ F , then B ∈ F .

An ultrafilter is a filter F with the additional property that

(4) A ∈ F if and only if N\A /∈ F .

Example 3.2. The Fréchet filter (or co-final filter) on N is the collection

Fcofin = {I ⊆ N | N\I is finite}

is easily seen to be a filter which is not an ultrafilter.

29
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Example 3.3. Let m ∈ N. The principal ultrafilter generated by m is the collec-

tion

Fm = {I ⊆ N | m ∈ I}.
An ultrafilter which is not principal is called free. Note that an ultrafilter is free

in and only if it contains the Fréchet filter.

Given a filter F , we think of the sets I ∈ F as “big” sets. Given a statement

P (n) for n ∈ N, we use the wording P (n) holds for most n ∈ N as slang for

{n ∈ N | P (n)} ∈ F . Ultrafilters are characterized by being maximal among

filters, that is, a filter F is an ultrafilter if and only if for all filters V on N the

inclusion F ⊆ V implies F = V . Thus, existence of free ultrafilters on N is

an easy application of Zorn’s lemma. One can think of an ultrafilter F as a

consistent way of declaring which of the two sets I and N\I is in the majority.

Definition 3.4. Let X be a topological space. Let F be a filter on N and x ∈
X . We say that a sequence (xn)n∈N in X converges to x along F if for all

neighborhoods U of x we have xn ∈ U for most n ∈ N. We use the notation

limn→F xn = x, or xn → x for n→ ω.

Let us say some words about this definition. First, one observes that in Haus-

dorff spaces, sequences converge to at most one point. In the case where F =
Fm is a principal ultrafilter, the above definition is simply limn→Fn

xn = xm. On

the other hand, it is easy to see that convergence along the Fréchet filter is the

same as convergence in the usual sense, and we shall use the usual the notation

n → ∞ instead of n → Fcofin. It follows that if ω is a free ultrafilter, then all

sequences (xn)n∈N that converge in the usual sense also converge along ω and

limn→∞ xn = limn→ω xn. More generally, the limit along a free ultrafilter be-

longs to the cluster points of (xn)n∈N. Supposing that the limit exists, of course,

à propos of which we state a central fact about ultrafilters.

Theorem 3.5. Let X be a compact Hausdorff space. Then every sequence in X
converges along any ultrafilter on N.

In view of the above discussion and this theorem, one can think of the choice

of free ultrafilter ω as a consistent way of assigning convergent subsequences

to all sequences (in any compact Hausdorff space). As a special, but useful

case, we consider sequences (xn)n∈N a sequence of real numbers; then there is

a limit limn→ω xn ∈ [−∞,∞]. We adopt the Landau notation to the setting

of ultrafilters. Given two non-negative real sequences (xn)n∈N and (yn)n∈N we

write

xn = O(yn),
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for n→ ω, if there exists a constant C > 0 such that xn ≤ Cyn, for most n ∈ N,

and we write

xn = o(yn),

for n → ω, if there exists a third non-negative real sequence (εn)n∈N with

limn→ω εn = 0 such that xn = εnyn. Evidently xn = o(yn) implies xn = O(yn)
for n→ ω.

3.2 Ultraproducts

Ultraproducts of metric groups

We need the construction of ultraproducts of metric groups. Let (Gn, dn)n∈N be

a family of metric groups. Recall our standing assumption that dn are all bi-

invariant, that is dn(g, h) = dn(kg, kh) = dn(gk, hk) for all g, h, k ∈ Gn. Using

this assumption, the subgroup

Nω =
{
(gn)n∈N ∈

∏

n∈N
Gn | lim

n→ω
dn(gn, 1Gn

) = 0
}

of the (group-theoretic) direct product
∏

n∈NGn is normal, so we can define the

metric ultraproduct ∏

n→ω

(Gn, dn) =
∏

n∈N
Gn

/
Nω.

Note that, as a set, the direct product is just the usual cartesian product, and we
do not require the sequences to be bounded, which is in contrast to the Banach

space ultraproduct as we will see shortly. This entails that the natural candidate

for a metric on
∏

n→ω(Gn, dn), namely the metric induced by the pseudo-metric

d((gn)n∈N, (hn)n∈N) = lim
n→ω

dn(gn, hn),

for gn, hn ∈ Gn, on
∏

n∈NGn will be infinite in general. Since we already allow

our norms to take infinite values this might not scare us off, but as a matter of

fact we don’t need the metric on the ultraproduct, so it is not important. It is

worth noting though (albeit also irrelevant for our purposes), that the bounded,

bi-invariant pseudo-metric

d′((gn)n∈N, (hn)n∈N) = lim
n→ω

min{dn(gn, hn), 1},

for gn, hn ∈ Gn on
∏

n∈NGn induces a bi-invariant metric on
∏

n→ω(Gn, dn).
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Ultraproducts of Banach spaces

We now turn our attention to ultraproduct of Banach spaces. Consider a sequence

of Banach spaces (Vn, ‖·‖n)n∈N and denote the `∞-direct product by

`∞(ω, (Vn)n∈N) =
{
(vn)n∈N ∈

∏

n∈N
Vn | sup

n∈N
‖vn‖n <∞

}

and the closed subspace of null-sequences

c0(ω, (Vn)n∈N) =
{
(vn)n∈N ∈ `∞(N, (Vn)n∈N) | lim

n→ω
‖vn‖Vn

= 0
}
.

We define the ultraproduct Banach space by

∏

n→ω

(Vn, ‖·‖n) = `∞(ω, (Vn)n∈N)
/
c0(ω, (Vn)n∈N).

The ultraproduct Banach space is itself a Banach space with the norm induced

by ‖(xn)n∈N‖ = limn→ω ‖xn‖Vn
for (xn)n∈N ∈ ∏

n∈N Vn. Moreover, if the Vn
are all Banach algebras, C∗-algebras or Hilbert spaces, so is the ultraproduct.

Ultraproducts of unitary groups acting on ultraproducts of

matrices

We now consider a particular situation which will be relevant for us later on. We

let (kn)n∈N be a sequence of natural numbers and consider a family of submul-

tiplicative, unitarily invariant norms ‖·‖kn on Mkn(C), n ∈ N. We usually omit

the index and denote all norms by ‖·‖. Since the norms are unitarily invariant,

they induce bi-invariant metrics on the unitary groups U(kn) by

dist‖·‖(U, V ) = ‖U − V ‖, U, V ∈ U(kn).

We denote the metric ultraproduct respectively the ultraproduct Banach space as

U(ω, ‖·‖) =
∏

n→ω

(U(kn), dist‖·‖), resp., M(ω, ‖·‖) =
∏

n→ω

(Mkn(C), ‖·‖).

Since the norms are submultiplicative, the group U(ω, ‖·‖) acts on M(ω, ‖·‖)
from the left by the action induced by

(Un)n∈N(Tn)n∈N = (UnTn)n∈N,

for Un ∈ U(kn) and Tn ∈ Mkn(C). Similarly, we can define a right action and a

conjugation action. By unitary invariance, we see that these actions are isomet-

ric. Note that submultiplicativity is quite essential here. Indeed, in the context of
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the normalized Hilbert-Schmidt norm we consider the following diagonal matri-

ces:

Un = diag(−1, 1, . . . , 1) ∈ U(n), Tn = diag(
√
n, 0, . . . , 0) ∈ Mn(C).

Obviously

‖Un − 1n‖2,tr =
2√
n
→ 0,

for n→ ∞, and ‖Tn‖2,tr = 1 for all n ∈ N, but

‖(Un − 1n)Tn‖2,tr = ‖diag(−2
√
n, 0, . . . , 0)‖2,tr = 2,

for all n ∈ N. This shows that (Un)n∈N does not act trivially on M(ω, ‖·‖),
although it defines the identity element of U(ω, ‖·‖).





Part II

Local asymptotic representations





Chapter 4

Local approximations

In this chapter, we give an introduction to approximable and stable groups with

respect to a class of metric groups C. We provide all the relevant terminology

together with some examples of approximable groups and (non-trivial) examples

of asymptotic representations. We focus on asymptotic representations with re-

spect to the Frobenius norm, and we shall provide some basic observations and

examples in this setting. The reason for choosing to emphasize the Frobenius

norm is that some of our main results are specifically about this norm as we shall

see in the next chapter. For the most part, we restrict our attention to finitely

presented groups. This is partly out of convenience and partly because some

definitions, e.g. the notion of defect (Definition 4.1 below), only make sense in

this special case.

4.1 Asymptotic homomorphisms

For the purpose of this section, we fix finite sets S and R where R ⊆ FS and

denote the finitely presented group with generators S and relations R by Γ. Any

map ϕ : S → G, uniquely determines a homomorphism FS → G which we shall

also denote by ϕ.

Definition 4.1. Let (G, d) be a metric group and let ϕ, ψ : S → G be maps. The

defect of ϕ is defined by

def(ϕ) = max
r∈R

d(ϕ(r), 1G).

The distance between ϕ and ψ is defined by

dist(ϕ, ψ) = max
s∈S

d(ϕ(s), ψ(s)).

37
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The homomorphism distiance of ϕ is defined by

HomDist(ϕ) = inf{dist(ϕ, π|S) | π ∈ Hom(Γ, G)}.

These notions obviously depend on the metric d. Sometimes we work with

several metrics on the same group G, so to avoid confusion, we might write

defd, distd and HomDistd. If the distance d comes from a norm ‖·‖ (see be-

low), we write def‖·‖, dist‖·‖ and HomDist‖·‖. Recall that ω denotes a fixed, free

ultrafilter on N.

Definition 4.2. Let (Gn, dn)n∈N be a sequence of metric groups. A sequence

of maps ϕn : S → Gn, for n ∈ N, is called an asymptotic homomorphism if

limn→ω def(ϕn) = 0.

If an asymptotic homomorphism (ϕn)n∈N is equivalent to a sequence of gen-

uine representations, that is, limn→ω HomDist(ϕn) = 0, we call (ϕn)n∈N trivial.
In accordance with our usual nomenclature, we talk about asymptotic represen-
tations if the target groups Gn are unitary groups of some sort. In this part of

the thesis, we are mostly interested in asymptotic representations with respect to

the class of unitary groups U(n) on finite dimensional Hilbert spaces, equipped

with the metrics

dn(U, V ) = ‖T − S‖n, U, V ∈ U(n),

coming from some family of unitarily invariant norms ‖·‖n on Mn(C). As a

warm-up, we prove the following basic lemma. Recall that ⟪R⟫ denotes the

normal subgroup of FS generated byR and that metric groups are equipped with

bi-invariant metrics according to our teminology.

Lemma 4.3. For all r ∈ ⟪R⟫ there is a constant Kr such that, for all metric
groups (G, d) and maps ϕ : S → G, it holds that

d(ϕ(r), 1G) ≤ Kr def(ϕ).

Proof. Given r ∈ ⟪R⟫, we determine r1, . . . , rk ∈ R∪R−1 and x1, . . . , xk ∈ FS

such that

r = x1r1x
−1
1 x2r2x

−1
2 · · · xkrkx−1

k .

Note that by bi-invariance

d(ϕ(rj), 1G) = d(ϕ(r−1
j ), 1G) ≤ def(ϕ)
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for all j. Thus, using bi-invariance again, together with the triangle inequality,

we get

d(ϕ(r), 1kn) = d(ϕ(x1r1x
−1
1 ) · · ·ϕ(xkrkx−1

k ), 1G)

≤
k∑

j=1

d(ϕ(xj)ϕ(rj)ϕ(xj)
−1, 1G)

=
k∑

j=1

d(ϕ(rj), 1G)

≤ k · def(ϕ),

So letting Kr = k, we are done.

Let us provide one last definition in this section.

Definition 4.4. Let (Gn, dn) be a sequence of metric groups. Two sequences

ϕn, ψn : S → Gn are called (asymptotically) equivalent if

lim
n→ω

dist(ϕn, ψn) = 0.

Observe that there is a correspondence between asymptotic homomorphisms

and (genuine) homomorphisms into ultraproducts. Indeed, a homomorphism

ϕ : Γ → ∏
n→ω(Gn, dn) induces an asymptotic homomorphism by taking any

sequence (ϕn(x))n∈N representing ϕ(x), for x ∈ S. Conversely, a sequence

ϕn : S → Gn is an asymptotic homomorphism if and only if the induced homo-

morphism

ϕω : FS →
∏

n→ω

(Gn, dn),

where ϕω(x) is represented by (ϕn(x))n∈N, for x ∈ FS , factors through the

group Γ = FS/⟪R⟫. In this setup, two asymptotic homomorphisms (ϕn)n∈N and

(ψn)n∈N are equivalent if and only if they give rise to the same homomorphism,

that is ϕω = ψω.

4.2 Approximable groups

We can use the concepts from the previous section to define approximable,

finitely presented groups. From now on, we let C be a fixed class of metric

groups.
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Definition 4.5. A finitely presented group Γ = 〈S | R〉 is called C-approximable
if there exists an asymptotic homomorphism ϕn : S → Gn, with (Gn, dn) ∈ C
for n ∈ N, such that, for all x ∈ FS\⟪R⟫, we have that

lim
n→ω

dn(ϕn(x), 1Gn
) > 0.

We remarked that asymptotic homomorphisms correspond to genuine ho-

momorphisms into ultraproducts. From this observation, it is easy to prove the

following characterization of C-approximability.

Proposition 4.6. Let C be a class of metric groups. A finitely presented group
Γ is C-approximable if and only if there is a family (Gn, dn)n∈N in C and an
injective homomorphism

Γ ↪→
∏

n→ω

(Gn, dn).

We recall the following definition, which is clearly stronger than C-approx-

imability.

Definition 4.7. A group Γ is called residually C if for all x ∈ Γ\{1Γ} there is a

homomorphism π : Γ → G for some G ∈ C such that π(x) 6= 1G.

Having these definitions out of the way, we are ready to look at some general

examples. The notion of C-approximability has been studied in many cases and

we shall only look at a few examples. We refer the reader to [1] for an overview.

Example 4.8. A sofic group is a Sym-approximable group in the case where

Sym is the class of finite symmetric groups Sym(n) for n ∈ N, equipped with

the normalized Hamming metric,

dham,n(g, h) =
|{i ∈ {1, 2, . . . , n} | g(i) 6= h(i)}|

n
, g, h ∈ Sym(n).

For a thorough treatment of sofic groups, we refer to [16].

Example 4.9. A more general example is weakly sofic group [33], where C con-

sists of all finite groups equipped with any bi-invariant metric. See [49] for

recent advances in this setting.

Example 4.10. A group is called linear sofic if it is approximable with respect to

the class general linear groups GLn(C), for n ∈ N, equipped with the normal-

ized rank metric drank(g, h) = 1
n
rank(g − h) for g, h ∈ GLn(C). This notion

was introduced in [3], where it was proven that sofic groups are linear sofic, and

linear sofic groups are weakly sofic.
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Example 4.11. Turning the attention to the finite dimensional unitary groups, we

consider the so-called MF groups [15]. Those are the Uop-approximable groups,

where Uop is the class of unitary groups U(n) equipped with the metric coming

from the operator norm.

Example 4.12. The class U2,tr, consisting of finite dimensional unitary groups

equipped with the metric coming from normalized Hilbert-Schmidt norm, gives

rise to what is usually called hyperlinear groups. Every sofic group is hyperlin-

ear. This follows from the following relation between the Hamming distance the

normalized Hilbert-Schmidt norm:

dham,n(g, h) =
1

2
‖Pg − Ph‖22,tr, g, h ∈ Sym(n).

Here Pg and Ph denote the permutation matrices associated to g and h. We refer

the reader to [54, 14] for more information.

Example 4.13. An example of particular interest to us is the U2,Tr-approximable

groups. Here U2,Tr denotes the class of finite dimensional unitary groups, this

time equipped with the metric coming from the Frobenius norm, that is, the

unnormalized Hilbert-Schmidt norm. We call such groups Frobenius approx-
imable.

One sees immediately that all finitely presented, residually finite groups en-

joy all of the above properties. It is also elementary to prove that all amenable

groups are sofic, and thus also hyperlinear and weakly sofic. Furthermore, it is

known that all amenable groups are MF, but the proof is highly non-trivial as

it relies on the recent breakthrough in classification of nuclear C∗-algebras [67]

(see also [51]). We are unaware of any similar results in the context of Frobenius

approximable groups. In fact, we do not know whether all solvable groups are

Frobenius approximable, let alone whether amenable groups are. On the other

hand, actual examples of non-approximable groups are scarce, and one might be

tempted to ask the following question:

Question 4.14. Is every finitely presented group C-approximable?

Remarkably enough, this question remains open in many important cases.

For instance, it is not known whether all (finitely presented) groups are sofic.

This question was posed by Gromov [37], and if it would turn out to have a pos-

itive answer, it would have various interesting implications, including Kaplan-

sky’s direct finiteness conjecture and the surjunctivity conjecture (see [14]). As

the notions of linear sofic, weakly sofic groups and hyperlinear groups subsume

the notion of a sofic group, it is also unknown whether all groups enjoy each

of these properties. The case of hyperlinearity is connected to the celebrated

Connes Embedding Problem about embeddability of II1-factors into the (tracial)
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ultraproduct of the hyperfinite II1-factor [17, 54]. More precisely, the existence

a non-hyperlinear group would provide a negative solution to this problem. The

situation is similar for MF groups; it is unknown whether all groups are MF, and

this constitutes a test case for a more general question of Kirchberg [9], namely,

whether all stably finite C∗-algebras are embeddable in an ultraproduct of finite

dimensional C∗-algebras. Only in few cases, the above question is answered.

One example is in [66], where it was shown that the Higman group,

〈x1, x2, x3, x4 | x−1
i [xi+1, xi], i ∈ Z/4Z〉,

is not approximable with respect to a certain class of finite metric groups Fc. To

the best of our knowledge it is still unknown if the Higman group is (weakly)

sofic, hyperlinear, MF or Frobenius approximable. One of our main results

(Corollary 5.21) proves the existence of a finitely presented group which is not

Frobenius approximable.

Approximability for general groups

Until now, we have considered finitely presented groups, but the notion of ap-

proximability can be defined for general groups.

Definition 4.15. Let Γ be a discrete group and let (G, d) be a metric group. Let

ε > 0 and F ⊆ Γ. An (ε, F )-approximate homomorphism is a map ϕ : Γ → G
such that, for all x, y ∈ F , it holds that

d(ϕ(x)ϕ(y), ϕ(xy)) < ε.

In some sense, this is a quantitative version of what we call an asymptotic

homomorphism. Indeed, given a finitely presented group Γ = 〈S | R〉 with

a fixed section σ : Γ → FS of the quotient map FS → Γ, we see that a map

ϕn : S → Gn is an asymptotic homomorphism if and only if ϕ̃n = ϕn ◦ σ
is (εn, Fn)-approximate homomorphisms for some sequence εn tending to zero

and finite subsets Fn ⊆ Γ satisfying Γ =
⋃

n∈N Fn.

Definition 4.16. We say that a discrete group Γ is C-approximable if, for all

x ∈ Γ\{1Γ}, there is ηΓ(x) > 0 such that the following holds: For all ε > 0 and

finite F ⊆ Γ, there exists (G, d) ∈ C and an (ε, F )-approximate homomorphism

ϕ : Γ → G, such that ϕ(1Γ) = 1G and d(ϕ(x), 1Γ) > ηΓ(x) for all x ∈ F\{1Γ}.

It is not to hard to prove that this definition is the same as the one provided

previously for finitely presented groups. The characterization of approximability

in terms of ultraproducts, Proposition 4.6, also generalizes to general groups.

However one has to allow for ulrafilters on arbitrary index sets instead of N.
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Let us discuss some permanence properties of the class of C-approxima-

ble groups. It is straightforward to see that being C-approximable is a local
property in the sense that Γ is C-approximable if and only if all finitely gen-

erated subgroups of Γ are C-approximable. Along the same lines it is easy to

see that C-approximability passes to subgroups. Furthermore, in many cases C-

approximability is also preserved by taking direct products over an arbitrary in-

dex set. This holds for all examples of classes provided above, but we shall only

prove it for Frobenius approximable groups, since, to the best of our knowledge,

this observation is new (albeit proven in a more or less standard and straightfor-

ward way, see [41]). The rest of the proofs can be found in the literature (see e.g.

[16, 41]).

Proposition 4.17. Let (Γi)i∈I be a family of Frobenius approximable groups.
Then

∏
i∈I Γi is Frobenius approximable.

Proof. For a subset J ⊆ I we let πJ :
∏

i∈I Γi →
∏

j∈J Γj denote the projection

map. We write πi = π{i}. Furthermore, since all Γi are Frobenius approximated,

we determine ηΓi
(x) > 0, for all i ∈ I and x ∈ Γi\{1Γi

} as in Definition 4.16.

Furthermore, for all x ∈ Γ\{1Γ}, choose i(x) ∈ I such that πi(x)(x) 6= 1Γi(x)
,

and define ηΓ(x) = ηΓi(x)
(πi(x)(x)), which is strictly positive by the choice of

i(x).
Let ε > 0 and let F ⊆ ∏

i∈I Γi be finite. For each y ∈ F we can find an

(ε|F |−1/2, πi(y)(F ))-approximate representation ϕy : Γi(y) → U(ny) such that

‖ϕy(x)− 1ny
‖2,Trny

> ηΓi
(x),

for all x ∈ πi(y)(F ). We consider the direct sum

ϕ =
⊕

y∈F
(ϕy ◦ πi(y)) : Γ →

⊕

y∈F
U(ny) ⊆ U(n)

where n =
∑

y∈F ny. Using the equality

‖T‖22,Trn =
∑

y∈F
‖Ty‖22,Trny

,

where T =
⊕

y∈F Ty is the block-diagonal matrix in Mn(C) with blocks Ty ∈
Mny

(C), we conclude that for all x, y ∈ F , it holds that

‖ϕ(xy)− ϕ(x)ϕ(y)‖2,Trn≤
√

|F | ε
2

|F | = ε.

By definition of ηΓ(x), we also conclude that

‖ϕ(x)− 1n‖2,Trn ≥ ηΓ(x).
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As we are going to answer Question 4.14 in the negative for the Frobenius

norm, one could argue that it is only a neat extra feature of our counterexample

that it admits a finite presentation. It is worth mentioning though, that, under

mild assumptions on the class C, one is always able to find finitely presented

counterexamples, as noted in the following proposition.

Proposition 4.18. Let C be a class of metric groups and assume that C-approx-
imability is preserved under products. Then all groups are C-approximable if
and only if all fintely presented groups are C-approximable.

Proof. As mentioned, we need only consider finitely generated groups since C-

approximability is a local property. Also, since C-approximability passes to arbi-

trary direct products, it also passes to projective limits since they are subgroups

of a direct product. This concludes the proof, since every finitely generated

group is a projective limit of finitely presented groups.

4.3 Stability of asymptotic homomorphisms

We now define what it means for a group to be stable with respect to our class of

metric groups C.

Definition 4.19. A finitely presented group Γ = 〈S | R〉 is called C-stable if for

all ϕn : S → Gn, where (Gn, dn)n∈N ⊆ C it holds that

lim
n→ω

def(ϕn) = 0 =⇒ lim
n→ω

HomDist(ϕn) = 0.

In other words, a group is stable if every asymptotic representation is trivial.

We use the term Frobenius stable for groups that are stable with respect to our fa-

vorite class of metric groups U2,Tr (see Example 4.13). As with approximability,

there is a characterization in terms of ultraproducts.

Proposition 4.20. A finitely presented group Γ is C-stable if and only if all ho-
momorphisms into an ultraproduct

ϕ : Γ →
∏

n→ω

(Gn, dn),

for (Gn, dn)n∈N ⊆ C, are liftable, that is, there is a homomorphism ϕ̃ : Γ →∏
n∈NGn representing ϕ.

A simple but crucial observation is the fact that all finitely presented groups Γ
that are both C-approximable and C-stable are residually C. In particular, if the



4.3. STABILITY OF ASYMPTOTIC HOMOMORPHISMS 45

groups of C are all linear groups, then Γ is residually finite by Mal’cev’s Theo-

rem. This applies for instance to the classes Uop, U2,tr and U2,Tr.

The stability question has been investigated in many different settings, see

for instance [71, 32, 2, 25, 40, 7]. A famous example of a non-trivial asymptotic

representation of Z2 with respect to the operator norm, is the asymptotically
commuting matrices of Voiculescu [71]. As we shall see below, the same con-

struction provides us with a non-trivial asymptotic representation with respect to

the Frobenius norm.

Example 4.21. We recall the construction of Voiculescu’s asymptotically com-

muting matrices and use it to show that Z2 = 〈a, b | aba−1b−1〉 is not Frobenius

stable. We consider the sequence ϕn : {a, b} → U(n) given by

ϕn(a) =




1
λn

λ2n
. . .

λn−1
n



, ϕn(b) =




0 0 1
1 0 0

1
. . .

1 0



,

where λn = exp(2πi/n) is the n’th root of unity. A direct calculation shows that

ϕn(a)ϕn(b)ϕn(a)
∗ϕn(b)

∗ = λ̄n1n,

so that, as n→ ∞, we have

def‖·‖2,Tr
(ϕn) = ‖λ̄n1n − 1n‖2,Tr =

√
n|λ̄n − 1| = O

(
1√
n

)
.

Thus, we conclude that ϕn is an asymptotic representation with respect to ‖·‖2,Tr.
As mentioned, Voiculescu [71] (see also [26]) proved that this asymptotic repre-

sentation is non-trivial with respect to the operator norm, more precisely,

HomDist‖·‖op(ϕn) ≥
√

2− |1− λn| − 1,

for n ≥ 7. Since HomDist‖·‖2,Tr
(ϕn) ≥ HomDist‖·‖op(ϕn) we conclude that

(ϕn)n∈N is non-trivial with respect to the Frobenius norm.

We now turn our attention to the Baumslag-Solitar group

BS(2, 3) = 〈a, b | b−1a2ba−3〉.

It is well-known that BS(2, 3) is not residually finite, and we shall exploit this

fact to show that it is not Frobenius stable either. For this reason, we need the

following.
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Lemma 4.22 ([6]). Let Γ be a finite group and assume that x, y ∈ Γ satisfy
y−1x2y = x3. Then xy−1xy = y−1xyx.

Proof. Let k ∈ N be such that x2k = 1Γ. Then

xk = x3k = y−1x2ky = 1Γ,

so it follows that the order of x is odd, say 2m+1, for m ∈ N. From this we get

that

y−1xy = y−1x2m+2y = x3(m+1),

proving that y−1xy commutes with x.

By Mal’cev’s Theorem we get the following consequence.

Corollary 4.23. Let U, V ∈ U(n) satsifsying V ∗U2V = U3. Then it follows
that UV ∗UV = V ∗UV U.

For a linear algebraic proof of this fact, see [29]. The above corollary implies

that, if ϕn : BS(2, 3) → U(kn) is an asymptotic representation with

lim
n→ω

‖ϕn(a)ϕn(b)
∗ϕn(a)ϕn(b)− ϕn(b)

∗ϕn(a)ϕn(b)ϕn(a)‖2,Tr > 0,

then (ϕn)n∈N is non-trivial. Thus we aim to construct such a sequence of maps

and we shall do so with kn = 6n. The construction is due to Glebsky [18]

and somewhat similar to one by Rădulescu [60], who studied approximation

properties of BS(2, 3) with respect to the normalized Hilbert-Schmidt norm.

Example 4.24. We first need to fix some notation. Given n ∈ N, we consider

a 6n-dimensional Hilbert space H with orthonormal basis ξ0, . . . , ξ6n−1. We

decompose H into a sum of 6-dimensional subspaces in two different ways,

H =
⊕n−1

j=0 Sj =
⊕n−1

j=0 Cj , where

Sj = span{ξ3j, ξ3j+1, ξ3j+2, ξ3j+3n, ξ3j+3n+1, ξ3j+3n+2}

and

Cj = span{ξ2j, ξ2j+2n, ξ2j+4n, ξ2j+1, ξ2j+2n+1, ξ2j+4n+1}
for j = 0, . . . , n. We shall use the bases of Sj , respectively Cj , in the order

that they appear above. Also, let λ = exp(2πi
6n

). We define A ∈ U(6n) as

the diagonal operator Aξj = λjξj, j = 1, . . . , n and let Sj and Cj denote the

restriction of A to Sj and Cj , respectively. In the ordered bases as above, we

have that

Sj = λ3j diag(1, λ, λ2,−1,−λ,−λ2)
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and

Cj = λ2j diag(1, exp(2πi
3
), exp(4πi

3
), λ, λ exp(2πi

3
), λ exp(4πi

3
)).

This entails that the diagonal operators S2
j and C3

j both act approximately as

multiplication by λ6j , more precisely,

‖S2
j − λ6j1Sj

‖22,Tr = 2|λ2 − 1|2 + 2|λ4 − 1|2 = O( 1
n2 )

and

‖C3
j − λ6j1Cj‖22,Tr = 3|λ3 − 1|2 = O( 1

n2 ),

for n → ∞. Thus, given any unitary U : Cj → Sj between the 6-dimensional

subspaces of H , it holds that

‖U∗S2
jU − C3

j ‖22,Tr = O( 1
n2 ),

for n → ∞, so that, if B ∈ U(H ) is any unitary with B(Cj) = Sj , it follows

that

‖B∗A2B − A3‖22,Tr = O( 1
n
),

for n → ∞. This shows that the assignment ϕn(a) = A and ϕn(b) = B defines

an asymptotic representation of BS(2, 3). We claim that if we let Uj : Cj → Sj

be the unitary defined by the matrix

Uj =
1√
2




1 1 0 0 0 0
1 −1 0 0 0 0
0 0 1 1 0 0
0 0 1 −1 0 0
0 0 0 0 1 1
0 0 0 0 1 −1



,

in the above ordered bases and let B =
⊕n−1

j=0 Uj ∈ U(6n), the asymptotic

representation is non-trivial. To see this, let S̃j : Sj → Sj be given by

S̃j = diag(1, 1, 1,−1,−1,−1)

and C̃j : Cj → Cj be given by

C̃j = diag(1, exp(2πi
3
), exp(4πi

3
), 1, exp(2πi

3
), exp(4πi

3
)).

We immediately get that

‖Sj − λ3jS̃j‖2,Tr = O( 1
n
), ‖Cj − λ2jC̃j‖2,Tr = O( 1

n
),
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for n→ ∞. Furthermore, we have that

B∗
j S̃jBj =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



,

whence it easily follows that

‖C̃jB
∗
j S̃jBj − B∗

j S̃jBjC̃j‖2,Tr =
√
2|1− exp(4πi

3
)| =

√
6.

Combining these facts, we get that

‖CjB
∗
jSjBj − B∗

jSjBjCj‖2,Tr ≥ ‖λ2jC̃jB
∗
jλ

3jS̃jBj − B∗
jλ

3jS̃jBjλ
2jC̃j‖2,Tr

− 2‖Sj − λ3jS̃j‖2,Tr − 2‖Cj − λ2jC̃j‖2,Tr
= ‖C̃jB

∗
j S̃jBj − B∗

j S̃jBjC̃j‖2,Tr −O( 1
n
)

=
√
6−O( 1

n
).

Now, we conclude that

‖AB∗AB − B∗ABA‖22,Tr =
n−1∑

j=0

‖CjB
∗
jSjBj − B∗

jSjBjCj‖22,Tr

= 6n−O(1),

for n→ ∞. Thus, when ϕn(a) = A and ϕn(b) = B as above, we get

lim
n→∞

‖ϕn(a)ϕn(b)
∗ϕn(a)ϕn(b)− ϕn(b)

∗ϕn(a)ϕn(b)ϕn(a)‖2,Tr = ∞.

It follows by the remark after Corollary 4.23 that (ϕn)n∈N is non-trivial.



Chapter 5

Stability results for asymptotic

representations

In order to approach the stability question, we investigate the asymptotic behav-

ior of the defect of an asymptotic representation more closely. We associate a

2-cocycle to an asymptotic representation and show that this cocycle determines

whether the asymptotic representation is “improvable”, in the sense that there

exists an equivalent asymptotic representation with defect tending faster to zero.

Using this, we prove that, if all relevant cocycles are trivial, then Γ is Frobenius

stable. More precisely, if the group Γ is 2-Kazhdan (Definition 1.8), then all

asymptotic representations can be improved to representations. In the last sec-

tion we use this result to provide examples of Frobenius stable groups. Among

these examples, there are groups that are not Frobenius approximable.

5.1 Diminishing the defect of asymptotic

representations

We fix a finitely presented group Γ = 〈S | R〉, a family of submultiplicative,

unitarily invariant norms on Mk(C), for k ∈ N, all of which we denote ‖·‖, and

an asymptotic representation ϕn : S → U(kn), for n ∈ N, with respect to these

norms. The maps ϕn are defined on S, but we want to associate maps ϕ̃n defined

on Γ. For this, we fix a section σ : Γ → FS of the quotient map FS → Γ. We

may assume that σ(1Γ) = 1FS
and σ(x−1) = σ(x)−1, for all x such that x2 6= 1Γ.

Lemma 5.1. There exists a sequence ϕ̃n : Γ → U(kn) such that ϕ̃(1Γ) = 1kn ,
ϕ̃n(x

−1) = ϕ̃n(x)
∗ and

‖ϕn(σ(x))− ϕ̃n(x)‖ = O(def(ϕn)), (l)

49
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for n→ ω and all x ∈ Γ.

Proof. We define ϕ̃n(x) = ϕn(σ(x)), for all x with x2 6= 1Γ. By our assump-

tions on σ, it follows that ϕ̃n(x
−1) = ϕ̃n(x)

∗ for such x. Given x ∈ Γ with

x2 = 1Γ, we first consider the map f : C → C given by

f(λ) =

{
1, Re(λ) ≥ 0,

−1, Re(λ) < 0,

for λ ∈ C and define self-adjoint unitaries Tn = f(ϕn(σ(x))) by the functional

calculus. Since |λ − f(λ)| ≤ |λ2 − 1|, for λ ∈ C, and since σ(x)2 ∈ ⟪R⟫, it

follows by Lemma 4.3 that

‖ϕn(σ(x))− Tn‖ ≤ ‖ϕn(σ(x))
2 − 1kn‖ = O(def(ϕn)),

for n → ω. Now, letting ϕ̃n(x) = Tn, we conclude that ϕ̃ has the desired

properties.

We fix (ϕ̃n)n∈N provided by this lemma and define maps cn : Γ×Γ → M(kn)
by

cn(x, y) =
ϕ̃n(x)ϕ̃n(y)− ϕ̃n(xy)

def(ϕn)
,

for all n ∈ N such that def(ϕn) > 0 and cn(x, y) = 0 if def(ϕn) = 0, for all

x, y ∈ Γ.

Proposition 5.2. Let x, y, z ∈ Γ. The maps cn satisfy the following equations

ϕ̃n(x)cn(y, z)− cn(xy, z) + cn(x, yz)− cn(x, y)ϕ̃n(z) = 0,

cn(x, x
−1) = cn(1Γ, x) = cn(x, 1Γ) = 0 and cn(x, y)

∗ = cn(y
−1, x−1).

Furthermore, we have that

‖cn(x, y)‖ = O(1) for n→ ω (m)

Proof. For all x, y, z ∈ Γ and n ∈ N we see that

def(ϕn) · (ϕ̃n(x)cn(y, z)− cn(xy, z) + cn(x, yz)− cn(x, y)ϕ̃n(z))

= ϕ̃n(x)(ϕ̃n(y)ϕ̃n(z)− ϕ̃n(yz))− (ϕ̃n(xy)ϕ̃n(z)− ϕ̃n(xyz))

+ (ϕ̃n(x)ϕ̃n(yz)− ϕ̃n(xyz))− (ϕ̃n(x)ϕ̃n(y)− ϕ̃n(xy))ϕ̃n(z)

= ϕ̃n(x)ϕ̃n(y)ϕ̃n(z)− ϕ̃n(x)ϕ̃n(yz)− ϕ̃n(xy)ϕ̃n(z) + ϕ̃n(xyz)

+ ϕ̃n(x)ϕ̃n(yz)− ϕ̃n(xyz)− ϕ̃n(x)ϕ̃n(y)ϕ̃n(z) + ϕ̃n(xy)ϕ̃n(z)

= 0,
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which proves the first equation. The second line of equations is immediate from

the definition of cn and the fact that ϕ̃n(x
−1) = ϕ̃n(x)

∗. For the last assertion,

note that, since σ(x)σ(y)σ(xy)−1 ∈ ⟪R⟫, it follows from Lemma 4.3 that

‖ϕn(σ(x)σ(y)σ(xy)
−1)− 1kn‖ = O(def(ϕn)), for n→ ω,

and thus we get (by using Equation (l) if necessary) that

def(ϕn)‖cn(x, y)‖ = O(def(ϕn)), for n→ ω.

Remark 5.3. The constants that hide in Equations (l) and (m) are coming from

Lemma 4.3 and thus depend on x, y ∈ Γ, the presentation Γ = 〈S | R〉 and on

the choice of section σ, but not on (ϕn)n∈N. This fact will be important in the

proof of Lemma 5.10.

We need the various notions of ultraproducts discussed in Chapter 3 and we

use the shorthand

U(ω, ‖·‖) =
∏

n→ω

(U(kn), dist‖·‖), and M(ω, ‖·‖) =
∏

n→ω

(Mkn(C), ‖·‖).

As we have seen, the asymptotic representation (ϕn)n∈N induces a homomor-

phism ϕω : Γ → U(ω, ‖·‖) on the level of the group Γ. In fact, the element

ϕω(x) is represented by the sequence (ϕ̃n(x))n∈N, for x ∈ Γ. Since ‖·‖ is sub-

multiplicative, Γ acts on M(ω, ‖·‖) through ϕω. By Equation (m) it follows

cn(x, y) is a bounded sequence, so there is an induced map

c : Γ× Γ → M(ω, ‖·‖).
This is almost the cocycle we want. However, it does not quite satisfy the cocycle

equations with respect to the conjugation action of Γ by ϕω, which is what we

want. In order to correct for that, we define α(x, y) = c(x, y)ϕω(xy)
∗. The

reason for defining c rather than just α is to make the following calculations

more natural. It is also worth noting that c is a cocycle in the different, but

equivalent, picture of Hochschild cohomology.

Corollary 5.4. The map α : Γ × Γ → M(ω, ‖·‖) is a 2-cocycle with respect
to the isometric action ρ given by ρ(x)T = ϕω(x)Tϕω(x)

∗, for x ∈ Γ and
T ∈ M(ω, ‖·‖).
Proof. Given x, y, z ∈ Γ we have that

ϕω(x)α(y, z)ϕω(x)
∗ − α(xy, z) + α(x, yz)− α(x, y)

= ϕω(x)c(y, z)ϕω(yz)
∗ϕω(x)

∗ − c(xy, z)ϕω(xyz)
∗

+ c(x, yz)ϕω(xyz)
∗ − c(x, y)ϕω(xy)

∗

= (ϕω(x)c(y, z)− c(xy, z) + c(x, yz)− c(x, y)ϕω(z))ϕω(xyz)
∗

= 0,
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where we used that ϕω is a homomorphism.

Proposition 5.5. Assume that α represents the trivial cohomology class, i.e.
there exists a map β : Γ → M(ω, ‖·‖) satisfying

α(x, y) = ϕω(x)β(y)ϕω(x)
∗ − β(xy) + β(x),

for x, y ∈ Γ. Then the following holds:

β(1Γ) = 0, (n)

β(x) = −ϕω(x)β(x
−1)ϕω(x)

∗, (o)

c(x, y) = ϕω(x)β(y)ϕω(y)− β(xy)ϕω(xy) + β(x)ϕω(xy). (p)

Furthermore, we can choose β(x) to be skew-Hermitian for all x ∈ Γ.

Proof. Equation (p) is immediate from the equation c(x, y) = α(x, y)ϕω(xy).
Equation (n) follows from (p) and Proposition 5.2 with x = y = 1Γ and (o) fol-

lows from (n), (p) and Proposition 5.2 with y = x−1. For the last claim, we pos-

sibly need to alter β a little. Note that β′(x) = −β(x)∗ = ϕω(x)β(x
−1)∗ϕω(x)

∗

also satisfies Equations (n), (o) and (p). Indeed,

c(x, y) = c(y−1, x−1)∗

= (ϕω(y
−1)β(x−1)ϕω(x

−1)− β(y−1x−1)ϕω(y
−1x−1)

+ β(y−1)ϕω(y
−1x−1))∗

= ϕω(x)β(x
−1)∗ϕω(y)− ϕω(xy)β((xy)

−1)∗ + ϕω(xy)β(y
−1)∗

= β′(x)ϕω(xy)− β′(xy)ϕω(xy) + ϕω(x)β
′(y)ϕω(x)

for x, y ∈ Γ, which proves (p), whence the other two follow. Thus, replacing β
with

β](x) =
β(x)− β(x)∗

2
, x ∈ Γ, n ∈ N,

we see that β](x) is skew-Hermitian and that Equations (n), (o) and (p) are still

satisfied.

For the rest of the section, we assume that α is trivial and that β is a skew-

Hermitian associated 1-cochain as above. We furthermore let βn : Γ → Mkn(C)
be a skew-Hermitian lift of β. It is easy to check that the matrix

exp(− def(ϕn)βn(x)) =
∞∑

j=0

(− def(ϕn))
j

j!
βn(x)

j

is unitary, for every x ∈ Γ, so we may define a sequence of mapsψn : Γ → U(kn)
by

ψn(x) = exp(− def(ϕn)βn(x))ϕ̃n(x).

As we know that ϕ̃n(1Γ) = 1kn and βn(1Γ) = 0, we also get that ψn(1Γ) = 1kn .
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Proposition 5.6. With the notation from above, we have that ‖ϕ̃n(x)−ψn(x)‖ =
O(def(ϕn)), for n→ ω and all x ∈ Γ. More precisely, it holds that

‖ϕ̃n(x)− ψn(x)‖ ≤ 2‖βn(x)‖ def(ϕn),

for most n ∈ N.

Proof. Let x ∈ Γ. Using submultiplicativity, it is easy to see that

‖1kn − exp(T )‖ ≤ ‖T‖ exp(‖T‖)

for any T ∈ M(kn). It now follows by unitary invariance that

‖ϕ̃n(x)− ψn(x)‖ = ‖1kn − exp(− def(ϕn)βn(x))‖
≤ def(ϕn)‖βn(x)‖ exp(def(ϕn)‖βn(x)‖),

so since ‖βn(x)‖ is a bounded sequence and limn→ω def(ϕn) = 0, we conclude

that exp(def(ϕn)‖βn(x)‖) ≤ 2, for most n, whence the desired conclusion fol-

lows.

Lemma 5.7. For any x, y ∈ Γ, it holds that

‖ψn(xy)− ψn(x)ψn(y)‖ = o(def(ϕn)),

for n→ ω.

Proof. Fix x, y ∈ Γ and let ξn(z) = (1kn − def(ϕn)βn(z))ϕ̃n(z), for an z ∈ Γ.

Let C = 2max{‖β(x)‖, ‖β(y)‖, ‖β(xy)‖}. We note that every operator T ∈
Mk(C) satisfies

‖1k − T − exp(−T )‖ ≤ ‖T‖2 exp(‖T‖).

It follows that, for most n ∈ N,

‖ψn(z)− ξn(z)‖ ≤ C · def(ϕn)
2,

when z ∈ {x, y, xy}. By this (and submultiplicativity) it follows that

‖ψn(xy)− ψn(x)ψn(y)‖ = ‖ξn(xy)− ξn(x)ξn(y)‖+ o(def(ϕn)),

for n→ ω. Hence it suffices to show that

‖ξn(xy)− ξn(x)ξn(y)‖ = o(def(ϕn)),
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for n→ ω. However, this is clearly a consequence of the following calculation:

ξn(xy)− ξn(x)ξn(y) = ϕ̃n(xy)− ϕ̃n(x)ϕ̃n(y)

− def(ϕn)(βn(x)yϕ̃n(xy)

− ϕ̃n(x)βn(y)ϕ̃n(y)

− βn(x)ϕ̃n(x)ϕ̃n(y))

− def(ϕn)
2βn(x)ϕ̃n(x)βn(y)ϕ̃(y)

= def(ϕn)(−cn(x, y)
+ ϕ̃n(x)βn(y)ϕ̃n(y)

− βn(xy)ϕ̃n(xy)

+ βn(x)ϕ̃n(x)ϕ̃n(y))

− def(ϕn)
2βn(x)ϕ̃n(x)βn(y)ϕ̃n(y).

Indeed, combining Equation (p) with the fact that ‖βn(x)ϕ̃n(x)βn(y)ϕ̃n(y)‖ ≤
‖βn(x)‖‖βn(y)‖ is bounded, the desired result follows.

Finally we are ready to define the asymptotic representation ϕ′
n : S → U(kn)

by ϕ′
n = ψn|S . It follows from Proposition 5.6 that ϕ′

n is an asymptotic repre-

sentation equivalent to ϕn. Moreover, from Lemma 5.7 we can prove the ϕ′
n has

an effectively smaller defect. In conclusion, we get the following theorem.

Theorem 5.8. Let Γ = 〈S | R〉 be a finitely presented group and let ϕn : S →
U(kn) be an asymptotic representation with respect to a family of submultiplica-
tive, unitarily invariant norms ‖·‖ = ‖·‖n on M(kn). Assume that the 2-cocycle
α associated to (ϕn)n∈N is trivial in H2(Γ,M(ω, ‖·‖)). Then there exists an
asymptotic representation ϕ′

n : S → U(kn) such that, as n→ ω,

(1) dist(ϕn, ϕ
′
n) = O(def(ϕn)) and

(2) def(ϕ′
n) = o(def(ϕn)),

Proof. Assertion (1) follows from Proposition 5.6. For Assertion (2), we let

r = x1x2 · · · xm ∈ R be written as a reduced word, with xj ∈ S ∪ S−1, where

j = 1, . . . ,m. By iteration of Lemma 5.7, using that ψn takes unitary values and

that ‖·‖ is unitarily invariant, we see that

‖ϕ′
n(r)− 1kn‖ = ‖ψn(x1)ψn(x2) · · ·ψn(xm)− 1kn‖

= ‖ψn(x1x2)ψn(x3) · · ·ψn(xm)− 1kn‖+ o(def(ϕn))

...

= ‖ψ(1Γ)− 1kn‖+ o(def(ϕn)),

for n→ ω. Since ψ(1Γ) = 1kn , Assertion (2) follows.
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It is worth noting that there is also a converse to Theorem 5.8 in the following

sense.

Proposition 5.9. Let Γ = 〈S | R〉 be a finitely presented group and let ϕn, ψn :
S → U(kn) be asymptotic representations with respect to some family of sub-
multiplicative, unitarily invariant norms ‖·‖ = ‖·‖n on M(kn). Suppose that

(1) dist(ϕn, ψn) = Oω(def(ϕn)) and

(2) def(ψn) = oω(def(ϕn)).

Then the 2-cocycle α associated to (ϕn)n∈N is trivial in H2(Γ,M(ω, ‖·‖)). In
particular, if HomDist(ϕn) = O(def(ϕn)), for n→ ω, then α is trivial.

Proof. If def(ϕn) = 0 for most n ∈ N, there is nothing to prove, so let us

assume this is not the case. Let ϕ̃n, ψ̃n : Γ → U(kn) be the induced maps given

by Lemma 5.1. We note that the sequences ϕ̃n and ψ̃n induce the same map ϕω.

Define

γn(x) =
ϕ̃n(x)− ψ̃n(x)

def(ϕn)

for n with def(ϕn) > 0 and γn(x) = 0 otherwise. By Assumption (1), γn(x) is

essentially bounded in n, so it defines an element γ(x) ∈ M(ω, ‖·‖). Now, if we

prove that

c(x, y) = ϕω(x)γ(y)− γ(xy) + γ(x)ϕω(y),

it will easily follow that β(x) = γ(x)ϕω(x)
∗ will satisfy d1β = α. To prove this,

note that

‖ψ̃n(xy)− ψ̃n(x)ψ̃n(y)‖ = o(def(ϕn)), n→ ω,

for all x, y ∈ Γ. Indeed, this follows from Assumption (2). As a consequence,

we see that

def(ϕn) · (ϕ̃n(x)γn(y)− γn(xy) + γn(x)ψ̃n(y))

= ϕ̃n(x)ϕ̃n(y)− ϕ̃n(x)ψ̃n(y)− ϕ̃n(xy) + ψ̃n(xy)

+ ϕ̃n(x)ψ̃n(y)− ψ̃n(x)ψ̃n(y)

= ϕ̃n(x)ϕ̃n(y)− ϕ̃n(xy) + ψ̃n(xy)− ψ̃n(x)ψ̃n(y)

= def(ϕn) · cn(x, y) + o(def(ϕn)),

for n → ω. By dividing the above equation by def(ϕn) (which is possible for

most n) and taking the limit, we reach the desired conclusion.
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5.2 The Frobenius-stability of 2-Kazhdan groups

We now consider the Frobenius norm ‖·‖2,Tr. This norm is submultiplicative,

so the techniques developed in last section apply. Moreover, since the norm

comes from the inner product (T, S) 7→ Tr(TS∗) for T, S ∈ Mk(C), it fol-

lows that the ultraproduct M(ω, ‖·‖2,Tr) is a Hilbert space. In particular, if the

group Γ is 2-Kazhdan, then H2(Γ,M(ω, ‖·‖2,Tr)) = 0 for any isometric ac-

tion of Γ on M(ω, ‖·‖2,Tr), since invertible isometries are unitaries. Thus Theo-

rem 5.8 applies to all asymptotic representations (ϕn)n∈N, and we could use the

theorem repeatedly to get a sequence of equivalent asymptotic representations

ϕn, ϕ
′
n, ϕ

′′
n, . . . with better and better defect. This approach, however, seems

too naïve to prove stability as there is no reason this process would ever give

us a genuine representation. Luckily, a slightly more careful argument works.

First, we need to overcome a small technicality. In Theorem 5.8, we saw that

dist(ϕn, ϕ
′
n) = O(def(ϕn)) for n → ω, but we a more precise statement. The

following uses the notation from last section.

Lemma 5.10. Let Γ = 〈S | R〉 be a finitely presented, 2-Kazhdan group. There
exists a constant K ≥ 0 such that, for all asymptotic representations ϕn : S →
U(kn) with respect to the Frobenius norm, the associated maps ϕ′

n satisfy

dist(ϕn, ϕ
′
n) ≤ K def(ϕn).

Proof. It follows from Proposition 1.10 applied to F = S ⊆ Γ that there

is a constant K1 and a finite set F0 ⊆ Γ2 such that, for all 2-cocycles α ∈
Z2(Γ,M(ω, ‖·‖2,Tr)), there is a 1-cochain β ∈ C1(Γ,M(ω, ‖·‖2,Tr)) satisfying

d1β = α and

max
s∈S

‖β(s)‖ ≤ K1 max
x,y∈F0

‖α(x, y)‖.

This, in particular, applies to the 2-cocycle α associated to any asymptotic repre-

sentation (ϕn)n∈N. We note that replacing β(x) with the skew-Hermitian element

2−1(β(x) − β(x)∗), as is done in Proposition 5.5, does not increase the norm,

so the above inequality also holds for the modified cochain. Furthermore, from

Equation (m) we get a constant K2 such that for all asymptotic representations

ϕn : Γ → U(kn) with respect to the Frobenius norm the associated 2-cocycle α
satisfies

‖α(x, y)‖ = ‖c(x, y)‖ ≤ K2,

for all x, y ∈ F0. As mentioned in Remark 5.3, the same K2 works for all

asymptotic representations. In conclusion, we get that

max
s∈S

‖β(s)‖ ≤ K1K2.
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Letting K = 2K1K2, it now follows from Proposition 5.6, since ϕ′
n = ψn|S by

definition, that dist(ϕn, ϕ
′
n) ≤ K def(ϕn).

Theorem 5.11. Every finitely presented, 2-Kazhdan group is Frobenius stable.

Proof. Let Γ = 〈S | R〉 be a finitely presented, 2-Kazhdan group and determine

K from Lemma 5.10. Now, define the quantity

θ(ϕ) = HomDist(ϕ)− 2K def(ϕ),

for any map ϕ : S → U(k) and any k ∈ N. We note that, if ϕn : S → U(kn) is

any asymptotic representation, then limn→ω θ(ϕn) ≥ 0 and equality holds if and

only if ϕn is equivalent to a sequence of homomorphisms. Now, fix a sequence

(εn)n∈N of strictly positive real numbers tending to zero along ω and let (kn)n∈N
be a sequence of natural numbers. By the above, we need to prove that, for

all sequences of maps ψn : S → U(kn) with def(ψn) ≤ εn, the quantity θ(ψn)
tends to zero. The space of maps ϕ : S → U(kn) such that def(ϕ) ≤ εn is

compact for each n ∈ N, and since θ is continuous, there is ϕn : S → U(kn)
with def(ϕn) ≤ εn such that ϕn maximizes θ, for all n. Evidently (ϕn)n∈N is an

asymptotic representation. Thus, by Theorem 5.8 and Lemma 5.10, there exists

an asymptotic representation ϕ′
n : S → U(kn) with dist(ϕn, ϕ

′
n) ≤ K def(ϕn)

and

def(ϕ′
n) ≤

1

4
def(ϕn),

for most n ∈ N. In particular, def(ϕ′
n) ≤ εn, and it follows that, for most n, we

have the following inequality

HomDist(ϕn) ≤ HomDist(ϕ′
n) +K def(ϕn).

Combining what we know so far, we get that

HomDist(ϕ′
n)−

1

2
K def(ϕn) ≤ HomDist(ϕ′

n)− 2K def(ϕ′
n)

= θ(ϕ′
n) ≤ θ(ϕn)

= HomDist(ϕn)− 2K def(ϕn)

≤ HomDist(ϕ′
n)−K def(ϕn),

or, in other words,

def(ϕn) ≤
1

2
def(ϕn).

This can only be the case if def(ϕn) = 0 for most n, but then ϕn is an actual

representation for most n ∈ N. This means that HomDist(ϕn) = 0, so we con-

clude that limn→ω θ(ϕn) = 0. Since θ(ϕn) was chosen maximal, we conclude

that limn→ω θ(ψn) = 0 for all εn-almost representations ψn.
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This theorem has an immediate corollary, which follows from the observa-

tion right below Proposition 4.20.

Corollary 5.12. Let Γ be a finitely presented 2-Kazhdan group. Then either

• Γ is residually finite, or

• Γ is not Frobenius approximable.

In the next section, we shall prove the existence of non-residually finite 2-

Kazhdan groups and thus provide the first examples of groups which are not

Frobenius approximable. It is worth noting that the proof of Theorem 5.11 still

works if one replaces the Frobenius norm with any submultiplicative norm and

changes the cohomology vanishing assumption accordingly. For instance, if

H2(Γ,A) = 0 for any isometric Γ-action on a C∗-algebra A, then Γ is stable

with respect to the operator norm. We are, however, not aware of any coho-

mology vanishing results in this setting. For the normalized Hilbert-Schmidt

norm, we run into some problems of a more fundamental nature; the norm is

not submultiplicative so Theorem 5.8 does not apply. Although we can say little

about stability with respect to either the operator norm or the normalized Hilbert-

Schmidt norm, we can still use Theorem 5.11 to prove a partial stability result in

these cases.

Corollary 5.13. Let Γ = 〈S | R〉 be a finitely presented 2-Kazhdan group and
let ϕn : S → U(kn) be a sequence of maps such that

def(ϕn) = o(k−1/2
n ),

for n → ω, where the defect is measured with respect to either the operator
norm or the Hilbert-Schmidt norm. Then ϕn is equivalent to a sequence of rep-
resentations with respect to the same norm.

Proof. Let ‖·‖ be the norm in question. Recall that ‖T‖ ≤ ‖T‖2,Tr ≤
√
k‖T‖,

for all T ∈ M(k). Thus, by assumption

def‖·‖2,Tr
(ϕn) ≤

√
kn def‖·‖(ϕn) = o(1),

for n → ω, in other words, ϕn is an asymptotic representation with respect to

‖·‖2,Tr. By Theorem 5.11 there are representations πn : Γ → U(kn) with

‖ϕn(s)− πn(s)‖ ≤ ‖ϕn(s)− πn(s)‖2,Tr = o(1),

for s ∈ S and n→ ω.
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5.3 Examples of stable and non-approximable

groups

We use the results from last section to provide examples of stable and non-

approximable groups with respect to the Frobenius norm. As we alluded to

earlier, there are two reasons to choose this norm: First, it is submultiplicative

and as we saw this is an essential prerequisite to applying Theorem 5.8. Sec-

ond, M(ω, ‖·‖2,Tr) is a Hilbert space and, as we shall see next, there are nice

cohomology vanishing results in this context. Indeed, the existence of strongly

n-Kazhdan groups for all n ∈ N is already known. They arise as lattices of

certain p-adic Lie groups, so we recall the following definition.

Definition 5.14. Let G be a topological group. A lattice Γ in G is a subgroup

Γ ⊆ G which is discrete as a subspace such that the space G/Γ admits a G-

invariant, finite (σ-additive) Borel measure. A lattice Γ is called uniform if G/Γ
is compact.

For the next theorem, we refer the reader to the original proofs by Gar-

land [30] for finite dimensional Hilbert spaces and Ballmann-Świątkowski [5]

in the general case.

Theorem 5.15. Fix n ∈ N with n ≥ 2. There exists some p0(n) ∈ N such that
all lattices Γ ⊆ Sp2n(Qp) are strongly (n− 1)-Kazhdan, whenever p ≥ p0(n).

It is standard fact that all lattices in Sp2n(Qp) are uniform and that uniform

lattices are finitely presented. In the case where p ≥ p0(3), the above theorem

states that lattices in Sp2n(Qp) are 2-Kazhdan and by Theorem 5.11 they are, in

fact, Frobenius stable. It is also known that lattices in Sp2n(Qp) are residually

finite (if the rank n ≥ 3) and in this way we get plenty examples of Frobenius

approximable, stable groups. In order to construct stable groups that are not

Frobenius approximable, we have to work some more. The following construc-

tion is essentially known and follows ideas of Deligne [20] accommodated to the

setting of p-adic Lie groups. See [72] for a short exposition of this result.

In the following, fix n ∈ N with n ≥ 2 and a prime number p ≥ 3. For a

field K of characteristic 0, we define

G(K) = SUn(D(K), hn),

where D(K) is the quaternions over K and hn is the canonical hermitian sesqui-

linear form on D(K)n explained in Section 1.2. The group G(K) is the K-

points of an absolutely almost simple, simply connected Q-algebraic group G

of type Cn. For an exposition of the general theory of algebraic groups, we refer
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the reader to [55] or [46]. More generally, if A is a unital subring of a field K,

we define

G(A) = SUn(D(K), hn) ∩Mn(D(A)).

An mentioned in Section 1.2 that G(R) is isomorphic to the compact group

U(2n) ∩ Sp2n(C) and that G(Qp) is isomorphic to Sp2n(Qp), the symplectic

group. We consider the abstract subgroup G(Z[1
p
]) of G(Q). A standard fact

(see [55, Chapter 5.4]) shows that the diagonal embedding,

G(Z[1
p
]) ⊆ G(Q) ⊆ G(R)×G(Qp),

is a lattice embedding. This implies that G(Z[1
p
]) ⊆ G(Qp) is also a lattice.

Indeed, the existence of an invariant measure is immediate and since G(R) is

compact, it follows that the embedding G(Z[1
p
]) ⊆ G(Qp) must be discrete.

It is worth noting that G(Z[1
p
]) is not a lattice in G(R), since the latter, being

compact, has only finite lattices. We can, however, use the embedding (as an

abstract group) G(Z[1
p
]) ⊆ G(R) to describe the former group somewhat ex-

plicitly. Indeed, the embedding D(R) → Mn(C) maps D(Z[1
p
]) into the subring

M2(Z[i, 1p ]) ⊆ M2(C), and as in the case of real coefficients, we get a group

isomorphism

G(Z[1
p
]) ' U(2n) ∩ Sp2n(Z[i,

1
p
]),

of abstract groups.

We use the inclusion G(Z[1
p
]) ⊆ G(Q) to introduce two completions of

G(Q): the arithmetic and the congruence completion. The arithmetic topology

can be defined for a general inclusion of groups. Recall that two subgroups Γ
and Λ of the same group G are commensurable if the subgroup Γ ∩ Λ has finite

index in both Γ and Λ.

Definition 5.16. Let G be a group and let Γ ⊆ G be a subgroup. The arithmetic
completion on G with respect to Γ is the Hausdorff completion Ĝ of G with

respect to the subgroups

B(Γ) = {Λ ⊆ G | Λ commensurable to Γ}.

That is, Ĝ is the inverse limit of the directed system G/Λ, where Λ ∈ B(Γ).

The group Ĝ is a subgroup of the direct product
∏

Λ∈B(Γ)G/Λ and thus has

a natural topology induced by the product topology, where G/Λ is viewed as a

discrete group. Note that the kernel of the natural map ι : G → Ĝ is exactly the

intersection of all finite index subgroups of Γ. Thus, ι is injective if and only if

Γ is residually finite. Furthermore, the profinite completion Γ̂ of Γ is isomorphic

to the closure of ι(Γ) inside Ĝ.
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In order to define the second completion, we consider some specific finite

index subgroups of G(Z[1
p
]), namely the congruence subgroups. Given m ∈ N

not divisible by p, we have that p is invertible modulo m and thus there is a

surjection ϕm : Z[1
p
] → Z/mZ. The congruence subgroups E(m) ⊆ G(Z[1

p
])

are defined as the elements of G(Z[1
p
]) whose matrix entries lie in the kernel

of the map ϕm. The congruence completion G(Q) is the Hausdorff completion

with respect to the system

B′ = {Λ ∈ B(G(Z[1
p
])) | ∃m : E(m) ⊆ Λ}.

By definition, there is a surjection π : Ĝ(Q) → G(Q). Rapinchuk [58] and

Tomanov [68] proved that Γ has the so-called congruence subgroup property,

which, by a result of Prasad-Rapinchuk [57] proves that the surjection π defined

above is an isomorphism. This last statement has a certain interpretation in the

language of adeles. Let P be the set of all prime numbers. For a subset S ⊆ P ,

we can define the restricted product

G(AS) =
{
(xp)p∈S ∈

∏

p∈S
G(Qp) | xp /∈ G(Zp) for a finite number of p ∈ S

}
.

We also define G(A) = G(AP)×G(R), where P denotes the set of all primes.

This group carries a natural topology, called the restricted product topology
which turns G(A) into a locally compact topological group. The strong approx-

imation theorem (see [55, Chapter 7]) states that G(Q) is dense in G(AP\{p})
for any prime p, which can be formulated in the following way:

Theorem 5.17 (Strong approximation). For any prime number p ∈ P we have
that G(Q) ' G(AP\{p}).

Combining the above facts, we conclude that

G(A) ' G(Qp)×G(R)× Ĝ(Q).

Now we are almost ready to define the candidate for a non-approximable group.

The only thing we need is the existence of a certain universal extension of

G(Qp) ' Sp2n(Qp). An extension of topological groups is nothing but a short

exact sequence where the homomorphisms are continuous. The following con-

struction is due to Deligne [21] and universality by Prasad [56] (see also [22]).

Theorem 5.18. Let p ∈ N be a prime and let C(p) be the cyclic group of order
p− 1. There exists a central extension

1 −→ C(p) −→ G̃(Qp) −→ G(Qp) −→ 1
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of topological groups which is universal in the sense that if

1 −→ C −→ E −→ G(Qp) −→ 1

is another central extension of topological groups with discrete kernel C, then
the extensions fit into a commutative diagram

1 // C // E // G(Qp) // 1

1 // C(p) //

��

G̃(Qp) //

��

G(Qp) // 1

We define Γ̃ to be the pre-image of Γ = G(Z[1
p
]) in the group G̃(Qp). This

is evidently an extension of G(Z[1
p
]) with finite kernel C(p), so we can invoke

Theorem 1.12 to conclude that Γ̃ is 2-kazhdan if p ≥ p0(n). We prove that Γ̃
is not residually finite. For this, we need a last theorem in the spirit of Theo-

rem 5.18. The proof works for all almost absolutely simple, simply connected

algebraic groups and is due to Moore [47] in the special case of split groups and

Prasad-Rapinchuk [57] in general.

Theorem 5.19. Let Z be a finite group and assume that there is an extension

1 −→ Z −→ E
η−→ G(A) −→ 1

that splits over G(Q), i.e. there exists a homomorphism ψ : G(Q) → E such
that η ◦ ψ = idG(Q). Then |Z| ≤ 2.

Theorem 5.20. If p ≥ 5 then Γ̃, defined above, is not residually finite.

Proof. Our aim is to prove that every finite index subgroup of Γ̃ contains the

unique subgroup of C(p) of index 2. Let
̂̃
G(Qp) denote the arithmetic comple-

tion of G̃(Qp) with respect to the subgroup Γ̃. It follows from the definition that

there is commutative diagram

1 // C(p) // Γ̃ // Γ // 1

1 // Z //
��

µ

̂̃
G(Qp) //

��
ν

Ĝ(Qp)

��

ι

// 1

where ν and ι are the natural maps explained after Definition 5.16 and µ is sur-

jective. Since Γ is residually finite, it follows that ι is injective, and we conclude
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that the kernel of µ coincides with the kernel of ν. In other words, ker(µ) is the

intersection of all finite index subgroups of Γ̃, so if we can prove that ker(µ) is

non-trivial, we are done. We observed that

G(A) ' G(R)×G(Qp)× Ĝ(Q),

and thus the group

Ẽ = G(R)× G̃(Qp)×
̂̃
G(Q)

is an extension of G(A) with kernel F̃ = {1G(R)} × C(p)× Z . Now define the

subgroup F = {(1, a, b) ∈ Ẽ | a ∈ C(p), b = µ(a)} of F̃ and let E = Ẽ/F .

Thus E is also a central extension of G(A), and the kernel is isomorphic to

Z. Note that G̃(Q) embeds diagonally into the last two factors of Ẽ. This

embedding maps C(p) into F , it follows that the map G̃(Q) → Ẽ → E factors

through G(Q) ' G̃(Q)/C(p). This shows that the exact sequence

1 → Z → E → G(A) → 1

splits over G(Q). By Theorem 5.19 it follows that |Z| ≤ 2. Thus ker(µ) con-

tains the subgroup in C(p) of index 2, and the proof is complete.

From the Theorem 5.20 and Corollary 5.12 we can now formulate what one

could call our main theorem, or punchline, of this part of the thesis.

Corollary 5.21. There exists a finitely presented, Frobenius stable group, which
is not Frobenius approximable.





Part III

Global approximate representations





Chapter 6

Inverse theorem for the uniformity

norm

We now turn our attention from the local to the global picture. In this chap-

ter, specifically, we shall consider a rather weak notion of global approximate

representations connected to the uniformity norm, more precisely the U2-norm.

The uniformity norm of complex-valued maps on finite abelian groups were in-

troduced by Gowers in his work on arithmetic progressions [34, 35] and later

generalized by Gowers and Hatami [36] to cover maps from a finite (possibly

non-abelian) group into the n × n-matrices. There are Uk-norms for all k ∈ N,

but in the following discussion we content ourselves with k = 2. The definition

is as follows.

Definition 6.1. Let Γ be a finite group and let n ∈ N. For a map ϕ : Γ → Mn(C)
we define the uniformity norm as

‖ϕ‖4U2 =
1

|Γ|3
∑

xy−1zw−1=1Γ

tr(ϕ(x)ϕ(y)∗ϕ(z)ϕ(w)∗).

Here tr is the canonical normalized trace on Mn(C) (see Example 2.15).

The third power in the denominator on the right hand side normalizes the norm

so that all representations of Γ have uniformity norm 1. The 4’th power on the

left hand side is there so that ‖·‖U2 is actually a norm. That this is true is not

evident from the definition although not hard to prove either, but, as we shall not

make use of this fact, we shall not prove it.

Let us explain why the uniformity norm is relevant to the topic of approxi-

mate representations. For a finite group Γ, one observes that if ϕ : Γ → Mn(C)
is a map such that ‖ϕ(x)‖op ≤ 1, for all x ∈ Γ, then the statement ‖ϕ‖4U2 ≥ 1−ε

67
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for some ε ∈ [0, 1] is equivalent to the statement

1

|Γ|3
∑

xy−1zw−1=1Γ

‖1n − ϕ(x)ϕ(y)∗ϕ(z)ϕ(w)∗‖22,tr ≤ 2ε.

In other words, if ‖ϕ‖U2 is “big” (meaning close to 1) if and only if the relation

xy−1zw−1 = 1Γ is preserved by the map ϕ on average, up to a small error. In

particular, if ϕ(xy) = ϕ(x)ϕ(y) for “most” x, y ∈ Γ, then ‖ϕ‖U2 is big. Another

typical situation where ‖ϕ‖U2 is big is if ϕ is correlated to a representation, in

the sense of the following proposition (see [36] for a proof).

Proposition 6.2. Let n ∈ N and c ∈ [0, 1]. Let Γ be a finite group and con-
sider a map ϕ : Γ → Mn(C), such that ‖ϕ(x)‖op ≤ 1. Assume that there is a
representation π : Γ → Mn(C) such that

∣∣∣ 1

|Γ|
∑

x∈Γ
tr(ϕ(x)π(x)∗)

∣∣∣ ≥ c.

Then ‖ϕ‖U2 ≥ c.

We are interested in the inverse statement of the above proposition; given a

map ϕ with big uniformity norm, we want to prove that there exists a represen-

tation π which is correlated to ϕ. In general, this is too much to hope for, so we

have to accommodate the statement a little. The idea is to allow the dimension of

π to differ slightly from the dimension of ϕ. The first version of such an inverse

theorem for matrix-valued functions was proven by Gowers and Hatami.

Theorem 6.3 (Gowers-Hatami, [36]). Let c ∈ (0, 1], let Γ be a finite group, let
n ∈ N and let ϕ : Γ → Mn(C). Assume that ‖ϕ(x)‖op ≤ 1 and ‖ϕ‖4U2 ≥ c.
Then there are m ∈ [ c

2−c
n, 2−c

c
n], π : Γ → U(m) and maps U, V : Cn → Cm

such that
1

|Γ|
∑

x∈Γ
tr(ϕ(x)V ∗π(x)∗U) ≥ t(c),

where t(c) = max
{

c8

(2−c)8
, c

2

4

}
. Moreover, if n ≤ m, we can take U and V to be

isometries and if n ≥ m we can take U and V to be co-isometries.

Letting ε = 1 − c, this Theorem 6.3 fits in the topic of this thesis as a sta-

bility question. Our notion of approximate representations is now maps with
“big” U2-norm and being “close” to a representation means being correlated
to a representation of roughly the same dimension, twisted by isometries or co-

isometries. Note that if c = 1 then t(c) = 1 and n = m. Thus the conclusion

is
1

|Γ|
∑

x∈Γ
tr(ϕ(x)V ∗π(x)∗U) = 1,
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where U and V are unitaries. It is not too hard to see that this entails that ϕ(x) =
Uπ(x)V ∗ for x ∈ Γ. If c is big, that is, as ε = 1 − c approaches 0, then

t(1− ε) = (1−ε)8

(1+ε)8
= 1−O(ε) and as c approaches 0, then t(c) = c2/4 = O(c2).

The main theorems of this chapter (Theorems 6.4, 6.6 and 6.7) constitute

generalizations of Theorem 6.3 in more ways: we allow for infinite, amenable

groups Γ, we allow the target Mn(C) to be replaced by a general von Neumann

algebra and we accommodate the assumption ‖ϕ‖U2 ≥ c to a more general

setting, involving unitarily invariant, ultraweakly lower semi-continuous norms.

We shall refrain from defining the uniformity norm for an (infinite) amenable

group and write the estimates we need explicitly every time, the reason being

that there is no natural way to define the mean over all quadruples (x, y, z, w)
satisfying xy−1zw−1 = 1Γ for an infinite amenable group. In fact, most of

the time we shall need estimates on two different expressions involving iterated

means.

6.1 The general inverse theorem

We state and prove the very general version of the inverse theorem for c close to

1. The proof is very conceptual; the crux of the proof is to apply the Stinespring

Dilation Theorem (Proposition 2.25) to a certain positive definite map, which is

provided by Proposition 2.26. The rest of the proof is basically repeated appli-

cations of the equations on page 87. The idea to use the Stinespring Dilation

Theorem in connection with global approximate representations is not new; we

draw heavy inspiration from Shtern’s work on uniform ε-representations [63].

For the proof, recall some notation from Chapter 2. For a von Neumann alge-

bra M, we defined M∞ = M⊗̄B(`2(N)) and view M as the corner 1MM∞1M
of M∞. Furthermore, recall that we defined what it means to take the mean of

a bounded map from an amenable group to a von Neumann algebra (see Section

2.3). As mentioned, proof uses a lot of equations from Chapters 1 and 2. For

convenience, we compiled all that we need in a list on page 87. The usage of

an equation will be indicated by the corresponding letter to the right of the place

where it is used.

Theorem 6.4. Let ε ≥ 0, let Γ be a countable, amenable group with a bi-
invariant, symmetric mean E, let M be a von Neumann algebra and let ‖·‖
be a unitarily invariant, ultraweakly lower semi-continuous norm on M∞. Let
ϕ : Γ → M be any map and assume that ‖ϕ(x)‖op ≤ 1 for all x ∈ Γ and that

ExEyEz‖1M − ϕ(x)ϕ(y)∗ϕ(yz)ϕ(xz)∗‖ ≤ ε,

ExEyEz‖1M − ϕ(xy)ϕ(y)∗ϕ(z)ϕ(xz)∗‖ ≤ ε.
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Then there exists a projection P ∈ M∞, partial isometries U, V ∈ PM∞1M
and a representation ρ : Γ → U(PM∞P ) such that

Ex‖1M − ϕ(x)V ∗ρ(x)∗U‖ ≤ 44ε,

and

‖1M − U∗U‖ ≤ 20ε, ‖P − UU∗‖ ≤ 15ε, ‖P − V V ∗‖ ≤ 85ε.

Proof. Define ϕ̃ : Γ → M by

ϕ̃(x) = Eyϕ(xy)ϕ(y)
∗,

for x ∈ Γ, which is positive definite by Proposition 2.26. Thus, by Proposition

2.25, there exists a unitary representation π : Γ → U(M∞) together with U ∈
M∞1M with ‖U‖op ≤ 1 such that

ϕ̃(x) = U∗π(x)U,

for x ∈ Γ. Define V = Exπ(x)
∗Uϕ(x) ∈ M∞1M and

A = Exπ(x)UU
∗π(x)∗ = Exπ(x)

∗UU∗π(x),

where the last equality uses symmetry of the mean. Evidently A commutes with

π(y) for any y ∈ Γ, that is, A ∈ π(Γ)′. Also, since 0 ≤ UU∗ ≤ 1M∞
, it easily

follows that 0 ≤ A ≤ 1M∞
. We see that

Ex‖1M − ϕ(x)V ∗π(x)∗U‖
= Ex‖Ey(1M − ϕ(x)ϕ(y)∗U∗π(yx−1)U)‖
≤ ExEy‖1M − ϕ(x)ϕ(y)∗U∗π(yx−1)U‖ (k)

= ExEy‖1M − ϕ(x)ϕ(y)∗ϕ̃(yx−1)‖
= ExEy‖Ez(1M − ϕ(x)ϕ(y)∗ϕ(yx−1z)ϕ(z)∗)‖
≤ ExEyEz‖1M − ϕ(x)ϕ(y)∗ϕ(yx−1z)ϕ(z)∗‖ (k)

= ExEyEz‖1M − ϕ(x)ϕ(y)∗ϕ(yz)ϕ(xz)∗‖ ≤ ε. (a)

Thus, U and V satisfy the desired inequality, but they need not be partial isome-

tries and we have a priori no control over their range projections. In order to

correct for that, we start by noting that

‖U∗(1M∞
− A)U‖ ≤ Ex‖U∗U − U∗π(x)UU∗π(x)∗U‖ (k)

= Ex‖U∗U − ϕ̃(x)ϕ̃(x)∗‖
≤ Ex‖1M − ϕ̃(x)ϕ̃(x)∗‖ (h)

≤ ExEyEz‖1M − ϕ(xy)ϕ(y)∗ϕ(z)ϕ(xz)∗‖ ≤ ε. (k)
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Since π(x) and (1M∞
− A)1/2 commute, it follows that

‖A− A2‖ = ‖(1M∞
− A)1/2A(1M∞

− A)1/2‖
≤ Ex‖(1M∞

− A)1/2π(x)UU∗π(x)∗(1M∞
− A)1/2‖ (k)

= Ex‖π(x)(1M∞
− A)1/2UU∗(1M∞

− A)1/2π(x)∗‖
= ‖(1M∞

− A)1/2UU∗(1M∞
− A)1/2‖ (d)

= ‖U∗(1M∞
− A)U‖ ≤ ε. (g)

Now, let P = χ[1/2,1](A), which is a projection in the commutant π(Γ)′, so the

map ρ : Γ → U(PM∞P ) given by ρ(x) = Pπ(x)P is a representation. Since

|χ[1/2,1](t)− t| ≤ 2(t− t2) for all t ∈ [0, 1], we have that

‖P − A‖ ≤ 2‖A− A2‖ ≤ 2ε. (h)

Letting P⊥ = 1M∞
− P , we see that, for all x ∈ Γ, it follows that

‖V ∗P⊥π(x)∗P⊥U‖
≤ Ey‖ϕ(y)∗U∗P⊥π(yx−1)P⊥U‖ (k)

≤ Ey‖U∗P⊥π(yx−1)P⊥U‖ (e)

≤ 1

2
(Ey‖π(y)∗P⊥UU∗P⊥π(y)‖+ ‖π(x)∗P⊥UU∗P⊥π(x)‖) (j)

= ‖P⊥UU∗P⊥‖ (d)

= ‖U∗P⊥U‖ (g)

≤ ‖U∗(1M∞
− A)U‖+ ‖U∗(A− P )U‖ ≤ ε+ 2ε = 3ε. (c)

Since π(x) = ρ(x) + P⊥π(x)P⊥ for x ∈ Γ, we get that

Ex‖1M − ϕ(x)V ∗ρ(x)∗U‖ ≤ Ex‖1M − ϕ(x)V ∗π(x)∗U‖+ 3ε ≤ 4ε. (c,e)

We define U0 = PU and V0 = PV . These are elements of PM∞1M, but not

necessarily partial isometries. Write the polar decomposition of U0 = S|U0|
and define U1 = Sχ[1/2,1](|U0|). By Lemma 2.10, it follows that U1 is a partial

isometry, and we calculate

‖U1 − U0‖ ≤ ‖χ[1/2,1](|U0|)− |U0|‖ (e)

≤ 2‖|U0| − |U0|2‖ (h)

≤ 2‖1M − U∗PU‖ (h)

≤ 2‖1M − U∗AU‖+ 4ε (c)

≤ 2Ex‖1M − ϕ̃(x)ϕ̃(x)∗‖+ 4ε ≤ 6ε. (k)
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This, in turn, allows us to estimate the following,

Ex‖1M − ϕ(x)V ∗
0 ρ(x)

∗U1‖ ≤ Ex‖1M − ϕ(x)V ∗
0 ρ(x)U0‖+ 6ε ≤ 10ε, (c,e)

whence we conclude

‖1M − U∗
1U1‖ ≤ 2Ex‖1M − ϕ(x)V ∗

0 ρ(x)
∗U1‖ ≤ 20ε. (i,k)

We proceed by estimating

‖P − U0U
∗
0‖ = ‖P − PUU∗P‖

= ‖(1M∞
− UU∗)1/2P (1M∞

− UU∗)1/2‖ (g)

≤ ‖(1M∞
− UU∗)1/2A(1M∞

− UU∗)1/2‖+ 2ε (c,e)

≤ Ex‖(1M∞
− UU∗)1/2π(x)∗UU∗π(x)(1M∞

− UU∗)1/2‖+ 2ε (k)

= Ex‖U∗π(x)(1M∞
− UU∗)π(x)∗U‖+ 2ε (g)

= Ex‖U∗U − U∗π(x)UU∗π(x)∗U‖+ 2ε

≤ Ex‖1M − ϕ̃(x)ϕ̃(x)∗‖+ 2ε ≤ 3ε, (h)

and, combining the above estimates, we get that

‖P − U1U
∗
1‖ ≤ ‖P − U0U

∗
0‖+ ‖(U0 − U1)U

∗
0‖+ ‖U1(U0 − U1)

∗‖ (c)

≤ ‖P − U0U
∗
0‖+ 6ε+ 6ε ≤ 15ε. (e,f)

Now, in a similar fashion as above, we use the polar decomposition of V ∗
0 =

T |V ∗
0 | to define V ∗

1 = Tχ[1/2,1](|V ∗
0 |) and get a partial isometry. Then V1 is a

partial isometry as well, and it holds that

‖P − V0V
∗
0 ‖ = Ex‖P − ρ(x)V0V

∗
0 ρ(x)

∗‖ (d)

≤ Ex‖U0U
∗
0 − U0U

∗
0ρ(x)V0V

∗
0 ρ(x)

∗U0U
∗
0‖+ 9ε (c)

≤ Ex‖1M − U∗
0ρ(x)V0V

∗
0 ρ(x)

∗U0‖+ 9ε (e)

≤ 2Ex‖1M − ϕ(x)V ∗
0 ρ(x)

∗U0‖+ 9ε (i)

≤ 17ε.

This entails that

‖V1 − V0‖ ≤ 2‖|V ∗
0 | − |V ∗

0 |2‖ ≤ 2‖P − V0V
∗
0 ‖ ≤ 34ε, (e,h)

and it follows that

‖P − V1V
∗
1 ‖ ≤ ‖P − V0V

∗
0 ‖+ 68ε ≤ 85ε. (c,e)

Finally, we conclude that

Ex‖1M − ϕ(x)V ∗
1 ρ(x)

∗U1‖
≤ Ex‖1M − ϕ(x)V ∗

0 ρ(x)
∗U0‖+ 6ε+ 34ε ≤ 44ε. (c,e)

Now the proof is complete by renaming U1 and V1 to U and V .
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Remark 6.5. We note for later use that if one does not require V to be a partial

isometry, then we can end the above proof earlier and get the better estimate

Ex‖1M − ϕ(x)V ∗ρ(x)∗U‖ ≤ 10ε.

Also note that it follows from the estimates that

Ex‖ρ(x)− Uϕ(x)V ∗‖ = Ex‖P − Uϕ(x)V ∗ρ(x)∗‖ (d)

≤ Ex‖UU∗ − Uϕ(x)V ∗ρ(x)∗UU∗‖+ 30ε (c)

≤ Ex‖1M − ϕ(x)V ∗ρ(x)∗U‖+ 30ε ≤ 74ε. (e)

In other words, after twisting ϕ by U and V , it is approximated on average by ρ.

6.2 The inverse theorem for the normalized

Hilbert-Schmidt norm

We shall now concentrate on 2-norm of some suitable normal trace τ on M∞.

In this case, our Theorem 6.4 subsumes Theorem 6.3, at least if ε = 1 − c
is sufficiently small. For general c we will have to accommodate the proof,

although it will go along the same line of reasoning. Note that the following

theorems not only generalize the statement of Theorem 6.3; they also provide

a conceptual proof using operator algebras which differs from the one provided

in [36]. The estimates, however, are different than the ones in Theorem 6.3; in

Theorem 6.6 they are worse, that is, O(ε1/2) instead of O(ε) for ε → 0, and in

Theorem 6.7 they are better, O(c) instead of O(c2) for c→ 0.

Theorem 6.6. Let ε > 0, let Γ be a countable, amenable group with a symmet-
ric, bi-invariant mean E and let M be a von Neumann algebra with a faithful,
normal trace τ on M∞ such that τ(1M) = 1. Furthermore, let ϕ : Γ → M be
a map with ‖ϕ(x)‖op ≤ 1 for all x ∈ Γ. Assume that

ExEyEzτ(ϕ(x)ϕ(y)
∗ϕ(yz)ϕ(xz)∗) ≥ 1− ε,

ExEyEzτ(ϕ(xy)ϕ(y)
∗ϕ(z)ϕ(xz)∗) ≥ 1− ε.

Then there exist a projection P ∈ M∞, partial isometries U, V ∈ PM∞1M
and a representation ρ : Γ → U(PM∞P ) satisfying

Exτ(ϕ(x)V
∗ρ(x)∗U) ≥ 1− 63ε1/2,

and the following inequalities ‖1M−U∗U‖2,τ ≤ 29ε1/2, ‖P−UU∗‖2,τ ≤ 22ε1/2

and ‖P − V V ∗‖2,τ ≤ 121ε1/2.
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Proof. Since τ is normal, the 2-norm is an ultraweakly lower semi-continuous,

unitarily invariant norm on M∞. By the Cauchy-Schwarz inequality applied to

E, it follows that

ExEyEz‖1M − ϕ(x)ϕ(y)∗ϕ(yz)ϕ(xz)∗‖2,τ
≤ (ExEyEz(‖1M − ϕ(x)ϕ(y)∗ϕ(yz)ϕ(xz)∗‖22,τ ))1/2

≤ (ExEyEz(2− 2Re τ(ϕ(x)ϕ(y)∗ϕ(yz)ϕ(xz)∗))1/2 ≤ (2ε)1/2.

In a similar fashion, we get

ExEyEz‖1M − ϕ(xy)ϕ(y)∗ϕ(z)ϕ(xz)∗‖2,τ ≤ (2ε)1/2.

Hence, from Theorem 6.4 there exist a projection P ∈ M∞ and partial isome-

tries U, V ∈ PM∞1M together with a representation ρ : Γ → U(PM∞P ) such

that

‖1M − Exϕ(x)V
∗ρ(x)∗U‖2,τ ≤ Ex‖1M − ϕ(x)V ∗ρ(x)∗U‖2,τ (k)

≤ 44(2ε)1/2,

and, moreover, ‖1M − U∗U‖2,τ ≤ 20(2ε)1/2, ‖P − UU∗‖2,τ ≤ 15(2ε)1/2 and

‖P−V V ∗‖2,τ ≤ 85(2ε)1/2. It now follows from the Cauchy-Schwarz inequality

that
∣∣∣1− |τ(Exϕ(x)V

∗ρ(x)∗U)|
∣∣∣ ≤ |1− τ(Exϕ(x)V

∗ρ(x)∗U)
∣∣

= |τ(1M · (1M − Exϕ(x)V
∗ρ(x)∗U))|

≤ ‖1M‖2,τ‖1M − Exϕ(x)V
∗ρ(x)∗U‖2,τ

≤ 44(2ε)1/2.

By multiplying U with a complex number of modulus 1, we can assume that

τ(Exϕ(x)V
∗ρ(x)∗U) ≥ 0 so we get the desired inequality:

τ(Exϕ(x)V
∗ρ(x)∗U) > 1− 44(2ε)1/2 > 1− 63ε1/2.

There are various comments that are appropriate to make about this theo-

rem. We start out by one of the technical sort. One might wonder whether the

expressions

ExEyEzτ(ϕ(x)ϕ(y)
∗ϕ(yz)ϕ(xz)∗), ExEyEzτ(ϕ(xy)ϕ(y)

∗ϕ(z)ϕ(xz)∗)

define non-negative real numbers, as it would otherwise be appropriate to take

the real part. As it turns out, this is indeed the case. To prove it for the first

expression, note that

τ(ϕ(x)ϕ(y)∗ϕ(yz)ϕ(xz)∗) = τ(ϕ(y)∗ϕ(yz)ϕ(xz)∗ϕ(x))
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by the trace property. Now, one can prove that K : Γ× Γ → M given by

K(x, y) = Ezϕ(y)
∗ϕ(yz)ϕ(xz)∗ϕ(x)

is a positive definite operator-valued kernel using the same line of reasoning as in

Proposition 2.26. It follows that the composition τ ◦K : Γ×Γ → C is a positive

definite kernel as well. Using the representation theorem for positive definite

kernels (Theorem 2.28), there exists a Hilbert space valued function α : Γ → H
such that for all x, y ∈ Γ, we have (τ ◦ K)(x, y) = 〈α(x), α(y)〉 and we can

conclude that

ExEyEzτ(ϕ(x)ϕ(y)
∗ϕ(yz)ϕ(xz)∗)

= ExEyEzτ(ϕ(y)
∗ϕ(yz)ϕ(xz)∗ϕ(x)))

= ExEy((τ ◦K)(x, y)) = ExEy〈α(x), α(y)〉 = 〈Exα(x),Eyα(y)〉 ≥ 0.

The proof for the second expression is almost immediate, since

ExEyEzτ(ϕ(xy)ϕ(y)
∗ϕ(z)ϕ(xz)∗)

= Exτ(Ey(ϕ(xy)ϕ(y)
∗)(Ez(ϕ(xz)ϕ(z)

∗))∗) ≥ 0.

Here we used that τ is assumed to be normal and thus commutes with the mean.

For convenience we assume τ to be defined on all of M∞ (so that expres-

sions like ‖P − UU∗‖2,τ make sense), but any normal tracial state τ ′ on M
extends canonically to M∞ by τ = τ ′ ⊗ Tr, where Tr is the canonical trace

on B(H ). It is also worth noting that τ will never be finite on M∞, which is

a reason why we insist on letting our norms take the value ∞. One could fix

this by only working with finite inflations M⊗̄Mn(C), but this seems like an

unnatural and unneccesary extra technicality to impose. Note also that the trace

is automatically semifinite by the assumption τ(1M) = 1.

As mentioned, the above theorem is only a generalization of Theorem 6.3 if ε
is small enough. For instance, if ε ≥ 1

3969
then 1− 63ε1/2 ≤ 0 and the inequality

∣∣∣Exτ(ϕ(x)V
∗ρ(x)∗U)

∣∣∣ ≥ 1− 63ε1/2

is trivially satisfied for any choice of ρ, U and V , so the conclusion is virtually an

empty statement. The next theorem will be an appropriate variant for ε = 1− c
in the interval [3968

3969
, 1). The theorem is specific for the trace and we cannot use

Theorem 6.4. The proof, however, is similar and even a bit shorter. Note that in

this case we need less assumptions; we only assume one inequality and that the

lower bound c
2

is bigger than Gowers and Hatami’s bound, which is c2

4
.
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Theorem 6.7. Let c ∈ (0, 1], let Γ be a countable, amenable group with left-
invariant mean E, let M be a von Neumann algebra and let τ be a normal trace
on M∞ such that τ(1M) = 1. Let ϕ : Γ → M be a map with ‖ϕ(x)‖op ≤ 1 for
all x ∈ Γ. Assume that

ExEyEzτ(ϕ(x)ϕ(y)
∗ϕ(yz)ϕ(xz)∗) ≥ c.

Then there exists a projection P ∈ M∞, partial isometries U, V ∈ PM∞1M
and a representation ρ : Γ → U(PM∞P ) such that

Exτ(ϕ(x)V
∗ρ(x)∗U) ≥ c

2
,

c

2
≤ τ(UU∗) ≤ τ(P ) ≤ 2

c
,

c

2
≤ τ(V V ∗) ≤ τ(P ) ≤ 2

c
.

Proof. The proof begins as that of Theorem 6.4. Define the positive definite

ϕ̃(x) = Eyϕ(xy)ϕ(y)
∗, for x ∈ Γ, and use Proposition 2.25 to determine U ∈

M∞1M and a representation π : Γ → M∞ such that ϕ̃(x) = U∗π(x)U . Let

V = Exπ(x)
∗Uϕ(x) ∈ M∞1M. Now the proof diverges a little from the previ-

ous, as we letA = Exπ(x)V V
∗π(x)∗. This is a positive element of M∞, and we

can define P = χ[c/2,1](A
1/2). Since A lies in the commutant π(Γ)′, so does P ,

and therefore ρ : Γ → U(PM∞P ) given by ρ(x) = Pπ(x)P for x ∈ Γ is a rep-

resentation. We have that ‖A1/2‖2op = ‖A‖op ≤ ‖V ‖2op ≤ ‖U‖2op = ‖ϕ̃(1)‖ ≤ 1
and by the Cauchy-Schwarz inequality

τ(A1/2)2 ≤ τ(A)τ(1M) = τ(V V ∗) = τ(V ∗V ) ≤ τ(1M) = 1.

Thus, by the inequality χ[c/2,1](t) ≤ 2
c
t for t ∈ [0, 1], we have

τ(P ) ≤ 2

c
τ(A1/2) ≤ 2

c
.

Similarly, letting P⊥ = 1M∞
−P , we use the inequality t2(1−χ[c/2,1](t)) ≤ c

2
t,

for t ∈ [0, 1], to get

τ(AP⊥) ≤ c

2
τ(A1/2) ≤ c

2
.

Since τ is normal and thus commutes with the mean, we conclude

Exτ(ϕ(x)V
∗P⊥π(x)∗U) = Exτ(π(x)

∗Uϕ(x)V ∗P⊥)

= τ(V V ∗P⊥) = Eyτ(π(y)V V
∗P⊥π(y)∗)

= Eyτ(π(y)V V
∗π(y)∗P⊥) = τ(AP⊥) ≤ c

2
.
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Furthermore, we have that

Exτ(ϕ(x)V
∗π(x)∗U) = ExEyτ(ϕ(x)ϕ(y)

∗U∗π(yx−1)U)

= ExEyτ(ϕ(x)ϕ(y)
∗ϕ̃(yx−1))

= ExEyEzτ(ϕ(x)ϕ(y)
∗ϕ(yx−1z)ϕ(z)∗)

= ExEyEzτ(ϕ(x)ϕ(y)
∗ϕ(yz)ϕ(xz)∗) ≥ c,

so we conclude

Exτ(ϕ(x)V
∗ρ(x)∗U) = Exτ(ϕ(x)V

∗π(x)∗PU)

= Exτ(ϕ(x)V
∗π(x)∗U)− Exτ(ϕ(x)V

∗π(x)∗P⊥U)

≥ c− c

2
=
c

2
.

As in the proof of Theorem 6.4, note that U and V are not partial isometries and

they also fail to map into the right Hilbert space, so we have to correct for that.

The latter problem is again solved by replacing U and V with U0 = PU and

V0 = PV which both lie in PM∞1M. Of course, since ρ(x) = Pρ(x)P , we

still have

Exτ(ϕ(x)V
∗
0 ρ(x)

∗U0) = Exτ(ϕ(x)V
∗ρ(x)∗U) ≥ c

2
.

Now since ‖U0‖op, ‖V0‖op ≤ 1, by Lemma 2.11 there are partial isometries

U1, U2, V1, V2 ∈ PM∞1M such that U0 = 1
2
(U1 + U2) and V0 = 1

2
(V1 + V2)

Thus, there must be at least one combination of partial isometries, say, U1 and

V1 such that ∣∣Exτ(ϕ(x)V
∗
1 ρ(x)

∗U1)
∣∣ ≥ c

2
.

By multiplying U1 with a complex number of modulus 1, we can assume

Exτ(ϕ(x)V
∗
1 ρ(x)

∗U1) ≥
c

2
.

Let B = Exϕ(x)V
∗
1 ρ(x)

∗. Then ‖B‖op ≤ 1, so BB∗ ≤ 1M, and hence

τ(BB∗) ≤ 1, which gives us

τ(U1U
∗
1 ) ≥ τ(BB∗)τ(U∗

1U1) ≥ |τ(BU1)| = Exτ(ϕ(x)V
∗
1 ρ(x)

∗U1) ≥
c

2
.

A similar calculation gives us that τ(V1V
∗
1 ) ≥ c

2
, and the proof is complete with

U1 and V1 as U and V .





Chapter 7

Stability results for uniform

ε-representations

This chapter is devoted to the notion of a uniform ε-representation which is a

global notion of an approximate representation. We review earlier results on

uniform ε-representations and use Theorem 6.4 to prove Theorem 7.7, which is

a stability theorem uniform ε-representations of amenable groups. In the context

of uniform ε-representations, we sometimes talk about Ulam stability or strong
Ulam stability since the stability question goes back to Ulam [70] in this setting.

7.1 Uniform ε-representations

We start out by the central definition.

Definition 7.1. Let ε ≥ 0, let Γ be a group and let (G, d) be a metric group. A

uniform ε-homomorphism is a map ϕ : Γ → G such that

d(ϕ(xy), ϕ(x)ϕ(y)) ≤ ε,

for all x, y ∈ Γ.

The above definition coincides with what we called an (ε, F )-approximate

homomorphism in the special case where F = Γ (see Definition 4.15). As

usual, we talk about uniform ε-representations if G ⊆ U(H ). Stability ques-

tions for uniform ε-representations have been studied in different settings with

respect to different norms. Grove, Karcher and Ruh [38] and later Kazhdan [45]

investigated this question for the operator norm. The result of Kazhdan reads as

follows.

79
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Theorem 7.2. Let 0 ≤ ε ≤ 1
200

, let Γ be a countable, amenable group and let
H be a Hilbert space. Let ϕ : Γ → U(H ) be an ε-representation with respect
to the operator norm. Then there exists a representation π : Γ → U(H ) such
that

‖ϕ(x)− π(x)‖op ≤ 2ε, x ∈ Γ.

This theorem answers the stability question for amenable groups and the

operator norm in a very clean way; the 2ε-bound in the conclusion is the same

for all amenable groups and all Hilbert spaces. On the other hand, for many

non-amenable groups there are more or less explicit constructions of non-trivial

ε-representations, i.e. ε-representations are not close in the operator norm to any

genuine representations. The prime example being one of Rolli. Recall that F2

denotes the free group on two generators.

Theorem 7.3 ([59]). For every ε > 0 there exists a uniform ε-representation
ϕ : F2 → U(1), such that for all representations π : F2 → U(1) there is x ∈ Γ
such that

‖ϕ(x)− π(x)‖op ≥ 1.

Burger, Ozawa and Thom later used this to prove non-stability of many non-

amenable groups.

Theorem 7.4 ([13]). Let Γ be a group and assume that F2 ⊆ Γ is a subgroup.
For all ε > 0 there exists a uniform ε-representation ϕ : Γ → U(H ) on some
Hilbert space H such that for all representations π : Γ → U(H ) there is x ∈ Γ
such that

‖ϕ(x)− π(x)‖op ≥ 1

10
.

They actually show a similar result for a slightly larger class of non-amenable

groups. It remains open whether all non-amenable groups have non-trivial uni-

form ε-representations. Now, we turn our attention uniform ε-representations

with respect to the 2-norm coming from a normal faithful trace on a von Neu-

mann algebra. First thing to note is that if M = Mn(C) with normalized trace

tr = trn and we consider the Hilbert-Schmidt norm ‖·‖2,tr, then the inequal-

ities ‖·‖2,tr ≤ ‖·‖op ≤ √
n‖·‖2,tr together with Theorem 7.2 show that all ε-

representations ϕ : Γ → U(n) from an amenable group Γ are 2
√
nε-close to a

genuine representation. This estimate, however, depends on the dimension n of

the Hilbert space and the argument does not work if M is infinite dimensional.

This begs the question: is it possible to prove a “dimension independent” stabil-

ity theorem for ε-representations of amenable groups with respect to the 2-norm?

At first, the answer seems to be “no”, as we run into some difficulties illustrated

by the following example.
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Example 7.5. Let 0 < ε < 1
2
, let Γ be a countable, amenable group with bi-

invariant mean E and let M be a factor with a faithful normal tracial state τ .

Assume that there is an representation π : Γ → U(M), such that ϕ(Γ)′′ = M,

and let P ∈ M be a projection with τ(P ) = 1 − ε2. Define ϕ : Γ → PMP by

ϕ(x) = Pπ(x)P . It is easy to see that

‖ϕ(xy)− ϕ(x)ϕ(y)‖2,τ ≤ ‖1M − P‖2,τ = ε,

so ϕ is an ε-representation. Now assume that there exists ρ : Γ → U(PMP )
such that ‖ϕ(x)−ρ(x)‖ ≤ 1

2
. Define T = Exρ(x)π(x)

∗ ∈ PM. One checks that

ρ(y)T = Tπ(y) for all y ∈ Γ and that ‖1M − T‖2,τ ≤ 2‖1M − P‖2,τ < 1. The

last shows, in particular that T is non-zero, but since π is a factor representation

this means that ρ and π are unitarily equivalent. In particular P = 1M which is

impossible as we assumed ε > 0. (Note that ϕ does not take unitary values and

‖·‖2,τ is not normalized on PMP , but both can be corrected for by taking the

unitary part of ϕ(x) for all x and replacing ‖·‖2,τ by 1
1−ε2

‖·‖2,τ .)

The above example shows that if Γ is amenable and either

• Γ has finite dimensional representations of arbitrarily high dimension, or

• Γ has a representation generating a (necessarily hyperfinite) II1-factor,

then there are non-trivial uniform ε-representations of Γ for all ε > 0. It also

shows that even if we restrict our attention to the class of finite groups, there is

no hope to get a stability result à la Theorem 7.2 since there are finite groups

with irreducible representations of arbitrarily high dimension. The heart of the

problem is that ‖·‖2,τ is insensible to small dimensional perturbations like cut-

down by a projection P with big trace. But, as it turns out, this is the only

problem. As soon as we allow the approximating representation to live on a

slightly larger Hilbert space, we can use Theorem 6.4 to prove a stability result

that holds in broad generality. This strategy was already used in [36] to prove a

stability result for the class of finite groups and M = Mn(C) and the proof is

basically the same in the more general case.

7.2 The stability theorem

The proof actually works for a slightly larger class of maps.

Definition 7.6. Let ε ≥ 0, let Γ be an amenable group with bi-invariant mean

E, and let (G, d) be a metric group. A map ϕ : Γ → G is called a mean ε-homo-
morphism if for all x ∈ Γ

Eyd(ϕ(xy), ϕ(x)ϕ(y)) ≤ ε.
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Note that the notion of a mean ε-homomorphism also covers the case of

maps from a finite group to a discrete group which satisfy for all x ∈ Γ that the

equality ϕ(xy) = ϕ(x)ϕ(y) holds for “most” y. Again we use the terminology

a mean ε-representation if the group G consists of operators.

Theorem 7.7. Let ε > 0, let Γ be a countable, amenable group with bi-invariant
mean E, let M be a von Neumann algebra and let ‖·‖ be a unitarily invariant,
ultraweakly lower semi-continuous norm on M∞. Let ϕ : Γ → U(M) be a
mean ε-representation with respect to ‖·‖. Then there is a projection P ∈ M∞,
a partial isometry U ∈ PM∞1M and a representation ρ : Γ → U(PM∞P )
such that

‖ϕ(x)− U∗ρ(x)U‖ ≤ 71ε,

for all x ∈ Γ, and

‖1M − U∗U‖ ≤ 40ε, ‖P − UU∗‖ ≤ 30ε.

Proof. We show that ϕ satisfies the conditions of Theorem 6.4 with 2ε instead

of ε. Indeed,

ExEyEz‖1M − ϕ(x)ϕ(y)∗ϕ(yz)ϕ(xz)∗‖
≤ ExEyEz

(
‖1M − ϕ(xy−1)ϕ(yz)ϕ(xz)∗‖

+ ‖(ϕ(xy−1)− ϕ(x)ϕ(y)∗)ϕ(xy)ϕ(xz)∗‖
)

(c)

≤ ExEyEz‖1M − ϕ(xy−1)ϕ(yz)ϕ(xz)∗‖+ ε (d,a)

≤ ExEyEz‖ϕ(xz)− ϕ(xy−1)ϕ(yz)‖+ ε (d)

= ExEyEz‖ϕ(xz)− ϕ(x)ϕ(z)‖+ ε ≤ 2ε (a)

and, in a similar fashion, we get that

ExEyEz‖1M − ϕ(xy)ϕ(y)∗ϕ(z)ϕ(xz)∗‖
≤ ExEyEz

(
‖1M − ϕ(x)ϕ(z)ϕ(xz)∗‖

+ ‖(ϕ(x)− ϕ(xy)ϕ(y)∗)ϕ(z)ϕ(xz)∗‖
)

(c,d)

≤ 2ε.

It follows from Remark 6.5 that there are a projection P ∈ M∞, operators

U, V ∈ PM∞1M, such that U is a partial isometry and ‖V ‖op ≤ 1, and a

representation ρ : Γ → U(PM∞P ) so that

‖1M − Exϕ(x)V
∗ρ(x)∗U‖ ≤ Ex‖1M − ϕ(x)V ∗ρ(x)∗U‖ ≤ 20ε (k)
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and

‖1M − U∗U‖ ≤ 40ε, ‖P − UU∗‖ ≤ 30ε.

From this, we derive the desired estimate:

‖ϕ(x)− U∗ρ(x)U‖
≤ ‖ϕ(x)Eyϕ(y)V

∗ρ(y)∗U − U∗ρ(x)U‖+ 20ε (c,d)

≤ Ey‖ϕ(x)ϕ(y)V ∗ρ(y)∗U − U∗ρ(x)U‖+ 20ε (k)

≤ Ey‖ϕ(xy)V ∗ρ(y)∗U − U∗ρ(x)U‖+ 21ε (c,e)

= Ey‖ϕ(y)V ∗ρ(x−1y)∗U − U∗ρ(g)U‖+ 21ε (a)

≤ Ey‖ϕ(y)V ∗ρ(y)∗UU∗ρ(x)U − U∗ρ(x)U‖+ 51ε (c,e)

≤ 20ε+ 51ε = 71ε.

This theorem is quite general in its setting and the statement subsumes The-

orem 7.2. Indeed, if M = B(H ) and ‖·‖ = ‖·‖op then for ε < 1
40

it fol-

lows that U is actually a unitary (between H and the image of P ) and the map

x 7→ U∗ρ(x)U is a representation on H which approximates ϕ, so we recover

Theorem 7.2. Furthermore, we recover a stability result of Gowers and Hatami

[36] about the 2-norm.

Theorem 7.8. Let ε > 0, let Γ a countable, amenable group and let ϕ : Γ →
U(n) be a mean ε-representation with respect to the normalized Hilbert-Schmidt
norm. Then there is m ∈ [n, (1 + 2500ε2)n], an isometry V : Cn → Cm and a
representation ρ : Γ → U(m), such that

‖ϕ(x)− V ∗ρ(x)V ‖2,tr ≤ 211ε,

for all x ∈ Γ.

Proof. Let M = Mn(C) and let ‖·‖ be the 2-norm on M∞ ' B(`2(N)), nor-

malized in such a way that ‖1M‖ = 1. We note that the inequalities

‖1M − U∗U‖ ≤ 40ε and ‖P − UU∗‖ ≤ 30ε

translate into

| rank(P )− rank(1M)| ≤ (402 + 302)ε2n = 2500ε2n.

First assume rank(P ) ≥ rank(1M). We let Q = P −UU∗ and R = 1M−U∗U .

Since U ∈ PM∞1M is a partial isometry, we can find a partial isometry, say
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U0 ∈ QM∞R, such that V = U +U0 ∈ PM∞1M satisfies V ∗V = 1M, that is,

V is an isometry from 1M(`2(N)) ' Cn into P (`2(N)). It follows that

‖ϕ(x)− V ∗ρ(x)V ‖ ≤ ‖ϕ(x)− U∗ρ(x)U‖+ ‖U∗
0ρ(x)U‖

+ ‖U∗ρ(x)U0‖+ ‖U∗
0ρ(x)U0‖

≤ 71ε+ 3‖Q‖ < 161ε,

for x ∈ Γ, and we are done by identifying the image of P with Cm, where

m = rank(P ).
If rank(P ) ≤ rank(1M), we pick any projection P ′ ≥ P with rank(P ′) =

rank(1M) and consider the representation ρ′ : Γ → U(P ′M∞P
′), given by

ρ′(x) = ρ(x)+P ′−P, for x ∈ Γ. As above, we can extend U to V ∈ P ′M∞1M
with V ∗V = 1M. It follows that V is a unitary between the spaces 1M(`2(N))
and P ′(`2(N)) and a calculation similar to the above gives us

‖ϕ(x)− V ∗ρ′(x)V ‖ ≤ ‖ϕ(x)− V ∗ρ(x)V ‖+ ‖(P ′ − P )‖
< (161 +

√
2500)ε = 211ε,

for x ∈ Γ. Identifying the image of P ′ with Cn, we are done.



Further thoughts and open

problems

We end this thesis with some ideas and suggestions for further research.

In the context of Theorem 5.11 it would be interesting to investigate co-

homology vanishing results for other coefficients than Hilbert spaces. It was

pointed out to us (by Tim de Laat via Andreas Thom) that Oppenheim’s gener-

alization [50] of Ballmann and Świątkowski’s techniques can be used to prove

cohomology vanishing with coefficients in M(ω, ‖·‖) where ‖·‖ is the p-norm

on Mn(C) for any p ∈ [1,∞). This result can be used to prove that the group Γ̃
in Theorem 5.20 is not approximable with respect to the unnormalized p-norm

for any p ∈ [1,∞). The operator norm (that is p = ∞), however, remains in-

tractable, and it is unclear to us whether our approach could provide examples

of groups that are not MF, if such groups exist.

Furthermore, we would like to understand the class of Frobenius approx-

imable groups better from the inside. For instance, are all amenable groups

Frobenius approximable? (This is, however, a bold question from somebody

who does not even know if all solvable groups are Frobenius approximable.)

In connection with uniform ε-representations (Theorem 7.7), we would like

to understand the rôle of amenability better. As mentioned (Theorem 7.4), many

non-amenable groups admit non-trivial ε-representations with respect to the op-

erator norm. To the best of our knowledge, it is still open whether this kind of

operator norm-stability (à la Theorem 7.2) really characterizes amenability or

whether stability can be proved for certain non-amenable groups.

We also would like to know whether the estimates in the assumptions of

Theorem 6.4 are both necessary. The iterated means have different values in

general, but it could happen that there is some relationship between the two

expressions. Understanding this better, could possibly provide is with a natural

way of defining the mean over the relation xy−1zw−1 = 1Γ.
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Equation index

Throughout the thesis we make use various basic equations and inequalities from

the introductory Chapters 1 and 2. Especially the proofs in Chapters 6 and 7

make heavy use of these, so we collected these equations for an easy and quick

reference.

(?) ‖ϕ(xy)− ϕ(x)ϕ(y)‖ ≤ ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page v

(a) Eyf(xy) = Eyf(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3

(b) Exf(x
−1) = Exf(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 4

(c) ‖S + T‖ ≤ ‖S‖+ ‖T‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 19

(d) ‖UTV ‖ = ‖T‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 19

(e) ‖RTS‖ ≤ ‖R‖op‖T‖‖S‖op . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 21

(f) ‖T‖ = ‖T ∗‖ = ‖|T |‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 21

(g) ‖T ∗T‖ = ‖TT ∗‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 21

(h) ‖R‖ ≤ ‖S‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 21

(i) max{‖P − S∗S‖, ‖P − T ∗T‖} ≤ 2‖P − S∗T‖ . . . . . . . . . . . . . page 22

(j) ‖S∗T‖ ≤ 1
2
(‖S∗S‖+ ‖T ∗T‖) = 1

2
(‖SS∗‖+ ‖TT ∗‖) . . . . . . . . page 22

(k) ‖Exϕ(x)‖ ≤ Ex‖ϕ(x)‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 27

(l) ‖ϕn(σ(x))− ϕ̃n(x)‖ = O(def(ϕn)) . . . . . . . . . . . . . . . . . . . . . . . . page 49

(m) ‖cn(x, y)‖ = O(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 50

(n) β(1Γ) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 52

(o) β(x) = −ϕω(x)β(x
−1)ϕω(x)

∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 52

(p) c(x, y) = ϕω(x)β(y)ϕω(y)− β(xy)ϕω(xy) + β(x)ϕω(xy) . . . page 52
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