
Run-time Adaptation of Role-based
Software Systems

Dissertation

submitted in partial satisfaction of the requirements
for the academic degree of Doktor-Ingenieur (Dr.-Ing.)

At
Technische Universität Dresden
Faculty of Computer Science

By

M.Sc. Martin Weißbach
Born on 23.09.1989 in Görlitz

First referee
Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill

Second referee
Prof. Nicolás Cardozo

Advisor
Prof. Dr. Thorsten Strufe

Date of Submission
October 25, 2017

Date of Defense
April 6, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236377227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

This thesis was written during my time as PhD student in the research training group
“RoSI – Role-based Software Infrastructures for continuous-context-sensitive Systems”. It
was a privilege and pleasure to have had the opportunity to work within this group for the
past three years in which I was allowed to completely focus on this thesis. I particularly
want to thank my supervisor Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill
for the constant feedback and advice. Furthermore, I would like to thank all members
of the RoSI family for all the fruitful discussions resolving around Roles and for all the
valuable feedback provided during the regular retreats of the group and all the meetings
in between.

I especially want to express my deepest gratitude to Markus Wutzler, Thomas Springer
and Nguonly Taing for all the discussions, feedback, support and their joint efforts in
improving my papers. A special thanks to Ivonne Wittig who read the thesis from cover
to cover several times for correcting all my grammar and spelling mistakes.

Last but not least, I want to thank my family, specifically my mother and my grand-
mother for all their love, support and encouragement.

iii

Abstract

Self-adaptive software systems possess the ability to modify their own structure or be-
havior in response to changes in their operational environment. Access to sensor data
providing information on the monitored environment is a necessary prerequisite in such
software systems. In the future, self-adaptive software systems will be increasingly dis-
tributed and interconnected to perform their assigned tasks, e.g., within smart environ-
ments or as part of autonomous systems. Adaptations of the software systems’ structure
or behavior will therefore have to be performed consistently on multiple remote subsys-
tems.

Current approaches, however, do not completely support the run-time adaptation of
distributed and interconnected software systems. Supported adaptations are local to a
specific device and do not require further coordination or the execution of such adap-
tations is controlled by a centralized management system. Approaches that support
the decentralized adaptation process [15, 16], help to determine a stable state, e.g., de-
fined by quiescence [26], of one adaptable entity without central knowledge ahead of the
actual adaptation process. The execution of complex adaptation scenarios comprising
several adaptations on multiple computational devices is currently not supported. Con-
sequently, inherent properties of a distributed system such as intermittent connectivity
or local adaptation failures pose further challenges on the execution of adaptations af-
fecting system parts deployed to multiple devices. Adaptation operations in the current
research landscape cover different types of changes that can be performed upon a self-
adaptive software system. Simple adaptations allow the modification of bindings between
components [14] or services as well as the removal or creation and integration of such
components or services into the system. Semantically more expressive operations allow
for the relocation of behavioral parts of the system [18].

In this thesis, a coordination protocol is presented that supports the decentralized ex-
ecution of multiple, possibly dependent adaptation operations and ensures a consistent
transition of the software system from its source to a desired target configuration. An
adaptation operation describes exactly one behavioral modification of the system, e.g.,
the addition or replacement of a component representing a behavioral element of the sys-

v

tem’s configuration. We rely on the notion of Roles [28] as an abstraction to define the
software system’s static and dynamic, i.e., context-dependent, parts. Roles are an intu-
itive means to describe behavioral adaptations in distributed, context-dependent software
systems due to their behavioral, relational and context-dependent nature. Adaptation
operations therefore utilize the Role concept to describe the intended run-time modifica-
tions of the software system. The proposed protocol is designed to maintain a consistent
transition of the software system from a given source to a target configuration in the
presence of link failures between remote subsystems, i.e., messages used by the protocol
to coordinate the adaptation process are lost on transmission, and in case of local failures
during the adaptation process.

The evaluation of our approach comprises two aspects: In one step, the correctness of
the coordination protocol is formally validated using the model checking tool PRISM. The
protocol is shown to be deadlock-free even in the presence of coordination message losses
and local adaptation failures. In a second step, the approach is evaluated with the help
of an emulated execution environment in which the degree of coordination message losses
and adaptation failures is varied. The adaptation duration and the partial unavailability
of the system, i.e., the time roles are passive due to ongoing adaptations, is measured
as well as the success rate of the adaptation process for different rates of message losses
and adaptation failures.

vi

List of Publications

The following peer-reviewed publications cover the main contributions of this thesis:

[47] Martin Weissbach. “Adaptation Mechanisms for Role-Based Software Systems.”
In: OTM Workshops 9416.Chapter 1 (2015), pp. 3–4

[49] Martin Weissbach et al. “Decentralized coordination of dynamic software updates
in the Internet of Things.” In: WF-IoT (2016)

[48] Martin Weissbach and Thomas Springer. “Coordinated Execution of Adaptation
Operations in Distributed Role-based Software Systems.” In: SAC 2017: Sympo-
sium on Applied Computing Proceedings. New York, NY, USA: ACM, 2017, pp. 45–
50

[50] Martin Weissbach et al. “Decentrally Coordinated Execution of Adaptations in Dis-
tributed Self-Adaptive Software Systems.” In: 2017 IEEE 11th International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO. IEEE, 2017, pp. 111–
120

The following peer-reviewed publications are closely related but do not immediately
contribute to this thesis:

[21] Tobias Jäkel et al. “Position Paper - Runtime Model for Role-Based Software Sys-
tems.” In: ICAC (2016)

[52] Markus Wutzler, Martin Weissbach, and Thomas Springer. “Role-Based Models
for Building Adaptable Collaborative Smart Service Systems.” In: 2017 IEEE
International Conference on Smart Computing (SMARTCOMP. IEEE, 2017, pp. 1–
6

vii

Contents

1. Introduction 1
1.1. Motivation . 2

1.1.1. Application Scenario 1 – Autonomously Driving Cars 2
1.1.2. Application 2 – Search-And-Rescue Robots 3
1.1.3. Application Scenario 3 – Evolution of Deployed Software Systems . 4
1.1.4. Summary . 5

1.2. Problem Analysis . 5
1.3. Terminology . 7

1.3.1. General Self-Adaptive Software System Terms 7
1.3.2. The Role Concept in General . 9

1.4. Requirements Analysis . 11
1.4.1. Decentralized Execution of Adaptations 11
1.4.2. Ensure a Stable Application State before Adaptation 12
1.4.3. Cope with Loss of Coordination Messages 12
1.4.4. Cope with Local Adaptation Failures 12
1.4.5. Summary . 13

1.5. Research Questions . 14
1.6. Thesis Outline . 15

2. State of the Art 17
2.1. Formal Foundation . 18

2.1.1. Stable Application States . 18
2.1.2. Semantics of Adaptation – Adaptation Models 20

2.2. Decentralization in (Self-)Adaptive Software Systems 21
2.2.1. General Architecture of (Self-)Adaptive Software Systems 22
2.2.2. Decentralization of the Adaptation Management 24
2.2.3. Decentralization of the Execution Phase 27

2.3. Roles in Adaptive Software Systems . 28
2.3.1. MACODO . 29
2.3.2. HELENA . 30

ix

Contents

2.3.3. Roles in Multi-Agent-Systems . 30
2.4. Perform Run-Time Adaptations . 31
2.5. Summary . 33

3. Employing Roles in Decentralized Self-Adaptive Software Systems 35
3.1. An Adaptation Supportive Role Runtime 36
3.2. Supporting Decentralized Run-time Adaptation 38

3.2.1. The Role Life Cycle . 38
3.2.2. Adaptation Interface . 41
3.2.3. Local Stable State for Roles . 44
3.2.4. Distributed Stable State for Roles 45

3.3. Comparison with Role Features . 47

4. Decentralized Execution of Distributed Adaptations 53
4.1. System Model and Error Models . 55
4.2. Adaptation Operations and Adaptation Transactions 56

4.2.1. Adaptation Operations . 58
4.2.2. Adaptation Transactions . 63

4.3. Adaptation Operations and the Role Runtime’s Adaptation Interface . . . 64
4.3.1. The Execution of Local Operations 66
4.3.2. The Execution of Distributed Operations 68

4.4. The Decentralized Coordination Protocol 70
4.4.1. Protocol Messages . 70
4.4.2. Decentralized Coordination of a Transaction 73
4.4.3. Decentralized Coordination of Adaptation Operations and Groups 75
4.4.4. A Note on Stopping Failures . 82

4.5. Update Execution of the Role-based Managed Application 83
4.6. Summary . 85

5. Implementation & Evaluation 89
5.1. The Role-based Managed Application . 90
5.2. The Decentralized Adaptation Management 93
5.3. Emulation of the Coordination Protocol 96

5.3.1. General Emulation Setup . 97
5.3.2. Data Acquisition . 100
5.3.3. Emulated Experiments . 101
5.3.4. Results . 105

x

Contents

5.3.5. Summary . 116
5.4. A Formal Validation of the Coordination Protocol 117
5.5. Summary . 119

6. Conclusion 123
6.1. Summary of Requirements and Research Questions 123
6.2. Future Work . 125

A. Formal Model I

B. Protocol Messages IX
B.1. Transaction Control Messages . IX
B.2. Execution Control Messages . X

Bibliography XI

xi

1. Introduction

In recent years, computing systems have become more pervasive, smaller in size and
increased in their complexity. According to Gartner1, in 2015 alone roughly two billion
mobile phones have been shipped. Including other device categories such as tablets or
notebooks, the number of shipped devices amounts to 2.6 billion. The majority of these
devices is powerful enough to support fairly complex computations. Moreover, almost all
mobile devices are basically able to collect information about the user’s current situation,
e.g., via motion or illumination sensors. Software applications running on those devices
are in general distributed applications, i.e., parts of the application are executed directly
on the device to interact with the user or to collect sensor information whereas other
parts of the application are executed on remote servers performing other and possibly
computationally more complex tasks. Smartphones, however, are not the only mobile
device category that has become powerful enough to support the execution of complex
software systems. Modern cars are likely to execute close to 100 million lines of code on
approximately 70 to 100 microprocessor-based electronic control units [6] that control
everything from breaks to transmission to engine control to airbags to GPS and the
entertainment system. In the advent of autonomously driving cars, the software systems
deployed to cars are likely to become even larger and more complex, especially if the cars
are constantly communicating and collaborating with each other and with traffic control
systems to conduct the autonomous driving task. Other application domains, e.g., the
Internet of Things, indicate an increasing number of collaborating computing devices,
too. Imagine, for example, a complex system in a smart home that determines which
power source to use to prepare hot water for the household or the heating system based
on the current weather conditions, the weather forecast, and the residents’ routines.

Future computing systems will not only be complex and distributed across an arbitrar-
ily large number of computing devices but will also rely on collected sensor information to
adapt their behaviors or executed tasks in dependence of their computational or external
environment or the user’s momentary situation. Such adaptations have to be planned
and coordinated across several layers of the software system’s architecture. Moreover,

1http://www.gartner.com/newsroom/id/2645115 as of 02/08/17

1

1. Introduction

the adaptations will have to be performed reliably and in a way that prevents the system
from reaching undesired configurations that could be harmful for the system itself or,
worse, the user(s). In this thesis, the phase of such an adaptation process that actu-
ally performs the modifications of a highly distributed software system at run time, e.g.,
modifying the system’s structure, will be the research focus.

1.1. Motivation

Software systems developed nowadays are increasingly distributed across numerous dif-
ferent devices. Additionally, they are highly interconnected since parts of the system
deployed to different devices collaborate with each other using networked communica-
tion channels. Classic n-tier or peer-to-peer architectures serve as intuitive examples for
such highly distributed and interconnected software systems.

Future software systems will not only be distributed and interconnected but will also be
able to monitor their computational environment and to modify themselves in response
to changes in that computational environment. The information collected from different
kinds of sensors will enable those software systems to adapt their exposed behavior,
e.g., the offered functionality, in response to changed user situations or changes in their
computational environment. In the following, two exemplary application scenarios for
highly distributed software systems capable to monitor their computational environments
and their users’ situations in order to allow for behavioral adaptations will be presented.
The third and last exemplary application scenario addresses the special case of updating
already deployed and running software systems. Updating in this regard refers to the
evolution of the software system, e.g., the introduction of new functionalities or behaviors
or the removal of such in the case the functionality was rendered obsolete.

1.1.1. Application Scenario 1 – Autonomously Driving Cars

An autonomously driving car is not operating in isolation but has to cope with other
autonomously driving cars. Arbitrarily many cars may group together while driving on a
highway, thus creating a line of cars (platoon). Cars in this line expose the same driving
behavior and frequently communicate while driving. As long as the external conditions,
e.g., weather and road conditions, remain stable, no adaptation of the driving behavior
of the platoon is required. Assuming rain to start falling, a different driving behavior
might be exposed by the platoon, e.g., the distance between cars within the platoon is
increased or the velocity with which the cars are driving is reduced, because wet roads
can be slippery and it takes longer to decelerate. It may be dangerous for the passengers

2

1.1. Motivation

of the cars if each individual car decides to switch its driving behavior from sunny to
rain mode autonomously and without consensus from the other cars in the platoon.

In this exemplary scenario, each car is considered a software system realizing all the
behaviors necessary for the car to drive. This also includes variants of specific behaviors
that are ought to be performed only when certain conditions or situations are met,
e.g., a specific driving behavior on wet roads for rainy weather. Although each car can
be considered a software system on its own, the entirety of cars grouped together in
a platoon is regarded as the software system that has to modify itself in response to
changing weather or road conditions. In a first step, all cars would have to agree on
the behavioral change in response to the changed environment. In a second step, the
actual behavior of the overall system has to be changed in a coordinated manner. The
behavioral adaptation of the system as a whole is conducted individually on each car.
In order to ensure that each car performs the adaptation and activates the behavioral
change at the same point in time, all participating cars have to collaboratively coordinate
the adaptation process.

The most important property of the distributed software system described in this
application scenario is its ability to execute several adaptations in a coordinated manner.
The coordination is motivated by the mutual dependency of the adaptations to prevent
inconsistencies within the software system.

1.1.2. Application 2 – Search-And-Rescue Robots

Search-And-Rescue Robots are deployed in locations too dangerous for humans to enter
to perform certain tasks, such as rescuing people from partially collapsed buildings or
contaminated sites. A group of robots is collaborating in such environments to perform
their assigned tasks.

In this scenario, robots are searching in a partially collapsed building for survivors.
At first, each robot is searching for victims. When a robot finds a victim or a casualty,
the robot changes its behavior from searching to rescuing, which means the person or
corpse will be carried out of the site as fast as possible. Sometimes, unforeseen obstacles
occur during a rescue mission, which leads to unpredicted effort on the robot. This could
cause the robot to run too low on energy to finish the retrieval task or the robot requires
the help of other robots in order to overcome the obstacle. In such a case, application
behavior could be transferred or cloned to other robots in the proximity to take over or
aid the retrieval task.

The coordinated transfer of application behavior including internal state information
to other parts of the distributed software system is evidently the major point addressed

3

1. Introduction

within this application scenario. Coordination in such a case is required to ensure a
safe and reliable transition of specific behavioral parts of the software system while it is
running.

1.1.3. Application Scenario 3 – Evolution of Deployed Software Systems

In any domain related to the Internet of Things (IoT), such as Smart Cities, Smart Grids
or a Smart Home, software applications are highly distributed across several layers of the
system to generate or provide value-added services to the users or other parts of the sys-
tem. Such software systems are likely to require updates that introduce new or updated
functionalities in response to changes in the requirements of the application. Highly
distributed and interconnected applications in the aforementioned domains cannot be
stopped or shut down easily in order to allow the execution of the update. Consequently,
updates have to be performed while the software system is running. Additionally, up-
dates are likely to affect several parts of the application located on different devices,
which requires the update process to be coordinated. The coordination is required to
activate the updated or newly introduced system behavior in a consistent manner.

An energy broker scenario serves as use case for the evolution of such a highly dis-
tributed and interconnected software system in the domains of Smart Homes or the In-
ternet of Things. Different energy-providing devices continuously propagate information
about the current amount of produced energy via IoT gateways to a centrally organized
cloud instance. Different energy-consuming devices can register their estimated future
energy consumption with the centrally organized cloud instance. If enough energy is
available, the cloud instance will grant the energy consumers the right to perform the
tasks for which they registered the estimated amount of energy. Both energy consumers
and producers are connected via IoT gateways to the centrally organized cloud instance.
These gateways host several other parts of the application in order to translate and
enhance the data delivered from the producers’ or consumers’ sensors.

An exemplary evolution of the distributed software system introduces a new data field,
which is required to balance the produced and required energy. This new data field has
to be introduced to components of the IoT gateways as well as to the centrally organized
energy broker service in the cloud. To prevent data loss or false balancing decision,
the new data field has to be available consistently in the system during and after the
evolution process. Having the data field available only on the central energy broker and
not on the gateways, for example, is undesirable since wrong balancing decisions will be
made due to the expected but lacking information at the energy broker.

The coordinated execution of software evolutions while a highly distributed and in-

4

1.2. Problem Analysis

terconnected software system is running is the major issue outlined in this application
scenario. Coordination in such a scenario is required to ensure a reliable and, most
importantly, consistent update of the software system at run time. Consistent in this
scenario means all devices and software parts affected by the update install and activate
the changes in a bound timeframe.

1.1.4. Summary

The discussed application scenarios address different aspects of the adaptation and evo-
lution of distributed software systems at run time. As a result of the rather broad scope
of all scenarios combined, different properties for the respective software systems can be
derived that are highly related to the adaptation and evolution of such systems. The most
obvious system property that is also shared by all application scenarios is the distribution
of the software system across multiple devices or computing nodes. The first application
scenario described the adaptation of a group of autonomously driving cars. Adapting the
system behavior of such a line of cars requires the execution of multiple interdependent
adaptations, i.e., adaptations have to be performed on all cars in a synchronized and
coordinated way. The second application scenario described the transfer of application
behavior from one robot to another. In such a system, behavior including internal state
information, can be freely transferred between devices. The transfer of the behavior,
evidently, needs to be coordinated among the devices affected by this kind of adaptation.
The third application scenario described the evolution of a software system at run time.
Introducing new or removing old system behavior as well as updating already existing
implementations of system behavior is a fourth property of highly distributed software
systems this thesis is concerned with.

The summarized system properties are crucial to the management of run-time adap-
tations in distributed software systems and serve as a foundation for the requirements
and research questions later presented in this chapter. As a first step in this direction,
interesting research problems will be identified and discussed in the following section.

1.2. Problem Analysis

Different aspects of the previously outlined scenarios are already addressed by a large
research body as Krupitzer et al. [27] have shown in a recent survey. Work has already
been done in order to enable software systems to observe their computational environment
and to represent the obtained information in computationally processable data structures.
Abstracting from raw sensor data is crucial to be able to reason about the computational

5

1. Introduction

environment or the user’s situation and to detect changes in the environment or the
user’s situation. In order to react to those changes, the software system has to calculate
appropriate steps to modify itself in response to the detected changes.

Future software systems in the domains of the Internet of Things or the Smart Grid /
City will be distributed over a multitude of different devices. Thus, reasoning tasks about
the system’s computational environment and planning steps to react to the detected
changes are likely to become a performance bottleneck due to the large amount of devices
and their wide spacial distribution if performed on centralized computational units. The
decentralization of such tasks is an essential advancement of the research. Approaches
have already been presented that focus on a decentralized decision-making process, e.g.,
[32, 41], in order to generate plans that describe which parts of the system have to be
adapted.

Proposed reference architectures focusing on the design and implementation of such
adaptive software systems consider the adaptation of distributed applications but perform
all the adaptation tasks from a central instance. The granularity of adaptations of the
existing work is focused on the level of services or software components and rarely covers
adaptations on the level of runtime objects that can directly be implemented using a
programming language.

In summary, we discovered two major gaps in the current research landscape:

1. a platform-independent abstraction for adaptation prescriptions to adapt any given
software system

2. a reliable and consistent execution of generated change plans in a decentralized
manner across several devices

It is not to be expected that software systems in the IoT domain will be implemented
using the same programming language and platform, e.g., runtime. To ensure the adapt-
ability of a distributed software system that is executed in a heterogeneous environment,
a platform-independent set of operators to describe the planned adaptations that are
supposed to be performed is essential. Furthermore, a centralized execution and coor-
dination of the adaptation process is likely to become a bottleneck in setups featuring
a large logical and spatial distribution of software artifacts of the system. If the central
coordinator fails during the adaptation process, the software system might suffer from
service interruption due to incomplete adaptations. Therefore, performing the adapta-
tion steps locally and coordinating the procedure in a decentralized manner is highly
beneficial.

6

1.3. Terminology

1.3. Terminology

We take a step back to introduce and discuss important terminology frequently used in
the remainder of this thesis. A comprehension of the terms and concepts presented in
this section will ease the upcoming presentation of requirements and research questions
of this thesis.

In the first part of this section, terms related to the domain of self-adaptive software
systems, towards which this thesis is highly related, will be discussed. Subsequently,
the concept of roles as abstraction for dynamic system parts will be introduced rather
briefly discussing only the most basic and general ideas of the approach. A more detailed
discussion of the Role concept, especially in correlation to self-adaptive software systems,
will be given in Chapter 2.3. Further information about the contribution of the Role
concept to self-adaptive software systems developed within this thesis will be presented
in Chapter 3.

1.3.1. General Self-Adaptive Software System Terms

Self-adaptive Software Systems (SASS) are software systems that are able to monitor
their computational environment (context-awareness), and their own internal state (self-
awareness). Furthermore, self-adaptive software systems are able to modify their own
behavior or structure (self-adaptation) in response to changes in their computational
environment.

A self-adaptive software system comprises two distinct subsystems [23]: the autonomic
manager and the managed element. The autonomic manager is responsible for all tasks
related to the adaptation process of the overall self-adaptive software system, which in-
cludes the self-awareness, context-awareness and self-adaptation properties of the SASS.
The managed element is the actual application of which functionality or structure are
modified at run time through adaptations. In the remainder of this thesis, we will refer
to both terms as adaptation management and managed application, respectively, without
any change to the responsibilities of both subsystems originally described by Kephart et
al. [23].

The following terms are closely related to self-adaptive software systems, but may not
necessarily originate from this domain.

Configuration

A configuration is the global state of the distributed application with respect to the
implementation units of the software system. In a component-based software system, for

7

1. Introduction

example, the configuration would denote the types and instances of all components, the
deployment location of any given component with respect to computational devices, and
the relation of the components amongst each other, e.g., binding information between
components. A consistent configuration of the distributed application is therefore a
configuration that satisfies a run-time model of the application for a given computational
context.

Consistency & Transaction

Kramer and Magee define the consistency of an application by the “relationship between
node application states [that] are usually described by a set of global invariants or con-
straints which must be preserved” [26]. This definition will be used throughout this thesis
without any modification or restriction.

In [35], a Change Transaction is defined as a set of at least two operations. An
operation modifies the managed application, e.g., modifying the internal structure of
the managed application. The Change Transaction is furthermore defined to be atomic,
i.e., either all operations complete without error or the managed application will remain
untouched. As a consequence, intermediate changes have to be reverted if the change
transaction is aborted due to occurred errors. We refer to this definition from here on
forward as Adaptation Transaction with one minor adjustment: we require an Adaptation
Transaction to contain only one operation at least.

Adaptation / Reconfiguration

The adaptation or reconfiguration of an application modifies the current configuration of
the application (source) so that a different configuration (target) is reached. It takes an
adaptation script or reconfiguration script as input that describes the steps or changes
that have to be performed in order to reach a consistent target configuration of the
distributed application from the current source configuration. The aim of the adaptation
or reconfiguration process is the consistent transition of the application from the source
to the target configuration described by the adaptation or reconfiguration script.

Distribution & Decentralization

In conformity with the definitions of distribution and decentralization given in [51], we
define a distributed software application as an application of which parts are scattered
across several different devices. All parts of such an application perform different tasks
and collaborate to achieve the overall goal of the distributed application. If parts of the

8

1.3. Terminology

application are replicated and distributed across multiple devices, e.g., multiple instances
of one component type exist within the system performing basically the same task, and
have to collaborate with each other in order to fulfill these tasks, we consider this part
of the application to be not only distributed but also decentralized.

Coordination

The term coordination describes how the autonomic manager [23] performs its assigned
tasks, e.g., the self-adaptation property. Performing adaptations at run time might in-
volve different steps that need to be controlled and managed in their execution, which is
referred to as coordination. For the decentralization of parts of the autonomic manager,
coordination does not only describe the general execution of the overall procedure but
also how the decentralized instances collaborate with each other in order to perform the
assigned task. With respect to the realization of the self-adaptation property, coordi-
nation steps or a coordination mechanism therefore does not only include the general
procedure how to modify the managed application, but also describes any kind of proto-
col, formula or other means to support the decentralization of parts of the autonomous
manager responsible for the realization of the self-adaptation property. Of course, the
same assumptions hold for the other properties of a self-adaptive software system.

1.3.2. The Role Concept in General

In the domain of self-adaptive software systems, the term Role is used as abstraction to
describe different concepts. In multi-agent systems, for example, roles are used to describe
responsibilities of autonomous agents in collaborations between them. Other approaches,
e.g., as discussed in [44] or [24], use a role as abstraction for context-dependent system
behavior in order to enable self-adaptation. In the following, the notion of a Role is
introduced generally and the understanding of a Role assumed within this thesis will be
briefly outlined.

The concept of Roles was first introduced by Bachman et al. [1] in the field of data
modeling and has evolved to different other fields since. The evolution process, however,
did not yield a unified definition for the term Role, which leads to an inconsistent ter-
minology among different approaches. A shared commonality of all views on the role
concept is the notion of the Player as a software entity that is able to play one or more
roles. The correlation of role and player, however, may differ between different approaches
and is partially related to the role’s nature of the respective concept. In literature, three
natures of roles can generally be distinguished:

9

1. Introduction

Context-dependent: Roles have a context-dependent nature if they are active only
within a specific scope. This scope can be an arbitrary situation, e.g., when a set
of sensor readings reports values within a predefined range, or a specific configura-
tion of the software application. Consequently, the software system’s configuration
changes when a situation change occurs or sensor readings report different values
that would require different roles to be active.

Collaboration-dependent: Roles are collaboration-dependent if they can only exist in
collaboration with other roles, e.g., a buyer depends on the existence of a seller in
order to fulfill its intended functionality and vice versa. Software systems that rely
greatly on collaborations of their software entities often make use of this abstraction
to describe responsibilities of the single collaborators within the system.

Behavioral: A role is behavioral if it implements a specific behavior and/or has its own
internal state. The provision of a behavior unique to the role allows the role to
modify the behavior of its respective player, if desired.

Friedrich Steimann [40] compiled a set of features that characterizes roles at the design
level (M1) and at run time (M0). This original set of role features was later extended
by Kühn et al. [28] with context-capturing concepts, referred to as Compartment. The
resulting set of 26 features of roles comprises a meta-family for feature models. Conse-
quently, not every role-based approach may implement the same subset of the proposed
features (the list of role features proposed by Kühn et al. [28] is presented in Table 3.2
on page 50 together with a comparison which features the approach proposed within this
thesis requires). Some of the proposed features, especially within the first 15 proposed
by Steimann [40], however, can be considered fundamental for role-based software sys-
tems, such as Feature 3 (“Objects may play different roles simultaneously”) or Feature 7
(“Unrelated objects can play the same role”). Objects in Steimann’s definition can also
be referred to as players.

Within this thesis, roles and players can be compared to run-time entities such as
objects known from object-oriented approaches, components or services. A role is coined
by a role type, which describes the capabilities, e.g., attributes and methods denoting the
behavioral nature of the role, as well as a role instance, which is the concrete instantiation
of a role of a given type at run time. The same distinction holds true for players and
compartments within this thesis with respect to type and instance. A comportment can
be considered objectified context information [28] at design time to logically group related
roles active in the same situation or involved in the same collaboration. Apparently,
several instances of roles and players of a specific type can be present at run time. All

10

1.4. Requirements Analysis

adaptations discussed in the remainder of this thesis are as well instance-based, i.e.,
only a concrete run-time representation of a given type is affected by an adaptation. In
contrast, all existing instances of a specific type would have to adapt if adaptations were
performed on the type level.

1.4. Requirements Analysis

Based on the previously described application scenarios and the conducted problem anal-
ysis, requirements are posed to the approach that is developed within this thesis. As
already stated, the execution of adaptations at run time within a self-adaptive software
system coined by a high degree of distribution of the managed application, is the main
concern of this thesis. Consequently, the following requirements specifically address con-
cerns of run-time adaptation in such systems.

1.4.1. Decentralized Execution of Adaptations

This requirement is mainly motivated by Application Scenario 1, but can also partially
be related to the other two scenarios, especially to the software evolution application
scenario. The major challenge of the first application scenario is the coordinated and
reliable execution of multiple interdependent adaptations in the system. The adaptation
management subsystem is not only required to control the execution of a single adapta-
tion, i.e., changing the behavior of a single car, but has to control the adaptation of a
group of cars.

The software system discussed in the application scenario is furthermore highly dis-
tributed and mobile, i.e., the cars are driving, thus constantly changing their physical
location. Having a central instance coordinating and controlling the adaptation process
of such a software system appears to be both undesirable and infeasible. A central co-
ordinator introduces a single-point of failure to the system which may have a negative
impact on the passengers’ security. Additionally, the overhead required to coordinate the
adaptation process from a central instance located afar is infeasible and the overall sys-
tem would be prone to communication interruptions, which could hinder the adaptation
process preventing timely adaptations.

The ability of the software system to coordinate the adaptations in this application
scenario without a central coordinator is evidently a highly desirable and necessary re-
quirement to pose on a self-adaptive software system applicable in both the first and
second application scenario.

11

1. Introduction

1.4.2. Ensure a Stable Application State before Adaptation

This requirement is motivated by all presented application scenarios. In all three appli-
cation scenarios, the software systems are fully deployed and operational at the point
in time the adaptation or evolution of the system is ought to take place. If parts of
the system were updated or adapted, e.g., removed, without any precautions, the entire
system could break because tasks might not have been finished yet or data important to
the managed application might be lost.

Therefore, the coordinator of the adaptation process has to ensure that the adaptation
is performed when the application is in a stable state. We define a stable state as a state of
the application in which the parts of the application that are subject to the adaptation or
evolution process do not carry out any computational tasks. This definition is generally
in line with the more precise definitions given in [26, 7]. A more detailed discussion of
application states that are safe for adaptation or evolution tasks to be performed will be
given in Chapter 2.1.1. If necessary, the coordinator of the adaptation process should be
able to restrict the managed application in a way that such a state can be reached.

1.4.3. Cope with Loss of Coordination Messages

All three application scenarios require a reliable coordination of an adaptation’s execu-
tion process across device borders without any central instance, thus backing up this
requirement. We assume to already have a mechanism in place that enables the decen-
tralized coordination of the adaptation process for the decentralized management of the
managed application. Having such a decentralized adaptation process, the responsible
peers have to exchange messages to control the progress of the adaptation. In dynamic
and possibly unstable environments, such as the one described in the search-and-rescue
robots scenario, those control messages may never arrive at their destination. The mech-
anism coordinating the adaptation process is ought to be able to detect and tolerate lost
coordination messages, i.e., the adaptation process should not immediately fail because
of infrequently lost coordination messages.

1.4.4. Cope with Local Adaptation Failures

The last requirement is mainly motivated by application scenarios one and two, but
applies to the third application scenario, too. During the adaptation process, locally
conducted adaptations on the respective computing devices may fail at run time or may
not be completed. In the case of the migration of application behavior in the search-and-
rescue robot scenario, the adaptation would not complete correctly if one of the robot’s

12

1.4. Requirements Analysis

Prevent Loss of
Application Data

Prevent Inconsistent
Configurations

Cope with Loss of
Coordination Messages

Ensure a Stable
Application State before

Adaptation

Decentralized Execution of Adaptations

Cope with Local
Adaptation Failures

Figure 1.1.: Overview of requirements and their relation to the system’s goals.

computing systems fails.
The adaptation management should be able to determine such errors during the adap-

tation process and handle them appropriately. At this point, we assume the coordination
process of the adaptation to be decentralized, i.e., no central coordinator exists. Conse-
quently, the handling of local adaptation failures during the adaptation process ought to
be addressed by the decentralized coordination mechanism, too.

1.4.5. Summary

The requirements discussed in this section are supposed to be met by the solution pro-
posed in this thesis, which aims to coordinate the execution of adaptations in a distributed
self-adaptive software system. While the self-adaptive software system is undergoing
adaptations at run time, two major goals exist that the adaptation management subsys-
tem is required to meet: First, the managed application must be ensured to remain in a
consistent configuration during the adaptation process, which is expected to always result
in a consistent application configuration. This goal has often been mentioned implicitly
as a system goal in the discussion of the requirements and in the problem analysis. The
second goal of the adaptation management is to prevent the managed application from
losing data either during or as a result of the adaptation process, since the managed
application’s performance can be severely affected adversely by such a data loss. In Fig-
ure 1.1, the posed requirements are summarized and their contribution to achieve the
system goals is indicated by arrows. The requirement to execute the adaptation process
without a central coordinating instance in the running system does not contribute to the
fulfillment of any goal immediately. This requirement is a more fundamental one address-
ing single-point-of-failure and performance-bottleneck issues of a centralized coordinator
in such highly distributed system setups as it was previously discussed.

13

1. Introduction

1.5. Research Questions

This thesis is concerned with the investigation of three major research questions closely
related to the previously discussed research problems and posed system requirements.

1. How can a stable application state in a distributed application be reached in order
to allow for multiple adaptations being performed on multiple computing devices
simultaneously or in an otherwise coordinated manner?
The first research question is correlated to the second requirement and supports
the goal to prevent data loss of the managed application during the adaptation
process. The coordinated execution of multiple interdependent adaptations across
device borders is immediately addressed by this research question.

2. How can a decentralized management and coordination of an adaptation process com-
posed of multiple interdependent adaptations be realized that
a) copes with the loss of protocol messages and network partitioning, and
b) copes with node failures or adaptation errors during the adaptation process?
The second research question is motivated by the decentralized coordination re-
quirement necessary due to the possibly high degree and mobility of the managed
application or parts of it. Requirements three and four are subsumed by this re-
search question, since the handling of adaptation or node failures at run time or
the tolerance to lost protocol messages are typical properties of a decentralized
protocol.

3. What is a suitable abstraction to describe the adaptations supposed to be performed
on the managed application platform-independently and is that description able to
support the execution of changes?
The issue of platform-independent descriptions of the adaptations that are supposed
to be carried out at run time has not yet been raised in any of the application
scenarios but was identified as an open issue in the current research landscape. This
research question, however, is partially supported by the first and third application
scenario, which were previously discussed. In an environment with a multitude of
devices from possibly different vendors, application developers are likely to favor
different platforms to use for the application’s implementation. An adaptation
approach that abstracts from the concrete platforms while still being able to support
the decentralized coordination of the adaptation or evolution of a software system
in a heterogeneous device platform environment is therefore greatly desirable and
thus explicitly added as a third research question to the scope of this thesis.

14

1.6. Thesis Outline

1.6. Thesis Outline

The remainder of this thesis is structured as follows: In Chapter 2, foundations on
adaptation aspects of self-adaptive software systems that specifically address the issue
of finding a stable state will be the subject of discussion. Furthermore, existing research
approaches addressing the decentralization of the execution of adaptations at run time,
will be discussed as well as the relation of the Role concept to the research domain of
self-adaptive software systems.

In Chapter 3, the contributions of this research work with respect to the utilization
of the Role concept as abstraction for context-dependent application behavior in self-
adaptive software systems in order to enable both collaborative and behavioral adapta-
tions will be presented.

In Chapter 4, the developed approach to enable the decentralized adaptation of multi-
ple correlated adaptations in response to changes in the system’s operational environment
will be discussed. A brief overview on the assumed system structure and failure models
that the approach can handle during the run-time adaptation will be given first. Subse-
quently, the developed protocol to coordinate adaptations will be presented. At first, the
supported modifications of the self-adaptive software system supported by the protocol
will be outlined. In a second step, the execution of such modifications will be discussed
from a local point of view. Having introduced the local adaptation management, the
decentralized execution of adaptations with the help of the developed protocol will be
introduced. A brief outline will be given how the approach can be used for the evolution
of a self-adaptive software system before the contributions presented in this chapter will
be summarized.

In Chapter 5, the previously presented work will be evaluated. The evaluation com-
prises a formal evaluation of the developed approach to be free of deadlocks for the
assumed system structure and failure models, and of a qualitative assessment of the
performance of the approach within an emulated environment.

In Chapter 6, the presented approach will be briefly summarized and compared to the
posed requirements and research questions. A look ahead on interesting research areas
that arise from the results of this work will conclude this thesis.

15

2. State of the Art

In this chapter, we present and discuss existing research approaches and results related
to the work conducted in this thesis. The landscape of existing research work is split into
two major subsets: First, we will discuss state-of-the-art approaches in the domain of
self-adaptive software systems and correlated disciplines. Second, we will discuss existing
work related to this research as well as approaches which serve as a possible application
for the results presented in this thesis. An overview of the content of this chapter is given
in Figure 2.1.

State-of-the-Art approaches comprise approaches that are competing with our pro-
posed results or on which the work presented in this thesis immediately relies on, e.g.,
through the usage of the proposed solutions or the extension of existing work to fit our
requirements. Sections 2.1 and 2.4 will focus on the state-of-the-art research landscape.
Related Work and Applications covers approaches that follow a similar concept, but are
lacking results on the level of the actual execution of adaptations at run time. The
integration of results discussed in this section would be mutually beneficial, but is not
subject to this thesis. Sections 2.2 and 2.3 will focus on related work and other possible
application domains for the results presented in this thesis.

Decentralized Middleware for Coordinated Adaptation

Role Concepts in Software Architectures Decentralization in (Self-)Adaptive Software Systems

Formal Foundation of run-time AdaptationPerforming run-time Adaptations

State of the Art

Applications
and Related Work

Figure 2.1.: Overview of the topic fields of state-of-the-art approaches and related work.

17

2. State of the Art

2.1. Formal Foundation

Research question one is concerned with finding a state of the managed application
at which it is safe to perform the adaptation without negative side effects due to an
inconsistent configuration of the application or data loss. The first part of this section
discusses existing definitions of such a stable state for the managed application. The
second part outlines a formal method present in literature that discusses how to reach
such a stable state for any given managed application.

2.1.1. Stable Application States

Performing structural adaptations on a running application is not a simple task. The
adaptable entities of the system that cause the structural adaptation, e.g., components
or objects, are likely to execute certain tasks or to process method invocations. Re-
moving such an adaptable entity at a randomly chosen point in time or as soon as the
adaptation request is issued will therefore likely lead to message loss, inconsistent ap-
plication behavior or a failure of parts of the system or the entire system in the worst
case. The challenge to find or reach a state in which it is safe to perform adaptations
has been widely acknowledged. In the field of mobile code and object migration [39] or
in the CORBA component architecture [5] the first step of a migration is considered the
suspension of the object or component that is supposed to be migrated. In the following,
we discuss two approaches that enable a system to determine reliably when a safe state
is reached in component-based software systems in order to modify its structure. The
approaches discuss solutions to determine at which point in time a component, thus,
the entire system, is in a stable state that allows the adaptation without data loss or
inconsistent application behavior.

Quiescence

Reaching a safe state is an essential prerequisite to change an adaptive software system
dynamically at run time and was already introduced by Kramer & Magee in 1990 as
a concept called quiescence [26]. The concept was introduced in accordance with the
adaptation of component-based applications and relies on the knowledge of the commu-
nication patterns and interconnections across components. A series of message exchanges
between components is called a transaction [26].

A component in the approach of Kramer & Magee implements three states: active,
passive and quiescent, which are depicted in Figure 2.2. In the active state, a component

18

2.1. Formal Foundation

Active Passive Quiescent

Figure 2.2.: State chart for components to reach the quiescent state.

can operate without limitation, i.e., the component can initiate, accept and service trans-
actions. In the passive state, a component continues to accept and service transactions,
but is currently not engaged in an ongoing transaction nor will the component initiate a
transaction itself. Both states may occur naturally throughout the components life cycle.
According to [26], a component is in a quiescent state, if (1) the node is not engaged in
a transaction it initiated, (2) no new transactions are scheduled to be initiated, (3) an
ongoing transaction is currently not served, and (4) no transactions of other components
have been or will be initiated that require service from the component supposed to be
updated. The quiescent state of a component is rarely reached naturally, but requires
the restriction of the system’s components. Since collaboration and binding relations
between components can be arbitrarily complex, a possibly large set of components has
to reach a passive state in order for one component to reach a quiescent state. The reason
is condition 4, which requires all components not to initiate a transaction that requires
the participation of the component supposed to be updated. Consequently, not only
components that are directly connected to the component intended to be adapted, have
to be passive, but all indirectly connected components that would require participation
are prohibited to initiate new transactions. All those directly or indirectly connected
components have therefore to be kept in a passive state, which requires additional means
to restrict the system’s behavior. Such means, though, are not part of the quiescence
concept and, thus, not further discussed in the approach.

Tranquility

Vandewoude et al. [45] pointed out that the quiescence approach causes heavy system
interruption because not only the component that is supposed to be modified has to
reach a quiescent state but also all peer nodes have to be in such a state, because they
are not allowed to initiate new transactions that involve the component under adapta-
tion. They proposed a less strict approach called tranquility [45] and proofed it to be a
sufficient condition for adaptability. A component is in a tranquil state if all connected
components reach a passive state whereas quiescence required all directly as well as in-
directly connected components to reach the passive state. The tranquility concept does
not guarantee a safe state to be reached within a bounded timeframe to perform the ac-

19

2. State of the Art

tual update, which can be considered a major drawback of the approach [45]. However,
the interruption of the running system is less severe using the tranquility approach than
quiescence.

2.1.2. Semantics of Adaptation – Adaptation Models

The available adaptation operators to change the self-adaptive software system differ
depending on the granularity of the adaptive entities in the system, e.g., different op-
erators to perform changes on the level of services, components or objects are required.
An adaptation describes the transition from one system (source system) to another sys-
tem (target system) [7]. Zhang et al. [7] specified formal semantics for three different
kinds of adaptations, the One-Point Adaptation, the Guided Adaptation and the Overlap
Adaptation, which are displayed in Figure 2.3.

One-Point Adaptation The application adapts to the target system after receiving an
adaptation request at a certain point during the execution. Reaching a safe state
during the program’s execution is a necessary prerequisite of this adaptation se-
mantic to perform the adaptation.

Guided Adaptation In contrast to the one-point adaptation, a fundamental assumption
of the guided adaptation is that the program is unable to reach a safe application
state within a bounded timeframe. After receiving an adaptation request, the
program’s source functionality and behavior are therefore limited to ensure a safe
state to be reached. The adaptation is performed immediately when a safe state
is reached causing the program’s functionality and behavior to change from one
execution point to another.

Overlap Adaptation The overlap adaptation shares the same assumptions about the
reachability of a safe application state as the guided adaptation. A further com-
monality is the program’s source behavior to be restricted to ensure a safe state to
be reached within a given amount of time in order to perform the adaptation. In
contrast to the aforementioned guided adaptation, however, the program’s target
behavior starts to execute before the program’s source behavior is fully stopped.
Consequently, both source and target behavior coexist for a given timeframe (cf.
Figure 2.3c). To prevent inconsistent application behavior, a restriction condition
is applied on the program during the overlap time of both behaviors to safeguard
the adaptation. The restriction condition is also used to restrict the source pro-
gram’s functionality and behavior to ensure the source program to eventually stop
executing.

20

2.2. Decentralization in (Self-)Adaptive Software Systems

Source System Target System

Adaptation Request

(a) One-Point Adaptation

Source System Target System

Adaptation Request

Restraint Condition

(b) Guided Adaptation

Source System

Target System

Adaptation Request

Restraint Condition

(c) Overlap Adaptation

Figure 2.3.: Formal adaptation semantics according to [7].

A safe state [7] is described as a state in which the obligations of the source system are
fulfilled and the source behavior can be terminated. Terminating the source behavior
without having reached a safe state is prone to result in inconsistent behavior or data
loss because ongoing computations of the source system could not be finished when
terminated.

In a subsequent paper, Zhang et al. extended their approach to a model-driven ap-
proach to formalize adaptations in a software system and therefore described the adap-
tation as a transition from a source model to a target model using a specific adaptation
model that comprises several operators that describe the transition [53].

A distributed coordination protocol to ensure a transactional adaptation behavior as
it is envisioned in this thesis follows the semantics of the guided adaptation. Since our
proposed coordination protocol treats the adaptable role-based application as a black
box, we cannot derive a suitable point in time to alter the application without restricting
the functionality of the role-based application. Logically, our approach cannot be a one-
point adaptation. This observation furthermore holds for every adaptation operator we
propose within this thesis.

2.2. Decentralization in (Self-)Adaptive Software Systems

self-adaptive software systems expose the desired properties of a software system that
we described as a small collection of use-case examples in the previous chapter. Recent
research surveys already summarize the current state of the art in the domain of self-
adaptive software systems. In the 2009 [38] and 2010 [29] surveys, the research landscape
of self-adaptive software systems was well outlined and important future research chal-
lenges were identified and discussed. The decentralization of the adaptation management
was identified as one of the major concerns for future research efforts. A recent study
conducted by Krupitzer et al. [27] focused on engineering approaches of self-adaptive soft-
ware systems and a classification was developed that extends an original classification
of self-adaptive software system approaches presented in [38]. Another recent survey fo-

21

2. State of the Art

cused on the application of self-adaptive software systems in the domain of cyber-physical
systems [34]. The survey is concerned with the aspects how self-adaptation is applied to
cyber-physical systems including adaptation concerns, evaluations and (dis-)advantages
of surveyed approaches in the domain of cyber-physical systems.

In the remainder of this section, we will give a brief overview on the general architec-
ture of self-adaptive software systems and how such systems allow for adaptive behavior.
Subsequently, we will focus on decentralization aspects specific to the execution of adap-
tations. Other research results that contribute to other phases of the feedback loop are
out of scope and will therefore not be discussed within this thesis. The relation of the
Role concept to self-adaptive software systems and related fields that enable software
systems to expose dynamic and adaptive behavior, will be covered in the subsequent
section. Concrete approaches how adaptations are executed at run time will be discussed
and compared to the set of requirements we posed on the envisioned decentralized execu-
tion phase afterwards. Finally, in the summary we will review the results of this section
and briefly outline gaps in the existing research body that will be then addressed within
this thesis.

2.2.1. General Architecture of (Self-)Adaptive Software Systems

In Chapter 1.3.1 we already introduced the two main subsystems of self-adaptive software
systems: the managed application providing all the application’s business functionality
and the adaptation management that is responsible for the adaptation of the managed
application at run time. If both subsystems communicate with each other through a
well defined interface and are otherwise independent of each other, the architecture of
the self-adaptive software system is usually considered to follow an external control ap-
proach, which is coined by both adaptation management and managed application being
independent subsystems exchanging information through well-defined interfaces [38].

The adaptation management is not only responsible for the adaptation of the man-
aged application (self-adaptation), but also for the monitoring of the computational
environment of the system (context-awareness) and the monitoring of the internal state
of the managed application (self-awareness). Moreover, the adaptation management im-
plements mechanisms that enable it to abstract from and reason about the monitored
data, which enables the adaptation management to detect when adaptations are neces-
sary to be performed. A fourth task of the adaptation management is the calculation of
adaptation plans, which describe the parts of the managed application that have to be
adapted, added or removed in response to changes in the computational environment.
This sequence of steps is often realized with the help of a feedback loop known from

22

2.2. Decentralization in (Self-)Adaptive Software Systems

Adaptation Management

Managed Application

O
pe

ra
tio

na
l E

nv
iro

nm
en

t

Monitor

Analyze Plan

ExecuteKnowledge

Figure 2.4.: A self-adaptive software system with the feedback loop as part of the adaptation
management based on [23].

control theory. The feedback loop presented by Kephart et al. [23] is one typical exam-
ple for such a software feedback loop to support context-awareness, self-awareness and
self-adaptation in self-adaptive software systems. It consists of four phases to Monitor
the computational environment of the system and the internal state of the managed ap-
plication, to Analyze the monitored information and reason about it in order to be able
to derive a Plan how to adapt the managed application, and to Execute the derived plan
upon the managed application, finally. An overview of the feedback loop as a part of an
externally controlled self-adaptive software system is given in Figure 2.4. Other feedback
loops such as [11] and [35] exist, but provide basically the same set of features as the
just discussed MAPE-feedback loop proposed by Kephart et al. [23]. One of the major
differences of the feedback loop proposed by Oreizy et al. [35] is the notion of consistency
that is explicitly introduced as one of the tasks of the feedback loop. The feedback loop
of Oreizy et al. consists basically of two major parts: the adaptation management1 and
the evolution management. The evolution management is concerned with the execution
of adaptations at run time and is explicitly deemed responsible to execute the adapta-
tion process in a way that the desired run-time model of the application matches its
configuration [35].

The reification of the feedback loop as a set of interconnected subsystems within the
adaptation management is a commonly used approach to design and implement the
management subsystem of self-adaptive software systems. A general example of such
an architectural approach featuring an external control design is given in Figure 2.4.
The Monitoring phase possesses interfaces to both the managed application and the

1Please note that the definition of adaptation management as a part of the feedback loop differs from
the usage of the term within this thesis in general.

23

2. State of the Art

computational environment of the self-adaptive software system as a whole whereas the
Execution phase shares an interface with the managed application only to realize the
self-adaptive behavior. The Knowledge phase, which is also depicted in Figure 2.4, has
not yet been discussed. It is not a phase in the sense of the already known MAPE-phases
but serves rather as a shared knowledge base for all MAPE-phases. Run-time models,
context-models, predefined adaptation plans etc. are typical examples for information
and data structures stored in the Knowledge phase of the feedback loop accessible from
all phases around it.

The subsystems of the adaptation management, however, are not necessarily aligned
to the previously discussed phases of the feedback loop. Several approaches merge re-
lated parts of the feedback loop into a single subsystem of the adaptation management.
Approaches that, for example, implement the self-awareness and self-adaptation proper-
ties, i.e., the internal state of the managed application is monitored and the managed
application is adapted at run time, often merge the monitoring and execution phase into
a single layer or subsystem of the adaptation management because both the monitoring
and the execution require an interface to the managed application that enables both
self-properties. Approaches following this track are Rainbow [13], 3L [25], SASSY [16],
GRAF [10] or SMAGs [36], for example. Merging the monitoring and analyzing phase of
the feedback loop into one layer or subsystem is often used when the computational en-
vironment is monitored (context-awareness) and requires a certain degree of abstraction
from the raw context to determine situation changes, e.g., Hallsteinsen [18]. Approaches
such as Rainbow [13] or GRAF [10] merge the analyzing and planning phase into a single
layer, since the generation of change plans often relies on the kind of context change
that is usually determined during the analyzing phase of the feedback loop. An overview
how the just discussed approaches reified the MAPE feedback loop in their respective
architectural approaches is shown in Figure 2.5.

2.2.2. Decentralization of the Adaptation Management

Many self-adaptive software systems implement the managed application using compo-
nents or services as adaptive software entity. Naturally, service or component-based
architectures can be distributed across several devices. With a growing distribution of
the managed application, however, a centralized management of the entire adaptation
process becomes increasingly difficult. Consequently, the decentralization of the adapta-
tion management is an important aspect of self-adaptive software systems to cope with
an increasing distribution, both logically and spatially, of the managed application.

24

2.2. Decentralization in (Self-)Adaptive Software Systems

Monitor

Analyze

Plan

Execute

Knowledge

SMAGS

Inference Layer

Sensor Layer

Adaptation Layer

Context Access
Layer

MUSIC

Context Manager

Adaptation
Reasoner

Plan Repository

Configuration
Executor

Hallsteinsen

Context Monitor

Planner

Configurator

Application
Framework

Graf

Adaptation Middleware
Layer

Runtime Model
Layer

Adaptation
Management Layer

Change
Management

Component Control

Goal Management

3L
SASSY Rainbow

System Layer

Architecture Layer

Figure 2.5.: Overview how different SASS approaches reify the MAPE feedback loop in their
respective architectural approach.

Decentralization Patterns [51]

Weyns et al. proposed a set of different patterns to distribute and decentralize the
feedback loop of the adaptation management. A phase of the feedback loop is distributed
if multiple instances of it exist in the running system whereas a phase of the feedback
loop is decentralized only if these instances also communicate and collaborate to perform
their task. The definitions of distribution and decentralization by Weyns et al. have
already been discussed in detail in Chapter 1.3.1.

Weyns et al. suggest a total of five different patterns to distribute and decentralize
the adaptation management’s feedback loop. We call four of those approaches hybrid
patterns because only a subset of the feedback loop’s phases is distributed or decentral-
ized. The remaining pattern is called the coordination control pattern and is coined by
a decentralization of all phases of the feedback loop. The first four mentioned patterns
address different problems each: A decentralized context acquisition is addressed by the
information sharing pattern in which only the monitoring phase is decentralized. The
decision making process can be clustered using the regional planning pattern in which
multiple collaborating planning phases exist. In cases where a centralized context anal-
ysis and generation of change plans is beneficial, the master/slave pattern, which moves
the monitoring and execution tasks to the edge devices where the monitoring takes place
or the adaptations are performed, can be employed. In large systems, the responsibilities
to make decisions or the abstraction of the information to base adaptation decisions on
may be hierarchically structured to cope with the system’s complexity. The hierarchical
control pattern addresses this issue of structuring adaptation cycles in different MAPE

25

2. State of the Art

control loops that operate on different levels of abstraction within the system.
Only the coordinated control pattern suggests the requirement for a decentralized co-

ordination of the execution process. Although less evident, the concept can be applied
most easily to the master/slave pattern, too. Having the monitoring decentralized is out
of scope of this thesis, but even slave devices in a self-adaptive software system may com-
municate and collaborate with each other to perform the tasks assigned to the managed
application deployed on them. Thus, the distributed execution phases of this feedback
loop might be required to collaborate in order to coordinate the execution of the change
plan generated by the central planning phase.

Interacting Control Loops [46]

Vromant et al. describe a self-healing2 scenario for a traffic monitoring system that makes
use of intra- and inter-control loop coordination to realize the self-healing property of the
system. In the described scenario, a traffic monitoring system is clustered into groups
of traffic monitoring cameras in which each cluster is comprised of a dedicated master
camera and an arbitrary number of slave cameras. The system is supposed to recover
autonomously from the random failure of a master camera.

In their approach, Vromant et al. describe two types of coordination: The first one
is the intra-loop coordination that enables “MAPE computations within one loop to
coordinate with one another.” [46] In that case, sub-loops are created within a given
feedback cycle to coordinate adaptation tasks. Such a sub-loop may contain only a subset
of the phases of the original MAPE feedback loop, e.g., only the planning and execution
might be required within a sub-loop to perform the coordination task. The second type
of coordination is the inter-loop coordination that enables “MAPE computations across
multiple loops to coordinate with one another.” [46] This control type allows phases of
different feedback loops to interact in order to perform their adaptation task, e.g., the
planning components collaborate to achieve a joint agreement on an adaptation plan.

The failure of a master camera in the approach described in [46] is handled with a
sequence of intra- and inter-loop coordinations. A first intra-loop consists only of the
monitoring and analyzing phase and detects the absence of the failed master camera. In
response to a master camera’s failure, a first intra-loop is created on each camera device
that changes the communication flow in a way that no information is sent unnecessarily
any more to the failed camera. Subsequently, a new instance of an intra-loop comprised
of a planning and execution component of the feedback loop is created on each camera

2A self-healing system has the “capability of discovering, diagnosing, and reacting to disruptions. It
can also anticipate potential problems, and accordingly take proper actions to prevent failure.” [38]

26

2.2. Decentralization in (Self-)Adaptive Software Systems

device. Within this intra-loop an inter-loop coordination is set up to elect a new master
node from within the group of slave nodes of the respective camera cluster. In further
steps of intra- and inter-loop coordinations, the system is brought back to a consistent
state.

Our approach is neither concerned with the placement of phases of the feedback loop
nor with the interaction of such phases in general. With respect to the proposed co-
ordination types, our approach, however, would be perfectly applicable to inter-loop
coordinations established between the execution phases of different control loops to han-
dle the execution of adaptation steps. A tight interaction with the planning phase in
separate local intra-loops coordinating with other intra-loops on remote devices could be
used to react swiftly to adaptation errors that are severe enough not to be addressable
by our coordination approach and thus would lead to a failure of the whole adaptation
process. With the approach Vromant et al. proposed, such a scenario could probably
be handled more gracefully with the aim to prevent the abortion or failure of the whole
adaptation.

2.2.3. Decentralization of the Execution Phase

The software reconfiguration patterns proposed by Gomaa et al. [15] rest on component-
based architectures. The work aims to determine the updatability of software components
without central knowledge of the components’ internal state and their participation in
ongoing communications. Each component therefore implements a state chart based on
the quiescence criteria, which is depicted in Figure 2.2. Different patterns for different
application scenarios exist. In the decentralized control patterns proposed by Gomaa et
al. a component [15] communicates with its predecessor and successor to determine the
state of the component itself with respect to the quiescence criteria [26]. If a component is
in a quiescent state, the adaptation of that component is deemed possible and adaptations
can be executed.

The software adaptation patterns proposed by Gomaa et al. [16] are based on service-
oriented architectures. The work aims to allow a service to be updated transparently
to the other services of the architecture. Services in the system therefore communicate
through connectors, which are comparable to proxies, with each other. The proxy imple-
ments the quiescence state chart presented in Figure 2.2 to determine when the service
the proxy belongs to is in a state to be updated. Different connectors depending on the
service’s role in the architecture exist. As soon as a proxy determines its managed service
to be in a quiescent state, the update of this service is allowed and can be conducted.

In none of their works do Gomaa et al. describe how adaptations are actually imple-

27

2. State of the Art

mented or coordinated. It is also not mentioned, which kinds of adaptations are possible.
Since no notion of depending adaptations exists in either of the proposed approaches, it
is save to assume adaptations to be local to the component or service, respectively. Both
approaches focus on a way to determine a quiescent state for a component or service,
respectively, to determine save application states to perform the actual adaptation.

The approach by Georgiadis et al. [14] intends to change the configuration of a
component-based software system at run time. A component in the system comprises the
component’s application-specific implementation, a management agent that performs the
adaptation tasks of its managed component and a view representing the system’s current
configuration. All component managers communicate via a reliable broadcasting mech-
anism with each other. The communication protocol basically comprises two types of
messages: Join/Leave messages are used to advertise new components within the network
or to notify peers about the graceful disappearance of components whereas Lock mes-
sages are used to satisfy a distributed locking scheme. This message type is especially
important with respect to the run-time modification of the component-based software
system. Only one component manager is allowed to modify the view of the system at a
time, thus, the locking scheme assures no adaptation manager to be allowed to modify a
view that has already been invalidated by another adaptation manager.

The approach by Georgiadis et al. [14], however, only allows the reconfiguration, i.e.,
rebinding, of the managed component’s provided and required ports. Other operations,
such as the explicit creation or deletion of component instances is not supported by the
protocol.

In summary, existing approaches to distribute and decentralize the execution phase
of the adaptation process lack means to coordinate several adaptations performed in
parallel or in a (at least partially) sequential order. Existing solutions to determine a
stable application state in a distributed, managed application, especially [16], are a good
starting point for an integration in our work and an extension to meet our imposed
requirements on the envisioned solution.

2.3. Roles in Adaptive Software Systems

The concept of roles has already been applied to the design and implementation of self-
adaptive software systems or software systems in general. However, existing approaches
only cover certain aspects of the Role concept, e.g., their collaborative and behavioral
nature (MACODO), their contextual and behavioral nature (HELENA) or mainly their
collaborative nature as in the field of Multi-Agent Systems. This section investigates

28

2.3. Roles in Adaptive Software Systems

the utilization of the Role concept in the existing research body and compares the exist-
ing notions of roles with our understanding of the concept, highlighting differences and
similarities.

2.3.1. MACODO [17]

A large software system is often comprised of many smaller subsystems that exchange
information amongst each other to perform their assigned tasks. Specific names are often
assigned to these subsystems, e.g., Message Broker, Provider, Booking System etc. These
names are basically Roles the respective subsystem plays in the overall system and, most
importantly, in relation to other subsystems with respect to their mutual interaction.
The respective responsibilities and “Roles” of interacting subsystems named Provider,
Message Broker and Receiver are intuitively understandable.

Modeling these collaborations between subsystems on an architectural level, however,
is a challenging task that the MACODO approach tackles. The approach aims to make
the collaborations among subsystems explicit on an architectural level to better capture
the system behavior that is a result of these collaborations. Therefore, MACODO pro-
poses different architectural views to capture the collaborative system behavior utilizing
the notion of Roles to describe responsibilities of subsystems and the interactions be-
tween them. The Collaboration & Actor View models the actors (i.e., Players) in the
system and the concrete collaborations between the actors. This view describes the run-
time architecture of a system in terms of actors as well as the collaborations between
them and assigns responsibilities to actors omitting unnecessary information about the
details of the collaboration. The Collaboration View models collaborations into reusable
units and decomposes them into reusable subunits. This view describes collaborations
in terms of implementation units and captures the type of collaborations, roles, behav-
iors and interactions. The Role & Interaction View models the run-time architecture of
collaborations in detail.

The notion of the Role concept in MACODO is organization-centric [9] because roles
are treated mainly as named places with players implementing the role-specific behavior
through the adoption of the interface demanded by the role of the collaboration. In MA-
CODO, the system behavior varies within the collaboration, i.e., the exchanging actors
participating in a collaboration can alter the overall system’s behavior. This variability,
especially at run time, however, has not been closely investigated in MACODO since the
approach focuses on the architecture of collaborative software systems at design time.

In summary, MACODO provides an interesting approach to capture collaborations in
large and distributed software systems, but omits run-time aspects of behavioral adapta-

29

2. State of the Art

Agent

RoleInteraction

* handles

*

contains *

*

is member *

Figure 2.6.: General role model used in multi-agent-systems.

tions. Our approach, in contrast, focuses on the utilization of the Role concept to foster
reliable run-time adaptations of highly distributed and interconnected software systems.

2.3.2. HELENA [24, 19]

The HELENA approach originally proposed a holistic engineering process for self-adaptive
software systems using the notion of Roles to improve the modeling of standard and dy-
namic system behavior. HELENA follows an extreme player-centric [9] approach, which
means that players are without specific behaviors of their own but serve as mere con-
tainers for the roles they are playing to exchange data. Any dynamic system behavior is
implemented in the role, thus, the behavior of a player changes depending on the set of
roles it currently plays. One of the major contributions of the approach is the descrip-
tion of run-time adaptations using formal methods to ensure system properties such as
correctness, i.e., if adaptations will result in consistent and valid system configurations.

In summary, HELENA mainly focuses on the design of self-adaptive software systems
using the notion of Roles to abstract from standard and dynamic system behavior. A
formal method was presented to describe changes in the software system and to rea-
son about these changes, but concrete solutions how adaptations are performed at run
time that ensure a consistent transition from the system’s source to its intended target
configuration are missing.

2.3.3. Roles in Multi-Agent-Systems

Due to the large variety of Multi-Agent-Systems (MAS) and their diverse fields of appli-
cability, we focus on the commonalities among several approaches with respect to their
utilization and application of the Role concept. In Figure 2.6, a generalized role model
applicable to many multi-agent-systems is depicted. Using an organization-centric [9]
notion of roles is common in MAS as it is used in [12, 3, 4], for example. Agents com-
municate or collaborate through a defined interface that denotes their responsibilities
(e.g., role) in the collaboration. A collaboration is generally not limited to a one-to-one

30

2.4. Perform Run-Time Adaptations

communication between two agents but allows several agents to participate. Due to the
organization-centric notion of roles in multi-agent-systems, the system behavior is varied
within the collaboration. Behavioral modifications of the system within a collaboration
can be achieved by different players implementing the required interface or responsibili-
ties of the role differently. A major drawback of the notion of roles in multi-agent-systems
is the inability of players, i.e., agents, to pick up new roles at run time easily.

2.4. Perform Run-Time Adaptations

In the previous sections of this chapter, we discussed the general architecture of self-
adaptive software systems, formal specifications of stable states of self-adaptive software
systems to safely perform adaptations, and role-based approaches in the domain of self-
adaptive software systems. An important aspect of self-adaptive software systems, how-
ever, has not been subject to a thorough discussion yet: how adaptations are actually
carried out at run time and how the adaptations that are supposed to be executed are
described. We will fill this gap in the remainder of this section.

Changes performed by a self-adaptive software system on itself during run time can
generally be classified as parameter adaptations or structural adaptations [38]. The class
of parameter adaptations usually only modifies publicly available variables of adaptive
software entities in order to change their internal behavior. The setParameter operation of
the 3L approach [25] serves as an example for parameter adaptations within component-
based self-adaptive software systems.

The class of structural adaptations of self-adaptive software systems is the more pow-
erful class of adaptations because the structure of the entire system or large parts of its
behavior can be modified. In the case of implementing the adaptive entity on the level
of software components or services, the modification of the binding of those components
or services is an evident structural adaptation. The modification of binding information,
however, is not a very powerful structural adaptation. Approaches such as 3L [25] or
SASSY [16], for example, allow the creation and removal of adaptive software entities
dynamically at run time. Such operations, for example, would allow the system to react
to changing system workloads by creating or removing adaptive software entities in re-
sponse. Together with the dynamic binding of these entities, it is possible to integrate
new adaptive software entities easily into the existing infrastructure or to remove exist-
ing entities from the infrastructure if the respective behavior is not required any longer.
The approach proposed by Hallsteinsen et al. [18] also suggests higher level adaptation
operations such as the replacement of adaptive software entities with another one or

31

2. State of the Art

Table 2.1.: Supported component- & service-level adaptation operations of selected SASS ap-
proaches.

SM
A

G
S

[3
6]

M
U

SI
C

[3
7]

H
al

ls
te

in
se

n
[1

8]

G
ra

f
[1

0]

3L
[2

5]

SA
SS

Y
[1

6]

R
ai

nb
ow

[1
3]

Create ? ? ✓ – ✓ ✓ –
Remove ? ? ✓ – ✓ ✓ –
Connect ✓ ✓ ✓ – ✓ ✓ –
Disconnect ✓ ✓ ✓ – ✓ ✓ –
Higher Level ? ✓ ✓ ◆ – – –

Fully Supported: ✓ | Partially Supported: ◆ | Not Supported: – | Not Mentioned: ?

the relocation of a single adaptive software entity. From a design perspective, the sole
creation and removal of entities lacks the ability to ensure the transfer of state informa-
tion from the source to the target configuration, which would be allowed by higher level
adaptation operations that were just mentioned. An overview of the supported adapta-
tion operations is shown in Table 2.1. Approaches, such as Graf [10] or Rainbow [13]
which are also displayed in Table 2.1, support operations different from the others. Rain-
bow relies on architecture-specific adaptation strategies, which cannot be mapped to any
component- or service-level adaptation operations. Graf is one of the few approaches
that relies on Java applications and the JVM to perform its adaptation tasks and uses
Bytecode rewriting at run time to modify the managed application.

The execution of adaptation operations has not yet been closely investigated with the
decentralization of the adaptation process in mind. Although some approaches, e.g., [16],
determine a safe application state at which adaptations can be performed without a
central control unit, the quiescence criteria [26] is applied only locally to a single adaptive
software entity. In general, the proposed approaches do not support either requirement
1 or 2 or do support them only partially, e.g., SASSY [16]. A concise comparison of
the previously discussed approaches with respect to our posed requirements on a self-
adaptive software system is given in Table 2.2. Requirement 3 is evidently not applicable
to approaches using a centralized adaptation management to execute adaptations of the
managed applications. Other approaches, such as SASSY [16] or the work of Georgiadis
et al. [14] and the later 3L approach [25] assume a reliable message channel between all
participating computing devices in the network, which limits the applicability of their

32

2.5. Summary

Table 2.2.: Comparison of SASS approaches with respect to the imposed requirements on a self-
adaptive software system.

Requirement

SM
A

G
S

[3
6]

M
U

SI
C

[3
7]

H
al

ls
te

in
se

n
[1

8]

G
ra

f
[1

0]

3L
[2

5]

SA
SS

Y
[1

6]

R
ai

nb
ow

[1
3]

1 Decentralized Execution – – – – ◆ ◆ –
2 Stable State before Adaptation – ◆ ✓ – ◆ ◆ –
3 Loss of Coordination Messages – – – – – – –
4 Adaptation Failures – – – – – – –

Fully Supported: ✓ | Partially Supported: ◆ | Not Supported: –

approaches to environments that can offer such a stable network link. None of the
surveyed approaches takes the possibility into account that ongoing adaptation may fail
or assume this not to happen at all at run time. Consequently, Requirement 4 is not
being addressed by the current state-of-the-art research approaches. Failed adaptations
might be detected in the next cycle of the feedback loop and then corrected, but we argue
that it is beneficial to handle possible errors within the execution phase to maintain a
consistent system configuration at all points in time.

2.5. Summary

In this chapter, the research landscape of self-adaptive software systems with special
focus on the execution phase of the adaptation management has been discussed. The
discussion of the research landscape was aligned to the requirements and research ques-
tions introduced in the previous chapter. We first discussed formal approaches to describe
a state in a self-adaptive software system that is considered safe to perform adaptation
without inconsistent system behavior, e.g., loss of application data. Subsequently, we dis-
cussed how and to what degree the adaptation management of state-of-the-art research
approaches is decentralized. In this discussion, we focused specifically on the execution
phase of the adaptation management’s feedback loop since this is the major field of in-
terest of this thesis. In a third section, it has been analyzed how the Role concept is
related to existing work in the field of self-adaptive and multi-agent-systems. Finally, the
execution of adaptations at run time in state-of-the-art approaches has been outlined.
The focus of the last discussion point was set to decentralization aspects, too.

33

2. State of the Art

In summary, the execution of adaptation groups, which are adaptations that depend on
each other, has not been widely considered in the current research. This holds especially
true in approaches coined by a decentralized execution phase of the adaptation manage-
ment. Approaches that focus on the decentralized execution of adaptation operations
concentrated on determining a quiescent state for the adaptive software entity under up-
date without a central coordinator. The execution of several adaptation operations at a
point in time is possible, however, it is not possible to express dependencies between these
adaptations. Consequently, the first requirement (“Decentralized Execution”) can only be
considered partially fulfilled at best by the existing research landscape. The second re-
quirement (“Stable State before Adaptation”), in contrast, can be considered as generally
met. Existing work by Kramer & Magee [26] and Vandewoude et al. [45] describes a state
in a potentially distributed application that allows the execution of adaptations in a safe
way, e.g., preventing inconsistent system behavior or loss of application data. Cheng et
al. [7] describe formal methods to reach the aforementioned state. The proposed adap-
tation [16] and reconfiguration [15] patterns by Gomaa et al. use the aforementioned
definitions and methods to reach such a safe application state. The results are in general
immediately reusable to our envisioned decentralized coordination approach for highly
distributed self-adaptive software systems. Requirements three and four are generally
not addressed by the current research landscape (Requirement 4: “Adaptation Failures”)
or assumed not to occur (Requirement 3: “Loss of Coordination Messages”) because a
reliable channel is assumed to be always available.

Multi-agent-systems have already adapted a notion of roles to describe collaborations
between the agents of the software system. The organization-centric [9] point of view
that most prominently relies on the collaborative nature of roles, is dominating in multi-
agent-systems. Roles in organization-centric approaches are just named places to describe
system functionality, which is actually implemented by the players of the respective role.
This organization-centric view on roles, however, is not sufficient to describe and address
all the application scenarios that were introduced in the previous chapter. The rescue-
robots scenario, for example, relies greatly on the context-dependent and behavioral
nature of roles and less on the collaborative nature of them.

Self-adaptive software systems introduce roles on the design and architectural level of
the system to capture collaboration-specific features of the system (MACODO [17]) or
to specify adaptations formally at design time (HELENA [24, 19]). The question how
roles can contribute to the decentralized execution of multiple depending adaptation op-
erations remains unanswered by these approaches and will be tackled in the following
chapters of this thesis.

34

3. Employing Roles in Decentralized
Self-Adaptive Software Systems

Self-adaptive software systems are usually coined by two different aspects of system
behavior: static system behavior provides the basic functionality of the software system
whereas dynamic system behavior can be added to or removed from the system context-
dependently. Software abstractions, such as programming-level run-time objects [10],
components [25] or services [33], do not cover the differences between dynamic and static
system behavior explicitly, but use the same abstraction for both system parts.

The Role concept is utilized as fundamental abstraction within this thesis to cap-
ture static and context-dependent concerns of the managed application. As outlined in
Chapter 1.3.2, a Role can be described through behavioral, collaborative and context-
dependent natures and is always played by a Player, which represents a static part of
the system. We make use of all three natures of this concept to fully incorporate the ad-
vantage of role-based abstractions for the execution of changes in self-adaptive software
systems.

Kühn et al. [28] pointed out that no unified role model exists, but different approaches
rather rely on different notions of a role. As a consequence, they developed a meta-
model family from which the role model used within this thesis will be derived. In this
chapter, this said role model is being developed. In a first step, we focus on the Role
Runtime providing the execution environment for role-based applications that implement
the self-adaptation property of the self-adaptive software system addressed within this
thesis. Subsequently, we focus on concrete concepts required from such a role runtime to
aid the distributed and decentralized adaptation of distributed role-based applications.
Such mechanisms incorporate a dedicated life cycle for the run-time representation of a
Role as well as a publicly accessible interface for the adaptation management to modify
the role-based application. Finally, we compare the features required in the developed
approach with the list of all role features developed by Kühn et al. [28] and with other
approaches in the domain of self-adaptive software systems utilizing the Role concept.

35

3. Employing Roles in Decentralized Self-Adaptive Software Systems

3.1. An Adaptation Supportive Role Runtime

The notion of Roles is used as an abstraction to design and implement the managed
application to explicitly distinguish between dynamic and static application behavior. In
Figure 3.1, the relation of role-based application, role runtime and execution management
is depicted. The managed application is represented by the Role-based Application and
is distributed across several devices. Consequently, the managed application implements
the dynamic system behavior using the Role concept and complies with the role model,
which will be developed in the course of this chapter and summarized in Chapter 3.3.
Every local application artifact of the distributed role-based application is embedded in
a Role Runtime, which serves as execution environment for the role-based application
and provides an interface to the Execution Management of the self-adaptive software
system through which the role-based application can be modified at run time. The
Execution Management refers to the execution phase of the previously discussed feedback
loop. Other phases of the adaptation management, i.e., the monitor, analyze and plan
phase of the feedback loop, are not important at this point and neither is their possible
distribution across different devices.

The plays relation between players and roles is indicated with solid arrows in Figure 3.1
and represents the run-time structure, which will also be referred to as configuration, of
the local role-based application. Hence, the modification of the relation between players
and roles represents a context-dependent structural adaptation of the application. In
order to be able to modify these bindings, but also to expose the correct system behavior
when multiple roles are bound to a player, the role runtime has to maintain a run-
time model of the device-local part of the managed application. This run-time model
is furthermore expected to be retrievable and modifiable by the execution management
through a well-defined interface, which we will discuss later in this chapter. Keeping
such an externally retrievable run-time model is the first requirement we pose on the role
runtime.

Besides the context-dependent nature expressed by the plays relation between roles and
players, roles in our approach also possess a collaborative nature, which represents the
interaction among roles. Collaborating roles may be located on different nodes, though.
The local role runtime is required to maintain collaboration information of every roles’
collaborations both locally and remotely. As an additional feature, each local role run-
time does not only have to maintain a record about each role’s respective collaborations
but also requires a means to determine when a response for any given remote invocation
of a role’s method has been received. Generally speaking, the role runtime has to be able

36

3.1. An Adaptation Supportive Role Runtime

Device 1

Role Runtime

Role-based Application

Player Player Player

Role Role Role
Role

Role

Device 2

Role Runtime

Role-based Application

Player Player Player

Role Role Role
Role

Role

plays relation between player and role collaboration relation between two roles

Execution Management Execution Management

query and modify query and modify

Figure 3.1.: Assumed role model of the role-based application at run time.

to determine when interactions among roles have finished. This information is essential
in order to determine a stable application state for the distributed role-based application,
which we will discuss in this chapter from the role-based application’s perspective and in
the next chapter from the decentralized adaptation’s perspective. In Figure 3.1, collabo-
rations between roles are indicated as dotted arrows representing both local and remote
collaborations of roles. Compartments, which are not depicted in Figure 3.1, are used
to capture application-intrinsic context-information, e.g., to group collaborating roles in
a common scope that can aid the dispatch of method invocations or to aid expressing
different concerns or layers of an application. In the remainder of this work, therefore, a
player always plays a role within the scope of a compartment.

With respect to this run-time representation of roles and players, it is important to
highlight that roles and players are perceived as indistinguishable from the application’s
perspective although maintained as distinct instances by the role runtime. Roles and
players, therefore, can be considered as one entity when they are bound together from
the application’s perspective. Since players are able to play multiple different roles, which
might provide the same interface, simultaneously, a Dispatcher is required to resolve the
receiver of a method invocation on the player. This dispatcher redirects the invocation
on the player’s interface to the correct role. Naturally, method invocations to roles
located on remote devices are resolved by the dispatcher in a similar manner to local role
invocations.

Relying on the principles and mechanisms the role runtime is based on and has to

37

3. Employing Roles in Decentralized Self-Adaptive Software Systems

provide, the role runtime’s support for local adaptations in response to changes in the
overall system’s computational environment will be discussed in the following.

3.2. Supporting Decentralized Run-time Adaptation

The Role Runtime is an integral part of the run-time adaptation process of the software
system. It maintains run-time information about available role types, the plays relation
between players and roles as well as the collaborations among roles. With respect to
the support of the run-time adaptation process, the life cycle of roles will be discussed
first. Subsequently, the adaptation interface of the role runtime required to support local
adaptations will be developed. Next, the process of reaching a stable application state
for a single role instance within a local run-time system will be explained relying on
the previously developed life cycle for roles. The developed process will be extended for
distributed, role-based applications finally.

3.2.1. The Role Life Cycle

The role life cycle is part of the run-time model of the role-based managed application
and describes the states a role in such a software system can be in. A life cycle for
roles is important especially during the adaptation of the software system at run time
with respect to the first research question, which addresses the issue of reaching a stable
application state before the adaptation can be performed. The goal of the decentralized
execution phase to maintain a consistent configuration of the managed application at
all times during the adaptation process also requires a precise definition of a life cycle
for roles. In [21], we described a life cycle for roles taking different layers of role-based
applications into account. Within this section, we will focus on the Application Layer
life cycle of roles and will elaborate on the life cycle states to cover all parts important
for run-time adaptations.

Application scenarios one and two described the adaptation of a fully deployed and
running software system. The dynamic parts of the software system in these two scenarios
are fully known at run time. Application scenario three, in contrast, described the
introduction of previously unknown dynamic system behavior, i.e., roles. The resulting
life cycle for a role-based software system, therefore, has to cover both type and instance
level of the Role concept. In the remainder, we will use the term role as a short-hand
for role instance and refer to the type of a role explicitly when necessary. Similarly, the
term player always refers to a concrete player instance. Since we allow roles to be bound
to arbitrary player types and assume players to be always present at runtime as they

38

3.2. Supporting Decentralized Run-time Adaptation

Role Type in Memory

Role Instance in Memory

Bound

Loaded

Installed

Passive

passivate/

remove/

Uninstalled
install/

uninstall/

instantiate/

load/

bindUnbound

unload

activate/ Active

unbind

Active
Idle Processing

Figure 3.2.: Life cycle for the Role concept covering the type level (for evolution purposes) and
the instance level (for adaptation purposes).

represent the static and context-independent parts of the software system, the type of
any given player is not significant for the discussion of a role’s life cycle.

In the life cycle, which is displayed in Figure 3.2, the states Uninstalled, Installed and
Loaded are related to the maintenance of type information for roles and are motivated by
application scenario three to introduce new or remove obsolete role types from the run-
time system. An Uninstalled role type is not known to the respective node at all. Thus,
using the install transition the type information is shipped to the nodes and installed on
the respective node. Subsequently, role type information can be loaded to the run-time
system and is then in the Loaded state. This state of a role type is at least required
for our approach to perform run-time adaptations because a role type loaded to the role
runtime can be used to create role instances via the adaptation interface, which will be
discussed later in Chapter 3.2.2.

The most important part of the role life cycle is concerned with the creation and
deletion of roles, their binding and unbinding process as well as their different execution
states. In the following, all life-cycle states related to these concerns are briefly explained.

Unbound: Roles in an Unbound state exist as concrete instances of a specific role type
within the local runtime. A role in such a state does not affect the behavior
of the role-based application because behavioral adaptations are realized through
roles being bound to players, which the respective role is not yet or not anymore.
Without being bound to a player, a role can also not participate in collaborations
with other roles. This state of a role can be considered a maintenance state, which

39

3. Employing Roles in Decentralized Self-Adaptive Software Systems

is required in the process of creating and destroying instances of roles.

Bound: A bound role does not only exist in memory but is also bound to a specific player.
At this point, we want to highlight that a specific instance of a role can only be
bound to exactly one player, but different instances of the same role type may
be bound to different players. The Bound state of a role contains two sub-states:
Active and Passive.

Active: A role in an Active state is considered by the dispatching mechanism of the
role runtime for the behavioral modification of the player’s behavior, i.e., methods
implemented by the role are invoked instead of those provided by the player. If a
role is currently serving any requests, i.e., a method invocation took place that is
currently processed by the role instance and the method has not yet returned, the
role is considered being in the Active/Processing state. If a role is active, but not
serving any requests, it is in the Active/Idle state. Both last mentioned states are
sub-states of the Active state and depicted as such in Figure 3.2.

Passive: A role in the Passive state is bound to a player, but not considered by the
role runtime’s method dispatching mechanism to alter the player’s behavior. In
this state, the role is consequently idle and does not perform any tasks. From an
application perspective, the player appears as if the role would not be bound based
on the player’s exposed system behavior.

The transition of a given role through its life cycle shall be explained in the following
with a scenario that evolves the managed application. A new encryption algorithm is
supposed to be introduced to the smart energy broker example described as application
scenario three (cf. Chapter 1.1.3). Before the update adaptation commences, the role is
in an Uninstalled state. This state though, is merely virtual because the type information
of the role is still missing in the local runtime, which is why no part of the system is able
to maintain this state information. The first steps of the update adaptation introduce the
type information to the local role runtime (Installed) and trigger the role information to
be loaded into memory (Loaded). Conceptually, the execution management is then able
to create new instances of this role type within the role runtime. The newly introduced
encryption behavior is furthermore required to be bound to a given player within the
system. An instance of the new encryption role type would be created and stored in the
role runtime’s memory. The role instance is therefore in the Unbound state. Immediately
after the creation of the role instance the role will be bound to the respective player,
thus entering the Bound state. In this state, the role is always in a Passive state and

40

3.2. Supporting Decentralized Run-time Adaptation

remains in this state until it gets activated by the execution management. The execution
management, however, needs to be able to ensure a consistent adaptation of the system if
multiple adaptations are performed on the same or different devices, which is the reason
for the role to be always in a passive state immediately after being bound. If the role was
immediately active, an inconsistent configuration of the application can be reached in
the case players collaborating through their roles with each other would expose different
behavior, because one player has already bound the new encryption role while the other,
for example, is still in the old configuration. As soon as the activation is issued, the role
enters the Active state and is now able to perform its behavior. From this point in time,
the role will constantly go back and forth between the Active/Processing and Active/Idle
state depending on whether it currently performs computational tasks or not. The role
instance can only be unbound and destroyed at a later point in time if it is in a passive
state. All described transitions are depicted in Figure 3.2.

3.2.2. Adaptation Interface

The adaptation interface of the role runtime is a set of provided methods that allows
the modification of the role-based application from a different process, e.g., the execu-
tion management of the self-adaptive software system as depicted in Figure 3.1. We
will rely on this interface specification in the next chapter where we outline the overall
contribution of this thesis, which addresses the execution of distributed adaptations of
role-based software systems without a central coordinator. In the following, the methods
provided within this interface to allow the modification of the role-based application by
the execution management, will be introduced.

create(roleType)
The create operation allows the creation of a new role instance within the local
role runtime. Newly created role instances are in the Unbound state. The create
operation takes the type of the role to instantiate as sole input parameter and
returns the identifier unique within the respective local role runtime of the newly
created role instance.

remove(roleInstance)
The remove operation removes the given role instance from the local role runtime.
If the role instance that is supposed to be removed is in the Unbound state, the
removal of the role will be performed and a boolean value indicating the result will
be returned. If the role is in any other state than the Unbound state, the operation
will not remove the instance and return unsuccessfully.

41

3. Employing Roles in Decentralized Self-Adaptive Software Systems

bind(playerInstance, roleInstance, compartmentInstance)
The bind operation establishes a plays relationship between a given player and a
role instance within a given compartment. The bind operation takes the unique
instance identifiers of role, player and compartment as input and returns a boolean
value that indicates whether the plays relation could be established successfully or
not. If a role is already bound to a player and a bind operation is issued affecting
this role instance, this method returns false without changing the underlying run-
time model of the application, i.e., the plays relation between the role instance
and its player is not modified. This constraint is a result of the assumption that a
role instance can only be played by exactly one player at any given point in time.
If a role is intended to be bound to the player it is already played by, the operation
will succeed without changing the underlying run-time model. Consequently, the
bind operation moves the given role from the Unbound state to the Bound/Passive
state, thus, not modifying the player’s exposed behavior yet, which is desirable if
several adaptations have to be coordinated consistently, especially across multiple
devices.

unbind(playerInstance, roleInstance, compartmentInstance)
The unbind operation is the inverse operation to the Bind operation and releases
the plays relationship between a role and its player within the given compartment.
The unbind operation takes the unique instance identifiers of role, player and com-
partment as input and returns a boolean value that indicates whether the plays

relationship could be released successfully or not. This method will only succeed
if the role is in the Bound/Passive state before the unbind operation is issued and
thus moves the given role to the Unbound state.

activate(roleInstance)
A newly created role is in the Bound/Passive state, which means it does not mod-
ify the player’s behavior since it is not considered by the role runtime to execute
application-specific behavior. Roles that are in the Bound/Passive state are reg-
istered for the execution of application behavior by using the activate operation,
which takes the unique instance identifier of the role instance to activate as sole
input and returns a boolean value to indicate whether the activation was successful
or not.

passivate(roleInstance)
The passivate operation is the inverse operation to the Activate operation and
removes the given role instance from the list of roles considered by the runtime’s

42

3.2. Supporting Decentralized Run-time Adaptation

dispatching mechanism for the execution of application behavior of the respective
player. It takes the unique instance identifier of the role to passivate as sole input
and returns a boolean value to indicate whether the role could be moved to the
Bound/Passive state or not. When the role to passivate is currently active and
processing a request, i.e., if it is currently performing application behavior, the
passivate operation will not return unless the role had finished its current task
and went to the idle state. For any given role, it is only possible to go from the
Bound/Active/Idle state to the Bound/Passive state as it was discussed previously.

getState(roleInstance)
This method is used to obtain the internal state information, which is returned
through the return value of the method, of the given role. The internal state of
a role describes application data stored within the attributes, for example, of the
given role instance. A role of which state information is supposed to be obtained
must be in the Bound/Passive life-cycle state at the time this operation is exe-
cuted. Otherwise a defined error value will be returned to indicate that no state
information could be obtained from the specified role instance. The criteria of the
role to be in the Bound/Passive state for this method to succeed is also relevant to
prevent the loss of application data. If a role was still allowed to perform compu-
tations that could possibly alter its internal state after the state information was
obtained within an adaptation process, the subsequently made changes would be
lost.

setState(roleInstance, stateData)
Obtained state information from a different role can be set to the role instance
specified within this method. The successful execution of this method is indicated
through a boolean return value. This method only succeeds if the role instance
supposed to receive the state information is in the Bound/Passive life-cycle state
at the time the operation is executed. The rationale for the required life-cycle state
of the role to be in before this method can be successfully executed is the same as
for the just discussed getState method.

connect(roleInstance, remoteRole)
The connect operation establishes a collaboration between two instances of roles,
which do not necessarily need to be located on the same physical computational
device. The connect operation takes the local role instance identifier as first input
parameter and a tuple denoted as remoteRole consisting of {address, role instance
identifier} as second input parameter and returns a boolean value to indicate

43

3. Employing Roles in Decentralized Self-Adaptive Software Systems

whether the collaboration could be established successfully. Similarly to the Bind
operation, an established collaboration between two roles is not immediately active,
but remains in a preliminary state until an Activate operation is invoked on the
role. Consequently, the role does not necessarily need to be in a passive state when
the connect operation is invoked.

disconnect(roleInstance, remoteRole)
The disconnect operation is the inverse operation to the Connect operation and
releases the collaboration between two roles. The signature is identical to the
Connect operation, consequently. Since an ongoing collaboration between two dif-
ferent role instances is supposed to be released with this method, the local role
runtime needs to ensure the role to reach the Bound/Passive state, i.e., a stable
state to ensure no data in transit gets lost, in prior to the actual removal of the
dispatch information.

Transitions between the life cycle states of a role (cf. Figure 3.2) denoted with a name
that matches the name of the interface operation, are triggered by the invocation of the
respective interface operation. Other interface methods are introduced to support the
different scenarios introduced in Chapter 1.1.

3.2.3. Local Stable State for Roles

In Chapter 2.1.2, we discussed adaptation models that ensure the transition of a given
program from a source to a target configuration. Those models proposed different ap-
proaches to change the application behavior ranging from an “instantaneous” adaptation
of the application to a temporary co-existence of source and target behavior of the appli-
cation. The core idea, however, in all three presented models is the notion of reaching a
state in the program in which the behavior can be switched without data loss or any other
harmful side effects. If such a state cannot be reached naturally, the source program’s
behavior has to be restricted in a way that such a state is guaranteed to be reached in
bounded time. In [26, 45], two approaches were presented that aim to find such a state
in which the source configuration can be replaced by the target configuration within a
single adaptation step. Both approaches were discussed in detail in Chapter 2.1.1.

In our approach of a role model that supports context-dependent and collaborative
adaptation, we do not describe a new approach comparable to quiescence and tranquility,
but rather provide means within the role model to allow the implementation of either of
those approaches if required. Evidently, the role life cycle and the adaptation interface
aim at the Guided Adaptation model [7] (cf. Chapter 2.1.2). The role life cycle provides

44

3.2. Supporting Decentralized Run-time Adaptation

two distinct states to distinguish the current working state of any given role instance:
Active and Passive. The former is further subdivided into two states referred two as
Processing and Idle. A role in the Active/Processing state is bound to a given player,
thus, extending or modifying the behavior of the player. Furthermore, the bound role
instance is currently serving a request, i.e., one of the role’s provided methods was invoked
and the execution is ongoing. If the execution of the behavior is finished and if no new
behavior is invoked, the role instance is in the Active/Idle state.

Consequently, a role that is in the Active state cannot be considered to be in a stable
state and is thus not ready for adaptation. Following this rationale, the Passive state of
a role is considered the stable state of the role and a role in this state is thus ready for
adaptation. Therefore, the Active/Processing state can be mapped to the Active state
of the lifecycle proposed by Kramer & Magee in [26]. The quiescent state of [26] itself is
represented by the Passive state in our approach. The Active/Idle state is comparable
to the Passive state described by Kramer & Magee [26] since currently no computational
tasks are performed, but can be started any time when one of the role’s methods is
invoked.

The respective interface operations of Passivate and Activate are used to enforce re-
strictions on the managed application’s behavior or to release those restrictions in order
to reach or leave a stable application state, respectively. Any additional implementa-
tion of a subsystem that is responsible to ensure quiescence, tranquility or a different
approach to ensure a safe application state to be reached can utilize these interface op-
erations and the provided role model to implement the desired criteria on the system
during the adaptation process.

Having discussed the local mechanisms required to reach a local stable state of any
given role instance, reaching such a state in a distributed environment in which the stable
state spans across device borders involving multiple adaptations, will be presented in the
following.

3.2.4. Distributed Stable State for Roles

In a distributed role-based application, adaptations may affect the configuration of the
run-time model on multiple nodes. Imagine the basic scenario in which application
behavior, i.e., roles, are supposed to be exchanged in response to a context change of the
system. The different roles on the respective computational devices, however, collaborate
with each other and with other roles that are not affected by the adaptation request. In
order to perform the adaptation without violating the adaptation goals, i.e., to prevent
an inconsistent configuration and the loss of application data of ongoing collaborations

45

3. Employing Roles in Decentralized Self-Adaptive Software Systems

during the adaptation process, it is essential to coordinate reaching a stable state for the
roles affected by the adaptation request before the actual adaptation process starts. In
the following, it will be discussed how this coordination can be achieved in order to fulfill
the adaptation goals.

Our approach to determine a stable application state for roles in distributed environ-
ments relies on the collaborative nature of roles and the run-time information on role
instances and their local and remote collaborations maintained by every role runtime.
This information being present and retrievable by the execution management, enables
the system to enforce a stable state for roles affected by the adaptation. The execution
management applies the notion of quiescence [26] to determine this stable state. Addi-
tionally, we rely on the local runtime’s dispatching mechanism to be able to keep track
of ongoing invocations of role behavior.

Assume, two roles located on different devices and connected via a collaboration re-
lation are supposed to be exchanged in response to a context change. Furthermore,
the respective operations have been issued to the execution management instances lo-
cated on the affected devices in order to exchange both roles. Before the actual adap-
tation can be performed, both roles are required to reach a stable state. In a first
step, the execution management queries the respective local role runtime in order to
obtain information about the collaborations of the roles affected by the adaptation. In
a second step, Passivate messages are issued to all collaborating roles in order to move
them to the Bound/Passive state temporarily. If all other execution management in-
stances respond with a successful PassivateResponse message, the local role is moved
to the Bound/Passive state. Collaborating roles on remote peers are moved to this
Bound/Passive state as soon as they have reached the Active/Idle state. To enforce
the respective remote roles to reach such a state, no new method invocations are allowed
to be scheduled to these collaborating roles when the Passivate message was received.
The description of reaching a distributed stable application state will be concluded by a
brief explanation of the aforementioned messages, which have not yet been discussed:

PassivateRequest The Passivate message is used to inform remote execution managers
that a given role has to be moved into a passive state in order for a given local role
to be ready for adaptation. The Passivate message takes the instance identifier
of the role located on the remote runtime. The remote role’s identifier represents
the role that is required to enter a passive state before the local adaptation can be
performed.

PassivateResponse The PassivateResponse message indicates the successful transition

46

3.3. Comparison with Role Features

of the role to the Bound/Passive state. It contains the instance identifier of the
role and a status flag that indicates a successful or unsuccessful transition of the
role to the Bound/Passive state.

Activate The Activate message is the inverse coordination message to the Passivate
message and triggers remote roles to resume their work after the adaptation process
has been finished, i.e, the role instance is moved back to the Active/Idle state in
which new invocations can be issued and served.

With this approach, we clearly follow the quiescence approach proposed by Kramer &
Magee [26], which also results in a Guided Adaptation [7] of the decentralized adaptation
process. Using the less disruptive tranquility [45] approach to ensure a safe application
state would be possible if the internal communication scheme of every transaction, i.e.,
role collaboration, would be specified at design time as well as observable and interrupt-
ible at run time. This could be realized, for example, with the help of the MACODO [17]
approach, which makes collaborations between roles explicit at design time, i.e., sequences
of mutual invocations among collaborating roles are explicitly specified. Leveraging this
knowledge at run time, aids the part of the coordination protocol to determine when a
safe adaptation of collaborating roles is possible during an ongoing collaboration. Our
proposed messages could still be of use though as a fallback, because tranquility [45] does
not ensure a safe application state to be reached within a bounded timeframe.

3.3. Comparison with Role Features [28]

The application scenarios described in the first chapter of this thesis serve as foundation
to define the capabilities and limitations of a Role within a role-based application. In
the autonomous-car scenario, we described different behaviors of a car that depend on
the current weather conditions. A Role thus may be context-dependent. In both the
autonomous-car and the rescue-robots example, roles are used to modify the behavior of
the system, but roles in these examples also collaborate with other roles to fulfill their
task, e.g., cars that drive in a platoon or rescue-robots that work together to rescue
victims. A Role thus may also be collaboration-dependent. The behavioral nature of roles
is evident in all described application scenarios and is indeed the characteristic of a Role
we always assume to be present. Our understanding of a Role encapsulates all three
natures, which is the reason for the Role concept to be considered a suitable abstraction
for dynamic system behavior with respect to the third research question. Roles, though,
are not forced to always be context-dependent and collaborative besides having their own

47

3. Employing Roles in Decentralized Self-Adaptive Software Systems

Table 3.1.: Comparison of different role models.

Role Nature MACODO HELENA MAS Ours
Context-Dependent ✗ ✓ ✗ ✓

Collaboration-Dependent ✓ ✓ ✓ ✓

Behavioral ◆ ✓ ✗ ✓

Supported: ✓ | Partially Supported: ◆ | Not Supported: ✗

state and behavior. Consequently, roles in our approach may be behavioral and either
context-dependent or collaboration-dependent or both if necessary. Any of these combi-
nations is supported for run-time adaptation by the proposed role model and adaptation
interface.

With roles it is possible to capture context-dependent adaptations of behavioral and
collaborating units of a self-adaptive software system without platform-specific knowledge
about the implementation of these units. Other approaches, discussed in detail in the
previous chapter, only support a subset of the role concept in terms of a Role’s nature.
An overview what Role natures are supported by the previously discussed approaches,
namely MACODO [17], HELENA [24, 19], and multi-agent-systems, e.g., [12, 3, 4], is
given in Table 3.1. The collaborative nature of roles is the most often used part of the
Role concept, which is not surprising since it is an intuitive mind model to describe the
relation of two interacting computational units. The behavioral nature of roles appears
to be less evident with respect to the collaboration of two computational units. Both
multi-agent systems and MACODO implement the role-specific behavior as part of the
player and just activate and deactivate the said behavior depending on the player being
part of a certain collaboration or not. MACODO was graded with at least partial support
for the behavioral nature of roles because a collaboration itself is abstracted as separate
design unit prescribing the concrete interaction scheme and behavior of a role within the
collaboration, which makes this nature a little more explicit than in multi-agent systems
in general. So far, only the HELENA approach uses the concept of roles to capture
context-dependent behavior of self-adaptive software systems.

HELENA and our approach include all three natures of roles. The HELENA approach
uses Ensembles to make collaborations explicit [19] and an extension for self-adaptive
software systems covers the context-dependent behavior of roles [24]. The two main
differences between HELENA, especially including the recent extension for self-adaptive
software systems, and our approach are the definition of players on the one hand and
the focus on different parts of the life cycle of the system on the other hand. In the

48

3.3. Comparison with Role Features

HELENA approach, players are mere containers used for the exchange of data between
roles whereas players in our approach possess their own state and behavior. HELENA
proposes a methodology to design self-adaptive role-based software systems. We are
concerned with the run-time adaptation of such role-based software systems in highly
distributed environments in contrast.

Although other approaches also support all three role natures or a subset of them,
the concrete role model used as a foundation differs even among approaches supporting
the same set of features. Kühn et al. [28] performed an exhaustive study of existing
role-based modeling and programming language approaches deriving a set of 26 features
in total extending a seminal work on role features by Steimann [40]. This feature list
is used as a foundation for a family of meta-models for role-based software systems. In
the remainder, we compare our assumptions and requirements of a role-based software
system and a role-based adaptation approach to these 26 features, thus, explicitly stating
and summarizing the Role Model we rely on within this thesis. The list of the 26 role
features including the degree of their support is given in Table 3.2.

The degree of support for the Role features was divided into four categories: Features
that are fully supported (✓) are either fundamental assumptions we make on the role-
based run-time system or are directly reflected in concepts presented in this chapter or
the following. Not supported features (✗) are explicitly prohibited by our approach. On a
given set of other role features, we do not make any assumptions about (❊). Such features
are mainly related to the modeling level of a role-based application, but if such a feature
is present at run time, the presented concepts in this thesis will remain unaffected.

Our approach supports the role features #1 through #5 since they postulate the
foundations of the behavioral, collaborative and context-dependent natures of roles. In
addition, features #15 and #26 are supported or rather required in order to address
the concrete instances of roles, players and compartments at run time because run-
time adaptations of the role-based software system would not be possible without these
features. Feature #11 is explicitly supported to express roles to be able to extend the
interface provided by the player, which allows a much broader range of context-dependent
and collaborative applications in contrast to roles that are just specializing the already
existent interface of the players playing them.

In our approach, we conceptually assume that only players can play roles. Allowing
roles to play roles (#8) or compartments to play roles (#22 and #23) would render the
current concept of reaching a stable state for roles impractical since much more relations
to other run-time entities need to be considered. Furthermore, especially in the case in
which roles play roles to further modify the player’s behavior, we believe that such an

49

3. Employing Roles in Decentralized Self-Adaptive Software Systems

Table 3.2.: Our Role feature model using the initial 15 role featues by Steimann [40] and the 11
added by Kühn [28].

Feature Level
1. Roles have properties and behaviors M0, M1 ✓

2. Roles depend on relationships M1 ✓

3. Objects may play different roles simultaneously M0, M1 ✓

4. Objects may play the same role (type) several times M0 ✓

5. Objects may acquire and abandon roles dynamically M0 ✓

6. The sequence of role acquisition and removal may be restricted M0, M1 ✓

7. Unrelated objects can play the same role M1 ✓

8. Roles can play roles M0, M1 ✗

9. Roles can be transferred between objects M0 ✓

10. The state of an object can be role-specific M0 ❊

11. Features of an object can be role-specific M1 ✓

12. Roles restrict access M0 ✗

13. Different roles may share structure and behavior M1 ❊

14. An object and its roles share identity M0 ✗

15. An object and its roles have different identities M0 ✓

16. Relationships between roles can be constrained M1 ❊

17. There may be constraints between relationships M1 ✗

18. Roles can be grouped and constrained together M1 ❊

19. Roles depend on compartments M0, M1 ✓

20. Compartments have properties and behaviors M0, M1 ✗

21. A role can be part of several compartments M0, M1 ❊

22. Compartments may play roles like objects M0, M1 ✗

23. Compartments may play roles which are part of themselves M0, M1 ✗

24. Compartments can contain other compartments M0, M1 ❊

25. Different compartments may share structure and behavior M1 ❊

26. Compartments have their own identity M0 ✓

Supported: ✓ | Not Supported: ✗ | No Assumption: ❊

50

3.3. Comparison with Role Features

approach can be realized using appropriate dispatch information at run time. Another
feature we explicitly do not support is #14, which states roles and players to share an
identity. From an intrinsic perspective of the role-based application this assumptions
holds true because roles and players are perceived as indistinguishable entities as soon
as they are bound together. Our work, however, is concerned with the management and
adaptation of (distributed) role-based applications and thus, needs to clearly distinguish
between player, role and compartment instances.

All other features not explicitly mentioned are free of any assumptions and are mostly
design-time-specific (M1). One exception is feature #10, which states the state of a player
might be role-specific. Since we do not make any assumptions about players except for
the fact that they are playing roles and have their own state and behavior, this feature
is of no concern for our approach. Feature #21 allows a role to be bound to multiple
compartments. Since we perform instance adaptation and require the concrete instance
identifiers for roles, players and compartments, our presented approach is generic enough
to allow this feature to be conceptually present at run time or not, which allows us to
drop any assumptions about this role feature. Following this reason, compartments may
or may not contain other compartments at run time (#24).

51

4. Decentralized Execution of
Distributed Adaptations

The decentralized execution of adaptations is the first identified requirement for self-
adaptive software systems supposed to be applicable in application domains coined by
a high degree of distribution and decentralization and that require a context-dependent
adaptation of their application behavior. In this chapter, the proposed approach to
enable self-adaptive software systems to perform run-time adaptations without a central
coordinator is presented.

The approach relies on the external control [38] approach, which is coined by a clear
separation of adaptation management and managed application. Both subsystems of the
self-adaptive software system are linked through a well-defined interface. This design
approach was chosen to ensure the separation of adaptation-specific concerns from the
role-based runtime hosting the managed application. A well-defined interface between
adaptation management and managed application furthermore relieves the adaptation
management from dealing with specific role features provided by the role-based runtime of
the managed application. Hence, a reusable and widely applicable approach to coordinate
adaptations in a highly distributed role-based software system is promoted. Additionally,
we neither rely on a specific architecture of the managed application nor on a specific
input set from previous phases of the feedback loop. Instead, the notion of Roles is
used to (i) describe the possible adaptations of the managed application supported by
the proposed approach; and (ii) to provide a specification how these changes have to
be provided as input set from previous feedback loop phases. Consequently, using the
external control approach results in a specification of well-defined interfaces between the
adaptation management and the managed application as well as between the distributed
instances of the decentralized execution phase of the feedback loop.

The resulting architecture of a self-adaptive software system that conceptually imple-
ments the proposed approach is depicted in Figure 4.1. Both adaptation management
and managed application are depicted as two distinct subsystems of the overall software
system. The managed application is distributed across several computational devices

53

4. Decentralized Execution of Distributed Adaptations

Node 1 Node 2 Node N

Adaptation Management

Execution

Role-based Managed
Application

Adaptation Manager

Role-based Managed
Application

Adaptation Manager

monitor
modify

Role-based Managed
Application

Adaptation Manager

monitormodify

Monitor Analyze Plan
IF_1

IF_2

IF_3

Figure 4.1.: System overview of a self-adaptive software system featuring a distributed and de-
centralized adaptation execution.

referred to as Nodes and comprises the role runtime and the actual application supposed
to be adapted at run time. Both role-based application and role runtime have been dis-
cussed in detail in the previous chapter with respect to their conceptual contribution to
the run-time adaptation (also cf. Figure 3.1 on Page 37). The Adaptation Management
is divided into components representing the different phases of the MAPE-feedback loop.
Since the actual execution of adaptations at run time is the primary research focus of
this thesis, no assumptions are made about the distribution, decentralization or inter-
nal implementation of the phases for monitoring, analyzing or planning of the feedback
loop. The proposed decentralized Execution phase realizes the execution of adaptations
through Adaptation Managers distributed to all nodes of the system collaborating with
each other to perform the adaptation process. Each adaptation manager controls and
monitors its local role runtime of the distributed role-based application through a well-
defined interface realizing the self-adaptation and self-awareness properties of the system.

The interface of the role runtime presented to the adaptation managers denoted as
IF_3 in Figure 4.1 was discussed in the previous chapter. The adaptation managers
shown in Figure 4.1 fulfill the tasks of the execution management shown in Figure 3.1
on Page 37 in addition to the decentralized execution of the run-time adaptations.

In the remainder of this chapter, we focus on the decentralized execution phase of the
self-adaptive software system as the main contribution of this thesis. The system model
and error models addressed by the approach will be discussed first. Subsequently, the in-
terface between the feedback loop’s planning component and the proposed decentralized
execution component, which is denoted as IF_1 in Figure 4.1, will be discussed. This
interface introduces role-based reconfiguration plans, which describe the steps that have

54

4.1. System Model and Error Models

to be performed by the execution phase in order to migrate the managed application from
the current configuration to the intended target configuration. Before the coordination
protocol, which enables the adaptation managers to perform run-time adaptations with-
out a central management instance (illustrated as IF_2 in Figure 4.1) is introduced in
Chapter 4.4, the execution of adaptation steps will be discussed if these adaptations can
be performed solely on a single node using IF_3. Having specified the protocol to enable
the decentralized adaptation of the distributed managed application, a brief explanation
will be given how the presented approach can be used to enable software updates of
the context-dependent parts of the managed application. Finally, we will summarize the
contributions presented in this chapter and relate them to the posed requirements and
raised research questions.

4.1. System Model and Error Models

Both the decentralized execution phase of the adaptation management as well as the
managed application are distributed to several Nodes. Nodes are assumed to be com-
putationally powerful enough to host both the execution of a role-based application and
the related execution component of the adaptation management. With respect to the
underlying network, we assume all nodes to be connected to the same network. Further-
more, every node can reach every other node within one step. This is important for the
presented coordination protocol since routing problems of coordination messages are of
no concern for this work.

Neither the role-based application nor a single node nor the communication channel,
however, is required to be reliable. In [31], three different error models for distributed
systems and algorithms are defined: A Link Failure defines any group of failures in
which messages put on any given channel can randomly get lost. A Stopping Failure
defines any group of failures in which processes randomly stop during their execution.
A Byzantine Failure defines any group of failures that are the result of faulty processes
that exhibit completely unconstrained behavior, e.g., behavior that is not specified by
any given protocol of the application.

Within this thesis, we address Link and Stopping Failures in the developed approach,
i.e., the proposed approach will be able to consistently execute adaptations without cen-
tral control despite Link and Stopping Failures. The coordination protocol, which is part
of the approach and which will be introduced in Chapter 4.4, relies on the transmission
of messages to distribute status and progress information during the execution of the
adaptation. Link failures, therefore, denote the issue of such coordination messages be-

55

4. Decentralized Execution of Distributed Adaptations

ing lost during transmission. Adaptation managers use this protocol to coordinate and
synchronize local adaptation steps within the overall adaptation process. Stopping fail-
ures, in contrast, denote the issue of these adaptation managers going down ungracefully
during the execution of an adaptation process. The developed protocol will be able to
detect lost coordination messages and to react appropriately to cope with the link failure
model. Furthermore, adaptation managers will have the possibility to recover from stop-
ping failures. For adaptation managers that are still online, the protocol will specify the
appropriate behavior of the adaptation managers to proceed with the execution of the
adaptation process despite one or more adaptation managers having stopped suddenly.

In addition to link and stopping failures, we also address the special case of adaptation
failures, which we introduce specifically within this thesis and which are not part of the
failure models presented in [31]. Adaptation failures occur locally between adaptation
manager and the role runtime providing the adaptation interface discussed in the previous
chapter. An adaptation failure, for example, would be denoted by a create or bind

operation invoked by the adaptation manager that returns a negative execution result,
i.e., the role runtime was unable to instantiate the new role instance or failed to establish
the play relation between role and player instance. The case of a randomly stopping
role-based application during the execution of an adaptation process is also part of this
failure scenario because local adaptations cannot be performed in this case as well.

Byzantine failures, which denote adaptation managers behaving maliciously to harm
the system while an adaptation process is going on are not considered within this thesis.
Rather, we assume all adaptation managers involved in the execution of an adaptation
process to behave in accordance with the coordination protocol developed in this thesis.

In summary, link failures, stopping failures and adaptation failures will be addressed
by the approach presented in this thesis. At this point, we want to highlight that every
error model is only of concern for our work when the respective failure occurs during the
execution of a concrete adaptation process. That means the solutions presented within
the coordination protocol are not intended to serve as or replace a dedicated monitoring
of the internal state of the self-adaptive software system within the feedback loop of the
system to detect system failures or self-healing approaches, for example.

4.2. Adaptation Operations and Adaptation Transactions

In the previous chapter, the behavioral, context-dependent and collaborative nature of
roles was discussed as well as the implications for the local role runtime with respect to
the support of both local and distributed adaptations. Such an adaptation was described

56

4.2. Adaptation Operations and Adaptation Transactions

(a) Structural Role-based Adaptation (b) Collaborative Role-based Adaptation

Figure 4.2.: Structural and collaborative adaptations using adaptation operators according to
Zhang et al. [7].

by Zhang et al. [7] as a transition of a program from a source system to a target sys-
tem. With respect to distributed role-based software systems, the source system, which
is also referred to as source configuration within this thesis, represents the entirety of
binding relations between players and roles as well as the collaborations among roles.
An adaptation, consequently, modifies the binding relations between players and roles or
the collaborations among roles. The modification of the binding relation of players and
roles is considered a structural adaptation [38] since the structure and composition of the
system with respect to the behavioral entities, i.e., the roles, is modified. The relocation
of a role from a player on one device to a player on another one as discussed in the second
application scenario serves as an example for such a structural adaptation as well as the
coordinated exchange of local system behavior (roles) discussed in application scenario
one. In contrast, changing role collaborations does not effect the placement of roles but
rather their interaction and is therefore considered a collaborative adaptation. The in-
tegration of a newly created role in existing system collaborations can be considered a
collaborative adaptation of the application. Figure 4.2a depicts a structural adaptation
of the system with the example of removing a role instance (represented by a circle) from
a player (represented as a rectangle) and adding a new instance to a different player. A
collaborative adaptation is depicted in Figure 4.2b in which one collaboration between
two roles is released and a new one is established through an adaptation. Although
each role runtime maintains its own local view of the role-based application, the overall
run-time model of the distributed role-based application is considered as system or con-
figuration that is reconfigured during an adaptation process, i.e., the depicted players in
Figure 4.2 are not necessarily supposed to be located on the same device.

The modification of a binding relation between a player and a role or the modification
of a collaboration between roles is regarded as a logical adaptation step to migrate the
role-based application from its source to the desired target configuration. In the follow-
ing, the concept of an Adaptation Operation will be discussed, which is used to describe
such a single adaptation step. Subsequently, the properties and features of an Adaptation

57

4. Decentralized Execution of Distributed Adaptations

Transaction in our approach to allow a decentralized adaptation of role-based software
systems will be discussed. As it was previously mentioned, the transition of the managed
application from the source to the target configuration may be composed of several adap-
tation steps, i.e., adaptation operations. We encapsulate several adaptation operations
that denote a logical transition of the system within an adaptation transaction to ensure
a consistent adaptation.

4.2.1. Adaptation Operations

An Adaptation Operation describes a logical adaptation step of the role-based application
modifying either the binding relation between a player and a role or the collaboration
between roles. Following this consideration, an adaptation operation has to capture in-
formation of both source and target configuration. The former is used to identify roles
and players of the current configuration subject to the adaptation whereas the latter is
used to describe the state of role-player bindings or role collaborations after the adapta-
tion was performed. Therefore, an adaptation operation requires the following structure
representing parameters that have to be filled with the concrete run-time information of
roles and players etc.

Operation ID This identifier for the adaptation operation needs to be unique within the
scope of an adaptation transaction to distinguish between individual adaptation
operations.

Operation Type An adaptation operation to add or remove a new role instance to or
from a player requires almost the same set of information in order to describe the
target configuration of the system after the operation was performed, for example.
The operation type is therefore used to specify the exact semantics of the adaptation
operation, e.g., if the specified information for the target configuration of the system
represents an added or removed role instance. We will first finish the discussion of
the remaining parameters of an adaptation operation before we will focus on the
concrete semantics our approach supports as adaptation step.

Target Node This parameter describes the future configuration of the adapted applica-
tion. Within the target node, the player, compartment and role information are
specified as well as the address of the device that is hosting the adaptation man-
ager, which is then responsible for altering its co-located role-based application.
The target node describes the configuration of the adapted application after the
operation has been performed, e.g., if new behavior is supposed to be added to

58

4.2. Adaptation Operations and Adaptation Transactions

a player, the target node would denote the concrete player instance and the role
type to bind to the given player instance as well as the compartment instance in
which the role is supposed to be played by the player. After the execution of the
operation, a new instance of the specified role type is bound to the player, there-
fore, modifying the player’s behavior. If behavior is supposed to be removed from
a player, for example, the specified role instance is not played any further by the
specified player after the operation was carried out.

Order This parameter is used to establish predecessor-successor relations between dif-
ferent adaptation operations. Adaptation operations with a lower value for this
parameter will be executed before other adaptation operations configured with a
higher value and the execution of subsequent adaptation operations will not be
started until all previous operations finished successfully. Evidently, adaptation
operations that carry the same value for this parameter are allowed to be executed
in parallel.

Depending on the operation type denoting the execution semantics of the adaptation
operation at run time, the following two additional parameters have to be specified in
order to fully describe the adaptation step from the source to the target configuration:

Source Node This parameter describes the current configuration of the role-based ap-
plication. The source node is composed of the same set of parameters as the target
node parameter, but describes the current configuration of the application. More
specifically, the tuple of role, player and compartment instances represent the start-
ing point for the adaptation step represented by the adaptation operation.

State This property is only required if both source and target node are specified for a
specific adaptation operation. It prescribes if internal state information of the in-
volved role is supposed to be transferred from the source to the target configuration
of the managed application.

The overall structure of adaptation operations is summarized in Figure 4.3 including a
graphical distinction for mandatory and optional parameters.

All adaptation operators share the same set of configurable parameters as it was previ-
ously discussed. The semantics and, thus, the reconfiguration that is eventually executed
by the adaptation managers is encoded in the operation type parameter. In the follow-
ing, we briefly present and describe the operation types that are currently supported as
adaptation steps by the proposed decentralized execution phase.

59

4. Decentralized Execution of Distributed Adaptations

Identifier Type Order State TargetNode SourceNode

Player Role Compartment Address

optionalmandatory parameters

Figure 4.3.: Mandatory and optional parameters for Adaptation Operations.

Add Using the add operation type, new behavior is added to a specific player instance,
e.g., encryption behavior is added to two respective players using this operation
type when the user is detected to enter an untrusted network. Consequently, only
the target node parameter of the adaptation operation is required to perform this
adaptation step. The target node requires the concrete type and instance of the
player to add the new behavior to as well as the type of the role that represents
the new behavior and the type and instance information of the compartment the
role is expected to be played in. At run time, a new instance of the specified role
type will be created and bound to the specified player instance, thus modifying the
player’s behavior.

Remove Using the remove operation type, existing behavior is removed from a specific
player instance. For example, the previously added encryption behavior is removed
from the respective players locally as soon as the user is detected to enter a secure
and trusted environment. Since this operation can be considered the inverse oper-
ation to the add operation, only the target node parameter is required as well. In
contrast to the add operation, however, concrete instance information on the player,
role and compartment has to be specified in order for the adaptation management
to remove the behavior at run time. During the execution of this operation, the
adaptation managers ensure a stable application state before the role instance is
unbound from the player and subsequently destroyed.

Exchange The two previous operations can be used to add or remove behavior to or from
a player instance, respectively. In response to a context change, however, it might
be reasonable to replace existing behavior with new behavior that fits the current
context better. The exchange of concrete driving behavior of autonomous cars
described in the first application scenario represents an example for replacing a role
in response to changes of the application’s operational environment. Such a scenario
cannot be conveniently covered with just the add and remove operations since
they are two distinct operations which makes it difficult to maintain a consistent

60

4.2. Adaptation Operations and Adaptation Transactions

application state during the execution. More importantly, with the add and remove

operation alone, the adaptation managers would not be able to transfer internal
state information of the role from the source to the target configuration. The
exchange operation addresses these shortcomings and allows to replace existing
behavior with new behavior consistently. The exchange operation requires the full
parameter set, i.e., both source and target node parameters have to be configured as
well as the state parameter. Since the source node parameter describes the current
version of the system, it is configured the same way as the remove operation’s
target node parameter because the role in the source configuration is supposed
to be removed from the given player instance. Likewise, the target node of the
exchange operation is configured like the add operation’s target node parameter,
i.e., only the role type needs to be specified since a new instance of the role type
will be created at run time. During the exchange of a role, state information can
be transferred from the source to the target role if indicated by the state parameter
of the adaptation operation. The adaptation managers will synchronize reaching a
stable application state before the transfer of the internal state information of the
role.

Migrate The relocation of a role from one player instance to a different player instance
(on a possibly different node) exposes the same shortcomings as the exchange of
roles when realized using add and remove operations alone. The migrate opera-
tion is used to migrate a role instance from one player instance to another and
requires the full set of parameters, i.e., both source and target node as well as the
state parameter, to be configured. Source and target node of the migrate operation
have to be configured with the same set of information as the exchange operation.
Although a state transfer can be considered the default step for a migration of
application behavior, the state parameter is required to cover also stateless mi-
grations of roles since the coordination process, which will be presented later in
this chapter, can be significantly simplified if no state information is supposed to
be migrated. Reaching a stable application state for the role and player before
the actual migration takes place is ensured by the adaptation managers for this
operation as well. The relocation of the rescuer behavior described in the domain
of search-and-rescue robots (cf. Application Scenario 2) serves as example for the
purpose of the migrate operation.

Clone Using the clone operation type, a behavior similar to the migrate operation
can be achieved. The role instance, though, specified by the source node remains

61

4. Decentralized Execution of Distributed Adaptations

active after the adaptation process finished. This results in two different instances
of the same role type being active, which possess the same internal state after
the successful execution of the adaptation process. The mandatory information to
denote the source and target node, respectively, is the same for this operation as
for the migrate and exchange operation. Similarly to the relocation of application
behavior in the domain of search-and-rescue robots, this operation can be used if
the original role instance is supposed to be kept alive to allow the existing and the
new role to collaborate for the rescue task. The replication of roles can also be
used to achieve an effect similar to load balancing because roles are duplicated and
can independently serve requests.

Connect Using the connect operation a collaboration relation can be established between
two role instances, e.g. in order to integrate newly created and bound role instances
into existing collaborations with other roles. Consequently, any method invocation
intended for the collaboration partner is dispatched by the role runtime to the
respective player playing the collaborating role. The connect operation uses the
source and target node parameters of the adaptation operation to specify the two
endpoints of the collaboration. In this case, the order which endpoint is considered
the source and the target node is not important and does not relate to the otherwise
valid assumption of source and target configuration specification of the respective
parameter.

Disconnect The disconnect operation is the inverse operation to the connect operation
and takes the same parameters as input to release the collaboration relation between
the roles specified as source and target. Additionally, the adaptation managers will
ensure that all ongoing communication between the affected roles have finished, i.e.,
both roles are in a passive state before the execution of the adaptation operation.
Evidently, this operation is used if certain collaborations are not required any
longer, e.g., if no further collaboration is required among search-and-rescue robots.

Except for the add and remove operations all operations require a source and target node
specification to unambiguously determine the roles and players involved in the adaptation
step describing the application’s transition from the source to the target configuration.
Using the connect and disconnect operation types, collaborative adaptations can be per-
formed upon the managed application. All other operation types represent structural
adaptations of the distributed role-based software system and are motivated by the role
features #5 and #9 discussed in Chapter 3.3 stating that “roles can be acquired and

62

4.2. Adaptation Operations and Adaptation Transactions

dropped dynamically” by players and that “roles can be transferred between [players],”
respectively.

Please note that collaborations between roles are not considered in general when struc-
tural adaptations are performed, i.e., collaborations of a role that is supposed to be mi-
grated have to be explicitly released using the disconnect operation before and reestab-
lished with the help of the connect operation after the migration was performed. The
Order parameter of the adaptation operation can be utilized to structure such dependent
adaptation operations hierarchically and therefore express the execution order. Using the
notion of an adaptation transaction, which will be presented in the following, such de-
pendent operations can be described and ensured to be performed in the required order.

4.2.2. Adaptation Transactions

In highly distributed self-adaptive software systems, adaptations caused by changes in
the system’s computational environment are unlikely to affect only one role on one node.
Rather, changes will affect several parts of the distributed application on multiple nodes
including multiple changes on each of these nodes. If all of these changes were executed
independently, the managed application would be in an inconsistent configuration during
the time consumed by the execution of all these adaptations. Consequently, application
data could be lost or the managed application might even fail. The main goals of the
decentralized adaptation approach, however, are to be prevent the managed applica-
tion from reaching an inconsistent configuration while being adapted, thus, ensuring no
application data will be lost.

We introduce the term Adaptation Transaction to address these goals. An adaptation
transaction defines a scope in which the collaborating adaptation managers ensure the
managed application to remain in a consistent configuration preventing data loss. Adap-
tation operations required to be performed in response to a context change are bundled
together and issued to the decentralized execution component comprised of adaptation
managers by the planning component of the self-adaptive software system. An adap-
tation transaction, therefore, contains a set of different adaptation operations and a
unique identifier to unambiguously identify the adaptation transaction at run time. Fig-
ure 4.4 provides a coarse-grained overview about the information transmitted from the
planning subsystem to the decentralized execution component at run time in order to
modify the managed application. While the identifiers of adaptation operations only
have to be unique within the scope of an adaptation transaction, the identifier given to
the adaptation transaction is expected to be unique with respect to the entire lifetime
of the self-adaptive software system. A unique identifier for adaptation transactions is

63

4. Decentralized Execution of Distributed Adaptations

Transaction ID Adaptation Operation 1 ... Adaptation Operation N

Figure 4.4.: Conceptual structure of an Adaptation Transaction.

crucial for protocol mechanisms addressing the handling of stopping failures, which will
be discussed at a later point in this chapter.

To achieve a consistent adaptation of the managed application, several mechanisms are
used during the execution of an adaptation transaction. A major principle to support a
consistent adaptation is the atomic execution of an adaptation transaction, i.e., either
all adaptation operations contained in the adaptation transaction are performed or none
at all. Consequently, intermediate changes made to the managed application are rolled
back using error handling mechanisms. This immediately ensures the consistency of the
managed application, because the managed application is either kept in its source config-
uration if an error occurred or reaches its intended target configuration if the adaptation
transaction could be finished successfully. In the remainder of this thesis, we focus on
the execution of one adaptation transaction at a time in response to context changes.
Mechanisms to ensure the isolation of an adaptation transaction if multiple adaptation
transactions are issued in parallel or overlap each other are not considered and will re-
main an open issue for future work. The planning subsystem of the self-adaptive software
system is thus required to ensure only one adaptation transaction being issued and exe-
cuted at a time. An adaptation transaction is also not concerned with the durability of
the changes that were performed, but only ensures the managed application to reach its
intended target configuration or to remain in its source configuration. Other approaches,
e.g., role-based databases [22], can be used when the execution of the adaptation process
is finished to store the current system configuration persistently.

In contrast to the definition of a Transaction given by Kramer & Magee [26] and
Vandewoude et al. [45], we do not consider the collaboration and exchange of messages
between roles a transaction. To make the distinction clear, however, we will always refer
to our definition of a consistent adaptation as adaptation transaction.

4.3. Adaptation Operations and the Role Runtime’s
Adaptation Interface

The execution of an Adaptation Transaction always includes local changes of the binding
between roles and players or of the collaboration relations between roles. In this section,
we focus on the interface between local adaptation managers and the co-located role

64

4.3. Adaptation Operations and the Role Runtime’s Adaptation Interface

runtimes with respect to the execution of a single adaptation operation. The decentral-
ized execution component currently supports the execution of seven distinct adaptation
operations that could be derived from the features of the Role concept. Those seven
adaptation operations can be divided into two groups: The first group only requires the
target node parameter of the adaptation operator to be set (Add, Remove) whereas
the second group requires both source node and target node parameters to be set in
order to describe the desired change (Exchange, Migrate, Clone, Connect, Disconnect).
We will refer to the first group as Local Operations and to the second group as Dis-
tributed Operations. Please note that distributed operations might also be solely locally
executable if the address parameter for the target and source node points to the same
node. Even in such a case, we refer to operations that require the specification of both
source and target node as Distributed Operation.

Independent of the concrete adaptation operation, the execution of every adaptation
operation is a two-phased procedure. We make use of the notion of bound but passive
roles to perform changes transparently to the currently visible behavior of the managed
application. The first phase is called Pre-Activation Phase and prepares the role-based
application for the actual change of the behavior, e.g., role instances are passivated or
newly created and bound. In the second phase, the Post-Activation Phase, the performed
changes of the first phase are activated and necessary clean-up tasks are performed.
An Activation Event starts the post-activation phase and is triggered when the pre-
activation phases of all adaptation operations within an adaptation transaction were
performed successfully. A distinction between both phases during the execution of an
adaptation operation is required to reach a stable application state and to maintain
a consistent system configuration. Until the activation event, changes of the software
system do not affect the system behavior except for the passivation of role instances that
are, for example, to be removed or migrated. The duration a role instance is passive
denotes the period in which behavioral or collaborative parts of the managed application
are unavailable during the adaptation process. Moreover, a synchronized activation of
changes based on a coordinated activation event prevents the execution of contradicting
behaviors or invalid collaborations among roles, thus, aiding in maintaining a consistent
configuration of the managed application during the adaptation process.

The idea to split the local execution of adaptation operations into two distinct phases
helps to maintain a consistent configuration of the application locally, especially when
multiple adaptation operations are performed involving the collaboration of multiple
adaptation managers. The approach resembles and is inspired by the commonly known
commit protocols in which a consensus on the successful execution of a preparation phase

65

4. Decentralized Execution of Distributed Adaptations

is reached before the local changes to the data become globally visible. The pre-activation
phase can be mapped to the preparation phase and the activation event can be mapped
to the reached consensus. In our case, also the new behavior of the system becomes
active. Additional mechanisms necessary while performing the pre-activation phase on
roles, which are performing computational tasks themselves and need to be moved to
a stable state, go beyond the scope of commit and consensus protocols to agree on the
success or failure of a distributed transaction.

Using the interface operations provided by the role runtime to the adaptation manager
(cf. Chapter 3.2.2), the adaptation manager is able to detect local adaptation failures.
The successful execution of interface operations of the pre-activation phase is indicated
using the specified return value of the respective interface operation. If this return
value indicates the operation to have failed, the adaptation manager will be able to
react appropriately, i.e., the execution of the adaptation transaction can be terminated
unsuccessfully and the source configuration of the system can be restored. The concrete
failure handling behavior of the adaptation managers will later when the decentralized
protocol to manage the execution of an adaptation transaction is presented.

In the following, we will first focus on the execution of local operations and subse-
quently on the special case of distributed operations that can be performed on a single
node.

4.3.1. The Execution of Local Operations

Local adaptation operations are used to modify the structure of the role-based application
in the most basic way, which is to create a new role-player relationship or to release such
a relationship. The respective adaptation operations supported by the decentralized
execution component are add and remove.

In Figure 4.5, the execution process of a single add and remove operation is displayed.
In order to modify the role-based application, the adaptation manager uses the interface
operations specified in Chapter 3.2.2. In the exemplary execution of both operations, the
post-activation phase of both operations would be started as soon as the pre-activation
adaptation steps were successfully performed to maintain a consistent configuration of
the role-based application. The decomposition of local adaptation operations to interface
operations provided by the role runtime for the respective activation phase is summarized
in Table 4.1. If the adaptation transaction only consists of a single local operation, the
adaptation manager immediately executes the post-activation phase after finishing all
operations of the pre-activation phase. An adaptation transaction, though, may also be
composed of multiple local operations and distributed operations local to a specific node,

66

4.3. Adaptation Operations and the Role Runtime’s Adaptation Interface

Adaptation ManagerAdaptation Manager Role RuntimeRole Runtime

create(roleType)

roleID

true|false

bind(playerID,roleID,compartmentID)

ADD

Pre-Activation

ADD

Pre-Activation

passivate(roleID)

true|false

REMOVE

Pre-Activation

REMOVE

Pre-Activation

activate(roleID)

true|false

ADD

Post-Activation

ADD

Post-Activation

unbind(playerID,roleID,compartmentID)

true|false

remove(roleID)

true|false

REMOVE

Post-Activation

REMOVE

Post-Activation

Figure 4.5.: The sequence of invoked role runtime methods of the adaptation manager for the
execution of local operations (Add & Remove).

67

4. Decentralized Execution of Distributed Adaptations

Table 4.1.: Mapping of local operations to interface methods of the role runtime for the pre-
activation and post-activation phase.

Operation Pre-Activation Phase Post-Activation Phase
Add Create, Bind Activate
Remove Passivate Unbind, Remove

which may also be ordered in their execution by the planning component of the feedback
loop. In this case, the adaptation manager first collects the results of all pre-activation
phases of each adaptation operation and only continues with the execution of the post-
activation phase if all operations succeeded without error. A specific execution order
for adaptation operations configured with the same Order parameter in this case is not
prescribed by the protocol since these operations can also be performed in parallel if the
computational resources on the respective device are sufficient.

Since preliminarily changes of the pre-activation phase do not affect the system be-
havior, no inconsistent system configuration of the managed application can be reached,
which is especially favorable in the presence of adaptation failures in which the adapta-
tion fails. Due to the preliminary character of the pre-activation phase, passivated roles
simply need to be reactivated to re-instantiate the valid source configuration’s behavior.
Other preliminary adaptations can be reverted in the background when the managed
application has already resumed its tasks.

4.3.2. The Execution of Distributed Operations

Distributed operations are also translated into a sequence of interface operations provided
by the role runtime similar to the previously discussed local operations, but applied to
both source and target node. Table 4.2 provides an overview of the relation of the
distributed adaptation operations and the execution of interface operations provided by
the role runtime for the pre- and post-activation phase of the adaptation operation’s
execution cycle, respectively. Similar to the execution of local operations, the adaptation
manager has to collect the results of the pre-activation phase for both source and target
node first before the post-activation phase is executed. Assume the execution of a migrate
operation without the distinction of two phases and a situation in which the binding of
the created role instance fails for the target node specification, but the source node’s
role is passivated and immediately unbound and removed. In such a scenario, the role
information will be lost and temporary changes could not be rolled back although the
adaptation transaction had to be terminated and the source configuration has to be
reestablished. Hence, a consistent application configuration cannot be maintained. With

68

4.3. Adaptation Operations and the Role Runtime’s Adaptation Interface

Table 4.2.: Mapping of distributed operations to role runtime interface methods for the pre-
activation and post-activation phase.

Operation Pre-Activation Phase Post-Activation Phase

Exchange Source Passivate Unbind, Remove
Target Create, Bind Activate

Migrate Source Passivate Unbind, Remove
Target Create, Bind Activate

Clone Source Passivate ActivateTarget Create, Bind

Connect Source Connect ActivateTarget

Disconnect Source Passivate DisconnectTarget

respect to the execution of multiple distributed operations local to a specific node within
an adaptation transaction, the adaptation managers behave in the same way as described
previously for the local operations. This holds also true if local and distributed operations
are mixed within an adaptation transaction.

Each local role runtime maintains information about role collaborations alongside the
current bindings of roles and players. Releasing (disconnect) or establishing (connect)
collaborations between roles in response to context changes follows the previously de-
scribed idea of a pre-activation and post-activation phase for the respective role. In the
pre-activation phase for the disconnect operation, both roles specified by the source and
target node are moved to a passive state to ensure all ongoing communications between
the roles were stopped gracefully and the dispatch information is marked for deletion
within the local role runtime. In the post-activation phase, the passivated roles are acti-
vated and the dispatch information is finally discarded, which releases the collaboration
between both roles. If a new collaboration is supposed to be established using the con-
nect operation, the behavior is almost inverted. First, a dispatch information is created
in the local runtime, which is not considered for the dispatch of the method invocation
unless the post-activation phase is performed in which this preliminary addition is finally
activated. The post-activation phase in both cases is triggered by an activation event
the same way as for adaptation operations performing structural adaptations described
previously.

69

4. Decentralized Execution of Distributed Adaptations

4.4. The Decentralized Coordination Protocol

The decentralized coordination protocol is represented by IF_2 in Figure 4.1 on Page 54
and describes the execution of an adaptation transaction by the adaptation managers.
This coordination protocol is composed of a set of messages exchanged by the adapta-
tion managers to collaboratively execute adaptation transactions as well as a behavioral
description how adaptation managers respond to received messages at different stages
during the execution of an adaptation transaction. In this regard, the execution of dis-
tributed adaptation operations that require the collaboration of two adaptation managers
will be discussed as well as the execution of multiple adaptation operations affecting parts
of the managed application located on different nodes in general.

First of all, the coordination messages used by the adaptation managers to execute
an adaptation transaction will be discussed. Subsequently, the general execution of an
adaptation transaction will be introduced. As previously mentioned, adaptation opera-
tions can be grouped by the Order parameter to establish predecessor-successor relations
for their execution. An Adaptation Group denotes the execution of adaptation opera-
tions configured with the same Order parameter, i.e., those adaptation operations can
be executed in parallel and in a random order. The coordination of the execution of such
adaptation groups as subunit within an adaptation transaction will then be discussed.
Incorporated in this discussion, the coordination of distributed adaptation operations
that involve the collaboration of two adaptation managers will be presented, because
this aspect is closely related to coordination aspects within an adaptation group. The
handling of link failures, i.e., lost coordination messages during the execution will be dis-
cussed alongside the general protocol behavior as outlined. Stopping failures, in contrast
are more crosscutting affecting different parts of the coordination protocol and also re-
quire additional protocol behavior. The aspects of the coordination protocol addressing
stopping failures, will be therefore be presented separately.

4.4.1. Protocol Messages

The protocol messages used for the execution of an adaptation transaction can be sep-
arated into two categories: Transaction Control Messages and Execution Control Mes-
sages. The first category is used for the distribution of general progress information, i.e.,
if an adaptation transaction’s execution failed or if it could be finished successfully. Exe-
cution Control Messages are used explicitly for the coordination of adaptation groups and
adaptation operations. All messages are solely exchanged between adaptation managers
during the distribution and execution of an adaptation transaction and are introduced

70

4.4. The Decentralized Coordination Protocol

here to relief further discussions of the protocol behavior from the discussion of used pro-
tocol messages. The parameters and information transmitted via each transaction control
message and execution control message is illustrated in Appendix B.1 and Appendix B.2,
respectively.

Transaction Control Messages

Transaction control messages are used to distribute adaptation transactions within the
group of nodes affected by the adaptation process and to indicate a successful or failed
execution of the adaptation transaction. Four message types serving that purpose can
be distinguished:

Transaction Message This message is used to distribute the adaptation transaction that
is supposed to be executed among the adaptation managers of the self-adaptive
software system required to perform adaptation operations. The message, therefore,
contains only one adaptation transaction, which includes the unique identifier for
the adaptation transaction used by all other messages to relate them to a specific
adaptation transaction.

TransactionAcknowledgement Message This message contains the identifier of the trans-
action and indicates that the transmitted adaptation transaction was received suc-
cessfully.

TransactionRollback Message This message is used to indicate that the execution of
the adaptation transaction has failed and that preliminary pre-activation-phase
adaptations have to be rolled back in order to maintain a consistent configuration
of the managed application, which is the source configuration. Besides the identifier
of the adaptation transaction, the unique identifier of the adaptation operation that
caused the rollback is transmitted as well.

TransactionActivation Message This message is used by the adaptation managers to in-
dicate that all adaptation operations involving the respective adaptation manager’s
collaboration were executed successfully and that expected remote progress infor-
mation, i.e., Report messages, which will be discussed subsequently, was received.
Thus, the execution of the adaptation transaction was evaluated to be performed
successfully, which is indicated by that message. Evidently, the identifier of the
adaptation transaction that is acknowledged to be successfully executed is the sole
parameter of this message.

71

4. Decentralized Execution of Distributed Adaptations

Execution Control Messages

The execution control messages are most important for the coordination protocol with
respect to the management of the adaptation transaction’s decentralized execution. Dif-
ferent types of messages are used to disseminate progress and status information among
adaptation managers as well as internal state information of roles to ensure the con-
sistent execution of single adaptation operations. Additionally, a third message type is
required to cope with cases in which one of the aforementioned messages was lost during
the transmission.

Report Adaptation managers rely on this message to exchange progress information on
the execution of distributed adaptation operations, i.e., the message is used by
adaptation managers responsible for adaptations denoted by the source and target
node, respectively. Furthermore, the Report message is used to distribute progress
information on the successful execution of adaptation operations within the execu-
tion of an adaptation group. A Report message contains the unique identifier of the
adaptation operation about which status information is exchanged or propagated
as well as the identifier of the adaptation transaction, the respective adaptation op-
eration belongs to. For the transmitted status information within the report, three
mutually exclusive flags are required that indicate when set whether the respective
adaptation operation could be successfully performed or not or if the operation is
still being executed. The third flag is required especially if pre-activation-phase
operations such as the passivation of a role, consume a larger amount of time that
extends beyond the timeout period of the adaptation manager’s execution behavior.
In that case, the status value contains a manifestation representing the operation
to be still going on.

StateTransfer The distributed operations allow to transfer state information of the role
from the source to the target configuration. A StateTransfer message contains
the identifiers of the adaptation operation and of the adaptation transaction in
which it is executed as well as internal state information of the source node’s role
instance. We assume the state information of a role to be obtainable only when the
role is in a passive state, i.e., no computations are being performed that may alter
the role’s internal state. Therefore, the StateTransfer message can be used as a
replacement for the report message to reduce the number of messages an adaptation
manager on the source node has to transmit to its peer on the target node. For
example, transmitting a StateTransfer message from the source node of a migrate

operation immediately means that the steps of the adaptation on the source side

72

4.4. The Decentralized Coordination Protocol

could successfully be performed. Otherwise, a negative report message would be
used.

RequestReportMessage During the execution of distributed operations and adaptation
groups, Report and StateTransfer messages are exchanged to coordinate the adap-
tation progress among adaptation managers. In case of link or stopping failures,
adaptation managers may not receive sent coordination messages or may not be
able to send coordination messages, respectively. In that case, adaptation managers
make use of the RequestReport message to request progress information on adapta-
tion operations of which respective reports are missing. Depending on the concrete
type of the adaptation operation a report is requested for, the peer answers with
either StateTransfer or Report messages. A RequestReport message takes the iden-
tifier of the adaptation transaction as input and a number of adaptation operation
identifiers for which reports are requested to be retransmitted.

4.4.2. Decentralized Coordination of a Transaction

In response to context changes of the self-adaptive software system, the planning phase of
the feedback loop issues an adaptation plan to the execution phase. This adaptation plan
is represented as an adaptation transaction in our approach and is executed by the group
of instances of adaptation managers affected by the adaptation transaction. The set of
adaptation managers affected by the adaptation transaction and supposed to participate
in the execution process is determined by the collection of distinct address parameters
of both source and target node parameters of the adaptation operations contained in the
adaptation transaction. The planning phase is only required to transmit the adaptation
transaction to one adaptation manager. This initial receiver will forward the received
adaptation transaction to all other adaptation managers, which we also refer to as peers,
included in the adaptation transaction.

As shown in Figure 4.6, the first step in an adaptation transaction’s execution is
its distribution among peers. The Transaction message is used for the distribution of
the adaptation transaction. The receipt of an Transaction message is acknowledged
using the TransactionAcknowledgement message. As soon as an adaptation manager
received the TransactionAcknowledgement messages from every peer, the execution of
the adaptation transaction commences. The initial receiver, furthermore retransmits the
Transaction message after a specified timeout to all peers that have not responded with
an TransactionAcknowledgement message yet.

In the case of lost TransactionAcknowledgement messages not all adaptation managers

73

4. Decentralized Execution of Distributed Adaptations

Adaptation
Transaction

Distribute
Transaction

Perform Adaptation
Group

Yes
Further

Adaptation
Groups?

Yes

No

Transaction
Activation

Adaptation
Transaction

Finished

Successful?

No

Transaction
Rollback

Figure 4.6.: Statechart / workflow of the execution of an adaptation transaction.

will therefore commence the execution of the received adaptation transaction at the
same point in time. It is possible for adaptation managers to receive the first Report
message before all expected TransactionAcknowledgement messages were received. The
adaptation manager that received the Report message will consider the collection of
acknowledgements successful and begins with the adaptation transaction’s execution even
though not all acknowledgements could be received. This behavior is valid because
receiving a Report message confirms that at least one adaptation manager (the one that
sent the Report message) was able to establish knowledge on the successful distribution
by receiving TransactionAcknowledgement messages of every peer adaptation manager.

After successfully distributing the adaptation transaction among all peers, the adapta-
tion managers preprocess the received transaction to determine the Adaptation Groups.
In an adaptation group, all adaptation operations parameterized with the same value
for the Order parameter are grouped together because those adaptation operations are
allowed to be executed in parallel. After the set of adaptation groups was generated it is
ordered and the execution of the group with the lowest value is started. Each adaptation
group, therefore, has its own Group Execution state within the adaptation transaction.
Progress management within an adaptation group will be discussed in Chapter 4.4.3.
In general, however, Report messages are used to indicate the execution state of every
adaptation operation contained within an adaptation group. The adaptation manager
can therefore determine how many Report messages are expected to be received from the
peers for the currently executed adaptation group. If all Report messages were received,
the adaptation manager continues with the execution of the next adaptation group if
there is another one or finishes the execution of the adaptation transaction with the
emission of a TransactionActivation message to all peers, otherwise. If the local execu-
tion of an adaptation operation contained in the adaptation group fails or if a Transac-

74

4.4. The Decentralized Coordination Protocol

tionRollback message was received from a peer, the adaptation manager terminates the
current execution and enters the Rollback state. In the Rollback state all modifications
made in the pre-activation phase of the execution of adaptation operations are reverted,
i.e., passivated roles are reactivated and preliminary role creations or bindings are un-
done. TransactionRollback messages are also forwarded to other peers once after the first
receipt to disseminate the information quickly among the group of adaptation managers.

4.4.3. Decentralized Coordination of Adaptation Operations and
Adaptation Groups

The specification of the coordination management for adaptation transactions focused
so far on the distribution of the adaptation transaction and the behavior of the adap-
tation managers if the adaptation transaction could be finished either successfully or
unsuccessfully. Details on the actual execution for distributed adaptation operations
and adaptation groups composed of different distributed and local adaptation operations
have still not been discussed. In the following, emphasis is first put on the execution of
distributed adaptation operations that truly require two adaptation managers to collab-
orate in order to perform the adaptation step. Subsequently, the protocol behavior for
the execution of adaptation groups will be developed.

Coordinating Distributed Operations

We introduced Distributed Operations as adaptation operations that contain both source
and target node parameters. If the address property of the target node parameter is
different from the source node’s address property, the distributed operation requires ad-
ditional coordination since two adaptation managers (the one located on the source node
and the one located on the target device) have to collaborate in order to perform the
adaptation. Both adaptation managers execute the respective operations for the pre-
activation phase as it was already discussed for distributed adaptation operations in
Chapter 4.3.2. When the pre-activation phase of either node is finished, the adaptation
managers involved in the execution of the distributed operation notify each other about
the progress with Report messages if no state information is supposed to be transferred
between source and target node (state=false in the adaptation operator’s configura-
tion). In this case, the execution of the distributed adaptation operation is finished and
the adaptation manager responsible for the target node adaptation emits a positive Re-
port message to all peers. If state information is intended to be transferred from the
source to the target node, the source node’s adaptation manager sends a StateTransfer

75

4. Decentralized Execution of Distributed Adaptations

Target NodeSource Node

Adaptation ManagerAdaptation ManagerRole RuntimeRole Runtime Adaptation ManagerAdaptation Manager Role RuntimeRole Runtime

create(roleType)

roleID

bind(playerID,
roleID,compartmentID)

true|false

passivate(roleID)

true|false

getState(roleID)

State Information State Transfer Message

Report Creation of Role

Report State Transfer

setState(roleID,state)

true|false

Pre-Activation PhasePre-Activation Phase

unbind(playerID,
roleID,compartmentID)

true|false

remove(roleID)

true|false

activate(roleID)

true|false

Post-Activation PhasePost-Activation Phase

Figure 4.7.: Distributed coordination of a TS-Operation including local communication of the
adaptation managers with their co-located Role Runtimes.

message to the target node containing the internal state information of the role instead
of indicating the successful execution of the pre-activation phase using a Report message.
The target node will still create and bind the new role instance and transmit a Report
message to the source node to report the successful execution of the pre-activation phase.
Additionally in this case of state transfer, the target node injects the received state infor-
mation into the locally created instance of the role and sends another Report message to
the source node indicating the state information was received and successfully processed.
In summary, the source node’s adaptation manager sends one StateTransfer message to
the target node’s adaptation manager, which in turn, sends two Report messages to the
source node’s adaptation manager if state information is to be transferred from source
to target during the execution of the distributed adaptation operation. The overall pro-
cedure for a distributed adaptation operation with state transfer from source to target is
depicted in Figure 4.7. The post-activation phase, which is also displayed in Figure 4.7
will be entered after the adaptation transaction was determined being executed success-
fully according to the previously discussed protocol mechanisms and not immediately
after the pre-activation phase finishes as it might be understood from Figure 4.7.

Since the execution of distributed adaptation operations requires two adaptation man-

76

4.4. The Decentralized Coordination Protocol

Source Node Detail

Active

Waiting

Default

Multicast

Broadcast

/RequestReportMessage
Source Node

/RequestReportMessage
peers of Adaptation Group

/RequestReportMessage
peers of Adaptation Transaction

timeout/

timeout/

timeout/rollback

localPassivationPerformed/
StateTransaferMessage

reportMsgReceived

(a) Execution state chart for the source node
of a distributed operation.

Target Node Detail

Active

Waiting

Default

First
Escalation

Second
Escalation

/RequestReportMessage
Source Node

/RequestReportMessage
Source Node

/RequestReportMessage
Source Node

timeout/

timeout/

timeout/rollback

localBindPerformed/
ReportMessage

stateTransferMsgReceived/
ReportMessage

(b) Execution state chart for the target node
of a distributed operation.

Figure 4.8.: Execution state charts for the source and target node of a distributed operation to
cope with link failures.

agers to collaborate and exchange coordination messages in order to perform the adap-
tation operation, protocol behavior needs to be specified addressing the issue of link
failures. In Figure 4.8, the state charts executed by the adaptation managers responsible
for the source and target node’s adaptations are depicted. In case of lost Report or
StateTransfer messages, the respective adaptation manager utilizes the RequestReport
message in order to obtain the missing progress information of the adaptation operation.
The source node’s behavior, which is depicted in Figure 4.8a, differs from the target
node’s behavior in regard of how not received Report messages are handled. Since the
target node emits a Report message to all peers if the operation was performed success-
fully, the source node tries to obtain the required Report message in a three-step scheme,
which is hierarchically structured because we assume the loss of coordination messages
to occur infrequently and the protocol aims to reduce the amount of RequestReport
messages and respective responses as a reaction to lost coordination messages. After
a first timeout in which no Report messages were received, the source node’s adapta-
tion manager sends requests for the missing Report messages only to the target node’s
adaptation manager. As specified, the target node emits two Report messages to the
source node: one Report message for the successful creation and binding of the role
on the target side and one Report message for the successful injection of the received
state information, which is also broadcast to all peers. Receiving a RequestReport mes-
sage from the source node, though, the target node cannot distinguish which of those
two reports is actually requested for which reason the target node will encapsulate two
positive reports within a Report message in response if the execution of the adaptation
operation has already been finished. Otherwise only one report is encapsulated in the

77

4. Decentralized Execution of Distributed Adaptations

Report message, which indirectly indicates a lost StateTransfer message and the source
node will immediately retransmit the local state information of the role if the Report
message was received. If the Report message containing both reports was received, the
source node simply considers the adaptation operation to be finished successfully. After
another timeout, the source node sends a multicast request to all peers of the adaptation
group. Ultimately, a broadcast request is sent to all adaptation managers involved in the
execution of the adaptation transaction after another timeout. Received Report messages
for the requested adaptation operation from one of the peers reached through the mul-
ticast or broadcast also indicates the adaptation operation to have finished successfully
from the source node’s adaptation manager’s perspective. Otherwise peers would not be
able to serve a Report message if the target node would have not broadcast a Report
message as previously described. From the perspective of the target node’s adaptation
manager, only the Report message (no state information is supposed to be transferred)
or the StateTransfer message can be lost on the channel. Consequently, the adaptation
manager can only request the missing information from the source node’s adaptation
manager directly since no other adaptation manager involved in the adaptation trans-
action’s execution can serve the desired progress information. The resulting state chart
is depicted in Figure 4.8b. An escalation of four timeouts is chosen for the retrieval of
missing state information to achieve the same maximum waiting duration as the source
if all three escalation steps for lost report messages have been executed. From both the
source and target nodes perspective, a TransactionRollback message will be issued if the
respective Report or StateTransfer messages could not be obtained after a last timeout
after issuing the broadcast request.

It can happen that the target node is able to obtain the required StateTransfer message
from the source node’s adaptation manager, but the other way around, the required Re-
port messages cannot be obtained. Following the protocol, the source node’s adaptation
manager would eventually emit a TransactionRollback message after all timeout periods
passed without being able to obtain the desired Report messages from the target side or
one of the peers. The emitted TransactionRollback message is ignored by the peer adap-
tation managers if the respective adaptation operation has already been reported being
executed successfully by the target node’s adaptation manager. Preventing this contra-
dicting behavior of the adaptation managers requires the TransactionRollback message
to not only contain the identifier of the adaptation transaction but also the identifier
of the concrete adaptation operation that caused the transmission of the message. The
adaptation manager that send the TransactionRollback message in this case, awaits an-
other timeout before local changes are actually reverted by entering the rollback state.

78

4.4. The Decentralized Coordination Protocol

Waiting

/ [participationRequired]

/ [¬participationRequired]

Report / [missingReports > 0]

Report / [missingReports == 0]

/ [success && remainingLocal]

/ [success && ¬remainingLocal]

Rollback/ [¬success]

Requested Peer

timeout / RequestReport

Requested
Adaptation Group

timeout / RequestReport

Report /

TransactionRollback /

TransactionRollback /

Report /

PerformOperation

exit / sendReportToPeers

TransactionRollback /

Requested
Adaptation Transaction

timeout / RequestReport

TransactionRollback /
timeout / TransactionRollback

Report /

rollbackFinished

Figure 4.9.: State chart for the execution of an adaptation group by an adaptation manager.

Further details on the progress of the overall adaptation transaction will be given in the
following, as the execution of adaptation groups is discussed.

Coordinating the Execution of an Adaptation Group

So far, the device-local execution of adaptation operations has been discussed as well
as the coordination among two adaptation managers during the execution of a single
distributed adaptation operation. The execution of adaptation transactions has been
discussed as well as a sequential execution of adaptation groups until the adaptation
transaction is eventually performed successfully or had to be rolled back. The discussion
of the execution of adaptation groups in the following closes the apparent remaining
gap between the execution of adaptation transactions and operations. As previously
defined, an adaptation group contains adaptation operations configured with the same
Order parameter and the execution order of adaptation operations within such a specific
adaptation group is unrestricted.

Entering a new adaptation group for execution, the adaptation manager first deter-
mines whether any participation in the execution of the adaptation group is required, i.e.,

79

4. Decentralized Execution of Distributed Adaptations

if the adaptation operation’s source or target node’s address property points to the node
hosting the current adaptation manager. If no participation is required, the adaptation
manager immediately enters the Waiting state. In this state a timeout is started in which
Report messages from peers are expected to arrive. The number of Report messages ex-
pected to be received is determined by the adaptation manager based on the number
and type of adaptation operations contained within the adaptation group independent
of a requirement for the adaptation manager to collaborate. If the adaptation manager
is required to participate in the execution of the adaptation group, it will enter the Per-
formOperation state and re-enters this state until no further local modifications of the
local role-based application are required. A Report message will be sent to all peers after
the successful execution of an adaptation operation that follows the previously defined
execution schemes for local and distributed operations. Otherwise, a TransactionRoll-
back message will be broadcast to all other adaptation managers, and the Rollback state
will be entered, which matches the Rollback state for the execution of the adaptation
transaction previously discussed.

The protocol specification to handle lost coordination messages during the execution of
adaptation groups is displayed in Figure 4.9 together with the previously discussed exe-
cution states and resembles the approach used to cope with link failures for the execution
of adaptation operations. After a first timeout, the adaptation manager responsible for
the execution of the adaptation operation of which the progress information is missing is
requested to retransmit the Report message. If this fails, i.e., if another timeout occurs,
all adaptation managers involved in the execution of the current adaptation group are
requested to transmit the missing progress information on the respective adaptation op-
eration. If the adaptation manager that has received such a request has already received
the progress information in question, an appropriate Report message will be sent to the
requester. In a last attempt, all adaptation managers participating in the adaptation
transaction are asked to transmit the missing progress information before the adapta-
tion transaction will eventually fail. If the adaptation manager was not able to obtain
the missing progress information, a TransactionRollback message will be broadcast to
all peers resulting in a termination of the adaptation transaction and a rollback of all
preliminary adaptations performed until that moment. A three-step approach to obtain
lost coordination messages was chosen for the execution of adaptation groups as well in
order to minimize the number of retransmission requests and actual retransmissions of
the progress information assuming message loss to occur infrequently.

Each adaptation manager executes the protocol specification discussed above inde-
pendently of other adaptation managers and solely relies on the exchanged messages to

80

4.4. The Decentralized Coordination Protocol

make local decisions on how and when to proceed with the execution of the protocol
specification. Consequently, the current local progress of the protocol execution may
differ between adaptation managers, especially in the presence of randomly occurring
link failures. The specification of the coordination protocol allows adaptation managers
to proceed with the execution of a subsequent adaptation group as soon as all expected
Report messages have been received. Evidently, this allows adaptation managers to
proceed while others might still be waiting for lost Report messages. Adaptation man-
agers that suffered from lost coordination messages might hence receive Report messages
from subsequent adaptation operations contained in subsequent adaptation groups while
they are still in the Waiting state. The affiliation of an adaptation operation’s Report
message to a given adaptation group can be easily determined with the adaptation op-
eration’s identifier contained in the Report message by the adaptation manager because
this identifier is unique within the adaptation transaction and thus also within the set of
adaptation groups. The adaptation manager still waiting for lost coordination messages
will immediately proceed with the execution of the subsequent adaptation group upon
receiving such a Report message because this message indicates that at least one peer
could establish knowledge on the current adaptation group to be finished successfully
rendering all other Report messages for the current adaptation group obsolete. A similar
behavior is shown by an adaptation manager receiving a RequestReport message for an
adaptation group it locally already considered successfully finished. In such a case, all
Report messages of the locally executed adaptation group are transmitted in addition
to the reports requested in the received RequestReport message. Similarly, if the afore-
mentioned adaptation manager that is still waiting to receive Report messages for its
current adaptation group, receives a RequestReport message for an adaptation opera-
tion in a subsequent adaptation group it has to execute an adaptation operation in, the
current adaptation group will also be immediately considered successfully finished and
the execute of the following group will be started.

A specific corner case still has to be considered with respect to an adaptation manager
that became disconnected while trying to obtain progress information, but became re-
connected when the TransactionRollback message is about to be delivered to the peers.
Assuming the node of which the progress information could not be obtained was able
to distribute the progress information to all other adaptation managers, the incoming
TransactionRollback message will be ignored by the adaptation managers (remember,
the adaptation operation’s identifier is given within the rollback). In turn, the receiving
adaptation managers transmit the latest Report messages to the sender of the Transac-
tionRollback message or the TransactionActivation message if the adaptation transaction

81

4. Decentralized Execution of Distributed Adaptations

was already finished successfully. Obviously, a TransactionRollback message will be sent
by the other peers if the adaptation transaction has failed already for other reasons by
the adaptation managers. Depending on the kind of received message in response to the
TransactionRollback message, the rollback-initiating adaptation manager will either dis-
regard its local decision and resume or finish the execution of the adaptation transaction
or continue with the rollback of the temporary local changes. As previously mentioned,
the adaptation manager that issued the TransactionRollback message awaits a timeout
in order to decide how to proceed with the rollback. If the respective node is discon-
nected from the network for an amount of time much longer than the timeout period,
the behavior of the remaining adaptation managers is described in Chapter 4.4.4.

During the execution of local parts of adaptation operations, the adaptation manager
is able to detect adaptation failures based on the returned status information of the role
runtime’s provided interface operations (cf. Chapter 3.2.2 and Chapter 4.3). In such a
case, the adaptation manager immediately terminates the execution of the adaptation
transaction and broadcasts a TransactionRollback message to all adaptation managers
involved in the execution of the adaptation transaction. Local operations that have
been performed until that moment are reverted by every adaptation manager within the
respective local role runtime in response. For example, if the execution of the bind op-
eration failed, the previously performed create operation is undone by issuing a remove

operation to the local role runtime. Similarly, already passivated roles will be reacti-
vated. Thus, the role runtime is kept in a consistent configuration, which is the source
configuration upon which all preliminary modifications have been performed.

If adaptation operations require a time longer than the timeout for their execution,
i.e., if the passivation is too time consuming, incoming RequestReport messages will be
answered with a Report message that has the respective progress flag set to indicate
this adaptation operation is still going on, which will reset the escalation state of the
requesting peers to Waiting.

4.4.4. A Note on Stopping Failures

We defined stopping failures as failures in which the adaptation managers shut down un-
gracefully while participating in the decentralized execution of an adaptation transaction.
Addressing this issue in the coordination protocol is a cross-cutting concern affecting sev-
eral parts of the protocol, which is the reason we focus on the issue separately in contrast
to adaptation and link failures, which were incorporated in all previous discussions.

An adaptation manager that went down suddenly during the adaptation process ap-
pears as an unreachable adaptation manager for its peers. Other adaptation managers

82

4.5. Update Execution of the Role-based Managed Application

will thus follow the previously discussed protocol in order to deal with the situation. In
order to recover from a stopping failure, every adaptation manager maintains a log on the
current progress of the execution state of the adaptation transaction, i.e., on received re-
port messages for the current adaptation group as well as the state of local adaptations.
The maintained log information enables the adaptation manager to replay the unfin-
ished adaptation transaction if required. In any case, the restarted adaptation manager
broadcasts a RequestReport message to all peers in order to obtain the execution state
of the adaptation transaction. If the adaptation transaction was finished successfully,
the peers will respond with the transmission of a TransactionActivation message or a
TransactionRollback message, otherwise. In the former case, the adaptation manager
replays all local adaptations using stored state information of remote roles if necessary.
In the latter case, the adaptation manager just marks the adaptation transaction log as
finished unsuccessfully and keeps the current configuration of the managed application
unmodified.

Please note that the adaptation transaction can only finish successfully albeit an adap-
tation manager went down during the execution if all local participations of the respective
adaptation manager could be finished ahead of the ungraceful shutdown of the respec-
tive adaptation manager. Otherwise, the remaining group of adaptation managers will
always decide to terminate the execution of the adaptation transaction unsuccessfully
and maintain the source configuration of the managed application.

Furthermore, restarting the adaptation manager or performing other self-healing mech-
anisms on the system in response to stopping failures or crashes of the managed applica-
tion are out of the scope of this thesis. The mechanisms presented here solely serve the
purpose to keep the managed application’s configuration consistent during the adaptation
process.

4.5. Update Execution of the Role-based Managed
Application

The role runtime and the developed role life cycle support the introduction of previously
unknown application behavior, i.e., roles, while the system is running without the need for
the system to completely stop and restart. In [49], we described a mechanism to perform
updates on the system using application scenario three described in the introduction of
this thesis. This approach will be presented more generally in the following.

We reuse the idea of an adaptation operation including the set of required parameters,
but refer to them as Update Operations. The number of operation types for update

83

4. Decentralized Execution of Distributed Adaptations

Node 1

Update Initiator

Node 2

Execution

Adaptation Manager Adaptation Manager

(1) Update Prescription
Repository

Role-based Managed
Application

IF_3

Role-based Managed
Application

IF_3

(3) Update Retrieval

distribute (2) and
coordinate (4)

update prescription

Figure 4.10.: Architecture to enable dynamic software updates in an exemplary IoT infrastruc-
ture.

operations is limited. It is possible to Add, Remove and Exchange behavior of the
managed role-based application as a consequence of a software update. Those three
operation types are sufficient to cover the basic scenarios in order to (1) add previously
unknown behavior to the system, (2) remove behavior that is no longer required and (3)
update existing behavior in order to, for example, fix a bug, respectively.

In order to perform updates of the role-based managed application, we expect an Up-
date Initiator to be present in the system as well as a Repository from which new or
updated role types can be downloaded. The system’s architecture remains otherwise
unchanged as it is illustrated by Figure 4.10. The update manager is responsible for gen-
erating an adaptation transaction, which contains the appropriate update operations, but
may also contain additional adaptation operations in order to support and complement
the system update. Thus, the update initiator is comparable to the planning component
of the feedback loop, but different since human participation may be required in order to
trigger the update process in contrast to the context-dependent adaptation triggered by
the planning component, which is considered to be performed completely autonomously.

The adaptation transaction issued by the update initiator is executed in accordance
with the coordination protocol presented in this chapter, but differs in some aspects.
After the adaptation transaction has been distributed in the system (cf. Step 2 in Fig-
ure 4.10), role type information is retrieved from the repository by the adaptation man-
agers affected by the update (Step 3). The interface between adaptation manager and
role-based application is subsequently used to install and load the new or updated type
information to the role runtime. In the following, the execution of the update operation,
e.g., the addition, removal or exchange of roles, follows the execution scheme developed

84

4.6. Summary

Table 4.3.: Summary of the posed requirements and their fulfillment by the approach presented
in this thesis.

Requirement Approach Fulfillment
Decentralized Execution Coordination Protocol ✓

Stable Application State Extension Run-time Model Role ✓

Link Failures Dedicated Message in the Coordination
Protocol

✓

Adaptation Failures Coordination Protocol & Local Adapta-
tion Interface

✓

in the previous sections for regular adaptation operations (Step 4).
Using the notion of Roles is not only a suitable abstraction for context-dependent and

collaborative application behavior that allows a dynamic behavioral adaptation of the
software system, but also enables the reusability of adaptation mechanisms to perform
software updates at run time due to the inherent variability of the system.

4.6. Summary

The goals of a self-adaptive software system that are of concern within this thesis are
the consistent adaptation of the managed application in response to changes in the com-
putational environment of the system preventing inconsistent configurations and loss of
application data. These goals are backed up by a set of requirements imposed on the
envisioned adaptation execution in such a system, which are summarized in Table 4.3
including each requirement’s degree of fulfillment. In this chapter, we developed a proto-
col that allows a distributed execution phase, which is represented by a set of Adaptation
Managers located on every node of the system, of the feedback loop in order to perform
adaptations without a central coordination component. Rather, the distributed adapta-
tion managers are forced to collaborate using the devised protocol specification in order
to perform the adaptation process. The developed role life cycle and related mechanisms
of the proposed protocol allow the system to reach a stable state before any adapta-
tions are performed, thus, fulfilling the second requirement posed to the self-adaptive
software system. The protocol explicitly provides means to cope with random losses of
coordination messages addressing the third requirement. The possibility to cope with
adaptation and stopping failures represented by the fourth requirement are addressed
in a similar manner by the protocol. Related to the goal of maintaining a consistent
system configuration, the notion of an Adaptation Transaction was introduced in order
to define an atomic and consistent execution of all adaptation operations specified within

85

4. Decentralized Execution of Distributed Adaptations

this adaptation transaction. Being able to detect adaptation and stopping failures, the
adaptation managers can roll back preliminary modifications, which keeps the system
in the last known valid configuration, which is the source configuration. In summary,
all requirements posed on the execution phase for a self-adaptive software system coined
by a highly distributed and interconnected managed application and the necessity to
perform several adaptations as one logical adaptation could be fulfilled by the approach
presented within the last two chapters of this thesis.

In the following, we will outline how the research questions raised in the beginning
were addressed within the presented approach.

1. How can a stable application state in a distributed application be reached in order to
allow for multiple adaptations being performed on multiple computing devices si-
multaneously or in an otherwise coordinated manner?
In this work, the quiescence criterion was used to describe a stable application state
for the role-based managed application. The criterion itself is applied to each role
instance, since a role represents the dynamic part of the system that is subject to
run-time adaptations and must therefore reach a state in which no further compu-
tations are performed. Since roles may collaborate with other roles as well in order
to provide a certain functionality, the decentralized set of adaptation managers is
used to coordinate the process of reaching a quiescent state for a role across device
borders. In order to support the notion of quiescence and a stable state in general,
a life cycle for roles as run-time entities was developed to represent the current
execution state of a role instance. Without the knowledge about a role’s momen-
tary execution state and collaborations, a consistent adaptation of the distributed
role-based software system would be infeasible. With respect to the proposed adap-
tation models, the current approach can be classified as a guided adaptation because
the application behavior is purposefully restricted by forcing roles into a quiescent
state. Other and less disruptive criteria might be employed though to ensure a
stable application state before the actual execution of an adaptation process. We
are convinced that an overlap adaptation can be achieved with the notion of a Role
as abstraction for dynamic system artifacts, but leave a detailed investigation to
future work.

2. How can a decentralized management and coordination of an adaptation process com-
posed of multiple interdependent adaptations be realized that
a) copes with the loss of protocol messages and network partitioning, and
b) copes with node failures or adaptation errors during the adaptation process?

86

4.6. Summary

With respect to the first requirement, namely a decentralized execution of adap-
tations at run time in order to avoid the issues of a performance bottleneck and
of a single point of failure, a protocol was developed in response to the second
research question. The proposed decentralized coordination protocol is composed
of a behavioral description for the distributed adaptation managers and of a set of
well-defined protocol messages. The former allows the management of an adapta-
tion transaction’s execution without a central management instance whereas the
set of well-defined protocol messages is used to disseminate progress information
among the adaptation managers facilitating local decision-making processes in or-
der to deduce how and when to proceed with the execution. Hence, the protocol
messages furthermore control the state transitions of the behavioral protocol of the
adaptation managers. The issue of unreliable communication channels and adap-
tation errors is addressed by specific protocol messages and behavior whereas the
stopping failures are addressed by a maintained log of the adaptation transaction’s
execution state complementing the local execution of the coordination protocol by
each adaptation manager.

3. What is a suitable abstraction to describe the adaptations supposed to be performed
on the managed application platform-independently and is that description able to
support the execution of changes?
We use the Role concept as an abstraction to describe the context-dependent and
collaborative parts of the managed application that expose a specific behavior to
the system. Modifying the set of played roles or the interactions among roles
causes behavioral adaptations in the system. The utilization of roles covers fun-
damental operations such as the addition and removal of system behavior as well
as the modification of collaborations between system entities. In addition to these
operations, which are already used by existing approaches, it was possible to eas-
ily integrate semantically more powerful operations to the self-adaptive software
system, e.g., the exchange, migration or cloning of roles including their internal
state information. The set of adaptation operations proposed within this thesis
and based on the proposed Role features covers all existing operations providing
structural self-adaptations and allows for more semantically expressive operations,
too. Furthermore, the presented coordination protocol also relies on the notion of
Roles to perform changes at run time, i.e., the life cycle to determine a stable appli-
cation state supporting the modification of the managed application. In summary,
Roles are used to describe adaptations context-dependently, but also to implement
context-dependent and collaborative behavior of the managed application at run

87

4. Decentralized Execution of Distributed Adaptations

time, which eases the adaptation process of the coordination protocol and aids in
maintaining a consistent configuration during the adaptation process without rely-
ing on a specific implementation-platform, which is beneficial for the utilization of
the proposed approach in heterogeneous system environments. Regarding the last
research question, Roles can be considered a suitable abstraction for the desired
purpose in self-adaptive software systems.

88

5. Implementation & Evaluation

Having discussed and summarized the developed concepts addressing the posed require-
ments and research questions, this chapter gives insight into the performance of the
proposed solution. The evaluation of the developed concepts comprises a formal valida-
tion of the presented coordination protocol using means of model-checking as well as a
performance evaluation of a prototypical implementation of the coordination protocol in
a virtualized and emulated environment. First of all, some details on the prototypical
implementation, which is used to conduct the performance measurements of the coordi-
nation protocol in the emulated setup, will be given. Since this approach uses the notion
of Roles as general abstraction in order to describe and conduct adaptations, implementa-
tion details on the managed application will be given first in Chapter 5.1. Subsequently,
the overall architecture of the prototypical implementation, which differs to a certain
degree from the proposed conceptual architecture, will be discussed in Chapter 5.2. In
this section, only the most essential parts of the implementation of the coordination
protocol within the adaptation managers will be outlined. The emulation of the coordi-
nation protocol in a virtualized environment will be discussed in Chapter 5.3. First, the
emulation setup will be presented and the approach taken in order to obtain measure-
ment data to evaluate the protocol’s performance will be outlined. In a second step, the
emulated scenarios in which the coordination protocol is executed will be presented and
discussed. Third, the obtained results will be interpreted using a three-step approach:
First, the properties of the coordination protocol that are supposed to be evaluated will
be presented and expected results based on the chosen scenarios and the protocol design
will be discussed. Second, the obtained results will be interpreted and discussed with
respect to the expectations and requirements as well as the research questions. Finally,
the presented emulation and the obtained insights will be briefly summarized. In Chap-
ter 5.4, the approach taken to formally validate the developed coordination protocol will
be presented before the findings will be summarized in Chapter 5.5.

89

5. Implementation & Evaluation

5.1. The Role-based Managed Application

The emulation of the coordination protocol in a virtualized setup requires the presence of
a managed application. Since the approach relies on the notion of Roles to describe and
execute adaptations performed upon the managed application, the usage of a role-based
programming language or framework as foundation for the implementation of the man-
aged application is preferred. In the following, approaches suitable to serve as foundation
for the managed application will be discussed.

In Table 3.2 on Page 50, the list of features compiled by Kühn et al. [28], a role-based
software systems may support, is depicted. The Role features, the approach presented in
thesis relies on, were also indicated in Table 3.2. Some of those features, e.g., Features
#1 or #3, have to be supported directly by the role runtime whereas other features,
e.g., Feature #6, can also be ensured by the adaptation management supervising local
adaptations of the role-based application. Any programming language level approach,
though, that meets the stated requirements conceptually and at run time can be used
as implementation platform for the managed application of the self-adaptive software
system.

Besides the identified mandatory role features, the following requirements posed on a
role-based runtime were derived from the previous description of the adaptation interface
between adaptation management and managed application including the notion of a life
cycle for role instances (cf. Chapter 3.2). This life cycle, introduced in Chapter 3.2.1 on
Page 38, is the first requirement, denoted as RRQ 1, a role runtime needs to support.
Such a life cycle is required in order to determine a stable state for any given role instance
that is subject to context-dependent adaptations. The support of the adaptation interface
between adaptation management and managed application discussed in Chapter 3.2.2 on
Page 41 can be considered a second requirement (RRQ 2). More specifically, access to
operations that allow the adaptation management to create, delete, bind and unbind roles
and players is required since the adaptation management has to be able to modify the
relations between roles and players dynamically at run time. Additionally, internal state
information must be obtainable, which is required in order to fully support the introduced
distributed adaptation operations. The support of the role runtime to seamlessly allow
the collaboration with remote roles is a third, but not a mandatory requirement (RRQ 3).
Since our approach not only covers the behavioral and context-dependent natures of
roles, but also their collaborative nature, a distributed runtime supporting such role
collaborations across device borders will be a mandatory requirement in the future.

The role-based programming languages and runtimes discussed in [28] have been in-

90

5.1. The Role-based Managed Application

vestigated as possible candidates to serve as foundations for the managed application in
our approach, but neither approach allows the required flexibility in terms of the modifi-
cation of the binding between roles and players to allow for behavioral adaptation, which
is the main concern for the envisioned approach in this thesis, at run time. Only two
approaches, namely SCROLL [30] and LyRT [42], fully support the degree of variabil-
ity between roles and players, required by the approach proposed in this thesis. Both
approaches are not part of the initial list presented in [28], but were developed later.
Subsequently, both approaches were measured against the required and optional role fea-
tures posed by our solution. In Table 5.1 the supported role features of both LyRT and
SCROLL are measured against each other. In order to discern, which of the both run-
times fits the needs of our approach of a role-based runtime as foundation of a managed
application better, the role features supported by our approach are also highlighted in
Table 5.1. Role features previously marked as not considered, thus not relevant for our
approach, have been omitted in Table 5.1 for a better overview. Evidently, both LyRT
and SCROLL support the role features required by the adaptation management to a high
degree. Feature #2 is not supported by both LyRT and SCROLL, which is also reflected
in the missing fulfillment of both approaches for RRQ 3. Since all other required role
features are supported by both approaches, LyRT was chosen as execution environment
for the implementation of the managed application, since the existing Java implemen-
tation was the easiest to extend with the sole additional requirement to implement a
communication interface that allows the adaptation of a LyRT-based application by the
adaptation management. In the remainder of this section, we focus on the extensions
made to LyRT with respect to the missing compatibility to previously posed RRQ 1
through RRQ 3.

Regarding RRQ 2, LyRT already offers all necessary methods to manipulate the role-
player relation dynamically at run time through a class called RegistryManager, which
is responsible for the management of these relations and the method dispatch between
roles and players. Extending the base class Role within LyRT in order to write and
read the internal state information of the given role instance was the only extension
that had to be implemented for RRQ 2 to be fulfilled. Each subclass implemented as
a role that is supposed to be adapted context-dependently therefore has to overwrite
these two methods, which is a reasonable requirement for adaptation developers since
the transmission is application-specific and might also only comprise a subset of the
actual internal state of a role instance.

As it was previously outlined in Chapter 3.2.1 and Chapter 4.3, a run-time life cycle for
Roles was developed to ensure the consistent adaptation through roles reaching a stable

91

5. Implementation & Evaluation

Table 5.1.: Reduced list of role features by Steimann [40] and Kühn [28] comparing features of
role-based runtimes with our approach.

Feature

O
u
r

A
p
p
ro

ac
h

S
C

R
O

L
L

[3
0]

L
yR

T
[4

2]

1. Roles have properties and behaviors ✓ ✓ ✓

2. Roles depend on relationships ✓ ✗ ✗

3. Objects may play different roles simultaneously ✓ ✓ ✓

4. Objects may play the same role (type) several times ✓ ✓ ✓

5. Objects may acquire and abandon roles dynamically ✓ ✓ ✓

6. The sequence of role acquisition and removal may be
restricted

✓ ✗ ✓

7. Unrelated objects can play the same role ✓ ✓ ✓

8. Roles can play roles ✗ ✓ ✓

9. Roles can be transferred between objects ✓ ✓ ✓

11. Features of an object can be role-specific ✓ ✓ ✓

12. Roles restrict access ✗ ◆ ✗

14. An object and its roles share identity ✗ ✓ ✓

15. An object and its roles have different identities ✓ ✓ ✓

17. There may be constraints between relationships ✗ ✗ ✗

19. Roles depend on compartments ✓ ✗ ✓

20. Compartments have properties and behaviors ✗ ✓ ✓

21. A role can be part of several compartments ❊ ◆ ✓

22. Compartments may play roles like objects ✗ ✓ ✓

23. Compartments may play roles which are part of
themselves

✗ ✓ ✓

26. Compartments have their own identity ✓ ✓ ✓

RRQ 1 Life cycle support for role instances fav ✗ ✗

RRQ 2 Provision of methods required by IF_3 man ◆ ◆

RRQ 3 Retrievable and modifiable role collaborations fav ✗ ✗

Supported: ✓ | Partially Supported: ◆ | Not Supported: ✗ | fav: favorable | man: mandatory

92

5.2. The Decentralized Adaptation Management

application state prior to any ongoing adaptations from a conceptual perspective. During
the adaptation process, Passivate messages are used between adaptation managers to
facilitate reaching a stable application state among the remote instances of the managed
application. More specifically, Passivate messages are used to gracefully stop ongoing
collaborations of the role instance involved in the execution of the current adaptation
operations, and the remote roles involved in the collaboration. The exchanged Passivate
messages are locally translated by the adaptation manager to Passivate methods, which
trigger the transition of the role to the Passive state in its life cycle and which are provided
by the previously discussed interface of the role-based runtime. While all protocol-
related prototypical implementations follow the developed state chart and make use of
the specified interfaces, no actual means were implemented in LyRT to prevent method
dispatches from happening when a role is supposed to be passive. Since the adaptation-
specific parts of the coordination protocol, i.e., the coordination of the adaptation steps
and the detection and handling of the assumed error models (cf. Chapter 4.1), are
subject to the evaluation presented in this chapter, the assumption that roles at run
time behave according to the proposed life cycle is sufficient. Future work, however, that
also considers reaching a stable application state prior to the actual adaptation process
will have to make dedicated extensions to LyRT in order to support RRQ 1.

Following this rationale, no additional implementations were made within LyRT to es-
tablish support for collaborating roles located on mutually remote devices. Consequently,
RRQ 3 was also not necessary to be implemented for the conducted evaluation.

5.2. The Decentralized Adaptation Management

Conceptually, the adaptation management is responsible for the external adaptation of
role-player relations within the local role-based runtime. Since LyRT only supports
intrinsic adaptations, i.e., role bindings are established and released through code state-
ments, the runtime had to be extended to support external adaptations triggered and
coordinated by the adaptation manager co-located on the respective node. As a conse-
quence, the conceptual adaptation manager (cf. Figure 4.1 on Page 54) was split into
two components. The adaptation manager implements the coordination protocol and
manages the decentralized execution of adaptation transactions. The management end-
point serves as extension of the adaptation management and is incorporated into the role
runtime providing a communication interface to the adaptation manager. This results in
two executable software artifacts that follow the external control approach, which was
already used conceptually to describe the system architecture of the self-adaptive soft-

93

5. Implementation & Evaluation

Node 1

Adaptation Manager

Management Endpoint

LyRT

Application

Local Transaction

Local Adaptation Interface (cf. 3.2.2)

Node N

Adaptation Manager

Result

Managed Application

Execution Phase of Adaptation Management

...

Figure 5.1.: Overview of system artifacts representing the prototypical implementation of the
approach.

ware system. The adaptation manager, which is the first software artifact, implements
the proposed coordination protocol and thus represents the distributed and decentralized
execution phase of the feedback loop. The managed application composed of an arbitrary
application implemented using the LyRT runtime and the management endpoint denotes
the second software artifact. An overview of the components’ part of the implementation
including their communication relations is depicted in Figure 5.1.

The management endpoint does not only provide a communication endpoint to the
adaptation management, but also implements the translation of adaptation operations
presented earlier in this thesis to the interface operations provided by the role runtime,
thus providing the implementation for IF_3, and reports the execution results to the
adaptation manager. This execution of adaptation operations affecting role-player rela-
tions on the local device is implemented as adaptation transaction through the communi-
cation interface between adaptation manager and management endpoint. The execution
of an adaptation group by an arbitrary adaptation manager exemplifies the ongoing com-
munication between the two artifacts. In a first step, adaptation operations within this
group are determined that affect role-player relations of the local role runtime. These
adaptation operations are wrapped in a Transaction message, which is sent to the man-
agement endpoint. Within the management endpoint, the adaptation operations en-
capsulated in the received adaptation transaction are executed in accordance with the
mappings of adaptation operations to local interface operations provided by LyRT. This
mapping was summarized in Tables 4.1 and 4.2 on Pages 68 and 69, respectively. A Re-
port message is sent from the management endpoint to the adaptation manager in order
to report the successful execution of the respective adaptation transaction that represents

94

5.2. The Decentralized Adaptation Management

the currently executed local adaptations. The adaptation manager component maintains
a mapping of the adaptation transactions representing the locally executed adaptation
operations and the globally executed adaptation transaction. The management endpoint
also determines the type of the adaptation operations and executes them appropriately,
e.g., if it is the source node of a migrate operation, the role will be passivated and
state information will be retrieved. The adaptation manager, however, keeps track of the
overall progress of the distributed adaptation operation since the management endpoint
is only aware of its local knowledge on the operations’ execution progresses. In this re-
gard, the adaptation manager requests the retransmission of Report messages from the
migration’s target node in the case of lost coordination messages or issues the activa-
tion of changes or the rollback in either case in accordance to the specifications of the
coordination protocol to the management endpoint.

All executable software artifacts are Java implementations. Since LyRT is a Java-
based role runtime, implementing both adaptation manager and management endpoint
as Java applications, too, allowed for a high degree of code reuse through shared libraries
for the exchange of messages between adaptation managers, but also between adaptation
manager and management endpoint. The communication among all executable software
artifacts is based on the standard UDP implementation of Java 1.8. Adaptation managers
use two distinct ports to exchange transaction and execution control messages among
each other, which is a decision made to ease the automated execution of adaptation
transactions during the protocol emulation. We will outline and discuss the details of
that implementation decision in the following section.

A configurable part of the coordination protocol, which may also be application-
specific, is the timeout to determine lost coordination messages exchanged between
adaptation managers. In the implementation used for the emulation, this timeout was
implemented with 2.5 seconds for each escalation step.

When adaptation managers report the progress information of locally performed adap-
tations, more messages are sent within a few milliseconds than are processable in time
by the prototypical implementation. The limitation becomes increasingly obvious with a
growing number of nodes participating in the execution of adaptation transactions and
results in a behavior that adaptation managers interpret as message losses and act ac-
cordingly, which negatively affects the emulation of the coordination protocol. Details on
the observed behavior within the emulation process itself will be given in Chapter 5.3.4.
To partially reduce the observed execution behavior for a majority of test cases, at the
end of the execution of every adaptation group, i.e., when an adaptation manager detects
its currently executed adaptation group to be finished, an additional Report message will

95

5. Implementation & Evaluation

be sent to all peers. These additional messages sent to all peers report the progress infor-
mation of all locally executed adaptation operations within the just-finished adaptation
group. These additionally sent messages, however, are not part of the original protocol
specification.

In order to evaluate the protocol, which will be discussed in detail in the following
section, the execution flow of the protocol needs to be logged to be available for the
subsequent evaluation. This requires each adaptation manager involved in the execution
of adaptation transactions to log information about received messages and when the ex-
ecution of an adaptation group was started and finished. Consequently, each adaptation
manager maintains a log file in which the received messages as well as the execution
process were persistently stored including timestamps when a significant event such as
a received coordination message or the beginning of the execution of a new adaptation
group occurred. Since this logging constitutes a writing operation on the hard-drive of
the system, typical delays and inaccuracies within the range of a few milliseconds at most
are to be expected.

5.3. Emulation of the Coordination Protocol

This part of the evaluation is concerned with the scalability and performance of the co-
ordination protocol. The significant properties of the protocol that are supposed to be
evaluated by the emulation are (1) the overall execution time of an adaptation transac-
tion, also referred to as adaptation duration, (2) the rate of successfully executed adap-
tation transactions for varying degrees of link failure rates; and (3) the time a role that
is affected by a distributed adaptation operation is unavailable during the adaptation
process, which is referred to as downtime (of the role). The first two properties imme-
diately address the performance of the coordination protocol, especially with respect to
the handling of lost coordination messages during the protocol’s execution. The latter
property is significant with respect to self-adaptive software systems in general since the
projected unavailability of system behavior during an adaptation process is an impor-
tant measure for the applicability and performance of a self-adaptive software system.
All properties will be evaluated for varying system sizes, which denotes the number of
adaptation managers involved in the execution of an adaptation transaction.

In this section, the emulation setup will be discussed first. A brief outline of the
infrastructure and tools will be part of this discussion as well as the steps taken to
obtain measurement data and to prepare assessable results. In a second part, the results
obtained through the emulation will be presented and critically discussed. At this point,

96

5.3. Emulation of the Coordination Protocol

Docker Container A

Adaptation
Manager

Managed
Application

Application
Launcher

modify
introspect

restart

55111

55101

55201

Test
Manager

Docker Container B

Adaptation
Manager

Application
Launcher

55111

55101

55201

Docker Container N

Adaptation
Manager

Application
Launcher

55111

55101

55201

55111

55201

ReflectionRequest-/
ReflectionResponseMessage

RestartRequest-/
RestartResponseMessage

Transaction Control
Messages

TransactionMessage

Execution
Control

Messages

Figure 5.2.: Setup of the emulation environment depicting Docker containers, communication
channels and deployed components to automatically execute adaptation transactions.

different scenarios used to asses the different properties and measures of the protocol will
be outlined in preparation to the discussion of the final results. Finally, the results will
be briefly summarized.

5.3.1. General Emulation Setup

In order to emulate the protocol behavior and to assess the scalability of the approach,
several executions of adaptation transactions were performed in a virtualized environ-
ment. Docker1 was used to set up the emulation environment for the conducted experi-
ments. A Docker container in this setup represents a node of the self-adaptive software
system hosting an instance of the prototypical implementations of the adaptation man-
ager and the managed application each. Additionally, a third component was deployed in
every Docker container to support the automated execution of adaptation transactions,
which is referred to as application launcher. The overall emulation procedure for a test
setup was managed and executed by a custom-made tool referred to as test manager,
which is always deployed on the host system of the Docker containers and thus, neither
deployed in a Docker container nor part of a node that is affected by an adaptation
transaction. All components involved in the emulation of the protocol’s execution and
the communication channels between them are depicted in Figure 5.2 and will be briefly

1https://www.docker.com

97

https://www.docker.com

5. Implementation & Evaluation

explained in the following.

Adaptation Manager The adaptation manager is responsible for the execution of an
adaptation transaction and implements the decentralized coordination protocol.
Implementations diverting from the actual specification of the coordination protocol
have been discussed in the previous section.

Managed Application The managed application is implemented using LyRT [42] and
provides a random set of roles and players between which a play relation can be
established and released dynamically at run time. A subset of roles and players
was always bound immediately after the application launches to enable Remove

and Migrate adaptations immediately to be performed. The application is generic
enough to cover typical adaptation scenarios implied by the introductory applica-
tion scenarios, but does not follow a certain scenario itself. The sole purpose of the
managed application in the emulation is the provision of a role-based application
upon which adaptations can be performed at run time.

Test Manager The test manager has several tasks in the emulation of the coordination
protocol’s execution. First of all, the test manager automatically generates adap-
tation transactions based on given parameters that can be set in the beginning
of the emulation. These parameters include the type and number of adaptation
operations that ought to be within the generated adaptation transaction as well
as the number of times the generated adaptation transaction is supposed to be
performed, i.e., the number of runs, and the initial receiver, which is the Docker
container (adaptation manager) the adaptation transaction is sent to before it is
automatically distributed from the initial receiver among all other nodes. Further-
more, all nodes part of the system need to be specified as a parameter as well to
enable the test manager to communicate with the application launchers deployed to
the respective containers throughout the repeated emulation process. Second, the
test manager monitors the execution of an adaptation transaction using a subset of
the coordination protocol’s transaction control and coordination control messages.
Third, the test manager collaborates with the application launchers, which are de-
ployed on each Docker container, to restart the managed application after every
execution of an adaptation transaction and starts a new run.

Application Launcher The successful execution of an adaptation transaction on the dis-
tributed managed application leaves the application in a state different from the
initial source configuration on which the adaptation transaction is generated. In

98

5.3. Emulation of the Coordination Protocol

order to achieve comparable results for each run of the adaptation transaction’s
execution, the adaptation transaction has to remain fix. The app launcher is re-
sponsible to terminate and restart the local process within the Docker container
that represents the managed application (the adaptation manager is kept alive,
in contrast, across several runs) and collaborates with the test manager to help
coordinating the execution of subsequent runs of the same adaptation transaction.

In the following, we will refer to the term experiment as the repeated execution of
a configured adaptation transaction for which the number of nodes that participate in
the execution of the adaptation transaction remains unchanged. Different experiments
vary with respect to the system size, i.e., the number of involved local adaptation man-
agers in the adaptation transaction’s execution, and the number and type of adaptation
operations grouped together within an adaptation transaction.

A first step in each experiment is the generation of a random adaptation transaction,
which is done automatically by the test manager based on the specified parameters.
Since adaptations in the role-based application are carried out on the instance level, the
test manager needs to obtain the concrete identifiers of roles, players and compartments
within the distributed managed application. Solely for the purpose of obtaining the
current run-time model of the role-based application, a RequestReflection and Respon-
seReflection message was introduced for the communication between test manager and
adaptation manager. The former message is used by the test manager to request the ap-
plication’s run-time model and the ResponseReflection message is used by the adaptation
manager to transfer the obtained information. The adaptation managers use a reflection
interface provided by the managed application’s management endpoint, which has not
yet been discussed. Upon receiving a RequestReflection message, the management end-
point retrieves the current role-player bindings by querying the lookup table maintained
by LyRT [42] and returns the obtained run-time model of the managed application to
the adaptation manager using a ReflectionResponse message, which is then simply for-
warded by the adaptation manager to the test manager. Since the managed application is
restarted after each execution of an adaptation transaction, this step is required initially
to generate a random adaptation transaction in accordance with the specified parameters
and before each subsequent run of an experiment’s execution since the instance identifiers
generated by Java and utilized by LyRT change after every restart.

As soon as the adaptation transaction was generated, the test manager sends a Trans-
action message to the node that was specified as initial receiver through port 55111. Mes-
sages transmitted using this port are not subject to message loss during the execution
of experiments, which eases the distribution of transaction control messages discussed in

99

5. Implementation & Evaluation

Chapter 4.4.1. The initial receiver also uses this port to distribute the received adapta-
tion transaction for the same reason. Since the execution of an adaptation transaction
using the specified coordination protocol is supposed to be evaluated and not the distri-
bution of an adaptation transaction, the simplification is reasonable within the scope of
this evaluation. Furthermore, the distribution of adaptation transactions might not even
be required if a distributed planning approach, such as DecAp [32] is used to plan out
the adaptation transaction, which would then immediately be present on the respective
nodes. Subsequent execution control messages, such as Report, StateTransfer or Re-
questReport messages, which were introduced in Chapter 4.4.1, are exchanged through
port 55101, which is prone to message loss. As soon as the adaptation transaction fails
or succeeds, either an TransactionRollback or TransactionActivation message, which are
both transaction control messages and thus distributed through the reliable port 55111,
are sent to the test manager, respectively. The current run is thus considered finished and
the test manager requests the application launcher to restart the managed application
using the RestartRequest message. The application launcher notifies the test manager on
the successful restart of the managed application through responding with a RestartRe-
sponse message to test manager. As soon as all responses have been received from the
application launchers, the test manager will continue the experiment with the next run
following the described procedure. The exchanged messages used by the involved com-
ponents and the respective ports those messages are exchanged through are also depicted
in Figure 5.2.

Some performed runs turned out to be invalid for the intended measurements, which
is the case if log information could not be obtained to calculate the adaptation duration
for the respective node. Furthermore adaptation transactions that had to be rolled back
because of local adaptation failures that had not been intended to happen, are also not
considered for the evaluation of the protocol’s performance. In both cases, the respective
run was not considered for the evaluation and was repeated instead. All experiments
have been repeated until a total of 100 runs was reached, which means invalid runs are
not considered for the result set.

5.3.2. Data Acquisition

During the execution of an adaptation transaction, each adaptation manager logs progress
information of the current execution state and writes the results on the persistent stor-
age of the node. We utilize this log information that also contains a timestamp when
the respective log message was issued to obtain information on the emulation properties,
which were introduced in the beginning of this section. The important log information

100

5.3. Emulation of the Coordination Protocol

we require though, are the points in time when an adaptation transaction is received by
the respective adaptation manager and when the execution of the adaptation is started.
Since the adaptation transaction is forwarded by the first receiving adaptation manager,
each adaptation manager will evidently commence the adaptation process at a different
point in time. The initial receiver in particular will start the execution of the adaptation
transaction last since the adaptation process will only be started by that adaptation
manager if all TransactionAcknowledge messages were received from the peers. The
peers, in contrast, will start immediately with the execution of the adaptation trans-
action since they do not have to forward the received adaptation transaction. This is
possible because it was assumed in the setup that the test manager is never deployed to
a node, i.e., Docker container, affected by the adaptation process. Consequently, if an
adaptation transaction is received from an IP address that is also specified in at least
one adaptation operation, an adaptation manager can decide not to have to forward the
received adaptation transaction. This decision, of course, is implementation specific and
not prescribed by the proposed coordination protocol. Furthermore, information about
the point in time when the execution of a specific adaptation group, i.e., of all operations
denoted by the same Order parameter, is started and finished is obtained through the
log information.

The last log information used to assess the performance of the coordination protocol is
the point in time at which a node either detects the successful execution of the adaptation
transaction locally or at which point in time a TransactionActivation message is received.
Both events denote a successful execution of the adaptation transaction. Information
about an unsuccessful execution is obtained in a similar manner since each adaptation
manager logs the detection of a rollback based on unobtainable progress information for
a given adaptation operation. Similarly, the receipt of the TransactionRollback message
from a peer adaptation manager is logged.

After the experiment’s execution, the logged progress information was obtained from
the Docker containers and further processed using evaluation scripts to automatically cal-
culate the desired values for adaptation duration, success rate and downtime of involved
roles.

5.3.3. Emulated Experiments

As previously discussed, a Docker container hosts an instance of the managed applica-
tion and the execution part of the adaptation management represented as adaptation
manager, which implements the coordination protocol presented within this thesis. The
performance assessment of the coordination protocol is aligned along three variables: the

101

5. Implementation & Evaluation

system size, the composition of the executed adaptation transaction, and the rate of mes-
sage losses occurring during the adaptation process. The system size denotes the number
of nodes in the system that are affected by a given adaptation transaction. Evidently, a
node participates in the execution of an adaptation transaction if a role is supposed to be
added to or removed from a player located on the respective node. Similarly, a given node
participates in an adaptation transaction if the node’s adaptation manager is responsible
for the execution of either the source or target node’s adaptation steps of a distributed
adaptation operation. The message loss rate describes the percentage of random drops of
protocol messages exchanged between adaptation managers during the execution of the
adaptation transaction. The composition of adaptation transactions finally describes the
Type of adaptation operations contained within the adaptation transaction. In the fol-
lowing, we will focus on the different compositions of adaptation transactions and briefly
discuss the rationale to choose those compositions. Each composition will be executed
in combination with different system sizes and message loss rates.

The first three experiments are aligned to the introductory application scenarios, which
results in three different compositions of adaptation transactions. Based on application
scenario one (autonomously driving cars), the first composition contains only locally
executed Exchange operations to simulate the exchange of the cars’ driving behaviors in a
coordinated manner in response to changed weather conditions. The second composition
simulates the rescue-robot scenario and contains only Migrate operations, which have to
be executed by two adaptation managers, i.e., source and target node are different. The
third and last application scenario addresses the evolution of a running software system.
This is simulated through adaptation transactions that solely contain Add and Remove

operations to represent the removal of deprecated and the introduction of new system
behavior. An adaptation manager is assumed to be responsible for the local execution
of exactly one adaptation operation in all three compositions. This restricts the size of
an adaptation transaction to the system size, i.e, for the first and third composition,
the number of adaptation operations is equal to the number of nodes affected by the
execution of the adaptation transaction. In the second composition, only half the number
of adaptation operations compared to the number of nodes affected by the execution of
the adaptation transaction are specified because each node either executes the target or
source node’s part of the distributed adaptation operation.

Since the previous set of experiments only contains homogeneous sets of adaptation
operations with respect to the way these adaptation operations are executed according
to the protocol definition, additional experiments were conducted containing a mixture
of Add, Remove and Migrate adaptation operations. Since those three types cover the

102

5.3. Emulation of the Coordination Protocol

entire protocol specification of the execution of adaptation operations, it is sufficient
to focus on these three during the emulation of the coordination protocol. In these
additional experiments, the load on the adaptation managers was also increased, which
means adaptation transactions contained up to five times more adaptation operations
than nodes in the system. The type of adaptation operations was evenly distributed
among Add, Remove and Migrate operations.

For all experiments, the generated adaptation operations part of an adaptation trans-
action were distributed randomly across at most ten adaptation groups, i.e., the value
for the Order parameter of each adaptation operation was within the range of {0..9}.

In contrast to the previous experiments, which were coined by a random distribution
of adaptation operations across at most ten adaptation groups, a last set of four further
experiments was set up in which all adaptation operations were performed in paral-
lel, i.e., all adaptation operations were configured with an Order parameter of 0. The
represented compositions in these experiments reflect the previously discussed ones and
contain adaptation transactions composed of only Add and Remove operations, of only
Migrate operations, and of an evenly distributed mixture of the three adaptation oper-
ation types with differing total numbers of adaptation operations within the adaptation
transactions.

An overview of all previously described experiments is given in Table 5.2 including
the different system sizes, the size of the adaptation transaction as well as the respec-
tive composition of the adaptation transaction. In order to estimate the coordination
protocol’s behavior in environments coined by unreliable communication channels, each
experiment was repeated six times using different degrees of message loss rates, namely
{0, 1, 5, 10, 25, 50} percent of transmitted messages were dropped. An iteration of an
experiment denotes its repeated execution using a specific message loss rate until 100
runs of the respective experiment have been completed.

Evidently, the chosen compositions for the adaptation transactions in combination with
the number of adaptation operations executed within a given composition results in four
distinguishable classes of experiments, which we will refer to as clusters in the following
(cf. TS/SS column in Table 5.2). The first cluster is coined by a TS/SS ratio of 1 : 2 and
comprises the experiments UC 2 and P1, which both only contained distributed migrate
adaptation operations on the respective number of nodes with each node executing either
the target node’s or the source node’s part of exactly one adaptation operation only.
The second cluster is coined by a TS/SS ratio of 1 : 1 and comprises experiments
UC 3 and P2, which both only executed exactly one local adaptation operation (Add
or Remove randomly distributed) on each node. We include experiment UC 1, coined by

103

5. Implementation & Evaluation

Table 5.2.: Overview of the experiments used to emulate the execution of the developed coordi-
nation protocol.

Experiment SS TS/SS Adaptation Operation Distribution
Add Remove Migrate Exchange

1.

Use Case 1 – UC 1

4

1/1

0 0 0 4
2. 10 0 0 0 10
3. 20 0 0 0 20
4. 30 0 0 0 30
5.

Use Case 2 – UC 2

4

1/2

0 0 2 0
6. 10 0 0 5 0
7. 20 0 0 10 0
8. 30 0 0 15 0
9.

Use Case 3 – UC 3

4

1/1

2 2 0 0
10. 10 5 5 0 0
11. 20 10 10 0 0
12. 30 15 15 0 0
13.

Work Load A – WLA

4

2/1

3 3 2 0
14. 10 7 7 6 0
15. 20 14 13 13 0
16. 30 20 20 20 0
17.

Work Load B – WLB

4

5/1

7 7 6 0
18. 10 17 17 16 0
19. 20 34 33 33 0
20. 30 50 50 50 0
21.

Parallel 1 – P1

4

1/2

0 0 2 0
22. 10 0 0 5 0
23. 20 0 0 10 0
24. 30 0 0 15 0
25.

Parallel 2 – P2

4

1/1

2 2 0 0
26. 10 5 5 0 0
27. 20 10 10 0 0
28. 30 15 15 0 0
29.

Parallel 3 – P3

4

2/1

3 3 2 0
30. 10 7 7 6 0
31. 20 14 13 13 0
32. 30 20 20 20 0
33.

Parallel 4 – P4

4

5/1

7 7 6 0
34. 10 17 17 16 0
35. 20 34 33 33 0
36. 30 50 50 50 0

37. Adaptation Failure – AF 10 4/5 2 2 2 2

SS: System Size denotes the number of notes affected by an adaptation transaction | TS: Trans-
action Size denotes the number of adaptation operations within an adaptation transaction.

104

5.3. Emulation of the Coordination Protocol

locally executed Exchange adaptation operations in this cluster as well since the ratio of
adaptation operations within an adaptation transaction with respect to the number of
nodes involved is 1 : 1 as well, i.e., each node executes exactly one exchange operation
locally. The third and fourth cluster are coined by a TS/SS ratio of 2 : 1 and 5 :

1, respectively, and contain both equally many Add, Remove and Migrate adaptation
operations executed on the respective number of nodes. Evidently, in both clusters,
nodes execute multiple adaptation operations during the execution of an adaptation
transaction and possibly also within an adaptation group. Experiments WLA and P3
belong to the third cluster, experiments WLB and P4 belong consequently to the fourth
cluster.

So far, experiment 37 has not yet been discussed. In this experiment, the behavior of
the protocol in case of a local adaptation failure was emulated. Therefore, the experi-
ment was conducted two times: the first iteration was conducted with an automatically
generated adaptation transaction in the same way as the previously described experi-
ments whereas in the second iteration, the generated adaptation transaction of the first
iteration was tampered in a way to inevitably have the execution of the adaptation trans-
action fail. Since the instance identifiers for roles, players and compartments change for
each execution of an adaptation transaction, one migrate operation’s target role type
was modified in a way that no instance of this type could be instantiated locally because
the role type did not exist locally, thus, resulting in a local adaptation failure that was
supposed to immediately have the execution of the adaptation transaction fail.

5.3.4. Results

The previously described experiments cover typical application scenarios of the intro-
ductory use cases and aim to support a general evaluation of the coordination protocol’s
performance and scalability. Since the experiment clusters contain different compositions
of adaptation transactions and are executed on different system sizes with differing mes-
sage loss rates, certain expectations can be made with respect to the execution duration
and success rate of the adaptation transaction. These expectations will be discussed first
before the actual results will be presented and critically discussed subsequently. Finally,
the results of the emulation will be briefly summarized.

Expected Results

A very first intuitive expectation is the adaptation duration to consume more time for
emulations configured with a higher message loss probability on the communication chan-

105

5. Implementation & Evaluation

nel between nodes. This expectation is evident because adaptation managers will not
be able to obtain all necessary Report messages for an increasing number of lost co-
ordination messages, which inevitably leads to timeouts that stall the execution of the
adaptation transaction. Closely related to the increased adaptation duration for higher
message loss rates on the communication channels is the success rate with which adap-
tation transactions can be finished. The success rate is expected to decrease with an
increasing probability of coordination control messages to be lost on transmission during
an adaptation process. For both the adaptation duration and the success rate, we expect
adaptation transactions containing Migrate operations to consume more time to finish
and to fail more often with an increasing message loss rate compared to experiments
not containing any Migrate operations. The expectation is based on the protocol spec-
ification for the execution of distributed adaptation operations displayed in Figure 4.8
on Page 77 if the transmission of state information is required. The adaptation opera-
tion can only be finished after the target node received the state information from the
source node. If this one StateTransfer message is lost, however, the entire system has to
wait for the specified timeout period because the respective adaptation group will not
be able to finish due to this one distributed adaptation operation. This is expected to
be reflected in the adaptation duration for the emulation of the coordination protocol.
Furthermore, the target node is only able to obtain the missing state information from
the source node since this information is not broadcast to any other node. Consequently,
three lost messages between source and target node will already be enough to fail the
entire adaptation transaction, which evidently becomes more and more likely to happen
with an increasingly unreliable communication channel between the respective nodes.

Another expectation is concerned with the iterations of the experiments that are free
of message losses, i.e., the message loss rate is configured with 0%. If the system size
grows, the number of adaptation operations within an adaptation transaction also grows.
Consequently, more but at most ten adaptation groups will be randomly created for ex-
periments 1 through 20. Adaptation transactions configured with less adaptation groups
are expected to finish faster than those with more adaptation groups because adaptation
groups are executed sequentially. Consequently, experiments 21 through 36 are expected
to finish fastest within their respective clusters and within the given system size since
all adaptation operations are performed within only one adaptation group. Similarly,
experiments 13 through 20 are expected to require the most execution time within their
respective clusters and within the given system size.

106

5.3. Emulation of the Coordination Protocol

4 10 20 30

0

2,000

4,000

6,000

8,000

10,000

System Size

D
ur

at
io

n
in

m
s

UC 1 UC 2 UC 3
P1 P2 P3
P4 WLA WLB

(a) Average adaptation duration.

4 10 20 30

0

2,000

4,000

System Size
D

ur
at

io
n

in
m

s

UC 1 UC 2 P1 P3
P4 WLA WLB

(b) Average downtime of migrated role in-
stances.

Figure 5.3.: Baselines (0% message loss) for the conducted experiments and different node sizes.

Result Presentation & Discussion

Every experiment was emulated six times. In each iteration, the communication channel
between the nodes, i.e., Docker containers, was configured with a different message loss
rate. Those repeated iterations of one experiment with different link failure rates belong
logically together and will always be discussed in close relation to the iteration configured
with 0% message loss. For the sake of simplicity and better understanding, this 0%
message loss iteration will be referred to as the baseline of the experiment in the following.

In Figure 5.3, the baselines for all experiments with respect to the adaptation duration
(cf. Figure 5.3a) and downtime of roles (cf. Figure 5.3b) are displayed. Two observa-
tions of the baselines of every conducted experiment are striking. The first result is the
realization that all compositions of the adaptation transaction perform very well for the
smallest system size, which contained four participating nodes. WLB required the most
time to perform the specified adaptation transaction (330ms), which is an expected result
since WLB belongs to the cluster with the largest adaptation transactions. Similarly, P4
required the most execution time of all single-adaptation-group experiments (114ms) and
shows an execution time comparable to UC 1 and UC 3. The second striking observation
is P2 and UC 3 performing and scaling extraordinarily well in comparison to the other
results. This result is an immediate consequence of the aforementioned limitation of
the prototypical implementation not being able to process all received execution control

107

5. Implementation & Evaluation

messages if these arrive within a few milliseconds. As depicted in Figure 5.3, a rather
unexpected performance decline can be observed between system sizes of 10 and 20 nodes
or 20 and 30 nodes. The logged information of the execution protocol of the adaptation
transaction showed unexpected message losses for the baseline scenario, i.e., the receipt
of RequestReport messages was logged. For system sizes of 4 and 10 nodes, these lost
messages occurred infrequently and have no impact on the average results of the adap-
tation durations or downtimes of roles. In larger system sizes, however, the phenomenon
occurred frequently causing the perceivable decline in the execution times of adaptation
transactions because the amount of adaptation operations processed in parallel increases
(remember: we limit distribution of adaptation operations to 10 adaptation groups) and
consequently does the number of exchanged Report messages increase appropriately. The
implementation of the network communication turned out not to be fast enough to pro-
cess several almost simultaneously incoming Report or StateTransfer messages, which
is observable as lost coordination messages in the coordination protocol’s execution log.
Both P2 and UC 3 belong to the second cluster, which is coined by adaptation transac-
tions containing only local adaptation operations and is hence less prone to experience
this limitation. However, specific characteristics of adaptation transactions have become
obvious for adaptation transactions that belong to this cluster in particular, which also
explains the longer adaptation duration for UC 1 for a system size of 20 nodes compared
to a system comprised of 30 nodes. A detailed assessment of this observation will be
delayed until the results of cluster 2 are discussed in general later. All other clusters
contained distributed adaptation operations, too, which easily affects the adaptation du-
ration and downtimes of roles adversely if the StateTransfer message is lost during the
adaptation process. In summary, a limitation of the prototypical implementation caused
an emulation result that was expected for message losses only to show already at the
baseline of the experiments.

The limitation of the prototypical implementation is reflected in the downtime of roles
depicted in average for all conducted experiments in Figure 5.3b as well. Due to adapta-
tion transactions being atomically executed, roles passivated for a migration, exchange or
cloning (not conducted throughout the evaluation) are passive until all adaptation man-
agers agreed on the activation of the performed changes. Consequently, roles that were
migrated in early adaptation groups experience a longer inactivity than such roles being
migrated in later adaptation groups. The average downtime of roles across all adapta-
tion groups is depicted in Figure 5.3b. Since all adaptation operations in P1 through P4
exluding P2, which did not execute any distributed adaptation operations such as a mi-
gration, are performed within a single adaptation group, the experienced downtimes by

108

5.3. Emulation of the Coordination Protocol

0 1 5 10 25 50

0

5,000

10,000

Message Loss Rates in %

D
ur

at
io

n
in

m
s

4 Nodes 10 Nodes 20 Nodes 30 Nodes

0

20

40

60

80

N
um

be
r

of
R

ol
lb

ac
ks

(a) UC 2

0 1 5 10 25 50

0

2,000

4,000

6,000

8,000

Message Loss Rates in %

D
ur

at
io

n
in

m
s

4 Nodes 10 Nodes 20 Nodes 30 Nodes

0

5

10

15

N
um

be
r

of
R

ol
lb

ac
ks

(b) P1

Figure 5.4.: Cluster 1: Execution times for the experiments UC 2 and P1 for every system size
with different message loss rates.

the respective roles are comparable to the actual execution times of the overall adapta-
tion. The average downtime of roles is also significantly lower for WLA and WLB for the
conducted experiments especially for the largest system size of 30 nodes, which indicates
a majority of the conducted Migrate operations to be performed in later adaptation
groups. Consequently, the results might slightly differ for other adaptation transactions
that have a different distribution of the Migrate operations across all adaptation groups.

In the remainder, the results of the previously discussed clusters will be discussed
focusing on the message loss and its impact on the execution of adaptation transac-
tions for the experiments conducted within the given cluster. Furthermore, expected
and unexpected results of the conducted experiments will be part of the discussion of
the presented results of the emulation. For all Figures presented and discussed in the
following, the diamond character (⋄) in each figure denotes the number of unsuccessfully
executed adaptation transactions (rollback case) due to message loss.

Discussion of Cluster 1 As the results for the first cluster show, the coordination pro-
tocol is able to maintain a high success rate for the execution of adaptation transactions.
Experiments in this cluster are configured with Migrate adaptation operations only, thus,
the success rate for the execution of adaptation transactions is expected to be lower than
for other clusters that also contain local adaptation operations. Without having dis-
cussed other clusters yet, this expectation is partially met. Experiment UC 2 is able to

109

5. Implementation & Evaluation

maintain a success rate of approximately 85% to 98% for a message loss rate of up to
25%, but this success rate drops to approximately 20% to 50% for iterations run with
50% message loss rate as depicted in Figure 5.4a. By contrast, experiment P1 is able to
maintain a steady success rate between 90% and 100%. Since in P1 all operations are
executed within a single adaptation group and messages are dropped randomly with a
50% probability within the emulation, this difference is caused by the higher probability
of a single StateTransfer message to be dropped for UC 2 because less messages are
transferred within adaptation groups. Furthermore, in UC 2, the adaptation transac-
tion can also fail during the transition from one adaptation group to another if Report
messages are lost.

The impact of message losses on the average adaptation duration is significant in both
experiments. A noticeable increase is only shown for message loss rates higher than or
equal to 25%, but increase quickly to up to 44 times more time required than the baseline
(4 nodes, P1, baseline took 84.4ms, 50% message loss took 3696.27ms). The sudden
increase of the adaptation duration recognizable for both UC 2 and P1 in Figure 5.4
for the baseline between a system size of 10 and 20 nodes is caused by the previously
discussed limitation of the prototypical implementation. It is possible that some of these
lost coordination messages contributed to the decline of the success rate of UC 2, but a
visible impact on the execution of P1 cannot be proven.

Discussion of Cluster 2 Cluster 2 is composed of experiments configured with local
adaptation operations only and the obtained results generally meet the expectations for
that cluster. Experiment P2 performs best for system sizes of 4 and 10 nodes, which is
expected. Experiment UC 3 performs best for system sizes of 20 and 30 nodes, which
is unexpected. Both other experiments’ adaptation durations are highly influenced by
the previously discussed limitation of the prototypical implementation. The additional
protocol behavior, i.e., additional Report messages are sent after an adaptation group
was finished successfully, to better cope with message losses caused by unprocessed mes-
sages due to the limitations of the prototypical implementation, is responsible for the
better performance of UC 3, especially in comparison to P2. Since P2 only contains one
adaptation group, this additional protocol behavior to better cope with the limitation of
the implementation does not benefit this experiment. The randomly generated adapta-
tion transactions for UC 3 and UC 1 do not differ significantly enough to explain the
different impact of the prototypical implementation on the results of the experiments.
Apparently, during the iterations of UC 3 a larger number of crucial Report messages
was not processed. A crucial message in this respect is a report that causes a timeout

110

5.3. Emulation of the Coordination Protocol

0 1 5 10 25 50

0

5,000

10,000

15,000

Message Loss Rates in %

D
ur

at
io

n
in

m
s

4 Nodes 10 Nodes 20 Nodes 30 Nodes

0

0.2

0.4

0.6

0.8

1

N
um

be
r

of
R

ol
lb

ac
ks

(a) UC 1

0 1 5 10 25 50

0

5,000

10,000

Message Loss Rates in %

D
ur

at
io

n
in

m
s

4 Nodes 10 Nodes 20 Nodes 30 Nodes

0

2

4

N
um

be
r

of
R

ol
lb

ac
ks

(b) UC 3

0 1 5 10 25 50

0

2,000

4,000

6,000

Message Loss Rates in %

D
ur

at
io

n
in

m
s

4 Nodes 10 Nodes 20 Nodes 30 Nodes

0

2

4

N
um

be
r

of
R

ol
lb

ac
ks

(c) P2

Figure 5.5.: Cluster 2: Execution times for the experiments UC 1, UC 3 and P2 for every system
size with different message loss rates.

111

5. Implementation & Evaluation

immediately if it was not received. Both experiments contained adaptation groups that
only contain one adaptation operation. In such a situation, every Report message from
the previous group is crucial because the isolated adaptation operation will not be ex-
ecuted before at least one timeout period if the progress information was not received.
By contrast, in adaptation groups that contain multiple adaptation operations, a Report
message can be lost without having an impact on the adaptation duration if both opera-
tions are located on different nodes and thus another adaptation manager has the chance
to establish knowledge on the successful execution of the previous adaptation group.
This other adaptation manager will continue with the execution of its own adaptation
operations and the transmitted Report messages to its peers will cause them to continue
with the execution of the adaptation transaction without waiting a complete timeout
period. In line with this rationale, the striking observation of UC 1 requiring more time
to execute for a system size of 30 than 20 nodes can be explained.

The overall results for the adaptation durations of the experiments in cluster 2 are
depicted in Figure 5.5. All experiments are able to maintain a high success rate through-
out all iterations of the conducted experiments for the respective system size. This
cluster was expected to perform better in this regard than cluster 1 because no state
information of roles was required to be transferred and crucial progress information was
therefore always obtainable after two timeouts from other adaptation managers. The
average adaptation duration, though, also increases by a great margin compared to the
baseline iterations and exceeds even 10 seconds for the most unreliable communication
channel configuration. Experiment P2 performs best in this scenario compared to the
other two experiments which is evident due to the execution of all adaptation operations
in a single adaptation group and the absence of state transfers. After at most 7.5 seconds
and additional execution time, an adaptation transaction is expected to fail or succeed
for experiment P2.

Joint Discussion of Clusters 3 & 4 The results of clusters 3 and 4, which contained
both local and distributed adaptation operations within the executed adaptation trans-
action, will be discussed together because the results in general are comparable except
for different adaptation durations for both clusters which is a consequence of the different
transaction sizes of both clusters. The result for cluster 3, configured with twice as many
adaptation operations than nodes participating in the execution of the adaptation trans-
action, is depicted in Figure 5.6 for the contained experiments WLA and P3. Likewise,
the results for the experiments WLB and P4 are displayed in Figure 5.7. With respect
to the tolerance for message losses during the execution of adaptation transactions, all

112

5.3. Emulation of the Coordination Protocol

0 1 5 10 25 50

0

10,000

20,000

30,000

Message Loss Rates in %

D
ur

at
io

n
in

m
s

4 Nodes 10 Nodes 20 Nodes 30 Nodes

0

10

20

N
um

be
r

of
R

ol
lb

ac
ks

(a) WLA

0 1 5 10 25 50

0

2,000

4,000

6,000

8,000

Message Loss Rates in %

D
ur

at
io

n
in

m
s

4 Nodes 10 Nodes 20 Nodes 30 Nodes

0

1

2

3

N
um

be
r

of
R

ol
lb

ac
ks

(b) P3

Figure 5.6.: Cluster 3: Execution times for the experiments WLA and P3 for every system size
with different message loss rates.

0 1 5 10 25 50

0

10,000

20,000

30,000

40,000

50,000

Message Loss Rates in %

D
ur

at
io

n
in

m
s

4 Nodes 10 Nodes 20 Nodes 30 Nodes

0

10

20

30

40

N
um

be
r

of
R

ol
lb

ac
ks

(a) WLB

0 1 5 10 25 50

0

5,000

10,000

15,000

Message Loss Rates in %

D
ur

at
io

n
in

m
s

4 Nodes 10 Nodes 20 Nodes 30 Nodes

0

2

4

6

N
um

be
r

of
R

ol
lb

ac
ks

(b) P4

Figure 5.7.: Cluster 4: Execution times for the experiments WLB and P4 for every system size
with different message loss rates.

113

5. Implementation & Evaluation

experiments within both clusters behave similarly. Out of both clusters, the experiments
containing only a single adaptation group, i.e., P3 and P4 are able to maintain a success
rate of 93% to 100% for all iterations within the respective system size. In contrast,
WLA and WLB perform equally well, but only for system sizes comprising 20 and 30
nodes and worst for a system size of 4 nodes. The reason for this observation can be seen
in the contained Migrate operations within the adaptation transactions with the same
explanation previously given for the results obtained for cluster 1 and the difference of
cluster 1’s success rate compared to cluster 2. Due to the high number of adaptation op-
erations that are contained within the respective adaptation transactions, the duration
of the execution times increases for the execution of the adaptation transaction. Ex-
periment WLB, for instance, requires almost 41 seconds on average for the execution of
adaptation transactions comprising 30 nodes for 50% message loss on the communication
channel, which is an increase of 12 times the average adaptation duration compared to
the baseline of the experiment. A striking observation is WLB to finish the adaptation
transaction faster than WLA for a system size of 20 nodes in average, which is a result
that is better depicted in Figure 5.3a. The standard deviation for WLB ’s baseline for
this system size amounts to almost 1s across all nodes whereas the standard deviation of
WLA amounts to approximately 370ms. Both iterations were affected by the limitations
of the prototypical implementation and the range of repetitions of the baseline iterations
for WLB copes slightly better with message losses since more adaptations are conducted
locally which means an adaptation manager is likely to require less remote progress in-
formation to continue with the execution of the next adaptation group. Consequently,
WLB performs a little better in average, but considering the standard deviation, both
experiments perform equally well for this system size considering the different number of
adaptation operations that are executed within the adaptation transaction.

A general remark on the Roles’ Downtimes The previous discussion was focused
on the adaptation duration and the success rate of adaptation transactions during the
emulation of the coordination protocol in the virtualized environment. The downtime of
the roles increases in a comparable manner as the adaptation duration increases for higher
message loss rates. The increase of the downtime, however, is not distributed evenly
across all adaptation groups within the transaction. Due to the protocol’s requirement
to enable a consistent transition of the system from the source to the target configuration,
a role remains in a Bound/Passive state as long as the adaptation transaction is going
on and enters this state if a collaborating role or the role itself is part of an adaptation
operation. Roles are therefore passivated gradually. Consequently, roles that are part

114

5.3. Emulation of the Coordination Protocol

0 3 6 9

0

100

200

300

Adaptation Group

D
ow

nt
im

e
in

m
s

Normal Case
Tampered Adaptation Transaction

Figure 5.8.: Downtime of roles in adaptation groups for experiment 37 – Adaptation Failure.

of an adaptation operation in an early state, i.e., if the respective adaptation operation
is part of an adaptation group configured with a low value for the Order parameter,
will suffer more from a prolongation of the adaptation duration caused by message loss
than roles that are subject to adaptations in later adaptation groups. Average values are
therefore biased and coined by a high standard deviation.

Experiment 37 – Adaptation Failure The generated adaptation transaction for exper-
iment 37, which was intended to emulate the behavior of the coordination protocol in
the case of a local adaptation failure, contained four adaptation groups executed con-
secutively according to the protocol specification. In the first adaptation group (group
0) the first Migrate operation was executed. This adaptation operation was tampered
in order to have the adaptation transaction fail as described previously. The results of
the performed experiment for both executions, i.e., normal and tampered, are displayed
in Figure 5.8. Apparently, the execution for the normal case yielded results that were
expected. The downtime for adaptation groups in the normal case is decreasing for adap-
tation groups with a higher Order parameter since roles in adaptation groups executed
early remain in a passive state longer than later executed adaptation groups resulting in
the downtimes depicted in Figure 5.8. Consequently, the displayed duration cannot be
misinterpreted as execution time of the respective adaptation group.

The execution of the same adaptation transaction with a tampered adaptation oper-
ation resulted in a rollback rate of 100%, which means no adaptation transaction was
successfully executed – as expected. Since the Migrate operation executed in the first

115

5. Implementation & Evaluation

adaptation group, i.e., the adaptation group with the Order parameter 0, was tampered,
the downtime for subsequent adaptation groups was measured with −1, which is a value
set by the previously mentioned evaluation scripts written to process the obtained mea-
surements results indicating that the adaptation group has not even began the execution
of contained adaptation operations because an TransactionRollback message was issued
and received beforehand. The downtime of the first adaptation group is also considerably
shorter because the execution fails immediately for the migration because the type of the
role to be instantiated does not exist on the target node.

This experiment was also repeated 100 times for the normal as well as the failure
case and the data displayed in Figure 5.8 shows the average values for the measured
downtimes.

5.3.5. Summary

The coordination protocol’s performance was assessed with respect to the execution time
of the adaptation process, the resulting unavailability of system behavior for different
degrees of losses of coordination messages, and the influence of such message losses on
the previous two parameters in a completely virtualized environment. In the emulation
setup, the coordination protocol was implemented and executed by the adaptation man-
agers distributed to each node co-located with a local instance of the LyRT runtime
representing the managed application. Each node was represented by a Docker container
configured with a pair of adaptation manager and managed application.

The experiments were clustered with respect to the composition scheme of the executed
adaptation transactions, i.e., the number of contained adaptation operations, their type
and distribution across adaptation groups. In general, the conducted experiments met the
previously discussed expectations for the adaptation duration, success rate and downtime
of roles. Although the prototypical implementation caused a perceivable message loss
already for experiment baseline iterations, the success rate could be maintained as high as
90% to 100% for almost all experiments and message loss rates of 50%. Only adaptation
transactions configured solely with distributed adaptation operations, i.e., experiments
UC 2 and P1 of cluster 1, suffered from greater failure rates due to the necessary transfer
of the roles’ internal state information from the source to the target node. This cluster
was expected to perform worse than other clusters in this regard, though, and P1 also
reached almost 100% success rates for all message loss rates, which is a favorable result
that was not expected in this degree.

Even with the outlined limitation of the prototypical implementation, the average
adaptation duration of all experiments is below 1.5 seconds for the baseline iterations

116

5.4. A Formal Validation of the Coordination Protocol

for system sizes of 4 and 10 nodes. For a system size of 4 nodes, this result is even
maintained for up to 5% message loss. If 10 nodes participate in the adaptation process,
only WLB requires more than 1.5 seconds for the execution of adaptation durations in
average. The results for larger system sizes including system sizes of 20 to 30 nodes for
some experiments indicate a performance along this dimension which gives a hint on the
protocol’s performance with an improved implementation. Especially UC 3 provides a
glimpse on the best performance of the protocols execution for adaptation transaction
containing only locally executable adaptation operations.

In general, the coordination protocol is able to maintain a high success rate for the
execution of adaptation transactions even in large system sizes coined by a high degree
of message loss on the communication channel used for the coordination process. Exper-
iments of clusters 3 and 4 also showed the protocol to be able to handle a high number of
adaptation operations within a limited number of nodes. Up to 5 times the adaptation
operations than nodes in the system perform well with respect to the success rate, but
require significantly more time to execute, which gets worse with an increasing message
loss rate. Message loss rates up to 10% showed to have generally little impact on the
average of the adaptation duration.

5.4. A Formal Validation of the Coordination Protocol

We created a formal model (cf. Appendix A), which was originally presented in [50], of
the adaptation protocol and established it to be deadlock-free by means of model check-
ing [2]. Model checking is a formal verification technique that checks whether a given
model of the system under consideration satisfies a formal specification. A model checker
systematically explores all possible states of the system to verify whether the system
satisfies the formal specification. We modeled the protocol in the ProFeat2 [8] model-
ing language. ProFeat extends the input language of the probabilistic model checker
PRISM3 [20] by feature-based concepts, and follows a translational approach, i.e., Pro-
Feat models are translated into standard PRISM models. Subsequently, the analysis of
the model is carried out using PRISM.

In the following, we give a short overview of the characteristics of the developed model.
The model represents one or more nodes with their respective adaptation managers. The
model addresses the behavior of the adaptation managers as it was described in Chap-
ter 4.4. Since the execution of an adaptation group and a single adaptation operation

2https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ProFeat/
3http://www.prismmodelchecker.org/

117

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ProFeat/
http://www.prismmodelchecker.org/

5. Implementation & Evaluation

are the significant parts of the protocol to perform adaptation processes, the developed
formal model is focused on these two parts. This results in the formal model being com-
posed of a single adaptation group and three adaptation operations covering local and
distributed adaptation operations. With respect to the execution of an adaptation group,
only the Perform Operation, Waiting and Requested Peer states were modeled. The
Rollback state and any subsequent state reached by occurred timeouts resulted in the
model reaching the final state and indicated an unsuccessful execution of the adaptation
transaction. This limitations of the model are valid, as the additional escalation steps to
obtain lost coordination messages do not introduce new behavior to the already modeled
features of the coordination protocol and can thus be omitted with the aim to keep the
model small. The managed application and the behavior of the roles are not modeled
since the adaptation mechanisms are strictly separated from the application. The nodes
are running concurrently and may exchange protocol messages asynchronously. The net-
work is modeled as a finitely sized buffer that stores messages until they are received
by their respective nodes. Messages may get lost and can be reordered. The model
implements the Add, Remove and Migrate adaptation operations, which are executed in
accordance to the adaptation transaction describing the roles affected by the change and
the adaptation managers responsible for the adaptation transaction’s execution. The
model is parametrized over the number of nodes, the network buffer size and the prob-
ability for message loss. Furthermore, the protocol extension for handling message loss
may be deactivated. Thus, the model can be easily adapted to check and analyze differ-
ent scenarios. A complete representation of the model written in ProFeat can be found
in Appendix A.

The model instance was analyzed with 3 nodes, 2 roles and an adaptation transaction
consisting of one role transfer and one local operation, e.g., the addition or removal of a
role. In order to keep the model small, it only describes a single adaptation transaction
with exactly one adaptation group. However, since adaptation groups are executed se-
quentially the analysis results also apply to adaptation transactions with more than one
adaptation group. We could establish the knowledge that the protocol never runs into
a deadlock. Furthermore, the analysis showed that the adaptation is always successful
in case of no message losses. In addition to the success rate of in the ideal case without
message loss, the protocol was executed in the model checker with a set message loss
rate decreasing by 1% until a message loss rate of 10% was reached. The resulting suc-
cess rate is based on the simplified error handling incorporating only the first escalation
step of one unicast message in response to missed Report or StateTransfer messages.
The used adaptation transaction was furthermore executed with the prototypical imple-

118

5.5. Summary

0 0.02 0.04 0.06 0.08 0.1
0.5

0.6

0.7

0.8

0.9

1

Message Loss Rate

Su
cc

es
s

R
at

e

No Message Loss Handling
Unicast Requests

Uni-Multi-Broadcast Requests

(a) Success rate of the coordination protocol for
the validated model and of the prototypical
implementation.

0 0.02 0.04 0.06 0.08 0.1

100

200

300

Message Loss Rate

T
im

e
in

M
ill

is
ec

on
ds

(m
s)

Adaptation Duration
Role Downtime

(b) Adaptation duration and downtime of the
migrated role for the performed validation.

Figure 5.9.: Results of the performed adaptation transaction for the simulation in the model
checker and the emulated execution of the coordination protocol.

mentation of the coordination protocol for 0%, 5% and 10% message loss (denoted as
Uni-Multi-Broadcast Requests inf Figure 5.9a). In Figure 5.9a, the average success rate
of the experiment over 100 runs is depicted in comparison with the statistical analysis of
the model checking for the just described protocol specifications. For the emulation of
the adaptation transaction, the measures for the role downtime and the overall duration
of the adaptation have been captured and are displayed in Figure 5.9b. The small down-
time in this small application scenario is an expected result compared to the average
adaptation duration and downtime of the previously conducted experiments coined by a
system size of only four nodes.

5.5. Summary

The coordination protocol to perform distributed adaptations in a self-adaptive software
system at run time without a central coordinator was evaluated in this chapter using a
formal model checking approach and by executing a prototypical implementation of the
protocol in a virtualized environment in order to obtain results how well the developed
protocol is able to coordinate the execution of adaptations, especially with respect to the

119

5. Implementation & Evaluation

Table 5.3.: Overview of the posed requirements and the chosen approach to evaluate the respec-
tive requirement.

Requirement Evaluation Approach

Decentralized Execution Validation, Emulation
Stable Application State partially evaluated
Link Failures Validation, Emulation
Adaptation Failures Emulation

assumed failure models, i.e., link and adaptation failures. The evaluation of the approach
also partially covers the requirements posed to the approach developed within this thesis.
Table 5.3 gives an overview of the requirements and the chosen approach to evaluate the
respective requirement. In the following, the results of this chapter will be summarized
considering the posed requirements and the evaluation’s results.

Using formal model checking, the coordination protocol could be validated to be free of
deadlocks, i.e., the execution of an arbitrary adaptation transaction always reaches one
of the defined final states, which means, the protocol ensures the managed application
to reach the desired target configuration or remains in the source configuration in case of
link or stopping failures. Furthermore, the results of this formal model checking hold for
arbitrary application domains in which the proposed coordination protocol is employed.
Ensuring the deadlock freeness of the coordination protocol in arbitrary application do-
mains is an important result as the consistent transition of the managed application from
its source to its target configuration, which is a major goal of a self-adaptive software
system and which cannot be achieved without a deadlock-free coordination protocol. The
formal validation of the coordination protocol includes the response of each adaptation
manager to lost coordination messages and thus, addresses both the Decentralized Ex-
ecution and the Link Failure requirement. The coordination protocol’s execution was
emulated to evaluate the Decentralized Execution, Link Failure and Adaptation Failure
requirements. The emulation shows for the first two mentioned requirements that the
protocol is able to adapt the managed application without a central coordination en-
tity and that the presented approach is able to cope with lost coordination messages.
Executing the protocol in environments coined by unreliable communication channels
configured with different message loss rates, an assessment is made possible how well the
protocol performs in ideal and unstable environments. The last requirement was eval-
uated using tampered adaptation transactions as input for the adaptation process. It
could be practically shown that the adaptation managers indeed immediately abort the
adaptation transaction as soon as the execution of one adaptation operation fails locally.

120

5.5. Summary

Since collaborating roles have not been part of the evaluation, the Stable Application
State requirement was only partially evaluated. During the execution of the adaptation
transactions, local roles were passivated in accordance to the protocol specification pre-
sented in Chapter 4 and in accordance to the proposed role life cycle (cf. Chapter 3.2.1),
thus ensuring the single role instances to be in a stable application state before the respec-
tive adaptation operations affecting those role instances were executed. As collaborations
in the emulation setup are missing, a full evaluation of this requirement with respect to
ongoing transactions as described by Kramer & Magee [26, 25] was not performed and
is left for future work.

Especially in response to research question two, which was concerned with the de-
centralized execution of multiple interdependent adaptation operations, the coordination
protocol was developed within this thesis. In the previous chapter, we argued the co-
ordination protocol to be able to cope with message losses and node failures as well as
adaptation failures during the execution of an adaptation transaction. The emulation of
the coordination protocol also showed practically that the loss of coordination messages
during the execution of an adaptation transaction is handled well with the help of the
proposed approach. A high success rate could be maintained for the majority of exper-
iments conducted in the emulation and for different system sizes in combination with
message loss rates up to and including 50%. Especially for high message loss rates such
as 50%, the adaptation duration increases significantly, which immediately affects the
downtime of roles being migrated, exchanged or cloned as well. For message loss rates
of 10% in particular only little overhead is caused for the overall adaptation duration in
average for the execution of adaptation durations, which is a favorable result.

Maintaining a consistent adaptation in a timely fashion, though, becomes increasingly
difficult for larger system sizes and increasing message loss rates. Applying further means
of structuring the self-adaptive software system on levels above the execution phase to
minimize the scope of adaptation operations and affected nodes that need to perform an
adaptation transaction in response to context changes is a valuable insight that can be
gained from the conducted emulation of our approach. Patterns to organize the feedback
loop within the managed application in order to structure adaptations hierarchically or
to introduce regions of the system that have to be adapted consistently [51] could be a
possible application within the feedback loop to fully utilize the benefits of a consistent
adaptation execution as it was presented in this thesis.

Within the emulation, the timeout period between RequestReport messages used to
obtain lost progress information was kept static. Since increasing node sizes and increas-
ing numbers of adaptation operations have shown an increase in the local execution time

121

5. Implementation & Evaluation

of adaptation operations, a dynamically configurable timeout or a short first timeout
period that becomes longer for the multicast and broadcast requests as it was outlined in
Chapter 4.4.3, appears to be a valid approach to improve the performance of the protocol.
Especially in real-world environments that also introduce a delay on the communication
channel, which was neglectable in the emulation due to the full virtualization of the
setup, such a dynamic or hierarchically structured timeout handling appears feasible and
favorable.

Similarly to the scope of the formal validation of the coordination protocol, the emu-
lated results hold for arbitrary application domains as no specific application setup was
used. Nonetheless, as described above, results may differ in real-world settings as network
latency is introduced, resulting in possibly longer adaptation durations and downtimes
of roles especially if the devices are scattered across a large spatial area. Following this
thought, executions of the adaptation protocol in larger setups may perform better than
projected in the emulation as the previously outlined drawbacks of the prototypical im-
plementation may be mitigated by the introduced network latency. These considerations,
however, need to be further investigated in future work.

122

6. Conclusion

In this thesis, a coordination protocol was presented that allows for the consistent adap-
tation of distributed self-adaptive software systems without a central control or manage-
ment unit. The protocol is able to maintain a consistent application state throughout
the adaptation process even in unstable environments coined by unreliable communica-
tion channels used to exchange control and management information or if adaptations
locally fail during the execution of the adaptation. The approach followed the idea of
external control [38] that strictly separates the adaptation management and the managed
application of a self-adaptive software system into two distinct subsystems. Since this
thesis focuses on run-time aspects during the execution of adaptations, the adaptation
management in this thesis – represented by the Adaptation Managers distributed across
all devices part of the system – is only concerned with the execution phase of the MAPE
feedback loop [23]. Maliciously behaving adaptation managers are not considered in this
thesis and respective measures remain for future work. In the remainder of this chapter,
the presented approaches and solutions of this thesis are briefly summarized and placed
into relation with the requirements and research questions introduced in the beginning.
Subsequently, future research directions related to the presented work will be discussed.

6.1. Summary of Requirements and Research Questions

The requirements posed in this thesis addressed the two main goals that are supposed
to be achieved by the execution phase of a self-adaptive software system, which are to
prevent the managed application from losing application data during the adaptation pro-
cess and to prevent the managed application from reaching an inconsistent configuration
during the adaptation process. Additionally, the envisioned solution was supposed to be
able to perform adaptations on the managed application without a central coordinator
that has complete knowledge about the adaptation process and which is considered a
possible single point of failure that coincides with the goal to prevent an inconsistent
system configuration.

Both the local interface to the role-based runtime system, presented in Chapter 3,

123

6. Conclusion

and the coordination protocol, presented in Chapter 4, contain concrete mechanisms
addressing Research Question 1, which is concerned with reaching a stable application
state before the adaptation process can actually be commenced. The coordination pro-
tocol provides a set of dedicated messages in order to reach a stable application state
for collaborating roles as well as context-dependent roles. Both furthermore rely on the
presented life cycle for roles in order to determine such a stable state. The presented
work, however, is preliminary and further interesting and challenging research directions
remain to be tackled, which we will elaborate on in the following section.

The developed coordination protocol allows the decentralized adaptation of the man-
aged application and ensures the previously managed system goals to be achieved during
an adaptation process. Another major feature of the coordination protocol is the ability
to perform multiple correlated adaptations that require the modification of parts of the
managed application located on distributed devices, which we also referred to as nodes.
In Chapter 4, a coordination protocol was developed in response to Research Question
2 that is the core of the decentralized adaptation process presented within this thesis.
The coordination was designed to cope with message losses as well as with node and
adaptation failures that occur during the execution of an adaptation process. In Chap-
ter 5.4, the coordination protocol was formally validated with respect to being free of
any deadlocks for different sizes of the system under adaptation, especially in the case of
exchanged coordination messages getting lost during transmission.

In order to differentiate parts of the application that do not have to be adapted in
response to changes in the operational environment of the system from those that are
dynamic, we used the Role concept to separate static system behavior from context-
dependent system behavior, which can be added, removed, exchanged etc. in response
to changes in the self-adaptive software system’s context. This notion is used as an
abstraction layer within this thesis in order to enable a platform-independent protocol to
coordinate the decentralized execution of adaptations. Using the Role concept therefore
addresses Research Question 3. In Chapter 3, we made a first contribution to behavioral,
context-dependent and collaborative roles in distributed, self-adaptive software systems
establishing not only a life cycle for roles, which supports a decentralized adaptation
process, but also describing an interface to a local runtime that can be used to abstract
from platform-specific implementations of managed applications, e.g., component-based
or service-oriented systems, in order to reuse the proposed coordination protocol.

In conclusion, all posed requirements could be addressed within the concepts presented
in this thesis and all research questions were answered sufficiently. In Chapter 5, the
general feasibility and applicability of the proposed concepts was shown. Additionally, a

124

6.2. Future Work

qualitative assessment of the coordination protocol in real-world environments through
an emulation was conducted giving an insight to researchers focusing on other concerns of
the adaptation process, i.e., the planning of changes or what might be feasible amounts
of adaptation operations to perform a consistent update of the system in contrast to
when adaptation should be structured into smaller, better manageable units.

6.2. Future Work

The specification of the protocol presented in this thesis focuses on the execution of
adaptation transactions in self-adaptive software systems. An adaptation transaction
describes role-based modifications that are supposed to be enacted upon the managed
application in response to changes in the computational environment, i.e., context, of
the system. In this regard, two major research objectives can be identified that have not
been covered in this thesis, but are an important part of the execution of adaptations
and resolve around the stable application state that is required to be reached before
adaptations take place. Within this thesis, such a state was assumed to be somehow
reachable as a prerequisite for the adaptation process, which was closely investigated.

The seminal works of Kramer & Magee for a quiescent [26] or of Vandewoude et al.
for a tranquil [45] application state were assumed as formal foundations for a stable
application state. The discussed software reconfiguration patterns [15] and adaptation
patterns [16] are a starting point in order to determine a quiescent application state
without the need for a central control unit. Using the Role concept as abstraction to
design and implement dynamic, context-dependent entities, a first step in the direction of
achieving a stable application state for role-based software systems has been taken with
the design of a role-based life cycle model to support quiescence and tranquility. The life
cycle, however, applies to role instances local to a specific device. It remains an open
question how the life cycles of different collaborating roles can be synchronized across
device borders prior to the execution of an adaptation transaction in order to fully ensure
a consistent transition of the application from the source to the target configuration
without message loss. Reusing the proposed reconfiguration and adaptation patterns
for role-based applications is an obvious starting point for future research, but requires a
more detailed investigation. Especially with respect to the scope of collaborations several
approaches to reach a stable application state involving multiple roles come to mind. A
first intuitive solution would result in reusing the notion of a transaction introduced
by Kramer & Magee [26] to safeguard ongoing communications within a collaboration
entirely. LyRT [43] already implements such an approach on the level of a local role

125

6. Conclusion

runtime. An extension of this idea incorporating existing works previously mentioned
constitutes this first solution. A more fine-grained second solution would only safeguard
ongoing invocations of remote roles instead of entire collaborations, which will likely
result in faster and more timely adaptations at the cost of a possibly higher coordination
overhead. Both approaches and their mutual trade-offs are an interesting direction for
future research on the decentralized execution of role-based adaptation transactions.

Similarly, the activation of the new system behavior after the adaptation transaction
was executed remains an interesting research objective. The current protocol specifi-
cation moves roles in a passive, i.e., stable state, as soon as they or any collaborating
roles are subject to adaptations and reactivates them after all adaptations have been
performed. Evidently, roles located in early executed adaptation groups remain passive
for a much longer amount of time than those in later executed adaptation groups, which
is an observation that is also supported by the obtained emulation results. A first re-
search objective results in a relaxed consistency constraint for the execution of adaptation
transactions, which means, performed adaptation operations can be activated gradually
during the adaptation process in order to reduce the unavailability of system behavior
affected by the adaptation process. As a consequence, more sophisticated compensa-
tion and rollback mechanisms would have to be developed in order to support reverting
already performed and activated adaptations in the case of adaptation failures in later
adaptation groups. Similarly, additional specifications may be required from the plan-
ning phase of the feedback loop or at design time of the application to indicate parts
that should be kept consistent. An adaptation group, for example, is unsuitable to be
considered such a consistent unit by default, if collaborations are to be released and
reestablished after a role migration, which would result in three adaptation groups exe-
cuted sequentially but imposing a scope of consistency during the adaptation process. A
second research objective is the coordinated agreement of the activation itself. The cur-
rent protocol specification detects adaptation and node failures preventing a consistent
activation of the performed adaptations, but only until the point in time all adaptation
managers agreed upon activating the target configuration. Node failures that happen
after that agreement and during the activation or adaptation failures preventing a suc-
cessful local switch from the source to the target configuration after this agreement and
in the moment the activation takes place is a corner case that is currently not supported
by the protocol specification. Having the execution of local activations agreed upon using
Report messages is a simple but naive way of solving this issue, which would result in
three phases required to perform the adaptation process (cf. Chapter 4.3).

126

A. Formal Model

In the following, the developed formal model of the approach is depicted as described in
Chapter 5.4 on Page 117.

1 // Adaptation Protocol Model (asynchronous) {{
// vim: foldmethod=marker foldmarker ={{ ,}} :

mdp

6 // }}
// Model Parameters {{

family {
MSG_LOSS_PERCENT : [0..10];

11 }

const bool WITH_RETRY = true;
const BUFFER_SIZE = 2;
// const double P_MSG_LOSS = 0.01;

16 formula P_MSG_LOSS = MSG_LOSS_PERCENT / 100;

// }}
// Constants {{

21 const NO_ROLE = -1;

// }}
// Feature Model {{

26 root feature {
all of Node[NUM_NODES];

modules Network(BUFFER_SIZE), Scenario;
}

31

I

A. Formal Model

feature Node {
modules Node;

}

36 // }}
// Scenario {{

const NUM_NODES = 3;
const NUM_ROLES = 2;

41

const NODE_REMOVE = -1;
const NODE_ADD = 2;
const NODE_ADD_ROLE_ID = 1;
const NODE_TRANSFER_FROM = 0;

46 const NODE_TRANSFER_TO = 1;

const bool NODE_INVOLVED = { false , true , true };
const INITIAL_ROLE_ID = { 0, NO_ROLE , NO_ROLE };

51 const STEP_INIT = 0;
const STEP_ADAPT = 1;
const STEP_REMOVE = 2;
const STEP_ADD = 3;
const STEP_TRANSFER = 4;

56 const STEP_TIMEOUT = 5;
const STEP_DONE = 6;

label "goal" = step = STEP_DONE & for node in [0 .. NUM_NODES - 1]
{ running(node) & ... };

formula running(i) = Node[i].state = 0 & !Node[i].
missing_role_state;

61

module Scenario {
// nodes (actively) involved in the adaptation
involved : array [0 .. NUM_NODES - 1] of bool init false;

66 step : [STEP_INIT .. STEP_DONE] init STEP_INIT;

[] step = STEP_INIT -> (step ’ = STEP_ADAPT) & for i in [0 ..
NUM_NODES - 1] { (involved[i]’ = NODE_INVOLVED[i]) };

II

[adapt] step = STEP_ADAPT -> (step ’ = STEP_REMOVE);
71

for node in [0 .. NUM_NODES - 1] {
[remove[node]] NODE_REMOVE = node & step = STEP_REMOVE ->

(step ’ = STEP_ADD);

for role in [0 .. NUM_ROLES - 1] {
76 [add[roleto(role , node)]] NODE_ADD = node &

NODE_ADD_ROLE_ID = role & step = STEP_ADD -> (step ’
= STEP_TRANSFER);

}

for target in [0 .. NUM_NODES - 1] {
[transfer[fromto(node , target)]] NODE_TRANSFER_FROM =

node & NODE_TRANSFER_TO = target & step =
STEP_TRANSFER -> (step ’ = STEP_TIMEOUT);

81 }

[sentreports[node]] true -> (involved[node]’ = false);
}

86 [timeout] step = STEP_TIMEOUT & for i in [0 .. NUM_NODES - 1]
{ !involved[i] & ... } -> (step ’ = STEP_DONE);

[] NODE_REMOVE = -1 & step = STEP_REMOVE -> (step ’ = step + 1)
;

[] NODE_ADD = -1 & step = STEP_ADD -> (step ’ = step + 1);
[] (NODE_TRANSFER_FROM = -1 | NODE_TRANSFER_TO = -1) & step =

STEP_TRANSFER -> (step ’ = step + 1);
91 }

// }}
// Module Network {{

96 const EMPTY = -1;

module Network(buf_size) {
cell : array [0 .. buf_size - 1] of [EMPTY .. NUM_MSGS - 1]

init EMPTY;

101 // send: enqueue

III

A. Formal Model

for msg_id in [0 .. NUM_MSGS - 1] {
// enqueue in first free slot
for c in [0 .. buf_size - 1] {

[send[msg_id]] for i in [0 .. c - 1] { cell[i] !=
EMPTY & ... } & cell[c] = EMPTY ->

106 (1 - P_MSG_LOSS): (cell[c]’ = msg_id) +
P_MSG_LOSS: true;

}
}

111 // recv: dequeue
for msg_id in [0 .. NUM_MSGS - 1] {

for c in [0 .. buf_size - 1] {
[recv[msg_id]] cell[c] = msg_id -> (cell[c]’ = EMPTY);

}
116 }

}

// }}
// Module Node {{

121

const S_ACTIVE = 0;
const S_PASSIVE = 1; // awaiting commands or report messages
const S_SEND = 2; // sending report messages
const S_TRANSFER = 3; // send state transfer message

126 const S_RESEND = 4; // resending a report message after request
const S_REQUEST = 5; // sending a request for all pending reports
const S_MAX = 5;

module Node {
131 // Local State {{

state : [0 .. S_MAX] init S_ACTIVE;
prev_state : [0 .. S_MAX] init 0;

136 // used to iterate over nodes
index : [0 .. NUM_NODES] init 0;

// role residing on this node
role_id : [NO_ROLE .. NUM_ROLES -1] init INITIAL_ROLE_ID[id];

141

IV

// nodes with pending report message
missing : array [0 .. NUM_NODES - 1] of bool init false;

// state transfer from other node is pending
146 missing_role_state : bool init false;

// pending request from this node
request_from : [0 .. NUM_NODES - 1] init 0;

151 // }}
// Adaptation Messages {{

// initiate adaptation
[adapt] state = S_ACTIVE -> (state ’ = S_PASSIVE) &

156 for i in [0 .. NUM_NODES - 1] { (missing[i]’ = involved[i
]) };

// ADD
for r in [0 .. NUM_ROLES - 1] {

[add[roleto(r, id)]] state = S_PASSIVE -> (role_id ’ = r) &
(state ’ = S_SEND) & (missing[id]’ = false);

161 }

// REMOVE
[remove[id]] state = S_PASSIVE -> (role_id ’ = NO_ROLE) & (

state ’ = S_SEND) & (missing[id]’ = false);

166 // TRANSFER
for node in [0 .. id - 1] {

[transfer[fromto(id, node)]] state = S_PASSIVE -> (role_id
’ = NO_ROLE) & (state ’ = S_TRANSFER) & (request_from ’ =
node);

[transfer[fromto(node , id)]] state = S_PASSIVE ->
(role_id ’ = Node[node]. role_id) & (state ’ = S_SEND) &

(missing[id]’ = false) & (missing[node]’ = true) &
(missing_role_state ’ = true);

171 }
for node in [id + 1 .. NUM_NODES - 1] {

[transfer[fromto(id, node)]] state = S_PASSIVE -> (role_id
’ = NO_ROLE) & (state ’ = S_TRANSFER) & (request_from ’ =
node);

V

A. Formal Model

[transfer[fromto(node , id)]] state = S_PASSIVE ->
(role_id ’ = Node[node]. role_id) & (state ’ = S_SEND) &

(missing[id]’ = false) & (missing[node]’ = true) &
(missing_role_state ’ = true);

176 }

// }}
// State Transfer {{

181 for node in [0 .. NUM_NODES - 1] {
[send[transfer(id, node)]] request_from = node & state =

S_TRANSFER -> (state ’ = S_RESEND) & (prev_state ’ =
S_PASSIVE); // reuse resend state to send report to
target node

[recv[transfer(node , id)]] id != node -> (
missing_role_state ’ = false);

}

186 // }}
// Report Messages {{

// receive REPORT messages
for i in [0 .. NUM_NODES - 1] {

191 [recv[report(i, id)]] missing[i] -> (missing[i]’ = false);
}
[] state = S_PASSIVE & !has_missing -> (state ’ = S_ACTIVE);

// send REPORT messages
196 for i in [0 .. id - 1] {

[send[report(id, i)]] state = S_SEND & index = i -> (index
’ = index + 1);

}
[] state = S_SEND & index = id -> (index ’ = index + 1);
for i in [id + 1 .. NUM_NODES - 1] {

201 [send[report(id, i)]] state = S_SEND & index = i -> (index
’ = index + 1);

}
[sentreports[id]] state = S_SEND & index = NUM_NODES -> (index

’ = 0) & (state ’ = S_PASSIVE);
[send[report(id, id)]] false -> true; // block REPORT messages

with same sender and reveiver

VI

206 // resend REPORT message
for i in [0 .. NUM_NODES - 1] {

[send[report(id, i)]] request_from = i & state = S_RESEND
-> (state ’ = prev_state) & (prev_state ’ = 0) & (
request_from ’ = 0);

}

211 // }}
// Request Messages {{

// handle message loss
[timeout] WITH_RETRY & state = S_PASSIVE & has_missing -> (

state ’ = S_REQUEST);
216 [timeout] WITH_RETRY & state = S_ACTIVE | state = S_PASSIVE &

!has_missing -> true;
[timeout] !WITH_RETRY -> true;

// receive REQUEST messages
for i in [0 .. NUM_NODES - 1] {

221 [recv[request(i, id)]] true -> (prev_state ’ = state) & (
state ’ = S_RESEND) & (request_from ’ = i);

}

// send REQUEST messages
for i in [0 .. NUM_NODES - 1] {

226 [send[request(id, i)]] state = S_REQUEST & index = i &
missing[i] -> (index ’ = index + 1);

[] state = S_REQUEST & index = i & !missing[i] -> (index ’
= index + 1);

}
[] state = S_REQUEST & index = NUM_NODES -> (index ’ = 0) & (

state ’ = S_PASSIVE);

231 // }}
}

formula has_missing = for i in [0 .. NUM_NODES - 1] { missing[i] |
... };

236 // }}

VII

A. Formal Model

// Messages {{

const REPORT = 0;
const REQUEST = REPORT + NUM_NODES * NUM_NODES;

241 const TRANSFER = REQUEST + NUM_NODES * NUM_NODES;
const NUM_MSGS = TRANSFER + NUM_NODES * NUM_NODES;

formula report(from , to) = REPORT + from * NUM_NODES + to;
formula request(from , to) = REQUEST + from * NUM_NODES + to;

246 formula transfer(from , to) = TRANSFER + from * NUM_NODES + to;
formula roleto(role_id , node_id) = node_id * NUM_ROLES + role_id;
formula fromto(source , target) = source * NUM_NODES + target;

// }}

VIII

B. Protocol Messages

B.1. Transaction Control Messages

In the following, a graphical overview on the message types used to distribute adaptation
transactions as well as to distribute information about the successful or unsuccessful
execution of adaptation transactions is given. A detailed description of the transaction
control messages was given in Chapter 4.4.1 on Page 71.

Transaction ID Adaptation
Operation 1 … Adaptation

Operation N

Identifier Type Order State Target Node Source Node

Player Role Compartment Player Role Compartment

Figure B.1.: Transaction Message

Transaction ID Acknowledgement

Figure B.2.: TransactionAcknowledgement Message

Transaction ID Activation

Figure B.3.: TransactionActivation Message

Transaction ID Rollback

Figure B.4.: TransactionRollback Message

IX

B. Protocol Messages

B.2. Execution Control Messages

In the following, a graphical overview on the message types used to coordinate the exe-
cution of adaptation transactions, groups and operations is given. A detailed description
of the execution control messages was given in Chapter 4.4.1 on Page 4.4.1.

Transaction ID Report 1 … Report N

Adaptation Operation
ID Status Information

Success Failure Ongoing

Figure B.5.: Report Message

Transaction ID Adaptation Operation
ID State Information

Figure B.6.: StateTransfer Message

Transaction ID Adaptation Operation
ID 1 … Adaptation Operation

ID N
Figure B.7.: RequestReport Message

X

Bibliography

[1] Charles W Bachman and Manilal Daya. “The role concept in data models.” In:
Proceedings of the third international conference on Very large data bases (Oct.
1977), pp. 464–476.

[2] C Baier and J P Katoen. Principles of model checking. The MIT Press, 2008.

[3] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. “BRAIN - A Framework
for Flexible Role-Based Interactions in Multiagent Systems.” In: CoopIS/DOA/OD-
BASE 2888.Chapter 11 (2003), pp. 145–161.

[4] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. “Separation of Concerns
in Agent Applications by Roles.” In: ICDCS Workshops (2002), pp. 430–435.

[5] Jacek Cała. “Migration in CORBA Component Model.” In: Distributed Applications
and Interoperable Systems 4531.Chapter 11 (2007), pp. 139–152.

[6] Robert N Charette. “This car runs on code.” In: IEEE spectrum 46.3 (2009), p. 3.

[7] Betty H C Cheng and Ji Zhang. “Specifying adaptation semantics.” In: ACM SIG-
SOFT Software Engineering Notes 30.4 (May 2005), pp. 1–7.

[8] Philipp Chrszon et al. “Family-Based Modeling and Analysis for Probabilistic Sys-
tems - Featuring ProFeat.” In: FASE 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings. 2016, pp. 287–304.

[9] Alan W Colman and Jun Han. “Roles, players and adaptable organizations.” In:
Applied Ontology (2007).

[10] Mahdi Derakhshanmanesh et al. “GRAF: Graph-based Runtime Adaptation Frame-
work.” In: Proceedings of the 6th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems. New York, NY, USA: ACM, 2011,
pp. 128–137.

[11] Simon Dobson et al. “A survey of autonomic communications.” In: ACM Trans.
Auton. Adapt. Syst. 1.2 (Dec. 2006), pp. 223–259.

XI

Bibliography

[12] J Ferber, F Michel, and J Báez. “AGRE: Integrating Environments with Organi-
zations.” In: Environments for Multi-Agent Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg, July 2004, pp. 48–56.

[13] D Garlan et al. “Rainbow: architecture-based self-adaptation with reusable infras-
tructure.” In: Computer 37.10 (Oct. 2004), pp. 46–54.

[14] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. “Self-organising software architec-
tures for distributed systems.” In: Proceedings of the first workshop on Self-healing
systems. New York, New York, USA: ACM, Nov. 2002, pp. 33–38.

[15] Hassan Gomaa and M Hussein. “Software reconfiguration patterns for dynamic
evolution of software architectures.” In: Fourth Working IEEE/IFIP Conference
on Software Architecture (WICSA 2004). IEEE, 2004, pp. 79–88.

[16] Hassan Gomaa et al. “Software adaptation patterns for service-oriented architec-
tures.” In: SAC (2010), pp. 462–469.

[17] Robrecht Haesevoets. “Macodo: Architecture-Centric Support for Dynamic Service
Collaborations.” PhD thesis. Jan. 2012.

[18] Svein O Hallsteinsen, Jacqueline Floch, and Erlend Stav. “A Middleware Centric
Approach to Building Self-Adapting Systems.” In: Gschwind T., Mascolo C. (eds)
Software Engineering and Middleware. SEM 2004. Lecture Notes in Computer Sci-
ence 3437.Chapter 9 (2004), pp. 107–122.

[19] Rolf Hennicker and Annabelle Klarl. “Foundations for Ensemble Modeling - The
Helena Approach - Handling Massively Distributed Systems with ELaborate EN-
semble Architectures.” In: Specification, Algebra, and Software 8373.Chapter 18
(2014), pp. 359–381.

[20] A Hinton et al. “PRISM: A Tool for Automatic Verification of Probabilistic Sys-
tems.” In: TACAS’06. 2006, pp. 441–444.

[21] Tobias Jäkel et al. “Position Paper - Runtime Model for Role-Based Software Sys-
tems.” In: ICAC (2016).

[22] Tobias Jäkel et al. “RSQL - a query language for dynamic data types.” In: IDEAS
(2014), pp. 185–194.

[23] Jeffrey O Kephart and David M Chess. “The Vision of Autonomic Computing.” In:
Computer 36.1 (Jan. 2003), pp. 41–50.

[24] Annabelle Klarl. “Engineering Self-Adaptive Systems with the Role-Based Archi-
tecture of Helena.” In: WETICE Workshops (2015), pp. 3–8.

XII

[25] Jeff Kramer and J Magee. “Self-Managed Systems: an Architectural Challenge.” In:
Future of Software Engineering, 2007. FOSE ’07. Minneapolis: IEEE, May 2007,
pp. 259–268.

[26] Jeff Kramer and J Magee. “The evolving philosophers problem: Dynamic change
management.” In: Software Engineering, IEEE Transactions on 16.11 (1990), pp. 1293–
1306.

[27] Christian Krupitzer et al. “A survey on engineering approaches for self-adaptive
systems.” In: Pervasive and Mobile Computing 17 (2014), pp. 184–206.

[28] Thomas Kühn et al. “A Metamodel Family for Role-Based Modeling and Pro-
gramming Languages.” In: Software Language Engineering. Cham: Springer Inter-
national Publishing, Sept. 2014, pp. 141–160.

[29] Rogério de Lemos et al. “Software Engineering for Self-Adaptive Systems: A Second
Research Roadmap.” In: Software Engineering for Self-Adaptive Systems 7475.Chap-
ter 1 (2010), pp. 1–32.

[30] Max Leuthäuser and Uwe Aßmann. “Enabling View-based Programming with SCROLL:
Using roles and dynamic dispatch for etablishing view-based programming.” In:
MORSE/VAO ’15: Proceedings of the 2015 Joint MORSE/VAO Workshop on Model-
Driven Robot Software Engineering and View-based Software-Engineering. ACM
Request Permissions, July 2015.

[31] Nancy A Lynch. Distributed algorithms. [Nachdr.] The Morgan Kaufmann series in
data management systems. San Francisco, Calif. : Morgan Kaufmann, 2006.

[32] Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. “A Decentralized Re-
deployment Algorithm for Improving the Availability of Distributed Systems.” In:
Component Deployment. Berlin, Heidelberg: Springer Berlin Heidelberg, Nov. 2005,
pp. 99–114.

[33] D Menasce et al. “SASSY: A Framework for Self-Architecting Service-Oriented
Systems.” In: Software, IEEE 28.6 (Nov. 2011), pp. 78–85.

[34] Henry Muccini, Mohammad Sharaf, and Danny Weyns. “Self-adaptation for cyber-
physical systems: a systematic literature review.” In: SEAMS ’16: Proceedings of
the 11th International Workshop on Software Engineering for Adaptive and Self-
Managing Systems. New York, New York, USA: ACM, May 2016, pp. 75–81.

[35] P Oreizy et al. “An architecture-based approach to self-adaptive software.” In:
IEEE Intelligent Systems 14.3 (May 1999), pp. 54–62.

XIII

Bibliography

[36] Christian Piechnick et al. “Using role-based composition to support unanticipated,
dynamic adaptation-smart application grids.” In: Proceedings of . . . 2012.

[37] Romain Rouvoy et al. “MUSIC: Middleware Support for Self-Adaptation in Ubiq-
uitous and Service-Oriented Environments.” In: Software Engineering for Self-
Adaptive Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 164–
182.

[38] Mazeiar Salehie and Ladan Tahvildari. “Self-adaptive Software: Landscape and
Research Challenges.” In: ACM Trans. Auton. Adapt. Syst. 4.2 (May 2009), 14:1–
14:42.

[39] Alexander Schill and Thomas Springer. Verteilte Systeme :Grundlagen und Basis-
technologien /. eXamen.press. Berlin ;, Heidelberg [u.a.] : Springer, 2007.

[40] Friedrich Steimann. “On the representation of roles in object-oriented and concep-
tual modelling.” In: Data Knowl. Eng. () 35.1 (2000), pp. 83–106.

[41] Daniel Sykes, Jeff Magee, and Jeff Kramer. “FlashMob: distributed adaptive self-
assembly.” In: Proceeding of the 6th international symposium. New York, New York,
USA: ACM, May 2011, pp. 100–109.

[42] Nguonly Taing et al. “A dynamic instance binding mechanism supporting run-time
variability of role-based software systems.” In: Companion the 15th International
Conference. New York, New York, USA: ACM, Mar. 2016, pp. 137–142.

[43] Nguonly Taing et al. “Consistent Unanticipated Adaptation for Context-Dependent
Applications.” In: the 8th International Workshop. New York, New York, USA:
ACM, July 2016, pp. 33–38.

[44] Tetsuo Tamai and Supasit Monpratarnchai. “A Context-Role Based Modeling Frame-
work for Engineering Adaptive Software Systems.” In: APSEC 1 (2014), pp. 103–
110.

[45] Yves Vandewoude et al. “Tranquility: A Low Disruptive Alternative to Quiescence
for Ensuring Safe Dynamic Updates.” In: IEEE Transactions on Software Engi-
neering 33.12 (Dec. 2007), pp. 856–868.

[46] Pieter Vromant, Danny Weyns, and Sam Malek. “On interacting control loops
in self-adaptive systems.” In: Proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. Catholic University
of Leuven. ACM, 2011.

[47] Martin Weissbach. “Adaptation Mechanisms for Role-Based Software Systems.” In:
OTM Workshops 9416.Chapter 1 (2015), pp. 3–4.

XIV

[48] Martin Weissbach and Thomas Springer. “Coordinated Execution of Adaptation
Operations in Distributed Role-based Software Systems.” In: SAC 2017: Sympo-
sium on Applied Computing Proceedings. New York, NY, USA: ACM, 2017, pp. 45–
50.

[49] Martin Weissbach et al. “Decentralized coordination of dynamic software updates
in the Internet of Things.” In: WF-IoT (2016).

[50] Martin Weissbach et al. “Decentrally Coordinated Execution of Adaptations in Dis-
tributed Self-Adaptive Software Systems.” In: 2017 IEEE 11th International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO. IEEE, 2017, pp. 111–
120.

[51] Danny Weyns et al. “On Patterns for Decentralized Control in Self-Adaptive Sys-
tems.” In: Software Engineering for Self-Adaptive Systems II. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 76–107.

[52] Markus Wutzler, Martin Weissbach, and Thomas Springer. “Role-Based Models
for Building Adaptable Collaborative Smart Service Systems.” In: 2017 IEEE In-
ternational Conference on Smart Computing (SMARTCOMP. IEEE, 2017, pp. 1–
6.

[53] Ji Zhang and Betty H C Cheng. “Model-based development of dynamically adap-
tive software.” In: Proceedings of the 28th international conference on Software
engineering. 2006.

XV

	Titlepage
	Introduction
	Motivation
	Application Scenario 1 – Autonomously Driving Cars
	Application 2 – Search-And-Rescue Robots
	Application Scenario 3 – Evolution of Deployed Software Systems
	Summary

	Problem Analysis
	Terminology
	General Self-Adaptive Software System Terms
	The Role Concept in General

	Requirements Analysis
	Decentralized Execution of Adaptations
	Ensure a Stable Application State before Adaptation
	Cope with Loss of Coordination Messages
	Cope with Local Adaptation Failures
	Summary

	Research Questions
	Thesis Outline

	State of the Art
	Formal Foundation
	Stable Application States
	Semantics of Adaptation – Adaptation Models

	Decentralization in (Self-)Adaptive Software Systems
	General Architecture of (Self-)Adaptive Software Systems
	Decentralization of the Adaptation Management
	Decentralization of the Execution Phase

	Roles in Adaptive Software Systems
	MACODO
	HELENA
	Roles in Multi-Agent-Systems

	Perform Run-Time Adaptations
	Summary

	Employing Roles in Decentralized Self-Adaptive Software Systems
	An Adaptation Supportive Role Runtime
	Supporting Decentralized Run-time Adaptation
	The Role Life Cycle
	Adaptation Interface
	Local Stable State for Roles
	Distributed Stable State for Roles

	Comparison with Role Features

	Decentralized Execution of Distributed Adaptations
	System Model and Error Models
	Adaptation Operations and Adaptation Transactions
	Adaptation Operations
	Adaptation Transactions

	Adaptation Operations and the Role Runtime's Adaptation Interface
	The Execution of Local Operations
	The Execution of Distributed Operations

	The Decentralized Coordination Protocol
	Protocol Messages
	Decentralized Coordination of a Transaction
	Decentralized Coordination of Adaptation Operations and Groups
	A Note on Stopping Failures

	Update Execution of the Role-based Managed Application
	Summary

	Implementation & Evaluation
	The Role-based Managed Application
	The Decentralized Adaptation Management
	Emulation of the Coordination Protocol
	General Emulation Setup
	Data Acquisition
	Emulated Experiments
	Results
	Summary

	A Formal Validation of the Coordination Protocol
	Summary

	Conclusion
	Summary of Requirements and Research Questions
	Future Work

	Formal Model
	Protocol Messages
	Transaction Control Messages
	Execution Control Messages

	Bibliography

